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Abstract

Pipes and other assets at oil refineries are subject to internal corrosion over time. The
corrosion can, if not carefully monitored, cause leakages and other substantial and costly
damages. Regular inspection of the pipes is therefore necessary to monitor the corrosion
development. However, inspections are also costly and time-consuming, and for these
reasons we aim to minimize the number of inspections through a Risk Based Inspection
strategy.

A data set consisting of multiple inspections from 1019 pipes from an undisclosed
oil refinery is used to train a Bayesian regression model with monthly corrosion rates and
various pipe features as covariates. This data set is subsequently used to simulate synthetic
time series. These time series are used to test various inspection strategies.

Two inspection strategies are suggested and compared: The Adaptive Monitoring Al-
gorithm (AMA), which uses the probability of leakage as an inspection criterion, and the
Informative Monitoring Algorithm (IMA), which uses expected gain in Value of Informa-
tion as an inspection criterion. These strategies are compared with a non-adaptive method,
which conducts inspections at fixed time frequencies.

The proposed strategies rely on several decision thresholds used to decide whether
an inspection should take place, and whether a pipe needs to be repaired. Optimal deci-
sion thresholds are investigated and used to simulate and compare the different strategies.
The simulations indicate that both the AMA and the IMA yield fewer inspections than a
non-adaptive inspection strategy, while simultaneously reducing the number of leakages
substantially. For certain values for the decision thresholds, AMA achieves a 0.6% proba-
bility of leakage and IMA achieves a 8.9% probability of leakage, compared with > 30%
for the non-adaptive methods.

i



Sammendrag

Rør og andre konstruksjoner på oljeraffinerier er gjenstand for innvendig korrosjon over
tid. Korrosjonen kan føre til lekkasjer og andre kostbare skader, og jevnlige inspeksjoner
av rørenes tilstand er derfor nødvendig for å monitorere skadeomfanget. Å gjennomføre
inspeksjoner er imidlertid både kostbart og tidkrevende, og det er derfor et mål å minimere
antall inspeksjoner gjennom strategier for risikobasert vedlikehold.

Vi bruker et datasett bestående av inspeksjonsresultater fra 1019 oljerør til å trene
en Bayesiansk regresjonsmodell hvor månedlig korrosjonsrate og egenskaper ved røret er
brukt som kovariater. Dette datasettet brukes videre til å generere syntetiske tidsserier som
vi tester ulike inspeksjonsstrategier på.

Vi foreslår to strategier for inspeksjon: En Adaptiv Monitoreringsalgoritme (AMA),
som bruker sannsynlighet for lekkasje som inspeksjonskriterium, og en Informativ Mon-
itoreringsalgoritme (IMA), som bruker forventet endring i verdien av informasjon som
inspeksjonskriterium. Disse strategiene blir sammenlignet med en ikke-adaptiv modell,
som foretar inspeksjoner med en fast tidsfrekvens.

De foreslåtte strategiene avhenger av flere beslutningsparametre for å avgjøre hvorvidt
et rør skal inspiseres, og eventuelt repareres. Vi eksperimenterer med ulike verdier for
parametrene, og bruker disse til å sammenligne de ulike strategiene. Resultatet av simu-
leringene indikerer at både AMA og IMA fører til en reduksjon i antall inspeksjoner, sam-
tidig som antallet lekkasjer reduseres betraktelig. For enkelte verdier av beslutningsparame-
trene oppnår AMA 0.6% sannsynlighet for lekkasje og IMA 8.9% sannsynlighet, sammen-
lignet med > 30% for den ikke-adaptive metoden.
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Chapter 1
Introduction

1.1 The Corrosion Problem
Oil processing plants are facilities where oil is processed and refined. These facilities
consist of an intricate system of pipes, pressure vessels and storage units that transfer hy-
drocarbons and other chemicals. This equipment is vulnerable to corrosion damage over
time. The corrosion might occur on the inside of the pipes due to the chemical substances
that move through the pipe, and it might occur on the outside of the pipe due to conden-
sation, temperature fluctuations, leakages, etc. Because of the great costs associated with
corrosion damages, petrochemical facilities work intensively on inspecting the pipes in
order to gain information about the state of the pipe, so that mitigating measures can be
conducted if needed. These inspections happen in two ways:

• Manual inspection: A team of human inspectors measure both qualitatively and
quantitatively the current state of the oil pipe. This can yield a good data set about
the current state of the pipe, but it is time-consuming and costly. A physical inspec-
tion also requires that production halts.

• Automatic inspection: An ultrasonic scanner, sometimes referred to as a pig or
scraper, can be sent through the pipe to measure wall thickness at various points and
detect damages; if the wall thickness is lower than the nominal wall thickness, this
is most likely due to corrosion damages. This kind of automated inspection yields
far better coverage of quantitative inspection results, but is also time-consuming and
sometimes costly, as production in some cases must be paused in order to let the
ultrasonic pig run through the pipes.

Automatic inspection is the most usual when inspecting an extensive network of pipelines
covering large geographical areas. The data set stems from pipes at one specific oil plant,
and the measurements are made manually by human inspectors, although with measure-
ment tools that yield a precise measurement of wall thickness at any given place.

It might seem intuitive to approach the problem of corrosion damage from a strictly
chemical perspective. However, even though the chemical properties of a corrosion pro-
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cess is well known in theory, the practical case is often more complicated. Due to the
chaotic nature of the problem, it can be challenging to measure the amount of water, oxy-
gen and other vital chemicals that are present at any given time at any given point in the
pipe. This might be due to subtle human errors in the construction of the pipe, fluctuating
temperatures or unpredictable turbulence in the flow of the fluids in the pipe. It is difficult
to evaluate the corrosion process form a chemical perspective. For these reasons, the prob-
lem is attacked from a statistical perspective in this work, where we try to build statistical
models to predict and analyze corrosion progression. These models can be used to plan a
predictive maintenance scheme.

1.2 Predictive Maintenance and Risk Based Inspection
As soon as we have a statistical model for the corrosion progression, we can start to inves-
tigate the following questions:

• What is the Remaining Useful Life (RUL) of a pipe?

• What is the probability that a pipe reaches its Minimum Allowed Wall Thickness
(MAWT) within the next k time units (e.g. months)?

• Is it possible to introduce some methodology that classifies each pipe into for in-
stance ”High risk” (of reaching a critical wall thickness) and ”Low risk”? Other
more nuanced categories might also be used.

The answer to these questions would yield a good starting point for planning a Risk
Based Inspection (RBI) scheme. DNV (2009) defines RBI as an ”[...] approach designed
to aid the development of optimized inspection, and recommendations for monitoring and
testing plans for production systems”. In other words, an RBI strategy aims to monitor
and inspect the pipes only when the risk of leakage is high.

The opposing inspection strategy is to inspect with a fixed frequency, i.e. strategies
where every pipe is inspected every n-th month, regardless of any statistical predictions.
For instance, one can inspect every pipe every month. This routine would surely give us
much information about all the pipes, and likely give a small probability of failure. How-
ever, some practicalities hinder us from doing this. Every inspection comes with a cost –
practically, time-wise and financially – and we must therefore choose carefully when and
where we want to inspect. The most practical solution to the problem of high inspection
costs would be to never measure, but this would potentially yield huge damages, whose
costs are far higher than that of inspections. Consequently, we seek to find an inspec-
tion strategy that minimizes the chance that the pipes ”fail” (for instance, reach a critical
threshold), while simultaneously punishes strategies with a huge amount of inspections.

To plan an RBI strategy, we must have some a tool to measure risk. In this paper we
introduce a time-dependent random effects model to model corrosion damage – referred
to as Loss of Material – as a function of time and various features of the pipe. We proceed
to update the model in a Bayesian fashion as new data are gathered. With this model, we
have a framework to quantify risk, and can test different inspection strategies to see how
they perform.
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Loss of Material for a pipe is measured repeatedly over a period of many years. The
difference between consecutive measurements is denoted the corrosion rate. For each
pipe, we know the MAWT, which depends on several factors related to the material of the
pipe, the pressure it endures and other factors. As the wall thickness of a pipe goes towards
MAWT, we should consider to repair it. If we fail to repair it before it reaches MAWT we
say that an event occurs. An event typically means leakage of hydrocarbons.

When trying to make a model for corrosion damage, the following assumptions are
imposed:

• The corrosion rate is not constant. Predicting when we reach MAWT would be
simple if we knew for certain that the corrosion rate always was constant. However,
we assume that this is not the case and that the rate might vary over time due to
changes in the production and other unknown factors.

• Different pipe types have different decay rates. Because of the difference in
material, insulation and the formation of the pipe, the decay rates will vary between
different pipe types.

• Measurement noise is present. The tools that measure the wall thickness are not
perfect, and neither are the human operators that use them.

Figure 1.1 illustrates a simple example. Here we know the baseline wall thickness, i.e.
the wall thickness at the installation date (denoted ”Time 0” in the figure). In addition to
this, three inspections are performed at Time 1, Time 2 and Time 3. The third inspection is
above MAWT. Time has since passed without any new inspections being conducted. We
want to model the probability that the wall thickness is less than MAWT.

1.3 Structure of Thesis
In Chapter 2 we present a data set of inspection results from a non-disclosed production
site. This data is provided by Oceaneering. 1 In Chapter 3 we present some important ideas
from Bayesian statistics and use this to derive the Gaussian Time-Dependent Random
Effect model that will be used to model Loss of Material. In Chapter 4 we use this model as
a building block when we derive an algorithm for adaptive monitoring. We also introduce
a new inspection criterion, that monitors the pipes with the highest expected Value of
Information. Finally, in Chapter 5 we test different inspection strategies on the data set
and compare various metrics. Chapter 6 contains key findings and some ideas for further
work.

1Oceaneering AS, Trondheim, is owned by Oceaneering International, Inc., Houston USA – a global subsea
company.
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Baseline

Insp. 1

Insp. 2

Insp. 3

MAWT

Time 0 Time 1 Time 2 Time 3 Now

Figure 1.1: A conceptual illustration of the problem. We have done three inspections at Time 1,
Time 2 and Time 3. In addition we know the baseline wall thickness at Time 0 and the MAWT,
marked by a dashed red line. In none of the previous three inspections we have detected a wall
thickness less than MAWT. However, some time has passed since last inspection at Time 3, and
we use a statistical model to help us to decide if we should inspect again. The dashed blue line
and the surrounding shaded area indicate the predicted wall thickness with a confidence band. Even
though the prediction lies above MAWT, there is a probability that the actual wall thickness is below
MAWT. Based on this probability – and our tolerance – we might choose to inspect. The prediction
is normally distributed around the mean, as indicated by the yellow Gaussian distribution. The area
of the Gaussian distribution that is under MAWT illustrates the probability that the unobserved wall
thickness is below MAWT, according to the model.
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Chapter 2
The Oceaneering Data Set

2.1 About the Data
Oceaneering provides a data set consisting of measurements from an oil refinery at an
undisclosed geographic place, operated by an undisclosed petrochemical company. The
data set consists of repeated measurements of wall thickness at multiple pipe locations.
Human inspectors make the measurements with an ultrasonic measurement tool. There
are N = 1019 distinct pipes in the data set, and a total of k = 4 measurements of wall
thickness are conducted for each pipe at different times. At the request of Oceaneering,
we have done some slight modifications to the data set to avoid disclosing confidential
information. These modifications include adding Gaussian noise N (µ = 0, σ2 = 0.12) to
the inspection data, as well as changing the names of variables, categories and materials.
These techniques for working with private data are recommended by Mivule (2012).

2.2 An Overview
An overview of the data set can be seen in Table 2.1. Each data point consists of two
types of data: Inspection data, i.e. measurements of wall thickness with corresponding
time stamps, and pipe data, i.e. data about various features, insulation and material for the
inspected pipe.

Figure 2.1 shows the corrosion damage (in mm) plotted against time since installation
(months). As a convention we denote the corrosion damage as negative values, as this
indicates that material is lost. Thus, corrosion damage of for instance −4 mm indicates
that the wall thickness is 4 mm less than when the pipe was installed.

From Figure 2.1 we can observe the following:

• There seems to be a declining trend: The corrosion damage becomes larger (in
absolute terms) over time. However, many observations still have close to zero
corrosion damage even after many years. Generally, the variance seems to increase
with time.

9



Covariate name Description Unit
installation The exact date when the pipe was installed dd/mm/yyyy
time1 Time until the first inspection months
time2 Time until the second inspection months
time3 Time until the third inspection months
baseline Wall thickness at installation date mm
insp1 Wall thickness at inspection 1 mm
insp2 Wall thickness at inspection 2 mm
insp3 Wall thickness at inspection 3 mm
feature Description of any specific feature at the pipe -
mawt Minimum allowed wall thickness mm
material Material of the pipe -
insulation Is the pipe insulated? {Yes, No, Unknown}
circuit ID of the corrosion circuit -
inch Diameter of the pipe mm

Table 2.1: Covariates with description in the Oceaneering data set. The covariates above the dashed
line are the ones used in our model.

• The oldest pipe in the data set is measured at 192 months – exactly 16 years –
after installation. This seems to be one of a few outliers, however, as most of the
observations are made up until approximately 150 months after installation. It might
be difficult to make precise predictions about the wall thickness after month 150
because of the lack of data.

• After around 100 months there seems to be a slight decrease in variance, and many
observations are concentrated around lower (absolute) corrosion damage. One might
say that this is intuitively a bit surprising: How can material be gained? The cor-
rosion process cannot be reversed. However, one possible explanation is that the
pipes get clogged, i.e. that various materials (chemicals, sand, byproducts from the
production, etc.) build up on the inside of the pipe. As we only have a measure-
ment of the wall thickness, it is hard to know what exactly that causes this slightly
surprising effect. Another possibility is that preventive actions are being taken from
the manager of the facility, for instance treating the pipes with various chemicals or
coatings in an attempt to hinder the damage.

In Figure 2.2 we plot the Loss of Material against time since previous inspection.
This has a shorter time axis than Figure 2.1; the longest time between two inspections on
one pipe is 111 months (9 years and 3 months). Apart from this and a couple of other
outliers around 105 months, most inspections are done within 70 months after previous
inspections. It also seems that many inspections are conducted in the same months – the
data points seem to lie in a vertical row – which might be due to purely practical reasons.
If we intended to inspect one pipe in one month and the neighboring pipe the month after,
it is more practical to inspect both at the same time. Thus, we get these clusters with many
inspections in the same month. Apart from this, the trend in Figure 2.2 seems to follow
the same pattern as in Figure 2.1 with an increasing variance over time.

10
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Figure 2.1: Accumulated corrosion (in mm) plotted against time since installation (in months).
There is a total of 3057 data points; N = 1019 pipes that are each measured 3 times, as we exclude
the initial measurement done at installation (we assume no corrosion damage at installation).
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Figure 2.2: Accumulated corrosion (in mm) plotted against time since last inspection (in months).
These are the same 3057 data points as in Figure 2.1, but with a different time axis.
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The average monthly corrosion rate is −0.0091 mm, which translates to −0.1092 mm
per year. The largest monthly rate is −0.196 mm per month, translating to a yearly Loss
of Material of −2.352 mm.

2.3 Features, Insulation and Pipe Material
Every pipe is categorized with one of six distinct features, or pipe formations:

• Drain: A drain valve.

• Elbow: A 90 degree angle on the pipe.

• Nozzle: A specific shape of the pipe designed to increase the velocity of the fluids
(e.g. hydrocarbons) that is flowing through it.

• Piping: An ordinary, straight piece of pipe.

• Tee: A ”T” shape, i.e. one pipe that is orthogonal to another.

• Other: Other features or abnormal pipe shapes that do not fit in the other categories.

These features are of interest because we know empirically that the shape or formation of
the pipe is important for the development of corrosion. This might be because different
pipe shapes give different flow of the hydrocarbons through the pipe. In Figure 2.3 we
plot corrosion damage against time for each of the 6 features. It is clear that most pipes
are in the ”Piping” and ”Elbow” category (53% and 23%, respectively), while ”Drain” and
”Nozzle” both have around 3% of the observations each. Every feature seems to follow
the same trend that we see in Figure 2.1, i.e. a generally decreasing trend, However, the
”Drain” feature appears to stand out with all inspections yielding a very small Loss of
Material; all observations are higher than−1 mm. This could probably be due to the small
sample size.

Another important feature of the data set is the Minimum Allowed Wall Thickness
(MAWT). If the wall thickness falls below MAWT we are experiencing an event (a leak-
age). MAWT is calculated based on various parameters about the fluids that will flow
through it. Examples of these parameters are pressure, temperature and diameter of the
pipe. These calculations are based on the American Society of Mechanical Engineers’
standards.1 The calculations are conducted by Oceaneering. In Figure 2.4 we have plotted
MAWT against the baseline wall thickness, i.e. the wall thickness at installation. Both
measurements are in millimeters. The plot gives an indication about the size of the pipes;
with a very few exceptions, all pipes have a baseline wall thickness of less than 25 mm.
The average wall thickness is just under 14 mm. At the same time, most MAWT values
are well below 10 mm. The Accepted Loss of Material is the MAWT subtracted from the
baseline wall thickness.

Additionally, the data set consists of some covariates that we will not use in the model.
One of these covariates is ”Material”. The pipes are divided into three categories in terms

1The American Society of Mechanical Engineers’ B31.3 2012 Process piping (304.1.2) standard.
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Figure 2.3: Accumulated corrosion damage plotted against time for various features

of material: Carbon Steel (”CS”), P11 (a composite steel material) and ”Other”. Addi-
tionally, every pipe is equipped with either ”Insulation”, ”No insulation” or ”Unknown”.
Multiple pipes are also grouped together in a corrosion circuit, which are common paths
in the pipe network where the same type of fluids often is transferred through.
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Figure 2.4: Minimum Allowed Wall Thickness (MAWT) plotted against baseline wall thickness.
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Chapter 3
Statistical Framework

In this chapter we derive a statistical model to predict the Loss of Material in a given pipe
at a given time. Denote this yi(t), where t is the time and i is the pipe number. The data set
presented in Chapter 2 contains monthly data, and we will therefore use a monthly time
grid in the model, so that time t = 1 indicates month one after installation, t = 2 indicates
month two after installation etc. Note that the installation time might be different for the
various pipes, but we nevertheless use the installation time as a starting point for every
pipe.

We measure Loss of Material in millimeters (mm) with a negative sign. For instance,
yi(t = 100) = −2 means that pipe i has experienced an accumulated loss of 2 millimeters
from installation up to and including month 100. We assume that the Loss of Material at
installation is zero for every pipe, yi(0) = 0 for every i.

3.1 Basic Model
If we assumed that the corrosion rate was constant in time, we could formulate a simple
model of the type

yi(t) = βt+ εit, εit ∼ N (0, τ2), τ ∈ R, (3.1)

where β is a constant damage rate (i.e. damage per time unit). Additionally we want to
capture the effects that come from different features in the data set. Assuming p different
features we have effects λj , j = 1, ..., p. We write

yi(t) = (β + f>i λ)t+ εit, (3.2)

where λ = [λ1, ..., λp]
> is the size p vector of different features and f>i = [0, ..., 1, ..., 0]

is a binary indicator vector that marks which of the p features that is present in pipe i.
As seen in Chapter 2, however, there are indications that the rate is not necessarily

constant in time. For this reason we introduce a separate rate for each month. Let βm be

15



the corrosion rate (in mm) in month m, and

β = [β1, β2, ..., βk]> ∈ Rk (3.3)

where k is the maximum number of months in the data set. Now, the damage of the pipe
at time t is

yi(t) =

t∑
m=1

(
βm + f>i λ

)
+ εit

=

(
t∑

m=1

βm

)
+ f>i λt+ εit, (3.4)

i.e. an accumulation of all the monthly damage rates up until month t, as well as the time
effect for the specific category. The first part of the expression can be formulated via a
design matrix of 0’s and 1’s:

t∑
m=1

βm = [1, 1, ..., 1, 0, , ..., 0] · [β1, β2, ..., βt, βt+1, ..., βk]>

= x>i β. (3.5)

Thus, we arrive at the following model for yi(t):

yi(t) = x>i β + f>i λt+ εit. (3.6)

The above framework can be generalized to the case of N pipes. We can introduce the
vectors y = [y1, y2, ..., yN ]> and t = [t1, t2, ..., tN ]> and formulate the joint model as

y = Xβ + Zλ+ εit, (3.7)

where Z ∈ RN×p is such that row i is

zi = fiti, i = 1, ..., N, (3.8)

and X ∈ RN×k is a design matrix where each row is as described in (3.5). The explicit
matrix expressions for (3.7) is
y1

y2

...
yN

 =


x11 x12 . . . x1k

x21 x22 . . . x2k

. . .
xN1 xN2 . . . xNk

 ·

β1

β2

...
βk

+


z11 z12 . . . z1p

z21 z22 . . . z2p

. . .
zN1 zN2 . . . zNp

 ·

λ1

λ2

...
λp

+


ε1
ε2
...
εN

 .
(3.9)

In this model we have one effect of time, which is common for all feature types. This is
incorporated in the β coefficients. Additionally, we have one effect of feature time, which
is common for all the pipes that exhibit this feature. We can introduce the augmented
notation

γ =

[
β
λ

]
, (3.10)
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and

Q =
[
X Z

]
∈ R(k+p)×N , (3.11)

such that

y = Xβ + Zλ+ ε = Qγ + ε. (3.12)

This will ensure a more compact notation.

3.2 The Bayesian Framework
We will now consider γ to be a random variable with a distribution. We cannot observe
γ directly, but we can make observations of y and use that to assess the belief about γ.
To do this in a structured way, we apply a Bayesian framework. In this framework we
aim to adjust the distribution of γ after observing new data y. That is, we want to find a
distribution p(γ|y) and do so by applying Bayes’ rule:

p(γ|y) =
p(y|γ) · p(γ)

p(y)
. (3.13)

The components of this equation can be explained as follows:

• p(γ) is the prior distribution over the coefficients. This distribution incorporates
any belief we might have – or the lack of any such belief – about the distribution
before observing the data.

• p(γ|y) is the posterior distribution of the coefficients; the distribution after we have
observed some data.

• p(y|γ) is the likelihood, as defined in equation (3.12); the probability of observ-
ing what we did (i.e. the observations y) given a probability distribution for ε ∼
N (0, τ2IN ).

• p(y) is a normalization factor, also known as the evidence.

Omitting the normalization factor, we can re-state equation (3.13) as simply

p(γ|y) ∝ p(y|γ) · p(γ). (3.14)

or, informally,

posterior ∝ likelihood · prior. (3.15)

These equations often form the framework in an iterative scheme: We use a prior for γ,
calculate the posterior γ|y1 after observing some data y1. Then we can in turn use γ|y1

as a prior and update the belief once again with some new observations y2. This iterative
scheme is depicted in Figure 3.1. We assume some known prior distributions

β ∼ N (µβ,Σβ)

λ ∼ N (µλ,Σλ), Σλ = σ2
λIp, σ2

λ ∈ R
(3.16)
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where Ip is the identity matrix of size p. We assume independence between β,λ and
ε. Since the model parameters now are equipped with a distribution, we have a random
effects model

ɣStage 1

Prior Posterior

Observe y1
ɣ|y1

ɣ
Observe y2

ɣ|y2

ɣ
Observe yN

ɣ|yN

…
 

…
 

Stage 2

Stage N

Figure 3.1: An illustration of the iterative process of prior and posterior distributions. After ob-
serving some data y1 we obtain a posterior distribution γ|y1. This is then used as a prior before
observing some new data y2. This procedure is repeated. We have written ”Stage” rather than
”Time” because we do not necessarily update our models after every time step.

3.3 Deriving Distributions
In this section we will derive the joint, conditional and marginal y ∼ N (µy,Σy). To
make notation simpler we again construct γ ∼ N (µγ ,Σγ), with

µγ =

[
µβ
µλ

]
, Σγ =

[
Σβ 0
0 Σλ

]
, (3.17)

where we have assumed independence between β and λ. With µγ and Σγ assumed to be
known we can calculate

µy = E (y) = E (Qγ + ε)

= QE(γ) + E(ε)

= Qµγ , (3.18)
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and

Σy = Var (Qγ + ε)

= Var(Qγ) + Var(ε)

= QΣγQ
> + τ2IN . (3.19)

3.3.1 Joint Distributions
In summary, the marginal distribution for y is

y ∼ N (µy,Σy)

= N
(
Qµγ , QΣγQ

> + τ2IN
)
. (3.20)

With the independence between β and λ it can be verified that this is the same as

y ∼ N
(
Xµβ + Zµλ, XΣβX

> + Z(σ2
λIp)Z

> + τ2IN
)
. (3.21)

We might later be interested in predicting the value of yo ∈ RNo at unobserved locations
corresponding to a different design matrix Qo. Not surprisingly, the distribution of yo is
pretty similar to (3.20),

yo ∼ N (µyo ,Σyo)

= N
(
Qoµγ , QoΣγQ

>
o + τ2INo

)
. (3.22)

Assume we have a Gaussian prior distribution p(γ) ∼ N (µγ ,Σγ) with known parame-
ters. That is,

p(γ) ∝ exp

(
−1

2
(γ − µγ)>Σ−1

γ (γ − µγ)

)
. (3.23)

Using this, we can write the joint distribution as

p

 γy
yo

 ∼ N
µγµy

µyo

 ,

 Σγ ΣγQ
> ΣγQ

>

QΣγ Σy QΣγQ
>
o

Q0Σγ QoΣγQ
> Σyo

 , (3.24)

where we have utilized that

Cov(y,γ) = Cov(Qγ + ε,γ)

= QCov(γ,γ) + Cov(Qγ, ε)

= QVar(γ) + 0

= QΣγ ,

and

Cov(y,yo) = Cov(Qγ + ε, Qoγ + εo)

= Cov(Qγ + ε, Q0γ) + Cov(Qγ + ε, εo)

= Cov(Qγ, Qoγ) + Cov(ε, Qoγ) + Cov(Qγ, εo) + Cov(ε, εo)

= QΣγQo. (3.25)
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This will come in as a handy notation multiple times, especially given the following propo-
sition:

Proposition 1. Let w = [w1,w2]> be multivariate normally distributed, i.e. w ∼
N (µµµ,Σ) with

µµµ =

[
µµµ1

µµµ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
Now, the conditional distribution w1|w2 ∼ N (µ̄µµ, Σ̄) with

µ̄µµ = µµµ1 + Σ12Σ−1
22 (w2 −µµµ2)

Σ̄ = Σ11 − Σ12Σ−1
22 Σ21

(Proposition ended.)

The derivation of Proposition 1 can be found in Anderson (2003) and Johnson and
Wichern (2007).

3.3.2 The Posterior Distribution
Assume now that we have a prior distribution for γ and make an observation yobs. The
observation yobs is thus not a random variable, but rather one realization of the random
variable y. Utilizing the formulas from Proposition 1 and the joint distribution (3.24) the
posterior distribution is straight forward to compute N (µγ|y,Σγ|y):

γ|yobs ∼ N (µγ|y = µγ + ΣγQ
>Σ−1

y (yobs − µy),

Σγ|y = Σγ − ΣγQ
>Σ−1

y QΣγ), (3.26)

where µy and Σy are as defined in (3.20). One peculiar observation is that the posterior
covariance matrix Σγ|y does not depend on the observed values yobs, but only the prior
covariance matrix Σγ , the design matrix Q and the variance of the Gaussian noise, τ2.
The expected value µγ|y , on the other hand, is dependent on yobs. From (3.26) we see
that if yobs = E(y) = Qµγ , then the posterior mean is simply equal to the prior mean,
µγ|y = µγ .

3.3.3 Bayesian Prediction
In any statistical model that aims to predict anything it is of interest to investigate how
precise the predictions are. This can typically be done by holding back a part of the data
set – the test set or holdout set – and using the rest – the training set – to train your model.
A systematic way of repeatedly partitioning the data set into testing and training set in
order to avoid overfitting the model, is a procedure known as cross-validation. This is
described in chapter 3.4 of Fahrmeir et al. (2013).

In Section 3.3 we described the linear prediction of an unknown data point yo. A
slightly more interesting and relevant situation occurs when we want to use the training set
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yobs ∈ RN to predict the unknown values yo ∈ RNo in the test set. Applying the formulas
from Proposition 1, the conditional predictive density becomes

yo|yobs ∼ N (Qoµγ +QoΣγQ
>(QΣγQ

> + τ2IN )−1(yobs −Qµγ),

QoΣγQ
>
o + τ2INo −QoΣγQ>(QΣγQ

> + τ2IN )−1QΣγQ
>
o )

:∼ (µyo|y,Σyo|y), (3.27)

where Qo is the design matrix corresponding to yo.

3.4 Gaussian Process
In Section 3.2 we saw how we could update the probability distributions after observing
new data, and we introduced the concept of priors and posteriors. We will now introduce
a useful framework for defining a covariance matrix to the prior distribution of γ.

A Gaussian Process (GP) is well suited for regression. Rasmussen (2004) defines a GP as
a collection of random variables with a joint Gaussian distribution. Let β be defined on the
discretized time grid t = [t1, t2, ..., tk] with corresponding function values [β1, β2, ..., βk].
Moreover, a function β that is distributed as a GP is denoted

β ∼ GP(µβ,Σβ),

where µβ is its mean function and Σβ is its covariance matrix. While sampling from a dis-
tribution N (·, ·) in R yields a single value, sampling from GP(µβ,Σβ) yields a function.
In other words, a GP is a distribution over functions. The discretized µβ can be written as

µβ = [µβ(t1), µβ(t2), ..., µβ(tk)]> ∈ Rk

and similarly Σβ ∈ Rk×k. Thus, sampling from the GP yields β ∈ Rk, i.e. a set of
k function values corresponding to the t grid. The power of GP’s lie in the design of
the covariance matrix, where we can encode different covariance patterns. One common
example is to design Σβ such that element (i, j) in the covariance matrix is

(Σβ)i,j = σ2 exp (−φ|ti − tj |) , σ, φ ∈ R+. (3.28)

This covariance structure ensures that information is borrowed with other covariates that
are close in time. If we make an observation in month i, the effect of this observation will
not only affect the update of βi, but also the surrounding coefficients.

In Figure 3.2 we have sampled 3 realizations of three different Gaussian processes
with µβ = −t, but with different covariance matrix. The first example has a covariance
matrix Σβ = σ2I , i.e. no covariance structure. The resulting samples are independent in
time. The second and third examples have the covariance structure from (3.28), although
with different values of φ (φ = 3 and φ = 0.1, respectively). The result indicates that
samples with higher φ value yields curves with less oscillations. This also makes sense
mathematically: From (3.28) it is clear that large values of φ yields a large negative value
in the exponent, i.e. a low covariance between two observed values β(ti) and β(tj) for
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Figure 3.2: 3 realizations of a Gaussian process with same mean functionµβ(t) = −t, but different
covariance matrix Σβ . Left: Σβ = σ2I . Middle: Σβ as described in (3.28) with φ = 3. Right:
Σβ as described in (3.28) with φ = 0.1. In all three examples we have used k = 100 data points,
σ2 = 1 .

i 6= j. In all of the three examples we have used k = 100 equidistant time points and
σ2 = 1.

We will utilize this idea and use a covariance structure as described in (3.28) in the
prior distribution for y.

3.5 Likelihood Function and Hyperparameters
In (3.20) we formulated a distribution for y with the hyperparameters σ2

λ and τ2. In (3.28)
we introduced the hyperparameters σ2 and φ in the covariance matrix. For the sake of
simplicity, let us denote the four hyperparameters as

θ =


σ2

φ
σ2
λ

τ2

 . (3.29)

It is known that the likelihood of a multivariate normal distribution is

L(θ) =
1√

(2π)k|Σy|
exp

(
−1

2
(y − µy)>Σ−1

y (y − µy)

)
(3.30)

and consequently the log-likelihood is

l(θ) = −k
2

log |Σy| −
1

2
(y − µy)>Σ−1

y (y − µy), (3.31)

where it is important to emphasize that Σy = Σy(θ), as derived in (3.20). We are seeking
the Maximum Likelihood Estimators (MLE’s) for θ, denoted θ̂MLE . This is defined as

θ̂MLE = argθ max l(θ). (3.32)
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3.5.1 Evaluating a Prediction
Assume now that we have made some predictions ŷ = [ŷ1, ŷ2, ..., ŷn] and want to compare
them with the true values y = [y1, y2, ..., yn] in the test set. One way of quantifying the
prediction error is the Root Mean Squared Error (RMSE),

RMSE(ŷ,y) =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2
. (3.33)

Another way is the Continuous Ranked Probability Score (CRPS), which calculates a
score for each prediction ŷi. The score is formulated as

CRPSi(Fi, yi) = −
∫ ∞
z=−∞

(Fi(z)− I{z ≥ yi})2
dz (3.34)

where

• Fi(z) is a cumulative probability distribution with mean E(ŷi) and a variance Var(ŷi)
from the predictive distribution;

• I{z ≥ yi} is an indicator function that has the value 1 if z ≥ yi and 0 if z < yi.

The integral is illustrated in Figure 3.3 for three different scenarios. The first scenario
is a prediction with high accuracy and high precision. The second scenario has a high
accuracy, but low precision. The third scenario has low accuracy and low precision. Note
that (3.34) is only for a single prediction, and we can average the CRPS if we make more
than one prediction. Gneiting and Raftery (2007) show that if the predictive distribution
is Gaussian, i.e. if we let the predictive distribution be N

(
µ, σ2

)
and the true value is y,

then (3.34) can be expressed in closed form as

CRPS
(
N (µ, σ2), y

)
= σ

[
1√
π
− 2φ

(
y − µ
σ

)
− y − µ

σ

(
2Φ

(
y − µ
σ

)
− 1

)]
.

(3.35)

3.6 Illustrative Example
We makeN = 1000 observations, denoted y ∈ R1000, of some damage phenomenon over
a course of k = 50 time units (months). A large negative value indicates large damage.
Each observation yi is done at a time ti ∈ [1, 50]. Half of the observations exhibit a
specific feature, while the other half do not have this feature. For simplicity, we categorize
the data as either ”Feature” or ”No feature”. This could be one of the features introduced
in Chapter 3, such as ”Drain” or ”Elbow”. The data set can be seen in Figure 3.4. We see
that most of the data from the ”Feature” class lie somewhat lower than the data without
the feature; it seems like there is a general, declining trend for all the data points, as well
as a feature-specific effect for those who exhibit the feature.
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Figure 3.3: CRPS exemplified. The smooth, blue curve is a cumulative distribution. The black step
function is the indicator function I{...}. The colored area between the graphs is what we integrate
over in (3.34) Left: The predicted mean lies close to the true value; hence the two curves cross close
to where the cumulative probability is 0.5. Small variance indicates small area to integrate. Middle:
The predicted mean is still close to the true value, but this time with a significantly larger variance.
Right: The same variance, but less accurate, hence the higher intersection between the curves.

We want to model the relationship between damage and time on a discretized grid of
k = 50 regression coefficients, denoted β = [β1, ..., β50]>. More precisely, we model it
as

yi = xi1β1 + xi2β2 + ...+ xikβk + ziλ+ ε

= xiβ + zi · λ+ ε, ε ∼ N (0, τ2)

=⇒ y = Xβ + Zλ+ ε.

Here, X ∈ R1000×50 is a design matrix where each row consist of 1’s up to position ti and
0’s afterward. xi ∈ Rk is row i in X . Similarly, Z is a design vector consisting of 0 for all
the pipes from the ”No feature” data, and ti for all the pipes with the feature. Given that
Z only has a single column, p = 1. We introduce flat priors of

µβ = [−0.05, ...,−0.05]>

µλ = −0.1

and the covariance structure introduced in equation (3.28) with φ = 0.5 and σ = 0.5.
Now, we can calculate the posterior distribution β|y and λ|y using (3.26). The resulting
posterior β can be seen in Figure 3.5, as well as the βtrue – the coefficients used to
generate the data – and the flat prior distribution. We can see that the posterior β is
reasonably close to the real βtrue.
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Figure 3.4: The data set y, consisting of 500 data points from a class with some feature (red points)
and 500 points from a class without the feature. The x axis show time in months and the y axis show
Loss of Material in mm.
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Figure 3.5: Left: The red line indicates the β posterior coefficients calculated from the data set.
The grey area is a confidence band with +/− one standard deviation, also using the posterior Σγ
calculated from the data. The straight yellow line at β = −0.05 is our flat prior, and the black line
is the true βtrue used to generate the data. Right: Cumulative β coefficients for both the general
trend without the random effect (blue), as well as with the random effect (red). The corresponding
black lines show the true values used to generate the data.
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Chapter 4
Where to Inspect?

In Chapter 3 we developed a statistical model to predict the wall thickness of a pipe at
any given time. In this chapter we will use this model and all of its properties as building
blocks when we derive various inspection strategies. First, we will talk about the general
idea of an inspection strategy, before we move on to present the differences between an
adaptive and a non-adaptive strategy. Finally, we present an inspection algorithm based on
a Value of Information (VOI) approach.

An inspection strategy is a set of decision rules to plan and conduct inspections on
a set of pipes. Which pipes should we inspect, and at what times? How shall we treat
the information we gather from an inspection? Should we at any time stop inspecting?
Are all inspections equally valuable, or can some kind of information turn out to be more
informative, however we choose to define that, than others? At the same time there is
a cost related to the collection of information: Inspections often come with a significant
financial cost, but the cost of not inspecting might be worse.

4.1 What Constitutes an Inspection Strategy?
For a single pipe we have the following four scenarios at every time:

• We do not inspect. This yields no new information and has no cost.

• We inspect. This results in a new data point yobs. An inspection has a cost.

• We inspect and repair. If the inspected wall thickness is dangerously close to
MAWT, we might choose to preventively repair the pipe. This will set the wall
thickness back to baseline wall thickness. A reparation has a cost that is larger than
a simple inspection.

• An event occurs. An event is a pipe failure that we do not notice to notice before it
is too late. In simple terms, this means that the pipe is leaking. This typically gets
noticed without conducting a proper inspection, simply because parts of the pipe

27



network fails to function because of this event. An event has a cost that is higher
than a repair.

We consider a repair and an event mutually exclusive: Either we detect the danger in time
and repair the pipe and avoid any catastrophes, or we fail to notice the danger and the pipe
experiences an event. Of course, from a practical point of view, the pipe that is leaking
must be repaired somehow, but in this context we will talk about a repair as something that
is done preventively, i.e. before we reach MAWT. Furthermore, we assume that a single
pipe can at most experience one event or repair throughout its lifetime: If an event occurs,
the pipe effectively gets taken out of use. If a repair occurs, the wall thickness gets reset
to the baseline wall thickness, and we consider it highly unlikely that a pipe will go from
baseline wall thickness to MAWT two times throughout its lifetime.

How do we value or give a score to an inspection strategy? The three parameters that
we usually are interested in are

• the number of inspections;

• the number of repairs;

• the number of events.

Additionally, the number of non-utilized months is of interest. A conservative strat-
egy for repair will be quick to repair a pipe, potentially missing out of many months that
we could have utilized. In real life this is impossible to measure; if we repair a pipe, it
is difficult to measure how many more months it could have been utilized. However, in
simulations we might be able to measure this. How we choose to weigh these metrics typ-
ically depends on the costs related to each of the scenarios. These costs vary from facility
to facility and from company to company. Additionally, the costs depend on what kind of
chemical substance that is floating inside the pipes: Leakage of sulfuric acid, for instance,
would be much more dramatic than leakage of hot water. Generally, we want to find the
strategy that yields the overall lowest cost.

4.2 Non-adaptive Strategies
The simplest strategy for pipe inspection is to monitor the pipes at fixed time intervals,
independently of any statistical model. A non-adaptive inspection strategy is easy to follow
and both financially and practically very predictable. However, a non-adaptive strategy
might in many cases be too simple, and lead to too many inspections in some situations
and too few in other situations. Assume for instance that a pipe has an average lifetime of
480 months and we decide to follow a non-adaptive inspection strategy and inspect it every
n-th month. What should n be? Should it be the same for every pipe? This would also
lead to many unnecessary inspections in the first years of a pipe’s lifetime, when we feel
pretty confident that the pipe is well above MAWT. One could of course wait some years
before starting to inspect the pipe, but this again yields the question: How long should we
wait?

In the absence of precise statistical models, companies often tend to worst-case esti-
mates to answer these questions (API (2009)). This might lead to too many inspections.
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In Figure 4.1 we show an illustrative example of a non-adaptive inspection strategy
where a pipe is inspected at a fixed time interval of 10 months. The figure shows the
accumulated Loss of Material from installation and up to month 150. The accepted loss
is at −0.85 mm. This is a synthetic example, where the true values and the inspection
results are sampled from the distribution of y. In month 142 the wall thickness falls
below the accepted loss (i.e. the baseline wall thickness minus MAWT), but since we only
inspect every 10th month we would not notice this before it was too late. This is a slightly
exaggerated example: In a practical situation a Subject Matter Expert would probably
make some considerations based on the inspection in month 140 and interfere. Figure 5.4
therefore serves as an illustrative example about blindly following a non-adaptive strategy.

0 50 100 150

−
1.

0
−

0.
5

0.
0

0.
5

Time [months]

Lo
ss

 o
f M

at
er

ia
l [

m
m

]

True values
Inspections
Accepted loss

Figure 4.1: An example of a non-adaptive inspection strategy, where we choose to inspect the pipes
every 10th month. The blue line indicate the true wall thickness every month. The yellow dots
indicate inspections conducted (with noise). The red line marks the accepted loss (the baseline wall
thickness minus MAWT).

4.3 Adaptive Strategies
In adaptive inspection strategies we do not necessarily conduct inspections at fixed time
intervals, but rather when one or more of the risk criteria indicate that we should inspect.
The most obvious such criterion is to calculate

p := p(yo(t) ≤ MAWTo), (4.1)

where yo(t) is an unobserved pipe at time t and MAWTo is the corresponding (known)
MAWT for this pipe. The probability p can be calculated with the distributionN (µyo ,Σyo)
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as defined in Chapter 3. Based on some threshold L we choose whether or not we should
conduct an inspection. That is, our decision rule is to inspect if

p > L.

An important feature of adaptive strategies is – as the name suggests – that we adapt
the strategy when new information is acquired, i.e. update the underlying probability
distributions that are the foundation of the inspection strategy. The Bayesian framework
presented in Chapter 3 will be helpful in this setting.

The power of this idea lies partially in the fact that we use the predictive distributions
to calculate a separate probability for every pipe. We do not necessarily inspect all pipes,
but rather the subset of pipes that our model predicts has a high probability p.

Adaptive inspection strategies are structured as follows:

• Use an underlying statistical model to predict the probability that an unobserved
pipe has a critically low wall thickness, i.e. lower than MAWT

• If this probability is above a user defined threshold L, we inspect the pipe and obtain
a data point yobs

• Use the observed values to update our model, i.e. calculate the posterior distribution
p(γ|yobs) and the predictive distribution p(y|yobs)

• Repeat this for all time steps t up until some maximum time step T

4.3.1 Repairing a Pipe
We have not yet talked about what to if we in fact believe that a pipe is dangerously close
to, or even below, MAWT. In Figure 4.1, for instance, our predictions are below MAWT
without any action being taken.

The obvious answer is to repair the pipe. We assume that if a pipe is repaired or
changed, the Loss of Material goes back to 0 mm. But when should we change it? A
simple decision rule is to change the pipe if the observed wall thickness, yobs, is within
some distance α form MAWT, i.e. if

yobs < MAWT + α,

for some α > 0.
In Figure 4.2 we illustrate an adaptive strategy on the same pipe as in Figure 4.1. The

clear distinction that can be seen is the lack of inspections early in the pipe’s lifetime
in Figure 4.2 – in fact, the first inspection is conducted in month 77, after more than 6
years – compared to the non adaptive strategy from Figure 4.1. However, the adaptive
strategy conducts lots of inspections from month 130 and on wards, and actually ends up
doing a total of 17 inspections, two more than the non-adaptive strategy. It also conducts a
repair in month 142, which avoids that the wall thickness goes below the accepted loss, as
happened in Figure 4.1. It is also worth noting how the predictive distribution is updated as
new data is gathered: Up until the first inspection in month 130 the mean lies consequently
a bit too low, but after we start inspecting the model is adjusting its mean. Additionally, the
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variance seems to decrease as more data is gathered, especially when the inspection results
lie within the current confidence band. This shows the strength of an adaptive algorithm
that updates after new inspections.
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Figure 4.2: The same pipe as in Figure 4.1, but with an adaptive strategy. The blue dotted line
indicates the true values, while the grey line is our prediction, with a confidence band of +/- one
standard deviation. The red line indicates accepted loss (baseline wall thickness minus MAWT), and
additionally a red shaded area which is the ”repair zone”; if we make an observation in this zone, we
immediately repair the pipe. This is what happened in this example, and the wall thickness is reset
to zero as the pipe is repaired. In this example we have used an α = 0.1, meaning that if we make an
observation within 0.1 mm of accepted loss, we repair. We have also used L = 0.001, meaning that
we choose to inspect the pipe at time t if p(yo(t) ≤ MAWTo) > 0.001. The result is 17 inspections
and a successful repair.

A key motivation behind choosing an adaptive algorithm rather than a non-adaptive
algorithm is the possibility to decrease the number of inspections by avoiding unnecessary
inspections when the wall thickness is thought to be far from MAWT. However, the draw-
back of following this strategy blindly is that we end up doing many inspections when
we are close to MAWT. After all, the criterion used to decide if we should inspect is
P (yo(t) ≤ MAWTo), and this is likely to increase over time. So while an adaptive moni-
toring algorithm without a doubt does a good job of reducing inspections early in a pipe’s
lifetime, it will instruct us to inspect increasingly frequent near the end of the lifetime of
the pipe. For instance, the algorithm tells us to inspect the pipes 12 months in a row in
Figure 4.2! This seems a bit too often, and here is a potential point of improvement in the
adaptive strategy.

One idea to avoid this is to stop inspecting after j consecutive inspections. We can
then use the predictive distribution (updated after the last inspection) to estimate when we
expect the pipe to reach MAWT, and come back and repair the pipe in this month, or some
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months before the estimated time of MAWT.

Algorithm 1 Adaptive Monitoring Algorithm (AMA)
Input : A batch of pipes to be inspected;

MAWT for every pipe;
a threshold L ∈ [0, 1];
a max number of iterations T ;
a repair threshold α (in mm)

Output: A simulated inspection plan
while time step t < T do
D = ∅

for pipe i do
pi = P (yi(t) ≤ MAWTi)
if pi ≥ L then

Inspect pipe, obtain observed value yobs
D ← D ∪ yobs
if yobs < MAWTi + α then

Repair;
end

end
end
Update distribution: P (y)← P (y|D)

end

How to choose the probability threshold L? In many cases this can be derived from a
cost perspective: If the cost of an event is 100 times the cost of an inspection, we should
inspect if L > 1/100, since the expected cost of an inspection then is lower than the
expected cost of not inspecting. It can also be set by the operator of the facility based on
empirical knowledge.

4.3.2 The Adaptive Monitoring Algorithm
In Algorithm 1, we have formulated the Adaptive Monitoring Algorithm (AMA) to for-
malize the adaptive monitoring procedure. For every time step, the algorithm calculates
the probability that yi(t), the wall thickness of pipe i at time t, is close to MAWTi. If this
probability is reasonably large, defined by the threshold L, we inspect the pipe. After each
time step we update our distribution for y. Notice that we potentially have multiple pipes,
and update the distribution after every time step. The variable D is used to store the obser-
vations in every time step, in order to update the distribution. If the pipe is ”dangerously
close” to MAWT we repair the pipe, as described in Section 4.3.1.

In the Adaptive Monitoring Algorithm we use p = P (yo(t) ≤ MAWTo) as the mech-
anism to decide if we should inspect or not. However, as discussed previously, this method
has its drawbacks, for instance the huge amount of inspections towards the end of the life-
time of the pipe. Some possible solutions exist, such as the previously discussed idea of
a simple stopping rule after j consecutive inspections, but these solutions tend to be less
rigorous and more pragmatic. Because of this it might be tempting to ask if there are other
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ways to define informativeness of an inspection, as we might doubt that the 12-th consec-
utive inspection of a pipe gives much new information. To investigate this, we will now
present an alternative criterion to decide if a pipe should be inspected or not.

4.4 A Value of Information Approach
In Algorithm 1 we used the probability p as a decision rule; if p is large enough, we
choose to inspect. We will not present another decision rule for inspections which uses p,
but approaches the problem from a Value of Information (VOI) perspective.

What is the price and what is the value of information gathering? Eidsvik et al. (2015)
describe three factors that make information valuable (the pyramid of conditions):

1. Relevant. A fundamental requirement – the information we gather must be relevant
to the decision we want to make.

2. Material. Can the information, if we choose to pursue it, change the decision we
want to make?

3. Economic. Once we know that the information is relevant and possibly will change
our view, we must ask ourselves: Is it worth it? Does the value of the information
exceed the cost?

4.4.1 The Intuition Behind VOI
Assume that the cost of repairing a pipe in time, i.e. before an event occurs, is C. Also,
assume that the cost of an event isD. The exact relationship between C andD depends on
the fluids in the pipe and various parameters in the financial situation of the operator of the
facility, but an estimated figure is C/D ≈ 1/100; it is around 100 times more expensive
to wait until after a catastrophe has occurred, than it is to perform a preventive repair. In
other words, we can formulate this as a decision rule based on the cost of the actions we
want to decide between:

Alternative 1: Repair now, before any event occurs.
Alternative 2: Wait until event occurs.

This begs the question: What is the expected cost of our action for an unobserved instance
yo(t)? If we choose alternative 1 the cost is C. If we choose alternative 2, however, the
cost is dependent on the probability of yo(t) being less than MAWT. In other words, the
expected cost of alternative 2 is D · P (yo(t) ≤ MAWTo). Let the Prior Value (PV) of the
pipe cost be

PV = min{C,D · P (yo(t) ≤ MAWT)}. (4.2)

Now, assume we have conducted an inspection and obtained some new data yobs. Then
the Posterior Value (PoV) is

PoV(yobs) = min{C,D · P (yo(t) ≤ MAWT|yobs)}. (4.3)
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This way, we can define the Value of Information as

VOI(yobs) = PV− PoV(yobs). (4.4)

Intuitively, VOI(yobs) measures how valuable the observation of yobs is, based on how
much it changed our idea of yo. So in this case, we are not measuring the informativeness
of yo, but of the observation yobs, while yo serves as a way of measuring the impact. A
large VOI(yobs) indicates that the observation of yobs made us change our belief about yo
significantly. However, if we have not made any observations yobs we can still calculate
the expected PoV by taking the expected value of y:

Ey [PoV(y)] =

∫
y

min{C,D · P (yo(t) ≤ MAWT|y)}p(y)dy. (4.5)

Since the min{·, ·} function is concave, Jensen’s inequality yields that

Ey [PoV(y)] ≤ PoV (Ey[y])

=⇒ Ey [PoV(y)] =

∫
min{C,D · pyo(y)}p(y)dy

≤ min{
∫
C · p(y)dy,

∫
D · pyo(y)p(y)dy}

= min{C,D
∫
P (yo(t) ≤ MAWT|y) · p(y)dy}

= min{C,D · P (yo(t) ≤ MAWT)}
= PV = Ey [PV] .

Consequently we can conclude that

Ey [PoV(y)] ≤ Ey [PV]

=⇒ Ey [VOI(y)] ≥ 0

namely that the value of the information y is expected to be positive. Now, we can let
this, the expected VOI, serve as an alternative criterion to decide weather or not to inspect;
instead of choosing to inspect solely based on the probability of yo(t) being less than
MAWT, we can prioritize to inspect in the places where the expected VOI is the highest.

4.4.2 Deriving a Distribution
The expression for E [PoV(y)] in (4.5) is not straight forward to compute. We will now de-
rive a closed form solution given by a sum of cumulative multivariate normal distributions.
For an unobserved instance yo we can write

p = P (yo ≤ MAWT) =

∫ MAWT

−∞
p(yo)dyo

=

∫ MAWT

−∞
N (Q>o µγ , σ

2
o)dyo

= Φ

(
MAWT−Q>o µγ√

σ2
o

)
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where σ2
o is as described in (3.22). Similarly, denote

pyo(yobs) := P (yo ≤ MAWT|yobs) = Φ

(
MAWT− µyo|y

σyo|y

)
, (4.6)

where µyo|y and σyo|y are from the predictive distribution described in (3.27). pyo(yobs)
The expected PoV can then be expressed as

Ey [PoV(y)] =

∫
y

min{C,D · pyo(y)}p(y)dy

=

∫
y

min{C,D · pyo(y)}N
(
Qµγµγµγ , QΣγQ

> + τ2I
)
dy

=

∫
µyo|y

min

{
C,D · Φ

(
MAWT− µyo|y

σyo|y

)}
p(µyo|y)dµyo|y (4.7)

as µyo|y is the important linear combination of the data, since it is the only term that
depends on y. The mean and variance of the predictive mean µyo|y from (3.27) can be
calculated by utilizing E(y) and Var(y) from (3.24), and the result is

E[µyo|y] = Qoµγ

Var[µyo|y] = QoΣγQ
>(QΣγQ

> + τ2In)−1QΣγQ
>
o

in the multidimensional case. If we only consider a single instance yo ∈ R, then the
matrix Qo reduces to simply a row vector, but the same equations would of course hold.
For notational simplicity we will denote

z1 =
MAWT− µyo|y

σyo|y
.

Furthermore, we can split the integral of the min{·, ·} function into two separate integrals;
the first from −∞ to µ̄ and the second from µ̄ to∞, where µ̄ is defined by the equation

C = D · Φ
(

MAWT− µ̄
σyo|y

)
=⇒ µ̄ = MAWT− Φ−1

(
C

D

)
σyo|y.

Notice that µ̄ is simply a constant, as σyo|y is independent of y. We can proceed to write
(4.7) as

Ey [PoV(y)] =

∫ µ̄

−∞
C · p(µyo|y)dµyo|y

+

∫ ∞
µ̄

D · Φ
(

MAWT− µyo|y
σyo|y

)
p(µyo|y)dµyo|y

= C

∫ µ̄

µyo|y=−∞
p(µyo|y)dµyo|y

+

∫ ∞
µyo|y=µ̄

∫ z1

z=−∞
p(z)p(µyo|y)dzdµyo|y

= C · P (µyo|y < µ̄) +D · P (z < z1, µyo|y > µ̄), (4.8)

35



where z ∼ N (0, 1). Let us introduce

V = µyo|y − µ̄
W1 = µ̄− µyo|y W2 = σyo|y · z −MAWT + µyo|y,

such that we can express (4.8) as

Ey [PoV(y)] = C · P (V < 0) +D · P (W1 < 0,W2 < 0).

Now, we have reduced the expected value of the min{·, ·} function to a sum of two mul-
tivariate normal calculations. If we know the expected value and covariance matrix of
the multivariate distribution P (V ) and the joint multivariate distribution P (W1,W2), this
would be easy to calculate. Because of linear combinations we obtain that

E(V ) = Ey[µyo|y]− Ey [µ̄]

= Qoµγ − µ̄
Var(V ) = Var(µyo|y)

= QoΣγQ
>(QΣγQ

> + τ2In)−1QΣγQ
>
o ,

since µ̄ is just a constant. Equivalently for W1,W2:

E(W1) = µ̄−Qoµγ
E(W2) = E(σyo|y · z −MAWT + µyo|y)

= σyo|y · z −MAWT + E(µyo|y)

= σyo|y · z −MAWT +Qoµγ

Var(W1) = QoΣγQ
>(QΣγQ

> + τ2In)−1QΣγQ
>
o

Var(W2) = σ2
yo|y +QoΣγQ

>(QΣγQ
> + τ2In)−1QΣγQ

>
o

Cov(W1,W2) = Cov(µ̄− µyo|y, σyo|y · z −MAWT + µyo|y)

= Cov(−µyo|y, σyo|y · z + µyo|y)

= Cov(−µyo|y, σyo|y · z) + Cov(−µyo|y, µyo|y)

= 0− Var(µyo|y)

= −Var(µyo|y)

= −QoΣγQ>(QΣγQ
> + τ2In)−1QΣγQ

>
o

Thus, we have

P (V < 0) = Φ
(
E(V ),Var(V )

)
(4.9)

and

P (W1 < 0,W2 < 0) = Φ

([
E(W1)
E(W2)

]
,

[
Var(W1) Cov(W1,W2)

Cov(W2,W1) Var(W2)

])
.

(4.10)
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We finally arrive at the goal of all the calculations: We started out with Ey [VOI(y)] as an
integral over a min{·, ·} function, which now has been reduced to

Ey [PoV(y)] = C · P (V < 0) +D · P (W1 < 0,W2 < 0), (4.11)

i.e. a sum of two cumulative multivariate normal distribution, where we know the pa-
rameters in both distributions. Figure 4.3 shows a visual interpretation of the cumulative
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Figure 4.3: A visual interpretation of P (W1 < 0,W2 < 0) (equation (4.11)). The contour lines
show a multivariate normal distribution centered in [0, 0] with Var(W1) = Var(W2) = 1 and
Cov(W1,W2) = 0.8. The red area indicates the cumulative distribution, i.e. the volume under
the multivariate distribution in the region {(W1,W2) : W1 < 0,W2 < 0}.

distribution. There are generally no easy-to-handle closed form for cumulative multivari-
ate normal distributions, but numerical approximations are commonly known. See for
instance Genz (2018). We can now calculate the expected VOI(y) as

Ey [VOI(y)] = PV− Ey [PoV(y)] (4.12)

and use that as a criterion to decide if we should inspect or not. An algorithmic presentation
of the VOI procedure is presented in Algorithm 2. In Figure 4.4 we see a realized VOI
strategy on the same pipe as in Figure 4.1 and 4.2. In the figure we have used the costs
C = 1, D = 100, i.e. we assume that an event costs hundred times more than a repair in
time. Furthermore, we have chosen to inspect if Ey [VOI(y)] > 0.5. The Ey [VOI(y)] can
be seen in the right plot. Notice that, in this particular example, we end up not repairing
the pipe in time. While it of course is desirable to repair the pipe in time, this example
is an illustrative example of how the VOI criterion differs from the adaptive strategy. In
the VOI example in Figure 4.4 we stop inspecting close to the accepted loss because the
VOI algorithm calculates that any more inspections not necessarily would be informative
enough. This also shows the dangers of blindly following a VOI strategy; we might be
encouraged not to inspect even though the current wall thickness is very close to MAWT.
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Figure 4.4: The same pipe as in Figure 4.1 and 4.2, but with the VOI strategy. We have used
C = 1, D = 100 as costs for repair and event, respectively. Additionally, we have used the hyper
parameter LVOI = 0.5, i.e. we inspect if the predicted VOI is higher than 0.5. The result is 24
inspections, but one event: We fail to repair the pipe before it goes below the accepted loss. Left:
The true wall thickness (blue) compared with our predictions (grey) and inspections (yellow). Right:
The expected VOI for every month, used as a decision rule.

4.4.3 Choices Related to the VOI Strategy
We must choose some LVOI as a threshold, such that we inspect if Ey [VOI(y)] > LVOI
and not inspect otherwise. This serves as the equivalent threshold to L in the AMA. While
the L in an AMA is a probability threshold, this LVOI is an economic threshold. In a
non-adaptive method it might have been intuitive to set the threshold based a capacity or
budget: We could for instance have a budget that allowed us to perform M number of
inspections, and calculate beforehand which M inspections that would be the most infor-
mative. However, this approach does not work in an adaptive setting, as we continuously
update our model. Something that would be deemed highly informative at one point in
time can be deemed not so interesting in the next time point, if we have updated our model
with new data.

The VOI metric measures the difference between P (yo(t) ≤ MAWT) and P (yo(t) <
MAWT|yobs). In other words, we try to measure how the additional information yobs
changes our belief about yo. But what should yo be, i.e. on what should we measure effect
of yobs on? If we inspect a batch of pipes together, then yo could be the other pipes in
the batch. Assume, for simplicity, that we operate 10 pipes. Then VOI(y1(t)) could be
the effect of inspecting pipe 1 on the other 9 pipes. This would ensure a transfer effect,
where all the pipes in the batch utilize the effect of inspection at pipe 1. However, this is
not always desirable: Pipes might be grouped together in a batch based on practicalities
(they lie close to each other), and we might not always want this transfer effect. Therefore,
another opportunity is to measure the expected self-effect of inspection, i.e. measure how
informative an inspection of pipe 1 would be for our belief about pipe 1. In this case
Q = Q0 in (4.9) and (4.10). This is what we have done in Figure 4.4.
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Algorithm 2 Informative Monitoring Algorithm (IMA)
Input : A batch of pipes to be inspected;

MAWT for every pipe;
a threshold LV OI ;
a max number of iterations T ;
a repair threshold α (in mm);
costs C and D for repair and events, respectively

Output: A simulated inspection plan
while time step t < T do
D = ∅

for pipe i do
E[PoV(yi)] = C · P (V < 0) +D · P (W1 < 0,W2 < 0)
E[VOI(yi)] = PV − E[PoV(yi)]
if E[VOI(yi)] ≥ LVOI then

Inspect pipe, obtain observed value yobs
D ← D ∪ yobs
if yobs < MAWTi + α then

Repair;
end

end
end
Update distribution: P (y)← P (y|D)

end
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Chapter 5
Experiments and Results

In Chapter 2 we presented the Oceaneering data set. In Chapter 3 and 4 we presented a
statistical framework for simulating various inspection strategies. In this chapter we apply
these techniques to the Oceaneering data set. We first show the results of the Bayesian
regression and estimate the coefficients in our Bayesian regression model, as presented in
Chapter 3. Next, we proceed to test various configurations of the Adaptive Monitoring
Algorithm presented in Chapter 4 and compare the results.

5.1 Model Specification from Real Data

5.1.1 Maximum Likelihood Estimators
We use the Oceaneering data set to calculate the θMLE , as described in (3.32). We can
tune these hyperparameters with help from various optimizing tools in R, such as the
optim function (Nash (2016)), the PSO package (Bendtsen (2012)) or the MLR (Bis-
chl et al. (2016)). However, the different methods yield different numerical problems, and
– most importantly – different results. It seems like optimizing the likelihood (3.29) might
have multiple local optima that make the optimization problem vulnerable to small per-
turbations in starting values. As such, after testing various methods with various starting
parameters for the optimization algorithm, we arrive at the MLE estimators

θMLE =


σ̂2

φ̂
σ̂2
λ

τ̂2

 =


0.12

0.0003
0.12

0.12

 (5.1)

It is especially interesting to note how low φ̂ is. As seen in Chapter 3 a low φ indicate
a stronger covariance between β coefficients that are far apart in time. The maximum
likelihood estimate for φ indicate that our data set exhibit strong correlations in time. We
will continue to use these hyperparameters throughout the rest of the experiments.
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5.1.2 Results of Random Effects Model
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Figure 5.1: The β coefficients for all the 192 months, with a confidence band of one standard
deviation.

We want to use the Oceaneering data set to find the distribution for the random vari-
ables γ, i.e. we want to apply the posterior calculations from (3.26) to calculate γ|y. Here,
γ is a collection of β ∈ R192 and λ ∈ R6, one for each of the six possible pipe features.
To initialize this we apply flat prior means

µβ = [µ, ..., µ]>

where µ = −91 · 10−3, which is the average rate in the whole data set from Oceaneering,
regardless of feature type. Furthermore, we take the flat prior

µλ = [−0.01, ...,−0.01]> (5.2)

forλ and apply the Maximum Likelihood Estimators to calculate prior covariance matrices
for γ. More precisely,

Σλ = σ̂2
λI

Σβ = Σβ(σ̂2, φ̂)

where Σβ(σ̂2, φ̂) is the covariance structure introduced in Chapter 3 with MLE for σ̂2 and
φ̂.

In Figure 5.1 we have plotted all the β coefficients. Interestingly enough, we observe
that all the coefficients are positive. From this we might be lead to believe that the general
trend is positive, i.e. that material is gained over time. This is not right, however, as every
pipe also has a feature effect. These feature coefficients, λ, are presented in Table 5.1.
The largest effect comes from the ”Tee” feature and the ”Drain” feature, while we can see
that ”Elbow” and ”Other” are almost the same. Similarly, the ”Nozzle” and the ”Piping”
coefficients are also almost identical.
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Coefficient Estimate Std. error
Feature:Nozzle −5.8145 · 10−2 53.5683 · 10−3

Feature:Other −6.0724 · 10−2 53.5692 · 10−3

Feature:Piping −5.9947 · 10−2 53.5694 · 10−3

Feature:Drain −5.7684 · 10−2 53.5704 · 10−3

Feature:Elbow −5.9903 · 10−2 53.5692 · 10−3

Feature:Tee −6.4207 · 10−2 53.5692 · 10−3

Table 5.1: The λ coefficients values and their standard error

We plot the cumulative β + γ · t in Figure 5.2. We can see clearly the idea behind
including a feature specific effect in the random effects model: Every feature follows the
same general trend, but is shifted up and down because of the feature specific coefficients
in λ. All the features experience a slight increase around month 120. This is not surprising
given the data set: As seen in Chapter 1 the data has this trend, even though it intuitively
might seem strange that the wall thickness increases.

We also see a slight tendency to this increase towards the end of the time period. This
might be due to loss of data; as discussed in Chapter 1, more than 99.9% of the data set
is from month 1 to month 150, with only some outliers around month 190. This makes
it difficult to make precise predictions in the period of time between month 150 and 192.
For these reasons, we will run our simulations up to month 150.
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Figure 5.2: Left: Cumulative plot for β + Zλ. Note that we have not plotted only β alone, as
every pipe also has one of the random effects. A cumulative plot of only β would be larger than zero
almost all of the times; it relies on the random effect from λ to make sense.
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Figure 5.3: We train a model on 75% of the data set, and use this model to predict values from the
test set. In this plot we see the true values from the test set (blue) and the predicted values (red).

5.2 RMSE and CRPS
We can test how precise our model is, measured by Root Mean Squared Error (RMSE) and
Continuous Ranked Probability Score (CRPS). We have divided the original Oceaneering
data set into a training set (75% of the data set) and used this to train a model. The final
25% percent of the data set is the hold out set used to test the predictions. One example
of a prediction on a test set can be seen in Figure 5.3. The red points are the predictions
(mean of the predictive distribution) and the blue points are the true values of the test set.
In the figure we can see that some predictions lie slightly above or below others, instead
of every prediction forming one line. This is due to the fact that different features have
different λ coefficient, as shown in Figure 5.2.

In Table 5.2 we have calculated the average RMSE and the average CRPS after making
100 different splits into a training set and a testing set, each time with 75% in the test set
and 25% in the test set. We compare with to other models:

1. The same kind of random effects model that we use, but without the features. That
is, we use y ∼ N (Xβ, XΣβX

>+τ2IN ), i.e. without the λ and Z. Apart from this
we use the same methods as described in Chapter 3, including the same covariance
structure in Σβ .

2. A simple linear regression, where the Loss of Material at time t is modeled as

y(t) = β0 + β1 · t+ ε, (5.3)

where β0 and β1 are intercept and slope, respectively, and t is time (in months). This
model has neither a feature specific effect nor different effects for each month. This
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model simply assumes that all pipes have the same monthly corrosion rate every
month.

The results show that the random effects model we have used is indeed better than
both the models we compare with. However, it also indicates that it is difficult to make
precise predictions, as the average prediction error for our model is 0.2999 mm (measured
by CRPS) and 0.4651 mm (measured by RMSE). This prediction error is not surprising,
given the large variance in the data set. Over time, an increasing proportion of the pipes
will experience corrosion damage, but there will also be many pipes that maintain 0 mm
Loss of Material. This is the case for all features. Thus, however we choose to model
Loss of Material, it is undeniable that – with the current covariates – we will get a notable
prediction error.

Method RMSE [mm] CRPS [mm]
Random Effects Model With Features 0.4651 0.2999
Random Effects Without Features 0.5499 0.3044
Simple Linear Regression 0.5139 0.3219

Table 5.2: The average prediction error for the model, measured by RMSE and CRPS. We compare
with a random effects model without the features and with a pure linear model.

5.3 Simulation Study
Now that we have estimated the best-fit estimators for the γ coefficients, we use these as
the basis for a simulation study to compare the three different simulation strategies: The
non-adaptive strategy, the adaptive strategy and the VOI strategy.

5.3.1 Experimental Setup
In order to evaluate an inspection strategy we need to know the ground truth, i.e. the true
wall thickness of the pipe at any given point. As mentioned in Chapter 2, the Oceaneering
data set consists of 4 inspections per pipe, but we need a ground truth for all of the k
months we choose to simulate over for every pipe. We choose to simulate a ground truth
from our data set. This can be done by sampling from the distribution of y, as calculated in
equation (3.12) in Chapter 3. Furthermore, the inspections are sampled from this ground
truth with a normally distributed noise term with variance τ̂ (the maximum likelihood
estimator).

When setting up the simulation study, we are also faced with another challenge: Em-
pirically, the expected lifetime of the pipes is around 40 years, but since we only study less
than half of this time period (192 of 480 months) the vast majority of the pipes end up be-
ing far from MAWT in our simulations. Therefore, to make the situation more interesting
we must set an artificially high MAWT. This is done by setting MAWT to be a multiple of
the baseline wall thickness. We choose this multiple to be 0.9, so that MAWT is 0.9 times
baseline wall thickness. Using the same multiple for every pipe is not a problem: Given
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that the baseline wall thickness varies between the pipes, the artificial MAWT also varies.
For the simulation study we use a batch size of 1, meaning that we study the effect of one
pipe at the time.

5.3.2 Some Example Results
In this section we test the three strategies – non-adaptive, adaptive and VOI – to the same
set of pipes. The pipes are chosen at random from the Oceaneering data set. First, the
non-adaptive strategy is depicted in Figure 5.4. Here we inspect every 10th month, thus
totaling 45 inspections over the 150 months for the three pipes. We have also used a repair
threshold of α = 0.1. In two of the examples we fail to repair the pipe before it reaches
the accepted loss.
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Figure 5.4: A non-adaptive strategy applied to three different pipes for k = 150 months. In the first
two plots the pipe reaches the accepted loss without being noticed in time. In the final example the
pipe stays well above the accepted loss throughout its lifetime. We have used an inspection interval
of 10 months, thus we end up with a total of 45 inspections, zero repairs and two events for the three
example pipes.

Next, the adaptive strategy is depicted in Figure 5.5 on the same three pipes. Here
we have used L = 0.001 as the probability threshold and α = 0.1 as the repair thresh-
old. From these examples it seems clear that the adaptive algorithm performs better than
the non-adaptive algorithm; in total it ends up at just 8 inspections for the three pipes,
also conducting two repairs (while the non-adaptive fails to notice both of these dangers
in time). From the first example (the left plot) in Figure 5.5 we see how the predictions
initially diverge slightly from the true values, but after three consecutive inspections the
mean is adjusted and the variance is decreased so that the prediction fits follows the true
curve closely. This shows the power of an adaptive model. However, in the second ex-
ample (middle plot) we almost experience the opposite: The predictions lie consistently
above the true values, leading us to believe that no inspection is necessary. In this case we
inspected just in time, but this is the disadvantage of the adaptive model. If we believe that
we are far from MAWT we do not feel the need to inspect, and thus we are unable to find
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Figure 5.5: An adaptive strategy applied to the same three pipes as in Figure 5.4, with the same
settings. We have used α = 0.1 as the decision rule for reparation and L = 0.001 as the probability
threshold for inspection.

out if our belief is correct. In the third example (right plot) we see the same thing, although
we are further from MAWT. In this example we end up conducting a single inspection,
in the final month. Finally, the VOI strategy applied to the same pipes can be seen in
Figure 5.6. Here we use E[VOI(y)] as a criterion and α = 0.1 as the repair threshold
again. The corresponding expected VOI curves can be seen in Figure 5.7, with a threshold
LVOI = 0.1.

5.4 Comparing Strategies

In the Adaptive Monitoring Algorithm and the Informative Monitoring Algorithm pre-
sented in Chapter 4 (Algorithm 1 and 2, respectively) we have three decision parameters
that must be set:

• L, the inspection threshold in the adaptive strategy;

• α, the repair threshold;

• LVOI, the inspection threshold in the VOI strategy.

In some cases these are to be decided from Subject Matter Experts or based on the financial
situation; as discussed in Chapter 4, the threshold L can be expressed in terms of C, the
cost of reparation, andD, the cost of an event. However, this is not always the case. In this
section we investigate how different decision hyper parameters perform when it comes to
number of inspections, number of events, number of repairs and number of non-utilized
months.
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Figure 5.6: A VOI strategy applied to the same three pipes as in Figure 5.4 and 5.5, with the same
settings. We have used α = 0.1 as the decision rule for reparation and LVOI = 0.1 as the decision
rule for informativeness.
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Figure 5.7: Predicted VOI for every time step which is used to decide if we should inspect or not,
as seen in Figure 5.6. We use LVOI = 0.1 as threshold.
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Figure 5.8: We run the adaptive method for α ∈ [0, 0.01, 0.02, ..., 1] to see how different α values
affect the outcome of inspection simulations with the three different strategies: non-adaptive (red),
adaptive (blue) and VOI (yellow). For every α we run 100 simulations with batch size 1. Clockwise
from top left corner: Number of inspections against α, number of events against α, number of
non-utilized months against α and number of repairs against α.

5.4.1 The Repair Threshold α

We choose to repair a pipe in the Adaptive Monitoring Algorithm if the observed value
is within a distance of α (in millimeter) from MAWT. In Figure 5.8 we have experi-
mented with 100 different α values on an equidistant grid [0.01, 0.02, ..., 1]. For every α
we ran 100 simulations of a pipe (with features chosen at random) for 150 months and
observed the number of inspections, number of events, number of repairs and number of
non-utilized months. This was done for the non-adaptive strategy, the adaptive strategy
and the informative strategy. The results can be seen in Figure 5.8.

As α increase we are essentially quicker to repair the pipe; a large α would indicate
that we conduct a repair even when the measured Loss of Material is far from MAWT. As
a result, we actually make fewer inspections as α grows, because we repair the pipe in one
of the first inspections. We can see that both the adaptive and the VOI strategy converges
towards a single inspection for any α > 0.5. As a result, the number of events quickly

49



also converges to zero, as we repair the pipe before any event is allowed to occur. Not
surprisingly, we can also see that for all three strategies the number of inspections goes
towards 1 as α grows, i.e. we repair almost all the pipes.

The number of non-utilized months stabilizes between month 15 and 25 for the adap-
tive and VOI strategy, as seen in the bottom right plot in Figure 5.8. That is, we end up
repairing the pipe somewhere between month 125 and 135 (of 150 possible months). See-
ing as the average number of inspections also goes towards 1, this essentially indicates
that on average – when α is higher than 0.5 – we end up doing the first inspection between
month 125 and 135, and repairing immediately.

We want to choose an α that yields few inspections and few events, but at the same
time do not repair too early. This becomes a trade-off. From the top right figure (Events
vs. α) we see that with α ≈ 0.13 we have already reduced the number of events as much
as possible, while the number of non-utilized months is still pretty low. Choosing a higher
α would yield more non-utilized months, but with little effect in number of events.

5.4.2 The Adaptive Monitoring Threshold L

In Figure 5.9 we run a similar experiment with varying the L parameter, i.e. the inspection
threshold in AMA. We only run this simulation for the adaptive algorithm, as this is the
only method that uses the probability threshold L. We make 100 simulations for every L
value on an equidistant grid from L = 0.00001 to L = 0.1, each simulation running for
150 months. We have used α = 0.13 as the repair threshold.

When L increases the number of inspections conducted goes down. This makes sense,
as L is the probability threshold that we use to decide if we should inspect. As we increase
the threshold, fewer pipes get accepted for an inspection. The number of events (top
right corner) is slightly increasing, which comes as no surprise: As we conduct fewer
inspections we have a smaller chance of discovering pipes that are very close to MAWT.
For low L we experience approximately 0.01 events per pipe on average.

As L increase we also conduct fewer repairs and consequently we have less non-
utilized months. This also comes as a direct consequence of fewer inspections.

5.4.3 The Informative Monitoring Threshold LVOI

We do the same simulations forLVOI, the inspection threshold in IMA. Just as withL in the
adaptive algorithm, we experience fewer inspections as the inspection threshold increase.
The results can be seen in Figure 5.10. Again the number of events increases slightly as
LVOI increases, but this is also more stable than for L in the adaptive case. The number of
non-utilized months follows roughly the same trend as when we vary L, i.e. the number of
non-utilized months decrease as the threshold LVOI is increasing. The number of repairs
stays relatively constant, although with a slightly decreasing trend. We would possibly
have expected it to decrease even more, seeing that the number of inspections falls from
15 per pipe on average to less than 5 per pipe. This might indicate that the reduction in
inspections primarily is happening early in the pipe’s lifetime: The few inspections we
do with a high LVOI is concentrated towards the end of the pipe’s lifetime, and thus we
continue to make approximately the same number of repairs.
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Figure 5.9: We run the adaptive method for L between 0.00001 and 0.1 to see how different L
values affects the outcome of an adaptive monitoring strategy. For every L we run 100 simulations
with a batch size of 1. Each simulation runs from month 1 to month 150. We have used a repair
threshold of α = 0.13. Clockwise from top left corner: Number of inspections against L, number
of events against L, number of non-utilized months against L and number of repairs against L.
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Figure 5.10: Simulations with 100 different LVOI values for the informative strategy, from LVOI =
0.01 to LVOI = 1. We run 100 simulation of 150 months for every LVOI. Clockwise from top left
corner: Number of inspections against LVOI, number of events against LVOI, number of non-utilized
months against LVOI and number of repairs against LVOI.

52



5.4.4 Comparing Value of Strategy
Let us now see how the three strategies – adaptive, non-adaptive and VOI strategy – com-
pare in a larger simulation when we use fixed decision parameters. We useL = 0.001, α =
0.13 and LVOI = 0.5 and run 2000 simulations on the same pipes for each of the three
strategies. We run two simulations for the non-adaptive strategy; one with inspections ev-
ery 10 months and one with inspections every 20 months. We use a batch size of 1, and
have set the costs in the VOI criterion to be C = 1, D = 1000. The results can be seen in
Table 5.3.

Inspections Events Repairs Non-utilized months
Non-adaptive (freq. 10) 14.1545 0.3155 0.2215 3.5245
Non-adaptive (freq. 20) 7.5425 0.3605 0.1765 2.2910
Adaptive 9.2080 0.006 0.657 8.985
VOI 5.5525 0.0895 0.5400 7.0370

Table 5.3: Results of simulation study after running 2000 simulations. Each simulation is ran with
a batch size of 1 and k = 150 months. We use repair threshold α = 0.13 for all strategies. In the
adaptive strategy we have used inspection threshold L = 0.001 and in the informative strategy we
have used inspection threshold LVOI = 0.5.

In the left column we can see the number of inspections. For the two non-adaptive
simulations, the number of inspections is not so surprising, given that we have set a fixed
inspection frequency. The adaptive method yields on average 9.2 inspections per pipe,
which is approximately 35% less inspections than the non-adaptive method with frequency
10, but 22% more than the non-adaptive with frequency 20. The VOI method yields 5.5
inspections per pipe on average, which is more than 70% less than the non-adaptive method
with frequency 10.

When looking at the number of events, it is clear that the adaptive strategy outperforms
all the other strategies. On average every pipe experiences only 0.006 events (or: 0.6%
of the pipes experience an event), whereas the non-adaptive strategies lie above 30%. The
informative strategy is also significantly better than the non-adaptive ones, with 8.95% of
the pipes experiencing an event. These results indicate strongly that the adaptive strategy
is the best strategy to avoid events.

The price to pay for few events is multiple repairs and more non-utilized months. This
pattern can clearly be seen in the final two columns of Table 5.3. While the non-adaptive
methods have 2.29 and 3.52 non-utilized months on average, both the adaptive and the VOI
method have more than 7 non-utilized months on average. This indicates that the repairs
are being conducted a bit too early. This goes back to the choice of α, the repair threshold.
A lower α would yield fewer non-utilized months, but also an increase in events.

5.5 Discussions About Methodology
While the results presented in Table 5.3 indicate that both the AMA and IMA yield sig-
nificantly better results than following a non-adaptive strategy, one might argue that this
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comparison is not entirely fair. In practical applications it is likely that the facility op-
erator would interfere with the non-adaptive inspection scheme at certain times if some
inspections are surprising.

It is also worth reminding that these simulations are run on an artificially high MAWT,
as discussed in Section 5.3. This is because we only have data from 192 months – or
even just 150 months, effectively. This makes some of the numbers artificially high. For
instance, experiencing events in 30% of the pipes, as in the two non-adaptive strategies,
is slightly unrealistic. However, the relationships between the different strategies are still
valid and interesting.

Furthermore, the original data set consists of some covariates that we did not utilize,
such as material type and insulation type. It would be highly interesting to include these
covariates to make an even more precise predictive model.

We have discussed the opportunity of including a mechanism to stop inspecting after
multiple consecutive inspections. There is reason to believe that this would decrease the
number of inspections in the adaptive strategy and the VOI strategy, as we have experi-
enced that these strategies often conduct inspections in as much as 14 − 15 consecutive
months. A stopping mechanism – either automated or with help from a human Subject
Matter Expert – would most likely benefit these strategies.

Finally, the model relies heavily on choices of the decision parameters such as L,LVOI
and α. We have studied the effect of varying these parameters in Section 5.4 and made
some choices based on these experiments, but this is also something that a facility operator
would decide based on the financial situation of the company, practicalities or even laws
that regulate accepted risk.
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Chapter 6
Closing Remarks

We summarize the findings in the master thesis and propose some ideas for further work.

6.1 Key Results
In this thesis we have developed a random effect model to predict the Loss of Material –
the loss in wall thickness due to corrosion – over time in oil pipes with different features.
Based on this model we have derived two risk-based inspection strategies: an adaptive
strategy and a VOI strategy. These strategies are compared with a non-adaptive model,
where the pipes are inspected at fixed points in time, regardless of any new information
gained in inspections.

We have simulated 150 months of lifetime for more than 2000 pipes. The key findings
can be summarized as follows:

• For certain choices of decision parameters, the Adaptive Monitoring Algorithm
(AMA) reduces the number of inspections with around 35% compared to a non-
adaptive method with inspections every 10 months, but achieved 22% more inspec-
tions than a non-adaptive method with inspections every 20th month. However, the
adaptive method reduces the number of events with more than 98% compared to the
non-adaptive methods.

• The Informative Monitoring Algorithm (IMA) achieves the fewest inspections on
average (5.55 per 150 months), while at the same time reducing the number of events
with more than 70% compared with the non-adaptive methods.

• The number of non-utilized months is highest for the adaptive and VOI methods,
indicating that these methods are possibly repairing the pipes too early.

• While the simulation results admittedly are sensitive to choices of decision parame-
ters, we have demonstrated that both the AMA and the IMA consistently outperform
the non-adaptive strategies in most realistic scenarios, when the risk of experiencing
an event is used as a metric.
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6.2 Further Work
The current data set consists of 4 inspections per pipe over a time frame of over 10 years.
An even bigger data set with more observations would be of great interest to study further,
as ironic as it might sound, as the purpose of this thesis is trying to limit the number of
inspections.

Something that possibly is more available – and something that most likely would rad-
ically improve the predictive model – is production data. Examples are data about what
kind of chemicals that flow through the pipes at various times, the temperature of the
chemicals or the pressure inside the pipes. Sensors that monitor production in the oil and
gas industry are increasingly used: Weinelt (2017) reported in a World Economic Forum
report that modern offshore drilling facilities have about 80 000 sensors, producing 15 mil-
lion gigabytes of data over the lifetime of an asset. Although offshore drilling facilities are
somewhat different from a land-based refinery, it serves as an example of better utilization
of production in the oil and gas industry. Furthermore, Mohammed reza Akhondi et al.
(2010) reported that 25% of all wireless sensors deployed in 2009 were for the oil and in-
dustries, and predicted that refineries would benefit from this. Additionally, we know that
production data is being monitored at the production facility that the Oceaneering data set
comes from, although it was unfortunately not available for our use. This would definitely
have been of interest to investigate further.

Furthermore, the calculated β coefficients from the Oceaneering data set indicate pe-
riods where wall thickness is gained. While this seems reasonable given the data set, it
might be a bit surprising. Methods that enforce a monotonically decreasing wall thickness
could be considered.

The optimization of the hyperparameters proved to be challenging, as different meth-
ods gave slightly different results. An in-depth study of this optimization problem might
improve the predictions.

It would also have been interesting to study an even longer time frame; the oldest asset
in the data set is 192 months old, but in many cases the expected lifetime of a pipe might
be as long as 40 years, or 480 months. In the absence of these data, one could try various
extrapolation techniques to create a synthetic data set to with longer history, in order to be
able to do simulations over more than just the 192 months.
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