
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Marius Oscar Moe

System for gamification of lab work in
TDT4100

Master’s thesis in Informatics
Supervisor: Hallvard Trætteberg

June 2019

Marius Oscar Moe

System for gamification of lab work in
TDT4100

Master’s thesis in Informatics
Supervisor: Hallvard Trætteberg
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Summary

Learning new programming languages can be difficult and giving the right amount of su-
pervision can be a challenge, especially in large courses like TDT4100 with up to 835
registered students for lab work. Additional sources of feedback are therefore welcome
and gamification in educational contexts has shown promising results in the past, but has
to be carefully implemented and does not work in every situation.

This study consist of creating a system for gamifying TDT4100 and testing the usabil-
ity of that system. The created system focused on the technical challenges of creating
an extensible and configurable system for easier testing of effective metrics and rewards.
Usability testing was achieved with automatic monitoring of user interaction and a vol-
untary survey. The study utilized a larger sample size than earlier research on gamifying
TDT4100, as the previous research focused on qualitative data on feedback of design and
specific metrics.

The experiment testing the system had a large number of entrants, however, fewer than ex-
pected completed the usage objectives within the system. The results from the survey and
the collected usage data revealed a low degree of usability and individual analysis of the
questions from the SUS questionnaire showed a low perception of the system’s usefulness.

The system achieved a high level of extensibility by enabling system administrators to
choose and combine measures for any exercise in addition to choose criteria for individual
achievements. New measures were also easy to add and hard-coded measures could be
reused when combined with each other to create composite measures.

i

Sammendrag

Å lære nye programmerisngsspråk kan være vanskelig, og å gi riktig mengde tilbakemeld-
ing kan være utfordrende, spesielt i et stort kurs som TDT4100 med 835 registrerte stu-
denter for øvingsopplegget i 2019. Flere kilder for tilbakemelding er derfor velkomen og
spillifisering har vist gode resultater tidligere, men et slikt system er nødt til å bli imple-
mentert skikkelig og virker ikke i alle situasjoner.

Denne studien består av å skape et system for å spillifisere øvingsopplegget i TDT4100
og teste brukervennligheten til dette systemet. Systemet som er lagd fokuserte på å løse
tekniske utfordringer knyttet til utvidbarhet og konfigurerbarhet for å kunne lettere teste
effekten av forskjellige kodemetrikker og belønninger. Brukbarhetstestingen ble gjen-
nomført ved hjelp av automatisk overvåkning av brukerenes interaksjon med systemt og
ved hejelp av en spørreundersøkelse. Denne studien benyttet seg av en større prøvegruppe
enn tidligere forskningin på området, da denne i stor grad har fokusert på undersøkelser
av kvalitativ data fra tilbakemeldinger om design og spesifikke metrikker.

Eksperiementet med testen av systemet hadde mange deltagere, men færre enn forven-
tet fullførte buksmålene til systemet. Resultatene fra undersøkelsen og den oppsamlede
brukerdataen avdekket en lav grad av brukbarhet. Individuell analyse av spørsmålene fra
SUS spørreskjemaet viste også at den opplevde nytten til systemet var lav.

Systemet oppnådde en høy grad av utvidbarhet ved å la systemadministratorer velge og
kombinere metrikker for hvilken som helst øving i tillegg til å velge kriterier for individu-
elle merker. Nye metrikker var også lett å legge til og hardkodede metrikker kunne bli
gjenbrukt og kombinert med hverandre for å lage sammensatte metrikker.

ii

Preface

This master thesis is the work of Marius Oscar Moe as part of the course IT3901 - In-
formatics Postgraduate Thesis: Software at NTNU, Norwegian Univarsity of Science and
Technology, Department of Computer and Information Science. The work has been super-
vised by Hallvard Trætteberg.

We would like to thank all the people making this report a reality and a special tanks
to Hallvard for all the help and support.

iii

iv

Table of Contents

Summary i

Sammendrag ii

Preface iii

Table of Contents vii

List of Tables ix

List of Figures xi

Abbreviations xii

1 Introduction 1
1.1 Motivation . 1
1.2 Earlier work on gamification of TDT4100 2
1.3 Problem description . 2
1.4 Objectives . 3
1.5 Thesis outline . 3
1.6 Ethics . 3

2 Background and theory 5
2.1 Lab work . 5
2.2 Software measures . 6

2.2.1 Lines of code . 6
2.2.2 Cyclomatic complexity . 7
2.2.3 Coupling . 7
2.2.4 Cohesion . 8
2.2.5 Tree impurity . 8
2.2.6 Java constructs . 8

2.3 Gamification strategies . 8

v

2.3.1 Goals . 9
2.3.2 Rules . 9
2.3.3 Reward structures . 9
2.3.4 Motivation . 9

2.4 Success of gamification in education . 10
2.5 Extensible systems and tactics . 10

2.5.1 Modelling and domain specific languages 11
2.5.2 Other tactics . 13

3 Development approach 15
3.1 Development method . 15
3.2 Research question . 15
3.3 Research strategy . 16

3.3.1 Data generation method . 16
3.3.2 Participants . 16
3.3.3 Data analysis . 17

4 Requirements 19
4.1 System description . 19
4.2 Functional requirements . 20

4.2.1 As a student . 20
4.2.2 As a course responsible . 20

4.3 Non-functional requirements . 20
4.4 Changed requirements . 21
4.5 Outside scope . 21

5 Implementation 23
5.1 Gamification . 23

5.1.1 Included measures . 23
5.2 Models from Jexercise . 24

5.2.1 Feature vector model . 24
5.2.2 Exercise model . 25
5.2.3 IMetricProvider . 26

5.3 Handling of extensibility . 26
5.3.1 Configuration with EMF . 26

5.4 Program architecture . 28
5.4.1 Scenarios . 28
5.4.2 Logical view . 28
5.4.3 Process view . 29
5.4.4 Development view . 30
5.4.5 Physical view . 31

vi

6 Results and discussions 33
6.1 Procedure . 33
6.2 Evaluation of collected usage statistics 33

6.2.1 Usage objectives . 34
6.3 SUS score . 35
6.4 Discussion of the developed system . 35
6.5 Discussion of results from the experiment 36

6.5.1 Threats to validity . 36

7 Conclusion 39
7.1 Further research . 39
7.2 Further development . 40

Bibliography 40

Appendices 45
Appendix A . 46
Appendix B . 49
Appendix C . 50
Appendix D . 51
Appendix E . 53

vii

viii

List of Tables

6.1 Visitors to https://metricstdt4100.xyz . 34
6.2 Session duration distribution . 34
6.3 Usage objectives . 34

ix

x

List of Figures

2.1 Simplified model of Ecore components relations, attributes, and operations 12
2.2 Resources as part of a ResourceSet . 13

3.1 Caption for LOF . 17

4.1 Simplified usage example with BPMN 19

5.1 Combining measures fv-model instance example 25
5.2 Filtered fv-model instance example . 25
5.3 Configuration instance . 27
5.4 Finding references in eObjects . 27
5.5 Usage example with BPMN . 29
5.6 Activity diagram - retrieve metric data 29
5.7 Activity diagram - add metric data . 30
5.8 Sequence diagram add metric data . 31
5.9 Component diagram . 31
5.10 Deployment diagram . 32

xi

Abbreviations

Java AST = Java Abstract Syntax Tree
URI = Universal Resource Identifier
TDT4100 = Introductory course at NTNU in object oriented programming
GDPR = The EU General Data Protection Regulation
TAM = Technology Acceptance Model
SUS = System Usability Scale
EMF = Eclipse Modeling Framework
DSL = Domain Specific Language
POJO = Plain Old Java Object
BPMN = Business Process Model and Notation

xii

Chapter 1
Introduction

This chapter presents the motivation behind this thesis and earlier work on gamification of
TDT4100 at NTNU. The problem description and objectives are also presented together
with a note on the ethics behind the data gathered in relation to this master thesis.

1.1 Motivation

TDT4100 serves as an introductory course in object-oriented programming at NTNU [1].
The course utilizes both lectures and exercises to develop the student’s skill where the
approval of the exercises is done semi-automatically. This means that a student works
with an exercise until a series of unit tests pass, these are tests that verify specific parts
of the code behaves as intended. The exercise then has to be shown to a teaching assis-
tant, hereinafter referred to as TA, for feedback and approval. The TA’s responsibility is
to verify that tests pass and give feedback on the exercise in general, the approval of the
exercise is not reliant on the TA’s remarks on quality. This is the only feedback students
get on code qualities beyond confirmation of fulfillment of functional requirements and
with more than 700 students registered for the course in 2018, giving all students adequate
feedback can be difficult. Code quality is not a binary trait and any additional feedback
could be valuable to the student.

The curriculum is also challenging as the failure rate on the ordinary exam for 2018 was 23
percent1. Other introductory courses also have high failure rates, but there is clearly room
for improvement. The meta-analysis in [2, Chapter 4] shows that gamification is a promis-
ing technique for improving education. On the other hand, gamification in education has
also been shown to be challenging to implement in such a way that it yields measurable
improvements [3, 4].

1Spring 2018, course TDT4100 Objektorientert programmering - https://sats.itea.ntnu.no/
karstat/makeReport.do

1

https://sats.itea.ntnu.no/karstat/makeReport.do
https://sats.itea.ntnu.no/karstat/makeReport.do

Chapter 1. Introduction

As described below in section 1.2, a similar application has been explored earlier as a
prototype, but with some important limitations. There is currently no running system that
compliments the exercise program in TDT4100 with code insights.

1.2 Earlier work on gamification of TDT4100
David Åse worked on a concept for gamifying TDT4100 as a pre-project for his mas-
ter thesis in 2014. Christian Rasmussen joined the actual master project which aimed at
creating a web-based code editor with some of the game elements from the pre-project
incorporated [5]. The system they created also let students see each other’s progress and
rewarded students for passing Unit tests. The thesis focuses heavily on the technical im-
plementation of a web-based code editor and will have limited influence on this thesis.

In 2015 Espen Selquist Stenmark wrote about how gamification can stimulate develop-
ment of practical skills in the Eclipse IDE [6]. The developed prototype and the successive
user test were based on the teaching goals of TDT4100. The chapter about gamification is
especially relevant as this thesis will utilize some of the same methods for gamification.

In 2018 Syver Bolstad wrote his thesis on how to gamify TDT4100 and created a pro-
totype of an application that gamifies the exercise program [7]. This master thesis focused
on how to support the course through gamification by utilizing software metrics to achieve
badges. It is this concept that lays the design foundation for the system developed with
this thesis. It is important to emphasize that Bolstad’s prototype had a limited number of;
test participants, metrics, and badges implemented.

1.3 Problem description
The problem description was articulated as the following:

Today’s exercise program is based on JUnit tests for testing functional requirements, other
qualities are important as well that do not become stimulated and are important to improve
upon. The project will use elements from games, like badges and rewards to encourage
better learning of other qualities than today’s lab work. There has been done some work
on the design earlier, therefore this project consists of realizing a system that can be tested
on a greater scale and be built upon.

The ”other qualities” that are mentioned in the problem description refer to non-functional
requirements that can be indicated by code measures, the foundation for specific qualities
and metrics considered are described in section 2.2. The different game elements and me-
chanics considered are described in section 2.3.

The importance of a system that can be built upon was emphasized further during the
development and added as a separate objective for this project. The extensibility of the
system was therefore subject to further discussion in section 5.3.

2

1.4 Objectives

1.4 Objectives
The problem description was turned into the following objectives for the software to be
made with this thesis:

• Objective 1: Create a web-based platform that gamify the lab work of TDT4100 by
using software metrics to show progress and skill level

• Objective 2: Create a system with good usability, especially in terms of perceived
ease of use, that is the user expect to use little effort in using the system

• Objective 3: Enable extensibility of which metrics to: use, display for an exercise,
and use for achievements

The discussion on how the objectives have been fulfilled can be found in chapter 6. To
achieve the objectives an agile development approach was used. The process method
utilized methods from Extreme Programming (XP) as described in [8]. The specific tools
used were Kanban boards, user stories, and development cycles with defined goals for
implemented features. A more detailed explanation of how agile development methods
were implemented can be found in section 3.1.

1.5 Thesis outline
Chapter one presents the motivation, earlier work on gamification of TDT4100, the prob-
lem description with subsequent objectives, and ethics in relation to the gathered data.
Chapter two presents the background theory, which includes; course details, techniques
for extensibility, gamification, and metrics. Chapter three explains the relevant research
methods and how the experiments conducted were carried out. Chapter four presents the
various requirements. Chapter five explains the different design decisions and solutions
implemented as well as the overall system architecture. To describe the architecture the
4 + 1 view model from [9] was used. Chapter six covers the experiment with results, dis-
cussion of the findings and threats to validity. Chapter seven provides an overall conclusion
together with suggestions for further research and development.

1.6 Ethics
The data gathered and used in this research consist of code snapshots and metadata for
exercises in TDT4100. More specifically, a snapshot of the code is taken for every saved
instance of the code as well as every attempt at running unit tests, the method that ensures
that data only related to coursework get stored is done by monitoring packets matching
a regex. Metadata like; time window was activated, test results, and stack traces are also
recorded. The recorded data file contains no references to a natural person and the imple-
mentation of how the recorded data is gathered can be found in the Jexercise repository
[10].

The main objective with processing the data, in the context of this thesis, is to convey

3

Chapter 1. Introduction

to the student indications on quality attributes of the code by using code measures. The
second objective is to enable course facilitators with aggregated data to better understand
what concepts are understood and which need further explanation in lectures.

The GDPR constitutes important rules for how data-driven software shall be governed.
The term ’personal data’ is defined in Art. 4(1)(1) in [11] and include information related
to work times, which is recorded by Jexercise, when these can be theoretically connected
to a natural person. The recorded data has to be uploaded by a logged in user because
only that user should be able to see metrics calculated for their exercise. This means that
files with recorded data are connected to individual accounts and the data in question must
follow the GDPR rules. Several steps were taken to comply with GDPR. Firstly, all par-
ticipants were informed of the following: what data was gathered, for which purpose, and
that data would not be sold or given to any other parties. Secondly, all participants had the
option to ask for all their data to be deleted or provided for them to see. The system created
also logged behavior and created individual profiles for each user. This was also subject to
the same steps for compliance with GDPR and was necessary for acquiring usage metrics
to evaluate the system. Other methods were also considered like a longer questionnaire,
but the fear of inaccurate results and a plethora of other interesting metrics tipped the scale
in favor of automated user behavior collection.

4

Chapter 2
Background and theory

This chapter presents the background and theory, which contains an introduction to the lab
work, software metrics, gamification in an educational context, and extensible systems.
The topics were chosen based on what domain knowledge is needed for gamification of
TDT4100 and how to achieve the goals presented in section 1.4.

2.1 Lab work
Understanding the various steps in the lab work of TDT4100 was important for gamify-
ing the course as it was the subject of what was gamified. To pass TDT4100 the student
must pass the lab work and the final exam, but only the score achieved on the exam count
toward the final grade [1]. The lab work consists of a series of programming exercises
managed by the course responsible, in order to pass a certain number of exercises must be
approved. Each exercise is split into several programming tasks, in which the student has
to choose and solve some of them, the specific number of tasks required for an exercise is
stated in the respective exercise. Some exercises also have mandatory tasks and tasks with
optional sub-tasks [12]. An example could be the state and behavior exercise from 2018,
the student has to complete 4 tasks where 3 of them can be chosen from a list of 7 with
varying difficulty. Every task is accompanied by a series of Junit tests. To complete a task
every Junit test for that particular task has to be completed. The end result has to be shown
to a teaching assistant for approval. The teaching assistant may also help the student if
required and gives feedback on the implemented code.

The various exercises in TDT4100 focus on a series of important topics within object-
oriented languages and programming in general. Some of the topics from the exercises
are; objects and classes, encapsulation and validation, object structures, interfaces, han-
dling files, observer patterns, and inheritance. Each exercise typically targets a specific
topic but later exercises sometimes cover several topics. The course is not limited to pro-
gramming alone; there are learning objectives for tool usage and testing as well.

5

Chapter 2. Background and theory

The course has an initiative for recording the student’s path to the exercise solution. This
is done through an extension to the Eclipse IDE called Jexercise. The extension gathers
data about; when and how the code is executed, stack traces, Junit test results, and changes
to the source code in between code executions. All data is stored in a .ex file which is
a serialized instance of the exercise model from the Jexercise repository. The .ex file is
to be delivered in Blackboard, the course e-learning platform, as proof of completing the
exercise.

2.2 Software measures
Software measures were included in chapter 2 as they were chosen to be the benchmark at
which rewards could be given in the gamification process of TDT4100.

Software measures can use either internal or external attributes to derive their value. Inter-
nal attributes are ”attributes that can be measured purely in terms of product, process, or
resource itself [13, p. 88]”. External attributes on the other hand are attributes that make
use of observations over time or how the system works with its environment, for example,
failure rate or defect rate.

Since the exercises measured never will be set in production or maintained for an ex-
tended period of time, only metrics that utilize internal attributes were considered. The
measures were: lines of code, cyclomatic complexity, cohesion, coupling, tree impurity,
and Java structures. The measures are explained below together with the reason for why
they were interesting for this project.

Several of the proposed measures utilize modules as an important concept. This term
has been defined multiple times in literature; [14] propose that it can be described as a
Java interface, [15] describes it as ”Modules are assigned specific computational respon-
sibilities, and are the basis of work assignments for programming teams [15]”, and the
spring documentation use it for separating different functionality [16]. For the purpose of
this thesis, the definition from [15] will be considered a module.

While the goal with static software measures is clear, indicating software qualities, the
actuality is that it is rather hard to quantify. Unlike laws in physics, software qualities do
not originate from measures and observations, but rather a categorization of what is gen-
erally conceived as a quality. One proposal for what software quality is as a whole can be
found in ISO 25010:2011 [17]. This document standardizes what is important to consider
when reviewing a system’s quality in terms of qualities that do not originate from mea-
sures. Therefore, it is difficult to create measures that in right quantify these properties.

2.2.1 Lines of code
Lines of code and kilo lines of code often abbreviated to LOC and KLOC respectively are
often considered to measure the size of a project [13]. A challenge with LOC is its easily
inflatable nature. While verbosity can be a good attribute, making little progress with large

6

2.2 Software measures

amounts of code might indicate that the program could have been written more efficiently.
This problem has led to the proposal of numerous other measures that try to describe the
project size more transparently. An example is NCLOC, noncommented lines and CLOC,
comment lines of program text. These amount to LOC when combined, see formula from
[13]

LOC = NCLOC + CLOC (2.1)

This relation gives other useful derived measures, like density of comments

density of comments =
CLOC

LOC
(2.2)

The separation of program code and comments only partly solves the problem with inflat-
able numbers. Further fragmentation could be done by creating a scoring system where
code lines that do more get a higher score, measuring the amount of functionality instead
of purely project size, real-life examples are the COCOMO II model [13, p. 358-359] and
Function points from Albrecht [13, p. 352]. The downside with this approach is that it
introduces a whole new range of challenges related to the weighting of meaningfulness.

2.2.2 Cyclomatic complexity
While the name ’cyclomatic complexity’ contains the word ’complexity’, this number does
not directly indicate a program’s complexity [13, p. 92] it rather measures the number of
linearly independent paths through a program. The cyclomatic number can be calculated
with the formula in [18]

v(G) = e− n+ p (2.3)

where the flowgraph G has e edges, n is the number of nodes, and p is the number of
connected components. Alternatively, one can count the forking nodes of the Java AST
generated from the source code.

In the IEEE Standard Dictionary of Measures of the Software Aspects of Dependabil-
ity from 2005, cyclomatic complexity was removed due to the following reason, ”There
is no scientific evidence that threshold values that must be used with this measure, such
as 10, have general applicability [19]”. This measure could still, however, prove useful
when only considering the measurement on an ordinal scale against a solution manual as
this would give the student a reference point in regard to the number of necessary paths
through the program.

2.2.3 Coupling
Stevens, W. P. et al. paper on how structured design can help the development of software
from 1974 explain coupling as, ”the degree to which each connection couples (associates)
two modules, making them interdependent rather than independent [20]”, where connec-
tions are described as a reference to some external entity. The assumption is that fewer
connections between modules lead to code that is easier to read and reduce the chance of
errors affecting unforeseen parts of the system upon changes in the system.

7

Chapter 2. Background and theory

One proposal for calculating coupling is coupling between object classes (CBO) and is
defined for a class as how many other classes it is coupled with [14]. In practice, this
translates to summing up the number of external classes a single class references.

2.2.4 Cohesion
Cohesion refers to the degree components inside a module belong together, a high cohesion
is to maximize relations among elements in the same module. Several ways to calculate
this number have been proposed, one of them being lack of cohesion in methods often
abbreviated to LCOM, which can be calculated by the formula provided in [14]

LCOM = |P | − |Q|, if |P | > |Q|
= 0 otherwise

where P is (Ii, Ij)|Ii ∩ Ij = ∅, Q is (Ii, Ij)|Ii ∩ Ij 6= ∅, and Ii is the set of instance vari-
ables used by method Mi.

2.2.5 Tree impurity
Tree impurity aims to measure the deviation from a tree-like structure in a program’s
information flow between modules. One proposal for calculating tree impurity m(G) is
provided in [14]

m(G) =
2(e− n+ 1)

(n− 1)(n− 2)
(2.4)

Where e is the number of edges and n the number of nodes in the graph constructed from
the information flow between the modules. This measurement is meant to indicate design
quality of the software system, where the more a system deviates from a tree-like structure
as opposed to a graph like one, the worse it is.

2.2.6 Java constructs
Java constructs are the components a Java program consists of, and not all are commonly
used in the literature as measures. Java can be a difficult language to learn and to keep
track of which concepts and Java constructs one has used can, therefore, be valuable. One
way of deriving these constructs is to look at the abstract syntax tree of the Java code,
which can be achieved with Eclipse’s syntax parser. This will generate a tree with AST
nodes, ”An AST node represents a Java source code construct, such as a name, type,
expression, statement, or declaration [21]”. When these measures are accumulated over
several exercises one can tell whether some concept or technique were encountered in the
past. This can be used to help the decision process of what one should work with to learn
the whole curriculum.

2.3 Gamification strategies
Gamification strategies were included as they address the various ways gamification of a
subject can take. Sebastian Deterding et al. propose the following definition of ’gamifi-

8

2.3 Gamification strategies

cation’, ”the use of game design elements in non-game contexts [22]”. This entails that
several components make up a gamified system, but it provides little information about
what these elements might be. Another definition made by Karl M Kapp for gamifica-
tion in an educational context is ”Gamification is using game-based mechanics, aesthetics
and game thinking to engage people, motivate action, promote learning, and solve prob-
lems. [2]”. This definition highlights an important point that gamification is not only
about adding badges, points, or rewards, but encouraging the user to participate and solve
problems. In the subsections below a presentation of relevant game mechanics and game
thinking will be given.

2.3.1 Goals

Goals are an integral part of every game and are important as they ”adds purpose, focus,
and measurable outcomes [2]”. An example of such a goal in an educational context could
be to beat your friends in the number of correct answers at a test. The goals can also
encourage the player to explore a larger area of the game or achieve a higher level of
completeness in the game.

2.3.2 Rules

Rules define what means are allowed to use to reach the goals of the game.

2.3.3 Reward structures

Reward structures are different ways to communicate progress or excess. Some common
reward structures for digital systems are:

• Points - can be given based on a number of measurable attributes, but the general
idea is that the more you have the better.

• Achievements and Badges - are graphical icons that often carry some meaning, like
mastering certain fields or demonstrates a certain proficient in a skill.

• Cosmetic items - this kind of reward requires some sort of avatar system as the
reward comes through improving or differentiating this character from other players.

• High score lists - High score lists can be seen as an extension of reward structures as
being at the top can give ”bragging rights and social capital to the individuals who
achieved the high scores [2, Chapter 2]”.

2.3.4 Motivation

To successfully gamify some domain or task one is also reliant on that the player want
to achieve the rewards available. This motivation can come from extrinsically motivating
factors, like getting compliments from other students or intrinsically, the student itself.

9

Chapter 2. Background and theory

2.4 Success of gamification in education
A quick overview of the success of gamification in education was included to explore
lessons learned from earlier experiements with gamification in education.

In [2, Chapter 4] a meta-analysis study of game-based learning was conducted utilizing
six literature reviews that in total examined 341 studies from 1963 to 2007, several studies
on specific game elements were also conducted resulting in a series of key takeaways. The
findings indicated among others that the benefit of gamification is most apparent when the
content is not too broad and learning objectives are clearly defined. It also claims that
extrinsic motivation is likely to influence the intrinsic motivation negatively if the reward
does not tell the student anything meaningful about their skill or knowledge on any related
subject. Common to several of the key takeaways are that they reiterate that gamification
does not work in all use cases and the successfulness depends upon implementation and
learning context.

The field experiment in [23] gamified the process of committing code during four weeks
in a computer programming course, where students competed in having the highest score
in code quality. Scores were computed by analyzing the correctness of Javadoc and the
experiment found no improvement in quality. The study points to a series of important as-
pects that can guide future implementations; think about the evaluation of how successful
the experiment was, metrics that are understandable and possible to change through hard
work for participants, and scores that do not feel unfair or is counterproductive for team
performance.

In a recent study, [3] found that gamification of a math-based game yielded minimal im-
provement with the introduction of points for the 1911 participants. The study contained
two experiments; both found no performance gain in terms of accuracy but minor improve-
ments in speed. Bolstad also concluded that whether his prototype provides a benefit for
learning could not be determined [7], further confirming that the results of gamification
are not always positive.

2.5 Extensible systems and tactics
There are many software measures and metrics that can be useful for indicating software
quality, however, there will only be time to implement a handful in this project. Con-
figurability was also seen as important to achieve extensibility since it enables a faster
implementation of expanding features. The extensibility that is thought of is the ability
to choose measures displayed for any specific exercise, add measures at a later stage in
development, and combine implemented measures to new measures. The extensibility of
the system was considered a highly preferable trait and different methods for achieving it
are explored in the subsections below.

Modeling and the use of domain specific languages (DSL) can be used as a tactic for
extensibility. Since extensibility, a system’s ability to expand, is a form of change, many

10

2.5 Extensible systems and tactics

of the architectural tactics are the same as for modifiability. The tactics presented in [15]
for modifiability are therefore included below in section 2.5.2.

2.5.1 Modelling and domain specific languages
Marco Brambilla et al. argues that one always make some kind of model of the prob-
lem domain regardless of the modeling effort, so whether it is needed or not is not an
appropriate question [24], despite this the rigorousness, explicitness and how the model is
structured matters and deserve attention as creation of models can be both expensive and
their usefulness vary. Then why use modeling to achieve an extensible system? Models
can be used for both descriptive and prescriptive purposes, e.g. describing the system and
figuring out the scope of the problem domain. Models can also contain extension points
enabling system designers to choose how and where unknown or new components can en-
ter the system. An extension point enable custom implementations where needed at places
where they can interoperate with the rest of the model [25, p. 178]. Object-oriented models
can incorporate this feature through inheritance and interfaces. A framework for facilitat-
ing the creation of such models is the Eclipse Modeling Framework (EMF) that will be
explained further below. One ”version” of modeling where rules for extension points are
clearly defined is through domain specific languages.

Configuration with domain specific languages

A domain specific language (DSL) is defined by Brambilla et al. as ”languages that are de-
signed on purpose for a specific domain, context, or company, to support people who need
to describe things in that domain [26]”. They can also help alleviate the gap between the
problem and the platform as the entities in the DSL more accurately capture the specifica-
tions of the problem, rendering general purpose languages more verbose and error prone
in some situations.

DSLs can according to [25] take on two opposite directions, towards routine configura-
tion and creative construction. Routine configuration is configuration through static fields
or a variation thereof. Creative construction, on the other hand, provides more freedom
and enable the designer to create a more graph like language, capable of defining new
and connected modeling elements. In between these two, there are DSLs that can pro-
vide some guidance to the developer in terms of rules and order of modeling objects. By
declaring rules or defaults on the model instance to be configured, simple operations can
be standardized and easily repeated.

In some situations where the configuration instance changes rapidly or by a non-technical
person a separate syntax for the creation of the configuration instance could be benefi-
cial. One benefit with a separate syntax is that the configuration can be validated by an
IDE before it is used , decreasing the likelihood of system instability. Another benefit is
the guidance a good editor in combination with the syntax can give. This includes; auto-
completion, syntax highlighting, automatic imports when referencing external attributes,
and the possibility of adding a graph based editor. Both Eclipse and Jetbrains have their
own idea of how this can be achieved. Eclipse has Xtext which builds upon the Eclipse

11

Chapter 2. Background and theory

Modeling Framework (EMF). It enables the creation of textual languages through a gram-
mar language [27]. Jetbrains, on the other hand, proposes the Meta Programming System
(MPS). The tool was officially launched in 2009 [28] and is aimed at creating domain spe-
cific languages [29]. Class structures can also be modeled with this tool, but that is not its
primary objective.

Eclipse modeling framework

EMF is a modeling framework and code generation facility for building various Java ap-
plications from models [30]. It combines XML, Java, and UML to facilitate development
and XMI, a standard for serialization of metadata with XML, for persistence.

Ecore is used to express models in EMF and is an EMF model, making it a meta-metamodel.
Ecore can also provide runtime support for models and provide a well-defined API for ma-
nipulation of EMF objects at runtime [31]. This makes Ecore suitable for modeling various
problem domains and together with other tools in the EMF enable model to text transfor-
mations.

A well-defined Ecore model instance has a highly structured hierarchy, where eObjects
have links to other eObjects that it contains and to the eObject where it is contained, if it’s
not the root node. The Ecore component eReference holds information about the link’s
direction of relation, a subset of the Ecore model showing how links are stored can be seen
in figure 2.1. The structure makes it possible to traverse an instance of the model generi-

Figure 2.1: Simplified model of Ecore components relations, attributes, and operations

cally, one can then access and edit attributes without foreknowledge of the exact structure
of the model instance. In order to serialize a model instance, the instance must be part of
a resource which again has to be a part of a ResourceSet. Every resource within the Re-
sourceSet is associated with a URI as can be seen in figure 2.2. If the eObject links to an
object in another resource, the reference will be demand loaded at runtime if the resolve-
Proxies from figure 2.1 is set to true and the two resources exist in the same ResourceSet.

The concept of demand loading additional resources can be used in conjunction with ob-
ject traversal to achieve configurability, an example can be seen in section 5.3.1. A more
general example of a use case for EMF is to model a problem domain in Ecore, then gen-

12

2.5 Extensible systems and tactics

Figure 2.2: Resources as part of a ResourceSet, Ed Merksand and Dave Steinberg - copyright IBM
made aviliable under the EPL v1.0, from Eclipsecon 2005

erate the Java code and write the unimplemented methods by hand. The system can then
persist its state by storing it in an XMI file.

2.5.2 Other tactics

Reduction of module size

Split modules – By splitting modules with a large responsibility the workload is decreased
when changing this module in the future.

Increase cohesion

Increase semantic coherence – this tactic is similar to ’splitting modules’, but with the sole
purpose of increasing the cohesion within the module.

Reduce coupling

Encapsulate – encapsulation is a technique where the interactions that can be made on a
module is limited to an explicit interface. This can limit the impact of one change affecting
other modules.

Use intermediary – By breaking up dependencies with an intermediary, previously de-
pending modules no longer need to know of each other’s implementation.

Restrict dependencies – Limit the number of dependencies, hence the project size.

Refactor – Refactoring or cleaning up code is useful to remove duplicated and poorly
written code.

Abstract common services – This tactic suggest moving common code structure to mod-

13

Chapter 2. Background and theory

ules for themselves and rather let other modules use these modules to avoid duplicated
code.

Defer binding

Defer binding is to let functions or methods be used for a wider set of use cases by enabling
the functions to receive more parameters determined at run time.

14

Chapter 3
Development approach

This chapter presents the chosen approach for answering the objectives in section 1.4 and
contain both the development methods and the research process used to evaluate the sys-
tem.

3.1 Development method

The first and third objective in section 1.4 revolves around creating a functional system that
gamifies the lab work of TDT4100. The method used to achieve this was an agile approach
based on various tools in extreme programming (XP) and Kanban from Henrik Kniberg
[8]. The Kanban board was used in much of the same way as in Scrum where the original
objectives for the system are added as user stories to the project backlog and in every sprint,
four weeks in this project, a subset is chosen to be worked upon. Every sprint new user
stories get selected for the successive sprint, and new user stories that arrive during devel-
opment are added to the backlog and possibly included in the next sprint. After every two
sprints comes a release, which is a working piece of software. User stories were handled by
the Kanban board built into GitHub where also the code was committed. The public repos-
itory can be found at https://github.com/mariusmoe/metrics-consumer.

Scrum as a whole was not used due to its heavy focus on team-based activities like;
stand up meetings, daily planning, and sprint demos. Instead, some of the activities were
changed to work for a one-man team. Some examples are daily planning in calendar ap-
plication and retrospective as writing sessions.

3.2 Research question

To be able to discuss the second objective in section 1.4 a research question was articulated
as follows:

15

https://github.com/mariusmoe/metrics-consumer

Chapter 3. Development approach

RQ: Determine how the users’ interest and system usability impacts the actual use of the
system

It is important to emphasize that the objective was not to defend the inclusion of the built-in
metrics.

3.3 Research strategy

To achieve all the objectives in 1.4 and answer the research question the chosen research
strategy was set to design and creation. It focused on creating an extensible framework for
gamifying the lab work in TDT4100 and investigate the research question. The developed
system explored the technical challenges in building an extensible and configurable system
that was able to display selected measures, create compound measures, create achieve-
ments, and add new measures. A more extensive list of what the system was able to do can
be found below in chapter 4. For the investigative part, the developed system was available
for four weeks followed by a survey. The timing for the test period was important because
it spanned over the delivery window of three exercises and therefore gave students multi-
ple opportunities to test the system. The research strategy fit because it made it possible to
create and evaluate the system’s usability.

3.3.1 Data generation method

The data used in the evaluation was collected in three ways. The first was with a sur-
vey consisting of a questionnaire including the questions from the system usability scale
(SUS), described in further detail in section 3.3.3. The second and third were usage pat-
terns recorded by Google Analytics and data aggregated from the system’s database. The
two last methods for gathering data was implemented in an unintrusive manner to mini-
mize the effect it would have on users. The data generation method aligned well with the
research question from section 3.2 as the usage data measured the actual use of the system
and the questionnaire aimed at indicating the system’s usability.

3.3.2 Participants

The experiment was open for participation for the 835 students taking the course TDT4100
at NTNU in 20191. The participation was voluntary and the experiment was advertised
in lectures and linked to from the course e-learning platform. Incentives in the form of
food coupons were introduced in the last week of the experiment to encourage users to
also answer the survey. TDT4100 serves as an introductory course to object-oriented pro-
gramming and is typically the second programming course students take. It is therefore
expected that many of the participants will be at a low level in regard to programming
skills.

1Enlisted students for the exercise program in TDT4100, retrieved 1. April 2019 from Black Board (e-learning
platform)

16

3.3 Research strategy

3.3.3 Data analysis
The data gathered from the survey was used to compare users’ expectations derived from
SUS scores with their completed objectives during the test period.

Google analytics was in part used for recording user behavior which collects additional
useful information about users behavior. These are statistics on bounce rate, session du-
ration, number of returning users, and many more. The discussion and meaning of the
Google analytics statistics can be found in section 6.

Methods for analyzing system acceptance

Several models and techniques have been proposed in the literature for trying to explain
why information systems succeed or fail. One of these is the technology acceptance model,
hereinafter referred to as TAM. The goal of TAM is to give an explanation of what makes a
system accepted by looking into how perception of the system and attitude are influenced
by the system’s objective characteristics. The model was first presented in [32] and puts
forward two determining beliefs for what constitutes the attitude toward using the system,
perceived usefulness and perceived ease of use. Perceived usefulness is defined as the
probability a user has for the expected increase in his or her work performance. Perceived
ease of use, on the other hand, is defined as the users’ expected effort in using the system.
The model can be seen in figure 3.1.

Measuring perceived usefulness and perceived ease of use has been in frequent use since
its introduction and has seen several proposed iterations and variations [33]. The method
has also been found fruitful for understanding system usability several times since its in-
troduction in 1986 [34, 35, 36].

Figure 3.1: Technology acceptance model, Nippie CC BY 3.0 2

The system usability scale, hereinafter referred to as SUS, was introduced in 1986 and
aimed to indicate a users’ subjective evaluation of the system usability by using a likert
scale with ten questions. The scale outputs one final output calculated by multiplying 2.5
with the points for each question. The points for each question is one subtracted from the
score for the odd number questions and 5 minus scale position for even number questions

2https://creativecommons.org/licenses/by/3.0, from Wikimedia Commons

17

https://creativecommons.org/licenses/by/3.0

Chapter 3. Development approach

[37, p. 189-194]. The questions included in SUS can be found in appendix A.

While the output range from 0 to 100 a median score does not mean an average acceptabil-
ity score, an average acceptability score has been found to be approximately 68 according
to [38]. In a recent study on an e-learning system, SUS was utilized in part to infer the
usability degree. It was found that SUS on its own is not enough to evaluate usability
and suggested that future studies incorporate usage data and interactions recorded by the
system as basis for their evaluations [36].

18

Chapter 4
Requirements

This chapter introduces the system in addition to the functional and non-functional require-
ments. The requirements were elicited from meetings and the initial objectives described
in 1.4.

4.1 System description
To give the reader an idea of how the system looks like, an outline of how it can be used is
given in this section. A figure depicting the activities can be found in figure 4.1.

A student can log in to the system and upload a .ex file. When completed the student
can navigate to another page where he/she can see computed code measures from the
source code contained in the .ex file together with measures from the corresponding solu-
tion manual. Based on the measures displayed and the descriptions of the measures, the
student can get an impression of what qualities the delivered exercise has. The student
can also navigate to the achievements page where progress towards various badges can be
seen. These express proficiency in certain areas accumulated across all exercises or on
particular exercises. The measures displayed for each exercise and the achievements can

Figure 4.1: Simplified usage example with BPMN

19

Chapter 4. Requirements

be configured by the course responsible.

4.2 Functional requirements
The functional requirements served as an explicit list of physical milestones that had to be
achieved. A more detailed version of this list can be found in the GitHub issue tracker, see
reference to repository in section 3.1.

4.2.1 As a student
• FR1 – A student should be able to see measures generated from their progress on

exercises compared to measures generated from a solution manual

• FR2 – A student should be able to see achievements, both accumulated and specific
to an exercise

• FR3 – A student should be able to submit measures and .ex files as basis for metric
calculations

• FR4 – A student should be able to see a set of achievements that can be cumulative
or specific to an exercise

4.2.2 As a course responsible
• FR6 – A course responsible should be able to configure for each exercise a set of

composite measures or individual measures that shall be calculated and shown to
the student

• FR7 – A course responsible should be able to add cumulative achievements and
achievements for specific exercises

4.3 Non-functional requirements
The non-functional requirements guided the creation of the detailed issues especially in
regard to extensibility.

Security

• Measures submitted by a student should only be accessible for that student

• Login credentials should not be attainable for bad actors

• Login should be handled with Feide authentication provider

Privacy

• Users should be properly informed of the identifying information being stored by
the system

20

4.4 Changed requirements

• Users should be in control of the data collected about them

Extensibility

• Metrics should be possible to add by including a new IMetricProvider and declaring
it in the system’s configuration file

• Metrics should be possible to add by deriving new ones from existing metrics through
a configuration

• Additional achievements should be easy to add to the system, so that adding achieve-
ments would take less than 5 minutes to add.

• Configuring which metrics should be displayed for a particular exercise should be
configurable in less than 5 minutes.

4.4 Changed requirements
The focus of FR3 changed to emphasize the upload of .ex files as it was discovered that
there would not be time to implement the necessary business logic for automating uploads
from the Jexercise extension.

4.5 Outside scope
Some requirements that were envisioned at an early stage like using Graphql and adding
community response per metric were not implemented due to their priority and time lim-
itations in the development schedule. An extensive list of not implemented functional
requirements can be found among the project GitHub issues with the label ”wontfix” at
the GitHub repository, see section 3.1.

21

Chapter 4. Requirements

22

Chapter 5
Implementation

This chapter goes through technical details in the application and the implemented; gami-
fication strategies, measures, and architecture.

5.1 Gamification
The system incorporated two main game elements, badges and a variation of high score
lists. Badges, or achievements, were implemented in a configurable manner and could be
added for a single exercise or as a cumulative counter toward a goal. The requirement to
achieve a badge could be set with the method described in section 5.3.1. The variation of
high score lists used was a view enabling the comparison of the student’s metrics to the
solution manual. Since every exercise could consist of a variety of tasks with or without
additional sub-tasks the metrics for the corresponding solution manual had to be generated
for each submission. Screenshots from the system can be seen in appendix D.

5.1.1 Included measures

The uncertainty around which metrics to include was a core issue in the project and
spawned much of the need for an extensible system. Some metrics were chosen to be
included with the program from the start. The included measures were as follows:

• Cyclomatic complexity – while it was disbanded by the ISO, standard cyclomatic
complexity can still indicate if there has been used excessive branching structures to
achieve the required functionality

• Lines of code – often used as a measure for size which is useful in conjunction with
other metrics

• Method declarations – The number of method declaration can indicate if the student
has separated responsibilities enough

23

Chapter 5. Implementation

• Java constructs – can be used to monitor which parts of the java language has been
used in the various exercises. A description of java constructs can be found in section
2.2.6.

5.2 Models from Jexercise
EMF has been used for modeling due to existing models being created with EMF and its
useful features within model transformation. While MPS could have been used, this lan-
guage has a shorter track record and has a more focused set of features making it more
likely as an alternative to Xtext, which is built on top of EMF.

The system utilizes two existing Ecore models from the Jexercise repository, these are
a feature vector model and an exercise model. The IMetricProvider interface has also
been used extensively; while not an EMF model, it is maintained as part of the Jexercise
repository.

5.2.1 Feature vector model
A feature vector is simply a list of attributes associated with a numeric value for an object.
Throughout the field of informatics feature vectors are commonly used in image process-
ing and artificial intelligence but are not limited to these fields.

The feature vector model from the Jexercise repository, hereinafter referred to as the ’fv-
model’, is a metamodel for data structures, with the added capabilities of declaring various
computational operations on the data it contains. The model can be seen as a DSL that has
both routine configuration and creative construction properties, as it enables manipulation
of a dynamic tree-like data structure. The fv-model is used for storing and eliciting the
metrics that shall be displayed for exercises. One such method is through the Expres-
sionFeatures class, an example of how lines can be chosen to be displayed can be seen in
figure 5.1. The ExpressionFeatures class work by evaluating expressions in the FeatureList
contained by the ExpressionFeatures object. In the example this expression is ’lines’, a ref-
erence to one of the features of the FeatureList pointed to by the other reference, however,
this expression can reference multiple features and perform simple arithmetic operations.

The fv-model is also used to determine the threshold for receiving a badge, by using the
built in FilteredFeatures class, a simple example of how filters can be used to only show
measures with a value above 10 can be seen in figure 5.2.

The feature vector model used in this project has been extended from the original with
functionality for; grouping, attaching identifiers, and attaching tags to objects implement-
ing the FeatureValued interface. Identifiers and tags have been added by creating an addi-
tional abstract class that delegates all other methods to their respective class. The grouping
feature is simply a new class with a list of FeatureValued objects. The fv-model enables
many useful features that proved useful, this includes; filtering, arithmetic operations, and
grouping measures to their IMetricProvider.

24

5.2 Models from Jexercise

Figure 5.1: Combining measures fv-model instance example

Figure 5.2: Filtered fv-model instance example

5.2.2 Exercise model

The exercise model defines how the exercise data that the student produces is structured.
This includes metadata like; exercise name, timestamps for when tests ran, test results, and
a snapshot of the code when tests ran. The exercise model also includes a dependency to
the fv-model.

This model is needed to parse and extract the code from the student submissions for use in
IMetricProviders.

25

Chapter 5. Implementation

5.2.3 IMetricProvider

The IMetricProvider interface gives the promise of a single method that calculates a metric
or metrics as a FeatureValued which is an instance from the fv-model given a string of
source code or a Java abstract syntax tree (AST).

5.3 Handling of extensibility
There was great uncertainty connected to both the usage and the inclusion of metrics. Met-
rics, therefore, became an important point for extensibility.

New metrics were designed to enter the system in two ways. The first was to combine
existing metrics from already implemented IMetricProviders to new metrics. This was
done in the configuration for each exercise, details for how this was implemented can be
seen in section 5.3.1. The second way was to add an IMetricProvider to the classpath and
its name to the application.yml file. The application.yml, encoded in Yaml is one of several
formats the global configuration file for a Spring project can have. Yaml was chosen be-
cause of its human readable format for structuring information. The new IMetricProvider
would be found upon restart and usable for future configurations. The reason for having to
add the IMetricProvider name to the application.yml file was to easily be able to remove
it without removing it from the project classpath, which is a more tedious process than
simply commenting it out from the configuration file.

5.3.1 Configuration with EMF

Modeling with EMF was used to enable configuration of existing metrics from imple-
mented IMetricProviders. A configurable array of measures was used to aggregate new
measures and therefore relive the need for a lot of custom created measures. More specif-
ically, the feature vector model, described in section 5.2.1, define operations on dummy
data that would be replaced at runtime. This method of configuration resembles a com-
bination of routine configuration and creative construction, as the fv-model lays out the
operations and connection types the model elements can have while still dictating rules
for the tree-like structure. In the simplified example seen in figure 5.3, object #6 and #7
would be swapped out with student data. The addition of metadata was necessary because
measure names were only unique within an IMetricProvider. The ExpressionFeatures act
as a selector in the example, but other structures like FilteredFeature or more complex use
of ExpressionFeatures could also be used.

To traverse and recognize references to dummy data, EMF’s support for multiple resources
was used. The configuration file consists of two resources, as can be seen in figure 5.4.
Resource 1 consists of the various operations made on the data contained in recourse 2.
To use this as a configuration the references made from resource 1 to resource 2 had to
be identified, as can be seen as the black arrows crossing the dotted line in figure 5.4, and
replaced with references to the correct user data, indicated with dotted arrows in 5.4. The
replacement depended upon dummy data in the configuration resource set and the student

26

5.3 Handling of extensibility

Figure 5.3: Configuration instance

data was contained by a FeatureValuedContainer with the same name to be able to work.

Figure 5.4: Finding references in eObjects

Due to the flexibility of the fv-model, achievements were also awarded based on the ex-
istence of a FeatureList after a series of filters had been applied to the student data. This
also allowed for achievements spanning multiple metrics or composite metrics.

27

Chapter 5. Implementation

5.4 Program architecture
This section describes the architecture through different views in the 4+1 architectural
view model. To build the code, follow the instructions in appendix E.

5.4.1 Scenarios
Scenario 1 deals with how a student would typically use the application and a BPMN
diagram with the omission of checking achivements can be seen in figure 5.5. Scenario 2
on the other hand look at how a course responsible might use the application.

Scenario 1

The student login with Feide in the application. The system will save the user id for this
user locally and use this when submitting code (.ex files) and metrics. The student works
on the exercise and solves two out of seven unit tests. The student is responsible for up-
loading the source code for the exercise to the metrics application. Upon logging in to the
metrics application in a browser, the student can now see that the exercise is not completed
and does not have the same; cyclomatic complexity, number of for loops, and number of
exceptions as the solution guide. The student goes back to working on the assignment
and pass the remaining unit tests. The student then re-uploads the code. When checking
the metrics application again, the student can see that the exercise does not have the same
cyclomatic complexity, but has the same number of for loops, and number of exceptions
as the solution guide. The student can also see that a silver badge has been awarded for
completing the assignment. To improve the badge, the student continues to work on the
assignment and remove some unnecessary if and else statements. Upon re-uploading and
checking the metrics application again, the student can see that a gold badge has been
awarded and that the exercise has the same cyclomatic complexity, number of for loops,
and number of exceptions as the solution guide.

Scenario 2

The course responsible logs in to the system and uploads the new configuration for a
particular exercise. The file being uploaded is an XMI file. Upon completion of the upload
the course responsible visits the page for the exercise he/she uploaded the new config and
verify that the new config is in effect for the solution manual.

5.4.2 Logical view
A simplified class diagram can be seen in appendix C where some of the packages have
been collapsed for brevity as they contain mostly small and simple objects. The ’Package
models’ for instance contain the various POJOs used by the controllers and the ’Package
repositories’ contain interfaces for Spring Data repository abstraction.

28

5.4 Program architecture

For all requests accessing non-static resources, it is assumed that the user has logged in
and include a jsessionid with the request. The authentication process utilizes OAuth 2
implicit flow and has been delegated to Uninett Dataporten. This enables the user to log
in with their Feide credentials as Feide merged with Dataporten in 2018 [39]. To avoid
recording unnecessary identifying information, only required scopes for identifying users
were enabled for the authentication procedure. These scopes were; e-mail, username, pro-
file image, and user-ids. The benefit with Uninett Dataporten is that students and TA’s do
not have to create a new user profile for the application.

5.4.3 Process view

The BPMN diagram in figure 5.5 is included to give some context as to when the included
activity diagrams are used. The use case in figure 5.5 is the same as in 4.1, with the omis-
sion of checking achievements.

Figure 5.5: Usage example with BPMN

Only the activities with the most steps are included in this section for brevity, as many
of the activities do simple operations like store or retrieve data with access control without
any further processing.

Figure 5.6: Activity diagram - retrieve metric data

29

Chapter 5. Implementation

In figure 5.6 the configuration resource set is retrieved and its data resource replaced with
student metrics. This method of retrieving calculated metrics ensure that the newest con-
figuration is always used.

The most complex single operation within the program is adding new metric data by
uploading a .ex file. In figure 5.7 the ”calculate metrics” segment can be broken down

Figure 5.7: Activity diagram - add metric data

into two steps. The first step is to extract the source code by serializing the payload and
searching for the final proposal for each task. The second step is looking up available
IMetricProviders on the classpath and combine the different metrics to one measure sum-
mary for the entire exercise. The same process is repeated with a variation for calculating
metrics for the solution. Instead of extracting source code from the provided content, the
source code is retrieved from the database. Metrics for solutions must be calculated for
each submission as every proposal from the student can contain a different combination of
files.

Figure 5.8 show how new metrics enter the system with a sequence diagram. The rea-
son for storing the .ex file is to ensure that future metrics can be calculated without re-
uploading anything.

5.4.4 Development view

In figure 5.9 it is important to underline the possibility of multiple IMetricProviders. An-
other important note is the exclusion of spring-boot components used by the main compo-
nent.

30

5.4 Program architecture

Figure 5.8: Sequence diagram add metric data

Figure 5.9: Component diagram

5.4.5 Physical view
The server containing Nginx and the Spring application in figure 5.10 was a cloud-hosted
DigitalOcean server with 2GB of RAM and 1 vCPU. Both Uninet Feide and Google ana-
lytics provide free access at low usage volumes. The MongoDB server was also hosted on
the DigitalOcean server.

31

Chapter 5. Implementation

Figure 5.10: Deployment diagram

32

Chapter 6
Results and discussions

The results from the testing period will be presented and discussed in this chapter together
with threats to validity. The necessary definitions from Google Analytics will also be
explained. Finally, the chapter presents a discussion of the developed system.

6.1 Procedure

The experiment was first announced on March 17th during a lecture with an additional
announcement on the course e-learning platform. Follow-up announcements on the e-
learning platform were also issued during the experiment. The participants were asked to
login with their Feide user and try out the system and answer a short survey. No further
instructions or assistance were given to the students on how to use the system. On April
8th Food coupons were added as an incentive for answering the survey. The experiment
ended on April 17th.

6.2 Evaluation of collected usage statistics

The terms; sessions, users, and IDs in DB are needed to present the results and are defined
as follows:

A session represents a bundle of actions the user performs while actively engaging with
the web page. A break from interacting with the web page for more than 30 minutes is
considered the end of one session. Sessions can include; page views, actions, and other
events like e-commerce transactions [40].

Users are defined in Google Analytics as someone who has initiated one or more ses-
sions. By default, users are distinguished by a cookie created during their first visit, this is
called unassigned user-ID allocation. When the user log in their user-ID gets overwritten

33

Chapter 6. Results and discussions

with a new one that is unique for the logged in user. This is called assigned user-ID allo-
cation and enables persistent tracking across devices. IDs in DB is a count of how many
logged in users the system received. The number of; sessions, users, and IDs in DB can be
found in table 6.1. Google Analytics also reviled eight users accessing the site from other
countries than Norway, suggesting that some visitors were bots.

Table 6.1: Visitors to https://metricstdt4100.xyz

Sessions Unassigned users Assigned Users IDs in DB
155 65 59 72

The mismatch of the number of users with assigned user-IDs and the number of IDs in
DB suggests that 13 users that logged in likely ran some kind of script blocker as this
number should be the same if the Google Analytics script loaded correctly. The average
session duration distribution can be seen in table 6.2. Only 58 sessions lasted longer than

Table 6.2: Session duration distribution

Session Duration Sessions Pageviews
0-10 seconds 68 146
11-30 seconds 29 152
31-60 seconds 24 203
61-180 seconds 20 202
181-600 seconds 4 73
601-1800 seconds 7 150
1801+ seconds 3 446
Total 155 1372

30 seconds and 34 sessions longer than 60 seconds. Google Analytics also reported 11
users accessing the site from a mobile device where none of them logged in.

6.2.1 Usage objectives
The usage objectives and corresponding completion rate can be seen in table 6.3. The
method for deriving the various metrics are also included in the third column. Results from

Table 6.3: Usage objectives

Number Usage objective Value Derived by
1 User has visited at least one summary page 16 Google Analytics
2 User has visited the achievement page 24 Google Analytics
3 User has uploaded one .ex file 23 MongoDB
4 User has uploaded more than one .ex file 13 MongoDB

Google Analytics were extracted by creating custom views for users and content groups

34

6.3 SUS score

for the respective objective. The results from MongoDB were extracted by executing an
aggregation on the collection measureSummary. The aggregation used can be seen in
apendix B. It is important to point out that the completion criteria for objective 2 was
reachable for authenticated users.

6.3 SUS score
The SUS survey received 26 respondents and got an average SUS score of 63.84, which
is lower than the average 68 which is considered to be an acceptable score. The standard
deviation was 16.94%.

6.4 Discussion of the developed system
The developed system made it easy to add and configure measures for exercises and
achievements. Especially the ability to combine an array of measures to a new measure
decreased the need for hard-coded measures considerably, facilitating objective 3 from
section 1.4. There are however challenges and threats to the system’s longevity and poten-
tial for extended use. The first challenge is the handover to future administrators. While
the course responsible and teaching assistants for TDT4100 are well acquainted with Java
programming, the specific technology stack has not been lectured at NTNU. To avoid
some of the friction related to the handover the system could have used a packaging mod-
ule system known to the future system administrators, an example of one such system is
OSGi. OSGi would also have made for easier interoperability with the already created
IMetricProvider as it already is an OSGi bundle.

One threat to the system is to its potential for extended use. The system relies upon con-
suming .ex files created with the Jexercise extension for Eclipse. Institutions that wish to
give students similar feedback would have to implement a similar lab work routine where
exercises are written in Eclipse. This limits the potential for extended use as preferences
for integrated development environments are strong.

Another threat is that a more universal process for capturing exercise related data is already
in the works. This initiative is led by the Standards, Protocols, and Learning Infrastructure
for Computing Education (SPLICE) project. The working group behind ProgSnap2 within
the SPLICE project aims to create a standard for capturing student submissions in a CSV
format [41]. The format is arguably easier to use for researchers that are not proficient in
EMF modeling.

The system is missing some important features to become completely self-sustained. The
current implementation for changing solution manuals involves swapping out the affected
files in a file structure and run the system with custom command-line arguments to detect
the changes. A more graceful solution would allow HTTP routes to change solution man-
uals. Alternatively, the system could be instructed to watch a specific GitHub repository
with solution manuals for changes. The last alternative is feasible as the course already

35

Chapter 6. Results and discussions

has a maintained repository for solution manuals.

Lastly, the system is missing more extensive testing. While the system had integration
tests written in the Postman API development environment and web controller integra-
tion tests automatically testing the most critical features upon every build, there were too
few. The shortage of integration tests meant that some endpoints were not tested exten-
sively enough. Unit tests could also have been valuable when developing the shared helper
classes.

6.5 Discussion of results from the experiment
The lower than average SUS score and lack of people completing usage objective 4 indi-
cate that the system did not achieve objective 2 from section 1.4. There are many potential
reasons for this, one of which is related to motivation for use. This is backed by the score
of individual questions in the SUS survey. As can be seen in appendix C, question 1, ’I
think that I would like to use this system frequently’, received by far the lowest score.
The SUS survey is not made for analyzing scores on individual questions and this should
therefore be a topic for further research. From the number of people actually uploading
a .ex file in comparison to the number of authenticated users, it is clear that uploading an
exercise is hard.

Table 6.1 revealed 13 users with script blocking extensions. Although this does not impact
the results aggregated from the database, it could impact the measurement of the usage
objective #1 in both directions. This is also discussed in greater detail below in section
6.5.1.

The actual numbers of users, 111 from Norway, were also relatively low in comparison
to the number of unique users logging into the system, 72 from whom only 23 users up-
loaded .ex files. This highlights one important challenge with the system, getting users to
upload files requires considerable effort.

The survey had a turnout of 26 which is higher than the 23 users actually uploading a
.ex file. This clearly indicates that 3 people did not test the application to any considerable
extent before answering the survey. One possible reason for this is the added incentive of
food coupons at the end of the experiment, tempting people that have not tried the system
to answer only to be eligible to win coupons.

6.5.1 Threats to validity
One apparent threat to validity is the relatively low participation among students. While
the number of responses for the survey was above worst-case scenario, the confidence in-
terval was 18.93 for a confidence level at 95% with 26 respondents and a population of
835. Some of the reasons for the low number of participants and measures to improve
them are discussed below in section 7.1.

36

6.5 Discussion of results from the experiment

The incentive program for participation had obvious issues as the survey did not have
any validation of respondents having actually tried the system. This could have led to
people answering the questionnaire without trying the system beforehand. The usage data
does not support this as there were many more visiting the system than answering the sur-
vey, but there was no way to confirm this. Additionally, any incentive program can attract
responses on the wrong premises.

There is also a risk of Google analytics data being inaccurate in terms of gathering usage
across devices and not recording usage patterns at all for some users. The program utilized
id’s aimed at enabling tracking behavior across devices, but script or content blocking ex-
tensions can prevent this kind of data gathering. The practice of blocking certain scripts
has become more common and is even included in the Firefox browser, but not turned on
by default [42]. By querying the database and looking up how many unique users had
logged in and compare that to the number of users recorded by Google Analytics, it was
found that 13 people used script blocking scripts which is a considerable number of users.
The number of users accomplishing user objective #1 and #3 reveal that some of the most
active users probably used script blocker features as it is unlikely that 7 users would choose
not to examine the calculated measures, but still upload a .ex file.

37

Chapter 6. Results and discussions

38

Chapter 7
Conclusion

In this study a system for gamifying the lab work of TDT4100 through code measures was
created and its usability tested. The system enabled students to compare a configured set
of code measures from their own exercises to measures from a solution manual. Students
could also complete achievements for single exercises or for all delivered exercises. To
avoid the need for additional user accounts, Feide was used as authentication provider.
Data about user activities were monitored in an unintrusive manner and used in the analy-
sis of the system’s usability.

The system was designed with extensibility and configurability in focus and had the abil-
ity to; configure which measures to display for an exercise, add measures later in devel-
opment, and create composite measures. The method used for configuration relied upon
the Ecore API for manipulation of eObjects and demand loading of resources. The same
technique was also used to create requirements for achievements in the game.

The experiment investigated the usability of the system by utilizing automatic tracking
of user behavior and a questionnaire with questions from SUS. Students could test the
system for 40 days and spanned the period of three deliveries. The experiment had a large
number of entrants, however, a relatively low number of participants used the system be-
yond logging in to the system. The results from the SUS score and the number of people
completing the usage objectives indicated that the system did not have a high degree of us-
ability. The results also show that script-blocking features in browsers have become more
prevalent.

7.1 Further research
The goal is to improve qualities beyond runnable code with correct behavior, extensive
feedback could provide much of the same information without the competitiveness of a
game. Further research could look into the need for gamification as opposed to just ex-
tended feedback through proper A/B testing. Another possibility is to explore other; game

39

elements, reward structures, or game rules.

The implemented solution required the student to manually upload the .ex file which does
not provide immediate feedback and demand considerable action from the student. Fur-
ther research could investigate if automatically updating measures, decreasing time until
feedback is given result in improved code quality.

In section 2.4 it is revealed that understandable and useful feedback in terms of perfor-
mance is important for the success of gamification. The participants were likely to be at
an early stage in their programming career and the understanding of code measures might
have been low. To explore whether programming experience impacts the usefulness of
feedback in the form of gamifying measures, further research can investigate the appreci-
ation of gamification with code measures between novice and skilled programmers.

To improve participation, one could incorporate the feedback system as a part of the lab
work. This poses obvious challenges as forcing students to use yet another system might
add another layer of complexity to lab work proving already difficult. A different option
could be to introduce the feedback system at the start of the semester and remind students
to use it at the end of each exercise. There is also the option of adding more incentives.

Tools like Google Analytics provide efficient methods for collecting usage data but are
also considered to be privacy intrusive. Google Analytics, in particular, anonymize the
collected data and retain the rights to use some of it for internal purposes. Future exper-
iments on usability should, therefore, take into consideration script blocking extensions
and the effect this can have on the collected data.

7.2 Further development
As mentioned in section 7.1 automating the delivery of exercises and the elicitation of
measures could be an interesting change to the system. To achieve this, deliveries could be
handled by the measure system alone and use the Blackboard API to deliver the exercise
to Blackboard on behalf of the student. There are however limitations to this approach as
the Blackboard version dictates available API calls.

Further work on the system should set strict targets for test coverage as the discussion
on testing in section 6.4 revile that there is a need for further testing.

To make it easier to create configurations for which measures to display and aggregate,
a graphical editor could be implemented as an eclipse extension. The extension could be
created with Sirius, an Eclipse project for creating graphical modeling workbenches [43].
An editor would make it easier to create valid configurations.

To address the concerns related to longevity in section 6.4 the system could be extended
with the ability to transform ”ProgSnap2” formatted exercise submissions to exercise
model instances.

40

Bibliography

[1] Norges teknisk-naturvitenskapelige universitet, “TDT4100 - Objektorientert pro-
grammering.” https://www.ntnu.no/studier/emner/TDT4100#tab=
omEmnet, 2011. [Online; accessed 26-May-2019].

[2] K. Kapp, The Gamification of Learning and Instruction: Game-based Methods and
Strategies for Training and Education. Pfeiffer essential resources for training and
HR professionals, Wiley, 2012.

[3] N. A. Mokadam, R. Lee, A. A. Vaporciyan, J. D. Walker, R. J. Cerfolio, J. L.
Hermsen, C. J. Baker, R. Mark, L. Aloia, D. H. Enter, A. J. Carpenter, M. R.
Moon, E. D. Verrier, and J. I. Fann, “Gamification in thoracic surgical education:
Using competition to fuel performance.,” The Journal of thoracic and cardiovascu-
lar surgery, vol. 150, pp. 1052–8, 11 2015.

[4] R. van Roy and B. Zaman, “Need-supporting gamification in education: An assess-
ment of motivational effects over time,” Computers and Education, vol. 127, no. Au-
gust, pp. 283–297, 2018.

[5] C. Rasmussen and D. Åse, “A Web-Based Code-Editor.” http://hdl.handle.
net/11250/2352227, 2014. Master thesis accepted NTNU IDI.

[6] E. S. Stenmark, “Spillifisering for å stimulere utvikling av praktiske ferdigheter i
Eclipse.” http://hdl.handle.net/11250/2352241, 2015. Master thesis
accepted NTNU IDI.

[7] S. Bolstad, “Gamifying TDT4100.” http://hdl.handle.net/11250/
2579067, 2018. Master thesis accepted NTNU IDI.

[8] H. Kniberg, Scrum and XP from the trenches : how we do scrum. InfoQ enterprise
software development series, S.l.: C4Media, 2007.

[9] P. Kruchten, “Architecture Blueprints,” IEEE Software, vol. 12, no. November,
p. 540555, 1995.

41

https://www.ntnu.no/studier/emner/TDT4100#tab=omEmnet
https://www.ntnu.no/studier/emner/TDT4100#tab=omEmnet
http://hdl.handle.net/11250/2352227
http://hdl.handle.net/11250/2352227
http://hdl.handle.net/11250/2352241
http://hdl.handle.net/11250/2579067
http://hdl.handle.net/11250/2579067

[10] a. V. H. H. N. Z. E. . Hallvard Trætteberg, Vemund Santi, “Jexercise.” https:
//github.com/hallvard/jexercise, 2019.

[11] G. D. P. Regulation, “Regulation (eu) 2016/679 of the european parliament and of
the council of 27 april 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing
directive 95/46,” Official Journal of the European Union (OJ), vol. 59, no. 1-88,
p. 294, 2016.

[12] H. Trætteberg, T. T. Iveland, R. Sætre, O.-M. Pedersen, and V. M. Santi,
“Faginnhold.” https://www.ntnu.no/wiki/display/tdt4100/, 2019.
[Online; accessed 26-May-2019].

[13] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical Approach,
Third Edition. Boca Raton, FL, USA: CRC Press, Inc., 3rd ed., 2014.

[14] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,” Tse,
vol. 20, no. 6, pp. 476–493, 1994.

[15] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. Addison-
Wesley Professional, 3rd editio ed., 2012.

[16] P. Webb, D. Syer, J. Long, S. Nicoll, R. Winch, A. Wilkinson, M. Overdijk,
C. Dupuis, S. Deleuze, M. Simons, V. Pavić, J. Bryant, and M. Bhave, “Spring Boot
Reference Guide.” https://docs.spring.io/spring-boot/docs/2.
0.5.RELEASE/reference/htmlsingle/, 2018. [Online; accessed 26-May-
2019].

[17] ISO - International Organization for Standardization, “Systems and software en-
gineering Systems and software Quality Requirements and Evaluation (SQuaRE)
System and software quality models,” Iso/Iec Fdis 25010:2011, vol. 2010, pp. 1–34,
2011.

[18] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineer-
ing, vol. SE-2, no. 4, pp. 308–320, 1976.

[19] Ieee, IEEE Std 982.1 - 2005 IEEE Standard Dictionary of Measures of the Software
Aspects of Dependability, vol. 2005. 2006.

[20] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured design,” IBM Systems
Journal, vol. 13, no. 2, pp. 115–139, 1974.

[21] Eclipse Contributors and others, “Class ASTNode.” https://help.eclipse.
org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%
2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%
2FASTNode.html. [Online; accessed 26-May-2019].

[22] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design elements to
gamefulness,” in Proceedings of the 15th International Academic MindTrek Confer-
ence on Envisioning Future Media Environments - MindTrek ’11, (New York, New
York, USA), p. 9, ACM Press, 2011.

42

https://github.com/hallvard/jexercise
https://github.com/hallvard/jexercise
https://www.ntnu.no/wiki/display/tdt4100/
https://docs.spring.io/spring-boot/docs/2.0.5.RELEASE/reference/htmlsingle/
https://docs.spring.io/spring-boot/docs/2.0.5.RELEASE/reference/htmlsingle/
https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FASTNode.html
https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FASTNode.html
https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FASTNode.html
https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FASTNode.html

[23] C. R. Prause, J. Nonnen, and M. Vinkovits, “A field experiment on gamification of
code quality in agile development,” in Psychology of Programming Interest Group
Annual Conference (PPIG), vol. 2012, Citeseer, 2012.

[24] M. Brambilla, J. Cabot, and M. Wimmer, “Model-Driven Software Engineering in
Practice,” Synthesis Lectures on Software Engineering, vol. 1, pp. 1–182, 9 2012.

[25] M. Völter, T. Stahl, J. Bettin, A. Haase, S. Helsen, K. Czarnecki, and B. von Stock-
fleth, Model-Driven Software Development: Technology, Engineering, Management.
Wiley Software Patterns Series, Wiley, 2013.

[26] M. Brambilla, J. Cabot, M. Wimmer, and L. Baresi, Model-Driven Software Engi-
neering in Practice: Second Edition. Synthesis Lectures on Software Engineering,
Morgan & Claypool Publishers, 2017.

[27] Miro Sponemann, Christian Dietrich, Tamas Miklossy, and Holger Schill,
“The Grammar Language.” https://www.eclipse.org/Xtext/
documentation/301_grammarlanguage.html. [Online; accessed
26-May-2019].

[28] E. Toporov, “Step Into the Future with MPS 1.0.” https://blog.jetbrains.
com/mps/2009/07/step-into-the-future-with-mps-10/, 2009.
[Online; accessed 26-May-2019].

[29] S.r.o. JetBrains, “How Does MPS Work?.” https://www.jetbrains.com/
mps/concepts/. [Online; accessed 26-May-2019].

[30] D. Steinberg, EMF : Eclipse Modeling Framework. The eclipse series EMF, Place of
publication not identified: Addison Wesley, 2nd ed. ed., 2009.

[31] E. Fundation, “Ecore.” https://wiki.eclipse.org/Ecore, 2019. [Online;
accessed 26-May-2019].

[32] P. R. W. Fred D Davis, Richard P Bagozzi, “User acceptance of computer technology:
a comparison of two theoretical models,” vol. 35, no. 8, pp. 982–1003, 1989.

[33] N. Marangunić and A. Granić, “Technology acceptance model: a literature review
from 1986 to 2013,” Universal Access in the Information Society, vol. 14, no. 1,
pp. 81–95, 2015.

[34] A. Aypay, H. C. Çelik, A. Aypay, and M. Sever, “Technology acceptance in educa-
tion: A study of pre-service teachers in Turkey,” Turkish Online Journal of Educa-
tional Technology, vol. 11, no. 4, pp. 264–272, 2012.

[35] V. Venkatesh, “Creation of Favorable User Perceptions: Exploring the Role of Intrin-
sic Motivation,” MIS Quarterly, vol. 23, no. 2, p. 239, 2006.

[36] N. Harrati, I. Bouchrika, A. Tari, and A. Ladjailia, “Exploring user satisfaction for e-
learning systems via usage-based metrics and system usability scale analysis,” Com-
puters in Human Behavior, vol. 61, pp. 463–471, 8 2016.

43

https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html
https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html
https://blog.jetbrains.com/mps/2009/07/step-into-the-future-with-mps-10/
https://blog.jetbrains.com/mps/2009/07/step-into-the-future-with-mps-10/
https://www.jetbrains.com/mps/concepts/
https://www.jetbrains.com/mps/concepts/
https://wiki.eclipse.org/Ecore

[37] P. Jordan, B. Thomas, I. McClelland, and B. Weerdmeester, Usability Evaluation In
Industry. Taylor & Francis, 1996.

[38] I. S. Venticinque, “Determining What Individual SUS Scores Mean: Adding an Ad-
jective Rating Scale,” Journal of Usability Studies, vol. 4, no. 3, pp. 114–123, 2009.

[39] Feide, “Feide innlogging.” https://www.uninett.no/
feideinnlogging, 2018. [Online; accessed 26-May-2019].

[40] Google, “How a web session is defined in Analytics.” https://support.
google.com/analytics/answer/2731565?hl=en. [Online; accessed 26-
May-2019].

[41] SPLICE, “SPLICE: Standards, Protocols, and Learning Infrastructure for Computing
Education.” https://cssplice.github.io/. [Online; accessed 26-May-
2019].

[42] J. F. AliceWyman, Michele Rodaro, “Firefox - Content blocking.” https://
support.mozilla.org/en-US/kb/content-blocking. [Online; ac-
cessed 26-May-2019].

[43] Sirius, “Sirius.” https://www.eclipse.org/sirius/doc/. [Online; ac-
cessed 26-May-2019].

44

https://www.uninett.no/feideinnlogging
https://www.uninett.no/feideinnlogging
https://support.google.com/analytics/answer/2731565?hl=en
https://support.google.com/analytics/answer/2731565?hl=en
https://cssplice.github.io/
https://support.mozilla.org/en-US/kb/content-blocking
https://support.mozilla.org/en-US/kb/content-blocking
https://www.eclipse.org/sirius/doc/

Appendices

45

Sammenlikn metrikker tdt4100
For å kunne svare på denne undersøkelsen er det viktig at du har testet ut:
https://metricstdt4100.xyz/

Denne undersøkelsen vil bli behandlet anonymt.

Data samlet inn i denne undersøkelsen vil bli brukt til å statistisk analysere akseptanse
av systemet.

System usability scale
For å kunne svare på denne undersøkelsen er det viktig at du har testet ut:
https://metricstdt4100.xyz/

Jeg tror jeg vil bruke systemet ofte

Mark only one oval.

1 2 3 4 5

Sterkt uenig Veldig enig

1.

Jeg fant systemet unødvendig komplekst

Mark only one oval.

1 2 3 4 5

Sterkt uenig Veldig enig

2.

Jeg synes systemet var enkelt å bruke

Mark only one oval.

1 2 3 4 5

Sterkt uenig Veldig enig

3.

Jeg tror jeg vil trenge hjelp til å bruke dette systemet

Mark only one oval.

1 2 3 4 5

Sterkt uenig Veldig enig

4.

Sammenlikn metrikker tdt4100 https://docs.google.com/forms/d/1ciJpK-xIbRNy...

1 of 3 5/24/19, 2:13 PM

Appendix A

46

Jeg fant funksjonene i dette systemet godt integrert

Mark only one oval.

1 2 3 4 5

Sterkt uenig Veldig enig

5.

Jeg synes det var for mye inkonsistens i dette systemet

Mark only one oval.

1 2 3 4 5

Sterkt uenig Veldig enig

6.

Jeg ser for meg at de fleste vil kunne lære seg å bruke dette systemet raskt

Mark only one oval.

1 2 3 4 5

Sterkt uenig Veldig enig

7.

Jeg fant systemet veldig tungvint å bruke

Mark only one oval.

1 2 3 4 5

Sterkt uenig Veldig enig

8.

Jeg følte meg veldig selvsikker med å bruke systemet

Mark only one oval.

1 2 3 4 5

Sterkt uenig Veldig enig

9.

Jeg var nødt til å lære mye nytt for å kunne begynne å bruke systemet

Mark only one oval.

1 2 3 4 5

Sterkt uenig Veldig enig

10.

Vinn gavekort
Bli med i trekningen av gavekort hos SiT på 75 kr. Det er 7 premier totalt.

Sammenlikn metrikker tdt4100 https://docs.google.com/forms/d/1ciJpK-xIbRNy...

2 of 3 5/24/19, 2:13 PM

47

Powered by

Skriv din epost for å være med i
trekningen(Frivillig og brukes kun for å
trekke premie)

11.

Sammenlikn metrikker tdt4100 https://docs.google.com/forms/d/1ciJpK-xIbRNy...

3 of 3 5/24/19, 2:13 PM

48

Appendix B
MongoDB aggregations

[
{

$ p r o j e c t : {
u s e r I d : 1 ,
t a s k I d : 1

}
} , {

$ s o r t : {
u s e r I d : 1

}
} , {

$group : {
i d : ” $ u s e r I d ” ,

c o u n t : {
$sum : 1

} ,
numTasks : {

$addToSet : ” $ t a s k I d ”
}

}
} , {

$ p r o j e c t : {
i d : ” $ i d ” ,

numTasksIn t : {
$ s i z e : ” $numTasks ”

}
}

} , {
$ s o r t : {

numTasksIn t : −1
}

}
]

49

Appendix C
Class diagram

50

Appendix D

51

52

test.md 5/30/2019

1 / 2

System for gamification of lab work in TDT4100

Using measures to give indications of qualities in student exercises

Project structure

e2e --> Angular end to end testing
libs --> External jars
postman --> postman project backup
src
 app --> Angular
 assets --> Angular
 environment --> Angular
 main --> Java Spring backend
 test --> Java Spring tests

Installation

Prerequisites

node and npm
angular CLI: 6.2.1
Java 1.8
MongoDB 3.6.3

Setup

Clone this repo to your local machine using https://github.com/mariusmoe/metrics-consumer.git
Go to libs/ and run commands from maven-manual-imports

Authentication provider

The application uses spring security oauth2 implicit flow.

Create an account at an authentication provider or set up an Authorization Server.
An example is Feide dataporten

Create the Spring configuration file at metrics-consumer/src/main/resources/ and fill in the
provided fields from the authentication provider:

 oauth2:
 client:
 accessTokenUri:
 userAuthorizationUri:
 clientId:
 clientSecret:
 resource:
 userInfoUri:

Appendix E

53

test.md 5/30/2019

2 / 2

mom:
 mongo:
 address: 127.0.0.1
 database: measures
 staticResource:
logging:
 level:
 com.moe.metricsconsumer: info
metricsProviders:
 - no.hal.learning.exercise.jdt.metrics

Build

Run ng build --prod to build Angular static files
The target path for Angular production build is set to target/classes/static

Run mvn clean package and deploy war to tomcat

54

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Marius Oscar Moe

System for gamification of lab work in
TDT4100

Master’s thesis in Informatics
Supervisor: Hallvard Trætteberg

June 2019

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Earlier work on gamification of TDT4100
	Problem description
	Objectives
	Thesis outline
	Ethics

	Background and theory
	Lab work
	Software measures
	Lines of code
	Cyclomatic complexity
	Coupling
	Cohesion
	Tree impurity
	Java constructs

	Gamification strategies
	Goals
	Rules
	Reward structures
	Motivation

	Success of gamification in education
	Extensible systems and tactics
	Modelling and domain specific languages
	Other tactics

	Development approach
	Development method
	Research question
	Research strategy
	Data generation method
	Participants
	Data analysis

	Requirements
	System description
	Functional requirements
	As a student
	As a course responsible

	Non-functional requirements
	Changed requirements
	Outside scope

	Implementation
	Gamification
	Included measures

	Models from Jexercise
	Feature vector model
	Exercise model
	IMetricProvider

	Handling of extensibility
	Configuration with EMF

	Program architecture
	Scenarios
	Logical view
	Process view
	Development view
	Physical view

	Results and discussions
	Procedure
	Evaluation of collected usage statistics
	Usage objectives

	SUS score
	Discussion of the developed system
	Discussion of results from the experiment
	Threats to validity

	Conclusion
	Further research
	Further development

	Bibliography
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

