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Abstract

In recent years, considerable progress has been made in the estimation of subnational child
mortality rates with sparse survey data. The widely used design-based methods are easy
to implement and produce estimates that are consistent with the survey design. However,
design-based methods require sufficiently large sample sizes to obtain accurate estimates
in each geographic unit of interest. Design-based methods are therefore not applicable in
areas where there is not enough sampled data. Also, estimation of rates on coarse scales
may hide fine-scale trends. Alternative methods are necessary for fine-scale space-time
estimation, such as model-based methods.

This thesis provides a comparison of design-based and model-based approaches to the
estimation of neonatal mortality rates (NMR) at the county level in Kenya for 2009-2014
with complex survey data. The dataset used is a demographic and health survey (DHS)
conducted in Kenya in 2014. The design-based approach, a spatially smoothing design-
based approach and model-based approaches are tested. In addition, a new approach com-
bining design-based and model-based ideas is explored. Design-based rates are estimated
with the package survey in R. The other methods are formulated as Bayesian hierarchi-
cal models, and inference is conducted using integrated nested Laplace approximations
(INLA) with the package R−INLA in R. The methods are evaluated on a set of scoring
rules and on computational time through a simulation study and on real survey data.

The model-based methods were the best performing methods in the simulation study.
The results of the methods used on real survey data show that model-based approaches
are superior at handling more sparse data. In addition, model-based methods are able to
obtain estimates on finer spatial scales, where design-based methods are not applicable.
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Sammendrag

I de siste årene har det blitt gjore store framskritt i estimering av barnedødelighet på sub-
nasjonalt nivå med survey data. De mest brukte metodene er design-baserte, som er enkle å
implementere og produserer estimater som er konsistente med surveydesignet. Problemet
med design-baserte metoder er at de krever tilstrekkelig store samples for å oppnå nøyak-
tige estimater i hver geografiske enhet av interesse. Design-baserte metoder er derfor ikke
andvendbare i områder hvor det ikke er nok innsamlet data. I tillegg kan estimering av
dødelighet på grove skalaer i tid og rom gjemme trender på finere skala. Derfor er det
nødvendig med alternative metoder for estimering på fin skala i tid og rom.

Denne masteroppgaven gir en sammenligning av design-baserte og modell-baserte
fremgangsmåter for estimering av neonatale dødelighetsrater på fylkenivå i Kenya i pe-
rioden 2009-2014 med komplekse survey data. Datasettet som er brukt er en demographic
and health survey (DHS) utført i Kenya i 2014. En design-basert metode, en romlig glat-
tende design-basert metode og modell-baserte fremgangsmåter er testet. I tillegg er en
ny foreslått tilnærming utforsket, som kombinerer design-baserte og modell-baserte ideer.
Design-baserte rater er estimert med pakken survey i R. De andre metodene er formulert
som Bayesianske hierarkiske modeller og inferens er utført med integrated nested Laplace
approximations (INLA) med pakken R−INLA i R. Metodene er evaluert ved hjelp av et
sett av mål og på gjennomsnittlig kjøretid i et simuleringsstudie og på ekte survey data.

De modell-baserte metodene var metodene som oppnådde de beste resultatene i simu-
leringsstudiet. Resultatene av metodene brukt på ekte survey data viser at modell-baserte
metoder er bedre enn design-baserte metoder på å håndtere lite data. I tillegg er det også
mulig å oppnå estimater på finere romlig skala der design-baserte metoder ikke kan brukes.

ii



Preface

This master’s thesis was written during the last semester of my Master of Technology de-
gree at the Norwegian University of Science and Technology (NTNU). This final assign-
ment marks the end of the five-year study programme “Applied Physics and Mathematics”,
with specialization in “Industrial Mathematics”.

Working on this thesis has been exciting and rewarding, and has given me both prac-
tical and theoretical challenges. It has allowed me to utilize the knowledge I have gained
during the last five years and develop a deeper understanding of several fields in statis-
tics. The code used for the simulations and the generation of the results is written in R. I
used the package survey (Lumley (2010)) for obtaining design-based rates and the package
INLA (Rue et al. (2009)) for Bayesian inference.

I want to give special thanks to my supervisor Geir-Arne Fuglstad for his help and
guidance. I would also like to thank my family for all the support, and my friends for five
incredible years at NTNU.

Marte Marie Saghagen
Trondheim, June 2019

iii



iv



Table of Contents

Abstract i

Sammendrag ii

Preface iii

Table of Contents vi

1 Introduction 1
1.1 Current practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Neonatal mortality in Kenya . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background Theory 9
2.1 Complex survey methodology . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Spatial modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Bayesian hierarchical modelling . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Inference with Bayesian hierarchical models . . . . . . . . . . . . . . . . 18
2.5 Model assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Method 23
3.1 Design-based method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Smoothed design-based method . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Model-based method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Combining design-based and model-based methods . . . . . . . . . . . . 29
3.5 Details for implementation in INLA . . . . . . . . . . . . . . . . . . . . 32

4 Simulation Study 37
4.1 Design of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Case 1: No spatial effect . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Case 2: Unstructured spatial effect . . . . . . . . . . . . . . . . . . . . . 51

v



4.4 Case 3: Structured spatial effect . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Estimating neonatal mortality rates in Kenya 2009-2014 71
5.1 Full sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Reducing the sample size . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Finer spatial scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Discussion 83

Bibliography 87

vi



Chapter 1
Introduction

In the year 2000, the United Nations Millennium Declaration was adopted by world leaders
(UN (2019b)). The nations committed to eight Millennium Development Goals (MDGs)
which contain measurable targets to reduce poverty, hunger and the spread of diseases such
as HIV/AIDS and malaria. The post-2015 Development Agenda was a UN-led process to
define the new goals that would succeed the MDGs. The new set of goals are called the
Sustainable Development Goals (SDGs) consisting of 17 goals building on the MDGs.
Two important indicators of the health of a nation are the under-5 mortality rate (U5MR)
and the neonatal mortality rate (NMR). U5MR is defined in UNICEF (2018b) as “the
probability of dying between birth and exactly 5 years of age, expressed per 1000 live
births”. NMR is defined in UNICEF (2018a) as “the probability of dying during the first
28 days of life, expressed per 1000 live births”. Goal 3.2 of the SDGs is “by 2030, end
preventable deaths of newborns and children under 5 years of age, with all countries aiming
to reduce neonatal mortality to at least as low as 12 per 1,000 live births and under-5
mortality to at least as low as 25 per 1,000 live births” (UN (2018)).

Estimating mortality rates is complicated. Many of the countries that are falling behind
when it comes to improving mortality rates are developing countries where vital registra-
tion systems are often limited. When there does not exist a complete system for registra-
tions of every birth and death in the country, it is not possible to obtain exact mortality
rates. The alternative is to estimate mortality rates based on data arising from surveys and
censuses.

This thesis will focus on subnational estimation of NMRs while accounting for com-
plex survey designs. Quantifying the NMR is important for the countries when interven-
tions are to be done. As stated by UNICEF (2018a), “children face the highest risk of
dying in their first month of life”, making accurate estimation of the NMR an important
field of research. Also, stated by UNICEF (2018a), “a child born in sub-Saharan Africa
or in South Asia is nine times more likely to die in the first month than a child born in
a high-income country”. It is not only essential to obtain accurate national estimates of
the NMR, but also sub-nationally. Information about the subnational variation can make it
easier for the countries to allocate resources in a productive way.
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Chapter 1. Introduction

The structure of this thesis is as follows. Chapter 1 outlines the current practice within
the field, the scope of this thesis and the application. In Chapter 2, the relevant background
theory will be explained. The methods to be used in this thesis are thoroughly described in
Chapter 3. Further, Chapter 4 presents a simulation study to assess the performance of the
methods. Chapter 5 presents the results of the methods applied to a real survey conducted
in Kenya in 2014. Finally, findings are discussed in Chapter 6.

1.1 Current practice
When the commitment was made to realize the 2030 Agenda for Sustainable Development
(SDGs), the member states recognized that the targets of the SDGs should be “met for all
nations and people, and all segments of society, leaving no one behind” (UN (2019a)).
However, the disaggregated data needed to address subgroups of the population is sparse.
For the countries, it is essential to monitor progress towards the SDGs on the geographical
level where policies are decided and interventions can be made. Typically, this is not on the
national level, but on subnational levels such as counties or constituencies. Methods that
can reveal subnational variation and create accurate estimates for small areas or subgroups
are therefore a necessity.

The UN Inter-Agency Group for Child Mortality Estimation (IGME (2019)) is respon-
sible for developing methods for child mortality estimation and reporting the progress
towards child survival goals. The method used by IGME for estimating child mortality
globally is the Bayesian B-spline bias-reduction model proposed by Alkema and New
(2014). The model produces national estimates and cannot produce estimates at subna-
tional levels.

Great progress has been made in producing subnational estimates of child mortality.
Mercer et al. (2015) proposed a discrete space-time smoothing model that accounts for the
survey design to obtain subnational estimates of the U5MR. The model uses the design-
based approach where the goal of the analysis is to estimate features of the fixed pop-
ulation, not generalizing the findings to other populations. After that, the estimates are
smoothed in space and time. However, design-based methods require sufficiently large
sample sizes to obtain estimates in each geographic unit of interest. This method will
therefore not be applicable in areas where there is not enough sampled data. This type
of approach is still highly relevant and recently used by Zehang et al. (2019) to estimate
the U5MR for subnational areas in 35 countries in Africa. However, they do not produce
other mortality indicators such as mortality in the neonatal period, which is the period of
life where children face the highest risk of dying. Also, they use a coarse scale such as
provinces in Kenya, which may hide fine-scale trends.

In addition to discrete approaches to estimation with survey data, continuous models
have also been developed. Golding et al. (2017) use a Bayesian model-based approach that
is continuous in space and yearly in time to produce estimates of U5MR and NMR at a
resolution of 5×5 km grid cells for 46 African countries. The results were also aggregated
to obtain estimates on national, and subnational administrative levels 1 and 2. There are
several problems with this approach. It is computationally expensive to estimate in fine
scale for both space and time. Also, it is not straightforward how to aggregate the grid
cells up to subnational and national level when the survey design has to be accounted for.

2



1.2 Approach

Spatial and spatio-temporal modelling of complex survey data differs from standard
spatial or spatio-temporal statistics. Data collected through surveys is correlated and de-
pendent which present additional challenges when it comes to modelling. When working
with survey data it is necessary to account for the survey design, which includes stratifi-
cation and clustering. Stratification ensures coverage of all desirable subgroups, such as
the inclusion of residents from each subnational area. Clustering saves time and resources
by only sampling from restricted areas, called clusters, yielding correlated observations.
When using standard spatio-temporal models, stratification and clustering that introduce
dependence between the observations are not accounted for. The assumption of indepen-
dence between the locations and what is measured do not hold for survey data. In addition,
standard models do not account for the clustering of the observations resulting in variance
estimates that are too low.

1.2 Approach
This thesis will estimate subnational NMR with complex survey data. Survey data is
an important data source in the process of assessing the progress towards the SDGs. In
much of the developing world, vital registration is often absent or deficient. However,
information about the populations’ health can be obtained through surveys such as the
Demographic and Health surveys conducted by the DHS program. The DHS surveys are
used to asses progress towards the SDGs and collect important population characteristics.
The surveys are conducted in over 90 countries every fifth year such that the results of the
surveys can be compared over time, and the survey design is chosen in such a way that the
estimates are representative for the full population. The DHS surveys collect the complete
reproductive history of interviewed women, including the date of birth of each child, if the
child is deceased and the date of death.

The first approach explored is design-based, where county NMRs are directly esti-
mated for the fixed population based on the survey design. The second approach is a
smoothed design-based approach greatly inspired by the methods outlined in Mercer et al.
(2015). The design-based estimates with uncertainty, are spatially smoothed, in the hope of
obtaining more accurate estimates with less variance. The third approach is model-based,
where a binomial distribution is specified to the random process that generates the occur-
rences of neonatal deaths. The approach incorporates both spatially smoothing effects, a
fixed effect for the stratification and unstructured effects for the levels of clustering in the
survey design. Lastly, a new approach that combines the smoothed design-based method
and the model-based method is explored. The approach is a joint model with two likeli-
hoods. With this approach, the smoothed design-based approach is used in counties where
there are more than zero observed neonatal deaths, and the model-based approach is used
in counties where there is not enough data to produce design-based estimates. Combining
the two approaches makes it possible to follow design-based ideas in areas where this is
possible and take advantage of modelling in the remaining areas. Two levels of complexity
are considered for the model-based approach and the combined approach. First, unstruc-
tured effects at the first level of clustering and second, unstructured effects at both levels
of clustering.

The design-based approach is the benchmark when it comes to estimating health indi-
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Chapter 1. Introduction

cators from surveys as the design of the survey is fully accounted for. However, design-
based methods require large sample sizes from each subgroup one wishes to obtain esti-
mates for. Each new cluster that is added to a survey costs time and money, and the budget
is limited. When using design-based approaches, it is not possible to monitor the progress
of small areas. It is simply not doable to conduct surveys large enough to produce yearly
estimates at the administrative levels where policies and interventions are decided. Meth-
ods that spatio-temporally smooth the design-based estimates can reduce the variance of
the design-based estimates by borrowing strength in space and time. However, smoothing
design-based methods cannot be used on smaller areas or with sparse data.

An alternative to the descriptive, design-based approach is modelling the problem with
a more traditional model-based approach. Modelling makes it possible to obtain estimates
at arbitrarily small scales. In addition, model-based approaches make it possible to obtain
information about underlying structures in the data, such as how large the spatial variation
is, the significance of urban or rural areas, and intra-cluster correlation. However, several
questions arise when using model-based approaches. Where design-based estimates are
asymptotically unbiased, model-based estimates may produce bias. Fine-scale information
about the population is missing, such as the location of every child born. Therefore, ad-hoc
procedures must be used to create estimates for finer spatial units. However, model-based
approaches can produce more accurate estimates and less total variance. Since resources
are limited, model-based methods are favorable if they are sufficiently accurate.

Figure 1.1: Maps of Kenya with estimated county NMRs and relative standard deviation (RSD).
The results are presented as maps with estimated county NMRs, ri, per 1000 live births for counties
i = 1, ..., 47 in the first row and the relative standard deviation (RSD) σi

ri
· 100 in the second

row, where ri and σi is the estimated rate and estimated standard deviation of the rate in county
i respectively. First column: Design-based (DB). Second column: Smoothed design-based (SDB).
Third column: Model-based 1 (MB1).

4



1.2 Approach

Design-based estimates may have high variance and considerable variability, as shown
in the first column of Figure 1.1. Since the estimates are calculated directly as rates be-
tween the number of neonatal deaths and births, it is not possible to obtain any information
about possible structures in the data. Therefore, one cannot know if the noise in the design-
based estimates is random or structured variability between the areas. The SDB method
and the MB1 method may considerably reduce variance and noise as shown in the sec-
ond and thirds column of Figure 1.1. However, it is difficult to decide which of the three
methods that provide the most correct estimates of the NMR. The DB method is mostly
used and accepted within the field of survey statistics. In addition, design-based estimates
are asymptotically unbiased. If the design-based approach provides estimates with low
variance it is the preferred method. Since the SDB approach is based on the design-based
estimates there is no reason for not to trust the approach if the design-based estimates have
low variance. However, the DB method cannot be used on finer scales as this requires
larger sample sizes. On the contrary, model-based approaches will always be applicable
and provide estimates with low variances. The downside to the MB1 method is that it is
not based on survey theory and one has to trust that the chosen model is correct.

When estimating mortality rates at subnational level with the design-based method,
there is no assumption of any spatial relationship between the areas. However, results by
among others Mercer et al. (2015) and Zehang et al. (2019) show that including spatial- and
temporal dependency produce more precise estimates. In this thesis, spatially smoothing
effects are incorporated with the commonly used spatial model by Besag, York and Mollié
(BYM) outlined in Besag et al. (1991). In the BYM model one assumes that the spatial
effect in one area is dependent on the neighboring areas. The spatial effect is divided into a
structured and an unstructured part, making it possible to find out how much of the spatial
variation that is systematic. Continuous spatial models can also be used. However, it is
not necessary for comparing the different proposed approaches in this thesis.

As the methods explored in this thesis contain several model components, such as
spatial effects and unstructured cluster effects, hierarchical Bayesian models are appropri-
ate. Markov chain Monte Carlo (MCMC) methods are common approaches to estimate
posterior densities from Bayesian models. MCMC can obtain arbitrarily accurate results,
depending on the number of steps made. The software stan (Carpenter et al. (2017)) per-
forms full Bayesian statistical inference with MCMC sampling. Stan is general and can
be used to fit the models in this thesis, however, this approach is slow. Another approach,
which is beneficial computationally, is used instead. The approach is called integrated
nested Laplace approximations (INLA, Rue et al. (2009)). INLA can be used on a sub-
class of Bayesian hierarchical models called latent Gaussian models (LGMs). For LGMs,
Gaussian distributions are assigned to the latent field which is not directly observed but
inferred from the observed data. The models that are developed in this thesis fit within the
class of LGMs. The INLA approach is implemented in the package R−INLA, which can
be accessed at http://www.rinla.org (Rue (2019)).

The methods are assessed on their predictive performance through a simulation study
with different cases of spatial dependence: no spatial effect, unstructured effect and struc-
tured effect. Within each case, several scenarios with different fixed and random effects
are carried out such that the methods are tested on a wide range of situations. The methods
are evaluated on mean-absolute error (MAE), root-mean-squared error (RMSE), continu-

5
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Chapter 1. Introduction

ous ranked probability score (CPRS, Gneiting and Raftery (2007)), mean bias error (MBE)
and time-complexity.

1.3 Neonatal mortality in Kenya
The methods are applied to the case of estimating NMRs in the counties of Kenya. Kenya
is used as an example as this is a country where health indicators are estimated through
surveys. Even though Kenya is chosen to demonstrate the methods used, the methods are
also applicable to other low- and medium-income countries. Also, one would expect that
the methods can be used on other health indicators, such as the U5MR. A DHS conducted
in Kenya in 2014 is used. This particular survey is used as this is the most newly con-
ducted DHS in Kenya and can produce reliable estimates not only on national and regional
levels, as previous surveys, but also at the county level because of the increased number of
sampled clusters.

Kenya is situated in East Africa, bordering Ethiopia (north), Somalia (northeast), Tan-
zania (south), Uganda (west), and South Sudan (northwest). A new constitution was ap-
proved in 2010, and consequently, 47 counties emerged in 2013. The country had pre-
viously been dived into eight provinces subdivided into 46 districts. A map of Kenya is
presented in Figure 1.2. The size of Kenya is 582,646 square kilometers, of which 98% is
dry land area. In 2009, a census was conducted to enumerate Kenya’s population (KNBS
(2012)). The census enumerated the population of Kenya to 38.6 million, of which 26.1
million lived in rural areas and 12.5 million lived in urban areas.

Figure 1.2: Map of Kenya and its 47 counties, taken from Kenya National Bureau of Statistics et al.
(2015).

6



1.3 Neonatal mortality in Kenya

The survey consists of an extensive questionnaire reporting among others interviewed
women’s reproductive history, sanitary conditions and other health indicators. For more
information about the DHS program, see DHS (2019). As outlined in Kenya National
Bureau of Statistics et al. (2015), the sample in the 2014 Kenya DHS was drawn from a
master sampling frame based on information obtained in the 2009 Kenya Population and
Housing Census. The 2009 census established 96251 enumeration areas (EAs). Each EA
is solely categorized as either an urban or a rural area. The sample is selected with a
complex design that consists of stratification and two levels of clustering where the units
were selected proportional to size. The population is stratified on counties and urban
and rural areas within the counties. Kenya has 47 counties where Nairobi and Mombasa
consist of solely urban areas, yielding a total of 92 strata. In the first stage of clustering,
1600 clusters were selected from the EAs and 25 households were selected within the EAs
in the second stage of clustering. In this thesis, the EAs is called clusters, where each
cluster is either urban or rural. The officially reported national NMR from the survey,
estimated by IGME (2019) with the B-spline model proposed by Alkema and New (2014)
is 22.301 per 1000 children.

The approaches explored in this thesis are tested through a simulation study. The
purpose of conducting the study is to evaluate the set of proposed approaches within a
controlled framework. As one is dealing with survey data, true values of the NMR do not
exist, making it difficult to evaluate the approaches on the real survey data. The goal of
the simulation study is to compare the methods and find the best performing method.

The best performing method from the simulation study is compared to the design-
based and smoothed design-based methods on the real survey data from the 2014 DHS in
Kenya. It is desired to explore and quantify how compatible the estimates obtained from
the best method are to the established and commonly used methods. Can model-based or
combined approaches be used instead of the design-based methods? A related question
is how sensitive the estimates are to the choice of model and assumptions. What effects
are appropriate to include in the modelling? The final goal is to obtain methods that can
estimate rates on a fine scale both in space and time, but this is outside the scope of this
thesis. To achieve this, it may be necessary to balance accuracy and computational time. Is
it possible to obtain sufficiently accurate estimates on fine scales within tolerable running
time?

Earlier surveys conducted in Kenya have around 400 clusters, such as the surveys con-
ducted in 2003 and 2008/2009, while the 2014 DHS had 1600 clusters. Are 1600 clusters
necessary or could time and money be saved by using fewer clusters? Can model-based or
combined methods obtain sufficiently accurate estimates with smaller sample sizes? The
2014 DHS is designed to produce reliable estimates at the county level and national level.
Are there fine-scale features hidden by producing estimates at the county level? This is
explored with a finer spatial scale model of constituencies within the counties.
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Chapter 2
Background Theory

In this section, the relevant background theory needed to understand the methods used in
this thesis is presented.

2.1 Complex survey methodology
Samples obtained from surveys differ from samples considered in other fields of statis-
tics. In most areas of statistics, the sampled units are assumed to be a subsample from an
infinitely large population. Usually, the population is assumed to belong to a parametric
family, and the goal is to learn something about the underlying parameters. On the other
hand, data arising from surveys is sampled from a finite population of units. Thus, there
is a finite number of possible combinations of units that can be selected. The units in the
sample are randomly selected according to a predefined design, often called the survey
design or sampling method. The theory of complex survey methodology presented here is
based on the book by Lohr (2010).

A sample is commonly denoted by S, where S is a subset consisting of n units from
a finite population consisting of N units. Each unit in the population has a measurable
value yi, i = 1, . . . , N . The yi’s are fixed, unknown quantities, unless the corresponding
units appear in the sample S. Each sample S has a probability greater than zero of being
selected from the population, and they sum to 1. In addition, each unit in the population
has a probability greater than zero of being included in the selected sample S, called the
inclusion probability, denoted πi for unit i in the population. The inverse of the inclusion
probabilities are called weights and denoted wi = 1/πi, i = 1, . . . , N .

The most common population quantity of interest is the population total. The popula-
tion total, denoted t, is the sum of a quantity y for each unit in the population, t =

∑N
i=1 yi.

A population total of interest can, for example, be the total number of neonatal deaths in
Kenya. From the population total, t, one can also obtain the population mean, ȳ = t/N .
The sample variance for the full population is s2

N = 1
N−1

∑N
i=1(yi − ȳ)2. Often, in the

developing world, these quantities are not available and must be estimated from a sample

9



Chapter 2. Background Theory

of the population. The goal of sampling is to get sufficiently accurate estimates of quanti-
ties that describe the full population. The choice of the sampling method depends on the
goal of the research. Here, three methods are outlined: simple random sampling, stratified
sampling and cluster sampling.

The simplest sampling method is called simple random sampling (SRS). Here, n units
are selected to be in the sample completely at random. For an SRS without replace-
ment, the estimators for the population total and mean of a measured quantity y, are
Ty = N

n

∑
i∈S yi and Ȳ = 1

n

∑
i∈S yi. The estimated variance of the estimator of the

population total of y, V̂ (Ty) is

V̂ (Ty) = N2
(

1− n

N

)s2

n
.

Here, (1 − n
N ) is the finite population correction (fpc) and s2 is the sample variance of

y. The fpc is a correction of the variance that accounts for the finite population. When
the population size N is very large compared to n, the total population can be regarded
as infinite, and the fpc becomes close to 1. On the other hand, if n and N are of equal
magnitude, the fpc corrects the overestimated variance.

Simple random sampling does not ensure that subgroups of the population with spe-
cific properties are included and is seldom used in practice. For example, for the 2014
DHS conducted in Kenya, it is desired to obtain separate estimates for urban and rural
areas. Simple random sampling could lead to only units in urban areas being sampled, and
estimates for rural areas are then unattainable. If the goal of the research is to get estimates
of subgroups of the population, such as geographical divisions, stratified sampling should
be used. In stratified sampling, the population is partitioned into subgroups called strata.
Strata are mutually exclusive groups such that each unit in the population belongs to only
one stratum. The units are sampled independently from each stratum such that units from
each stratum are guaranteed to be included in the final sample. In the 2014 DHS in Kenya,
stratification was used to ensure that units within each county and urban and rural areas
within the counties were sampled.

A population of N units are divided into H strata, with Nh units in stratum h, h =
1, . . . ,H . In stratification of the simplest form, an SRS is taken independently within each
stratum, where the selected sample from stratum h is denoted Sh, with nh units. The prob-
ability of including unit i from stratum h in the sample is πhi = nh/Nh, i = 1, . . . , Nh.
The estimator of the total of a quantity within each stratum is Th = Nh

nh

∑
i∈Sh yhi. The

estimated totals and variances of the totals for each stratum are summed to obtain the
estimated population total

Ty =

H∑
h=1

Th. (2.1)

Further, the estimate of the variance of the estimated total in Equation (2.1) is

V̂ (Ty) =

H∑
h=1

(
1− nh

Nh

)
N2
h

s2
h

nh
. (2.2)
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2.1 Complex survey methodology

Here, s2
h =

∑
i∈Sh

(yhi−ˆ̄yh)2

nh−1 is the sample variance for stratum h where ˆ̄yh is the estimate
of the mean ȳh in stratum h. Equation (2.2) shows that the variance of the estimated
population total for a stratified sample conducted with SRS is the sum of the variance
from each stratum.

If the goal of the research is to produce estimates with limited resources, cluster sam-
pling can be used. In cluster sampling, the population is divided into subgroups, called
clusters or primary sampling units (psu). Clusters are geographical units such as villages
or households. A unit in the population is only included in the sample if the cluster it
belongs to is included. One goal of cluster sampling is to limit the number of geographical
areas to sample from, which again can reduce the cost of the sampling. However, units
in the same cluster tend to be more similar than units selected at random. It is expected
that the NMR is more alike for units in the same village or household due to, for example,
access to health clinics. When several units from the same cluster are sampled, similar in-
formation is often repeated instead of obtaining new information as one would if the units
were less alike. However, in large surveys such as the 2014 DHS in Kenya, it is necessary
to cluster because of time and limited budget.

Cluster sampling can be one-staged or multi-staged. In one-stage cluster sampling,
all units within a cluster are included in the sample if that particular cluster is sampled.
The number of clusters, or primary population units (ppu) in the population, is denoted
N and the number of primary sampling units (psu) is denoted n. In cluster sampling of
the simplest form, an SRS of n clusters is taken such that each unit in the population has
an equal probability of being included in the sample. The total of a quantity in a sampled
cluster Si is ti =

∑
j∈Si yij , where yij is the measured quantity of unit j in cluster i.

From this, an unbiased estimator of the population total is

Ty =
N

n

∑
i∈S

ti. (2.3)

The estimated variance of the estimator of the population total in Equation (2.3) is

V̂ (Ty) = N2
(

1− n

N

)s2
t

n
. (2.4)

The sample variance, s2
t , around the mean cluster total for N clusters is

s2
t =

1

n− 1

∑
i∈S

(
ti −

T̂y
N

)2

,

where T̂y is the computed value of the estimator Ty . Sometimes it is costly or time-
consuming to measure all units within each cluster. Two-stage clustering or many-stage
clustering can, in this case, be included in the survey design. This method is often used
in practice in real and complex surveys where, for example, the geographical areas or the
population is large. Instead of including all units in the sampled clusters, only a sub-sample
of the units are included in the final sample, such as in the 2014 DHS in Kenya where a
subset of the households in each cluster is selected. The number of secondary population
units (spu) in cluster i is denoted Mi, and the number of sampled secondary units (ssu) is
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Chapter 2. Background Theory

denoted mi. After n clusters are randomly sampled, an SRS is taken of mi, i = 1, . . . , n
secondary sampling units from the n clusters. The estimator of the total of a quantity for
cluster i is Ti =

∑
j∈Si

Mi

mi
yij . The estimator of the population total is

Ty =
N

n

∑
i∈S

∑
j∈Si

Mi

mi
yij . (2.5)

The estimator of the variance of the population total in Equation (2.5) is the variance
for one-stage clustering in Equation (2.4) with an added term to account for the variance
that arises from estimating the cluster totals instead of measuring them directly as in one-
stage clustering. The resulting variance estimate, as derived in Section 6.6 in Lohr (2010),
is

V̂ (Ty) = N2
(

1− n

N

)s2
t

n
+
N

n

∑
i∈S

(
1− mi

Mi

)
M2
i

s2
i

mi
.

The sample variance around the estimated cluster mean for cluster i is

s2
i =

1

mi − 1

∑
j∈Si

(yij − ˆ̄yi)
2,

where ˆ̄yi is the estimate of the mean ȳi in cluster i.
In this thesis, the population quantity that will be estimated from survey data is the

NMR. The estimated NMR, denoted r̂, between the estimated total number of children
deceased d, t̂d, and the estimated total number of children born b, t̂b, is defined as

r̂ =
t̂d

t̂b
, (2.6)

where the totals are estimated according to the survey design. The estimated variance,
V̂ (r̂), of the rate estimator in Equation (2.6), is given by

V̂ (r̂) =
(

1− n

N

) s2
e

nb̄2
, (2.7)

where s2
e is the sample variance of the residuals ei = di − r̂bi for the i = 1, . . . , n

observations in the sample and b̄ is the mean of the quantity b in the sample, which is
the number of children born. It is desired to evaluate the estimated rates r̂ on the logit
scale since the rates cannot be assumed to follow a simple, symmetric distribution when
expressed as values between 0 and 1, which can be assumed on the logit scale. The logit
of the estimated rate is

logit(r̂) = log
( r̂

1− r̂

)
, (2.8)

where the estimated rates are found using Equation (2.6). The rates are, by transforming
to the logit scale, mapped from [0, 1] to [−∞,∞]. One can assume that the logit rates are
asymptotic normally distributed, as this has been shown by Mercer et al. (2014) to perform
well on estimation with complex survey data

logit(r̂) ∼ N(E[logit(r̂)], V̂ (logit(r̂))). (2.9)
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The estimated variance, V̂ (logit(r̂)), is found via the delta method as outlined in Section
5.5 in Casella and Berger (2001). If E(r̂) = r, the first-order approximation of logit(r̂) is

logit(r̂) = logit(r) + logit′(r)(r̂ − r),

where logit′(r) is the first derivative of logit(r). If logit(r̂) is an estimator of logit(r), the
variance of logit(r̂) can be approximated as

V̂ (logit(r̂)) ≈ [logit′(r)]2V̂ (r̂), (2.10)

where the estimated variance of the rate, V̂ (r̂) is found from Equation (2.7).
After the estimated rate on the logit scale is found using Equation (2.8) following

the survey design, and the variance of the estimate is found via the delta method using
Equation (2.10), all considerations necessary to handle the design of the survey are taken.
Also, since estimates in different counties are independent through Equation (2.9), they
can be treated as spatially referenced observations with a Gaussian likelihood.

2.2 Spatial modelling
Most of the data that are collected have space and time coordinates. Whether this infor-
mation is relevant or not depends on the kind of study performed. In most experimental
studies, information about where the study is performed is not essential when analyzing
the outcome of the study. All the information that is relevant for the outcome is in the
explanatory variables, and the experiments are independent.

Studies in, for example, epidemiology or environmental sciences are observational,
not experimental. The observed outcomes cannot be changed or replicated. In this case,
records of the place and time of events can be relevant. One example is survey data,
introduced in Section 2.1. The geographical locations of the clusters and households in
a sample influence the observed outcomes. Spatial modelling can play an important part
in explaining spatial variation in the measured quantities obtained from surveys. It is
reasonable to assume that the NMR is more similar in clusters in the same county than
for clusters in different counties. Data that is geographically referenced is called spatial
data. For spatial data, one should account for the spatial dependence in the model. If the
spatial relation between the data is dismissed in the modelling, it may result in biases in
the estimates and loss of efficiency.

Spatial data is defined in Blangiardo and Cameletti (2015) as realizations of a process
indexed by space

Y (s) ≡ {y(s), s ∈ D}, (2.11)

where D is a fixed subset of Rd. Banerjee et al. (2004) classify spatial data into three
types: point-referenced data, areal data and, point-pattern data. For point-referenced data
(or geostatistical data), the observed value Y (s) in Equation (2.11), is a random vector
at sites s ∈ Rd. The sites, s, varies continuously over a domain D, where D is a fixed
subset of Rd that is a d-dimensional rectangle. For areal data, the domain D of regular or
irregular shape is divided into areal units with well-defined boundaries between them. The
values, Y (s), consist of a single aggregated measured value per areal unit. Lastly, point
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pattern data have a random domain D where its index set contains the sites of random
events.

Both areal data and point-referenced data are considered in the methods in this the-
sis. The design-based estimates are spatially smoothed with the smoothed design-based
approach. Here, areal data Y (s) are the NMRs from the design-based method for each
county. The areas are denoted by si, i = 1, ..., nc, where nc is the number of counties in
the domainD. For the model-based approach, point-referenced data are considered. Here,
Y (s) are random outcomes at specific locations with GPS coordinates. The data are repre-
sented as a set of observations y(s1), . . . , y(sncl), y(snh), where s1, . . . , sncl , snh are the
point-reference locations of the observations and the number of locations is ncl for clusters
and nh for households. Thus, the observed values are the outcomes, i.e. the number of
neonatal deaths in each cluster or household.

The spatial correlation between the areas can be accounted for using the class of spatial
models called intrinsic conditional auto-regressive models (ICAR) introduced by Besag
(Besag et al. (1991)). Even though intrinsic models are improper with precision matri-
ces not of full rank, Besag and Kooperberg (1995) point out several advantages over the
standard auto-regressive models. “They often avoid difficulties in parameter estimation,
without apparent loss, or exhibit appealing invariances” (Besag and Kooperberg (1995)).

Given a set of observed values from n areas, spatial correlation between a pair of areas
si and sj can be modelled conditionally with a spatial random variable, φ = (φ1, . . . , φn)T .
The association between the areas or locations is dependent on the neighbourhood arrange-
ment of the areas. The neighbourhood arrangement is quantified in an n × n adjacency
matrix denoted W where the entries wij quantifies the spatial association between areas
si and sj . The adjacency matrix is binary such that wii = 0, wij = 1 if areas i and j are
neighbours and wij = 0 otherwise.

The full conditional distribution for value φi for area i in the ICAR model is

p(φi|φj , j 6= i, τ−1
i ) = N

(∑
i∼j φi

di
,

1

diτi

)
, (2.12)

where the conditional mean of φi is the average of the spatial effects over it’s neighbours,
di is the number of neighbours of area i, the precision parameter is τi, which is the inverse
of the variance σ2

i and i ∼ j indicates that areas i and j are neighbours. The conditional
precision is proportional to the number of neighbours such that the conditional variance
will be smaller if an area has many neighbours. The joint distribution of φ is given by

φ ∼ N(0, [τφ(D −W )]−1, (2.13)

where D is an n × n diagonal matrix with the number of neighbours d on the diagonal.
The joint distribution in Equation (2.13) can be rewritten in pairwise difference form as

p(φ|τφ) ∝ exp
(
− τφ

2

∑
i∼j

(φi − φj)2
)

= exp
(
− τφ

2
φTQφ

)
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whereQ = D −W is the precision matrix with entries

Qij =


di i = j

−1 i ∼ j
0 otherwise.

(2.14)

This is an example of an intrinsic Gaussian Markov random field (GMRF). A GMRF
is a Markov random field (MRF) following a multivariate normal distribution. Following
Rue and Held (2005), an MRF satisfies the following conditional independence assump-
tion: The pairs of entries of an MRF are conditionally independent given the remaining
elements and vice versa. This results in computational benefits as the precision matrix,Q,
is sparse with zeros for pairs of conditionally independent values. The non-zero entries of
the precision matrix Q are given by the neighbourhood structure, where the entries of the
precision matrix are only non-zero for the neighbouring areas. The specification intrinsic
means that the precision matrix is not of full rank. In addition, the joint distribution is
non-identifiable as adding any constant to all of the elements of φ leaves the joint distri-
bution unchanged. This issue is solved by adding a sum-to-zero constraint on the spatial
variables:

∑
i φi = 0.

In the ICAR model in Equation (2.12) the spatial relationship between the areas is
considered to be structured. Hence, unstructured noise within each area is modelled as
structured spatial correlation, giving misleading estimates of the spatial effect. Therefore,
the Besag-York-Mollié (BYM) model (Besag et al. (1991)) decomposes the spatial effect,
denoted υ, into a structured, φ, and an unstructured spatial component, γ, such that υ =
φ + γ. The structured spatial component is the ICAR model with joint distribution as
in Equation (2.13). The second component γ is independent random noise with joint
distribution γ ∼ N(0, 1/τγI), where I is the identity matrix. The resulting covariance
matrix of υ is

Var(υ|τφ, τγ) = 1/(τφQ) + 1/(τγI).

The BYM model is used to model spatial effects both for areal data in the smoothed
method and for point-referenced data in the model-based approach. For the smoothed
design-based method, there is one spatial effect υi for each areal data point i = 1, . . . , nc
for all counties. For the model-based method, the spatial model is similar since the same
spatial effect υi is assigned to all the point-referenced clusters within the same county i.

Models with spatial effects can be constructed within the Bayesian framework by ex-
panding the concept of hierarchical models to account for similarities based on the neigh-
bourhood structure. The next section presents the theory of Bayesian statistics and outline
Bayesian hierarchical models.

2.3 Bayesian hierarchical modelling
The classical approach to statistical analysis is the frequentist approach. As stated in Bol-
stad (2007), “in frequentist statistics, it is assumed that the data is distributed according
to a model with fixed and unknown parameters”. Inference about the parameters is based
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on likelihoods calculated from the distribution the data is assumed to follow. These likeli-
hoods are based on all possible samples that can be drawn from the assumed distribution.
They are not conditional on the sample collected.

Here is where the difference between the Bayesian and frequentist approach appears.
In the Bayesian approach, it is assumed that the parameters of the model are random.
Inference about the parameters of interest is based on the posterior distribution of the
parameters given the collected data. The theory of Bayesian statistics and hierarchical
models presented here is based on the book by Gelman et al. (2014).

Inference about the parameter of interest, x, given the observed value, y, is based on
the posterior distribution p(x|y). The parameter x can, for example, be the fixed effect of
the urban and rural clusters and the response y can be the number of observed neonatal
deaths in a cluster or household. To obtain the posterior distribution, one needs the joint
probability distribution. The joint probability distribution can be written as a product of
the prior distribution of x, denoted p(x), and the conditional distribution, denoted p(y|x).
The joint distribution becomes

p(x, y) = p(x)p(y|x).

The distribution of the fixed effect x, p(x), is the knowledge one has about the param-
eter before the data is observed. The core of the Bayesian approach to inference about
the parameter x is Bayes’ rule. Conditioning on the outcome y, Bayes’ rule yields the
posterior distribution of x

p(x|y) =
p(x)p(y|x)

p(y)
. (2.15)

Since p(y) is not dependent on x, Equation (2.15) can be written in unnormalized form as

p(x|y) ∝ p(x)p(y|x).

Many situations where it is desired to perform statistical analysis involve several pa-
rameters that are related in some way. For example, for spatial data as introduced in
Section 2.2, it is desired to incorporate the spatial dependence of the data in the model.
Also, when working with clustered samples as outlined in Section 2.1, the dependence
between observations in the same cluster can be included. One needs a way to construct
such complex models with several effects in a simple and interpretive way. This type of
data can be modeled hierarchically.

A Bayesian hierarchical model can be split into stages. Assume a set of residents
i = 1, . . . , n is sampled in a survey, where resident i has measured quantity yi. Then it
can be assumed that the distribution of yi is conditional on a set of latent variables, and
the distribution of the latent variables is conditional on a set of parameters. In a three-
stage model, those parameters are called hyperparameters with prior distributions. The
latent field is denoted x and the hyperparameters are denoted θ. Three-stage hierarchical
models can be defined by the following stages.

First stage: y|x,θ ∼ π(y|x,θ)

Second stage: x|θ ∼ π(x|θ)

Third stage: θ ∼ π(θ)
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The models developed in this thesis belongs to a class of models called latent Gaussian
Models (LGMs). LGMs are a class of hierarchical models, where the prior distribution of
every component of the latent field must be Gaussian conditional on the parameters. LGMs
are a subclass of structure additive regression models, for example, formulated in Chapter
9 of Farhmeir et al. (2013). For structure additive models, the response yi is assumed to
belong to an exponential family, where the mean of yi, µi, is linked to the predictor ηi
through a link function, such that g(µi) = ηi.

Models with two kinds of distributions on the observational level are considered. For
the smoothed design-based method (SDB), the design-based NMRs on the logit scale,
denoted yi, are assumed to follow a Gaussian distribution with mean ηi and estimated
design-based variance σ2

i . For the model-based methods (MB1 and MB2), the observed
values are the number of neonatal deaths in each cluster or household linked to the pre-
dictor with a logit link with a binomial likelihood. The number of trials is denoted bi for
the number of births in either each cluster or household. Following a similar notation as in
Rue et al. (2009), the SDB Gaussian model is

yi ∼ N(ηi, σ
2
i ), i = 1, . . . , nc,

where nc is the number of counties. The MB binomial model is

yi ∼ Binomial(pi, bi), logit(pi) = ηi, i = 1, · · · , ncl, nh,

where bi is the number of births in cluster or household i, pi is the probability of death
and ncl and nh is the number clusters and households in county i. The structured additive
predictor is

ηi = α+

nf∑
j=1

f (j)(uji) +

nβ∑
k=1

βkzki + εi.

The predictor accounts for effects of different covariates in an additive manner. In the
Gaussian model, i = 1, . . . , nc represents observations from each county. In the binomial
model, i = 1, . . . , ncl, nh represents the observations from each cluster or household. The
{βk}s are the linear effects of the covariates zk, k = 1, . . . , nβ . In this context, one fixed
effect separating urban and rural clusters in the binomial model and none in the Gaussian
model. The intercept is α and εis are unstructured error terms.

The functions {f (j)(·)}, called model components by Rue et al. (2017), are unknown
functions of the covariates uji, j = 1, . . . , nf . The functions {f (j)(·)} can take many
different forms. Here, model components are added to incorporate spatial effects and
random effects. Spatial dependence follows the BYM model outlined in Section 2.2.
Then, one of the f (j)(·) terms is f(ui) = fi for counties i = 1, . . . , nc with spatial
effect ui. In the binomial model, all clusters and households in a county are assigned
the same spatial effect. For the correlation between observations in the clusters and house-
holds, the variables fi are independent Gaussian with zero mean for clusters or households
i = 1, . . . , ncl, nh. For LGMs, Gaussian distributions are assigned to the latent field, x
consisting of α, {f (j)(·)}, {βk} and {ε}. The vector of hyperparameters, θ, are not neces-
sarily Gaussian. LGMs can be used on a wide range of applications and can model a sum
of various components such as both spatial and temporal dependencies, random effects
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and linear and smooth effects of some covariates. For a list of examples of applications of
LGMs, see section 1.2 in Rue et al. (2009).

Once a Bayesian model is defined through a likelihood, possible model components
and fixed effects and parameters, the posterior probabilities of the parameters can be com-
puted. However, it is only in some cases that the posteriors can be computed exactly. In
most situations, the posteriors have to be approximated. There are many methods avail-
able, and some of them are presented in the next section.

2.4 Inference with Bayesian hierarchical models
The most common approach to inference of Bayesian hierarchical models is Markov chain
Monte Carlo (MCMC) sampling. The theory of Markov chain simulations is found in, for
example, Chapter 11 of Gelman et al. (2014). MCMC is a method based on drawing
values of the parameter θ from approximate distributions and correcting the draws by a
acceptance/rejection rule to approve the approximation of the target posterior distribution
p(θ|y). The draws form a Markov which is defined as a sequence of random variables
θ1, θ2, . . . , where for any n, the distribution of θn given all previous θ’s only depend on
the last value, θn−1. The more steps of the Markov chain that are taken, the closer the
distribution of the samples is to the desired posterior distribution.

The favorable feature of MCMC methods is that the error can be made arbitrarily small.
MCMC methods guarantee asymptotically exact recovery of the posterior distribution as
the number of posterior samples grows. However, this may be time-consuming or require
great computational power. For approximating posteriors of LGMs, MCMC methods tend
to perform poorly as discussed in 1.4 in Rue et al. (2009). The components of the la-
tent field x are strongly dependent on each other, the same is true for the latent field and
the hyperparameters θ, requiring modifications to the algorithm. Rue, Martino and Chopin
propose in Rue et al. (2009) an alternative, deterministic approach to approximating poste-
riors for LGMs called integrated nested Laplace Approximations (INLA). Rue et al. (2009)
argue that the INLA approach outperforms MCMC algorithms for a given computational
cost. According to Rue et al. (2009), for fine-scale spatial models where the number of
observations can be thousands, approximations to the posterior marginals are computed
with INLA within minutes, compared to maybe hours with MCMC approaches.

Rue et al. (2017) makes the following three assumptions that are required for the ap-
proximations to be accurate and computationally feasible. The number of hyperparame-
ters θ is small, not exceeding around 20. Also, the distribution of the latent field x|θ is
Gaussian and is a GMRF when dim(x) is high. Lastly, the observations y are mutually
conditionally independent given x and θ. These assumptions are required both for com-
putational reasons and to ensure that the approximations are accurate with a high degree
of certainty.

The INLA method is based on Laplace approximations. Following Blangiardo and
Cameletti (2015), Laplace approximation is a technique used to approximate integrals of
the form ∫

f(x)dx =

∫
exp(log(f(x))dx, (2.16)
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where f(x) is the density of a random variable X . The second order Taylor series expan-
sion of the term logf(x) around x = x0 is

logf(x) ≈ logf(x0) + (x− x0)
∂logf(x)

∂x

∣∣∣∣
x=x0

+
(x− x0)2

2

∂2logf(x)

∂x2

∣∣∣∣
x=x0.

x0 is set equal to the mode x∗ = argmaxxlogf(x), such that the derivative of logf(x)
evaluated at x0 = x∗ is zero. The integral in Equation (2.16) can then be approximated as∫

f(x)dx ≈ exp(logf(x∗))

∫
exp
(
− (x− x∗)2

2σ2∗

)
,

where the integrand has the form of the density of a Gaussian distribution setting σ2∗ =

−1/∂
2logf(x)
∂x2 |x=x∗ .

The posteriors of interest are the variance of the spatial effect and the cluster effects,
and the size of the fixed effect of urban and rural stratification. The posterior marginals
can be written as

π(xi|y) =

∫
π(xi|θ, y)π(θ|y)dθ, (2.17)

π(θj |y) =

∫
π(θ|y)dθ−j , (2.18)

where θ−j is all θ’s except θj . The key feature of the INLA approach is to construct nested
approximations to Equation (2.17) and (2.18) of the form

π̃(xi|y) =

∫
π̃(xi|θ, y)π̃(θ|y)dθ,

π̃(θj |y) =

∫
π̃(θ|y)dθ−j ,

where π̃(·|·) is an approximated density of its arguments. Approximations to π(xi|y) are
computed by approximating π(θ|y) and π(xi|θ,y), and using numerical integration to
integrate out θ. The integration is made possible due to the small dimension of θ. The
approach is based on the following approximation π̃(θ|y) of the marginal posterior of θ

π̃(θ|y) ∝ π(x, θ, y)

π̃G(x|θ,y)

∣∣∣
x=x∗(θ),

(2.19)

where π̃G(x|θ,y) is the Gaussian approximation obtained by performing Laplace approx-
imation and x∗(θ) is the mode of the full conditional for x, for a given θ. For the posterior
marginals of the latent field, the density of xi|θ, y can be approximated with the Gaus-
sian marginal derived from π̃G(x|θ, y). This approximation can be integrated numerically
with respect to θ. One obtains the following expression of approximations of the marginals
for the latent field

π̃(xi|y) =
∑
k

π̃(xi|θk, y)π̃(θk|y)∆k, (2.20)

where the sum is over the θs with area weights ∆k.
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The first step of INLA is to compute the approximation to the posterior marginal of θ in
Equation (2.19). The main use of π̃(θ|y) is to integrate out the uncertainty with respect to
θ when approximating the posterior marginal of xi in Equation (2.20). Firstly, the mode of
π̃(θ|y), denoted θ∗, is located by maximizing log(π̃(θ|y)) with respect to θ, by the use
of a quasi-Newton method which creates an approximation to the second derivatives of
log(π̃(θ|y)). Thereafter, the negative Hessian matrix H > 0 of log(π̃(θ|y)) is computed
at the mode θ∗, using finite differences. Let Σ = H−1, which is the covariance matrix
of θ if the density is Gaussian. To correct for scale and rotation, and simplify numerical
integration, a reparametrization is done such that θ is defined via the standardized variables
z

θ = θ∗ + V Λ1/2z.

Here, V ΛV T is the eigendecomposition of Σ. If π̃(θ|y) is Gaussian, then z is standard
Gaussian. The third step is to explore log(π̃(θ|y)), using the z-parametrization, to lo-
cate the majority of the probability mass. A grid is constructed and the log(π̃(θ|y)) is
computed for all points on the grid, locating where log(π̃(θ|y)) is considered significant,
which is used in the numerical integration in Equation (2.20). Finally, the points com-
puted in the grid are used to construct an interpolant to log(π̃(θ|y)), and to compute the
marginals π̃(θj |y).

Now that a set of weighted points θk are obtained, the next step is to obtain approxima-
tions for the posterior marginal of the latent field x, π̃(xi|θ,y). There are three different
approximations: Gaussian, Laplace and simplified Laplace. As argued in 3.2 in Rue et al.
(2009), Laplace approximations are preferred in general. However, the simplified Laplace
has much smaller cost that can compensate for the slight loss in accuracy. All three ap-
proaches are outlined in 3.2 in Rue et al. (2009). The main benefit of the INLA method is
computational, as the method can produce accurate approximations in seconds or minutes.
In addition, a wide range of different LGMs can easily be implemented with the same
general code by changing the likelihood, model components, and priors.

A set of measures and scoring rules must be defined to assess the performance of the
methods. The next section outlines the scoring rules that will is used in this thesis.

2.5 Model assessment
For validating the accuracy of the proposed methods, one needs to select one or more
forms of accuracy measures. In this section, four scoring rules for assessing the predictive
performance of the methods are presented. The chosen scoring rules are the mean absolute
error (MAE), root-mean-squared error (RMSE), continuous rank probability score (CRPS)
and the mean bias error (MBE). The scoring rules are averaged over all n counties, i =
1, . . . , n, where the true neonatal mortality rate and the predicted neonatal mortality rate in
coutny i are denoted ri and r̂i, respectively. Also, the average running time of the methods
is considered. The methods are evaluated on running time as it is desired to obtain methods
that are scalable to fine spatio-temporal scales. Also, it is desired to assess if it is worth
choosing more complex methods when it comes to accuracy vs. running time.

The first scoring rule considered is the mean absolute error (MAE). The MAE is the
average of the absolute difference between the true rate, ri, and the predicted rate, r̂i
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2.5 Model assessment

MAE =
1

n

n∑
i=1

|ri − r̂i|.

The MAE is a linear score which means that all the individual errors are weighted equally
when averaging over the counties. The root-mean-squared error (RMSE) is the square root
of the average squared difference between the true rate, ri, and the predicted rate, r̂i. The
RMSE is defined as

RMSE =

√√√√ 1

n

n∑
i=1

(ri − r̂i)2.

Since the errors are squared before they are averaged, RMSE penalizes large errors stronger
than MAE. Therefore, RMSE is more informative when large errors are particularly unde-
sirable. The RMSE incorporates both the variance of the estimator and its bias.

As explained in Gneiting and Raftery (2007), the continuous ranked probability score
(CRPS) measures the difference between the predicted and occurred cumulative distribu-
tions. The CRPS handles not only the uncertainty in the predictions but also the uncertainty
in the observations. Thus, the CRPS will favor predictions that are further away from the
true rate, but with uncertainty that reflects this, compared to predictions closer but with an
uncertainty that is too small. The CRPS is a generalized version of the MAE and can be
used on probabilistic forecasts, as apposed to more straightforward scoring rules such as
MAE and RMSE which are not directly applicable on probabilistic forecasts.

Let R be a random variable and let F be the cumulative distribution function of R,
such that F (r) = P[R ≤ r]. Let r̂ be the observations. The crps is defined as

crps(F, r̂) = −
∫ ∞
−∞

(F (r)− 1[r̂ ≤ r])2dr,

where 1 is the heaviside step function that attains the value of 1 if the argument is positive
or zero and the value of 0 otherwise. If the predictive distribution is Gaussian with mean
µ and variance σ2, then the crps is

crps(N(µ, σ2), r̂) = σ

[
1√
π
− 2φ

( r̂ − µ
σ

)
− r̂ − µ

σ

(
2Φ
( r̂ − µ

σ

)
− 1

)]
,

where φ and Φ are the probability density function and the cumulative distribution function
of a standard Gaussian variable, respectively. The CRPS is expressed in the same unit as
the observations and is in practice averaged over the observations. Let CRPS denote the
average of the crps defined as

CRPS =
1

n

n∑
i=1

crps(Fi, r̂i).

The final measure is the mean bias error (MBE). MBE captures the average bias in the
prediction and is calculated as

MBE =
1

n

n∑
i=1

(r̂i − ri).
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Chapter 2. Background Theory

The bias of a predicted rate shows the tendency of a model to over- or underestimate the
rate. The MBE is often used to decide if any steps need to be taken to correct the bias
in the model and are usually not used as a measure of the model error as high individual
errors in prediction can still produce a low MBE. The MBE, MAE and RMSE are related
by the following inequalities: MBE ≤ MAE ≤ RMSE.
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Chapter 3
Method

Four different methods for estimating NMRs at the county level are explored. The design-
based method and the smoothed design-based method are described in Section 3.1 and
in Section 3.2, respectively. The next method considered follows the model-based ap-
proach and is presented in Section 3.3. The last method is a combination of the smoothed
design-based method and the model-based methods. The combined methods are outlined
in Section 3.4. Finally, details of the implementation of the methods in INLA is described
in Section 3.5.

3.1 Design-based method
Neonatal mortality rates are estimated for Kenya’s 47 counties. As mentioned in Section
1.3, the 2014 DHS in Kenya is a stratified two-stage cluster sample. The 47 counties
crossed with an urban/rural indicator for the EAs within each county, are the strata. There
is a total of 92 strata, as the counties Nairobi and Mombasa are both solely urban. In the
first stage of clustering, 1612 clusters (EAs) was selected, 995 rural clusters and 617 urban
clusters. A map of Kenya with the 47 counties and cluster locations is presented in Figure
3.1. At the second stage of the sampling procedure, 40300 households were sampled from
the selected clusters.

The dataset from the 2014 Kenya DHS can be accessed through the DHS program
(DHS (2019)). Each row in the dataset represents a child, and the columns in the data set
are the reported values of the variables from the survey questionnaire. The variables are
coded according to the DHS recode manual. For the 2014 Kenya DHS, the recode manual
can be found in DHS (2013). The relevant variables from the dataset are presented in Table
3.1.
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Figure 3.1: Map of Kenya with the 47 counties and cluster locations.

v002 Household ID
v005 Sample weight
v008 Century month code of date of interview
v021 Cluster ID
v023 Strata ID (county and urban/rural stratum)
v102 Urban/rural identifier
b3 Century month code for the date of birth of the child
b6 Age at death of the child (NA if the child is alive)
scounty County ID

Table 3.1: Relevant variables from the DHS dataset

The full dataset consists of 83591 observations of 1135 variables. The first step when
working with the data set is to prepare the data for the analysis. The health indicator of
interest in this thesis is the NMR in the years 2009-2014. The observations and variables
that are not of interest are removed to give a better overview and speed up the computation
time. First, all variables except the variables presented in Table 3.1 are removed. Secondly,
the children that are born less than 30 days before the interview are removed based on the
value of the variables v008 and b3. Also, children that are born outside the period of interest
(2009-2014) are removed based on the value of the variable b3. Lastly, a new variable is
created, flagging the children that died in the neonatal period, based on the variable b6. The
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3.1 Design-based method

variable has value 1 if a child died in the neonatal period, and 0 otherwise. The IDs for the
counties, strata, clusters and households are the values of the variables scounty , v023, v021
and v002, respectively. Finally, the urban/rural clusters identifier is in the variable v102.

Estimates of the neonatal mortality rate for each county and strata are found with the
help of the sampling weights defined in Section 2.1. The weight of each child in the
dataset is given in the variable v005 and are based on the stratum, cluster and household
of each child. The estimates are calculated as the rate between the estimated total number
of neonatal deaths and the estimated total number of children born for each county, see
Equation (2.6).

The rates are estimated with the use of functions from the survey package in R. Doc-
umentation and examples of the package can be found in Lumley (2010). First, a design
object is created using the function svydesign from the survey package. The function re-
quires the arguments id, strata , weights and data. The argument id specifies the cluster ids
from the first level to the last level of clustering. The argument is a combination of the
cluster ID and the household ID as the design is two-stage clustered. The argument strata
specify the strata, in this case, which county the stratum belongs to and if it is urban or
rural. The weights are specified in weights and data is the dataset. How the survey design
is created is found in Listing 3.1.

Listing 3.1: Creating a complex survey design.

d e s i g n = s v y d e s i g n ( i d =~v021+v002 , s t r a t a =~v023 , w e i g h t s =~v005 ,
d a t a = d a t a )

Here, v021 and v002 are the cluster ID’s and household ID’s respectevily, v023 is the strata
ID’s, v005 is the weights and data is the dataset.

After the design object is created, the rates can be estimated with the function svyratio
from the survey package. The function requires a numerator, a denominator and a design
object. The numerator is a vector of zeros and ones where a row in the vector represents
a child with value zero if the child survived the neonatal period and value one if the child
died in the neonatal period. The denominator is an equally long vector with ones rep-
resenting births. The design object made with svydesign is the final argument where the
observations belonging to the specific county are extracted from the object. The function
estimates the population total of children born and children that died in the neonatal period
in the specific county according to the survey design, and thereafter the ratio between the
totals. The results of the svyratio call are the estimated rate and the estimated variance of
the rate. Code for estimating the rate and the variance of the rate for a county with ID = i
is presented in Listing 3.2.

Listing 3.2: Estimating design-based county rates.

d e s i g n _ c oun ty = d e s i g n [ d e s i g n $ v a r i a b l e s $ s c o u n t y == i ]
r a t e = s v y r a t i o (~ n e o n a t a l _ m o r t a l i t y , ~ones , d e s i g n _ cou n t y )

Here, design_county is the design object for the county with county ID specified in
scounty = i. The nominator is neonatal_ mortality and denominator is ones. The result of
the svyratio function is stored in the object rate . As explained in Section 2.1, it is desired
to estimate the rates on the logit scale. The logit of the rates are found with Equation
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(2.8). The corresponding variances of the logit estimates are found with the delta method
in Equation (2.10).

The design-based method requires the number of observed neonatal deaths to be larger
than zero for each county. If non of the observations in a county died in the neonatal
mortality period, it will result in estimated rates and variances of zero, which cannot be
used for estimation of the NMR. As a consequence, the design-based method only works
on survey data that have enough samples in each subnational area one wishes to obtain
estimates.

The results of this method are design-based estimates of the NMR on the logit scale
and the variance of the estimates for each county. Let yi and σ2

i denote the estimated NMR
and estimated variances for counties i = 1, . . . , nc, where nc is the number of counties.
The results are used in the next section in the smoothed design-based approach.

3.2 Smoothed design-based method
The answers collected through surveys from residents in the same county may be more
similar than answers from residents in different counties. Therefore, it can also be as-
sumed that counties that share a common border have more similar NMRs than counties
further apart. If this assumption is correct, one can improve the design-based estimates by
spatially smoothing them over the counties, reducing the variance in the estimates.

The smoothed design-based method (SDB) is constructed with the design-based esti-
mates for the counties from Section 3.1. The design-based NMRs are represented as areal
data which are smoothed with the BYM model described in Section 2.2. The SDB method
is fitted with the package INLA in R, which estimates posteriors with integrated nested
Laplace approximations as described in Section 2.4.

For each county i the model is

yi|ηi ∼ N(ηi, σ
2
i ), ηi = µ+ φi + γi, i = 1, . . . , nc.

The outcomes yi, i = 1, . . . , nc, are the design-based NMRs on the logit scale, which is
conditioned on the true, unobserved mortality ηi that is desired to estimate and σ2

i is the
estimated design-based variance of the estimated rate yi. The linear predictor ηi contains
an intercept µ and the spatial random variables in the BYM model outlined in Section 2.2:
φi ∼ ICAR(σ2

φ) and γi ∼iid N(0, σ2
γ). The distribution of the intercept and the priors of

the hyperparameters are

µ ∼ N(0,∞),

logτφ ∼ logGamma(0.5, 0.0005),

logτγ ∼ logGamma(0.5, 0.0005),

where the intercept is a fixed effect modelled with a normal prior with zero mean and large
variance, τφ = 1/σ2

φ and τγ = 1/σ2
γ . INLA assigns by default non-informative priors

of logGamma(1, 0.0005) for the precision of the random effects φ and γ. The priors are
changed as the default prior has a prior 95% CI of [0.01, 0.14] for σφ and σγ which results
in unrealistically small effects. The new prior of has a prior 95% CI of [0.1, 1.1] which is
more sensible.
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3.3 Model-based method

The neighbourhood structure needs to be specified in a graphical structure which as-
signs the set of neighbours for each county. The graphical structure is created in an ASCII
file with nc + 1 rows. The first row contains the total number of counties, nc. The next nc
rows specify the county ID, the number of neighbours and the IDs for the neighbours. An
example of a row in the file is in Listing 3.3.

Listing 3.3: A row in the graph file specifying the neighbourhood structure.

1 8 5 12 20 31 37 43 44 47

Here, the ID for the county is 1, the county has 8 neighbours and their county IDs are 5,
12, 20, 31, 37, 43, 44 and 47. After defining the neighbourhood structure, the formula for
the model is specified in R with the code in Listing 3.4.

Listing 3.4: Formula specifying SDB to be used in INLA.

f o r m u l a = y ~ 1
+ f ( ID_ County , model="bym" , g raph =" Kenyaadm . graph " ,
c o n s t r =TRUE, s c a l e . model=TRUE, hype r =c ( 0 . 5 , 5 e−04) )

Here, y is the response and f is the model component for the spatial effects at the county
level. ID_County represents the IDs for the counties and through the graph option the name
of the object containing the neighborhood structure is included. The type of spatial model
to be used is defined by the parameter model, which is set to BYM. The priors of the
hyperparameters are defined in hyper. The argument scale .model is a boolean variable
indicating whether to scale the model so that the generalized variance is 1. Since the
ICAR model is intrinsic, it does not have a proper marginal variance. Therefore, the BYM
model is scaled to be able to interpret the precision for the spatial effects τφ and τγ . constr
is a boolean variable indicating whether to set a sum to zero constraint on the spatial term
which is set to true, following the discussion in Section 2.2.

As for the design-based method in Section 3.1, the smoothed design-based estimates
can only produce estimates of the NMR in the counties where there are more than zero
observed neonatal deaths.

3.3 Model-based method
The traditional approach to spatial modelling is model-based. Model-based methods do
not account directly for the survey design, but indirectly by specifying a probability model
for the random process that generates the data. In model-based approaches, it is assumed
that there is an underlying infinite population and that the response, given a set of covari-
ates and model components are randomly drawn from it. The estimated model coefficients
are the coefficients that best describe the underlying trend for the infinite population. To the
extent that the model represents the process that generated the data, it is possible to draw
conclusions that can be generalized to other situations where the same process operates.
The true NMRs cannot be determined, as the model can only ever be an approximation.

Two different model-based models are proposed. The first model (MB1) contains iid
effects on the first stage of clustering, while the second model (MB2) is an extension of
MB1 with additional iid effects for the second stage of clustering. The most correct model

27



Chapter 3. Method

is MB2, while MB1 is an approximation to MB2. The iid effects are added to resemble
the dependence that exists between individuals in the same cluster and household. Here,
the observations are point-referenced with specific locations for the clusters or households.
The observed values are modelled with a Binomial model where the response is assumed
to be outcomes of a set of Bernoulli trials.

MB1

Model MB1 becomes

yij ∼ Binomial(pij , bij), logit(pij) = ηij , i = 1, . . . , nc, j = 1, . . . , nicl,

where the response yij is the number of children in cluster j in county i who died in the
neonatal period, nc is the number of counties and nicl is the number of clusters in county
i. The response yij is linked to an additive predictor ηij through a logit link and binomial
likelihood where the number of trials bij is the number of births in cluster j in county i and
pij is the probability of death for children in cluster j in county i. The additive predictor
is

ηij = µ+ 1[cl(j) = 1]β + φi + γi + νj , i = 1, . . . , nc, j = 1, . . . , nicl.

The intercept is µ and the fixed stratum effect is β, where the indicator function 1 = 1
if cluster j is urban and 0 if cluster j is rural. The spatial random variables are defined
with the BYM model described in Section 2.2: φi ∼ ICAR(σ2

φ) and γi ∼iid N(0, σ2
γ).

The same spatial random variables are assigned to clusters within the same county. The
final term is the independent random noise at the cluster level, νj ∼iid N(0, σ2

ν). The
distribution of µ and β and the priors of the hyperparameters are

µ ∼ N(0,∞),

β ∼ N(0, 1000),

logτφ ∼ logGamma(0.5, 0.0005),

logτγ ∼ logGamma(0.5, 0.0005),

logτν ∼ logGamma(0.5, 0.0005),

where τφ = 1/σ2
φ, τγ = 1/σ2

γ and τν = 1/σ2
ν . The formula for the model is specified in R

with the code in Listing 3.5.

Listing 3.5: Formula specifying MB1 to be used in INLA.

f o r m u l a = y ~ 1 + urban
+ f ( ID_ County , model="bym" , g raph =" Kenyaadm . graph " ,
c o n s t r =TRUE, s c a l e . model=TRUE, hype r =c ( 0 . 5 , 5 e−04) )
+ f ( ID_ C l u s t e r , model=" i i d " , hype r =c ( 0 . 5 , 5 e−04) )

Here, y is the response and urban is the vector of ones and zeros for urban or rural cluster
respectively. The model components f are a spatial effect modelled with the BYM model
and independent random noise at the levels of clustering. The independent random noise
is defined in model="iid". The IDs for the counties and clusters are in the vectors ID_County
and ID_Cluster.
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MB2

MB2 is an extension of MB1 where an additional model component, independent random
noise at the household level, is added. The model becomes

yijk ∼ Binomial(pijk, bijk), logit(pijk) = ηijk,

i = 1, . . . , nc, j = 1, . . . , nicl, k = 1, . . . , nijh,

where the response yijk is the number of children in household k in cluster j in county i
that died in the neonatal period and nijh is the number of households in cluster j in county
i. The response yijk is linked to an additive predictor ηijk through a logit link and binomial
likelihood where bijk is the number of births in household k in cluster j in county i and
pijk is the probabilities of neonatal death. The additive predictor becomes

ηijk = µ+ 1[cl(j) = 1]β + φi + γi + νj + εk,

i = 1, . . . , nc, j = 1, . . . , nicl, k = 1, . . . , nijh,

where the terms are the same as for MB1 with an additional independent random noise
effect εk ∼iid N(0, σ2

ε) at the household level. The distribution of µ and β and the priors
of the hyperparameters are

µ ∼ N(0,∞),

β ∼ N(0, 1000),

logτφ ∼ logGamma(0.5, 0.0005),

logτγ ∼ logGamma(0.5, 0.0005),

logτν ∼ logGamma(0.5, 0.0005),

logτε ∼ logGamma(0.5, 0.0005),

where τφ = 1/σ2
φ, τγ = 1/σ2

γ , τν = 1/σ2
ν and τε = 1/σ2

ε . The formula for the model is
specified in R with the code in Listing 3.6.

Listing 3.6: Formula specifying MB2 to be used in INLA.

f o r m u l a = y ~ 1 + urban
+ f ( ID_ County , model="bym" , g raph =" Kenyaadm . graph " ,
c o n s t r =TRUE, s c a l e . model=TRUE, hype r =c ( 0 . 5 , 5 e−04) )
+ f ( ID_ C l u s t e r , model=" i i d " , hype r =c ( 0 . 5 , 5 e−04) )
+ f ( ID_ Household , model=" i i d " , hype r =c ( 0 . 5 , 5 e−04) )

where the formula is the same as for MB1 with an additional model component at the
household level where ID_Household is the vector of household IDs.

3.4 Combining design-based and model-based methods
The last method is a combination of the smoothed design-based approach outlined in Sec-
tion 3.2 and the model-based methods in Section 3.3. Two models are considered. The
first model contains iid effects at the cluster level (CM1), and the second model contains
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iid effects at the cluster level and household level (CM2). Each of the models, CM1 and
CM2, are split into two parts. The first part, SDB, is used on the strata where there is
enough data to obtain design-based estimates. Here, the observations are areal data with
the design-based estimates of the logit NMR for each stratum with fixed, estimated vari-
ances. The model is constructed with a Gaussian model as explained in Section 3.2. Let
the response for the first part be denoted y1.

The second part is used on the strata where there are zero observed neonatal deaths.
Here, the observations are point-referenced with specific locations for the clusters or
households. The observed values are modelled with a Binomial model where the response
is outcomes of a set of Bernoulli trials, as outlined in Section 3.3. Let the response for
the second part be denoted y2. The combined response becomes y = [y1, y2], constructed
with the joint modelling of a Gaussian distribution for y1 and binomial distribution for y2.

For the strata where there are more than zero cases of neonatal mortality, rates on the
logit scale can be estimated with the design-based method outlined in Section 3.1. The
estimated design based rates are used as the response, y1i, i ∈ s1, where s1 consists of the
strata where the design-based rates can be estimated. For each stratum i ∈ s1, the model
becomes

y1i|η1i ∼ N(η1i, σ
2
i ) η1i = µ+ 1[s(i) = 1]β + φi + γi, i = 1, . . . , ns1 ,

The responses y1i, i = 1, . . . , ns1 are the stratum rates on the logit scale, estimated with
the design-based method and ns1 is the number of s1 strata. The results of this model are
the smoothed design-based estimates, as in Section 3.2, with an indicator function which
is 1 if stratum i is rural and 0 if urban. Thus, when there is enough data to generate
design-based estimates in all strata, the combined methods reduce to SDB.

The second part of the model uses the model-based approach on the strata where there
are zero occurrences of neonatal mortality in the sample. The model-based approach
makes it possible to obtain estimated rates for the strata where there is not enough data
to obtain design-based estimates. It is desired to explore these combined approaches in
addition to purely model-based methods since the joint modelling makes it possible to use
design-based estimates where they are attainable.

CM1

For CM1, the response, y2ij , is zero for each child born in cluster j in the zero strata,
i ∈ s2, where s2 is the set of strata where there are zero observed neonatal deaths in the
sample. The model CM1 becomes, for s2,

y2ij ∼ Binomial(pij , bij), logit(pij) = η2ij , i = 1, . . . , ns2 , j = 1, . . . , nicl,

where ns2 is the number of s2 strata. The response y2ij is linked to an additive predictor
ηij through a logit link, where bij is the number of births in cluster j in stratum i ∈ s2 and
pij is the probability of death for children in cluster j in stratum i. The additive predictor
is

η2ij = µ+ 1[cl(j) = 1]β + φi + γi + νj , i = 1, . . . , ns2 , j = 1, . . . , nicl.
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The predictor and the prior distribution of the parameters are the same as in MB1. The
formula for the joint model with response y = [y1, y2] is specified in R with the code in
Listing 3.7.

Listing 3.7: Formula specifying CM1 to be used in INLA.

f o r m u l a = y ~ 1 + urban
+ f ( ID_ County , model="bym" , g raph =" Kenyaadm . graph " ,
c o n s t r =TRUE, s c a l e . model=TRUE, hype r =c ( 0 . 5 , 5 e−04) )
+ f ( ID_ C l u s t e r , model=" i i d " , f i x e d =TRUE,
i n i t i a l = l o g ( i n i t i a l _ c l u s t e r ) )

The hyperparameters of the iid effects on the cluster and household level are fixed by fixed
=TRUE. This is done because it is assumed that there is not enough data in the strata where
the model-based approach is used for estimation to capture the cluster- and household
effects. Therefore, a fully model-based model (MB2) is fitted to the full dataset with
INLA and the estimated 0.5 quantile of the precision of the cluster and household effects
are extracted from the model. The value for the cluster effect to be used in Listing 3.7 is
found with the code in Listing 3.8.

Listing 3.8: Extracting the hyperparameter of the cluster effect from MB2.

i n i t i a l _ c l u s t e r = MB2$summary . h y p e r p a r $ ‘ 0 . 5 quant ‘ [ 3 ]

The object summary.hyperpar is a matrix containing the mean, SD and quantiles of the
hyperparameters of the model. The log of the estimated precisions are used as initial,
fixed hyperparameters for the cluster- and household effects in the joint models. The
values are inserted in the argument initial =log( initial _ cluster ) for the clusters, where
initial _ cluster is the estimated the precision of the cluster effect.

CM2

CM2 is an extension of CM1 where an additional model component, iid effects at the
household level, is added. The model becomes, for s2,

y2ijk ∼ Binomial(pijk, bijk), logit(pijk) = η2ijk,

i = 1, . . . , ns2 , j = 1, . . . , nicl, k = 1, . . . , nijh.

The response y2ijk is linked to an additive predictor ηijk through a logit link, where bijk is
the number of births in household k in cluster j in stratum i ∈ s2 and pijk is the probability
of death. The additive predictor is

η2ijk = µ+ 1[cl(j) = 1]β + φi + γi + νj + εk,

i = 1, . . . , ns2 , j = 1, . . . , ncl, k = 1, . . . , nh.

The predictor and the prior distribution of the parameters are the same as in MB2. The
formula for the joint model with response y = [y1, y2] is specified in R with the code in
Listing 3.9.
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Listing 3.9: Formula specifying CM2 to be used in INLA.

f o r m u l a = y ~ 1 + urban
+ f ( ID_ County , model="bym" , g raph =" Kenyaadm . graph " ,
c o n s t r =TRUE, s c a l e . model=TRUE, hype r =c ( 0 . 5 , 5 e−04) )
+ f ( ID_ C l u s t e r , model=" i i d " , f i x e d =TRUE,

i n i t i a l = l o g ( i n i t i a l _ c l u s t e r ) )
+ f ( ID_ Household , model=" i i d " , f i x e d =TRUE,

i n i t i a l = l o g ( i n i t i a l _ house ) )

3.5 Details for implementation in INLA
The method of integrated nested Laplace approximations (INLA), described in Section
2.4, is used to implement the methods outlined in Sections 3.2, 3.3 and 3.4. R-INLA
can be downloaded by following the steps provided here: http://www.rinla.org
(Rue (2019)). The function inla in the INLA package performs a full Bayesian analysis of
additive models using integrated nested Laplace approximations. The function returns an
object of class inla with among others, summary of the hyperparameters, linear predictors,
fixed effects and random effects.

Smoothed design-based method

The smoothed design-based method (SDB) in Section 3.2 is defined with the function inla
as in the code in Listing 3.10.

Listing 3.10: Fitting SDB in INLA.

SDB = i n l a ( fo rmula ,
d a t a = l i s t ( y=DB_ r a t e , ID_ County=ID_ co un ty ) ,
s c a l e =1/DB_ var ,
c o n t r o l . f a m i l y = l i s t ( i n i t i a l =0 , f i x e d =TRUE) ,
c o n t r o l . p r e d i c t o r = l i s t ( compute=TRUE) )

Here, formula, is the formula provided in Listing 3.4 in Section 3.2. The data are provided
in data, which is a list containing the variables in the model. For the SDB model, data
consist of the response y which is the estimated design-based rates on logit scale, and the
IDs for the counties. The argument scale is set to the inverse of the estimated design-
based variances. control . family is used to control the hyperparameters of the model. Here,
the initial value for the hyperparameters are set to zero and the argument fixed is set to
true. This is done to fix the variance of the noise of the observations since the variance
of the estimates already is estimated with the design-based method. The correct variance
is obtained when this is combined with scale . The last argument in the SDB model is
control . predictor which is used to control variables. Here, compute is set to true, which
indicates that the marginals for the linear predictor are computed. As the model includes
an intercept, the argument is set to true to obtain the combination of the intercept and the
spatial effect.

The estimated county rates and their standard deviation are found from the linear pre-
dictor of the fitted INLA object as presented in the Code in Listing 3.11.
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Listing 3.11: Extracting estimated county rates and SD from the INLA object.

r a t e s = SDB$summary . l i n e a r . p r e d i c t o r $ ‘ 0 . 5 quant ‘
SD = SDB$summary . l i n e a r . p r e d i c t o r $ sd

The rates are on logit scale, which is as desired for further analysis.

Model-based methods

The model-based methods, MB1 and MB2, outlined in Section 3.3 are defined with the
code in Listing 3.12.

Listing 3.12: Fitting MB1 in INLA

MB1 = i n l a ( fo rmula , f a m i l y =" b i n o m i a l " , N t r i a l s = b i r t h s ,
d a t a = l i s t ( " y "= d e a t h s , " u rban "=urban ,
" ID_ County "=ID_ County , " ID_ C l u s t e r "=ID_ C l u s t e r ) ,
c o n t r o l . compute= l i s t ( c o n f i g =TRUE) ,
c o n t r o l . p r e d i c t o r = l i s t ( compute=TRUE) )

The argument formula is defined for MB1 and MB2 in Listings 3.5 and 3.5 in Section 3.3.
The response y is a vector with the number of neonatal deaths in each cluster (MB1) or
household (MB2). The argument family is a string indicating the likelihood family. The
default is Gaussian with identity link and for the model-based methods the family is set
to binomial with logit link. The argument Ntrials takes a vector containing the number of
trials for the binomial likelihood. In this case, the number of births in each cluster (MB1)
or household (MB2). For MB2, there is an additional ID identifier in the list data for the
household IDs called ID_Household.

The estimated rates are found by adding new observations to the vectors, and predicting
the posterior of the latent field of the observations. Two new observations are added for
each county, one from the urban stratum and one from the rural stratum. This results in
47 ∗ 2 = 94 new observations. The new observations are added at the end of each of the
vectors y, urban, ID_County, ID_Cluster , ID_Household and Ntrials . The response y and
the number of trials Ntrials for the new observations are unknown and set to NA. The
IDs for strata, counties, cluster and households for the new observations are defined as in
Listing 3.13.

Listing 3.13: New observations for prediction.

new_ urban = [ 0 , 1 , 0 , 1 , . . . , 0 , 1 , 0 , 1 ]
new_ID_ County = [ 1 , 1 , 2 , 2 , . . . , 4 6 , 4 6 , 4 7 , 4 7 ]
new_ID_ C l u s t e r = [Max_ C l u s t e r + 1 , . . . , Max_ C l u s t e r +94]
new_ID_ h o u s e h o l d = [Max_ Household + 1 , . . . , Max_ Household +94]

Here, Max_Cluster and Max_Household are the largest cluster and household ID’s in the
sample. Thus, the predictions are assigned to new clusters and households. Once the new
observations are created and the models are fitted with the function inla , predicted rates for
the new observations can be approximated. This is done with the function inla . posterior .
sample. The function generates samples from the approximated posterior of the inla-object.
The samples are generated as in Listing 3.14.
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Listing 3.14: Generating samples from the fitted MB1.

MBsample = i n l a . p o s t e r i o r . sample ( 1 0 0 ,MB1, seed =123)
sample = m a t r i x ( d a t a =NA, nrow =100 , n c o l = nr _ c o u n t i e s ∗2)
f o r ( i i n 1 : 1 0 0 ) {

sample [ i , ] = MBsample [ [ i ] ] $ l a t e n t [Max_ C l u s t e r + ( 1 : n r _ c o u n t i e s ∗2)
, ]

}

Here, nr_counties , is the number of counties in the sample, which is 47 for Kenya. The
value Max_Cluster is the largest cluster ID for MB1 and replaced by Max_Household for
MB2. The samples are found in the final elements of MBsample[[i]]$ latent for each sample
i, i = 1, ..., 100. The estimated rates for each of the 94 new observations for the 100
samples are saved in the matrix called sample. First, the estimates are transformed from
the logit to the probability scale. Afterwards, the estimates are weighted with the number
of residents in urban and rural areas in each county to produce aggregated rates for each
county for each sample. The number of residents is taken from Kenya National Bureau of
Statistics et al. (2015). The final estimated county rates are found by averaging over all
100 samples and transforming them back to the logit scale. Lastly, the standard deviation
of the estimates are found from the 100 samples.

Combining design-based and model-based methods

There is a priori information about the offset between the officially reported national NMR
and the estimated rates from the CM methods. Adding cluster and households effect in-
creases the mean of the mortality rates. Also, the same spatial effect is used for both
parts of the model, on county level for SDB with areal data and on cluster level for MB
with point referenced data. For the first part, the rates are modelled directly. For the sec-
ond part, the rates are modelled indirectly through a binomial likelihood and with added
cluster- and household effects. Therefore, it is not only the spatial effects that control the
estimates. An offset is needed to correct for the skewness in the estimated rates that arises
from the model-based approach. The skewness results in estimates of the NMR that are
too high. The value for the offset is found by using the function optimize in R to mini-
mize the squared difference between the expected rate with added cluster- and household
effects and the estimated national rate of approximately 22 per 1000 live births as reported
in Kenya National Bureau of Statistics et al. (2015). The combined methods, CM1 and
CM2, are defined with the code in Listing 3.15.

Listing 3.15: Fitting CM1 in INLA.

CM1 = i n l a ( fo rmula , f a m i l y =c ( " g a u s s i a n " , " b i n o m i a l " ) ,
N t r i a l s = N t r i a l s ,
d a t a = l i s t ( " y "= d e a t h s , " u rban "=urban ,
" ID_ County "=ID_ County , " ID_ C l u s t e r "=ID_ C l u s t e r ) ,
s c a l e = s c a l e , o f f s e t = o f f s e t ,
c o n t r o l . f a m i l y = l i s t ( l i s t ( i n i t i a l =0 , f i x e d =TRUE) , l i s t ( ) )

,
c o n t r o l . compute= l i s t ( c o n f i g =TRUE) ,
c o n t r o l . p r e d i c t o r = l i s t ( compute=TRUE) )
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The two likelihoods are defined with family=c("gaussian" , "binomial"). The arguments in
data, Ntrials , scale and offset are vectors split into three parts. The first elements of the
vectors belong to the strata where the design-based rates can be obtained. The vectors for
the first part are defined in the following way. The response y is the design-based estimates
for each stratum in s1. The stratum indicator urban is 0 for rural stratum and 1 for urban
stratum. The argument ID_County is the county ID for the strata. The argument ID_Cluster
is set to NA for all strata as the cluster effect is not included in the SDB method. The same
is true for ID_Household in CM2. The elements in the first part of Ntrials are set to NA
as this argument belongs to the binomial part. The elements in the first part of scale are
set to the precision of the design-based estimates as described above. The elements in the
first part of offset are set to zero as the offset is only needed in the binomial part. The
likelihood for the first part is Gaussian.

The second part of the vectors belong to the stratum for the design-based method pro-
duce estimates of 0. This is the strata in s2 where there are zero observed neonatal deaths
in the sample. Here, the response y is set to NA as this is the rates that are unattainable
with the design-based method and are to be predicted. urban is again set to 0 for rural
strata and 1 for urban strata. The county IDs are again the county ID for the strata with
zero deaths. Again, the IDs for the household and clusters are set to NA. The elements
in the second part of Ntrials are again set to NA. The parameter scale is set to 0 as the
design-based variances are unattainable. Lastly, the parameter offset are again set to 0.
The likelihood is again Gaussian for the second part.

The third and last elements of the vectors are similar to the vectors in the model-based
methods. The response y and Ntrials are the number of observed neonatal deaths and the
number of births in each cluster or household in the strata with zero deaths s2. As there
are zero observed deaths, y is a vector of only zeros. The argument urban is 0 for clusters
or households in rural strata and 1 for clusters or households in urban strata. The argument
ID_County is the county ID for which the clusters or households belong to. The IDs for the
clusters and households is the elements in the third part of ID_Cluster and ID_Household.
The parameter scale is set to 0 and offset is the offset values found as described above.
The likelihood for this last part is binomial.

Estimates of the strata rates and their standard deviation are approximated from gener-
ated samples of the posterior of the linear predictor according to the areal data model. The
samples are generated as in Listing 3.16.

Listing 3.16: Generating samples from the fitted CM1.

CMsample = i n l a . p o s t e r i o r . sample ( 1 0 0 ,CM1, seed =123)
sample = m a t r i x ( d a t a =NA, nrow =100 , n c o l = nr _ s t r a t a )
f o r ( i i n 1 : 1 0 0 ) {

sample [ i , ] = CMsample [ [ i ] ] $ l a t e n t [ 1 : n r _ s t r a t a , ]
}

Here, nr_ strata =s1 +s2, is the total number of strata in the sample, which is 92 for Kenya.
The strata rates and their standard deviation estimated with the smoothed design-based
method are the first elements in the posterior sample (s1), while the rest of the elements
are the estimates predicted with the help of the model-based method (s2). The estimated
rates are found in the output CMsample[[i]]$ latent for each i = 1, ..., 100 sample.
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The estimated rates for each stratum for the 100 samples are saved in the matrix called
sample. First, the estimates are transformed from the logit to the probability scale. After-
wards, the estimates are weighted with the number of residents in urban and rural areas
in each cluster to produce aggregated rates for each county for each sample. Thus, a final
aggregated county rate may either consist of SDB rates or MB rates for both strata, or one
SDB rate and one MB rate. The final estimated county rates are found by averaging over
all 100 samples and transforming them back to the logit scale for further analysis. Lastly,
the standard deviation of the estimates are found from the 100 samples.
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Chapter 4
Simulation Study

The methods outlined in Chapter 3 are tested with a simulation study. The estimates are
evaluated according to the scoring rules outlined in Section 2.5 and average running time.
The design of the simulation study is described in Section 4.1 and Sections 4.2, 4.3 and
4.4 present the results. Finally, all findings are discussed in Section 4.5.

4.1 Design of study
The purpose of conducting the simulation study is to evaluate the set of proposed meth-
ods within a controlled framework. When working with real survey data, the truth is not
known, as that would require a census of the population. Since there does not exist exact
answers, it is difficult to evaluate and compare the methods on the real data. When con-
ducting a simulation study, one can simulate rates such that the estimated rates obtained
with the methods can be evaluated against ‘true’ simulated rates.

There are several goals of the study. First, find the best method based on the set of
scoring rules outlined in Section 2.5 and running time. Secondly, investigate what kinds
of conditions that make it challenging for the methods to predict mortality rates. Lastly,
explore if the proposed combined methods are better than design-based and model-based
approaches.

In the simulations, the survey design is retained. The stratified, two-stage cluster de-
sign with the true weights and number of births in each household are kept as in the real
data set and the neonatal deaths are simulated. Therefore, this study will only be valid for
this specific sample, as the clusters and households are retained. The general performance
of the methods is not tested, only the performance on this data set. However, one can
expect similar results for other surveys.

Occurrences of neonatal deaths are simulated using specific ‘true’ rates. The number of
simulations N for each scenario is pre-decided to a number large enough such that there
are at least 100 simulations where the design-based method can obtain estimates of the
NMR for each county (N > 100). A set of different scenarios are considered to evaluate
the methods both on simple scenarios, and on more complex ones to see how the methods
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handle effects such as the effect of rural or urban areas and correlation within clusters and
households.

The number of simulated neonatal deaths yijk in household k in cluster j in county i
are generated by a binomial distribution

yijk ∼ Binomial(pijk, bijk), logit(pijk) = ηijk,

i = 1, . . . , nc, j = 1, . . . , nicl, k = 1, . . . , nijh
(4.1)

The number of reported births in household k in cluster j in county i from the real survey
data is denoted bijk and ηijk is the link function on the logit scale. The link function de-
pends on the type of simulated scenarios. The simulated deaths are used to obtain neonatal
mortality rates at the county level with the methods outlined in Section 3.

Cases

Three cases of spatial dependencies are considered, where the added spatial effect is de-
noted u. In the first case, scenarios without spatial effects are considered i.e. u = 0.
The main purpose of these simulations is a sanity check, as this case should work for all
approaches. The results of the simulations with no spatial effect are presented in Section
4.2.

In the second case, an unstructured spatial effect at the county level is added. The
spatial effects are denoted ui for counties i = 1, ..., nc. This case can be appropriate in
a scenario where counties make interventions independently of each other, such that the
variation in the mortality rates are random. The unstructured spatial effect is normally
distributed with mean 0 and standard deviation σu = 0.25, ui ∼ N(0, σ2

u). The value for
σu was found by fitting a fully model-based model (MB2) to the real data and estimat-
ing the standard deviation of the total spatial effect. The results of the simulations with
unstructured spatial effects are presented in Section 4.3.

In the third and last case, a structured spatial effect at the county level is added. Struc-
tured spatial variation can arises, for example, if the mortality rates are affected by phe-
nomenons that are dependent and vary in space in a structured way. The spatial effects ui
are sampled from the precision matrix Q of the neighbourhood structure of the counties
with the code in Listing 4.1.

Listing 4.1: Generating structured spatial effects.

Q = INLA : : : i n l a . pc . bym .Q( " Kenyaadm1 . g raph " )
s igma = 0 . 2 5
Q_tmp = i n l a . s c a l e . model (Q, c o n s t r = l i s t (A= m a t r i x ( 1 , nrow =1 , n c o l

=47) , e= m a t r i x ( 0 , nrow =1 , n c o l =1) ) ) + D i a g o n a l ( 4 7 , 1e−9)
Q_new = Q_tmp / s igma ^2
u = i n l a . qsample ( n ,Q_new , c o n s t r = l i s t (A= m a t r i x ( 1 , nrow =1 , n c o l =47) ,

e= m a t r i x ( 0 , nrow =1 , n c o l =1) ) , s eed =123)

INLA::: inla .pc.bym.Q constructs a sparse symmetric neighbourhood matrix, where the
non-zero pattern is defined by the graph. The number of neighbours for each county is on
the diagonal, and the entries for the neighbours are set to−1 as given in Equation (2.14) in
Section 2.2. The function inla . scale .model scales the neighbourhood matrix such that the
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geometric mean of the marginal variances is one. The neighbourhood matrix is divided by
a variance σ2

u = 0.252, yielding the precision matrix Q. Lastly the spatial effects ui are
generated from N(0, Q−1) with a sum-to-zero constraint with the function inla .qsample.
The results of the simulations with structured spatial effects are presented in Section 4.4.

Scenarios

For each case, four different scenarios are considered. In the first scenario, occurrences of
neonatal mortality are simulated with the same rate for all counties, strata, clusters, and
households. The second scenario is simulated with a stratum effect, resulting in separate
rates for urban and rural clusters. In the third scenario, occurrences of neonatal mortality
are simulated with iid effects at the cluster- and household levels, resulting in different
rates for each household. In the fourth and last scenario, occurrences of neonatal mortality
are simulated with both a stratum effect and iid effects at the cluster- and household elevels.
Again, resulting in different rates for each household, also separating households in urban
and rural clusters.

The first scenario is simulated with a baseline rate of µ for all counties, clusters, and
households and a spatial effect u depending on the case. The resulting link function ηijk
for household k in cluster j in county i is

ηijk = µ+ ui, i = 1, . . . , nc, j = 1, . . . , nicl, k = 1, . . . , nijh, (4.2)

where ui is the spatial effect for county i. For the simulations with no spatial effects,
ui = 0 for all counties, i = 1, ..., nc, where nc is the number of counties. County rates
are estimated with the methods in Section 3 from the simulated occurrences of neonatal
deaths obtained by Equation (4.1) with the link function in Equation (4.2). The estimated
county rates r̂i on logit scale are compared to the true rate on logit scale for each county i

ri = µ+ ui, i = 1, . . . , nc. (4.3)

The second scenario contains a stratum effect on the urban and rural clusters. The
effect is one for urban clusters and zero for rural clusters. The values of the stratum effect
are motivated by the higher estimated NMR of 26 per 1000 births for the urban sample,
compared to 21 per 1000 births for the rural sample as reported on pages 363 and 365 in
Kenya National Bureau of Statistics et al. (2015). With the stratum effect, the rate for each
county becomes a weighted sum of the rate for the urban and rural strata within the county.
The link function for cluster j in county i is

ηijk = µ+ui+1[cl(j) = 1], i = 1, . . . , nc, j = 1, . . . , nicl, k = 1, . . . , nijh, (4.4)

where the spatial effect is denoted ui and the indicator function is 1 if household k is in
an urban cluster j and 0 if household k is in a rural cluster j. County rates are estimated
with the methods in Section 3 from the simulated occurrences of neonatal deaths obtained
by Equation (4.1) with the link function in Equation (4.4). The estimated county rates r̂i
are compared to the true probability for each county i

ri = riu
miu

mi
+ rir

mir

mi
, i = 1, . . . , nc, (4.5)
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where miu +mir = mi is the number of residents in urban and rural clusters respectively
in county i, as reported in the Kenya 2009 Population and Housing census, KNBS (2012).
The stratum effect results in the following urban rate riu and rural rate rir

riu = expit(logit(µ) + 1 + ui)

rir = expit(logit(µ) + ui)

where µ is again the baseline rate and expit(·) is the inverse of logit(·).

The third scenario contains iid effects at the cluster- and household level. The link
function for household k in cluster j county i is

ηijk = µ+ ui + νj + εk, i = 1, . . . , nc, j = 1, . . . , nicl, k = 1, . . . , nijh, (4.6)

with baseline rate µ, spatial effect ui and iid cluster- and household effects νj ∼iid
N(0, σ2

ν) and εk ∼iid N(0, σ2
ε). The variance of the cluster and household effects, σ2

ν

and σ2
ε are chosen by fitting the model-based model MB2 on the real data and using the

0.5 quantile of the precision of the hyperparameters as the inverse of the variances. The
standard deviation of the effects are σν = 0.046 and σε = 0.052.

County rates are estimated with the methods in Section 3 from the simulated occur-
rences of neonatal deaths obtained by Equation (4.1) with the link function in Equation
(4.6). The estimated county rates r̂i are compared to the true rates

ri = E[expit(logit(µ) + ui + νj + εk)], i = 1, . . . , nc, (4.7)

where the expectation is taken over a large sample under the assumption of an infinite
number of clusters and households.

The fourth and last scenario considered contains a stratum effect and iid effects at the
cluster- and household level. This scenario is the one that is expected to resemble to real
situation the most. It is reasonable to believe that the mortality rate vary between urban
and rural areas, are similar for children within the same cluster and even more similar for
children within the same households. The resulting link function for household k in cluster
j county i is

ηijk = µ+ ui + 1[cl(j) = 1] + νj + εk,

i = 1, . . . , nc, j = 1, . . . , nicl, k = 1, . . . , nijh,
(4.8)

with baseline rate µ, spatial effect ui and an urban or rural cluster indicator. Again, cluster
and household effects νj and εk are iid. County rates are estimated with the methods in
Chapter 3 with the simulated occurrences of neonatal deaths obtained by Equation (4.1)
with the link function in Equation (4.4). The estimated county rates r̂i are compared to the
true probability for each county i

ri = riu
miu

mi
+ rir

mir

mi
, i = 1, . . . , nc. (4.9)
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The true, simulated rates for each stratum type, urban and rural, are generated by assuming
an infinite number of clusters and households in the sample

riu = E[expit(logit(µ) + ui + 1 + νj + εk)],

rir = E[expit(logit(µ) + ui + νj + εk)].

Again, the urban and rural rates are separated by increasing the urban rate as in scenario 2.
For scenarios 2 and 4 with stratum effect, the baseline rate µ is corrected for the in-

creased expectation in the rates arising from the added stratum effect. The baseline rate, µ,
is decreased such that on average, one obtains simulated rates of ri ≈ µ0 = 0.022 when
the stratum rates are aggregated to a combined county rate. Hhere, µ0 is the estimated
neonatal mortality rate from the full sample as reported on page 361 in Kenya National
Bureau of Statistics et al. (2015).

Methods

The methods described in Chapter 3 are used to estimate neonatal mortality rates on the
logit scale for each of the three spatial cases and the four scenarios. The first method
is the design-based method (DB) described in Section 3.1. The second method is the
smoothed design-based approach (SDB) outlined Section 3.2. The third approach is the
model-based methods MB1 and MB2 described in Section 3.3. The final method is the
combined methods CM1 and CM2 where design-based- and model-based approaches are
combined as described in Section 3.4.

Due to the randomness of the simulations, some simulations will result in zero sim-
ulated neonatal deaths in one or more counties. Then, as mentioned in Sections 3.1 and
3.2, DB and SDB cannot be used to obtain estimates of the rates. Therefore, the results
from these two models are only presented for the subset of the simulations where all coun-
ties have occurrences of neonatal deaths and design-based estimates can be obtained. The
number of these simulations is denoted n, which is a subset of the total number of simu-
lations denoted N . The two other methods, MB and CM, can obtain estimates of the rates
also when some of the counties have zero neonatal deaths. Thus, the results from these
models are presented for all N simulations.

Model assessment

The performance of each method is evaluated with the measures presented in Section 2.5:
MAE, RMSE, CRPS, MBE, and on average running time. The estimated county rates
on the logit scale r̂ from each method are evaluated against the ‘true’ simulated county
rates r, and the results are presented as tables and boxplots. The tables display the mean
value score of MAE, RMSE, CRPS and MBE on the logit scale, averaged over all the
simulations, and the average running time in seconds for one run of the simulations for
each of the methods. The first four rows of the tables present the mean value of the scores
and average running time in seconds for DB, SDB, MB1 and MB2 on the subset of n
simulations where design-based estimates can be obtained. The next four rows present the
mean value of the scores and the average running time in seconds for CM1, CM2, MB1
and MB2 on all N simulations. The best scores are colored yellow.
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The figures present boxplots of the scores of MAE, RMSE, CRPS and MBE on the
logit scale averaged over all counties for each simulation. The first four boxplots of each
figure present the estimates from DB, SDB, MB1 and MB2 on the subset of n simulations
where design-based estimates can be obtained. The next four boxplots of each figure
present the estimates from CM1, CM2, MB1 and MB2 on all N simulations.

4.2 Case 1: No spatial effect
The four scenarios of case 1, (1.1, 1.2, 1.3 and 1.4) are simulated without a spatial effect.
The spatial effects ui are set to zero for all four scenarios.

Case 1.1

For case 1.1, no spatial effects or other effects are included. Neonatal deaths are simulated
with the link function in Equation (4.2). In total N = 110 simulations were conducted
and n = 105 of them generated enough neonatal deaths to obtain design-based rates for
each county. The county rates estimated with the methods are compared to the true county
rates found with Equation (4.3). The mean value of the scores for case 1.1 are reported in
Table 4.1. Box-plots of the scores for case 1.1 are found in Figure 4.1.

Measure

Method MAE RMSE CRPS MBE Time (s)

DB 0.3256 0.4341 0.2449 -0.0760 14.6

SDB 0.1997 0.2919 0.1567 -0.1740 17.4

MB1 0.0436 0.0496 0.0359 0.0012 20.5

MB2 0.0451 0.0515 0.0385 0.0014 274.9

CM1 0.3206 0.4505 0.2562 -0.2889 72.1

CM2 0.3197 0.4497 0.2553 -0.2875 146.6

MB1 0.0450 0.0509 0.0365 -0.0013 20.5

MB2 0.0463 0.0527 0.0391 -0.0011 274.6

Table 4.1: Case 1.1: No effects. Mean value of the scores of MAE, RMSE, CRPS and MBE, and
mean running time in seconds averaged over the simulations. The first four rows present the results
for methods DB, SDB, MB1 and MB2 on the subset of n simulations and the next four rows present
the results for methods CM1, CM2, MB1 and MB2 on all N simulations.
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Figure 4.1: Case 1.1: No effects. Box-plots of the scores of MAE, RMSE, CRPS and MBE. The first
four plots present the results for methods DB, SDB, MB1 and MB2 on the subset of n simulations.
The next four plots present the results for methods CM1, CM2, MB1 and MB2 on allN simulations.
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For case 1.1, one can see from Table 4.1 that MB1 has the lowest average score of
MAE, RMSE and CRPS on the subset of n simulations. In addition, MB1 has the smallest
MBE. DB has the lowest running time but is outperformed by SDB on MAE, RMSE and
CRPS. However, the SDB introduces some bias to the estimates. The results in Figure
4.1 show that the model-based methods, MB1 and MB2, perform better than the other
methods on all four scoring rules. There is no clear difference in performance between
MB1 and MB2 indicating that the household effect included in MB2 is excessive. Also,
Figure 4.1 show that SDB has the largest spread in scores and that CM1 and CM2 are
clearly outperformed by MB1 and MB2 on all N simulations. The best method for case
1.1 is MB1.

Case 1.2

Case 1.2 is simulated with a fixed stratum effect and no spatial effect. The link function
in Equation (4.4) is used. In total N = 130 simulations were conducted and n = 109
of them generated enough neonatal deaths to obtain design-based rates for each county.
The county rates estimated with the methods are compared to the true county rates found
with Equation (4.5). The mean value of the scores for case 1.2 are reported in Table 4.2.
Box-plots of the scores for case 1.2 are found in Figure 4.2.

Measure

Method MAE RMSE CRPS MBE Time (s)

DB 0.5282 0.6921 0.4377 -0.4376 14.8

SDB 0.5173 0.6588 0.4267 -0.5127 17.7

MB1 0.3304 0.3863 0.2731 -0.3303 21.1

MB2 0.3309 0.3938 0.2691 -0.3306 252.7

CM1 0.7133 0.8434 0.5926 -0.7077 74.7

CM2 0.7127 0.8425 0.5917 -0.7070 181.8

MB1 0.3361 0.3913 0.2783 -0.3359 20.7

MB2 0.3367 0.3988 0.2744 -0.3364 254.3

Table 4.2: Case 1.2: Stratum effect and no spatial effect. Mean value of the scores of MAE, RMSE,
CRPS and MBE, and mean running time in seconds averaged over the simulations. The first four
rows present the results for methods DB, SDB, MB1 and MB2 on the subset of n simulations and
the next four rows present the results for methods CM1, CM2, MB1 and MB2 on all N simulations.
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4.2 Case 1: No spatial effect

Figure 4.2: Case 1.2: Stratum effect and no spatial effect. Box-plots of the scores of MAE, RMSE,
CRPS and MBE. The first four plots present the results for methods DB, SDB, MB1 and MB2 on
the subset of n simulations. The next four plots present the results for methods CM1, CM2, MB1
and MB2 on all N simulations.
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In Table 4.2, one can observe that the added stratum effect causes a large increase in
bias for all methods. The negative MBE indicates that all methods predict lower rates
than the simulated rate. MB1 has the lowest average score of MAE, RMSE and smallest
MBE. MB2 has the best CRPS score but the longest average running time. Again, the
model-based methods outperform the combined methods. CM2 has better results than
CM1 on all scoring rules but the household effect results in longer running time. From
Figure 4.2 one can see that SDB does not improve the DB estimates as much as in case
1.1. Comparing the scores for CM1 and CM2, one can see that CM2 has slightly larger
first and third quartiles than CM1. Considering the scores of MAE, RMSE and MBE is
MB1 the preferable method, while MB2 is the preferable method considering the CRPS
score.

Case 1.3

Case 1.3 is simulated with iid cluster- and household effects and no spatial effect. The link
function is in Equation (4.6). In total N = 150 simulations were conducted and n = 140
of them generated enough neonatal deaths to obtain design-based rates for each county.
The county rates estimated with the methods are compared to the true county rates found
with Equation (4.7). The mean value of the scores for case 1.3 are reported in Table 4.3.
Box-plots of the scores for case 1.3 are found in Figure 4.3.

Measure

Method MAE RMSE CRPS MBE Time (s)

DB 0.3379 0.4449 0.2556 -0.0996 11.3

SDB 0.2193 0.3069 0.1719 -0.1951 12.8

MB1 0.0733 0.0775 0.0531 -0.0191 6.9

MB2 0.0733 0.0782 0.0535 -0.0188 161.6

CM1 0.3446 0.4766 0.2761 -0.3078 30.6

CM2 0.3423 0.4748 0.2745 -0.3055 83.4

MB1 0.0736 0.0781 0.0531 -0.0194 6.9

MB2 0.0735 0.0786 0.0535 -0.0192 161.6

Table 4.3: Case 1.3: Cluster- and household effects and no spatial effect. Mean value of the scores
of MAE, RMSE, CRPS and MBE, and mean running time in seconds averaged over the simulations.
The first four rows present the results for methods DB, SDB, MB1 and MB2 on the subset of n
simulations and the next four rows present the results for methods CM1, CM2, MB1 and MB2 on
all N simulations.
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Figure 4.3: Case 1.3: Cluster- and household effects and no spatial effect. Box-plots of the scores of
MAE, RMSE, CRPS and MBE. The first four plots present the results for methods DB, SDB, MB1
and MB2 on the subset of n simulations. The next four plots present the results for methods CM1,
CM2, MB1 and MB2 on all N simulations.
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The results from case 1.3 indicate that all methods perform better on data simulated
with cluster- and household effects compared to case 1.2 simulated with a stratum effect.
From Table 4.3 one can see that all methods have a tendency to underestimate the rates,
from the small negative MBE. Again, the model-based methods perform best on all scoring
rules, with smaller MBE for MB2, but, in general, very similar results for MB1 and MB2.
One can also observe that CM1 and CM2 perform poorer than DB and SDB, indicating
that the methods are poor at predicting the rates for the simulations where zero deaths
occurs. From the box-plots in Figure 4.3, it is clear that the model-based methods perform
best when cluster and household effects are considered. SDB performs better than DB but
with a larger spread in the scores. For case 1.3 are MB1 and MB2 best, with very similar
results except for the average running time, where MB1 is a much faster method.

Case 1.4

Case 1.4 is simulated with a fixed stratum effect, cluster- and household effects and no
spatial effect. The link function in Equation (4.8) is used. In total N = 200 simulations
were conducted and n = 161 of them generated enough neonatal deaths to obtain design-
based rates for each county. The county rates estimated with the methods are compared to
the true county rates found with Equation (4.9). The mean value of the scores for scenario
4 are reported in Table 4.4. Box-plots of the scores for case 1.4 are found in Figure 4.4.

Measure

Method MAE RMSE CRPS MBE Time (s)

DB 0.5445 0.7055 0.4541 -0.4556 7.1

SDB 0.5364 0.6728 0.4449 -0.5322 7.9

MB1 0.3469 0.4037 0.2916 -0.3461 4.9

MB2 0.3470 0.4108 0.2873 -0.3458 152.5

CM1 0.7318 0.8572 0.6107 -0.7269 31.3

CM2 0.7324 0.8576 0.6110 -0.7279 68.5

MB1 0.3504 0.4067 0.2942 -0.3494 4.9

MB2 0.3506 0.4139 0.2902 -0.3494 151.9

Table 4.4: Case 1.4: Stratum effect, cluster- and household effects and no spatial effect. Mean value
of the scores of MAE, RMSE, CRPS and MBE, and mean running time in seconds averaged over
the simulations. The first four rows present the results for methods DB, SDB, MB1 and MB2 on the
subset of n simulations and the next four rows present the results for methods CM1, CM2, MB1 and
MB2 on all N simulations.
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Figure 4.4: Case 1.4: Stratum effect, and cluster- and household effects and no spatial effect. Box-
plots of the scores of MAE, RMSE, CRPS and MBE. The first four plots present the results for
methods DB, SDB, MB1 and MB2 on the subset of n simulations. The next four plots present the
results for methods CM1, CM2, MB1 and MB2 on all N simulations.
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Table 4.4 shows that the methods again have large negative MBE due to the stratum
effect. MB1 has the best scores for MAE and RMSE, and MB2 has the best CRPS score.
MB1 has the best running time. From Figure 4.4 one can again, as in case 1.2, see that
SDB only slightly improves the DB estimates when the stratum effect is included. The
model-based methods are better than the combined methods on all the scoring rules. MB1
and MB2 are the best methods for case 1.4.

Measure

Method MAE RMSE CRPS Time (s)

DB 0.4340 0.5692 0.3481 11.9

SDB 0.3682 0.4826 0.3000 13.9

MB1 0.1986 0.2293 0.1634 13.4

MB2 0.1991 0.2336 0.1621 210.4

CM1 0.5276 0.6569 0.4339 52.2

CM2 0.5268 0.6561 0.4332 120.1

MB1 0.2013 0.2318 0.1655 13.3

MB2 0.2018 0.2360 0.1643 210.6

Table 4.5: Average scores of MAE, RMSE and CRPS and running time across all scenarios in case
1 (1.1, 1.2, 1.3 and 1.4). The first four rows display the average scores for methods DB, SDB, MB1
and MB2 for the subset of n simulations. The next four rows display the average scores for methods
CM1, CM2, MB1 and MB2 for all N simulations.

Table 4.5 presents the average scores of MAE, RMSE and CRPS for DB, SDB, CM1,
CM2, MB1 and MB2 across all four scenarios in case 1, and average running time in
seconds. MB1 has overall the best score for MAE and RMSE. DB has the lowest running
time and MB2 has the best CRPS score. As there are no spatial effects included in the
scenarios, it is not evident why SDB performs better than DB. However, SDB is still
believed to reduce variance which can explain these results. MB1 the preferable method
across all 4 scenarios.
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4.3 Case 2: Unstructured spatial effect
The four scenarios of case 2 (2.1, 2.2, 2.3 and 2.4) are simulated with unstructured spatial
effects ui ∼ N(0, σ2

u) for counties i = 1, . . . , nc.

Case 2.1

Case 2.1 is simulated with an unstructured spatial effect and constructed with the link
function in Equation (4.2). In total N = 110 simulations were conducted and n = 103
of them generated enough neonatal deaths to obtain design-based rates for each county.
The county rates estimated with the methods are compared to the true county rates found
with Equation (4.3). The mean value of the scores for case 2.1 are reported in Table 4.6.
Box-plots of the scores for case 2.1 are found in Figure 4.5.

Measure

Method MAE RMSE CRPS MBE Time (s)

DB 0.4278 0.5475 0.3230 -0.0763 16.6

SDB 0.3291 0.4330 0.2631 -0.1640 18.6

MB1 0.2640 0.3210 0.2180 0.0064 11.9

MB2 0.2639 0.3209 0.2135 0.0064 254.9

CM1 0.4939 0.6395 0.4781 -0.2124 50.2

CM2 0.4939 0.6395 0.4781 -0.2122 122.5

MB1 0.2676 0.3242 0.2211 -0.0098 11.9

MB2 0.2674 0.3242 0.2165 -0.0099 255.8

Table 4.6: Case 2.1: Unstructured spatial effect. Mean value of scores of MAE, RMSE, CRPS and
MBE, and mean running time in seconds averaged over the simulations. The first four rows present
the results for methods DB, SDB, MB1 and MB2 on the subset of n simulations and the next four
rows present the results for methods CM1, CM2, MB1 and MB2 on all N simulations.
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Figure 4.5: Case 2.1: Unstructured spatial effect. Box-plots of the scores of MAE, RMSE, CRPS
and MBE. The first four plots present the results for methods DB, SDB, MB1 and MB2 on the subset
of n simulations. The next four plots present the results for methods CM1, CM2, MB1 and MB2 on
all N simulations.
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In Table 4.6, SDB has better average scores of MAE, RMSE and CRPS than DB.
However, DB has smaller MBE compared to SDB. The lowest scores of MAE, RMSE,
CRPS and MBE across all methods is with method MB2, and MB1 has the shortest running
time. CM1 and CM2 have the poorest results for all scoring rules. Figure 4.5 shows that
all methods produce several high outliers and that the model-based methods are superior.

Case 2.2

Case 2.2 is simulated with a fixed stratum effect and an unstructured spatial effect. The
link function in Equation (4.4) is used. In total N = 150 simulations were conducted and
n = 111 of them generated enough neonatal deaths to obtain design-based rates for each
county. The county rates estimated with the methods are compared to the true county rates
found with Equation (4.5). The mean value of the scores for case 2.2 are reported in Table
4.7. Box-plots of the scores for case 2.2 are found in Figure 4.6.

Measure

Method MAE RMSE CRPS MBE Time (s)

DB 0.5855 0.7460 0.4891 -0.4113 14.3

SDB 0.5467 0.6963 0.4655 -0.4894 16.1

MB1 0.4000 0.4795 0.3482 -0.3045 10.8

MB2 0.4023 0.4855 0.3456 -0.3043 244.5

CM1 0.7675 0.9067 0.6540 -0.7394 49.7

CM2 0.7667 0.9057 0.6529 -0.7382 128.3

MB1 0.4438 0.5238 0.3897 -0.3691 10.5

MB2 0.4457 0.5296 0.3864 -0.3689 242.3

Table 4.7: Case 2.2: Stratum effect and unstructured spatial effect. Mean value of scores of MAE,
RMSE, CRPS and MBE, and mean running time in seconds averaged over the simulations. The
first four rows present the results for methods DB, SDB, MB1 and MB2 on the subset of n simula-
tions and the next four rows present the results for methods CM1, CM2, MB1 and MB2 on all N
simulations.
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Figure 4.6: Case 2.2: Stratum effect and unstructured spatial effect. Box-plots of the scores of
MAE, RMSE, CRPS and MBE. The first four plots present the results for methods DB, SDB, MB1
and MB2 on the subset of n simulations. The next four plots present the results for methods CM1,
CM2, MB1 and MB2 on all N simulations.
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In Table 4.7, MB1 has the lowest average score of MAE, RMSE, and shortest running
time. MB2 has lowest CRPS score and smallest bias. SDB has better results on the
scoring rules compared to DB, except for the bias. CM1 and CM2 perform considerably
weaker than MB1 and MB2 on all measures. Again, Figure 4.6 shows that MB1 and MB2
perform the best on case 2.2, while SDB only slightly improves the DB estimates with the
added stratum effect. The household effects in CM2 and MB2 do not improve the overall
predictive performance of the methods. MB1 and MB2 have the best results on case 2.2.

Case 2.3

Case 2.3 is simulated with iid cluster- and household effects and an unstructured spatial
effect. The link function in Equation (4.6) is used. In total N = 150 simulations were
conducted and n = 138 of them generated enough neonatal deaths to obtain design-based
rates for each county. The county rates estimated with the methods are compared to the
true county rates found with Equation (4.7). The mean value of the scores for case 2.3 are
reported in Table 4.8. Box-plots of the scores for case 2.3 are found in Figure 4.7.

Measure

Method MAE RMSE CRPS MBE Time (s)

DB 0.4566 0.5810 0.3484 -0.0821 15.5

SDB 0.3636 0.4739 0.2967 -0.1720 17.6

MB1 0.2947 0.3510 0.2483 -0.0023 11.5

MB2 0.2949 0.3514 0.2435 -0.0022 249.6

CM1 0.4537 0.5858 0.3742 -0.3164 49.8

CM2 0.4526 0.5848 0.3732 -0.3146 113.9

MB1 0.3038 0.3604 0.2566 -0.0304 11.2

MB2 0.3039 0.3608 0.2519 -0.0301 247.5

Table 4.8: Case 2.3: Cluster- and household effects and unstructured spatial effect. Mean value
of scores of MAE, RMSE, CRPS and MBE, and mean running time in seconds averaged over the
simulations. The first four rows present the results for methods DB, SDB, MB1 and MB2 on the
subset of n simulations and the next four rows present the results for methods CM1, CM2, MB1 and
MB2 on all N simulations.
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Figure 4.7: Case 2.3: Cluster- and household effects and unstructured spatial effect. Box-plots of
the scores of MAE, RMSE, CRPS and MBE. The first four plots present the results for methods
DB, SDB, MB1 and MB2 on the subset of n simulations. The next four plots present the results for
methods CM1, CM2, MB1 and MB2 on all N simulations.
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In Table 4.8, the best average scores of MAE and RMSE are with MB1, which also
has the shortest running time. From the box-plot in Figure 4.7 one can see that also with
cluster and household effects are MB1 and MB2 better than DB and SDB. The predictive
performance of SDB relative to DB is better than in case 2.2. Again, from Figure 4.7 one
can see that the household effect in CM2 and MB2 do not improve the estimates, and the
model-based methods are preferable over the combined methods on all scoring rules.

Case 2.4

Case 2.4 is simulated with a fixed stratum effect, iid cluster- and household effects and an
unstructured spatial effect. The link function in Equation (4.8) is used. In total N = 150
simulations were conducted and n = 110 of them generated enough neonatal deaths to
obtain design-based rates for each county. The county rates estimated with the methods
are compared to the true county rates found with Equation (4.9). The mean value of the
scores for case 2.4 are reported in Table 4.9. Box-plots of the scores for case 2.4 are found
in Figure 4.8.

Measure

Method MAE RMSE CRPS MBE Time (s)

DB 0.5911 0.7553 0.4897 -0.3871 15.3

SDB 0.5446 0.6991 0.4623 -0.4682 17.2

MB1 0.3980 0.4774 0.3455 -0.2754 10.2

MB2 0.4009 0.4838 0.3439 -0.2751 233.4

CM1 0.7771 0.9147 0.6653 -0.7394 50.1

CM2 0.7758 0.9139 0.6640 -0.7384 129.9

MB1 0.4586 0.5370 0.4026 -0.3655 10.1

MB2 0.4611 0.5430 0.4006 -0.3652 238.9

Table 4.9: Case 2.4: Stratum effect, cluster- and household effects and unstructured spatial effect.
Mean value of scores of MAE, RMSE, CRPS and MBE, and mean running time in seconds averaged
over the simulations. The first four rows present the results for methods DB, SDB, MB1 and MB2
on the subset of n simulations and the next four rows present the results for methods CM1, CM2,
MB1 and MB2 on all N simulations.
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Figure 4.8: Case 2.4: Stratum effect, cluster- and household effects and unstructured spatial effect.
Box-plots of the scores of MAE, RMSE, CRPS and MBE. The first four plots present the results for
methods DB, SDB, MB1 and MB2 on the subset of n simulations. The next four plots present the
results for methods CM1, CM2, MB1 and MB2 on all N simulations.
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The results in Table 4.9 show that MB1 has the lowest average score of MAE, RMSE
and running time, while MB2 has the lowest average CRPS score and smallest MBE.
CM1 and CM2 have the poorest results on all scores. The box-plots in Figure 4.8 show
that MB1 and MB2 again perform best on all four scoring rules and that SDB outperforms
DB, however with large spread in the results. Again, as in case 2.2, all methods have large
negative MBE due to the added stratum effect.

Measure

Method MAE RMSE CRPS Time (s)

DB 0.5152 0.6574 0.4125 15.4

SDB 0.4460 0.5756 0.3719 17.4

MB1 0.3392 0.4072 0.2900 11.1

MB2 0.3405 0.4104 0.2866 245.6

CM1 0.6231 0.7616 0.5429 49.9

CM2 0.6222 0.7610 0.5420 123.6

MB1 0.3684 0.4364 0.3175 10.9

MB2 0.3695 0.4394 0.3138 246.1

Table 4.10: Average score of MAE, RMSE and CRPS and running time across all scenarios in case
2 (2.1, 2.2, 2.3 and 2.4). The first four rows display the average scores for methods DB, SDB, MB1
and MB2 for the subset of n simulations. The next four rows display the average scores for methods
CM1, CM2, MB1 and MB2 for all N simulations.

Table 4.10 presents the average scoring rules for DB, SDB, CM1, CM2, MB1 and
MB2 across all four scenarios in case 2. MB1 has the best overall scores for MAE and
RMSE and the best running time. MB2 has the best CRPS score. SDB has a better overall
score for MAE, RMSE and CRPS compared to DB, and the methods are in the same range
in terms of running time. The combined methods CM1 and CM2 perform the weakest
out of all the methods on average. CM2 has a slightly better score for MAE, RMSE and
CRPS compared to CM1. As expected, all methods perform poorer with unstructured
effects, compared to case 1 with no spatial effect in Section 4.2. This is reasonable as the
county rates vary more due to the added randomness. Again, SDB improves on the DB
estimates but introduces bias. The superior method is MB1, when considering the overall
performance.
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4.4 Case 3: Structured spatial effect
The four scenarios of case 3 (3.1, 3.2, 3.3 and 3.4) are simulated with structured spatial
effects ui ∼ N(0, Q−1) generated with the function inla .qsample.

Case 3.1

Case 3.1 is simulated with a structured spatial effect and constructed with the link function
in Equation (4.2). In total N = 120 simulations were conducted and n = 114 of them
generated enough neonatal deaths to obtain design-based rates for each county. The county
rates estimated with the methods are compared to the true county rates found with Equation
(4.3). The mean value of the scores for case 3.1 are reported in Table 4.11. Box-plots of
the scores for case 3.1 are found in Figure 4.9.

Measure

Method MAE RMSE CRPS MBE Time (s)

DB 0.4212 0.5389 0.3182 -0.0785 14.4

SDB 0.3191 0.4213 0.2533 -0.1693 16.8

MB1 0.2468 0.3070 0.2025 0.0039 13.8

MB2 0.2467 0.3072 0.1988 0.0038 272.9

CM1 0.4062 0.5390 0.3306 -0.2927 60.1

CM2 0.4067 0.5390 0.3307 -0.2925 146.7

MB1 0.2472 0.3076 0.2028 -0.0027 13.8

MB2 0.2472 0.3079 0.1992 -0.0028 273.1

Table 4.11: Case 3.1: Structured spatial effect. Mean value of the scores of MAE, RMSE, CRPS
and MBE, and mean running time in seconds averaged over the simulations. The first four rows
present the results for methods DB, SDB, MB1 and MB2 on the subset of n simulations and the next
four rows present the results for methods CM1, CM2, MB1 and MB2 on all N simulations.
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Figure 4.9: Case 3.1: Structured spatial effect. Box-plots of the scores of MAE, RMSE, CRPS and
MBE. The first four plots present the results for methods DB, SDB, MB1 and MB2 on the subset of
n simulations. The next four plots present the results for methods CM1, CM2, MB1 and MB2 on all
N simulations.
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The results in Table 4.11 show that MB2 has the best scores on MAE, CRPS and MBE,
while MB1 has the best RMSE score. Both DB, CM1 and CM2 perform poorly, especially
when evaluated on MAE and RMSE. From Figure 4.9, one can see that SDB, CM1 and
CM2 have a large spread in the scoring results, while the results for MB1 and MB2 are
consistent. Again, MB1 and MB2 are the preferable methods. MB2 has the best scores
but increased running time.

Case 3.2

Case 3.2 is simulated with a fixed strata effect and a structured spatial effect. The link
function in Equation (4.4) is used. In total N = 200 simulations were conducted and
n = 160 of them generated enough neonatal deaths to obtain design-based rates for each
county. The county rates estimated with the methods are compared to the true county rates
found with Equation (4.5). The mean value of the scores for case 3.2 are reported in Table
4.12. Box-plots of the scores for case 3.2 are found in Figure 4.10.

Measure

Method MAE RMSE CRPS MBE Time (s)

DB 0.5811 0.7437 0.4813 -0.4059 13.1

SDB 0.5373 0.6920 0.4543 -0.4872 15.4

MB1 0.3795 0.4616 0.3272 -0.2951 13.7

MB2 0.3820 0.4677 0.3246 -0.2950 262.8

CM1 0.7240 0.8706 0.6145 -0.6931 62.1

CM2 0.7241 0.8703 0.6144 -0.6932 180.7

MB1 0.4050 0.4874 0.3510 -0.3305 13.9

MB2 0.4072 0.4933 0.3485 -0.3303 264.4

Table 4.12: Case 3.2: Stratum effect and structured spatial effect. Mean value of the scores of
MAE, RMSE, CRPS and MBE, and mean running time in seconds averaged over the simulations.
The first four rows present the results for methods DB, SDB, MB1 and MB2 on the subset of n
simulations and the next four rows present the results for methods CM1, CM2, MB1 and MB2 on
all N simulations.
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Figure 4.10: Case 3.2: Stratum effect and structured spatial effect. Box-plots of the scores of MAE,
RMSE, CRPS and MBE. The first four plots present the results for methods DB, SDB, MB1 and
MB2 on the subset of n simulations. The next four plots present the results for methods CM1, CM2,
MB1 and MB2 on all N simulations.
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For case 3.2, the results in Table 4.12 shows that MB1 and MB2 again have the best
scores on all measures. Again, the added stratum effect causes large negative MBE for
all methods. Figure 4.10 shows that several methods have high outliers in the scores,
especially DB and SDB, while the most uniform scores are obtained with MB1 and MB2.
The best performing methods for case 3.2 are MB1 and MB2.

Case 3.3

Case 3.3 is simulated with iid cluster- and household effects and a structured spatial effect.
The link function in Equation (4.6) is used. In total N = 150 simulations were conducted
and n = 140 of them generated enough neonatal deaths to obtain design-based rates for
each county. The county rates estimated with the methods are compared to the true county
rates found with Equation (4.7). The mean value of the scores for case 3.3 are reported in
Table 4.13. Box-plots of the scores for case 3.3 are found in Figure 4.11.

Measure

Method MAE RMSE CRPS MBE Time (s)

DB 0.4228 0.5422 0.3196 -0.0844 12.2

SDB 0.3228 0.4277 0.2581 -0.1746 14.1

MB1 0.2560 0.3168 0.2117 -0.0058 12.5

MB2 0.2563 0.3172 0.2076 -0.0053 227.1

CM1 0.4094 0.5396 0.3328 -0.2928 51.6

CM2 0.4093 0.5396 0.3327 -0.2918 126.7

MB1 0.2573 0.3181 0.2125 -0.0111 12.4

MB2 0.2576 0.3185 0.2086 -0.0106 228.7

Table 4.13: Case 3.3: Cluster- and household effects and structured spatial effect. Mean value of
the scores of MAE, RMSE, CRPS and MBE, and mean running time in seconds averaged over the
simulations. The first four rows present the results for methods DB, SDB, MB1 and MB2 on the
subset of n simulations and the next four rows present the results for methods CM1, CM2, MB1 and
MB2 on all N simulations.
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4.4 Case 3: Structured spatial effect

Figure 4.11: Case 3.3: Cluster- and household effects and structured spatial effect. Box-plots of
the scores of MAE, RMSE, CRPS and MBE. The first four plots present the results for methods
DB, SDB, MB1 and MB2 on the subset of n simulations. The next four plots present the results for
methods CM1, CM2, MB1 and MB2 on all N simulations.
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From Table 4.13, one can see that MB1 has the best scores for MAE and RMSE, while
MB2 has the best scores for CRPS and MBE. CM1 and CM2 have large negative MBE
compared to the other methods. DB results in the poorest scores for MAE and RMSE. The
results in Figure 4.11 show that SDB, CM1 and CM2 have large spreads in the results.
However, in general, the DB estimates are improved by SDB. Again, MB1 and MB2 are
the preferred methods.

Case 3.4

Case 3.4 is simulated with a fixed stratum effect, iid cluster- and household effects and a
structured spatial effect. The link function in Equation (4.8) is used. In total N = 200
simulations were conducted and n = 150 of them generated enough neonatal deaths to
obtain design-based rates for each county. The county rates estimated with the methods
are compared to the true county rates found with Equation (4.9). The mean value of the
scores for case 3.4 are reported in Table 4.14. Box-plots of the scores for case 3.4 are
found in Figure 4.12.

Measure

Method MAE RMSE CRPS MBE Time (s)

DB 0.5933 0.7549 0.4945 -0.4270 8.5

SDB 0.5535 0.7053 0.4698 -0.5077 9.9

MB1 0.3922 0.4747 0.3410 -0.3121 9.8

MB2 0.3947 0.4808 0.3382 -0.3120 202.5

CM1 0.7426 0.8804 0.6257 -0.7140 36.8

CM2 0.7417 0.8800 0.6250 -0.7134 121.6

MB1 0.4096 0.4929 0.3563 -0.3374 9.9

MB2 0.4122 0.4993 0.3537 -0.3376 203.8

Table 4.14: Case 3.4: Stratum effect, cluster- and household effects and structured spatial effect.
Mean value of the scores of MAE, RMSE, CRPS and MBE, and mean running time in seconds
averaged over the simulations. The first four rows present the results for methods DB, SDB, MB1
and MB2 on the subset of n simulations and the next four rows present the results for methods CM1,
CM2, MB1 and MB2 on all N simulations.
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Figure 4.12: Case 3.4: Fixed effect, cluster- and household effects and structured spatial effect.
Box-plots of the scores of MAE, RMSE, CRPS and MBE. The first four plots present the results for
methods DB, SDB, MB1 and MB2 on the subset of n simulations. The next four plots present the
results for methods CM1, CM2, MB1 and MB2 on all N simulations.
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The results in Table 4.14 show MB1 has the best scores for MAE and RMSE, while
MB2 has the best CRPS and MBE scores. Again, the results from DB are improved by
SDB, except for the introduced MBE. CM1 and CM2 have the poorest average scores for
all measures. Figure 4.12 show that the scores for DB are only slightly improved with
SDB and that MB1 and MB2 provides the most consistent results with little spread.

Measure

Method MAE RMSE CRPS Time (s)

DB 0.5046 0.6449 0.4034 12.1

SDB 0.4332 0.5616 0.3588 14.1

MB1 0.3186 0.3900 0.2706 12.5

MB2 0.3199 0.3932 0.2673 241.3

CM1 0.5706 0.7074 0.4759 52.7

CM2 0.5705 0.7072 0.4757 143.9

MB1 0.3298 0.4015 0.2807 12.5

MB2 0.3311 0.4048 0.2775 242.5

Table 4.15: Average score of MAE, RMSE and CRPS and running time across all scenarios in case
3 (3.1, 3.2, 3.3 and 3.4). The first four rows display the average scores for methods DB, SDB, MB1
and MB2 for the subset of n simulations. The next four rows display the average scores for methods
CM1, CM2, MB1 and MB2 for all N simulations.

Table 4.15 presents the average scores for DB, SDB, CM1, CM2, MB1 and MB2
across all four scenarios. MB1 has the overall best average score for MAE and RMSE,
while MB2 has the overall best average score for CRPS. The worst performing methods
across all scenarios are CM1 and CM2. The preferable methods are MB1 and MB2, how-
ever, MB1 is superior considering the average running time.

4.5 Discussion
All methods perform the best when there is no spatial effect, in Section 4.2. For SDB, CM
and MB, there is more strength for estimating the intercept and cluster variance as there are
no spatial effects to estimate. Thus, this may result in a better estimation of the intercept.
Out of the three spatial cases considered, one can assume that the simulations with the
unstructured and structured spatial effects are the most realistic. The spatial effects make
it more difficult to obtain accurate estimates for the spatial methods, SDB, CM and MB,
while DB provides similar results across all three cases. It may be more difficult for the
methods to learn the spatial effect as this depends on the prior. Interesting future work is
to investigate the effect of the priors on prediction more thoroughly.

It is reasonable to believe that the scenarios with both stratum effects and iid effects at

68



4.5 Discussion

the cluster- and household level are the most realistic. This scenario is also the one that
is the most difficult to obtain accurate rates from. As expected, it is generally easiest to
estimate accurate rates when the simulated deaths are generated by a uniform rate in each
county. The results show that the fixed stratum effect makes it challenging to estimate
the county rates. The difference in urban and rural rates and the lowered baseline rate µ
results in more stochastic variation as there are less simulated deaths in rural areas making
prediction in rural areas more difficult. Also, since the stratum rates are weighted with
the number of residents in urban and rural areas from the 2009 census, where the majority
live in rural areas, the gathered county rates will be most influenced by the estimated rural
rates.

The results show that the stratum effect gives bias for all methods. The reason for this
may be how the estimates from urban and rural areas are weighted to obtain the aggregated
county rates. Here, the rates are weighted with the number of residents in urban and rural
areas in each county from the 2009 census, which may not give the same weighting as the
survey weights. A solution that may correct the bias is to weight the stratum rates with
the number of births in urban and rural areas in the time period 2009-2014. However, this
information is not available. Also, since only one sample is considered in this study the
survey weights will not provide the exact ratio of the number of births in urban vs. rural
areas. There is only over repeated sampling that the weights will give the exact ratio.

DB is the method that performs the poorest across most of the 12 simulations per-
formed. The method estimates the rates directly without accounting for the added effects.
Therefore, DB estimates variable rates which result in poor scores. This may indicate that
there is too much noise in the estimates and that a smoothing method such as SDB or MB
is preferable. The SDB method is able to improve the design-based estimates but intro-
duces some bias. In addition, SDB is outperformed by both MB1 and MB2 on all scoring
rules on all cases. However, one advantage of SDB is that the method respects the survey
design by using the design-based estimates, and it is intuitive and computationally fast.

Based on the results of the simulations, it seems clear that it is unnecessary to include
iid household effects in MB2 and CM2. The effects do not improve precision and, as ex-
pected, the increased complexity of the methods increase running time considerably. The
non-increased performance may be due to the methods not being able to fully capture the
intra-household correlation. Further exploration into the priors of the cluster and house-
hold effects can be done to see if this affects the performance of CM2 and MB2. It is
somewhat unexpected that CM1 and CM2, in general, perform unsatisfactorily. However,
as MB outperforms SDB, there is no reason to believe that CM are the preferred methods.

One goal of the study is to assess whether it is possible to obtain methods that can
estimate NMRs on fine scales in space and time. If this is desired, CM1 and MB1 should
be preferred over CM2 and MB2 as the running times for the more complex models are
already extensive for estimation at the county level. Also, if the goal is to obtain estimates
on finer spatial scales, DB and SDB can only be used if the sample size is increased, which
undesirable due to limited resources. The same is true if it is desired to reduce the sample
size. The methods CM and MB are preferred for both cases as it would be impossible
to obtain reliable estimates with DB and SDB on smaller spatial scales or with smaller
sample sizes.

It is important to point out that the results obtained from this simulation study are
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only valid for the specific sample drawn. However, one can expect similar results for all
possible samples. If one wishes to obtain general results, it is necessary to draw new
samples of clusters and households. As information about the non-sampled enumeration
areas is unattainable, it is not possible to perform a complete simulation study.

The simulation study concludes that the preferable method is MB1. It performs well
across all scenarios on all scoring rules and is computationally fast. In the next chapter,
the performance of MB1 on the real data is explored and compared to DB and SDB.

70



Chapter 5
Estimating neonatal mortality rates
in Kenya 2009-2014

In this chapter, subnational neonatal mortality rates are estimated with the best performing
method from the simulation study, i.e. MB1. The estimates obtained from MB1 are com-
pared to estimates obtained with the design-based methods DB and SDB. Even though
MB1 in general performed better in the simulation study, it is desired to compare its pre-
dictive performance against established and commonly used methods.

5.1 Full sample
Figure 1.1 in Chapter 1 presents maps of estimated NMRs at the county level and the rel-
ative standard deviation (RSD) from methods DB, SDB and MB1. The RSD is calculated
as the estimated standard deviation divided by the estimated rate and provides a measure
of how large the variance of the estimates are. The rates are obtained from the full sample
of approximately 1600 clusters. DB produced the most varying rates across the counties,
while MB1 produces more similar rates. The smoothing of the rates is anticipated as the
modelling reduces noise in the data and causes attenuation. One can observe that high
estimated rates produced by DB are smoothed out with SDB. However, it may seem like
this is not the case for low estimated rates. SDB also reduce the relative standard deviation
as expected.

In Figure 5.1, scatter plots of the rates from MB1 and SDB against the rates from DB
for the full sample are presented. The left plot is on the logit scale, and the right plot is
on the probability scale. MB1 smooths out high and low values and produce less spatial
variation compared to DB, as expected. One can see that SDB produces rates more similar
to DB, than MB1.
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Figure 5.1: Scatter plots of the estimated rates from MB1 and SDB against DB rates for the full
sample (1600 clusters). Left: Logit scale. Right: Probability scale.

Method

Parameter MB1 SDB

expβ 1.05[0.85, 1.29]

σν 0.06[0.02, 0.63]

συ 0.21[0.10, 0.35] 0.33[0.23, 0.46]

ξ 0.42[0.03, 0.94] 0.32[0.02, 0.89]

Table 5.1: Median, 0.025 and 0.975 quantiles of the hyperparameters for MB1 and SDB. β is the
fixed strata effect, σν is the standard deviation for the random cluster effects, συ is the standard
deviation of the total spatial effect (φ + γ) and ξ is the proportion of variance explained by the
structured spatial effect, φ.

Table 5.1 presents the hyperparameters for models MB1 and SDB. The cluster effect
and total spatial effect are expressed as standard deviation (σ = 1/

√
τ ). ξ is the proportion

of the spatial variability that is structured, where the total spatial variability is the sum of
the structured and unstructured effects: υ = φ + γ. β is expressed as expβ. One can
observe that β is insignificant as the 0.025 and 0.975 quantiles cover 1. The finding agrees
with the officially reported urban and rural sample rates of 26 and 21 per 1000 live births
reported in Kenya National Bureau of Statistics et al. (2015), which are quite similar. For
both MB1 and SDB the median of the proportion of structured variability is smaller than
0.5, 0.42 and 0.32 respectively, indicating that the spatial variability in the county rates
consists of more random noise than structured variation. The standard deviation of the iid
cluster effect is small with median 0.06, suggesting little variation between the clusters in
the same stratum. SDB reports larger spatial effects, while MB1 reports larger ξ, however
with a very a large credibility interval of [0.03, 0.094].

To evaluate the difference in the rates for MB1 and SDB compared to the design-
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5.1 Full sample

based rates, median and 0.025 and 0.975 quantiles are computed from samples using the
estimated rates. For MB1, n samples are obtained by the function inla . posterior .sample as
explained in Section 3.5. For DB and SDB, n samples of the estimated rates are generated
from N(µi, σ

2
i ) for county i, where the mean, µi, is the estimated rate in county i on logit

scale and the variance, σ2
i , is the variance of the rate. 0.025 and 0.975 quantiles and the

median of the difference between the samples from DB and MB, and DB and SDB for
each county are computed and reported in Figure 5.2.

Figure 5.2: Median, 0.025 and 0.975 quantiles of the difference between samples from MB1 and
DB, and SDB and DB for the full sample. Left plot: MB1-DB. Right plot: SDB-DB.

From Figure 5.2, one can see that the rates produced by SDB are more compatible with
the DB rates. The result is consistent with the findings in Figure 5.1, as MB1 produces the
most homogeneous rates that are dissimilar for the counties where DB produce very high
or low rates. However, most of the rates from MB are not significantly different from the
DB rates.

Figure 5.3: Maps with two-sided p-values for the county rates from DB, SDB and MB1 for the full
sample (1600 clusters). Left plot: DB. Middle plot: SDB. Right plot: MB1.

Figure 5.3 presents maps with computed two-sided p-values assuming normal distri-
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bution for the estimated county rates from DB, SDB and MB1 for the full sample. The null
hypothesis is no significant difference between the national NMR of 22 per 1000 live births
as reported in Kenya National Bureau of Statistics et al. (2015) and the county rates from
the three methods. Small p-values indicate that the county rate is significantly different
from the national rate. The results show that the rates from MB1 are the most compatible
with the officially reported national rate, while many county rates for DB and SDB are
significantly different from the national estimate. It is questionable whether the apparent
spatial heterogeneity estimated by DB and SDB is real or if the NMR is more similar in
each county then the methods indicate.
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5.2 Reducing the sample size

Figure 5.4: Maps of the estimated NMRs at the county level from samples of 1600, 800, 400 and
200 clusters. Left column: MB1. Middle column: DB. Right column: SDB. Top row: 1600 clusters.
Second row: 800 clusters. Third row: 400 clusters. Bottom row: 200 clusters.

75



Chapter 5. Estimating neonatal mortality rates in Kenya 2009-2014

Figure 5.5: Maps of the RSD at the county level from samples of 1600, 800, 400 and 200 clusters.
Left column: MB1. Middle column: DB. Right column: SDB. Top row: 1600 clusters. Second row:
800 clusters. Third row: 400 clusters. Bottom row: 200 clusters.

In Figure 5.4, maps of estimated rates at the county level from samples of 1600, 800,
400 and 200 clusters for MB1, DB and SDB are presented. DB produces outliers for
several counties with 800 clusters, which are smoothed by SDB. The two methods produce
similar rates excluding the outliers. Also, MB1 and SDB produce similar rates, with more
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uniform rates from MB1. For a sample with 400 clusters, there is not enough data to
produce design-based rates for all counties. The areas coloured white for DB in Figure
5.4 are counties where rates are unavailable. Therefore, SDB rates cannot be obtained as
explained in Section 3.2. For 400 clusters, DB estimates both very high and low rates for
some counties. The rates from MB1 is rather uniform, indicating that MB1 tend to smooth
the rates too much. For a sample with 200 clusters, it is not possible to obtain any design-
based rates as several strata contain zero or only one cluster. The rates obtained by MB1
are very similar to the results for 400 clusters.

In Figure 5.5, maps of the relative standard deviation of the rates at the county level
from samples of 1600, 800, 400 and 200 clusters for MB1, DB and SDB are presented.
For 1600 clusters, all three methods have similar RSD, with DB having the highest. When
the sample size is reduced to 800 clusters, DB and SDB have larger RSD in many of the
counties compared to MB1. The smoothing of SDB reduces the variability in the rates
from DB. For 400 clusters the RSD is reduced for MB1, while the RSD is increased for
DB. Some of the counties have RSD > 100, which means that the standard deviation of
the rate is larger than the rate itself. Therefore, the rates are highly uncertain. Also, the
RSD is set to zero for the counties with zero rates, presented with white for these counties.
For both 400 and 200 clusters are the uncertainties small for MB1. It appears that MB1 is
unable to capture the spatial structures for the small sample sizes of 400 and 200, yielding
very low values for the RSD. This can be a result of the choice of priors.

Figure 5.6: Scatter plots of the rates from DB, SDB and MB1 against rates from DB for the full
sample (1600 clusters) on probability scale. Left: 800 clusters. Middle: 400 clusters. Right: 200
clusters.

Figure 5.6 shows scatter plots of the rates from DB, SDB and MB1 for reduced sample
sizes (800, 400 and 200 clusters) against the rates from DB for the full sample. It seems
like the rates from SDB for 800 clusters are the most compatible with the design-based
rates for the full sample. With 400 and 200 clusters the MB1 rates are very uniform,
indicating that the spatial variation is difficult to capture with small sample sizes. The
rates from DB for 400 and 1600 clusters are compatible, with a large amount of noise.
The DB rates for 400 clusters are invalid if there is in reality little spatial variation.
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Figure 5.7: Scatter plots of the rates from DB and MB1 against rates from DB for the full sample
(1600 clusters). Top left: Rates from DB for 1600, 800 and 400 clusters on probability scale. Bottom
left: Rates from DB for 1600, 800 and 400 clusters on logit scale. Top right: Rates from MB for
1600, 800, 400 and 200 clusters on probability scale. Bottom right: Rates from MB for 1600, 800,
400 and 200 clusters on logit scale.

Figure 5.7 shows scatter plots of the rates from DB and MB1 against rates from DB
for the full sample (1600 clusters) on logit and probability scale. For 800 clusters, DB
estimates are rather compatible with the full sample estimates, while the MB1 estimates
are more and more uniform as the sample is reduced, which is not compatible with the
noisy estimates obtained by DB for the full sample.
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Figure 5.8: Median, 0.025 and 0.975 quantiles of the difference between samples from MB1 and
DB. Left plot: MB1 (800) - DB (1600). Middle plot: MB1 (400) - DB (1600). Right plot: MB1
(200) - DB (1600).

Figure 5.8 presents plots of 0.025 and 0.975 quantiles and the median of the difference
between samples of MB1 and DB for each county. The samples of the estimates are from
MB1 for 800, 400 and 200 clusters and for the full sample from DB. The MB1 samples for
800 clusters are compatible with the 1600 clusters DB samples. With 400 and 200 clusters
several county rates are outside the credible region. The results can be explained by the
very uniform estimates with low uncertainty produced by MB1.

Number of clusters

Parameter 1600 800 400 200

expβ 1.05[0.85, 1.29] 1.00[0.75, 1.33] 1.54[1.04, 2.27] 1.23[0.71, 2.09]

σν 0.06[0.02, 0.64] 0.06[0.02, 0.51] 0.05[0.02, 0.35] 0.05[0.02, 0.30]

συ 0.21[0.10, 0.35] 0.14[0.03, 0.36] 0.04[0.01, 0.20] 0.05[0.01, 0.26]

ξ 0.42[0.03, 0.94] 0.25[0.01, 0.89] 0.29[0.01, 0.95] 0.29[0.01, 0.93]

Table 5.2: Median, 0.025 and 0.975 quantiles of the hyperparameters for MB1 for samples of 1600,
800, 400 and 200 clusters. β is the fixed strata effect, σν is the standard deviation for the random
cluster effects, συ is the standard deviation of the total spatial effect (φ+ γ) and ξ is the proportion
of variance explained by the structured spatial effect, φ.

Table 5.2 presents the median, 0.025 and 0.975 quantiles of the hyperparameters for
MB1. The fixed strata effect, β, is insignificant for samples of 1600, 800 and 200. For
400 clusters, it seems like the effect is significant. However, this is likely by chance as
the sample is reduced at random or a spurious signal caused by the low amount of data.
The iid cluster effect remains somewhat constant as the sample is reduced. The same can
not be said for the total spatial effect which is drastically reduced from a median value of
0.14 for 800 clusters to a median value of 0.04 for 400 clusters. The small spatial effects
for smaller samples may contribute to the very low RSD as presented in Figure 5.5. The
proportion of variability explained by the structured spatial effect ξ is rather constant with
large credible intervals.
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Number of clusters

Method 1600 800 400 200

DB 0.0000 0.3883 0.4178 X

SDB 0.2172 0.3831 X X

MB1 0.2891 0.3213 0.4072 0.4181

Table 5.3: MAE between the estimated rates for DB, SDB and MB1 from all sample sizes and the
estimated rates from DB for 1600 clusters on logit scale. The best scores are colored yellow.

Table 5.3 presents the MAE between the rates from DB, SDB and MB1 for all sample
sizes and DB rates from the full sample. SDB has the smallest MAE of 0.2172 for 1600,
yielding the most compatible rates with DB for the full sample. For 800 clusters MB1
rates are more compatible with MAE = 0.3213 and the same yields for 400 clusters with
MAE = 0.4072. The score for MB1 with 400 clusters is almost as good as the DB and
SDB scores with 800 clusters, indicating again that MB1 is better at handling sparse data,
compared to DB and SDB.

Number of clusters

Method 1600 800 400 200

DB 0.0000 0.4689 0.5633 X

SDB 0.2848 0.4508 X X

MB1 0.3588 0.4061 0.4925 0.5182

Table 5.4: RMSE between the estimated rates for DB, SDB and MB1 from all sample sizes and the
estimated rates from DB for 1600 clusters on logit scale. The best scores are colored yellow.

Table 5.4 presents the RMSE between the rates from DB, SDB and MB1 for all cluster
samples and DB rates from the full sample. The difference in RMSE scores for 400 clusters
is larger than the MAE scores as RMSE penalizes outliers, which are very much present in
the DB rates for 400 clusters with RMSE = 0.4925. The score is better for SDB than for
MB1 when considering the full sample, but as the sample is reduced to 800, MB1 gives
more compatible estimates.
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5.3 Finer spatial scale
It is useful to have a tool for detecting which areas within the counties are worse off,
such that the counties’ policy makers can decide where interventions need to be made. It
may be possible that finer-scale features are hidden by producing estimates at the county
level. Therefore, neonatal mortality rates for the administrative level 2 (constituencies)
within the counties are estimated with MB1 for the full sample. The result of MB1 for
administrative level 1 (counties) and level 2 (constituencies) are presented in Figure 5.9.

Figure 5.9: Estimated NMRs and RSD obtained by MB1 at administrative level 1 and 2 (counties
and constituencies). Top row: NMRs. Bottom row: RSD. Left: Counties. Right: Constituencies.

Based on the results presented in Figure 5.9, it seems like there exist differences in
the neonatal mortality rates within the counties. For example, in Turkana, the most north-
western county in Kenya, there is one area with a relatively high mortality rate (light green)
and several areas with relatively low mortality rates (dark blue). The median and 0.025
and 0.975 quantiles of the difference between posterior samples of the estimated rates from
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the areas are calculated with inla . posterior .sample to investigate whether the difference in
rates is significant. The quantiles and median are 0.7024[−0.3736, 1.9560]. Since the
prediction interval contains 0, it can not be concluded that the difference in rates within
Turkana is significant.

Nevertheless, having methods that can obtain within-county estimates are important.
Estimates of the NMR for the different areas within the counties can be useful for classi-
fying counties according to the degree of within-county spatial heterogeneity. Quantifying
the differences within the counties can be used to evaluate the state of each county and
make it easier to decide where interventions should be made.

Model-based methods such as MB1 makes it possible to produce estimates on finer
spatial scales as illustrated in Figure 5.9 for constituencies within the counties. Such in-
vestigation into the spatial heterogeneity within the counties cannot be obtained by the
design-based methods DB and SDB with the current sample size of 1600 clusters. Ob-
taining sufficiently accurate estimates of finer spatial scale NMR with DB and SDB is not
doable due to the considerable financial costs required to increase the size of the survey.
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Discussion

The overall goal of this thesis is to compare design-based and model-based methods for
estimation of subnational neonatal mortality rates. Monitoring the progress towards the
SDGs is challenging for several reasons. It is not straightforward to obtain fine-scale esti-
mates with sparse survey data. The more accepted methods that respect the survey design,
such as the smoothed method introduced by Mercer et al. (2015), cannot obtain accurate
estimates with sparse data, as was demonstrated in Section 5.2. Model-based approaches
make this possible, but bias is introduced and there is skepticism within the field to model-
based methods. The survey design for the 2014 DHS in Kenya is constructed such that one
can obtain reliable estimates at national and county level with design-based methods, but
not for more fine-scale divisions. Finer scale estimation would require too much resources
and money which is not feasible. In addition, one is dealing with dependent data which
has to be considered when conducting inference.

Another source of data that could have been used is census data. Here, every resident
in the population is asked a smaller set of questions. The advantage of census data is that
the whole population is asked, removing uncertainty. However, as of now, the appropriate
questions are not asked if the goal is to obtain child mortality rates. Every woman is only
asked how many children they have born and how many of them died before the age of
five. Such vague information is much more difficult to handle compared to the detailed
responses obtained from, for example, DHS. An idea might be to combine the data sources
to explore if this can improve estimation.

In this thesis, model-based and combined approaches is proposed and a simulation
study is conducted to asses the performance of the proposed method compared to design-
based approaches on a set of spatial cases and scenarios. The study is extensive and re-
quired considerable computing power. The conclusion of the simulation study is that the
preferred method is MB1. The method generally performs satisfactorily across all spatial
cases and scenarios and has a short running time. The more complex model-based method,
MB2, also has satisfactory results on the study. However, due to the highly increased com-
putational time combined with no definite improvement in accuracy, it is not the desired
method to be used on a finer spatial or spatio-temporal scale. It can be argued that SDB
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can also be chosen as the preferred method if it is desired to chose a method that follows
the design-based approach. However, it is not possible to use SDB to obtain estimates on
finer spatial scales, or for surveys with smaller sample sizes.

Several variations of the simulation study can be explored. It might be interesting to
investigate more scenarios, such as only cluster correlation and a combination of unstruc-
tured and structured spatial effects. As discussed in Section 4.5, the stratum effect results
in increased bias that may be due to how the estimated stratum rates are weighted to obtain
gathered county rates. Alternative methods for the weighting can be explored to remove
the bias. Also, further investigation into the effect of the priors can be done to see if this
changes the outcome of the methods. If the study was to be extended, new populations
should be simulated, where also new clusters and households are drawn. This is not done
as the non-sampled clusters and households are unavailable. Thus, the results of the study
only apply for the 2014 DHS in Kenya, but it can easily be extended. However, one should
be careful to generalize the conclusions that are drawn from this particular study.

The methods are assessed with the scoring rules MAE, RMSE, CRPS and MBE. The
scores give different conclusions. MB1 is generally the preferred method when consider-
ing RMSE and MAE. However, considering the CRPS MB2 has the best score in many
scenarios. When it comes to the MBE, both model-based methods are preferable. How-
ever, conclusions should not be drawn only based on the bias as it does not reveal other
aspects of the distribution. On the contrary, CRPS takes into account both the uncertainty
in the true rates and the estimates, crediting estimates with uncertainty reflecting the dis-
tance to the true rates. Therefore, one can argue that CRPS is the most informative score
and that MB2 is the best method. However, the difference in the CRPS score for MB1 and
MB2 is small, typically at the 3rd or 4th decimal place. Also, MB1 is more scalable to
finer spatial-temporal scales when considering the computational cost.

The methods MB1, DB and SDB are used to estimate subnational NMRs for Kenya
with the 2014 DHS data. The estimated rates for MB1 and SDB are both compatible with
the DB rates for the full sample. As expected, SDB reduces the variance and noise of the
DB rates. Most of the spatial variability in MB1 was unstructured, which can indicate that
the varying rates reported by DB are mostly noise and not systematic variation. Reducing
the sample size increases uncertainty and noise in the DB and SDB estimates. For 400 and
200 clusters several estimated county rates for MB1 are not compatible with the DB rates
for the full sample, as the MB1 rates become more uniform with decreased uncertainty.
The spatial effect is decreased with the decreasing sample size, indicating that the method
is unable to capture the spatial structure.

One of the goals of this thesis is to obtain accurate estimates when the sample size is
reduced. Surveys conducted in other countries often consist of only 400 clusters, and the
same is true for surveys conducted in Kenya prior to the one performed in 2014. It is clear
from the results in Section 5.2 that the design-based method is highly dependent on the
sample size and is only applicable for the full sample of 1600 clusters for this particular
survey. The uncertainty in the estimates with 800 clusters is high and some estimates are
unattainable with 400 clusters as the sample has zero observed neonatal deaths for several
counties. The smoothed design-based method removes noise and reduces uncertainty in
the design-based estimates, but is also dependent on obtaining reliable design-based rates
and uncertainty estimates.
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The results in Section 5.2 show that the model-based approach MB1 is superior at
handling more sparse data, compared to DB and SDB. However, as the number of clusters
is reduced to 400 and 200, the method is not able to capture the spatial effects, which
results in unreasonably low variance and uniform estimates. This may be a result of the
choice of priors, which has not been investigated in depth in this thesis but would be an
interesting direction for future work.

Another goal of this thesis is to investigate how the methods perform on even finer
spatial scales. Obtaining estimates for the constituencies within the counties is not possible
with the design-based method as the data is too sparse. On the other hand, the model-
based approach can obtain fine-scale estimates with sparse data, as presented in Section
5.3. However, the results show that the uncertainty in the estimates is increased and it is
not straightforward to know if the difference in the estimates within the counties is noise
or structured spatial variation. Nonetheless, model-based methods can give continuous
models which are necessary to achieve the goal of obtaining fine-scale estimates in both
space and time.

There are several things to highlight in the comparison of design-based and model-
based methods. Results of the simulation study in Section 4 show that the model-based
approaches perform the best and, in particular, MB1 is computationally fast. When it
comes to limited resources, model-based methods can handle smaller sample sizes than
the design-based method, making it possible to save time and money. In addition, model-
based methods can obtain estimates on finer scales and gives information about fixed and
random effects, such as the effect of urban or rural areas and the spatial structures are
quantified. However, the choice of priors is not insignificant and should be studied.

The newly proposed method combining design-based and model-based approaches,
explored here with CM1 and CM2, did not yield satisfactory results. Model-based ap-
proaches are superior for this particular simulation study, so there is no reason for combin-
ing them with design-based ideas. Also, when finer spatial and temporal scales are desired,
the combined methods will be mainly model-based as design-based estimates are largely
unattainable. A reason for advocating for the combined methods is that the design-based
approach is more accepted within the field of handling complex survey data.

It is of great interest to map the progress towards the SDGs in fine spatial and temporal
scale. It is also desired to obtain yearly estimates, resulting in smaller samples. In this
thesis, the data were aggregated over a five year period. It is clear that it is not possible to
obtain yearly, subnational estimates of neonatal mortality rates with design-based methods.
It is difficult to imagine that it is possible to obtain monitor the progress towards the SDGs
for all subgroups of the populations with design-based methods. Model-based approaches
are a promising direction for achieving the ambitious goal of fine-scale monitoring of
mortality.
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