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Sammendrag

Signaturer gir en konsis beskrivelse av visse geometriske egenskaper ved
en kurve - p̊a en reparameteriseringsinvariant m̊ate. Vi foresl̊ar en metode
for å klassifisere former basert p̊a signaturer, og sammenligner den med
n̊aværende metodikker basert p̊a SRV-transformasjonen og dynamisk
programmering.

Abstract

Signatures provide a succinct description of certain features of paths in
a reparametrization invariant way. We propose a method for classifying
shapes based on signatures, and compare it to current approaches based
on the SRV transform and dynamic programming.



iv



Table of Contents

Preface i

Sammendrag iii

Abstract iii

Table of Contents v

1 Introduction 1

2 Overview 5

3 Lie theory 7

3.1 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Maurer–Cartan forms and the right logarithmic derivative 7

4 Shape analysis on Lie groups 9

4.1 Shape space . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Geodesic distances on shape space . . . . . . . . . . . . . 9

4.3 Finding the optimal reparameterization . . . . . . . . . . 10

5 Curves in SO(3) and SO(3)d 13

5.1 Properties of the groups . . . . . . . . . . . . . . . . . . . 13

5.2 Geodesic Interpolation . . . . . . . . . . . . . . . . . . . . 15

6 Identifying movement using the square root velocity
framework 19

6.1 Motion capture data . . . . . . . . . . . . . . . . . . . . . 19

6.2 Computing the metric . . . . . . . . . . . . . . . . . . . . 19

6.3 Visualizing similarity measures . . . . . . . . . . . . . . . 21

6.4 Identification of basic movement . . . . . . . . . . . . . . 22

7 Signatures 25

7.1 Signatures of linear paths . . . . . . . . . . . . . . . . . . 26

7.2 Paths with values in Lie groups . . . . . . . . . . . . . . . 27

7.3 The space of signatures . . . . . . . . . . . . . . . . . . . 28

7.4 Uniqueness for the signature representation of a path . . 29

7.5 Log signatures . . . . . . . . . . . . . . . . . . . . . . . . 30



vi

8 Using signatures to define similarity measures for shapes 33

8.1 Group metric . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2 Convergence for the group metric for linear paths . . . . . 34
8.3 Linear metrics on the space of log signatures . . . . . . . 43
8.4 Convergence for the proposed metrics on log signatures

for linear paths . . . . . . . . . . . . . . . . . . . . . . . . 43

9 Using signature-based similarity measures on the shape
space of animations 45

9.1 Geodesic interpolation between animations . . . . . . . . 45
9.2 Identifying movement with signatures . . . . . . . . . . . 48
9.3 A normalized linear difference on log signatures . . . . . . 51

10 Conclusion 53

10.1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography 53



1

1 Introduction

Shape Analysis

The field of shape analysis revolves around the task of determining the similar-
ity between shapes. Initially, applications were restricted to comparing geometric
shapes, typically 2D or 3D models [35] of common objects, such as cars, chairs
and chess pieces. The methods have however now proved prosperous in a wide
range of diverse, and in a sense more abstract, applications. These range form
structural bioinformatics [14, 37] to medical diagnostics [39] and motion identifi-
cation and recognition [15, 6, 2, 21] as we discuss in this thesis. The importance
of the field has increased tremendously with the development of computer vision,
and with data sets growing to sizes too big for humans to manually process. See
[19] for a short survey of some applications of shape analysis.

Traditionally one has compared shapes by carefully selecting feature points,
or landmarks, on the boundary of the shape. In recent years, however, the focus
has shifted more towards curves and surfaces as these better encapsulate the
geometry of the objects that arise in applications. As a result, there has now been
developed significant literature concerning the analysis of shapes as elements of
infinite-dimensional Riemannian manifolds [37]. This notion was first introduced
by Younes [40] who worked with shape spaces of planar curves with Riemannian
metrics. We will refer to Bauer, Bruveris, and Michor for an overview of the
work done in this field [1].

We will consider a popular approach [37, 15, 38, 6, 7, 30], in which one models
shapes as unparameterized curves, by defining a certain quotient space, for which
one builds a translation and scaling invariant Sobolev metric on the space using
the Square Root Velocity Transformation [37]. We will further model curves as
having a Lie group target space to better capture the underlying geometry of
the shape, as introduced by Celledoni et al [6].

Signatures

Signatures, introduced by K.-T. Chen [8] for smooth paths and later generalized
by Lyons [26] under the name of geometric rough paths, are an important tool
for the study of the solutions of controlled differential equations, but have also
proved useful for solving classification problems of time series, Machine Learning
[11] and Topological Data Analysis [12]. The theory of rough paths has gained
considerable importance as a toolbox both for mathematical analysis and for
mathematical modeling and simulation in practical applications.

The signature of a path can be regarded as an infinite formal tensor se-
ries with coefficients defined by iterated integrals. This map provides a unique
representation of a path, capturing its essential global properties, up to some ir-
reducibility condition. A fundamental property of the signature is its invariance
under reparameterization, surmising its importance for shapes.



2

Fig. 1.1. Graph of joint angles used in the skeleton configuration used in our applica-
tions. This skeleton is based on the data taken from the CMU Graphics Lab Motion
Capture Database [13]. Figure taken from [15].

Creating Skeleton Animations with Motion Capture

Creating realistic human movement remains a challenge in modern computer an-
imation. Instead of artificially creating animations, many animators will, there-
fore, opt for a technique where one converts real human moment to digital an-
imations. The most common way of doing this is called motion capture. Using
multiple cameras one films a character moving in an environment. The movement
is recorded by having the subject wear a special suit with easily distinguishable
markers.

The placement of markers will vary depending on the application, but when
capturing movement one usually uses a skeleton configuration. In a skeleton
configuration, the character is modeled as a skeleton made of bones, connected by
joints in a directed rooted tree. Assuming that bone length is fixed, the markers
are placed on top of the joints, and the movement recorded as joint angles, the
relative angle between joints, for every frame. When rendering the animation
the movement of the character can be recreated by calculating the position
of the character from the joints angles and the fixed bone length assumption.
Textures are then applied on top of the skeleton to create a convincing animation.
This technique has become popular because of its ability to capture real human
movement while keeping data sizes low.

Representing the motions as joint angles will enable us to transform the
motions into curves in a Riemannian manifold. This will let us utilize the before
mentioned shape analysis framework. Joint angles being very geometric will let
us exploit the structural similarities to Lie groups of rotations. Because human
movement differs a lot from person to person, using real motion capture data will
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allow us to test whether shape analysis is a valid approach for human movement
identification.

In our applications we will use the skeleton configuration depicted in figure
1.1, using motion capture data from the CMU Graphics Lab Motion Capture
Database [13]. The data used in this project was obtained from mocap.cs.cmu.edu.
The database was created with funding from NSF EIA-0196217.
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2 Overview

One of the central model assumptions in shape analysis is that shapes are un-
parameterized curves. This is usually done by defining shapes as equivalence
classes of curves under reparameterization, that is, two curves c0, c1 : [0, 1]→M
determine the same shape if there exists a strictly increasing smooth bijection
ϕ : [0, 1]→ [0, 1] such that c1 = c0 ◦ϕ. This is an equivalence relation on curves,
and for a given curve c, we denote by [c] the corresponding shape.

The similarity between two shapes [c0], [c1] is then defined by creating a
distance function dS on the space of shapes S,

dS([c0], [c1]) := inf
ϕ
dP(c0, c1 ◦ ϕ)

where dP is a suitable reparameterization invariant distance on the manifold of
parametrized curves.

Finding the optimal reparameterization ϕ can however be quite computation-
ally demanding, and in many applications simply unnecessary. This is specifically
the case of applications where the optimal parametrization is not explicitly used
for further calculations, e.g. problems of identification and classification. Ways
of circumventing this step are therefore of great interest.

In this thesis, we define a measure of similarity between shapes in S by means
of the signature. We test the viability of this approach by using it to identify
and classify motion capture animations obtained from the CMU motion capture
database [13]. Indeed, this leads to an efficient technique that delivers results
comparable to that obtainable with other more expensive methodologies.
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3 Lie theory

3.1 Lie groups

In the following, G will denote a finite-dimensional Lie group, with identity
element denoted by e. We let g and LR(G) denote the corresponding right Lie
algebra of the group. For a fixed g ∈ G, left and right translation by g will be
denoted Lg(h) = g · h and Rg(h) = h · g respectively.

In our applications, we will model the joints in the skeletons as a Cartesian
product of Lie groups. The following result gives some important properties when
describing this kind of structure.

Define component-wise multiplication by

(g1, g2) · (h1, h2) := (g1h1, g2h2), (3.1)

for (g1, g2), (h1, h2) ∈ G×G. Then, G×G is a Lie group under component-wise
multiplication, with Lie algebra g⊕ g.

The group structure is inherited from G by defining the identity as (e, e) and
inverse map as (g1, g2)−1 := (g−1

1 , g−1
2 ).

For a smooth manifoldM , the Cartesian productM×M is a smooth manifold
with

T(p,q)(M ×M) ∼= Tp(M)⊕ Tq(M)

for all (p, q) ∈M ×M [28, remark 9.20, p. 76]. We also know that the right Lie
algebra1 g is isomorphic to the tangent space at the identity Te(G) [31, p.49].
From these observations, we conclude that G × G is a smooth Lie group with
Lie algebra

LR(G×G) ∼= T(e,e)(G×G) ∼= Te(G)⊕ Te(G) ∼= g⊕ g,

when endowed with component-wise multiplication.

3.2 Maurer–Cartan forms and the right logarithmic derivative

For a given Lie group G, its Maurer–Cartan form is the g-valued 1-form defined
as the pushforward of right translation, that is, at a point g ∈ G the Maurer–
Cartan form is given by

ωg(X) = (Rg−1)∗X, X ∈ TgG.

If G is embedded in GL(n), the group of invertible matrices, we obtain a nice
expression for the Maurer–Cartan forms [31, p. 72]

ωg = dg · g−1, (3.2)

where the group actions are matrix multiplication and inversion.

1 Both the left and the right lie algebras are isomorphic the the tangent space at the
identity, the choice of right is one of convention.
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For a parameterized curve c ∈ C∞(I,G), Kriegl and Michor define the right
logarithmic derivative by [22, p. 404] in terms of the Maurer–Cartan form

δr : C∞∗ (I,G)→ C∞(I, g)

δrc := (R−1
c )∗(ċ).

(3.3)

Again, we get a nice expression if G is a matrix group

δr(c)(t) = ωc(ċ)(t) = ċ(t) · c(t)−1. (3.4)
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4 Shape analysis on Lie groups

In this section, we present a framework for shape analysis, for curves with values
in Lie groups, based on the Square Root Velocity Transform(SRVT).

4.1 Shape space

We consider the space C∞([0, 1], G) of parameterized smooth curves on G, i.e.
smooth maps c : [0, 1] → G. To model the curves as unparameterized, or inde-
pendent of parameterization, we define the shape space S as the quotient space

S = C∞([0, 1], G)/Diff+, (4.1)

where Diff+ is the group of orientation preserving diffeomorphisms of the pa-
rameter space [0, 1]. The elements of S are equivalence classes of curves which
can be mapped to each other by changing their parameterization, that is, two
curves c0, c1 ∈ C∞(I,G) determine the same shape if there exists ϕ ∈ Diff+

such that c1 = c0 ◦ ϕ. For a curve c we define the shape [c] as the equivalence
class containing c.

Intuitively, this projection can be viewed as syncing up the animations, re-
moving disturbances due to small pauses, different periodicity, or asynchronous
starting and stopping, by shifting the movement of one character to match the
other as closely as possible.

4.2 Geodesic distances on shape space

Our goal is to introduce a meaningful and computable distance dS on S to
estimate the similarity between two shapes. We will restrict the space of curves
to the space of immersions, i.e., curves with non-vanishing first derivative, which
we denote by

P = Imm([0, 1], G). (4.2)

Let dP be a pseudo-metric on P. We define dS , for two shapes [c0], [c1] ∈ S,
by

dS([c0], [c1]) := inf
ϕ∈Diff+

dP(c0, c1 ◦ ϕ). (4.3)

As shown in [6, Lemma 3.4], dS will be a pseudo-metric on S if dP is a repa-
rameterization invariant or, in other words, if for any two c0, c1 ∈ P and any
ϕ ∈ Diff+ we have that

dP(c0 ◦ ϕ, c1 ◦ ϕ) = dP(c0, c1). (4.4)

An obvious choice of metric on P is the familiar L2-metric. However, as shown
by Michor and Mumford [29], this metric leads to vanishing geodesic distance,
which renders it useless. Michor and Mumford further show, in [30], that one
solution to this problem is to consider metrics based on arch-length derivatives,
creating a class of Sobolev-type metrics.
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There are multiple possible metrics in this class. One option is based on
what is usually referred to as the SRVT. This transform and accompanying
metric were first introduced, in the context of shape analysis, by Srivastava et
al. [37], who used the transformation when working with shapes with values in
Euclidian spaces. The transformation has later been adapted to more general
shapes. Of particular interest is the formulation for shapes that are represented
by Lie group valued curves [6, 7].

We define the SRVT R : P → C∞([0, 1], g \ {0}) by

R(c)(t) :=
δr(c)√
‖δr(c)‖

. (4.5)

This transformation has the following useful properties [6, Lemma 3.6]:

1. For every c ∈ P and ϕ ∈ Diff, the following equivariant property holds:

R(c ◦ ϕ) = R(c) ◦ ϕ ·
√
ϕ̇. (4.6)

2. It is translation invariant: for all c ∈ P and g ∈ G

R(Rg(c)) = R(c).

Further, one can obtain a Riemannian metric dP∗ that coincides with the
geodesic distance on a submanifold P∗ ⊂ P by using the SRVT to pull back
the L2-metric on C∞(I, g \ {0}) [6]. Further restricting the immersion space to
P∗ = {c ∈ P : c(0) = e}, where e is the identity element in G, the distance dP∗
turns out to be reparameterization invariant.

This invariance implies, in particular, that it will also yield a geodesic distance
on S∗ := P∗/Diff+ [4]. The restriction to P∗ isn’t very troublesome as any curve
can be transferred to this space by right translation by the inverse of its initial
value, that is Rc(0)−1 [6].

4.3 Finding the optimal reparameterization

Using the equivariant property for the SRVT from equation (4.6) and defining
qi = R(ci) for i = 0, 1, the problem of calculating the metric for the shape space
S∗ in equation (4.3) can be written as

dS∗(c0, c1) = inf
ϕ∈Diff+(I)

√∫
I

‖q0(t)− q1(ϕ(t)) ·
√
ϕ̇‖2dt. (4.7)

Finding this infimum will generally be very difficult. The usual approach
is, therefore, to discretize the curves and instead solve a finite dimensional op-
timization problem. The most common methods used to solve this problem in
shape analysis [37] are based on either the gradient descent method or a dynamic
programming algorithm (DP). We will opt for a DP approach based on the work
by Bauer et al. [2]. This approach was inspired by the work done by Klein [34].
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For more information on solving this optimization problem by gradient descent,
see [37, 38].

Next, we give a short outline of the algorithm described by Bauer et al.
[2]. We want to determine a piece-wise linear approximation to the orientation
persevering diffeomorphism φ that minimizes dP∗ . This is done by creating a
discretization of the interval [0, 1], and then defining a local energy functional
allowing us to create a cost matrix that reduces the problem to an optimal path
problem.

Let I = {s1, . . . , sM} be a discretization of the interval [0, 1], and Φ the set
of piece-wise linear maps ϕk,l;i,j satisfying ϕk,l;i,j([k, i]) = [l, j] where [k, i] and
[l, j] are increasing intervals with values in the discretization I. We define the
energy functional

E(k, l; i, j) :=

∫ i

k

‖q0(t)− q1(ϕk,l;i,j(t))
√
ϕ̇k,l;i,j‖2dt

+ λ
∑

k<sm≤i
|ϕk,l;i,j(sm)− sm|2,

(4.8)

where

ϕk,l;i,j(t) = l + (t− k)
j − l
i− k

with √
ϕ̇k,l;i,j =

√
j − l
i− k ,

and λ > 0 denotes the usual step penalty.
Let A be a M ×M matrix, where M is the number of discretizations in I.

We construct A recursively by

Ai,j = min
k,l∈I,k<i;l<j

E(k, l; i, j) +Ak,l, (4.9)

while keeping track of the minimizing indices (k, l) for every pair (i, j). The
optimal path through the local cost matrix A will then give us the set of linear
functions ϕk,l;i,j best approximating the diffeomorphism that minimizes dP∗ .
Again, we refer to Bauer et al. [2] for further details and proof of correctness for
this algorithm.
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5 Curves in SO(3) and SO(3)d

Since the animations in our applications are represented by joint angles, the
obvious choice of target Lie group is the group of 3D rotations SO(3), or SO(3)d

for animations consisting of d rotating joints. In this section, we discuss some
important properties which will allow us to utilize the proposed frameworks in
this setting.

5.1 Properties of the groups

The Lie group SO(3), the group of orthonormal 3× 3 matrices, can be defined
as

SO(3) :=
{
A ∈ R3×3 s.t. det(A) = 1 and ATA = I

}
,

where R3×3 is the space of real 3× 3-matrices and AT denotes the usual matrix
transpose.

SO(3) has Lie algebra so(3) consisting of skew symmetric matrices with Lie
bracket given by the usual matrix commutator [A,B] = AB − BA. The Lie
algebra so(3) is isomorphic to R3. We denote this isomorphism with ∧, the hat-
map,

∧ : R3 → so(3),

ω = (a, b, c)T 7→ ω̂ =

 0 −c b
c 0 −a
−b a 0

. (5.1)

We will let ∨ denote the inverse hat-map. For τ ∈ so(3), τ̌ ∈ R3, notice that
ˆ̌τ = τ .

Under this isomorphism, the Lie bracket will correspond to the cross product
in R3.

We will compute the exponential map from so(3) to SO(3) using what is
commonly referred to as the Euler-Rodrigues formula [16]

exp : so(3)→ SO(3)

exp(ω̂) = I +
sin θ

θ
ω̂ +

(1− cos θ)

θ2
ω̂2, θ = ‖ω̂‖F ,

(5.2)

where ‖ω̂‖F is the Frobenius norm, see equation (5.4).
For a rotation X ∈ SO(3), it is well known [16] that we can retrieve the angle

of rotation θ by

θ = arccos

(
tr(X)− 1

2

)
.

This angle is necessary to compute the inverse of the exponential [16, 36], that
is log : SO(3)→ so(3), given by

log(X) = ω =
θ

2 sin θ
(X32 −X23, X13 −X31, X21 −X12)T . (5.3)
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where Xij denote row i, column j of the matrix X. If we instead wish to map
the rotation X to the skew matrices of so(3), the formula can be written in a
more compact form by applying the inverse hat-map to the vector

log(X) = ω̂ =
θ

2 sin θ
(X −XT ).

For ω̂ ∈ so(3), we use the familiar Frobenius norm, scaled by a factor 1/2,
when calculating norms,

‖ω̂‖2 =
1

2
‖ω̂‖2F =

1

2
tr(ω̂ · ω̂T ), (5.4)

as this corresponds to the 2-norm of the vector representation ω ∈ R3,

‖ω̂‖2 =
1

2
‖ω̂‖2F =

1

2
tr

 0 −c b
c 0 −a
−b a 0

 ·
 0 c −b
−c 0 a
b −a 0


=

1

2
tr

c2 + b2 −ba −ca
−ba c2 + a2 −cb
−ca −cb a2 + b2


=

1

2
(2a2 + 2b2 + 2c2) = ‖ω‖22.

Next, we consider a target space with d rotating joints, represented by the
Lie group SO(3)d which we define as

SO(3)d := SO(3)× SO(3)× · · · × SO(3)︸ ︷︷ ︸
d-times

.

We showed, in section 3, that this is a Lie group with corresponding Lie algebra

so(3)d := so(3)⊕ so(3)⊕ · · · ⊕ so(3)︸ ︷︷ ︸
d-times

when endowed with component-wise multiplication.
The Lie algebra consists of skew symmetric matrices, each isomorphic to

R3. This allows us to extend the hat-map by mapping each element vk → v̂k,
k = 1 . . . , d with the hat-map from (5.1)

R3 ⊕ · · · ⊕ R3 → so(3)⊕ · · · ⊕ so(3)

ω = (v1, . . . , vd) 7→ ω̂ = (v̂1, . . . , v̂d).

Since R3 ⊕ . . .⊕ R3 is isomorphic to R3d, by stacking the vectors

(v1, . . . , vd) 7→

v1

...
vd

,
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we observe that the hat-map will induce an isomorphism

so(3)d ∼= R3d. (5.5)

Mappings between Lie group and Lie algebra can be defined by applying
the log and exp maps for SO(3), equations (5.2) and (5.3), joint-wise. Let ω̂ =
(ω̂1, . . . , ω̂d) ∈ so(3)d, the exponential map: exp : so(3)d → SO(3)d is

exp(ω̂) := (exp(ω̂1), . . . , exp(ω̂d)),

and similarly the logarithm: log : SO(3)d → so(3)d, for x = (X1, . . . , Xd) ∈
SO(3)d

log(x) := (log(X1), . . . , log(Xd)).

Note that the angle of rotation is distinct for every joint.
We construct a norm by summing up the norm of the components in the Lie

algebra. Let ω̂ = (ω̂1, . . . , ω̂d) ∈ so(3)d be an element in the Lie algebra. The
map

‖ω̂‖2 :=
1

2

d∑
i=1

‖ω̂i‖2F ,

is a norm in SO(3)d, which is also equivalent to the 2-norm for elements R3d.
The first statement, that this is in fact a norm, follows from linearity of the
Frobenius norm, and that the elements in the sum by definition are strictly
positive which means the map can only be zero if all the elements are zero. Let
ω = ((a1, b1, c1)T , . . . , (ad, bd, cd)

T ) ∈ so(3)d, it becomes apparent that this map
is equivalent to the 2-norm of R3d by writing out the expression

‖ω̂‖2 =

d∑
i=0

1

2
‖ω̂i‖2F =

d∑
i=1

‖ωi‖22 =

d∑
i=1

(a2
i + b2i + c2i ) = ‖ω‖22.

5.2 Geodesic Interpolation

As we saw in the last section, constructing the joint space as a cartesian product
of rotations in SO(3) allowed us to extend the theory by simply applying the
transformations joint-wise. Similarly, the methods described in this subsection
for curves in SO(3) can easily be extended to SO(3)d utilizing the same joint-
wise approach.

As mention in the introduction, the animations consist of discrete joint angles
for every frame. To approximate the curve c, from which the joint angles are
sampled, we wish to create an interpolation c.

One common interpolation scheme [36] is to map the rotations to the Lie
algebra, using the previously mentioned log map, linearly interpolate in the
vector space, and then map back from the Lie algebra using the exponential.
Let s ∈ [0, 1], we call c the geodesic interpolation between sample points c0, c1 ∈
SO(3)

c(s) = exp
(
s log(c1c

T
0 )
)
c0. (5.6)
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As noted by Shingel [36], the term “geodesic interpolation” is appropriate in this
setting as the interpolation will coincide with the geodesic connecting the points
c0, c1 ∈ SO(3).

The interpolation scheme can be extended to data sets of n joint angles.
Let sk be the time stamp for sampling point ck. The sampling times will be an
increasing sequence of the form

s0 = 0 < s1 < s2 < . . . < sn−1 < sn = 1. (5.7)

Let t ∈ I, we approximate the original curve c with the interpolation c

c(t) =

n−1∑
k=0

1[sk,sk+1)(t) exp

(
t− sk

sk+1 − sk
log(ck+1c

T
k )

)
ck, (5.8)

where for a set A, 1A(t) is the indicator function defined as

1A(t) =

{
1 if t ∈ A
0 if t /∈ A .

Reparameterization We will also use this interpolation scheme to reparam-
eterize curves. Let r1 = 0 < r2 < . . . < rn−1 < rn = 1 a new set of sampling
time stamps. Given a curve c with sampling points ck and sampling times sk
for k = 1, . . . , n, the idea is to find which sub-interval the new sampling point
belongs to by enforcing sk ≤ ri < sk+1, and then interpolating to find the new
point di

di = exp

(
ri − sk
sk+1 − sk

log(ck+1c
T
k )

)
ck i = 1, . . . , n. (5.9)

di together with rk can then be used to create a new interpolation curve d.

Notice that the criteria s1 = 0, sn = 1 together with r1 = 0, rn = 1 imply
that the start and end points will remain fixed, that is c1 = d1 and cn = dn.

Right logarithmic derivative and SRV transformation Next we compute
the right logarithmic derivative, which is exactly the Maurer–Cartan form, for
the interpolation curves. Let

ηk =
log
(
ck+1c

T
k

)
sk+1 − sk

, (5.10)

we denote by κ the interpolation curve c restricted to the time segment [sk, sk+1)
for some k ∈ 1, . . . , (n− 1). Then, κ can be written as

κ(t) = exp((t− sk)ηk)ck
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Since the interpolation curves take values in a matrix group, SO(3), we can
utilize the explicit formula for the right logarithmic derivative (3.4)

δr(κ)(t) = κ̇ · κT = ηk exp((t− sk)ηk)ck · (exp((t− sk)ηk)ck)
T

= ηk exp((t− sk)ηk) ckc
T
k︸︷︷︸

=I

exp(−(t− sk)ηk)

= ηk exp((t− sk)ηk − (t− sk)ηk) = ηk exp(0 · ηk)

= ηk

Notice that the right logarithmic derivative is constant for the curve segment
κ. Inserting into (4.5) yields the SRV transformation of κ

qk =
δr(κ))√
‖κ̇(t)‖

=
ηk√
‖ηk‖

. (5.11)

The right logarithmic derivative δr(c) and SRVT R(c) of the interpolation
curve c will therefore be piece-wise constant and will respectively take the form

R(c)(t) := q(t) =

n−1∑
k=1

1[sk,sk+1)(t)qk. (5.12)

δr(c)(t) := η(t) =

n−1∑
k=1

1[sk,sk+1)(t)ηk. (5.13)

According to [6], the SRVT will have a well defined and smooth inverse
R−1 : C(I, g\0)→ P∗. Using the formula [6, Lemma 3.9] will let us reconstruct
the sampling point ck+1 = c(sk+1) from a SRV transformed curve q = R(c),
satisfying q(sk) = qk, from the recursion c1 = I and

ck+1 = R−1(q)|sk = exp ((sk+1 − sk)‖qk‖qk)ck for k = 1, . . . , (n− 1).

Inserting the SRV transformed curve segment qk from equation (5.11) yields a
straight forward computation to confirm that this will indeed reconstruct the
sampling point ck+1

exp ((sk+1 − sk)‖qk‖qk)ck = exp

(
(sk+1 − sk)

∥∥∥∥∥ ηk√
‖ηk‖

∥∥∥∥∥ ηk√
‖ηk‖

)
ck

= exp

(
(sk+1 − sk)

‖ηk‖
‖ηk‖

ηk

)
ck

= exp

(
(sk+1 − sk)

log(ck+1c
T
k )

(sk+1 − sk)

)
ck

= exp(
(
log(ck+1c

T
k )
)
ck

= ck+1.
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Having an inverse of the SRVT makes it possible to interpolate between two
curves ca, cb ∈ P∗. Let s ∈ [0, 1], the interpolation scheme

cint = R−1(sR(ca) + (1− s)R(cb)) (5.14)

will be well defined due to the vector space structure of the Lie algebra [6, Prep
3.15]. Note that this is the geodesic with respect to the elastic metric between
the points ca and cb in the infinite dimensional Riemannian manifold P∗ [6].
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6 Identifying movement using the square root velocity
framework

In this section, we attempt to identify different types of movement by using the
proposed metric (4.7) as a similarity measure for the shapes of animations.

6.1 Motion capture data

As mentioned, we use animation data from the CMU Motion Capture Database
[13]. The data in the motion capture database is separated into XX.asf/XX_YY.

amc-files. These describe subject XX and animation YY, respectively. The subject
file describes which joints are connected and the length of the bones between
them, while the animation file contains the rotation of every joint in every frame.
The animation files can be parsed and transformed to discrete sample points in
SO(3)d, with accompanying sample time stamps s1, ..., sn ∈ [0, 1]. The anima-
tions are recorded with cameras capable of a frame rate of 120hz. The high frame
rate will make the geodesic interpolation scheme suggested in equation (5.8) a
good approximation of the recorded movement. This is because a high frame rate
implies short time steps between samples. The interpolation, which in practice is
piece-wise linear, will then accurately approximate curvature of the movement.
We will let c denote the geodesic interpolation connection the sample points in
SO(3)d.

6.2 Computing the metric

For shapes of animations [c0], [c1] ∈ S∗, computing the metric dS∗([c0], [c1]) is
done in four steps:

1. Compute SRVT representation of the curves c0 and c1.
2. Find the optimal reparameterization ϕopt satisfying (4.7) with the DP algo-

rithm from section 4.3.
3. Reparameterize the curve c1 with the reparameterization ϕopt using the ap-

proach described in equation (5.9) to create a new curve copt
1 .

4. Approximate dS∗([c0], [c1]) ≈ dP∗(c0, c
opt
1 ).

From an array of sampling points in SO(3)d we calculate the SRV represen-
tation of the geodesic interpolation using (5.11). This will yield an array of SRV
values q1, ..., qk, where qk determines the values of the SRVT representation on
the interval [sk, sk+1). Note that since the SRV representations q0 = R(c0) and
q1 = R(c1) are piece-wise constant, computing the L2-metric in step 4 is trivial∫ 1

0

‖q0 − q1‖2dt =

n−1∑
k=1

‖q0(sk)− q1(sk)‖2 · (sk+1 − sk).

An important implementation detail to note when computing this integral is
that the curves might have different parameterizations. This could either stem
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from the new parameterization gained from the optimization step, or from the
underlying animations having a different number of frames. Either way, this can
be overcome by creating a shared set of sampling timestamps, i.e. sk ∈ I, and
then filling in the missing sampling points for each curve by interpolating to the
previous value in the array.

Given a reparameterization ϕopt we create a new set of sample timestamps
r1, .., rn. This set is used to reparameterize the curve c1 as described in equation
(5.9), completing step 3.

Finding the optimal reparameterzation Based on the DP algorithm out-
lined in section 4.3, we use the following approach to find the optimal set of
sampling time stamps Iopt

1 corresponding to ϕopt in step 2. Again let, c0 and
c1 denote geodesic interpolations with sampling time stamps I0, I1 and SRVT
representatives q0, q1.

We create a shared discretization I by merge joining the sampling time
stamps I0 and I1, while removing any duplicate values. Next, we create the local
cost matrix, while keeping track of the minimizing indices, that is the indices
(k, l) minimizing the energy functional in equation (4.9). To find the optimal
reparameterization ϕopt we backtrack through the minimizing indices, starting
at (M,M), where M is the number of points in the discretization I. This yields
a mapping k ↪→ l of optimal reparameterizations for ∀k ∈ I. Using this mapping,
we create the piece-wise linear map ϕopt, approximating the optimal diffeomor-
phism, by linearly interpolating such that ϕopt(k) = l for ∀k ∈ I. Lastly, we
map the time stamps in the original parameterization I1 to the new, optimal,
parameterization Iopt

1 which we utilize in step 3 to create the optimal curve copt
1 .

1 2 3 4 5 6 7 8
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c0 : run/jog, c1 : run/jog.

c0 : run/jog, c1 : walk.

c0 : run/jog, c1 : forwardjump.

Fig. 6.1. Observed dS∗([c0], [c1]) = dP∗(c0, c1 ◦ ϕopt), for animations c0, c1 ∈ P∗, with
minimizing reparameterization ϕopt calculated with a DP algorithm for different search
depth parameters D.
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Calculating the L2-metric when making the local cost matrix will be very
computationally demanding. For a discretization consisting of M points, where
we consider N predecessors, the algorithm will have an asymptotic run time
of O(M2N). Bauer et al. [2] suggest restricting the number of predecessors to
indices (k, l) close to (i, j) to speed up the computation. Let the depth D denote
how far away from the (i, j) we search, that is we only allow predecessors (k, l)
such that (i− k) ≤ D and (j − l) ≤ D.

Next we test how the DP algorithm behaves for different depths D. In fig-
ure 6.1 we plot the measured similarity dP∗(c0, c1 ◦ ϕopt) for the minimizing
reparameterization ϕopt found for varying depth constraints.

For this small selection of animations, we observe that optimal reparameteri-
zation seems to be within a depthD < 6. The sample also shows nice convergence
properties, both in terms of which animations the method deems most similar
(”run/jog” and ”run/jog”) and in terms of stability.

6.3 Visualizing similarity measures

An effective way of testing whether a similarity measure produces reasonable
results is to test if it is able to classify animations. To do this, we calculate
the similarity between every pair of animations and then collect the result in a
similarity matrix. For the SRVT framework, the similarity used is the geodesic
distance between shapes of animations, this could, however, be any similarity
measure. Note that the similarity matrix will be symmetric with zeros along the
diagonal.

There are a few different methods for visualizing the contents of a similarity
matrix. One is called multi dimensional scaling. This method creates a scatter
plot that preserves the distance between the nodes, meaning that if one was to
create a similarity matrix from the plot using a Euclidian distance measure one
would get the same similarity matrix. The advantage of this method is that it
quickly lets the reader get an intuitive understanding of the dissimilarities in a
data set. Similar data points will be close, while dissimilar data will be apart.
The downside is that it is difficult to read out exact data from the plot. See the
book by Kruskal for more information on this visualization technique [23].

We will also use dendrograms to visualize the similarity matrix. A dendro-
gram plots the hierarchical distance between nodes in a tree. These are less
intuitive, but have the advantage that they expose the underlying data to the
reader.
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6.4 Identification of basic movement

We would like to test whether the proposed framework is effective at identifying
different types of motion. The motions should be similar in length, and there
should be enough trials to yield statistically significant results. The selection of
animations should also reflect that similarity is a fundamentally subjective type
of measure. That is, the animations should be of a type such that it is easy to
determine whether the results conform with a human notion of similarity.

Fig. 6.2. Dendrogram of a similarity matrix for animations projected to the space S∗
using the metric dS∗(4.7) calculated with a DP algorithm with search depth D = 9. In
this plot we have taken animation with descriptions “run/jog”, “forward jump” and
“walk” from the CMU Motion Capture Database [13].

The animations best fitting of these criteria in the CMU motion capture
database [13] are the animations with descriptions “walk”, “run/jog”, and “for-
ward jump”. These are both numerous and similar in length, ranging from ap-
proximately 130 to 420 frames. They should also produce results coinciding with
human intuition. “forward jump”-animations consists of characters jumping once
from a standstill. There are only 8 of these so they will limit the number of trails
in this experiment. Some of the animations had long pauses in the beginning
and/or end where the character just stood still, seemingly waiting for instruc-
tions, these have been roughly cropped to an appropriate length. Other than
that the animations are unchanged from how they appear in the database.
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To reiterate, we create a similarity matrix by calculating the geodesic distance
between animations projected to the metric space (S∗, dS∗). From this similar-
ity matrix, we produce multidimensional scaling scatter plots and dendrograms
depicting the similarities between animations. We also test the impact of mod-
eling the animations as unparameterized by repeating the same experiment for
animations projected to the non-parameterization invariant space (P∗, dP∗).

In figure 6.3 we have plotted multi dimensional scaling plots of the similarity
matrix created by projecting 27 animations with description “walk”, “run/jog”
and “forward jump” to the two spaces. Figure 6.3a shows animations projected
to (P∗, dP∗), while figure 6.3b shows animations projected to (S∗, dS∗). In figure
6.3b we used a search depth D = 9 as this was well beyond the observed limit
of convergence for the sample set in figure 6.1.

Looking at figure 6.3b, we observe that modeling the animations as parame-
terization invariant yields three easily distinguishable clusters of animations. The
dendrogram of the similarity matrix for the animations projected to (S∗, dS∗)
in figure 6.2 confirms that the methods successfully identify the three types of
movement. Compared to figure 6.3a, we see a big benefit from this model as-
sumption.
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(a) Animations projected to P∗ with similarity matrix calculated with the
metric dP∗ .
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(b) Animations projected to S∗ with similarity matrix calculated with met-
ric dS∗ using a DP algorithm with search depth D = 9.

Fig. 6.3. Multi dimensional scaling plots of similarity matrix based on geodesic dis-
tances calculated in P∗ and S∗, figure (a) and (b) respectively. In this plot we have
taken animation with descriptions “run/jog”, “forward jump” and “walk” from the
CMU Motion Capture Database [13].
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7 Signatures

In this section, we introduce the signature representation of a smooth path. This
representation is interesting in the context of shape analysis as its uniqueness
characteristics are closely related to the equivalence classes of shapes. Before we
justify this claim, we have to define the mapping and discuss some of its most
important properties.

As mentioned in the introduction, this representation can be seen as a formal
tensor series, with coefficients determined by iterated integrals. For a finite-
dimensional vector space V of dimension d = dimV , we define the tensor algebra
over V as

T (V ) :=
⊕
n≥0

V ⊗n = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · .

We observe that this space is infinite-dimensional. Its dual space is denoted by
T ((V )) := T (V )∗, and it may be identified with the ring of formal power series
in d non-commuting variables {e1, . . . , ed}.

For a d dimensional vector space, we may think of these tensor series as
infinite vectors indexed by words over the alphabet {1, . . . , d}. In this context,
the word w = i1 · · · in where i1, . . . , in ∈ {1, . . . d}, correspond to the basis
element

ew := ei1 ⊗ · · · ⊗ ein .
Let x : [0, 1] → Rd be a smooth path. We adopt the notation commonly

used in stochastic analysis where xt := x(t) and superscript i denotes the i-th
component of the path xt = (x1

t , ..., x
d
t )
T . Now, for the word w = i1 · · · in, we

define the n-fold iterated integral over the interval [s, t] ⊂ [0, 1] as

〈S(x)s,t, ew〉 =

∫ t

s

∫ un

s

· · ·
∫ u2

s

dxi1u1
· · · dxin−1

un−1
dxinun .

These integrals will describe different geometric properties of the path x. If
we, for example, look at the one-letter word w = i, the integral

〈S(x)0,1, ei〉 =

∫ 1

0

dxiu = xi1 − xi0

describes the increment of the i-th component. For two-letter words, the integral
can be interpreted as a signed area generated by the path. We will refer to [18]
for a more in-depth discussion of these interpretations.

Given a smooth path x : [0, 1]→ Rd, we define its signature over the interval
[s, t] ⊂ [0, 1] as the formal tensor series

S(x)s,t = 1 +
∑
|w|≥1

〈S(x)ws,t, ew〉ew ∈ T ((Rd)). (7.1)

Note that letting 〈S(x)ws,t, ew〉 denote the n-fold integral with respect to the
word w is consistent with the duality pairing of the tensor series S(x)s,t with
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the basis element ew: Let u, v denote two words. Then 〈eu, ev〉 = 1 if u = v
and 〈eu, ev〉 = 0 otherwise. The duality pairing between the tensor series and
the basis element ew is therefore zero for every element except for the element
corresponding to the n-fold integral over the word w.

In practise one has to truncate the signature to obtain a finite dimensional
object. The usual approach is to truncate it to include all the elements corre-
sponding to words of length less than or equal to some length n. We call this
the signature truncated to degree n, and denote it with a superscript (n)

S(x)
(n)
s,t = 1 +

∑
1≤|w|≤n

〈S(x)s,t, ew〉ew.

For a path x, with values in Rd, the number of elements M in the signature
truncated to degree n is given by the formula [33]

M =
n(nd − 1)

n− 1
.

Due to the factorial decay of iterated integrals little information is lost when
truncating the signature. Still, some level has to be chosen and usually this is
determined by running experiments.

7.1 Signatures of linear paths

Signatures may be efficiently computed for some restricted classes of paths. For
example, if x is a straight line with base point b ∈ Rd direction a ∈ Rd, i.e.
xt = at+b for t ∈ [0, 1], then the n-fold iterated integral of the word w = i1 · · · in
equals

〈S(x)s,t, ew〉 =

∫ t

s

∫ un

s

· · ·
∫ u2

s

ai1du1 · · · ain−1
dun−1aindun

=

n∏
k=1

aik

∫ t

s

∫ un

s

· · ·
∫ u2

s

du1 · · · dun−1dun

=
(t− s)n
n!

n∏
k=1

aik .

(7.2)

Using this, we observe that the signature of a linear path can be expressed as
the exponential of a certain vector in Rd

S(x)s,t = 1 +
∑
|w|≥1

(t− s)n
n!

n∏
k=1

aikew

= 1 + (t− s)a+
(t− s)2

2
a⊗ a+

(t− s)3

6
a⊗ a⊗ a+ · · ·

= exp⊗((t− s)a).

(7.3)
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One important property of the signature is what is usually referred to as
Chen’s rule [8]: For any three 0 ≤ s < u < t ≤ 1 we have

S(x)s,u ⊗ S(x)u,t = S(x)s,t. (7.4)

For a general piece-wise linear path x, we can use Chen’s rule and the signature
for a linear path (7.3) to deduce that

S(x)s,t = exp⊗(∆t1a1)⊗ exp⊗(∆t2a2)⊗ · · · ⊗ exp⊗(∆tmam)

where ∆tk = tk − tk−1 are the length of the time intervals where the path
is sampled and a1, . . . , am ∈ Rd are the slopes of the path in each of these
intervals. The entries of this expression can be efficiently computed using a
Baker–Campbell–Hausdorff-type formula [5], for example.

7.2 Paths with values in Lie groups

Chen originally proposed the signature for paths with values in a differentiable
manifold [8]. This definition is quite general and relies on the selection of a frame
bundle. For Lie groups, there is a canonical choice: the Maurer–Cartan form.

The signature will again be a tensor series, now in the dual tensor algebra
T ((g)). For a smooth curve α : [0, 1] → G, we define the n-fold iterated integral
recursively, in terms of the Maurer–Cartan form ω, by 〈S(α)s,t, 1〉 := 1 and

〈S(α)s,t, ei1···in〉 :=

∫ t

s

〈S(α)s,u, ei1···in−1
〉ωinα(u)(α̇(u)) du.

In this definition, the notation ωjg(v) denotes the j-th component of the vector
ωg(v) ∈ g in a basis of the Lie algebra g of the finite-dimensional Lie group G.

The signature defined with these integrals has the same characteristics and
uniqueness conditions as the signature of paths with values in Euclidean space.

Paths in SO(3) As with paths with values in Euclidean space, there are some
classes of paths which are especially simple to compute. An important example
in this class is the geodesic interpolation between rotations in SO(3). Note that
for Lie groups embedded in GL(n), the right Maurer–Cartan form will be the
same as the right logarithmic derivative.

Let κ : [sk, sk+1] → SO(3) be the geodesic interpolation (5.8) between the
rotations ck, ck+1 ∈ SO(3). Define

η̂k =
log
(
ck+1c

T
k

)
sk+1 − sk

,

from equation (5.13) the right logarithmic derivative of the path κ is constant
on the interval [sk, sk+1]

ωκ(κ̇)(t) = δr(κ)(t) = η̂k.
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Using the inverse hat map, we map the skew matrix η̂k to the vector ηk =
(η1
k, η

2
k, η

3
k) ∈ R3. Since the derivative is constant in time, the n-fold integrals

closely resemble that of linear paths:

〈S(α)sk,sk+1
, ei1···in〉 =

(sk+1 − sk)n

n!

n∏
j=1

η
ij
k

where i1, . . . , in ∈ {1, 2, 3} and p ≥ 1. Intuitively this resemblance makes sense as
both path types can be regarded as being first order approximations. One would
expect a similar result to be true in general for geodesic interpolations in finite-
dimensional compact, connected Lie groups, we will however not investigate this
any further.

Writing out the signature with the n-fold integrals above would again reveal
that the signature can be regarded as the exponential of a vector in Rd

S(α)sk,sk+1
= exp⊗((sk+1 − sk)ηk)).

As with linear paths, extending this result to a piece-wise geodesic interpola-
tion with multiple sample points can be done by applying Chen’s rule to every
piece. One can also extend the results discussed to paths with values in SO(3)d.
The main difference being that because so(3)d is isomorphic to R3d, the letters
i, . . . , in take values in the alphabet {1, 2, . . . , 3d}.

7.3 The space of signatures

According to Lyons, the signatures of paths take values in a curved subspace
of the tensor algebra [24]. This subspace is closed under tensor multiplication,
with a well-defined inverse and identity element. Since the subspace satisfies the
group axioms it is common to refer to signatures as the group-like elements of
the tensor algebra.

For a path x : [0, 1] → Rd, the group structure will have identity element
S(x)s,s = 1, and inverse given by the reversal operator S−1

s,t (x) = Ss,t(
←−x ), where

the reversed path is defined as

←−x (t) = x(1− t). (7.5)

That this is in fact an inverse becomes apparent from what is usually referred
to as Chen’s Identity [8]:

S(x)⊗ S(←−x ) = 1. (7.6)

For two paths, x, y : [0, 1]→ Rd, we define concatenation2 ∗, by

(x ∗ y)(t) =

{
x(2t) t ≤ 1

2

x(1)− y(0) + y(2t− 1) t > 1
2

. (7.7)

2 Note that due to the reparameterization invariance the mid point of the concatena-
tion can be chosen to be any real number in (0,1).
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Using Chen’s rule we can deduce an interesting property, namely that the signa-
ture is a homomorphism from path space with concatenation to the dual tensor
algebra [10]. This means that if we are given two paths x, y : [0, 1] → Rd, and
we concatenate them to form a new path x ∗ y, then

S(x ∗ y)s,t = S(x)s,t ⊗ S(y)s,t.

Using this property we can also give an alternative formulation of Chen’s Iden-
tity:

S(x ∗←−x )0,1 = 1. (7.8)

In a Lie group setting, it is natural to define this notion in terms of the group
actions. For paths u, v : [0, 1]→ G, we therefore define concatenation ∗, by

(u ∗ v)(t) =

{
u(2t) t ≤ 1

2

v(2t− 1) · v(0)−1 · u(1) t > 1
2

. (7.9)

The previously discussed homomorphism property also holds in this setting [3],
that is for paths u, v : [0, 1] → G, the signature is a homomorphism under
concatenation

S(u ∗ v)s,t = S(u)s,t ⊗ S(v)s,t.

7.4 Uniqueness for the signature representation of a path

The signature is a unique representation of a path, up to some condition. Chen
proved that for smooth paths [10], this condition states that the signature is
unique up to translation, parameterization, and irreducibility3.

The invariance to translation is because the iterated integrals are of the form
dxt = dx

dt dt, that is translation is lost when differentiating. The invariance to
parameterization is because the signature is reparameterization invariant ; for
any orientation-preserving diffeomorphism ϕ on [s, t] we have that

S(x ◦ ϕ)s,t = S(x)s,t. (7.10)

The proof of the reparameterization invariance follows from computing the change
of variable t→ t ◦ ϕ for the iterated integrals.

The irreducibility condition can be viewed as a consequence of Chen’s Iden-
tity. Consider the three paths x, y, z : [0, 1]→ Rd, and consider the concatenation

x ∗ y ∗←−y ∗ z.
3 For rough paths, Hambly and Lyons [20] showed that this condition is what they call

’tree-like equivalence’. This work is one of the important contributions that reignited
the interest in signatures as a mathematical tool.
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The signature of this concatenated path can be reduced using the homomorphism
property and Chen’s identity

S(x ∗ y ∗←−y ∗ z)s,t = S(x)s,t ⊗ S(y)s,t ⊗ S(←−y )s,t︸ ︷︷ ︸
=1

⊗S(z)s,t

= S(x)s,t ⊗ S(z)s,t

= S(x ∗ z)s,t.

That is, the path x ∗ y ∗ ←−y ∗ z will have the same signature as the reduced
path x ∗ z, even though that paths are vastly different. We say that a path is
irreducible if it cannot be expressed on the form x ∗ y ∗ ←−y ∗ z, and that the
signature is a unique representation of an irreducible path, up to translation
and parameterization.

7.5 Log signatures

Since the space of signatures can be given a group structure, an interesting
question is whether it also has a corresponding “Lie algebra” and if there exists
a logarithmic mapping to this algebra. Chen [9] showed that such a map exists
and that the image is a closed subspace of the tensor algebra which, according
to Lyons and Sidorova, can be “regarded as some sort of formal Lie algebra for
this group.” [27]. The algebra has Lie bracket [24] given by

[p, q] = p⊗ q − q ⊗ p.

To define the logarithm we take the same approach as in [11]: Consider the
power series

p = λ0 +

∞∑
k=1

∑
|w|=k

w=i1···ik

λwei1 ⊗ · · · ⊗ eik ∈ T ((Rd)),

where λ0 > 0. We can define the logarithm of the power series as

log p = log λ0 +

∞∑
k=0

(−1)k

k

(
1− p

λ0

)⊗k
.

As discussed in [11], this transformation is well-defined because for every word
w = i1 · · · ik the coefficient of e1⊗· · ·⊗ek only depend on finitely many elements
of the power series p.

Let x : [0, 1] → Rd be a path, we define the log signature of x as the formal
power series logSs,t(x). Since the logarithm is injective [20], the log signature
will be unique representation of a path up to the same conditions as the signature
of the path.

An advantage of working with the space of log signatures is that, in contrast
to the usual space of signatures, it is flat [24]. This will make computing distances
easy as one can rely on the usual Euclidean measures.
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Another problem with regular signatures is that they contain a lot of re-
dundancy. To motivate what this means we give a quick example: Consider the
n-fold integral corresponding to the word w

〈S(x)s,t, ew〉.
For words only made up of one letter, w ∈ {i, ii, iii, ...}, the signature will only
depend on the increment of the path x

〈S(x)s,t, ei〉 = xit − xis

〈S(x)s,t, eii〉 =
(xit − xis)2

2!

〈S(x)s,t, eiii〉 =
(xit − xis)3

3!
....

These are all just different powers of the increment, and give no additional
information about the geometry of the path.

To understand the full extent of this redundancy we need to look at at what
is known as the shuffle product over signatures. First introduced by Ree [32], the
shuffle product states how the product of two signature terms can be written
as a sum of higher order signature terms. The reason for the name is that this
sum will be exactly the multi-indices generated by the (p, q)-shuffles of the words
corresponding to the product terms. We define the set of (p, q)-shuffles of the
words i = i1 · · · ip and j = j1 · · · jq: For words i, j, the (p, q)-shuffle Sh(p, q) is
the set of all permutations σ of the word

k := k1 · · · kp+q = i1 · · · ipj1 · · · jq
that satisfy the following conditions

σ(1) < · · · < σ(p) and σ(p+ 1) < · · · < σ(p+ q),

that is, preserve the order of the letters in the words. The product of the signature
terms corresponding to the words i and j is equal to the sum over all possible
(p, q)-shuffles of the combined word k

〈S(x)s,t, ei1···ip〉 · 〈S(x)s,t, ej1···jq 〉 =
∑

σ∈Sh(p,q)

〈S(x)s,t, ekσ(1)···kσ(p+q)〉. (7.11)

Using this formula we can generate more intuitive examples of redundancy
in the signature. For example, the term corresponding to the word ij

〈S(x)s,t, eij〉 = 〈S(x)s,t, eji〉 − 〈S(x)s,t, ei〉 · 〈S(x)s,t, ej〉,
really only contain the same geometric information as the reversed ’area’ ji and
the increments i and j.

The log signatures do however not possess this redundancy - it is the most
compact description of the geometric properties of the signature of a path.
This can, according to Lyons and Sidorova [27], be deduced from the classical
Rashevski-Chow Theorem.
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8 Using signatures to define similarity measures for
shapes

Consider a shape [c] ∈ S∗, because of the translation and parameterization
invariance, every representative of the equivalence class [c] will have the same
signature. It, therefore, becomes very natural to define the signature of a shape
[c] ∈ S∗ as

S([c]) := S(c),

where c is an arbitrary representative of the shape [c]. It is, however, important
to note that due to the irreducibility condition, the signature of a shape is not
a unique representation.

Parameterization invariance proved to be the most important model assump-
tion when identifying character movements in section 6. Since the signature is a
faithful representation of the geometric properties of a shape - in a parameter-
ization invariant way - it would be interesting to investigate whether similarity
measures defined using signatures yield any additional insight into the structure
of the shape space. In this section, we will, therefore, present some commonly
used metrics defined on the subspace of signatures.

As far as the author can tell, considering signatures in the context of shape
analysis has not been given substantial attention. One of the more notable ex-
amples, however, comes from Geng [17] who worked with reconstructing a rep-
resentative of a shape from its signature.

8.1 Group metric

One of the most commonly used metrics in the study of rough paths is what we
will refer to as the “group metric” on signatures. This metric was introduced
by T. Lyons and N. Victoir when studying geometric rough paths [25]. They
proved that the metric is well-defined on the curved structure of the subspace
of signatures.

By utilizing the group structure of the space, we know that reversing a path
yields a group-like inverse in the tensor algebra of signatures. A natural measure
of similarity arises from using this property to induce a metric. Let x, y : [0, 1]→
Rd, we define the group metric ρn as

ρn(x, y) =
∥∥S(y)−1

0,1 ⊗ S(x)0,1

∥∥
Gn
, (8.1)

where ‖·‖Gn is the norm on the elements in the group-like tensor algebra which
Lyons and Victoir [25] define as

‖g‖Gn = max
i=1,..,n

i!√∑
|w|=i
〈g, ew〉2

1/i

+ max
i=1,..,n

i!√∑
|w|=i
〈g−1, ew〉2

1/i

. (8.2)

To give some verification that this is in fact a metric we note the following:
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1. Since the signature has a unique inverse and ‖g‖Gn = 0 if and only if g = 1,
then ρ(x, y) = 0 if and only if S(x)s,t = S(y)s,t.

2. Because (
S(y)−1

0,1 ⊗ S(x)0,1

)−1
= S(x)−1

0,1 ⊗ S(y)0,1,

the second term in the norm, where we maximize over 〈g−1, ew〉, ensures
that the metric is symmetric: ρ(x, y) = ρ(y, x).

Using the homomorphism property of the signature map, this metric has an
equivalent formulation by concatenating the curves

ρn(x, y) =
∥∥∥S(←−y ∗ x)0,1

∥∥∥
Gn
. (8.3)

Equivalently, we define the distance function for the shapes generated by the
paths x, y by

ρn([x], [y]) = ρn(x, y).

8.2 Convergence for the group metric for linear paths

In applications, it is common to consider signatures of linear and piece-wise
linear paths as these are efficient to implement and give a good description of
the data. It would, therefore, be revealing to examine how the group metric
behaves when we perturb linear paths. Define the paths x, xε : [0, 1]→ R2 by

x(t) := at

xε(t) := (a+ ε1)t,

where a = (a1, a2) and ε is some arbitrary constant. Clearly limε→0 xε = x, and
since ρn is a metric this implies limε→0 ρ

n(xε, x) = 0. To better understand the
metric we will calculate the order of convergence for the limit.

We start by calculating the signatures for the two paths. Since both paths
are linear these are trivial to calculate using equation (7.3)

S(x)0,1 = 1 + a1e1 + a2e2 +
a2

1

2
e⊗2

1 +
a2

2

2
e⊗2

2 +
a1a2

2
e1 ⊗ e2 +

a2a1

2
e2 ⊗ e1 + ...

S(xε)0,1 = 1 + (a1 + ε)e1 + (a2 + ε)e2 +
(a1 + ε)2

2
e⊗2

1 +
(a2 + ε)2

2
e⊗2

2

+
(a1 + ε)(a2 + ε)

2
e1 ⊗ e2 +

(a2 + ε)(a1 + ε)

2
e2 ⊗ e1 + ...,

as well as the inverse of the signature of x

S(x)−1
0,1 = 1−a1e1−a2e2+

a2
1

2
e⊗2

1 +
a2

2

2
e⊗2

2 +
a1a2

2
e2⊗e1+

a2a1

2
e1⊗e2−.... (8.4)

To get a sense of how the norm ‖·‖Gn , and by extension the metric ρn, behave
we calculate n-fold integral

〈S(x)−1
0,1 ⊗ S0,1(xε), ew〉
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for words w of length n ≥ 1. Starting with n = 1, that is w = i1, where
i1 ∈ {1, 2}, the duality pairing is equal to the increment

〈S(x)−1
0,1 ⊗ S(xε)0,1, ei1〉 = −ai1 + (ai1 + ε) = ε

There are only two words of length one, i1 = 1 and i1 = 2, so calculating the
group norm gives∥∥S(x)−1

0,1 ⊗ S(xε)0,1

∥∥
G1

=
√
ε2 + ε2 +

√
(−ε)2 + (−ε)2 = 2

√
2ε

That is, ∥∥S(x)−1
0,1 ⊗ S(xε)0,1

∥∥
G1

= O(ε).

To examine level two signatures we look at the word w = i1i2,

〈S(x)−1
0,1 ⊗ S(xε)0,1, ei1i2〉

=
ai2ai1

2
− ai1(ai2 + ε) +

(ai2 + ε)(ai1 + ε)

2

=
(ai2ai1

2
+
ai1ai2

2
− ai2ai1

)
+

(
−ai1 +

ai2 + ai1
2

)
ε+

ε2

2

=
ε

2
(−ai1 + ai2) +

ε2

2

we observe that for off-diagonal words, that is words in which i1 6= i2, the integral
has a non-zero ε-term of order one. If we assume ε << 1 and a1 6= a2, then this
term will dominate the convergence∥∥S(x)−1

0,1 ⊗ S(xε)0,1

∥∥
G2

= O(ε1/2).

Note that for the special case a1 = a2, the first order term vanishes, making the
metric linearly proportional to ε.

Finally, we look at words of length three w = i1i2i3, the elements in the
group norm will then be elements on the form

〈S(x)−1
0,1 ⊗ S(xε)0,1, ei1i2i3〉

= −ai3ai2ai1
6

+
ai2ai1(ai3 + ε)

2
− ai1(ai2 + ε)(ai3 + ε)

2
+

(ai1 + ε)(ai2 + ε)(ai3 + ε)

6

=
(ai1ai2ai3

6
− ai3ai2ai1

6
+
ai2ai1ai3

2
− ai1ai2ai3

2

)
+ ε

(
ai2ai1

2
− ai1ai2 + ai1ai3

2
+
ai1ai3 + ai2ai3 + ai1ai2

6

)
+ ε2

(
−ai1

2
+
ai3 + ai1 + ai2

6

)
+
ε3

6

=
ε

6
(ai1ai2 + ai2ai3 − 2ai1ai3) +

ε2

6
(−2ai1 + ai2 + ai3) +

ε3

6
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Again, we observe that off-diagonal words will yield non-zero coefficients for
the first order term in the ε polynomial, which implies∥∥S(x)−1

0,1 ⊗ S(xε)0,1

∥∥
G3

= O(ε1/3

for sufficiently small ε, if we assume a1 6= a2. Again, for a1 = a2, the lower order
terms cancel, giving

〈S(x)−1
0,1 ⊗ S(xε)0,1, ei1i2i3〉 =

ε3

6

From these examples there seem to be a pattern where off-diagonal terms
dominate the convergence when a1 6= a2. This could be useful for use cases
where we are trying to determine an exact match. For noisy data, however, this
type of convergence behaviour is unwanted as it would amplify small, and muffle
big, differences. In animations, where the technique and execution of a movement
usually vary quite a bit between subjects/animations, this characteristic could
make the group metric unsuitable for identifying motions.

Proposition 1. Consider linear paths x, xε : [0, 1]→ Rd of the form

x(t) := at+ b xε(t) := (a+ ε1)t+ bε,

where a, b, bε ∈ Rd and ε is some arbitrary constant. Let ai denote the i-th
component of the vector a. Then, for sufficiently small ε, the convergence of the
limit limε→0 ρ

n(x, xε) will have order of convergence given by

ρn(x, xε) =

{
O(ε) if ai = aj∀i, j ∈ {1, .., d},
O(ε1/n) otherwise

.

Proof. Consider the word w = i1 · · · in of length n, the element of the tensor
product corresponding to this word can be written as a sum

〈S(x)−1
0,1 ⊗ S(xε)0,1, ei1...in〉 =

∑
w1w2=i1..in

〈S(x)−1
0,1, ew1

〉 · 〈S(xε)0,1, ew2
〉,

where the sum runs over all ways to split the word i1 · · · in in the two parts w1

and w2 such that w1 = i1 · · · ik and w2 = ik+1 · · · in for 0 ≤ k ≤ n. Inserting the
expression for the n-fold integral corresponding to a length n word for a linear
paths (7.2) gives

〈S(x)−1
0,1 ⊗ S(xε)0,1, ei1...in〉

=
∑

w1w2=i1..in
|w1|=k

 (−1)k

k!

k∏
j=1

aij ·
1

(n− k)!

n∏
j=k+1

(aij + ε)



=
∑

w1w2=i1..in
|w1|=k

 (−1)k

k!(n− k)!

k∏
j=1

aij ·
n∏

j=k+1

(aij + ε)

.
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Like we saw for words of length one, two, and three and paths in R2, this
will again take the form of polynomials of ε. The second product can be written
to reflect the polynomial structure. Let

Cnk (r) :=

({ik+1, ..., in}
r

)
,

be the set of all possible ways to choose r elements from the set {ik+1, ..., in}
without repetition. We can write the product as a polynomial in ε

n∏
j=k+1

(aij + ε) =

n−k∑
l=0

εl

 ∑
I∈Cnk (n−k−l)

∏
i∈I

ai

.
Inserting this into the duality pairing we get

〈S(x)−1
0,1 ⊗ S(xε)0,1, ei1...in〉

=
∑

w1w2=i1..in
|w1|=k

 (−1)k

k!(n− k)!

k∏
j=1

aij ·
n−k∑
l=0

εl

 ∑
I∈Cnk (n−k−l)

∏
i∈I

ai

.
This way of writing will make it easier to isolate the order of the terms, making
it possible to check which terms contribute to the convergence. We start by
calculating the zero order term of the polynomial:

∑
zero order

=
(−1)n

n!

n∏
j=1

aij +

n−1∑
k=0

 (−1)k

k!(n− k)!

k∏
j=1

aij · ε0
 ∑
I∈Cnk (n)

∏
i∈I

ai


=

(−1)n

n!

n∏
j=1

aij +

n−1∑
k=0

 (−1)k

k!(n− k)!

k∏
j=1

aij ·
n∏

j=k+1

aij


=

(−1)n

n!

n∏
j=1

aij +

n−1∑
k=0

 (−1)k

k!(n− k)!

n∏
j=1

aij


=

n∑
k=0

 (−1)k

k!(n− k)!

n∏
j=1

aij


=

n∏
j=1

aij ·
n∑
k=0

(−1)k

k!(n− k)!
,

which can be simplified using the binomial theorem∑
zero order

=
1

n!

n∏
j=1

aij ·
n∑
k=0

n!

k!(n− k)!
(−1)k

=
1

n!

n∏
j=1

aij ·
n∑
k=0

(
n

k

)
(−1)k(1)n−k =

1

n!

n∏
j=1

aij · (1− 1)n = 0.
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As expected the zero order term is zero. This could also be deduced from the
fact that ρn is a metric, but will be left in for completeness. Now to the first
order term:

∑
first order

=

n−1∑
k=0

 (−1)k

k!(n− k)!

k∏
j=1

aij · ε1
 ∑
I∈Cnk (n−1)

∏
i∈I

ai



= ε1
n−1∑
k=0

 (−1)k

k!(n− k)!

k∏
j=1

aij ·

 n∑
j=k+1

n∏
l=k+1
l 6=j

ail




For a general word, it is difficult to calculate the value of this sum, its close
resemblance to a binomial sum might, however, give an indication that it is
usually non-zero.

Assume that there exists a a pair of indices (i, j) such that

ai 6= aj ,

This implies that either

1. ai 6= 0 and aj 6= 0, or
2. ai 6= 0 and aj = 0.

We start with the latter case. In terms of paths, this could be considered the
special case where the path only has one non-zero slope component. Define the
word

w = ii . . . i︸ ︷︷ ︸
n−1

j.

For ai 6= 0 and aj = 0, the first order component of the innter product equals:

∑
first order

= ε1
n−1∑
k=0

 (−1)k

k!(n− k)!

k∏
j=1

aij ·

 n∑
j=k+1

n∏
l=k+1
l 6=j

ail




= ε1
n−1∑
k=0

(
(−1)k

k!(n− k)!
aki · an−k−1

i

)

= ε1
an−1
i

n!

n−1∑
k=0

(
n!

k!(n− k)!
(−1)k(1)n−k

)

= ε1
(−1)n−1an−1

i

n!

where the last step, again, is a consequence of the binomial theorem. Since
ai 6= 0 the first order term is non-zero for ε > 0. We now look at the other case,
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where ai 6= aj and both ai, aj are non-zero:

∑
first order

= ε1
n−1∑
k=0

 (−1)k

k!(n− k)!

k∏
j=1

aij ·

 n∑
j=k+1

aij
aij

n∏
l=k+1
l 6=j

ail




= ε1
n−1∑
k=0

 (−1)k

k!(n− k)!

k∏
j=1

aij ·

 n∑
j=k+1

1

aij

n∏
l=k+1

ail


= ε1

n∏
j=1

aij

n−1∑
k=0

 (−1)k

k!(n− k)!
·

 n∑
j=k+1

1

aij


= ε1an−1

i aj

n−1∑
k=0

(
(−1)k

k!(n− k)!
·
(
n− k − 1

ai
+

1

aj

))

= ε1an−1
i aj

(
n−1∑
k=0

(−1)k

k!(n− k)!
· n− k − 1

ai
+

n−1∑
k=0

(−1)k

k!(n− k)!

1

aj

)

= ε1an−1
i aj

(
(−1)n

n!

1

ai
+

(−1)n+1

n!

1

aj

)
= ε1

(−1)n

n!
an−2
i (aj − ai)

which is non-zero.

That is, if we assume that there exists a pair of indices (i, j) such that
ai 6= aj , then there exists a word w such that the element of the tensor product
corresponding to that word has a non-zero first-order element when written as
a polynomial in ε

〈S(x)−1
0,1 ⊗ S(xε)0,1, ew〉 = Cε+O(ε2).

For sufficiently small ε this term will dominate the convergence of the group
norm ∥∥S(x)−1

0,1 ⊗ S(xε)0,1

∥∥
Gn

= O(ε1/n),

and by extension the group metric

ρn(x, xε) = O(ε1/n),

since it is induced from the group norm.

For the other case, where ai = aj for all i, j ∈ {1, ..., d}. We observed that
the lower order terms cancelled for words of length n ≤ 3 for linear paths in R2.
This is also true for the general case. Let a := ai, the duality pairing can be



40

simplified using the binomial theorem

〈S(x)−1
0,1 ⊗ S(xε)0,1, ew〉 =

∑
w1w2=i1..in
|w1|=k
a0=a1

 (−1)k

k!

k∏
j=1

a · 1

(n− k)!

n∏
j=k+1

(a+ ε)



=

n∑
k=0

(−1)k

k!(n− k)!
ak(a+ ε)n−k

=
1

n!

n∑
k=0

n!

k!(n− k)!
(−1)kak(a+ ε)n−k

=
1

n!

n∑
k=0

(
n

k

)
(−a)k(a+ ε)n−k

=
1

n!
(−a+ a+ ε)n

=
εn

n!
.

Which implies ∥∥S(x)−1
0,1 ⊗ S(xε)0,1

∥∥
Gn

= O(ε),

when ai = aj for all i, j ∈ {1, ..., d}. �



41

Numerical experiments To verify the result of proposition 1 we check the
order of convergence by numerically calculating the value of the metric ρn(x, xε).
Let x, xε : [0, 1] ∈ R4 be linear paths with slope

a = (0.1, 0.5, 0.0,−0.2)T .

In applications one usually truncates the signature to degree three or four, we
have therefore restricted the experiments to n ∈ [1, 8]. In figure 8.2 we have
plotted the metric ρn(x, xε) as a functions of ε. Figures 8.2a–8.2b show log-log
plots for n ∈ [1, 4] and n ∈ [5, 8] respectively. From these we see that the metric
converges we the expected ε1/n-rate.

In figure 8.1 we have repeated the experiment for paths where the slope is
equal in all directions: a = (0.1, 0.1, 0.1, 0.1). The metrics converge with the ex-
pected linear rate in this case. Looking closely, the metric seems to be numerically
unstable for small ε for the higher order metrics. This can probably be attributed
to machine precision as ε ≈ 0.001 will mean values of order 0.0018 = 10−24 when
calculating the n-fold integrals for the norm.

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

ǫ

0.025
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0.100

0.125
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0.175

0.200
ρ1(x, xǫ)

ρ2(x, xǫ)

ρ3(x, xǫ)

ρ4(x, xǫ)

ρ5(x, xǫ)

ρ6(x, xǫ)

ρ7(x, xǫ)

ρ8(x, xǫ)

Fig. 8.1. Convergence experiment for the group metric ρn for linear paths in R2 with
a1 = a2. The lines have been shifted by a small constant to make it possible to discern
the different metrics.
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Fig. 8.2. Convergence experiment for the group metric ρn for linear paths in R4 with
a1 6= a2. The two top log-log plots confirm that the metric convergences with a rate
1/n for n ∈ [1, 8]. The bottom plot is of the metric ρn for varying ε.
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8.3 Linear metrics on the space of log signatures

In this section, we propose some potential similarity measures on the space of
log signatures. The space of log signatures can be regarded as a formal Lie
algebra for the group of signatures, and will, therefore, be a flat subspace of the
dual tensor algebra T ((Rd)). This linearity will make calculating distances less
involved, compared to the case for the curved subspace of signatures.

Concatenation metric The first similarity measure we consider is again based
on the group actions of the signature space, that is that reversing a path yields
an inverse and that the signature map is a homeomorphism over concatenation.
Let x, y : [0, 1]→ Rd be paths, we define the log-concatenation metric as

σn∗ (x, y) :=
∥∥∥logS(x ∗←−y )

(n)
0,1

∥∥∥
2

+
∥∥∥logS(y ∗←−x )

(n)
0,1

∥∥∥
2
, (8.5)

where the superscript (n) again denotes the signature truncated to length n
words.

That this, in fact, is a metric can be deduced from the similar group metric
(8.3) being a metric, and that the log map is injective and the L2-norm well-
defined.

Linear metric With the flat geometry of the space of log signatures, it is also
possible to define similarity measures independent of the group structure of the
signature space. We will refer to the similarity measure introduced in this section
as the “linear metric”. Let x, y : [0, 1]→ Rd be paths, we define the linear metric
as the normed difference

σnL(x, y) =
∥∥∥logS(x)

(n)
0,1 − logS(y)

(n)
0,1

∥∥∥
2
. (8.6)

Similarly, this will also be a metric due to the uniqueness and the L2-norm
being well-defined.

8.4 Convergence for the proposed metrics on log signatures for
linear paths

The last section revealed some quite surprising convergence results for the group
metric defined on the space of signatures. Proving anything similar for metrics
on the space of log signatures is however quite difficult, as the bases needed to
describe this space are more complex. We, therefore, have to rely on numerical
experiments to better understand the proposed metrics. Again, we consider ε-
perturbations of the linear paths x, xε : [0, 1]→ R4

x(t) := at, xε(t) := (a+ ε1)t.

And again, we investigate the rate of convergence for the limits limε→0 σ
n
∗ (x, xε) =

0 and limε→0 σ
n
L(x, xε) = 0 for small ε. In figure 8.3 and figure 8.4 we examine
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the behaviour of the log-concatenation metric and log-linear metric, respectively.
The linear paths in the experiment have slope

a = (0.1, 0.5, 0.0,−0.2)T .

Both metrics seem to convergence linearly with respect to ε for small pertur-
bations of linear paths. This could indicate that the metrics are more robust,
compared to the previously discussed group metric.
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Fig. 8.3. Convergence experiment for the log-concatenation metric σn∗ for linear paths
in R4. The lines have been shifted by a small constant to make it possible to discern
the different metrics.
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Fig. 8.4. Convergence experiment for the linear-log metric σnL for linear paths in R4.
The lines have been shifted by a small constant to make it possible to discern the
different metrics.
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9 Using signature-based similarity measures on the shape
space of animations

To get a better sense of how the proposed similarity measures compare to the
shape analysis framework used in section 6, we will in this section test their abil-
ity to identify animations. Since projecting the animations to the space (S∗, dS∗)
let us successfully identify movement, we use the properties of the space as a
reference and benchmark for our experiments. That is, if the proposed similarity
measures show similar characteristics, we take it as an indication that they give
a suitable description of the geometric properties of shapes of animations.

A lot of research has been put into efficient methods for numerically calcu-
lating signatures and finding BCH coefficients, for example, [5]. We will use the
’iisignature’ package developed by Jeremy Reizenstein and Benjamin Graham
[33]. Given an array of data points in Rd, this implementation calculates the
truncated signature to degree k of the piece-wise linear interpolation connecting
the data. The package also contains methods for calculating log signatures.

Earlier, we observed that the signature of a geodesic interpolation curve in
SO(3) can be regarded as the signature of a linear path in R3d. After parsing the
animation data to a geodesic interpolation curves in SO(3)d, in the same manner
as discussed in section 6, we calculate the right logarithmic derivative using
(5.13). By mapping the derivative to R3d with the hat map, we can calculate the
signature and log signatures of the animations using the ’iisignature’ package.

The implementation is available on the author’s github profile.4

9.1 Geodesic interpolation between animations

Having an inverse mapping to the SRVT allows us to interpolate between curves
ca, cb ∈ P∗. Let c(s, t) denote the linear interpolation defined in equation (5.14),
satisfying c(s = 0, t) = ca(t) and c(s = 1, t) = cb(t). Since we are interpolating
linearly between the curves, and since the distance dP coincides with the geodesic
distance in P∗, plotting dP∗(c(s), cb) should produce a straight reference line with
respect to the interpolation parameter s.

An interesting follow-up question to this is then how the proposed similarity
measures compare. Whether they deviate from the linearity of the interpolation
scheme could give some insight into the geometry of these measures. We will
therefore create an interpolation c(s, t) between two animations ca and cb with
descriptions “run/jog” and “walk”, which we use to compare the different sim-
ilarity measures to the geodesic of the Riemannian metric dP∗ . Note that we
normalize the measures to make it easier to compare their properties. Since we
only conduct the experiment for one pair of animations ca and cb, the exper-
iment will not give conclusive information about the measures, but rather an
indication of their properties.

4 url: https://github.com/paalel/Signatures-in-Shape-Analysis

https://github.com/paalel/Signatures-in-Shape-Analysis
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Group metric In figure 9.1, we have calculated the metric ρn(c(s, t), cb(t)) for
increasing values of the interpolation parameter s ∈ [0, 1]. The metric seems
to behave with the same convergence characteristics discussed in proposition 1.
This gives an indication that the result for linear paths might also be true for
piece-wise linear paths. As discussed, having this characteristic could make the
proposed metric unsuitable for classification of animations and noisy data.
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Fig. 9.1. Group metric ρn(c(s), cb), for the linear interpolation c(s, t) between a walking
animation (ca) and a running animation (cb).
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Metrics on log signatures In figure 9.2, we have repeated the experiment
for the metrics σn∗ (c(s, t), cb(t)) and σnL(c(s, t), cb(t)), respectively. Both metrics
follow a parabolic arc, compared to the reference - the geodesic distance dP∗ .
Even though the curvature of the log metrics looks more relaxed, compared to
the group metric in plot 9.1, they both deviate quite a bit from the geodesic
distance. This could indicate that the metrics yield a different description of the
space, compared to the shape metric.
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Fig. 9.2. The log linear metric σnL(c(s), cb) and log concatenation metric σn∗ (c(s), cb),
for the linear interpolation c(s, t) between a walking animation (ca) and a running
animation (cb).
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9.2 Identifying movement with signatures

In this section we attempt to identify movement using the proposed metrics on
signatures and log signatures. We repeat the experiment from section 6 where
we calculate the similarity between pairs of animations with descriptions “walk”,
“run/jog”, “forward jump”, as this will make it easier to asses how the methods
compare.

When computing the similarity matrix for the shape metric dS∗ in section 6,
we had to compute the optimal reparameterization between every pair of anima-
tions. In contrast, for signature measures, we only have to compute the signature
once for every animation, before calculating the similarity by inexpensive norms.
And still, computing the signatures and log signatures is computationally less
demanding, compared to the optimal reparameterizations, as the signature com-
putation does not require the expensive optimization step.

In figure 9.3 we create a multi dimensional scaling plot from the similarity
matrix generated by the group metric ρn for n = 3. Even though the three
types of movement indeed are separate, the unevenness and asymmetry of the
distribution make the results unsatisfying compared to the clusters produced by
the shape metric dS∗ in figure 6.3b.

In figure 9.4 we repeat the experiment for the log linear metric σnL with log
signatures truncated to degree n = 3. Again, the distribution is quite unsatisfy-
ing, being both asymmetric and uneven.

And in figure 9.5, we use the concatenation metric on log signatures σn∗ , with
n = 3, to generate the similarity matrix for the multi dimensional scaling plot.
This metric also suffers from the problems discussed for the other experiments.

It looks as if the way the signature encodes the geometric properties of a
path, in a reparameterization invariant way, has potential for describing the
equivalence classes of shapes. The proposed signature metrics does, however, not
convincingly measure the similarity between shapes. In addition to being both
uneven and asymmetric, there is a quite big difference in the internal variance of
the clusters, especially compared with the shape metric which displayed a pretty
uniform variance.

Having a wide range of values for the metric between animations could be
indicative of there being some sort of scaling issue. Either that the n-fold integral
coefficients, or the metrics themselves should include some sort of scaling factor
to make the comparisons more accurate.

One could see this a parallel to the case for the SRVT, where the trans-
formation indeed does include a scaling to induce a Riemannian metric on the
manifold of shapes.
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Fig. 9.3. Multi dimensional scaling plots of similarity matrix based on the group metric
ρn with n = 3. In this plot we have taken animation with descriptions “run/jog”,
“forward jump” and “walk” from the CMU Motion Capture Database [13].
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Fig. 9.4. Multi dimensional scaling plots of similarity matrix based on log linear metric
σ3
L. In this plot we have taken animation with descriptions “run/jog”, “forward jump”

and “walk” from the CMU Motion Capture Database [13].
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Fig. 9.5. Multi dimensional scaling plots of similarity matrix based on log concate-
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∗. In this plot we have taken animation with descriptions “run/jog”,
“forward jump” and “walk” from the CMU Motion Capture Database [13].
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9.3 A normalized linear difference on log signatures

A possible explanation to the observed unevenness in section 9.2 was that the
methods fail to scale the similarity measures correctly. To test this hypothesis,
we introduce a normalized version of the linear log metric

simn(x, y) =

∥∥∥∥∥∥ logS(x)
(n)
0,1∥∥∥logS(x)
(n)
0,1

∥∥∥
2

−
logS(y)

(n)
0,1∥∥∥logS(y)
(n)
0,1

∥∥∥
2

∥∥∥∥∥∥
2

, (9.1)

and repeat the experiments from earlier with this adapted similarity measure.
In figure 9.6, we compare the normalized log difference to the geodesic distance
dP∗ in the manifold P∗.

In figure 9.7, we visualize the similarity matrix generated by the similarity
measure, for the same set of animations as in section 9.2.
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Fig. 9.6. Similarity measure simn(x, y) for the linear interpolation between a walking
animation (ca) and a running animation (cb).

The normalized log similarity measure produces the most convincing results
thus far. Even though one “run”-animation is miss-classified in the “walk” clus-
ter, in figure 9.7, the similarity measure produces a very similar classification to
that observed for the shape metric in figure 6.3b. Overall the produced classifi-
cation is satisfying.

The distance between the interpolation c(s, t) and curve cb(t) in 9.6 aligns
close to the metric dP∗ , resembling that of the geodesic distance in (P∗, dP∗).
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Fig. 9.7. Multi dimensional scaling plots of similarity matrix based on similarity mea-
sure sim3. In this plot we have taken animation with descriptions ”run/jog”, ”forward
jump” and ”walk” from the CMU Motion Capture Database [13].

In future work, it would be interesting to investigate why the normalization
is necessary, and if there exist even better ways of scaling the signatures. One
could, for example, consider scaling the n-fold integral coefficients of the signa-
ture, or look into more precise metrics for the space of the signatures. Still, the
experiments show that signatures do give a useful description of shapes in the
context of shape analysis, and could prove useful in understanding this branch
of mathematics.



53

10 Conclusion

In our experiments, we show that it is indeed possible to use a distance function
based on signatures to classify animations projected to the shape space S∗. The
proposed method is computationally very efficient, even though somewhat less
accurate than known methods in shape analysis.

When comparing multiple animations, the Riemannian metric (4.3) requires
calculating the very expensive optimal reparameterization between every pair.
The proposed signature method instead only requires calculating the signature
once for every animation, and then compare animations by computing inexpen-
sive norms. The signatures themselves being cheap to compute, combined with
the fact that the proposed method requires no optimization, makes the approach
very efficient.

Further increasing the accuracy of the signature method might also be pos-
sible by defining a more precise similarity measure. Nonetheless, our results can
be seen as proof of concept for using signatures as an efficient way of classifying
shapes.

Our experiments also serve as evidence that signatures encode the essential
information needed to describe shapes. A better understanding of the connection
between signatures and shape analysis could be an important step to better un-
derstand the geometry of shapes, with applications potentially reaching beyond
classifying animations.
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