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Abstract

This thesis provides an introduction to Automatic Differentiation (AD) and how it can be utilized
to calculate the derivatives of any function with the same precision as an analytic expression, with
very little computational effort. It has been used to elegantly solve Partial Differential Equations
(PDEs) describing flow in porous media, by using a finite volume method and a discretization of the
gradient- and the divergence operator. The goal of the thesis has been to investigate whether the new
programming language called Julia can be used both as a language for quickly prototyping new oil
recovery simulators, as well as implementing highly efficient industrial simulators.

Three different AD libraries have been implemented in Julia and compared to implementations
from the MATLAB Reservoir Simulation Toolbox (MRST) (MRST Homepage, n.d.), created by
the Computational Geosciences group at the department of Mathematics and Cybernetics at
SINTEF Digital. MRST is a toolbox designed for quick prototyping with high-level- and
user-friendly AD tools. The first two implementations in Julia, ForwardAutoDiff(FAD)
and CustomJacobianAutoDiff(CJAD), were inspired by the AD tools in MRST. The third
implementation, local AD, was inspired by the implementation of AD in the Open Porous Media
(OPM) Flow Simulator (Open Porous Media Homepage, n.d.). OPM is a toolbox developed by the
same group at SINTEF for creating efficient industrial simulators in C and C++.

To benchmark the AD methods, two simulations were implemented. The first one was a single-phase
flow solver, simulating the pressure drop in a reservoir when producing oil. FAD was the slowest
method being approximately two times slower than both CJAD and the implementation in MRST.
While CJAD and MRST exhibited similar performance, the method of Local AD was approximately
six times faster than these two. The second simulation was a two-phase flow solver, simulating how
water flows when injected into a reservoir. Analogous to the first simulation, CJAD and MRST yielded
similar performance, while the method using local AD was approximately five times faster.

The benchmarks show promising results suggesting that Julia may be a language enabling making
prototypes of simulators, using a user-friendly AD tool like CJAD, as well as creating high
performance industrial simulators, using an AD tool like local AD.
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Sammendrag

Denne masteroppgaven gir en introduksjon til automatisk derivasjon (AD) og hvordan det kan
benyttes til å beregne den deriverte til hvilken som helst funksjon, med samme presisjon som et
analytisk uttrykk, men uten å innføre beregningskrevende operasjoner. Dette har blitt brukt til å
effektivt løse partielle differensialligninger som beskriver flyt i porøse medier, ved bruk av en endelig
volummetode og diskretisering av gradient- og divergensoperatoren. Målet med avhandlingen har
vært å undersøke om det nye programmeringsspråket Julia kan brukes både som et språk for å raskt
lage prototyper av nye oljeutvinningssimulatorer, samt implementere svært effektive industrielle
simulatorer.

Tre forskjellige AD-biblioteker har blitt implementert i Julia og sammenlignet med implementasjoner
fra “the MATLAB Reservoir Simulation Toolbox” (MRST) (MRST Homepage, n.d.), laget av “the
Computational Geosciences group” ved institutt for matematikk og kybernetikk ved SINTEF
Digital. MRST er et bibliotek som er designet for å raskt kunne lage nye prototyper
av oljeutvinningssimulatorer med høynivå- og brukervennlige AD verktøy. De to første
implementasjonene i Julia, ForwardAutoDiff (FAD) og CustomJacobianAutoDiff (CJAD),
er inspirert av AD-verktøyene i MRST. Den tredje implementasjonen, lokal AD, er inspirert av
implementasjonen av AD i “Open Porous Media (OPM) Flow simulator” (Open Porous Media
Homepage, n.d.). OPM er et bibliotek, utviklet av den samme gruppen hos SINTEF, for å lage effektive
industrielle simulatorer i C og C++.

For å sammenligne AD metodene har det blitt utviklet to simuleringer. Den første implementasjonen
var en en-fase trykkløser, som simulerer trykkfallet i et reservoar når man utvinner olje. FAD var den
tregeste AD-metoden, omtrent dobbelt så treg som både CJAD og implementasjonen i MRST. Mens
CJAD og MRST hadde lignende ytelse, var derimot metoden for lokal AD ca. seks ganger raskere
enn disse to. Den andre simuleringen var en to-fase metning- og trykkløser, som simulerer hvordan
vann strømmer inn i oljefeltet når det injiseres inn i midten av reservoaret. Lignende den første
simuleringen hadde CJAD og MRST lik ytelse, mens metoden som brukte lokal AD var omtrent fem
ganger raskere.

Sammenligningstestene viser lovende resultater som tyder på at Julia kan være et språk som gjør det
mulig å lage både prototyper av simulatorer, ved hjelp av et brukervennlig AD-verktøy som CJAD,
samt å skape høyytelses industrielle simulatorer, ved hjelp av et AD-verktøy som lokal AD.
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Chapter 1
Introduction

1.1 Automatic Differentiation

Automatic differentiation (AD) is a computational method that automatically calculates exact values
for the derivatives of a function. It is, however, not the method of finite differences, nor symbolic
differentiation. The method consists of separating an expression into a finite set of elementary
operations: +,−,∗,/, and elementary functions like the exponential and the logarithm. It then
applies standard differentiation rules to these operations and functions. However, unlike the way
we calculate derivatives by hand, it does not apply differentiation rules to the symbols. Instead,
it proceeds with both the function- and the derivative values for all the elementary steps of the
evaluation. This way, it can calculate the next function- and derivative values, based on the current
values and the rules for the next elementary operation or function. This yields derivative values
that, up to roundoff errors, are as accurate as manually computed derivatives, but without potential
human errors and with low computational cost. AD can be split into two different methods: backward
AD and forward AD. They both obtain the derivatives, but with different approaches, each having
different capabilities. The exact difference and capabilities between the two will be discussed closer
in section 2.1.

According to Baydin et al. (2018), the first ideas of the AD concept emerged in the 1950s (Nolan, 1953;
Beda et al., 1959). More specifically, forward AD was then discovered by Wengert (1964). It is more
difficult to date exactly when backward AD was discovered, but the first article containing the essence
of backward AD dates back to the 1960s (Boltyanskii et al., 1960). After the initial discovery of forward
and backward AD, no significant activities took place for a couple of years, before the method was
rediscovered along with the birth of modern computers and computer languages. The first running
computer program that used backward AD, and automatically computed the derivatives, arrived in
1980 developed by Speelpenning (1980). Further research on the topic was done by, among others,
Griewank et al. (1989). Today, AD is widely used in many applications. One of them is machine
learning that specifically uses the backward AD method to minimize functions.

1.2 Objective of the Thesis

The primary focus of this thesis is to use the forward AD method to solve Partial Differential Equations
(PDEs), using the new programming language Julia; and more specifically, solve PDEs that describe
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1.3 Oil Reservoirs Chapter 1. Introduction

flow in porous media. The objective is to figure out whether Julia can be used as a language both for
rapid prototyping as well as building efficient industrial simulators. The code the thesis is based on
can be found in the open Bitbucket repository (n.d.).

Simulation of flow in porous media can be used in several applications. Examples include modelling
the movement of groundwater reserves, subsurface storage of CO2 to reduce environmental footprint,
and reservoir simulations to maximize the amount of hydrocarbons that can be recovered from a
reservoir. All these are examples of flow below the surface of the earth, but simulation of flow in
porous media can also be used to understand flow inside batteries, fuel cells, textiles, for water
purification, and even to describe processes inside our human bodies. However, this thesis will solely
look at using AD to simulate flow in oil reservoirs.

1.3 Oil Reservoirs

The textbook, An Introduction to Reservoir Simulation Using MATLAB/GNU Octave, by Lie (2019),
offers a thorough review of the properties of an oil reservoir and how numerical simulations can be
used to understand oil recovery processes. I will not provide a comprehensive review of the subject,
as it is outside the scope of this thesis, but I will give a brief introduction to the topic, explaining why
it is of interest to use the new programming language Julia to solve these PDEs using AD.

Lie uses an analogy to explain the properties of an oil reservoir. A simplified model of a reservoir can
be compared to a rigid sponge completely soaked in oil. The sponge is compressed with solid walls
on all sides, preventing any oil from escaping. In reality, oil lies in between tightly compacted sand
and mineral particles that constitute a porous medium with the ability to transmit fluids.

If we drill a hole in one of the solid walls surrounding the sponge to create a well, and provided that
the pressure is high enough, the oil will flow out of the well while the pressure inside the sponge will
decline. In oil recovery, this is called the primary production, during which the reservoir does all the
work and the oil floats out on its own. For most oil reservoirs, primary production will extract up to
30% of the oil in the reservoir. To extract more, we have to apply external pressure to the reservoir. One
of many methods is to pump salt or fresh water into the reservoir through injectors. This increases the
pressure close to the injector and push the oil towards the wells. This is called secondary production.
According to Lie (2019), the average percentage of oil extracted from oil reservoirs on the Norwegian
Continental Shelf is approximately 50%. This means there is still a large quantity of oil we are not able
to extract. An increase in the amount we are able to extract will not only be economically beneficial
for the owners of the reservoir, but it can also help avoiding exploration for new oil reservoirs in more
vulnerable areas. This is why it is so important to be able to simulate the flow inside oil reservoirs. If
we can find optimal and better methods to recover more oil from each reservoir, it can make a huge
impact both financially and environmentally.

1.4 Creating a Simulator

The process of making new simulators for oil reservoir modelling, is typically started by creating
a prototype. The prototype is implemented quickly, and in some cases by using a high-level
programming language, to illustrate what the finished product will do. This is usually applied to a
simplified and conceptual reservoir model, since such prototypes rarely can handle the full extent
of a complete reservoir simulation. After the prototype phase, performance improvements and
further implementations are needed before the actual simulator is ready to perform the simulation
on the full reservoir. The Computational Geosciences group at the department of Mathematics and

2



Chapter 1. Introduction 1.5 Outline of Thesis

Cybernetics at SINTEF Digital has created the MATLAB Reservoir Simulation Toolbox (MRST) (MRST
Homepage, n.d.) for the purpose of prototyping. According to MRST’s homepage, “MRST is not
primarily a simulator, but is mainly intended as a toolbox for rapid prototyping and demonstration
of new simulation methods and modelling concepts.” Most of the tools and simulators in MRST are
surprisingly efficient and perform well, even for medium-sized models of real reservoirs. However,
for more extensive simulations, the Computational Geoscience group recommend using the Open
Porous Media (OPM) Flow Simulator (Open Porous Media Homepage, n.d.). OPM is a toolbox to build
simulations of porous media processes which is mainly written in C and C++.

This is where the problem with the building process of a numerical simulator arises. MATLAB
is a high-level language perfect for quickly making prototypes and demonstrations because of its
easy-to-use mathematical syntax. However, it is not ideal for a final simulator, because it is not
computationally efficient enough. Instead, we have to implement the final simulator in a lower-level
language that is more computationally efficient, such as C or C++. But, these types of languages
are not designed for numerical analysis, hence it usually takes longer time and more programming
effort to create the simulator. Experience shows that the development time is usually reduced if a
prototype is initially created in a high-level scripting language, and then a full-featured simulator
is reimplemented in a compiled language. The disadvantage of this approach is that only a small
amount of the code from the prototype can be used in the final simulator. It is possible to call, for
example, C++ code from MATLAB, but it is difficult to make the languages interact properly. This may
lead to unstable code and is not an optimal solution. The ideal solution would be a language that
supports high-level scripting for rapid prototyping and at the same time offers the full computational
efficiency of a compiled language.

This is where the new programming language Julia comes into play. Julia is a language built from
scratch, with focus on mathematical programming. It is meant to be a language as familiar as
MATLAB in terms of mathematical notations, but as fast as C in terms of computational speed. If
the developers have managed to do this, it will be possible to create prototypes and then further
develop the existing code into high-performing simulators, in one single language. This could
drastically increase the efficiency of creating simulators, not only for oil reservoirs, but for many other
applications.

1.5 Outline of Thesis

The thesis investigates whether Julia is a language that can be used to implement both prototypes
and efficient industrial simulators for flow in oil reservoirs. More specifically, it examines how Julia
performs when implementing AD and using it in oil reservoir simulations. In chapter 2, the thesis
describes the theory behind AD and the difference between backward and forward AD. The chapter
continues by presenting different applications of AD and how forward AD can be used to elegantly
solve PDEs using a finite-volume method and a discretization of the differentiation operators. The
history of Julia, and why it is presumed to be as fast as C, but as convenient as MATLAB, is discussed
in chapter 3. Implementation-specific parts, concerning how high-performing AD tools can be
developed in Julia, is presented in chapter 4. It further describes two implementations and tests them
against a third-party AD-tool in Julia and implementations from MRST. The implemented AD libraries
will then be used in chapter 5 to benchmark the performance in a prototype simulator from MRST,
simulating primary production. Motivated by the results and the characteristics of the problem in
chapter 5, chapter 6 describes another implementation of AD in Julia and benchmarks this new AD
tool against the previous tools for simulating secondary production. Lastly, chapter 7 provides a
summary of the results and a performance review of Julia. It also describes conditions and areas
not tested in this thesis, and outlines problems and challenges that warrants further inquiry.
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Chapter 2
Theory

2.1 Automatic Differentiation

Automatic differentiation (AD) is a method that enables a computer to numerically evaluate the
derivative of a function specified by a computer program with very little effort from the user. If you
have not heard of AD before, the first thing you might think of is algebraic or symbolic differentiation.
In this type of differentiation, the computer learns the basic rules from calculus

d

d x
xn = n · xn−1,

d

d x
cos(x) =−sin(x),

d

d x
exp(x) = exp(x),

and so on, as well as the chain- and product rule

d

d x
f
(
g (x)

)= g ′(x) · f ′(g (x)
)

d

d x
f (x) · g (x) = f ′(x) · g (x)+ f (x) · g ′(x).

The computer will then use these rules on symbolic variables to obtain the derivative of any given
function. This will give perfectly accurate derivatives, but as the function evaluated becomes more
complex, the computed expression for the derivative grows and becomes large. This will make the
evaluation of these derivatives very slow. The reason for this effect, that is often referred to as
expression swell, is that it is difficult to simplify the exact expressions calculated by the symbolic
differentiation. The more complex the function is, the larger will the expression for the exact
derivative become, and for computer programs, which often include if-statements and for-loops, it
can be very difficult to express the derivative efficiently using symbolic differentiation.

If AD is not symbolic differentiation, you might think that it is finite differences, where you use the
definition of the derivative

d f

d x
= f (x +h)− f (x)

h

with a small h to obtain the numerical approximation of the derivative of f . This approach is not

5



2.1 Automatic Differentiation Chapter 2. Theory

optimal because, first of all, if you choose an h too small, you will get problems with rounding errors
on your computer. This is because when h is small, you will subtract two very similar numbers, f (x +
h) and f (x), and then divide by a small number h. This means that any small rounding errors in the
subtraction, which may occur due to machines having a finite precision when storing numbers, will
be amplified by the division. Secondly, if you choose h too large, your approximation of the derivative
will not be accurate. This is called the truncation error. Hence, with finite differences you have the
problem that you need a sufficiently small step size h to reduce the truncation error, but h cannot be
too small, because then you get round-off errors. Finding the correct value for h can be difficult and
wrong choice of h can lead to unstable methods. This is neither what we call AD.

AD can be split into two different methods – forward AD and backward AD. Both methods are similar
to symbolic differentiation in the way that we implement the differentiation rules, but they differ by
instead of differentiating symbols and then inserting values for the symbols, the methods keep track
of the function values and the corresponding values of the derivatives as we go. Both methods do this
by separating each expression into a finite set of elementary operations.

2.1.1 Forward Automatic Differentiation

In forward AD, the function and derivative value are stored in a tuple [·, ·]. This tuple is called an
AD-variable. In this way, we can continuously update both the function value and the derivative
value for every operation we perform on a given AD-variable.

As an example, consider the scalar function f = f (x) with its derivative fx , where x is a scalar variable.
If we evaluate this function for the AD-variable x, represented as the tuple [x, 1], the result will be
the AD-variable [ f , fx ]. In the tuple [x, 1], x is the numerical value of x and 1 = d x

d x . Similar for f (x),
where f is the numerical value of f (x), and fx is the numerical value of f ′(x). We then define the four
elementary arithmetic operators for the AD-variables, such that for functions f and g ,[

f , fx
]± [

g , gx
]= [

f ± g , fx ± gx
]
,

[
f , fx

] · [g , gx
]= [

f · g , fx · g + f · gx
]
,

[
f , fx

][
g , gx

] =
[

f

g
,

fx · g − f · gx

g 2

]
.

(2.1)

It is also necessary to define the chain rule such that for a function h(x)

h
(

f (x)
)= h

([
f , fx

])= [
h( f ), fx ·h′( f )

]
.

Lastly the rules concerning the elementary functions are defined

exp
([

f , fx
])= [

exp( f ), exp( f ) · fx
]
,

log
([

f , fx
])= [

log( f ),
fx

f

]
,

sin
([

f , fx
])= [

sin( f ), cos( f ) · fx
]
, etc.

(2.2)

When these arithmetic operators and the elementary functions are implemented, the program is able
to evaluate the derivative of any scalar function without any user input. Let us look at a step by step

6



Chapter 2. Theory 2.1 Automatic Differentiation

example, where
f (x) = x ·exp(2x) for x = 2. (2.3)

The declaration of the AD-variable gives x = [2, 1]. All scalars can be viewed as AD-variables with
derivative equal to 0, such that

2x = [2, 0] · [2, 1] = [2 ·2, 0 ·2+2 ·1] = [4, 2].

After this computation, we get from the exponential

exp(2x) = exp
(
[4, 2]

)= [exp(4), exp(4) ·2],

and lastly from the product rule, we get the correct tuple for f (x)

x ·exp(2x) = [2, 1] · [exp(4), 2 ·exp(4)]

= [2 ·exp(4), 1 ·exp(4)+2 ·2 ·exp(4)]

[ f , fx ] = [2 ·exp(4), 5 ·exp(4)].

This result equals what we obtain from the analytical expression evaluated at x = 2(
f (x), f ′(x)

)= (
x ·exp(2x), (1+2x)exp(2x)

)
.

2.1.2 Dual Numbers

One approach to implementing forward AD is by dual numbers. Similarly to complex numbers, dual
numbers are defined as

a +bε. (2.4)

Here, a and b are scalars and correspond to the function value and the derivative value, whereas ε is
like we have for complex numbers i 2 = −1, except that the corresponding relation for dual numbers
is ε2 = 0. The convenient part of implementing forward AD with dual numbers is that you get the
differentiation rules for arithmetic operations for free. Consider the dual numbers x and y on the
form of (2.4). We then get the following for addition

x + y = (a +bε)+ (c +dε) = a + c + (b +d)ε,

and likewise for multiplication

x · y = (a +bε) · (c +dε) = ac + (ad +bc)ε+bdε2 = ac + (ad +bc)ε,

and for division

x

y
= a +bε

c +dε
= a +bε

c +dε
· c −dε

c −dε
= ac − (ad −bc)ε−bdε2

c2 −dε2 = a

c
+ bc −ad

c2 ε.

This is very convenient, but how does dual numbers handle elementary functions like sin, exp, log? If
we look at the Taylor expansion of a function f (x), where x is a dual number, we get

f (x) = f (a +bε) = f (a)+ f ′(a)

1!
(bε)+ f ′′(a)

2!
(bε)2 +·· · = f (a)+ f ′(a)bε.

This means that to make dual numbers handle elementary functions, the first-order Taylor expansion
needs to be implemented. In practice, this amounts to implementing the elementary differentiation
rules described in (2.2).
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The drawback of implementing AD with dual numbers becomes clear for functions of multiple
variables. Let the function f be defined as f (x, y, z) = x · y + z. Say we want to know the function
value for (x, y, z) = (2,3,4) together with all the derivatives of f . First we evaluate f with x as the only
varying parameter, and the rest as constants:

f (x, y, z) = (2+1ε) · (3+0ε)+ (1+0ε) = 7+3ε.

Here, 7 is the function value of f , while 3 is the derivative value of f with respect to x ( fx ). To obtain fy

and fz , we need two more function evaluations with respectively y and z as the varying parameters.
This example illustrates the weakness of forward AD implemented with dual numbers – when the
function evaluated has n input variables, we need n function evaluations to determine the gradient
of the function.

2.1.3 Backward Automatic Differentiation

The main disadvantage with forward AD is when there are many input variables and you want the
derivative with respect to all variables. This is where backward AD is a more efficient way of obtaining
the derivatives. To explain backward AD, it is easier to first reconsider the approach for forward AD,
and explain the method as an extensive use of the chain rule

∂ f

∂t
= ∂

∂t
f
(
u1(t ),u2(t ), . . .

)=∑
i

(
∂ f

∂ui
· ∂ui

∂t

)
. (2.5)

Take f (x) = x ·exp(2x), like in the forward AD example (2.3). We then rewrite the function evaluation
as a sequence of elementary functions

x, g1 = 2x, g2 = exp(g1), g3 = x · g2, (2.6)

where clearly f (x) = g3. If we want the derivative of f with respect to x, we can obtain expressions for
all g ’s by using the chain rule (2.5)

∂x

∂x
= 1,

∂g1

∂x
= 2,

∂g2

∂x
= ∂

∂g1
exp(g1) · ∂g1

∂x
= 2exp(2x).

Lastly, calculating the derivative of g3 with respect to x in the same way yields the expression for the
derivative of f

∂ f

∂x
= ∂g3

∂x
= ∂x

∂x
· g2 +x · ∂g2

∂x
= exp(2x)+x ·2exp(2x) = (1+2x)exp(2x).

This show how forward AD can be expressed as using the chain rule on a sequence of elementary
functions with respect to the independent variables, in this case x. Backward AD also uses the chain
rule, but in the opposite direction; it uses it with respect to dependent variables. The chain rule then
has the form

∂s

∂u
=∑

i

(
∂ fi

∂u
· ∂s

∂ fi

)
, (2.7)

for some s to be chosen.

If we again choose f (x) = x ·exp(2x) and expand it using the same sequence of elementary functions
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as in (2.6), the expressions from the chain rule (2.7) become

∂s

∂g3
= unknown

∂s

∂g2
= ∂g3

∂g2
· ∂s

∂g3
= x · ∂s

∂g3

∂s

∂g1
= ∂g3

∂g1
· ∂s

∂g3
+ ∂g2

∂g1
· ∂s

∂g2
= g2 · ∂s

∂g2

∂s

∂x
= ∂g3

∂x
· ∂s

∂g3
+ ∂g2

∂x
· ∂s

∂g2
+ ∂g1

∂x
· ∂s

∂g1
= g2 · ∂s

∂g3
+2 · ∂s

∂g1
.

Substituting s with g3 gives

∂g3

∂g3
= 1

∂g3

∂g2
= x

∂g3

∂g1
= exp(2x) · x

∂g3

∂x
= exp(2x) ·1+2 ·exp(2x) · x = (1+2x)exp(2x).

Hence, we obtain the correct derivative fx . By now you might wonder why make this much effort to
obtain the derivative of f compared to just using forward AD. The answer to this comes by looking at
a more complex function with multiple input parameters. Let f (x, y, z) = z

(
sin(x2)+ y x

)
and

g1 = x2, g2 = x · y, g3 = sin(g1), g4 = g2 + g3, g5 = z · g4. (2.8)

Now the derivatives from the chain rule in Equation (2.7) become

∂s

∂g5
= unknown

∂s

∂g4
= z · ∂s

∂g5

∂s

∂g3
= ∂s

∂g4

∂s

∂g2
= ∂s

∂g4

∂s

∂g1
= cos(g1)

∂s

∂g3

∂s

∂x
= 2x · ∂s

∂g1
+ y · ∂s

∂g2

∂s

∂y
= x · ∂s

∂g2

∂s

∂z
= g4 · ∂s

∂g5

substituting s with g5 yields

∂g5

∂g5
= 1

∂g5

∂g4
= z

∂g5

∂g3
= z

∂g5

∂g2
= z

∂g5

∂g1
= cos(x2) · z

∂g5

∂x
= 2x ·cos(x2) · z + y z

∂g5

∂y
= xz

∂g5

∂z
= sin(x2)+x y

The calculation of the derivatives together with a dependency graph can be seen in Figure 2.1. This
shows that we get all the derivatives of f (x) = g5 with a single function evaluation.
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x y z

g1

^2

g2

g3

g4

*

sin

+

*

g5

2xzcos(x ) + yz xz sin(x ) + xy

zcos(x ) z

z

z

1

Dependency graph (D) ∂g
∂D

2 2

2

5

Figure 2.1: Graphs to visualize the process of backward AD. To the left is a dependency graph of the elementary
functions in (2.8) and to the right are the derivatives of g5 with respect to the dependencies given in the
dependency graph.

Comparing this to the method of dual numbers from subsection 2.1.2, where we would have to
evaluate f three times, this is a big improvement. This illustrates the strength of backward AD –
no matter how many input parameters a function has, you only need one function evaluation to get
all the derivatives of the function.

The disadvantage of backward AD is that to be able carry along function and derivative values
as we did in forward AD, we need to implement the dependency tree shown in Figure 2.1. This
makes the implementation of backward AD much harder than for forward AD, and an inefficient
implementation of this tree will reduce the advantage of backward AD. Also, if f is a vector-evaluated
function f : ℜn →ℜm and not a scalar function, backward AD needs to run m times. Hence, if n ≈ m,
forward AD and backward AD will have approximately the same complexity. This is the main reason
why we in the following will focus on implementing forward rather than backward AD.

2.1.4 Forward Automatic Differentiation with Multiple Parameters

When we are dealing with functions with many input parameters and we wish to implement forward
AD, there are alternative ways of implementing this, rather than implementing with dual numbers
and evaluating the function n times. Neidinger (2010) describes a method that calculates all the
derivatives in one function evaluation. To illustrate this method, consider a scalar function f : ℜn →
ℜ, that we want to obtain the gradient of. Then, the main idea is that we define what we call our
primary variables. This is all the variables in the space that we are currently working in. Each primary
variable is an AD-variable containing the derivatives of itself with respect to all the other primary
variables. Say we have three variables x, y and z, and for any function f (x, y, z) we are interested
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in finding the gradient of f , ∇ f = ( fx , fy , fz )>. To achieve this, we define the corresponding primary
AD-variables

[x, (1,0,0)>] , [y, (0,1,0)>] , [z, (0,0,1)>].

Each primary AD-variable now not only store its derivative with respect to itself, but also the gradient
with respect to all other primary variables. The operators defined in (2.1) and the elementary
functions in (2.2) are still valid, except that scalar products are now vector products. As an example,
let f (x, y, z) = x y z and x = 1, y = 2 and z = 3, then

x y z = [1, (1,0,0)>] · [2, (0,1,0)>] · [3, (0,0,1)>]

= [1 ·2 ·3, 2 ·3 · (1,0,0)>+1 ·3 · (0,1,0)>+1 ·2 · (0,0,1)>]

[ f , ∇ f ] = [6, (6,3,2)>].

This result is equal to the tuple(
f (x, y, z) , ∇ f (x, y, z)

)= (
x y z, (y z, xz, x y)>

)
for the corresponding x, y and z values.

2.1.5 Forward Automatic Differentiation with Vector Functions

For numerical solution of (Partial) Differential Equations, the functions we evaluate as part of the
discretization are usually vector functions and not scalar functions: f : ℜn →ℜm . Neidinger’s method
still applies, with primary AD-variables now being a tuple with a vector in the first element and
instead of the gradient in the second, it is now the Jacobian. For a function f , the Jacobian with
respect to n primary variables is given as

J f =


∂ f1

∂x1
· · · ∂ f1

xn
...

. . .
...

∂ fm

∂x1
· · · ∂ fm

xn

 .

The forward AD method described earlier will be similar for a vector function as it was for a scalar
function. However, going from scalar functions with multiple parameters to vector functions induce
two important differences. The first is that the primary variables need to be initialized with their
Jacobians, and not just with a gradient vector. The Jacobian for a primary variable of dimension n is
the n ×n identity matrix. The second change is that when evaluating new functions depending on
the primary variables, the Jacobians corresponding to the functions will be calculated with matrix
multiplication, instead of vector multiplications as seen in the previous example. As a simple
illustration of the differences, consider the vector function f = 2 ·x ·y for primary variables x,y ∈ ℜ3

(we only consider element-wise multiplication). Initialization of the primary variables gives

x =
1

2
3

 ,

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , y =
4

5
6

 ,

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (2.9)

Here, we have decided an order of the variables in the Jacobian, and further on, we need to be
consistent with this order. The function value of x ·y is found by normal element-wise multiplication.
The Jacobian of x · y is obtained by using the chain rule as defined in (2.1). The difference is now
that we have element-wise multiplication of a vector and a matrix. Element-wise multiplication of a
vector and matrix corresponds to transforming the vector to an n ×n matrix with the values on the
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diagonal. The calculations give

x ·y =
1

2
3

 ·
4

5
6

 ,

4 0 0
0 5 0
0 0 6

 ·
1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

+
1 0 0

0 2 0
0 0 3

 ·
0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1



=
 4

10
18

 ,

4 0 0 1 0 0
0 5 0 0 2 0
0 0 6 0 0 3

 .

Finally, the expression for the vector function f is found by observing that element-wise
multiplication between a scalar and an AD-variable corresponds to multiplying every element in that
AD-variable with the scalar. This gives

f =
 8

20
36

 ,

8 0 0 2 0 0
0 10 0 0 4 0
0 0 12 0 0 6

 .

2.2 Applications of Automatic Differentiation

AD can be used in a wide specter of applications; common for many of them is that we have a
vector or scalar function we want to minimize or find the roots of. This section considers some of
the applications where AD can be used – from solving simple linear systems to solving the Poisson
equation with discrete divergence and gradient operators.

2.2.1 The Newton-Raphson Method

The simplest example for finding roots is for a scalar function f with a scalar input x. Then the
Newton–Raphson method

xi+1 = xi − f (xi )

f ′(xi )
,

for an initial x0, will converge to a root of f given that f is sufficiently smooth. With AD, this is
quite simple to implement, as you only have to define the function f (x), and then AD finds f ′(x)
automatically. You can then use the Newton-Raphson method directly. Exactly the same approach
can be used to solve nonlinear systems in multiple dimensions. As a simple illustration, let us look at
the linear system

Ax = b, (2.10)

which we can write in residual form such that

F (x) = Ax −b = 0.

This means that to solve the linear system in Equation (2.10), we need to find the root of
F (x). By choosing an initial value x0 and observe that since F (x) is linear, the corresponding
multivariate Newton-Raphson method will converge in one step. The general form of the multivariate
Newton-Raphson method is given by

xn+1 = xn − JF (xn)−1F (xn). (2.11)

Here, JF (xn)−1 is the inverse of the Jacobian of F at xn .
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2.2.2 Solving the Poisson Equation

For a simple linear system like Equation (2.10) it may seem a bit unnecessary to make the effort of
using AD to solve for x . We could just as well have used some built in linear solver. But for applications
to the numerical solution of PDEs, this approach greatly simplifies the process of (linearizing and)
assembling the linear systems that appear when you solve the (non)linear system of discretized
equations. Indeed, using Equation (2.11) with AD, all you have to do is implement the discretized
equations in residual form. As a preface to introducing how we will do this, we consider the Poisson
equation

−∇(K∇u) = q, (2.12)

where K is a spatially variable coefficient, and we want to find u on the domainΩ ∈ℜd . Numerically,
this can be done by using a finite volume method. This approach is based on applying conservation
laws inside the domain. By dividing the domain into a grid of smaller cells, Ωi , we can instead of
looking at the Poisson equation in differential form, integrate it over each cell, such that∫

∂Ωi

−K∇u ·nds =
∫
Ωi

q dA. (2.13)

Here, n is the unit normal to the cell Ωi , so Equation (2.13) describes the conservation of mass in
the cell Ωi , where total flux in and out of the boundary of Ωi is equal to the total accumulation from
source and sink terms insideΩi . For simplicity, we define v =−K∇u as the flux. As a simple example
to begin with, we will consider Figure 2.2, which shows two cells Ωi and Ωk . The average values of u
inside the two cells are ui and uk , and the interface, or facet, between the cells is defined as Γi ,k .

Ωi Ωk

ui uk

Γi,k

ni,k

ci,k u~i,k

Figure 2.2: Figure of two adjacent cells Ωi and Ωk . The average value of the cell is given by ui . The boundary
between the cells is Γi ,k with value at the center equal ũi ,k and outward normal vector ni ,k

Now, the flux through the common interface Γi ,k can be computed by

vi ,k =
∫
Γi ,k

v ·ni ,k ds. (2.14)

The integral in (2.14) can be approximated by the midpoint rule with ṽi ,k as the flux on the midpoint
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of Γi ,k . If we let Li ,k be the length of Γi ,k , then

vi ,k ≈ Li ,k ṽi ,k ·ni ,k =−Li ,k K∇ũi ,k ·ni ,k .

Here, ũi ,k is the value of u at the centre of the facet Γi ,k . The problem we now face is that in the
finite volume method, we only know the average value of u over each cell. If we use a first-order
reconstruction, the reconstructed value at the center of cell Ωi coincides with the average value ui .
Assuming the underlying function is sufficiently smooth, we can then use a finite-difference method
to approximate the gradient of u on Γi ,k , expressed in terms of the value ui at the cell center and the
value ũi ,k at the midpoint of the facet,

vi ,k ≈ Li ,k Ki
(ũi ,k −ui )ci ,k

|ci ,k |2
·ni ,k .

Here, ci ,k is the vector from ui to ũi ,k as seen in Figure 2.2. For brevity, we collect all the known
quantities into a scalar quantity, which we call the transmissibility,

Ti ,k = Li ,k Ki
ci ,k

|ci ,k |2
·ni ,k . (2.15)

Because we know that the amount of flux from cellΩi toΩk must be the same as fromΩk toΩi , only
with opposite sign, we have the relation vi ,k =−vk,i . In most cases, we will also have continuity across
the interface, so that ũi ,k = ũk,i . Hence, we have the relation

vi ,k = Ti ,k (ũi ,k −ui ) − vi ,k = Tk,i (ũi ,k −uk ).

By subtracting the two equations for vi ,k and moving Ti ,k and Tk,i to the other side

(T −1
i ,k +T −1

k,i )vi ,k = (ũi ,k −ui )− (ũi ,k −uk )

vi ,k = (T −1
i ,k +T −1

k,i )−1(uk −ui ) = Ti k (uk −ui )
(2.16)

we manage to eliminate ũi ,k and get a computable expression for the gradient of u. This is called
the two-point flux-approximation (TPFA) (Lie, 2019). Now that we have an approximation of the flux
through the interface betweenΩi andΩk , we get that Equation (2.14) can be approximated by∑

k
Ti ,k (uk −ui ) = qi , ∀Ωi ∈Ω, (2.17)

where qi is the integrated accumulation over cellΩi . Now, we can get a linear system of the form Au
= b, which in residual form becomes F(u) = Au - b = 0 where

Ai , j =
{ ∑

k Ti k if j = i
−Ti j if j 6= i .

This means we can solve the Poisson Equation (2.12), using the scheme explained in (2.11) and by
having u as an AD-variable. For this simple Poisson equation, we still only end up with a linear
system of equations that we may as well solve without AD. The only benefit is that we never need
to form the matrix A explicitly, which can be bit complicated for more complex grids. For nonlinear
PDEs, we would also need to linearize the local discrete equations, and the construction of the matrix
A generally becomes trickier. The ease of using AD becomes clearer when we combine it with the
discrete differentiation operators that will be defined in the next subsection.
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2.2.3 Discrete Differentiation Operators

To show the real elegance of using AD to solve PDEs, we want to create a framework in which we have
defined discrete divergence and gradient operators such that we can write the discrete equations we
want to solve on a similar form as in the continuous case. We also want to be able to do this no matter
how complex and unstructured our grid is.

Instead of the simple two-cell grid we used in Figure 2.2, we now consider a general polygonal grid.
Figure 2.3 illustrates an example, in which all cells are quadrilaterals. To define the discrete gradient-
and divergence operator, we need some information about the topology of the grid. The grid can be
described in terms of three types of objects: cells, facets and vertices. The cells are each Ωi ⊂Ω. In
our two-dimensional case, the facets are simply the lines that delimit each cell, and the vertices are
the endpoints of each facet. In addition, we introduce nodes. In the case demonstrated by Figure 2.2,
we had two nodes, ui and uk , and for the finite-volume method they are the average value of u on
the corresponding cell. Each cell and facet has physical properties like area or length, and centroid or
centre. Each facet also has a normal vector.

f 
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Figure 2.3: Figure of a general polygonal grid with the mapping cell to facets and facet to cells.

Figure 2.3 shows how we can introduce two different mappings that explain the relation between the
cells and the facets. The mappings for cell 5 and 8 are displayed to the right. The first relation, F (c),
is the mapping from cell c to their delimiting facets f . The second mapping, Ci ( f ) for i = 1,2, is a
mapping from a facet f to the two cells C1 and C2 that share this facet. All these properties will be
used to create the discrete divergence and gradient operators.

We now have all the physical properties of the grid we used to attain the formulae in Equation (2.17).
From these, we want to create discrete divergence and gradient operators that correspond to the
continuous equivalents for this grid. Consider the Poisson Equation (2.12) for the function u. Then
the discrete gradient operator for a facet f is defined as

dGrad(u)[ f ] = u[C2( f )]−u[C1( f )], (2.18)

where u[Ci ( f )] is the value of u at the cell corresponding to Ci ( f ). For the divergence operator, we
remember the expression we found for the flux through a facet in Equation (2.16). Let vi ,k = v[ f ],
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where f is the facet between cell i and cell k. Since the divergence in a cell is the same as the sum of
flux leaving and entering the cell, the discrete divergence operator for cell c is defined as

dDiv(v)[c] = ∑
f ∈ f (c)

sgn( f )v[ f ]

where the function sgn( f ) is defined as

sgn( f ) =
{

1 if c ∈C1( f )
−1 if c ∈C2( f ).

The discrete operators dDiv and dGrad can be represented in terms of sparse matrices that are
simple to form from the mappings F and C1,C2; see Lie (2019) for more details.

The extra d in front of the names stands for discrete and is included so that we later avoid name
collision with Julia’s built in div function. Now we can create discrete divergence and gradient
operators, only based on the topology of the grid, so that the discrete Poisson equations we want
to solve can be written very similar to the continuous case

−∇(K∇u)−q = 0 ←→ F(u) =dDiv(T dGrad(u))−q = 0.

Here, T is the transmissibility defined in (2.15). The notation for the discrete equations is clearly
similar to the continuous case, and we can actually read the discrete expression and directly
understand what equation we are trying to solve. For this simple Poisson equation, we will still have
a linear system and we would not necessarily need to use AD to solve it. But for more complex
problems, we can derive the discrete divergence and gradient operators in the same approach for
any type of grid and even though the system is non-linear, it will be easy to solve using AD and the
Newton-Raphson method. An example of this can be seen in chapter 5.

16



Chapter 3
Julia

Julia is a new programming language that was created by Jeff Bezanson, Alan Edelman, Stefan
Karpinski and Viral B. Shah at Massachusetts Institute of Technology (MIT) (The Julia Lab, n.d.). The
language was created in 2009, but was first released publicly in 2012. In 2012 Bezanson et al. (2012)
said in a blog post

We want a language that’s open source, with a liberal license. We want the speed of C with
the dynamism of Ruby. We want a language that’s homoiconic, with true macros like Lisp,
but with obvious, familiar mathematical notation like Matlab. We want something as
usable for general programming as Python, as easy for statistics as R, as natural for string
processing as Perl, as powerful for linear algebra as Matlab, as good at gluing programs
together as the shell. Something that is dirt simple to learn, yet keeps the most serious
hackers happy. We want it interactive and we want it compiled. (Did we mention it should
be as fast as C?)

3.1 Characteristics of Programming languages

To understand why the creators of Julia wanted to build this new programming language, we need to
have a closer look at what type of programming languages are out there already, and what separates
them. All programming languages that are used in numerical applications are written in a high-level
language. This is a language that is easily readable for a human. The code that is written is called
source code. The source code needs to be translated for the machine to understand it and the
translated code is called machine code. How this translation happens is a big part of what gives
the different languages different capabilities. I will not give a full review of the subject, as it is too
comprehensive for this thesis, but try to scratch the surface such that the different capabilities of the
different languages become clear.

3.1.1 Type Checking

Firstly, before the translation happens, the program needs to be type checked. This consist of
verifying that the variables are not set to unsupported types. For example, a simple array consisting
of integers cannot suddenly at a point in the program hold a string in one of its elements. There
are two ways of type checking, the first is called static and the second is called dynamic. In a static
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language each variable needs to have a predefined type and they are checked before the program is
executed. We say that type checking happens before run-time. In addition, a variable cannot change
type in its scope. The scope of a variable can quickly be explained as the part of the program where
the variable is functioning. In dynamic languages the types of the variables do not need to be known
before run-time. Type correctness is checked at run-time, or in other words, continuously as the code
is executed. A variable can also change type in its scope. Static languages are faster in the execution
since it does not need to check for types as it is already done. You will, however, have to wait for
the type checking to finish before the program can be executed. Dynamic languages are slower but
the continuous type checking enables language designs that optimizes the coding process such that
you can implement your program with less code. The first and most obvious difference from static
languages is that you do not have to define what types each variable is. The type checking will find
this out on its own at run-time. In addition, it opens up for a feature called metaprogramming. This
is programs that can take in other code as input and modify it such that implementing your code can
be done more efficiently and faster. More specifically how this can be used will be discussed closer in
section 3.3.

3.1.2 Compiled and Interpreted Languages

The next translation difference between the languages is whether the source code is compiled or
interpreted. A compiled language translates the source code to machine code before run-time while
an interpreted language translates the code at run-time. A simplified visualization of how run-time
compilation works, is that for each line of code the source code is first translated and then executed.
Compiled languages are faster in the execution than an interpreted language. The reason for this is
that when it translates all the code beforehand it can optimize the code that will be executed. You
will, however, have to wait for the compiler to finish translating before the program can be executed.
Hence, using an interpreted language can be faster when developing programs, as you do not have to
recompile your entire program every time you have made a small change. There is also a third way
to translate source code into machine code, called Just-In-Time compilation (JIT compilation). JIT
compiled languages are a combination of compiled and interpreted languages. It compiles blocks of
the source code such that it can do optimizations like compiled code, but at the same time it does not
need to compile the whole source code before it executes the program. In this way it behaves like an
interpreted language, but with the speed advantages of compiled languages. In most cases however,
it will be slower than regular compiled languages. Disadvantages for JIT compiled languages is extra
memory usage and that writing a JIT compiler is more difficult than other compilers. The latter does
not affect the end user of the language.

3.1.3 Languages for Numerical applications

For numerical applications we can separate the most commonly used languages into two groups.
The first group is static and compiled languages like C, C++ and Fortran. These are fast executing
languages, but the development time of the programs is longer. The second group are dynamic
and interpreted languages like the well known MATLAB and Python (in 2015 MATLAB introduced
a new execution engine that uses JIT compilation (Shure, 2016). However, MATLAB is still a dynamic
language that function like a fully interpreted language). These languages are easier to use if you want
to create numerical simulations, but they execute slower than C, C++ and Fortran. Julia is a dynamic,
but (JIT) compiled language. As the creators said in the blog post from 2012: Julia is supposed to have
“(...) familiar mathematical notation like Matlab”, be “(...) as powerful for linear algebra as Matlab”
and at the same time be as fast as C. Summed up their goal has been to make a language that is as easy
to use as an interpreted and dynamic language, but with the speed of a compiled and static language.
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Based on this description, Julia seems to be the perfect language for numerical simulations.

3.1.4 Source Code Example

So far in this chapter, I have discussed what separates the languages concerning type checking and
how the source code is translated to machine code. These differences will in return affect the syntax
of the languages and how we can write the source code. Below I have an example illustrating different
implementations of an example in Julia, MATLAB and C++. The example consists of writing a program
that creates two random vectors of length n, element-wise multiply them together and print the
resulting vector in a readable way. This example is first implemented in Julia, where the random
vector is created using rand(n), the element-wise multiplication is performed with the .* operator
and the result is printed with the println(...) function:

� �
## Code example from Julia
n = 5
v = rand(n)
w = rand(n)
elementProduct = v .* w
println("Element-wise product of two random vectors:")
println("$elementProduct")� �

Very similar to the Julia implementation we have the same program in MATLAB:

� �
%% Code example from MATLAB
n = 5;
v = rand(n,1);
w = rand(n,1);
elementProduct = v .* w;
fprintf('Element-wise product of two random vectors:\n');
disp(elementProduct)� �

The implementations only have a couple of small syntax differences, and they both implement the
example efficiently with few lines. C++ on the other side is not created specifically for mathematical
programming and without importing any external libraries (except fromiostream, which is needed
to print the result), the implementation of the example becomes much more comprehensive1:

� �
// Code example from C++
#include <iostream>
int main() {

int n = 5; int v[n]; int w[n]; int ElementProduct[n];
for (int i = 0; i<n; i++){

v[i] = rand();
w[i] = rand();
elementProduct[i] = v[i] * w[i];

}
std::cout<<"Element-wise product of two random vectors:"<<std::endl;
for (int i = 0; i<n; i++){

if (i == n-1){
std::cout<<elementProduct[i]<<std::endl;

} else{
std::cout<<elementProduct[i]<<", ";

}
}return 0;

}� �
1Lambda expressions are an alternative to make the code more compact, but this can often lead to less readable code.
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The first obvious difference is that C++ is not a scripting language like MATLAB and Julia. This means
that code we want to execute, needs to be inside a function. This could contribute making the
implementation of new code more tedious in C++, than in MATLAB and Julia. From the declaration of
the variables, it is clear that C++ is a static language, where each variable needs to have a predefined
type. Lastly there are no built-in functions to create a random vector, element-wise multiply vectors,
nor printing vectors. These operations need to be implemented and shows how C++ is a lower-level
language than MATLAB and Julia.

You could argue that this comparison is unfair for C++, as you would either import libraries that have
functions to create random vectors, do element-wise multiplication and print vectors, or you would
overload operators to do this. By either using such libraries or implemented operators, we would
be able to implement the example more compact like in Julia and MATLAB. However, the example
illustrates some of the differences between two languages created with mathematical programming
in mind and a language that is not.

3.2 History of Julia

The process of creating a new programming language is long. In 2009 the creators began the project
of creating Julia and in the blog post from Bezanson et al. (2012), they said “It’s not complete, but it’s
time for a 1.0 release — the language we’ve created is called Julia”. In a new blog post from August
8. 2018 (Julia Community, 2018), where they released the actual version 1.0, they admitted that they
had jumped the gun a little with the mentioning of v1.0 in 2012, as it took more than six years before it
actually happened. But after almost ten years of development v1.0 of the Julia language was released.
The major consequence of a 1.0 release is that from this version and on, they guarantee backward
compatibility. When they did not guarantee backward compatibility, code that worked on version
0.1, 0.2, etc., would not necessarily run on newer versions of Julia. But from v1.0, all code that run on
this version, will also run on future releases. This was a huge milestone for the Julia language.

A consequence of the non-backward compatibility is that when you search the internet for help in
Julia, currently less than one year after the v1.0 release, you could end up finding solutions to your
problem that no longer works. Hence, as of now you need to be careful and check the date of the
answers, and keep in mind, if it is from before v1.0, it might no longer work. This can at sometimes
be frustrating, especially when you try to learn the language. However, now that there is backward
compatibility for future releases, as time goes by, this problem will disappear as pre-v1.0 answers will
eventually drown by post v1.0 answers.

Since Julia is an open source and free program to use, one of its strengths is that developers can
contribute by creating useful programs that they share with the other users. One example of this is the
Integrated Development Environment (IDE), Juno (n.d.). Juno is a program to help writing Julia code
easier and is created by mainly two developers, Sebastian Pfitzner and Mike J. Innes. Juno gives the
coder an environment where it is easy to run your Julia code, you get auto completion when writing
your code, it has built in plotting panes to visualize results, and much more. The program is open
source and free to use, and if you look at Juno’s Github page (n.d.), there are many other contributors
to the IDE other than Pfitzner and Innes. These are developers that have either found an error in
the existing code or made a feature they wanted for the IDE. This shows the strength of the code
being open source – the community can contribute to the code database. This will help finishing
improvements and error corrections to the code database quicker. This is why v1.0 of Julia was such a
milestone. Now that Julia has guaranteed backward compatibility, there is a lot easier for developers
to justify spending time to develop programs for Julia. The developers now know that the work they
put in writing Julia code will not be in vain, as the code will work on all future releases of Julia.
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3.3 Metaprogramming in Julia

In the last year there have been published numerous projects that makes coding in Julia easier.
A lot of these projects exploit that Julia is a dynamic language and that it has metaprogramming.
In the blog post from Bezanson et al. (2012) the creators says that Julia shall contain true macros
like the programming language Lisp (Lisp language, n.d.). Macros are functions that are using
metaprogramming to modify your existing code to give extra functionality. The macro functions in
Julia are easily recognized by an "@" in front of the function name. To use a macro function on any
function, you simply call the macro function before the original function call. I will now show four
examples of macro functions in Julia that are very useful when creating numerical simulations.

3.3.1 Profiling

Profiling is an effective method to obtain overview of where bottlenecks lie in a code when trying
to optimize its performance. The method consists of taking snapshots of the code with small time
intervals and for each snapshot we register what function we are at and all the functions that have
been called to get to this function. The latter is called the stack trace. By counting how many times
a function is in the stack trace, we get an overview of how much time we spend in each function and
where they are called from. Since we only register the number of times we have observed being in
each function, this will not give a perfect picture on how much time we spend on all functions. We
even risk not registering all the functions we use, but since the time interval between the snapshots
are small (e.g. every tenth microsecond), a function that is not registered will not be interesting to
optimize, as it is already very fast.

Figure 3.1: Interface in Juno when using the @profiler macro tool for a simple test case. The left-hand side
shows the code profiled and the right hand side shows the result visualized. Since the visualization is interactive
I have added extra text to show which block represents which line in the code.

Figure 3.1 shows the interface from the Juno IDE using the@profilermacro function (Juno profiler,
n.d.) for a simple test case. The left hand side of Figure 3.1 shows a test case with a main() function
that creates a random variable x of length z. It then calls func1(x) that adds 1.0 to each element
of x. Lastly it calls sumArray(x) that sums up all the values of x and uses func2(x,i) to set
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all values of x to zero. @profiler is a specific Juno macro that uses the built in @profile in
Julia (Profile.jl, n.d.) to profile the main() function, but in addition it creates the right hand side of
Figure 3.1 which shows the profiling result. Since the Profiler pane is interactive, I have added extra
white text for visualization. Each block represents one specific operation inside the code and the
wider the block is, the more time is spent in that operation. The vertical axis represents how deep
into the stack trace the operation is. For Figure 3.1 line 21(L21) and 22 (L22) are at top of the stack
trace. We can also see that we spend more time in func1(x) than sumArray(x). The time spent
on each line can also be seen by the blue bars on each line. If we say L21 and L22 is at depth 1, then line
13 and 14 is at depth 2. The getindex and + blocks are built in functions in Julia that are called from
line 4 in func1(x). These functions are deeper than line 13 and 14 at depth 3. Technically it should
have been an extra block underneath line 21 that represents line 4 to get the full stack trace. The only
explanation I have found for why this is not part of the visualization is that the@profiler tool is still
a work in progress, and that it does not work perfectly just yet. However, this tool is super-efficient to
find bottlenecks in your code, especially when you have a larger program than the simple example in
Figure 3.1.

3.3.2 Debugger

Many IDEs for different languages have the ability to debug code. This is a tool to step into your
functions and execute line by line to reveal errors and bugs in your code. Recently, on March 19.
2019, Holy et al. (2019) published a debugger for Julia. This can be used directly in the terminal using
the @enter macro function or as a built-in debugger in Juno with Juno.@enter. Figure 3.2 shows
the interface of Juno’s debugger for a simple test function. With this you have the opportunity to

• Execute the code, step by step.

• See the next function or operation that will be executed.

Figure 3.2: Juno’s interface in debugging mode.
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• See the values of the variables in the workspace.

• Work with the variables from the workspace at their current state.

• See the current call stack (or the stack trace) which shows how you got to this part of the code.

• Set breakpoints such that you can execute your code until the breakpoint.

• Make corrections to the code that will impact the execution of the code immediately.

The opportunity to use a debugger to find bugs and correct your code can be very valuable and, in
some scenarios, save the programmer a lot of time.

3.3.3 Benchmarking

When writing code for numerical simulations, or any other code for that matter, it is interesting to
benchmark the simulation. Benchmark will in this thesis refer to testing the time spent to execute
the function and the memory usage and compare it to other alternative implementations. Julia has a
built in @timemacro function (@time docs, n.d.) that returns the time spent to execute the function,
together with the number of memory allocations and total memory used. This is a great tool, but
especially time can be difficult to measure accurately. This is because there are numerous of other
processes happening on your computer that are impossible to control. Examples of this can be that
you might get an email while you execute your code, or the computer decides to take backup of some
of your files. All these uncontrollable factors can affect the time spent to execute a simulation.

An option to reduce possible sources of errors is to run the benchmark multiple times and use
the average time spent. However, then you have to write this extra code every time you want to
benchmark a function. BenchmarkTools (n.d.) is a library that gives you a macro function called
@btime that does exactly this so that you do not have to write repetitive code. It uses @time
multiple times to get a result that is less prone to sources of errors. The primary macro function from
BenchmarkTools is however @benchmark which returns minimum, maximum, mean and average
time, together with memory allocation and usage, and information on how many samples it has
taken. All this is easy to use because of Julia’s metaprogramming. It makes it quick and safe to
benchmark all types of simulations and codes, without repeating your source code.

3.3.4 Parallel Computing

Parallel computing is wide topic that can be performed at many levels. However, the main idea is to
split a task into smaller problems and execute them simultaneously. New computers are delivered
with multi-core processors, giving them the ability to perform multiple tasks simultaneously. The
speedup for programs using parallel computing compared to regular linear computing can be up to
the number of cores, and in best case scenarios, the speedup can actually be even more than the
number of cores. In these cases, the extra speedup is an effect caused by the memory allocation
becoming easier when the tasks executed is split up into smaller problems. However, for the
computer to be able to perform parallel computing, the source code needs to be written such that
it supports parallelization. This parallelization of the code is important, because even though the
possible computational gain from parallelization can be huge, a badly written parallel code can
execute slower than the serial equivalent.

In Julia, parallel computing is implemented using metaprogramming (Parallel computing Julia docs,
n.d.). There are different types of parallel programming that are implemented, but I will focus on
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what is called multi-threading. Multi-threading means that we have different threads that perform
different tasks simultaneously. By using the Threads.@thread macro in front of a for-loop, Julia
will automatically split the different iterations between all the available processing cores. The Julia
documentation has a good example on how this works. The example consists of initializing a vector,
a, containing only zeros and loop through it. The iterations are happening in parallel and each
element in a becomes the identification number of the core that performed the iteration. The
example code can be seen below:

� �
a = zeros(8)
Threads.@threads for i = 1:8

a[i] = Threads.threadid()
end
println(a)
## [1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0]� �

In the last line, the output of println(a) is commented. We can see that the example has been
executed with four available cores, and that each core has performed two iterations. This use of
metaprogramming to parallelize code is very elegant and makes parallelization of code very easy.
However, as warned in the Julia documentation, the implementation of multi-threading is, at the
moment of writing this thesis, experimental. This means that it can work for some examples and
for others it will crash and not work. For the simple example displayed above, it will work, but
for more extensive examples, the program will crash. The use of multi-threading has been tried
applied to the methods described in this thesis, but unfortunately the multi-thread macro functions
are too unstable to handle these cases. However, it is an interesting feature to look into when the
development has come further, and the macro functions are more stable.

Subsection 3.3.1, 3.3.2, 3.3.3 and 3.3.4 are all great examples of how powerful tools, that help
developers code, are being created less than a year after v1.0 of Julia was released. This community,
together with the ideas of a very fast language, makes Julia a very interesting language to try out and
to see what is possible to achieve concerning simplicity of code writing and execution performance.
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Implementation

This chapter will give implementation-specific details on how to implement AD in Julia and perform
benchmarks comparing AD libraries in both Julia and MATLAB.

4.1 Automatic Differentiation in Julia

As discussed in chapter 3, Julia seems to be the perfect language for numerical applications and it
would be interesting to see how it performs compared to MATLAB. There are already some third-party
AD-packages in Julia that can be used. Most of them are backward AD-packages designed for machine
learning and two examples are AutoGrad (Yuret, 2016) and Zygote (Innes, 2018). The reason why
AD-packages for machine learning are based on backward AD is that machine learning, without going
to deep into the subject, largely amounts to the minimization of functions with a large number of
input parameters, but with only one output parameter. As discussed in subsection 2.1.3, backward
AD is much more efficient than forward AD in these types of evaluations. For numerical applications
there are usually many input parameters and output parameters. Hence, there is no clear advantage
of using backward AD compared to forward AD.

There is one package using forward AD in Julia and it is called ForwardDiff (Revels et al., 2016).
ForwardDiff uses dual numbers, as explained in subsection 2.1.2, extended to multiple dimensions.
This is called multidimensional dual numbers and a vector x of length n is represented as

x =



x1 +ε1
...

xi +εi
...

xn +εn

 .

This package works very well for some applications, but especially for numerical solution of PDEs it
has some limitations that are not ideal. Examples are

• The function to differentiate can only accept a single argument. This is possible to work around;
if you have vector function f with input parameters x, y, z ∈ ℜn , you can merge them into one
vector of length 3n and then obtain the Jacobian. Although this works, and you get the correct
answer, it is not optimal as you would have to make local workarounds to make the code work,
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causing unreadable code.

• The function we want to differentiate must be on the form of a generic Julia function, such as:
g (x) = 3x ∗ x. Here x ∗ x symbolizes element-wise multiplication. This means that if we have
a function like h(x) = 3x ∗ x + sum(x), where all elements in g (x) are added with the sum of all
elements in x, it will not be possible to use ForwardDiff to obtain the Jacobian. This limitation
also prevents us from having a function that we evaluate for all points, and then add boundary
conditions for some points later. This is a feature that is essential in PDE-based simulators.

• The Jacobian calculated by ForwardDiff is a full matrix. In some cases, the Jacobian is dense
anyway, so this will not have any major adverse effects, but in many numerical applications,
and particularly in numerical solution of PDEs, the Jacobian will be sparse. By representing a
sparse matrix on a full matrix format, a lot of potential computational efficiency is lost.

4.2 Implementation of Automatic Differentiation

When it comes to efficient implementation of AD, there are two factors to consider. Firstly, it must
be easy and intuitive to use. Secondly, the code must be efficient as it will be used in computational
demanding calculations. A convenient way to store the AD-variables in Julia is to make a structured
array (struct) that has two member variables, val and jac, that store respectively the values and the
corresponding Jacobian

� �
struct AD

val
jac

end� �
The val variable is a vector with elements of type Float64. If the AD-variable is only a scalar, the
implementation can either stick to val being a vector of length one, or it can be a scalar. Always
representing val as a vector is most consistent and can avoid problems that may occur if we do not
know what types the AD struct contains. When it comes to the Jacobian, there are multiple ways of
storing the matrix. Depending on the application, how much, and what type of manipulation of the
matrix you are going to do, the choice is based on efficiency and convenience. I will describe two
different methods on how to store the Jacobian. Both implementations are inspired by two different
implementations in MRST.

4.2.1 ForwardAutoDiff (FAD)

In the first implementation, the Jacobian, jac, is represented as a list of sub-blocks. Each element in
the list is a sparse matrix that represent the Jacobian with respect to a single primary variable. This
implementation gives the freedom to easily work with the sub-blocks of the Jacobian that correspond
to a single primary variable. Before introducing the second implementation of the Jacobian, I will
continue to explain the implementation of what I have called ForwardAutoDiff(FAD), which is
defined with the following struct:

� �
struct FAD

val::Vector{Float64}
jac::Vector{SparseMatrixCSC{Float64,Int}}

end� �
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To obtain a working AD library, we need to implement operators for the FAD data structure. The
importance of how you implement the AD operators and elementary functions can be expressed in
a short example: Assume you have two FAD variables x and y and that you want to compute the
function f (x, y) = y +exp(2x y). If the implementation is based on making new functions that take in
FAD-variables as input parameters, the evaluation of f will look something like this:

f = FADplus(y ,FADexp(FADtimes(2,FADtimes(x, y)))).

This is clearly not a suitable way to implement AD as it quickly becomes difficult to see what type of
expression it is. If you did not know what type of function f is, it would take you quite some time to
figure it out. And more importantly, the possibility for human errors becomes very large when you
have to write unreadable code like this. This approach should be avoided.

Neidinger (2010) and Lie (2019) suggest a much more elegant implementation in which one, instead
of making new functions that take in FAD-variables as parameters, overloads the standard operators
(+,−,∗,/) and the elementary functions (exp, sin, log, etc.). This is where the elegance of having
a custom FAD struct appears. In Julia, we can use multiple dispatch to call our implementation of
standard operators and elementary functions when they are used onFAD structs. A quick explanation
of multiple dispatch that satisfies our needs is that the compiler at run-time understands what types
are given as input for either an operator or a function and chooses the correct method based on this.
To demonstrate, the following function

� �
import Base: +
function +(A::FAD, B::FAD)

return FAD(A.val + B.val, broadcast(+, A.jac, B.jac))
end� �

overloads the + operator. Here, we import the + operator from Base (which is where the standard
functions in Julia lie) and overload it for FAD variables. For brevity, I have removed checks and edge
cases and only left the method for FAD variables with equal length. The broadcast function adds each
Jacobian for each primary variable together. This broadcast function can also be called by adding a
dot (.) in front of the function or operator. From now on this element-approach will be used instead
of broadcast(...). The implementation of the + operator above is only used when there are
FAD variables on both sides of the operator. Hence, if z = x + y is computed for x = 1 and y = 3,
Julia understands that it is not the definition above, but the normal addition for integers it should
use. But if x, y = initialize_FAD(1,3) is declared, so that x and y both are FAD variables, then
Julia’s multiple dispatch will understand that the new definition of the + operator should be used on
the expression z = x + y . What we need to remember is that if I now write z = x +3, with x as a FAD
variable, Julia will deploy an error message. This is because we also have to implement

� �
import Base: +
function +(A::FAD, B::Number)

return FAD(A.val .+ B, A.jac)
end
+(A::Number, B::FAD) = B+A� �

Here, the first function will be used if the + operator is used with a FAD variable on the left-hand side
and a number on the right. The last line is a compact way of writing the opposite function, which will
be used when the number is the left-hand argument of the + operator. We can also observe that in the
calculation of the new val variable, the dot operator for broadcast(...) is used, since A.val
is a vector. Once all possible options are implemented for the four elementary algebraic operators,
as well as for elementary unary functions, we can simply write f = y + exp(2∗ x ∗ y) and Julia will
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understand that it is our implementation of +, ∗ and the exponential function that shall be used. The
variable f will now become a FAD-struct with the correct value and derivatives.

In some situations, like in chapter 5, we want to take the sum of all the elements in the vector. If we
look at how we can overload the sum function, one might think that we would try something like

� �
import Base: sum
function sum(A::FAD)

## Overload sum
end� �

which would indeed work. Nonetheless, a more elegant approach that fully exploit Julia’s multiple
dispatch, would be to overload the iterate function. This function explains how we shall iterate
through an AD variable:

� �
function iterate(iter::FAD, state = 1)

if state > length(iter.val)
return nothing

end
return (iter[state], state + 1)

end� �
Now, the built-in sum function will work on AD variables since it knows how to iterate through the
variables. When it adds up the values, the + operator we defined above is being used, and not only
that. All built-in functions that iterate through the input will also work (given that the functions they
use on the variable also are overloaded). As an example, if we now overload the division operator as
well, the Base function mean will also work on FAD variables with no extra work.

4.2.2 Element-wise and Vector Multiplication

In mathematical programming languages like MATLAB and Julia, there is a difference between the ∗
and .∗ operators. The first operator, ∗, is regular vector multiplication, meaning if v is a row vector
and u is a column vector, both of length n, then v ∗u is the normal vector product that results in
a scalar, whereas u ∗ v gives an n ×n matrix where each row in the product is v multiplied by the
corresponding row value of u. An attempt to evaluate u ∗u will end in an error message saying that
“The dimensions do not match matrix multiplication”.

The .∗ operator, on the other hand, represents element-wise multiplication. This means that if we
have regular column vectors like u and w = v ′, where w is the transpose of v , the evaluation of u.∗w
will be element-wise multiplication of u and w , into a new vector of the same dimensions as u and
w . Here, one needs to make a choice in the implementation of multiplication and division for AD in
Julia, because as of now, there are no good ways of overloading any dot operators for custom types
such as FAD. Julia issue:dot operators (2017) explains the problems of overloading the element-wise
.∗ operator, and states that there is no good way of actually doing this. The issue has still not been
resolved. With this in mind, and that there will only be used element-wise multiplication in this
project, I have decided that I herein redefine ∗ and implement it as element-wise multiplication. This
means that if I have written regular multiplication expressions consisting of at least one FAD variable,
element-wise multiplication will be executed.
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4.2.3 Optimizing ForwardAutoDiff

By looking closer at the implementation of the Jacobian in FAD, we can find that in some cases there
are better approaches to storing the Jacobian that will gain computational efficiency. Before looking
closer at the specific situations, I will explain how the sparse matrix type SparseMatrixCSC, that
FAD uses, is built up, and how it works. SparseMatrixCSC stands for Compressed Sparse Column
Sparse Matrix Storage which is a standard format for storing spare matrices (Saad, 2003). According
to the Julia documentation, SparseMatrixCSC docs (n.d.), the SparseMatrixCSC struct is given as

� �
struct SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti}

m::Int # Number of rows
n::Int # Number of columns
colptr::Vector{Ti} # Column i is in colptr[i]:(colptr[i+1]-1)
rowval::Vector{Ti} # Row indices of stored values
nzval::Vector{Tv} # Stored values, typically nonzeros

end� �
It represents a matrix with three vectors and two integers. The integers represent the size of the matrix
and the three vectors represent all non-zero elements in the matrix. To explain how the vectors work,
consider the example of a matrix A with the corresponding SparseMatrixCSC struct variables:

A =


1 0 0 5 0
0 3 0 6 0
0 0 0 0 7
2 4 0 0 0



m= 4

n= 5

colptr= [1,3,5,5,7,8]

rowval= [1,4,2,4,1,2,3]

nzval= [1,2,3,4,5,6,7].

Here, nzval contains all the nonzero elements in A. The order of the numbers is given by column
from left to right and then row from top to bottom. The vector rowval has the same ordering as
nzval and gives the row number to the corresponding value innzval. The vectorcolptr contains
the information of how many non-zero numbers there are in each column. For column number i , the
sequence colptr[i ]:colptr[i +1]−1 gives the indices in nzval and rowval that correspond to
values in this column. For matrix A and column number 2 we get the indices

colptr[2] : (colptr[3]−1) =⇒ 3 : 4,

which gives row number 2 and 4 and values 3 and 4. For a column with only zero elements, like
column 3, the sequence becomes

colptr[3] : (colptr[4]−1) =⇒ 5 : 4,

which indicates that there are only zero elements in this column.

This way of storing a matrix will decrease both memory usage and computational efficiency
dramatically, compared to storing the full matrix, when working with large and sparse matrices.
When performing operations on the matrix, e.g., an element-wise vector-matrix multiplication, the
computational gain comes from the opportunity to neglect all zero values. If we store the matrix
as a full dense matrix, then we have to compute a lot of multiplications that ends up being zero.
With a sparse matrix structure, we can avoid making these computations. The method, however,
brings some extra work that consist of doing numerous checks to make sure that we have done the
multiplication correctly. Take the example from subsection 2.1.5, where we wish to compute f = 2·x·y
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for the primary variables x,y ∈ ℜ3 defined in (2.9). Initializing the primary variables as FAD-structs
gives

x =
1

2
3

 ,


1 0 0

0 1 0
0 0 1

 ,

0 0 0
0 0 0
0 0 0


 y =

4
5
6

 ,


0 0 0

0 0 0
0 0 0

 ,

1 0 0
0 1 0
0 0 1


 .

Here, I have written out the Jacobians as full matrices for better visualization, although in practice
they will be stored as SparseMatrixCSC structs. In the multiplication of the two FAD-variables,
the element-wise multiplication of the values is not interesting, and we will instead focus on how
we obtain the new Jacobian for x ·y. Similarly as in subsection 2.1.5, we find the new Jacobian using
the product rule, but now we can separate the operations into two calculations. First, we have the
Jacobian for the primary variable x:4 0 0

0 5 0
0 0 6

 ·
1 0 0

0 1 0
0 0 1

+
1 0 0

0 2 0
0 0 3

 ·
0 0 0

0 0 0
0 0 0

=⇒
4 0 0

0 5 0
0 0 6

 .

Then for the primary variable y we obtain the Jacobian4 0 0
0 5 0
0 0 6

 ·
0 0 0

0 0 0
0 0 0

+
1 0 0

0 2 0
0 0 3

 ·
1 0 0

0 1 0
0 0 1

=⇒
1 0 0

0 2 0
0 0 3

 . (4.1)

We immediately observe that two of the multiplications are unnecessary, since one of the matrices is
a null matrix. Remember that the left matrix in all the calculations above actually is a vector that we
have transformed into a diagonal matrix to illustrate how the element-wise multiplication happens.
This means that when the previous Jacobian is a diagonal matrix, what we actually can do to obtain
the new Jacobian, is element-wise multiplication between the vector on the left-hand side and the
vector that is the diagonal on the Jacobian. And even better, when the previous Jacobian is the identity
matrix, like in calculation (4.1), the product is simply a diagonal matrix with the left-hand side vector
on the diagonal. This is where the idea of optimizing FAD comes from. By knowing what type of
Jacobian we have at all times, we can sometimes take safe shortcuts in our calculations.

4.2.4 CustomJacobianAutoDiff

The optimized FAD is called CustomJacobianAutoDiff (CJAD). Custom Jacobian comes from
having four different types of Jacobians. The structure ofCJAD is similar toFAD, but instead of storing
all the Jacobians as a vector consisting of SparseMatrixCSC-types, each element in the vector is
now of type CustomJac:

� �
struct CJAD

val::Vector{Float64}
customJacs::Vector{CustomJac}

end� �
CustomJac is an abstract type that has four structs that extend it:

• NullJac – a struct only containing two numbers that represents the number of rows and
columns in a null matrix.
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• IdentityJac – a struct only containing one number that represents the number of rows and
columns in an identity matrix.

• DiagJac – a struct containing a vector called jac with the diagonal values of a diagonal
matrix. The length of jac equals the number of rows and columns.

• SparseJac – a struct containing a SparseMatrixCSC matrix called jac.

Now, the multiple dispatch system in Julia comes in handy once again. Since Julia understands at
run-time what type of CustomJac we have – whether it is a NullJac, IdentityJac, DiagJac
or SparseJac – we can implement different methods for all possible combinations. In each
implementation, we now know what type of matrix we are dealing with, and we can thus optimize
the performance. As an example, consider calculating the Jacobian w.r.t the primary variable y in
(4.1) (All the implementations of operators on structs extending the CustomJac type are called from
outer functions that check the legality of the operations; hence, the following code contain no safety
checks.) First, we have a vector multiplied element-wise by a null matrix. The implementation

� �
*(A::Vector{<:Number}, B::NullJac) = B� �

knows immediately that there is no need to do any calculations and the result will be a null matrix of
the same size as before. Without diving too deep into the implementation of SparseMatrixCSC,
but only by considering what kind of information the SparseMatrixCSC-struct contains, this
implementation should not make a big difference in the computational efficiency of CJAD compared
to FAD. The reason for this is that the implementation of SparseMatrixCSC will also quickly
realize that its vectors are of length zero and that the matrix is a null matrix. Hence, the speed
difference of the two implementations will be small for this particular operator. However, the
second calculation in (4.1) is a vector multiplied element-wise by an identity matrix. The result
will be a diagonal matrix with the values of the vector on the diagonal. The SparseMatrixCSC
implementation only knows that we have a sparse matrix with some values and is unaware that it
actually is the identity matrix. This means that it has to do all the calculations without any shortcuts.
The implementation for IdentityJac, however, automatically knows the result of this calculation
and simply makes a diagonal Jacobian with the vector on the left-hand side:

� �
*(A::Vector{<:Number}, B::IdentityJac) = DiagJac(A)� �

This is the first calculation we have seen that will make CJAD considerably more computational
efficient than FAD. To finish the calculations in (4.1), we finally have to add a null matrix and a
diagonal matrix. Since there is really no need of doing this adding, the implementation simply returns
the diagonal matrix:

� �
+(A::NullJac, B::DiagJac) = B� �

For the same reason as explained for the element-wise multiplication between a vector and
a NullJac matrix, this implementation will only have small advantages compared to the
SparseMatrixCSC implementation used in FAD, which will also quickly figure out the
needlessness of the calculation.

Another type of calculation that CJAD will do more efficient than FAD is when a vector is
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element-wise multiplied with a diagonal Jacobian. The operator that element-wise multiply a
vector with a CustomJac-variable is often used, not only in itself, but also because it appears
every time the chain or product rule is used. The product rule is used every time we multiply
two CJAD-variables, and the chain rule appears when we evaluate an elementary function like exp
or sin, or if we evaluate some exponent of a CJAD-variable. If the Jacobian is of type DiagJac,
the corresponding element-wise multiplication is simply two diagonal matrices multiplied together.
CJAD’s implementation knows this and can multiply the two vectors element-wise and obtain the
new diagonal of the new Jacobian:

� �
*(A::Vector{<:Number}, B::DiagJac) = DiagJac(A .* B.jac)� �

The same operation for FAD will be slower since SparseMatrixCSC does not possess any
information that the matrix is diagonal and thus has to perform the operation as a regular
multiplication between to sparse matrices. This will include checks to be certain that the
multiplication is done correctly and will hence be slower than multiplying two vectors element-wise.
As said, this operation appears often, since it is used in the chain rule and in the product rule.
Consider the product rule and the implementation

� �
function product_rule(A::CJAD, B::CJAD)

nJac = length(A.customJacs)
newJac = Vector{CustomJac}(undef,nJac)
for i = 1:nJac

newJac[i] = A.val * B.customJacs[i] + B.val * A.customJacs[i]
end
return newJac

end� �
We loop through all the Jacobians and perform the product rule to obtain the new Jacobians. Here,
A.val and B.val are the value vectors, whereas B.customJacs[i] and A.customJacs[i]
are any of the four extensions of CustomJac. In every iteration in which at least one of
the Jacobians is a special case and not the general SparseJac, we will gain computational
efficiency like explained for the element-wise multiplication operator between a vector and a
NullJac/IdentityJac/DiagJac. If both of the Jacobians are different from SparseJac,
we also gain computational efficiency from the addition operator. Just like for the element-wise
multiplication, element-wise addition is faster for NullJac/IdentityJac/DiagJac than it is
for the sparse matrices in SparseMatrixCSC.

When both Jacobians are general sparse matrices, CJAD and FAD are equal because CJAD transitions
to use the SparseMatrixCSC-library with its SparseJac type. Let us now therefore look
closer into how we handle the overloading of element-wise multiplication for SparseJac. There
are at least two different ways of implementing this operator that will use different parts of the
SparseMatrixCSC library. The first possibility is to convert the vector into a sparse diagonal matrix
and perform a matrix–matrix multiplication with SparseMatrixCSC matrices:

� �
function *(A::SparseJac, B::Vector{<:Number})

diagIndex = 1:length(B)
valDiag = sparse(diagIndex, diagIndex, B)
newJac = valDiag * A.jac
return SparseJac(newJac)

end� �
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I will call this method the matrix-multiplication method. The second method keeps the vector form
and uses element-wise multiplication between the vector and the SparseMatrixCSC matrix:

� �
*(A::SparseJac, B::Vector{<:Number}) = SparseJac(B .* A.jac)� �

I will call this the element-multiplication method. As it is difficult to say without first-hand knowledge
of the implementation ofSparseMatrixCSCwhich method is best to implement, I will test the two
methods against each other. The test consists of element-wise multiplying a random vector of length
40 and a random sparse matrix of size 40×40 having 20 percent nonzero elements. The multiplication
will be performed 10,000 times to separate the efficiency of the two methods. To check which method
is actually more efficient, and by how much, we can use the @btime macro function mentioned in
subsection 3.3.3. This function gives us the number of allocations, the amount of memory used, and
the time spent. Table 4.1 reports the results1 from this test.

Table 4.1: The number of allocations, amount of memory, and time spent for element-wise multiplication of a
vector of length 40 and a sparse matrix of size 40×40 with 20 percent nonzero elements. The vector and matrix
are multiplied together 10,000 times.

Method Number of Allocations Megabytes Milliseconds

Matrix-multiplication 1,420,000 194 187

Element-multiplication 60,000 264 87

The test is unequivocal: the element-multiplication method has far less allocations, is more than
twice as fast, but it uses a bit more memory. Based on this it might tempting to say that the
element-multiplication method is a better choice. However, in numerical solution of PDEs, the
matrices we work with are generally much larger and very sparse. Table 4.2 reports results for a more
representative test example, in which I have used a matrix from chapter 5 of size 8,000×8,000 and
with only 0.08 percent of the elements as nonzero.

Table 4.2: The number of allocations, amount of memory, and time spent for element-wise multiplication of
a vector of length 8,000 and a matrix of size 8,000×8,000 with 0.08 percent nonzero elements. The matrix is
taken from chapter 5.

Method Number of Allocations Megabytes Milliseconds

Matrix-multiplication 240,370 32 28

Element-multiplication 180 10,243 2,458

The element-multiplication method still requires far less allocations, but now consumes a lot more
memory than the matrix-multiplication method. As a consequence, it is almost 100 times slower
than the matrix-multiplication method! This shows that for the purpose of this implementation, the
matrix-multiplication method is a much better choice.

1All benchmarks in this project are performed on a MacBook Pro (Retina, 13-inch, Late 2013), 2.8 GHz Intel Core i7
processor and 16 GB 1,600 MHz DDR3 memory.

33



4.2 Implementation of Automatic Differentiation Chapter 4. Implementation

4.2.5 Efficient Versus Readable and Elegant Code

There is usually a fine balance between writing efficient and readable/elegant code. Sometimes you
have the opportunity to do both, but often you have to choose which of them you want to give most
focus. At the end of subsection 4.2.1, I explained how we can elegantly implement the sum function,
and all other built-in functions that iterate through the FAD-variables, only by implementing the
iterate function. This is a very elegant use of Julia’s multiple dispatch system, as we get a lot of
functionality "for free". The downside, however, is that we lose potential computational efficiency
that we could achieve by implementing the sum function ourselves. Let us define a random function
ψ, where the AD-representation and the sum of ψ are given by

ψ=
1

2
3

 ,


3 0 1

2 1 0
0 0 8

 ,

1 0 0
0 1 0
0 0 1




sum(ψ) = [
6,

{(
5 1 9

)
,

(
1 1 1

)}]
.

Consider now the previous approach, in which we only implemented the iterate function and
reused Base.sum (i.e., the standard sum function in Julia) to sum the values in ψ. For each iterated
addition, we access row i in ψ and add it to the total sum. This consist of extracting row i from the
value vector and from each Jacobian, and then creating a new AD-variable that only consists of row
i . This leads to a lot of extra memory allocation, and in the case for ψ, we have to allocate memory
for three new AD-variables. This extra allocation can be avoided by doing the summation of each
column at once, instead of operating on a row to row basis. For CJAD, this can be done with the
following overloaded implementation of sum:

� �
function sum(A::CJAD)

val = sum(A.val)
jac = Vector{CustomJac}(undef, length(A.customJacs))
for i = 1:length(A.customJacs)

jac[i] = colSum(A.customJacs[i])
end
return CJAD(val, jac)

end� �
Instead of retrieving each row, one by one, like we did using Base.sum, we now add up each column
in one go. Here, sum(A.val) is the built-in sum function in Base for summation of a vector, and
colSum is a function implemented in each extended type of CustomJac. This function sums up
all the columns in the Jacobians and returns a 1×n matrix. Here, n is a number that depends on the
dimension of the relevant primary variable (nψ = 3). In the three special cases, the function simply
returns a 1×n null matrix forNullJac, a 1×n matrix containing only ones forIdentityJac, and a
1×n matrix, which is the transposed of the diagonal vector, forDiagJac. ForSparseJac, it returns
a 1×n matrix where all the nonzero values in each column are added together. To check that this new
sum function actually is more efficient, we can again use the @btime macro function. By creating a
random CJAD-variable of length 400 with all of the four different Jacobian types (all 400×400 with
random values), we can compare how efficient the two methods sum up the CJAD-variable. Table 4.3
reports the result and shows that even though only implementing theiterate function is an elegant
solution, it is much more efficient both in terms of memory consumption and runtime to implement
the sum function specifically.
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Table 4.3: Table with the number of allocations, memory usage, and runtime spent by summing a random
CJAD-variable of length 400 with two different summation methods.

Function Number of Allocations Kilobytes Microseconds

sum 40 79 81

Base.sum 28,371 19,597 58,051

Vectorized and Devectorized Code

The second issue I want to discuss is vectorized and devectorized code. The difference between the
two can be quickly explained by an example. Consider two vectors x and y of the same length. To
multiply the elements of the two vectors we can either use the vectorized method, z = x .* y, or
we can loop through the vectors in the devectorized method:

� �
for i = 1:length(x)

z[i] = x[i] * y[i]
end� �

In a blog post, former Julia developer John Myles White explains how Julia is faster at executing
devectorized code compared to vectorized code (White, 2013). This is in sharp contrast to other
high-level mathematical programming languages like MATLAB, in which conventional wisdom
would tell you that you have to vectorize your code to get the best computational performance. When
you vectorize, MATLAB uses optimized code in C to execute the calculations. If you devectorize your
code by calling a for-loop, you potentially bring in a lot of extra overhead. Note that, as mentioned
in subsection 3.1.3, recent development of MATLAB’s just-in-time (JIT) compiler has changed the
landscape a bit, and devectorized code can sometimes be significantly faster than vectorized code, in
particular if the latter has to allocate a lot of temporary memory.

In Julia, for-loops are generally close to matching C’s speed. So you might say that “why not
devectorize all the code?” And that could indeed be done, but here we have another example of the
conflict between efficient and readable code. From the example with element-wise multiplication of
the two vectors, the vectorized form is much more compact and readable, but according to White, the
devectorized version is faster. To make a decision whether to implement vectorized or devectorized,
we need to know more specifically what the differences are. White’s blog post is from 2013, and since
then, the vectorization in Julia has improved. Steven G. Johnson has written a newer blog post from
2017 (Johnson, 2017), in which he closer explains the reason why it is difficult to obtain the same
speed for vectorized code as we have for devectorized code in a language like Julia. To explain this,
consider two different vector functions f and g that we want to multiply element-wise

h(x, y) = f (x) · g (y), f (x) = exp(x), g (y) = log(y).

In Julia, there are now three ways of obtaining h(x, y). First, we have the devectorized version

� �
function devectorized(x,y)

h = similar(x)
for i = 1:length(x)

h[i] = exp(x[i]) * log(y[i])
end
return h

end� �
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According to White, this should be the fastest way of obtaining h(x, y). Secondly, we have the method
of vectorizing the functions f and g such that we can call the functions with vectors and they will be
performed element-wise to the input variables. I have called this method dotsInside:

� �
f(x) = exp.(x)
g(y) = log.(y)
dotsInside(x,y) = f(x) .* g(y)� �

Lastly, we do not vectorize the functions f and g , but when we call them with the vectors x and y , we
use the dot operators (that in reality is the broadcast(...) function) on the functions to tell the
Julia compiler that the functions should be executed element-wise on the input parameters. I have
called this method dotsOutside:

� �
f(x) = exp(x)
g(y) = log(y)
dotsOutside(x,y) = f.(x) .* g.(y)� �

To separate the three methods, I have calculated h(x, y) 1,000 times for random x and y vectors of
length 100,000 and evaluated the performance using @btime. Table 4.4 reports the results.

Table 4.4: Table with the number of allocations, memory usage, and runtime spent by evaluating h(x, y) =
exp(x) · log(y) 1,000 times for three different methods; x and y are random vectors of length 100,000.

Method Number of Allocations Megabytes Seconds

devectorized 2,000 789 2.104

dotsInside 6,000 2,405 2.704

dotsOutside 2,000 789 2.121

The devectorized and the dotsOutside methods perform identically, whereas dotsInside
requires three times the number of allocations and memory and is also somewhat slower than the
two other methods. This result confirms what Steven G. Johnson explains in Johnson (2017), where
he says that the problem with vectorized operations is that they can generate new temporary arrays
for each operation and that every operation is executed in a separate loop. This means that when Julia
compiles the program and translates the vectorized code into devectorized code, it will compute the
dotsInside method similar to the following code:

� �
function dotsInside(x,y)

n = length(x)
tmp1 = Vector{Float64}(undef,n)
for i = 1:n

tmp1[i] = exp(x[i])
end
tmp2 = Vector{Float64}(undef,n)
for j = 1:n

tmp2[j] = log(y[i])
end
tmp3 = Vector{Float64}(undef,n)
for k = 1:n

tmp3[k] = tmp1[k] * tmp2[k]
end
return tmp3

end� �
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The compiler does this because it does not understand that all the operations are element-wise.
As a consequence, it has to allocate three new arrays compared to the single new array in the
devectorized method. However, with the dotsOutside method, the compiler understands
that all the operations in the expression are vectorized operations and we get what Johnson calls
loop fusion. This essentially means that Julia devectorize the dotsOutside method into the
devectorizedmethod, and since Julia does not call low-level code like C to perform its vectorized
code, the performance of devectorized and dotsOutsidewill be similar. Another advantage of
using the dot operator like indotsOutside is that we do not have to define if a function is vectorized
or not. In other words, f and g can be used as functions for vectors and scalars, we specify what type
of use we want when we call the function. This leads to more readable code, as we do not have to
check whether a function is written for vectorization or not.

So, what are the consequences for the implementation of CJAD? The result from Table 4.4 implies
that as long as we write all our vectorized code like the dotsOutside method or in such a manner
that it is obvious for the compiler that it is only vectorized operations involved, we will have the same
computational efficiency as for devectorized code. More specifically for the CJAD implementation,
we often have a vector that is added/subtracted/divided/multiplied with another vector, and then
the vectorized implementation will have the same computational efficiency as the devectorized.
Since devectorized code is less readable, implementations reported in the following will consist of
vectorized code for readability.

4.3 Benchmarking Automatic Differentiation

As mentioned in section 4.1, Julia already has an AD library called ForwardDiff, that uses forward
AD. Hence, it would be interesting to see how the different implementations compare as the functions
evaluated increase in complexity. In addition to ForwardDiff, the Julia implementations are
compared to two optimized AD implementations from MRST. The basic implementation in MRST
is similar to FAD, where the Jacobians have a sparse matrix structure. This method is henceforth
referred to as MRST. The second MATLAB implementation is similar to CJAD in the sense that it
exploits the diagonal structure of some Jacobians. This method is called MRST_diagonal. To test
the efficiency of the different AD tools, I have evaluated the vector function f : ℜn×3 →ℜn , where

f (x, y, z) = exp(2x y)−4xz2 +13x −7, x, y, z ∈ℜn . (4.2)

Figure 4.1 reports how the computational time2 scales for six different methods, calculating the
function value, and the Jacobian of the function, as the length of the vectors (n) increases. The first
thing you observe is that ForwardDiff scales very badly as n becomes large. This is because it
creates and works with the full 3n × 3n Jacobian matrix as discussed in section 4.1. I stopped the
benchmark of ForwardDiff for n = 38, as the Jacobian at this point already has more than 380
million elements. We can nevertheless observe that for small vectors, the methods implemented
in MATLAB, as well as FAD and CJAD, have more overhead than ForwardDiff and the analytic
solution. This makes them slower for small n, but as n grows, this overhead becomes quickly
negligible. Based on Figure 4.1, from a numerical simulation point of view, ForwardDiff is useless
for obtaining the Jacobian of functions, as it scales badly for increasing n. Apart from the conclusion
on ForwardDiff, we can observe that it is a change in dominance at n = 37 = 2,187. For shorter
vectors, both methods implemented in Julia are more efficient than the two methods in MATLAB.
For n > 2,187 FAD is the slowest, followed by MRST. Hence, as n becomes larger than 2,187, the
methods in Julia and MATLAB that exploit the diagonal structure of the Jacobian perform better than

2The benchmarks in Julia are still performed by using the benchmarking library BenchmarkTools (n.d.). For measuring
time in MATLAB I have taken the median of multiple tests using the stopwatch Tic (n.d.).

37



4.3 Benchmarking Automatic Differentiation Chapter 4. Implementation

100 101 102 103 104 105 

10-5 

10-4 

10-3 

10-2 

10-1 

100 

101 

Length vectors

T
im

e 
[s

]
ForwardDiff
FAD
CJAD
MRST
MRST_diagonal
Analytic

Figure 4.1: Computational time for different methods calculating the value and Jacobian of f in Equation (4.2)
as a function of length of the input vectors.

the ones that only use a sparse matrix structure. This makes sense, as the evaluation of f will only
give a diagonal Jacobian. As n becomes large, CJAD and MRST_diagonal perform very similarly,
and their computational costs approach the analytic evaluation. What is also interesting to see is
that whereas CJAD always is faster than FAD, MRST_diagonal is less efficient than MRST for short
vectors. Assuming that both the MRST implementations are optimized, this indicates that the elegant
way of implementing a custom Jacobian in Julia using multiple dispatch adds very little overhead
compared to how this is solved MATLAB.

The test case discussed in Figure 4.1 is highly idealized: because each element f [i ] of f does not
depend on x[k], y[k] and z[k] for k 6= i , the Jacobians will keep a diagonal structure for f . This
means that CJAD never uses its SparseJac type and MRST_diagonal can use its optimized
implementation for diagonal Jacobians. If we, for example, want to calculate something like

g (x) = x [2 : end]−x [1 : end−1]

sum(x)
,

the diagonal structure of the Jacobians is gone, and MRST_diagonal transitions to use the MRST
implementation, and CJAD has to use the SparseJac type. This does not imply that the optimized
methods are implemented in vain, since functions evaluated in numerical applications often have
parts that will have diagonal Jacobians, and other parts that will not. We can thus expect to gain
computational efficiency from parts of the function evaluations using CJAD and MRST_diagonal.
To assess how much we can gain, we have to look at more realistic examples. I will do this in the
following chapter 5.
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Chapter 5
Flow Solver with Automatic Differentiation

To compare the different AD implementations in Julia and MATLAB I have implemented MRST’s
tutorial, "Single-phase Compressible AD Solver" from flowSolverTutorialAD.m (Single-phase
Compressible AD Solver, n.d.), in Julia. The example is made as an introduction to how AD can be
used in MRST, hence it is a good example to use when the goal is to compare the implementations of
AD in MATLAB and Julia.

5.1 Grid Construction

The example consists of modelling how the pressure drops within a rectangular reservoir measuring
200 × 200 × 50m3 when we have a well producing oil. As mentioned in the introduction, this is
called primary production, and because of high pressure in the reservoir, the oil flows out by itself.
"Single-phase solver" only means that we do not have different phases of fluids, like water and/or gas,
present during the simulation. In this simulation we assume there is only oil present in the reservoir.
As the main purpose of this example is to compare the AD tools in MATLAB and Julia, and not the
process of solving the problem, including setting up the grid and other necessary variables, some
of the initialization and plotting have been performed in Julia by calling code from MRST. By using
the package MATLAB.jl (MATLAB.jl, n.d.), we can call MATLAB functions from Julia and retrieve the
output variables. This is done by the function call

� �
out1, out2 = mxcall(:matlab_function_name, 2, in1, in2, in3)� �

where we have three input parameter and two output parameters. We have to specify the number
of output parameters after the MATLAB function name. By calling MATLAB from Julia, we can use
MRST’s G = computeGeometry(...) function to set up the grid for the simulation. The grid of
the reservoir can be seen in Figure 5.2a. The variable G, that contains the grid properties, is now a
structured array (struct), having all the information on cells, facets, vertices and nodes that we need
to make the discrete gradient- and divergence operator as explained in section 2.2.

Next, we define the properties of the rock. As explained in section 1.3, in an oil reservoir, the oil lies
inside porous rock and the properties of the rock will affect the flow of the oil. The amount of oil
we can have inside a cell is measured as pore volume and the ability to transmit fluids is given by
the permeability. We start by making a new variable, rock, that contains the permeability and the
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porosity of the rock. The porosity is a number between zero and one, describing the porosity of the
rock at a reference pressure. To find an expression for the pore volume, we say that in our model the
rock is compressed constantly as a function of pressure. This gives us an analytic solution for the pore
volume, given as a function of pressure

pv(p) = pvr exp[cr · (p −pr )]. (5.1)

In this expression, pvr is the rock pore volume, in a cell, at a reference pressure pr . The value of pvr

is given by the porosity of the rock, multiplied with the total volume of the cell. cr is a constant
controlling how the rock is compressed. The pore volume of the rock, as a function of pressure
values, are visualized in Figure 5.1a. The graph shows that for a cell with volume 2000m3 there is
approximately room for 600m3 oil.

Since we assume that the oil has a constant compressibility, the density of the oil is given as an analytic
function of pressure

ρ(p) = ρr exp[c · (p −pr )], (5.2)

where ρr = 850kg/m3 is the reference density at the reference pressure pr and c is a constant
controlling how fast the oil is compressed. The density of the oil, as a function of pressure, is plotted
for some pressure values in Figure 5.1b.
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Figure 5.1: The pore volume of a cell (Figure 5.1a) and the density of the oil (Figure 5.1b), plotted as a function
of pressure.

The initial pressure in the reservoir is calculated by solving the nonlinear ODE

d p

d z
= g ·ρ(p), p(z = 0) = pr = 200bar

for the fluid density given by Equation (5.2) and g as the gravity. The well is then inserted in 8
grid elements using the W = addWell(...) function. The grid with the initial pressure and a
visualization of the well can be seen in Figure 5.2b.

40



Chapter 5. Flow Solver with Automatic Differentiation 5.2 Setup of Governing Equations

50

200

40

30

150 200

20

150

10

100
100

0

50
50

0 0

(a)

50

40

200

30

20

10

0

0

-10

100 50
100

150
0 200

200.5

201

201.5

202

202.5

203

203.5

(b)

Figure 5.2: The uniform 10×10×10 grid of the 200×200×50m3 big reservoir plotted in Figure 5.2a. Figure 5.2b
is the same grid plotted with the initial pressure and the well P1. Pressure is given in bar. The well covers 8 grid
elements and some grid elements are removed from the plot to give a better visualization of the well.

5.2 Setup of Governing Equations

After initializing the grid, we want to define the discrete gradient- and divergence operator, as well as
the transmissibilities as explained in Equation (2.15). This is done by exploiting that we have all the
necessary information about the grid properties, such as the cells centroid coordinates, facets area,
and so on, stored in the struct G. In rock we have stored the permeability inside each cell that will
affect the flux through each facet. With all this information we can now obtain the transmissibilities
T and the discrete operators

� �
dGrad(x) = C * x
dDiv(x) = -C' * x� �
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Figure 5.3: Structure of the discrete
operator C.

The matrix C in the discrete operators are created such that
when it is multiplied by the pressure p, the result becomes the
pressure difference between two adjacent cells, as defined in
Equation (2.18). The matrix C is stored as a sparse matrix, and
the reason why is clear from Figure 5.3, which shows the sparse
structure of the matrix. The divergence operator is made using
the fact that in the continuous case, the gradient operator is the
adjoint of the divergence operator∫

Ω
p∇·vdΩ+

∫
Ω

v∇pdΩ= 0.

This holds for the discrete case as well (Lie, 2019), and hence the
adjoint of C is the negative transpose of C.

Now we have all the ingredients to set up the governing equations for the flow in the reservoir. We
use a finite volume method to discretize in space, as explained in section 2.2, and a backward Euler
method to discretize in time. In the end, all the equations we want to solve should be in residual
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form, F (x) = 0, so that we can use the Newton-Raphson method described in Equation (2.11) to
solve the system. As there are multiple equations that will be a part of the residual function F (x), we
define them separately first. One of the advantages of defining the discrete gradient- and divergence
operator is that the continuous and discrete forms of the equations look very similar. Hence, I will
first state the continuous version of the equation and then the discrete, so that it is easy to see how
similar they look. I start by defining Darcy’s law, which explains how the oil will flow through the
porous rock

v =−K

µ
(∇p −gρ). (5.3)

K is the permeability that we have saved in the rock variable and µ is the viscosity of the oil. The
corresponding discrete equation that we call flux is given by

� �
flux(p) = -(T / µ) * (dGrad(p) - g*average(ρ(p))*gradz)� �

Here, T is the transmissibilities that contain K and the other properties of the grid. Since two adjacent
cells can have different values of ρ, we use the average for the two cells. gradz is the gradient of the
cell centroid’s z-value. This determines how much the flux depend on g given the orientation of the
adjacent cells. When flux is defined, we can define the continuity equation in the continuous case

∂

∂t
(φρ)+∇· (ρv) = q, (5.4)

whereφ is the porosity of the rock. Since we will handle the well later, the source term q , representing
injection or production of fluids, is set to zero for now. In the corresponding discrete case we get the
function

� �
presEq(p, p0, dt) = (1/dt) * (pv(p)*ρ(p) - pv.(p0).*ρ.(p0)) +

dDiv(average(ρ(p)) * flux(p))� �
where pv is the pore volume of the rock given in Equation (5.1) and p0 is the pressure at the previous
time step.

In addition, we need a few equations to represent the flow inside the wellbore. This flow will be the
production term q we ignored in the derivation of the presEq function. The standard model is to
assume that the pressure is in hydrostatic equilibrium inside the wellbore, so that the pressure in a
perforated cell (i.e., a cell in which the wellbore is open to the reservoir rock and the fluid can flow
in or out of the well) is given as a hydrostatic difference from the pressure at a datum point (the
bottom-hole pressure), typically given at the top of the reservoir. That is, the pressure in a perforated
cell c is given by

pc = pbhp + g (zc − zbhp )ρ.

In the discrete case this is given by the function p_conn

� �
p_conn(bhp) = bhp + g*dz*ρ(bhp)� �

The pressure drop near the well usually takes place on a much shorter length scale than the size
of a grid cell, and is usually modelled through a semi-analytical expression that relates flow rate to
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the difference between the reservoir and wellbore pressures. Hence the analytic expression for the
production in a perforated cell is given by

q = ρ

µ
WI(pc −pr ),

where WI is properties of the rock and the oil at the applicable cell. Since this equation only apply on
a few of the cells in the reservoir, we also need a list of the indices wc for the perforated cells. These
indices and the WI variable are given by the W variable we received from the addWell function. The
discrete expression for the production in all the perforated cells is given by

� �
q_conn(p,bhp) = WI * (ρ(p[wc])/mu) * (p_conn(bhp) - p[wc])� �

The residual expression for the total production qS is then given by summing up all the production
from each perforated cell, giving the expression rateEq

� �
rateEq(p,bhp,qS) = qS - sum(q_conn(p,bhp))/rhoS� �

Here rhoS is the density of the oil at the surface, to obtain the total volume produced. To control the
well, we can either set total inflow or outflow of the well (evaluated at surface pressure) to be constant,
or set the datum (bottom-hole) pressure as constant. In either case, we will wish to compute the other
(i.e., if the bottom-hole pressure is given, we determine the surface rate, and vice versa). Herein, we
assume the bottom-hole pressure to be given as 100 bar and we get

� �
ctrlEq(bhp) = bhp - 100*barsa� �

When all the governing equations are defined, we merge them into one large residual vector function
F (x). The first 1,000 residual equations are the presEq with negative production q_conn for the
indices wc. Equation number 1,001 is the rateEq and Equation 1,002 is the ctrlEq. Hence, x ∈
ℜ1,002, where the first 1,000 elements are the average pressure in each cell, element 1,001 will be the
pressure at the datum point inside the well (bhp), and element 1,002 is the surface fluid rate qS.
Now, if we start by defining p, bhp and qS as AD-variables, F will also be an AD-variable and we will
have the Jacobian of the residual vector function F . This means we can solve the equations using the
Newton-Raphson method, defined in Equation (2.11). A pseudo code of how we solve the system can
be seen below.

� �
## Define AD-variables length of simulation, endTime and timestep dt.
while timeNow < endTime

while ## Newton-Raphson method has not converged.
f = F(p, bhp, qS)
updateStep = -(f.jac \ f.val)
## Update AD-variables val-value

end
timeNow += dt

end� �
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5.3 Flow Solver Results

If we simulate how the pressure in the reservoir will decay, we will get the result displayed in Figure 5.4.

14.0 days 35.1 days

70.2 days 140.4 days

120 130 140 150 160 170 180 190 200

Figure 5.4: The pressure in the reservoir displayed at four different times. Pressure is given in bar.

Note the different intervals for the color bar in Figure 5.4 compared to Figure 5.2b. With the current
color bar interval, at initial state, the whole reservoir will be displayed red. Hence, we can see how
the reservoir from the beginning being approximately 200 bar everywhere, begins with the largest
pressure decay close to the well, but after some time, the oil is pushed towards the well by the pressure
differences and the pressure also begins to decay furthest away from the well.

Figure 5.5 shows the development of the production rate and the average pressure inside the reservoir.
We can see how the production rate follows the average pressure inside the reservoir, and that after
some time, it approaches zero. This is when primary production ends, as explained in section 1.3, and
we need to apply external pressure to continue production in secondary production. To do this in the
best possible way, it is important to be able to simulate how the pressure evolves inside the reservoir
so that we can make good decisions on which actions produce the best possible results and when to
take these actions. This flow solver is a simple example of how we can model primary production
in a reservoir elegantly with governing equations in residual form, created by discrete differentiation
operators and AD. A simulation of secondary production can be seen in section 6.4.
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Figure 5.5: The production rate and the average
pressure in the reservoir as a function of time.
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Figure 5.6: Structure of the 1,002×1,002 Jacobian of
the governing equations. There are 6,419 non-zero
elements.

However, our main interest is to observe how the different AD tools perform when solving the residual
equations with the Newton-Raphson method and AD. Before looking at the results it is interesting to
have a look at how the Jacobian of F looks like. Figure 5.6 shows the structure of this Jacobian. The
first impression is that the matrix is very sparse. The reason for this is that each cell will only depend
on its neighboring cells. A small exception from this are the few cells containing the well. These
cells will also depend on the bottom hole pressure. As there are only 6,419 non-zero elements, out of
more than 1 million matrix elements, it is clear that storing the full 1,002×1,002 matrix will be very
inefficient.

As explained in chapter 4, the different types of AD mentioned store the Jacobians differently. Both
FAD, CJAD and the two AD implementations in MRST, will, at least eventually, store the Jacobians
as a list of sparse matrices where each element in the list is the Jacobian with respect to one primary
variable. In this example, this is expected to be a lot more efficient than storing the full 1,002×1,002
Jacobian as ForwardDiff does.

To benchmark the different methods, we need to do some extra work to make sure that it is only the
AD we test and no other parts of the code. This is especially important for the code running in Julia,
since when we call MATLAB from Julia, it will be a lot of overhead. This means that the setup of the
discrete gradient- and divergence operator will take longer when performed in MATLAB called from
Julia, then when we do it directly in MATLAB. If we want to run the full simulation, it is not possible to
separate the AD part fully, but if we only test the main-loop containing the Newton-Raphson method,
AD will be a dominating part of the computations together with the linear solverf.jac\f.val. This
means that we at least will get an indication of how well the AD tools perform compared to each other.
To see how the different methods scale as the discretization becomes finer, and the system we solve
grow, the benchmark consists of three different discretizations. The first is the original setup with 10
cells in the spatial directions x, y , and z. This gives a total number of 1,000 cells in the reservoir. Then,
I have also benchmarked the implementations for 20 and 30 cells in each spatial direction. The time
spent solving the system for the different methods can be seen in Table 5.1.
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Table 5.1: Table with speed tests of different AD methods solving the "Single-Phase Compressible AD Solver"
for different discretizations.

Number of cells ForwardDiff FAD CJAD MRST

10×10×10 71.5s 2.1s 1.6s 1.8s

20×20×20 25.5s 22.5s 22.8s

30×30×30 158.5s 133.5s 133.6s

For 10 cells in each spatial direction, it is clear that what was assumed based on the structure of the
Jacobian in Figure 5.6 is true; The ForwardDiff method takes much longer time than FAD, CJAD
and MRST. This also correspond to the result seen in Figure 4.1. Since ForwardDiff already spends
over a minute for 10× 10× 10 cells, it is omitted for finer discretizations. MRST_diagonal is not
presented here because there is a bug that cause the method to fail for this specific example, and the
only fix we have found makes the method very similar to MRST. According to the results in Table 5.1,
the CJAD method is a bit faster than FAD, and it perform similar to the MRST method.

It is, although, still some uncertainty in these numbers as we do not know if the linear solver in
MATLAB and Julia perform equally well. In addition, another factor that can affect the result, is
that for the current hardware these benchmarks are running on, the computations are so demanding
that the hardware becomes warm. This can cause the performance of the hardware to decrease and
ruin the benchmark results. To remove the uncertainty of both the linear solver and the hardware
heating up, we can perform another benchmark. Instead of solving the linear system f.jac\f.val
and continuing to the next Newton-Raphson iteration until it converges, and then onto a new time
step, we only assemble the first residual function multiple times. In this way we only benchmark the
AD part of the problem. The time the computer uses to calculate the residual function value and
Jacobian will not depend on what type of numbers we have, only on the structure of the matrices
in the Jacobians. The structure will remain the same throughout the whole simulation, so the new
benchmark will still be relevant to figure out which AD-implementation is best to solve this specific
problem. Since the benchmark does the same calculation over and over again, we need to be aware
that it could have been the case that the compiler figured out that there is no need to perform
all calculations, and that it is enough doing it only once. However, this is tested and is not the
case. Table 5.2 shows the three methods assembling the first residual function of the simulation 100
times. It shows the same tendency as Table 5.1, where CJAD and MRST are still considerable faster
than FAD. However, in this benchmark, MRST is a bit faster than CJAD for the highest number of
cells. There are however small differences and since there are some uncertainty when benchmarking
computational speed on computers, a safe conclusion is that for this "Single-Phase Compressible AD
Solver" example, the MRST and CJAD implementation perform equally well.

Table 5.2: Table with speed tests of different AD methods assembling the "Single-Phase Compressible AD
Solver" residual function 100 times for different discretizations.

Number of cells FAD CJAD MRST

10×10×10 0.9s 0.4s 0.6s

20×20×20 9.3s 4.0s 3.6s

30×30×30 44.2s 17.2s 16.5s
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Chapter 6
Local Automatic Differentiation

This chapter will consider a different approach on how to use AD to solve PDEs. When solving
PDEs using a finite volume method each cell will only depend on the neighboring cells. In the FAD
and CJAD implementations, the dependencies are stored in the discrete gradient- and divergence
operator. The implementations calculate the residual function value and corresponding Jacobian
for the whole grid simultaneously by having a vector to store the values and sparse matrices for the
Jacobians. Hence, when the discrete gradient and divergence operators are used in the calculation
of the residual function in chapter 5, the Jacobian are obtained with the structure seen in Figure 5.6.
Local AD is an alternative approach, where instead of calculating the residual function for all cells
at once, using matrix and vector operations, it iterates through the grid and for each cell calculates
the local residual. In the end it will perform exactly the same calculations as FAD and CJAD, but
instead of having large vector and matrix calculations, we now have smaller calculations concerning
only one cell and its neighbors at the time. This new approach is based on the same idea as how
AD is implemented in OPM, which, as said in introduction, is written in C and C++. The AD tool in
OPM scales better when the simulations become larger and is the reason why it is used when creating
efficient industrial simulators. Hence, it is interesting to see if you can write similar type of code in
Julia and obtain better computational efficiency than what is achieved in MATLAB with MRST, as well
as the methods I have already implemented in Julia. If this is possible, Julia could be a language where
both prototyping and industrial simulators can be implemented, making the development process
much more efficient.

6.1 Implementation

To get a better understanding of how local AD works, it is best to look at how it is implemented1. Like
for FAD and CJAD I have implemented local AD using a struct called LAD:

� �
struct LAD

val::Float64
derivatives::Vector{Float64}

end� �
1In the following I will explain a minor simplified implementation. This is to keep the focus on the essential parts of the

implementation. The left-out parts will be discussed in section 6.2
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Since we now only operate on one cell at the time, the implementation of local AD is simpler than
for FAD and CJAD. The value of the AD-variable is now only a scalar and the Jacobian matrices are
replaced by a vector of derivatives. These are the derivatives with respect to the primary variables in
the cell. For the single-phase flow solver in chapter 5, the derivatives vector will be of length one,
as each cell only contain one primary variable (pressure). The implementation of LAD is, however,
with derivatives as a vector. This is for the opportunity to implement more complex simulations
like a two- or three-phase simulator, where each cell can contain multiple primary variables for the
amount of water, oil and/or gas present in the cell (an example of a two-phase simulator can be seen
in section 6.4).

To make sure that each primary variable is initialized correctly, initialization of LAD variables is done
with the createVariable function. This function creates a LAD variable with a value and a given
number of derivatives. The derivative with respect to itself is set to 1.0, whereas the other derivatives
are zero.

� �
function createVariable(val::Number, numDerivatives::Int, derivativeIndex::Int)

derivatives = zeros(numDerivatives)
if derivativeIndex > 0 && derivativeIndex <= numDerivatives

derivatives[derivativeIndex] = 1.0
end
return LAD(val, derivatives)

end� �
The operators for the LAD struct are implemented similarly as explained in chapter 4 for FAD and
CJAD, but since we now, instead of having a Jacobian matrix, only have a vector of derivatives, the
implementation is easier and follows the lines of the description from subsection 2.1.4.

6.1.1 Flow Solver for Local AD

Whereas the implementation of the local AD tool is easier than for FAD and CJAD, there is more
work when calculating the residual functions. Since we no longer can use discrete gradient- and
divergence operator, but instead have to traverse through the grid cell by cell, we need a place to store
the resulting residual values and the corresponding Jacobian. We also need a method to traverse
through all the cells and calculate the contributions from each neighboring cell. To create the flow
solver from chapter 5, I have chosen to store the calculated values of the residual functions in another
struct called FlowSystem:

� �
struct FlowSystem

eqVal::Vector{Float64}
globalJac::SparseMatrixCSC{Float64, Int}

end� �
This struct looks very similar to the other AD structs, except fromglobalJacbeing one single sparse
matrix instead of a vector of sparse matrices. At this point you might not understand why it is quicker
to calculate the residuals cell by cell compared to everything in one go. The key reason for this lies in
the FlowSystem struct. Since we know that the structure of the global Jacobian will stay the same,
we can reuse this sparse matrix structure throughout the whole simulation. Before the simulation
begins, we use the grid variable G, which contains the information on which cells are neighbors, to
build the correct structure ofglobalJac once and for all. When we later run the simulation, we only
change the values inside of globalJac, but the structure stays the same. This reuse of globalJac
will save a lot of memory allocations and hence consume less CPU time compared to FAD and CJAD,
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which both allocate new structs for each calculation. By creating a new constructor forFlowSystem
that uses the grid variable G, the variables eqVal and globalJac will be allocated with the correct
length and structure before the simulation begins. For the grid in chapter 5, we have 1,000 cells. This
implies 1,000 different pressure values and in addition we have the bottom-hole pressure (bhp) and
the total production (qS). Hence, eqVal will be a vector of length 1,002.

Now that FlowSystem stores the values and Jacobian of the residual functions, we need a new
function to traverse through all cells and perform the calculations. The function that will execute
the calculations is assembleFlowSystem!(), where the exclamation mark is a Julia convention
for a function that modifies its input parameters. The corresponding code can be seen below. I have
removed all declarations of help variables and replaced the code for updating FlowSystem with
comments to highlight the important parts of the function structure.

� �
1 function assembleFlowSystem!(fs::FlowSystem, well::Well)
2 resetFlowSystem!(fs)
3 for fromCell = 1:length(fs.eqVal)
4 for toCell in neighbours
5 if fromCell == toCell && fromCell in gridCell
6 # Add backward Euler term to FlowSystem
7 elseif fromCell in well && toCell in well
8 # Add well equations to FlowSystem
9 else

10 # Add flux to FlowSystem
11 end
12 end
13 end
14 end� �

The input parameter well is a struct that contains all necessary information about the well.
Line number two in assembleFlowSystem!() resets eqVal and GlobalJac such that the
structures are unchanged, but all the values are set to zero. Then, the function starts traversing
through the grid and for every cell it adds up the contributions from all neighboring cells. Be aware
that the looping variable namesfromCell andtoCell can be a bit misleading when they represent
bottom-hole-pressure and total production, as those primary variables do not belong to any cell. The
intuitiveness of considering the flow from one cell to another is however considered more valuable
than the issue that they will also represent bottom-hole-pressure and total production. The eqVal
and globalJac variables are updated in line number six, eight and ten inside the inner loop. As
a reminder, the residual functions that FlowSystem eventually will represent are the functions
presEq, rateEq and ctrlEq defined in section 5.2:

� �
presEq(p,p0,dt) = (1/dt) * (pv(p)*ρ(p) - pv.(p0).*ρ.(p0)) +

dDiv(average(ρ(p))*flux(p))
rateEq(p,bhp,qS) = qS - sum(q_conn(p,bhp))/rhoS
ctrlEq(bhp) = bhp - 100*barsa� �

In line number six,fromCell andtoCell are equal, but do not reference the bottom-hole-pressure
or total production. Here, the first term in presEq, or the backward Euler term, is calculated. This is
performed in an outer function called timeDerivative() that returns a LAD struct:

� �
function timeDerivative(p::Float64, p0::Float64, dt::Float64)

pCell = createVariable(p,1,1)
return (1/dt) * (pv(pCell)*ρ(pCell) - pv(p0)*ρ(p0))

end� �
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In FAD and CJAD, we made all the primary AD-variables before the simulation. We then used them
as input parameters in the residual function that returned a new AD-variable which represented
the values and Jacobians. With local AD, we create new primary AD-variables for the applicable
cell inside the function we want to evaluate. For timeDerivative() we create a LAD primary
variable that represents the pressure in the cell before we calculate the backward Euler term. When
timeDerivative() has returned the new LAD variable, assembleFlowSystem!() adds the
calculated value to the correct index in eqVal and the derivative value to the correct diagonal index
in globalJac.

In line number ten, when fromCell and toCell are two neighboring cells, the divergence term in
presEq is calculated. Like for timeDerivative(), we create the primary AD-variables inside the
function, but since we calculate the flux from one cell to another, we have to be careful with which
direction we calculate the flux and which cell we want the derivative with respect to. Since the varying
variables are named fromCell and toCell, it is natural that the function flux(), calculates the
flux from fromCell to toCell:

� �
function flux(fromCell, toCell)

pFrom = createVariable(pressure[fromCell], 1)
pTo = createVariable(pressure[toCell], 0)
ρAvg = avg(ρ(pFrom), ρ(pTo))
viscousFlux = -T/mu * (grad(pFrom, pTo))
gravityFlux = T/mu * g * ρAvg * gradz
return ρAvg * (viscousFlux + gravityFlux)

end� �
What needs to be chosen is which cell we want the derivative with respect to. The choice only
affects which indices of the Jacobian the calculated derivatives should be added or subtracted to.
In flux(), I have decided to calculate the derivative with respect to fromCell. The two first
lines show the consequence of this, where pFrom is initialized with a derivative of 1 and pTo as a
constant. This choice leads to the following code for updating FlowSystem at line number ten in
assembleFlowSystem!():

� �
fluxLAD = flux(fromCell, toCell)
fs.eqVal[fromCell] += fluxLAD.val
fs.globalJac[fromCell, fromCell] += fluxLAD.derivatives[1]
fs.globalJac[toCell, fromCell] -= fluxLAD.derivatives[1]� �

The value of fluxLAD is added to eqVal and the derivative of the flux with respect to fromCell
is added to globalJac. In addition, we know that the flux from fromCell to toCell is the same
as from toCell to fromCell, but with negative sign. This means that the derivative of the flux
from toCell with respect to fromCell needs to be subtracted with fluxLad.derivatives.
For a facet between two neighbors, we will with assembleFlowSystem!() calculate the value of
the flux through the facet twice, only with different signs. You might think that we could save time
by subtracting fs.eqVal[toCell] with fluxLAD.val, but since we also will need the opposite
derivatives of this particular flux, there will be small, or next to none, computational gain of exploiting
this fact. In worst case it might actually become a slower implementation, as we would have had to
keep track of which fluxes have been added to which cells. When the fluxes from all the neighbors
have been added up for a cell, we have obtained the divergence in that cell.

Line number eight in assembleFlowSystem!() is the last line I have not commented and it is
where the well equations,rateEq andctrlEq, are handled. This line is executed if bothfromCell
and toCell either refer to one of the cells containing a well, the bottom-hole pressure, or the total
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production. The information on which cells fulfilling this condition lies in well. The calculation is
performed by handling every case such that the correct residual functions, namely the rateEq or
the ctrlEq, are calculated and added to the correct indices in FlowSystem.

Summed up, the calculation of the residual functions using local AD is based on two modules. The
first is the actual AD tool with the LAD struct, and the second is FlowSystem, which keeps track of
the global system and what calculations should be performed by the AD tool. With this approach,
we lose some of the advantages using the other AD tools where the discrete residual functions
looked very similar to the continuous case, like explained in section 5.2. The main structure of
assembleFlowSystem!() will, however, be the same no matter what type of simulation, hence
making modifications to the code, or building another simulator, will not demand a complete change
of the code structure.

Now that the assemble of the governing equations are implemented, we need a main loop that
performs the simulation. Since we have separated the assemble of the equations into a single
function, the main loop will be very similar to the one outlined in section 5.2. The only
difference is that instead of evaluating a residual function F, we assemble the equations using
assembleFlowSystem!(). A pseudo code of the new main loop can be seen below.

� �
## Define FlowSystem(fs), length of simulation and timestep
while timeNow < endTime

while ## Newton-Raphson method has not converged.
assembleFlowSystem!(tps, well)
upd = -(fs.globalJac\fs.eqVal)
# Update pressure, bottom-hole pressure and total production

end
timeNow += dt

end� �

6.2 Optimizing Local AD

As explained in the beginning of this chapter, the main idea behind local AD is to reuse the Jacobian
to save memory usage and extra memory allocations. The implementation given in section 6.1 has
nevertheless left out some small, but key parts of the implementation that will massively decrease the
memory and CPU usage. This is purely implementation specific differences that have been left out to
make the introduction to local AD clearer. It will not change the theory behind using local AD to solve
PDEs.

6.2.1 Dynamic VS Static Arrays

The difference between a dynamic array and a static array is that a dynamic array can be extended
or shortened as much as you like while a static array has a fixed length. Using a static array will give
computational gain concerning speed and memory allocations compared to a dynamic array. This
is because the compiler knows that a static array has the given fixed length forever and hence it can
allocate the exact memory needed in advance and optimize the machine code accordingly. With a
dynamic array, the compiler does not know if the array will grow larger, or become smaller, and it is
much harder to optimize the machine code.

Julia has a package called StaticArrays.jl (n.d.) that provides static arrays with the same abilities as the
built-in arrays, but without the possibility for changing the size of the array. The package provides
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two types of vectors, SVector and MVector(for two-dimensional arrays it has the corresponding
SMatrix and MMatrix). Both are static vectors, but MVector is mutable, meaning the values
inside the vector can be changed, whereas the values inside an SVector are final once the vector is
defined. This makes SVector ideal for LAD.derivatives, since when we perform operations on
LAD variables, new LAD variables are returned.2

When the implementation is changed to use static vectors, it needs to know how long these vectors
are. When building a simulator, it is not a problem to say in advance how many derivatives we need,
and once the compiler knows this before compilation, it can optimize the machine code. OPM solves
this by creating a template class containing the length of the gradient vector (Lauser et al., 2018). This
ensures that the compiler always knows that for this simulator, the static vector will always have the
given fixed length. This is important because we do not want to create LAD structs with different
lengths for LAD.derivatives. In addition, if we define this clearly, the compiler knows exactly
how much memory is needed when we allocate a new LAD variable. By giving the compiler this
information before compilation, we help it optimizing the machine code. This will also make the
implementation of the operators to LAD easier, as we know for certain that all LAD variables will have
derivatives vectors with the same length. The best implementation I have found for this in Julia
is to declare a global constant variable in the local AD module such that the new implementation of
LAD becomes:

� �
using StaticArrays
const NUM_DERIV = 1
struct LAD

val::Float64
derivatives::SVector{NUM_DERIV, Float64}

end� �
The disadvantage with this implementation is that the Local AD module needs to be modified to work
for simulations with more primary variables for each cell. Since the implementations of the operators
are unchanged, this modification will only consist of changing the value of NUM_DERIV. However, it
would be better if Julia had the opportunity to pass in an argument into the LAD module. In this way
the module could be compiled with any given value for NUM_DERIV. As it is now, it is not possible to
have one singleLADmodule and two different simulators with different number of primary variables,
at the same time in the same directory. A workaround could be to have multiple LAD modules with
the only difference being the value of NUM_DERIV. This would be a fully functional workaround, but
not a very elegant one.

6.3 Flow Solver Results for Local AD

Now that LAD has been implemented with static vectors, it is interesting to see how the local
AD method compares to FAD and CJAD in the simulation from chapter 5. Since the local AD
technique from OPM, unlike the vectorized methods from MRST, is constructed with a main focus
on computational efficiency, and since it is also assumed that Julia is supposed to run as fast as C, we
expect that the local AD approach will give significant computational gain. This is unfortunately not
the case with the implementation outlined in this chapter. Indeed, LAD performs worse than CJAD
and similar to FAD.

2For a multiphase simulation, a possible implementation can be each element in the global Jacobian being an n×n
matrix, where n is the number of primary variables in each cell. For this particular case, an MMatrix is optimal to use as
we know the size of the matrices, but we want to change the values inside the matrix.
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As explained in subsection 3.3.1, profiling is an efficient way of finding the bottlenecks in a code, and
this is a perfect example of when to use it - the code was expected to be faster, but it was not, so it is
important to figure out if there is a small part of the code that is slow. Figure 6.1a shows a screenshot of
a profile result from running the flow solver simulation. The screenshot only contains blocks from the
flux() function. Two blocks are marked with squares and two other blocks with brighter diagonal
stripes. The blocks with squares are time spent in createVariable() and the brighter diagonal
stripes are AD calculations in flux().

(a) (b)

Figure 6.1: The figures shows screenshots of the profile result from flux() in the flow solver simulation from
chapter 5. The blocks marked with squares are time spent in createVariable() and the blocks with bright
diagonal lines are calculations in flux(). Figure 6.1a uses a slow version of createVariable() while
Figure 6.1b uses a faster version.

It is surprising that creating a LAD struct should take more time than the actual AD calculations. This
indicates that the createVariable() function is poorly implemented. If we look closer at the
implementation, we see that we only want to create a static Svector, but we start by creating a
dynamic vector of zeros, and then we modify the vector by changing one of the values to one. Finally,
we convert the dynamic vector into a static SVector in the last line. The new implementation seen
below is a Julia specific implementation, where the SVector is created immediately with correct
values and without any use of dynamic vectors:

� �
function createVariable(val::Number, derivIx::Int)

derivatives = @SVector [if i==derivIx 1 else 0 end for i = 1:NUM_DERIV]
return LAD(val, derivatives)

end� �
The new profiling result with the updated createVariable() can be seen in Figure 6.1b. The
time spent in createVariable() is almost eliminated and we can see that approximately all the
time spent in flux is used for AD calculations. This is what is expected as initialization should be far
less time consuming than AD calculations.
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As discussed in chapter 5, by only looking at the assemble of the residual functions, and not the full
simulation, we eliminate the linear solver from the benchmark, and we get a better understanding
of how efficient the AD tools are. Table 6.1 is the same table as Table 5.2, assembling the residual
functions 100 times, but with the measured time for Local AD added to the end of the table. The table
shows that the local AD approach is at least six times faster than the other tested implementations,
which is a significant improvement. This gives us an indication that Julia can be a language where we
can quickly create new simulators using the high-level and user-friendly CJAD or a similar AD tool,
and in the same language create more efficient simulators using a method like local AD. However,
to confirm this we need to benchmark the performance for a larger problem than a single-phase
pressure solver. In section 6.4, I will test how local AD performs in Julia solving a two-phase problem
with a more realistic grid structure. This will give a better indication on how well Julia is suited for
creating high performance simulators.

Table 6.1: Table with speed tests of different AD methods assembling the "Single-Phase Compressible AD
Solver" residual function 100 times for different discretizations.

Number of cells FAD CJAD MRST Local AD

10×10×10 0.9s 0.4s 0.6s 0.07s

20×20×20 9.3s 4.0s 3.6s 0.6s

30×30×30 44.2s 17.2s 16.5s 2.2s

6.4 Two-Phase Incompressible Flow

Previously in this thesis, I have only looked at primary production, where we have single-phase flow,
with oil as the only fluid present. As explained in the introduction, at most 30% of the oil in the
reservoir will be extracted unless we apply external forces to the reservoir. This normally consists
of injecting either water, gas, or both, into the reservoir in a secondary production. There is also a
third production phase called enhanced oil recovery, or tertiary production, but as the purpose of this
thesis is not oil recovery, but to see how the AD tools perform when simulating oil recovery, I will not
go into this subject. More detailed information about oil recovery can be found in Lie (2019). I will also
describe a simplified model of secondary production, where sufficient information for this example
is that we want to simulate how water flows from an injector and into a reservoir full of oil. This will
be simulated for a sub region of Model 2 from the 10th SPE Comparative Solution Project (SPE10)
(Christie and Blunt, 2001). This model represents a simplified reservoir geometry with somewhat
exaggerated geological heterogeneity and was created as a challenging case to benchmark upscaling
methods against each other. Like in chapter 5, I have called MATLAB and MRST from Julia to initialize
the SPE10 grid and to make plots.

The SPE10 (Model 2) grid is split into 85 layers. Each layer contains 60×220 cells, making the total
number of grid cells 1,122,000. To simplify the implementation, I will only look at a single layer, layer
5, making the problem two-dimensional with 13,200 cells. The SPE10 grid differs from the grid in
chapter 5 in that the permeability and porosity vary throughout the grid. This will affect the path of
the water flow. Figure 6.2 shows the porosity in the grid and Figure 6.3 shows a logarithmic color plot
of the permeability. Both figures also display the placement of the water injector in the center of the
grid, and the four wells at each corner. Figure 6.2 shows that the rock around wells P3 and P4 are very
dense (low porosity) and Figure 6.3 naturally shows that the permeability is also low in this area. This
gives us an expectation that the injected water will primarily flow to the left.
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Figure 6.2: Color plot of the porosity in the SPE10 grid.

Figure 6.3: Logarithmic color plot of the permeability in the SPE10 grid.

6.4.1 Derivation of the Governing Equations for Two-Phase Flow

The governing equations for a two-phase flow are similar to the ones expressed in chapter 5, with
some modifications. I will also make some simplifications to the model that I will note in the
following derivation. Darcy’s law, expressing the volumetric flow rate of a single-phase fluid, is given
in Equation (5.3), but since our grid only has one layer, we neglect the gravity, and Darcy’s law
becomes

v =−K

µ
∇p.

However, now we need to separate between the flow of water, flow of oil and their overall flow. Before
injection of water, each cell is only filled with oil. This implies that the amount of oil in a cell equals
the pore volume in that cell. Since our grid only contain one layer, we can find the pore volume by
simply multiplying the total volume of the cell with the porosity, a number between zero and one.
The volumetric fractions of water and oil, called the saturation, are defined similarly as the porosity
with pointwise quantities, subject to the condition∑

α
Sα = 1,
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stating that the fluids fully occupy the available pore volume. In this two-phase situation, subscript
α refers to the phase and can be either o for oil or w for water. As an example, in a cell without
water, the oil saturation will be So = 1 and water saturation Sw = 0. The effective permeability a
fluid phase experiences when flowing through a medium partially occupied by another mobile fluid
phase can be significantly lower than if the phase flows alone. The reduction is generally not linear
in S and hence we cannot find the phase flux by simply multiplying Darcy’s law with the saturation.
To get an expression for the phase flux, we introduce the property relative permeability. Relative
permeability is often represented as a tabulated quantity, but herein I have chosen to use one of the
simplest commonly used analytic models, given by

krα = S2
α,

for both water and oil. The flux for phase α is then given by the modified Darcy’s law

vα =−K krα

µα
∇pα =−Kλα∇pα.

Here, pα is the pressure for the given phase and λα is called the mobility of phase α. The difference
between oil and water pressure is given by the capillary pressure, pc = po − pw . For an oil–water
system, the capillary pressure would cause water to rise in the reservoir. However, in this model we
neglect capillary pressure so that the oil- and water pressure are considered to be equal. Now that we
have an expression for the phase flux, we obtain the conservation equation for each phase:

∂

∂t
(φραSα)+∇· (ραvα) = ραqα. (6.1)

If you remove α from Equation (6.1), it becomes the same equation as Equation (5.4), except that in
Equation (5.4), ρ is inside of the source term q . In our two-phase example we assume both phases to
be incompressible such that the governing equations are given by

∂

∂t
(φSα)+∇·vα = qα, α ∈ o, w. (6.2)

Since So = 1 − Sw , the equations from Equation (6.2) contain only two unknown variables, the
saturation, for either water or oil, and the pressure. This means that we have enough equations to
solve for the unknown variables and we could solve them simultaneously. However, the equations
are strongly coupled, and for this example we will rather reformulate the two equations as an elliptic
equation describing the pressure and a hyperbolic equation describing the water saturation, since
these reformulated equations are less coupled. This gives us the opportunity to solve the equations
separately using an operator splitting method I will explain later. We start by obtaining an equation
for the pressure. By adding the two equations from Equation (6.2) we obtain

φ
∂

∂t
(So +Sw )+∇· (vo +vw ) = qo +qw .

Since So +Sw = 1, we can remove the time dependent term, and by defining the total flux as

v = vo +vw =−Kλo∇p −Kλw∇p =−Kλ∇p,

and the total source term as q = qo +qw , we obtain the pressure equation

−∇· (Kλ∇p) = q. (6.3)

Next, we derive the equation for the water saturation. Equation (6.2) with α = w gives one
formulation, but we want an expression that depends on the total flux, and not the water flux. The
reason for this will be explained later. To find a relation between the water flux and the total flux,
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observe that the difference between the water flux, multiplied with the mobility of oil, and the oil
flux, multiplied with the mobility of water, is equal to zero.

λovw −λw vo =λvw −λw v = (λo +λw )vw −λw (vo +vw )

= (
λoλw +λ2

w − (λ2
w +λwλo)

)(−K∇p
)= 0.

This gives us the relation

vw = λw

λo +λw
v = fw v,

where fw is called the fractional water flow. Inserting the expression for water flux into the
conservation law for the water phase, given in Equation (6.2), we obtain the transport equation

φ
∂Sw

∂t
+∇· ( fw v

)= qw . (6.4)

Even though we now have separated the governing equations into a pressure equation and a transport
equation, they are still coupled. Equation (6.3) is depending on the water saturation in the total
mobility λ and Equation (6.4) is depending on the pressure in Darcy’s law for the flux, v. However,
this coupling is weaker than in Equation (6.2), and this weaker coupling opens up the opportunity
to use an operator splitting method. This consist of first solving the pressure equation, holding the
saturation constant. Then, when we have found the correct pressure, we hold the pressure and the
total flux constant for a (short) time step and solve the transport equation. Since the total flux is
held constant as well when solving the transport equation, the total flux calculated in the pressure
equation can be used to solve the transport equation. This is why we wanted to find an expression
for the water flux, given by the total flux. When the water saturation is updated, we continue with the
next time step by solving the pressure equation for constant saturation, and so on.

6.4.2 Implementation of a Two-Phase Solver

In the implementation of the two-phase simulator for the SPE10 grid, a lot will be very similar as
for the previous single-phase implementation from subsection 6.1.1. The FlowSystem struct is
replaced with a TwoPhaseSystem struct that hold the residuals and Jacobians for both equations.
In addition to this, for implementation convenience purposes, it also holds the current pressure and
water saturation:

� �
struct TwoPhaseSystem

pressure::Vector{Float64}
waterSaturation::Vector{Float64}

pressureEq::Vector{Float64}
pressureEqJac::SparseMatrixCSC{Float64,Int}

transportEq::Vector{Float64}
transportEqJac::SparseMatrixCSC{Float64,Int}

end� �
Naturally, instead of having a single function to assemble the equations, the simulator now has
two. These are implemented with the same structure as assembleFlowSystem!() and are
called assemblePressureEquations!() and assembleTransportEquations!(). The
only difference from assembleFlowSystem!() is that the equations calculated are different. The
main loop that controls the simulation is also extended. As explained above, the pressure equation
and the transport equation are solved interchangeably and the implementation of this can be seen
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below:

� �
## Define TwoPhaseSystem(tps), length of simulation, endTime and timestep dt.
while timeNow < endTime

while ## Newton-Raphson method has not converged.
assemblePressureEquations!(tps, well)
upd = -(tps.pressureEqJac\tps.pressureEq)
tps.pressure += upd

end
prevWaterSaturation = copy(tps.waterSaturation)
while ## Newton-Raphson method has not converged.

assembleTransportEquations!(tps, prevWaterSaturation, dt, well)
upd = -(tps.transportEqJac\tps.transportEq)
tps.waterSaturation += upd

end
timeNow += dt

end� �
6.4.3 Two-Phase Solver Results

Even though we are most interested to see how the AD tools perform, we also have to see what we
are simulating to make sure that it is correct implemented. Figure 6.4 shows the development of the
water saturation in the SPE10 grid, for a simulation over three years. The total amount of water we
have injected after three years is 0.135 of the total pore volume in the reservoir. As we can see from
the figure, the assumption we had that the water will flow to the left was correct. We can also see that
it follows paths in the reservoir that are optimal for the water to flow. One example that is easy to spot,
is that the water, at least in the beginning, avoids the area straight left of the injector. If we go back to
Figure 6.2 and Figure 6.3, we can see that in this area, both the porosity and the permeability are low.

To benchmark the AD performance in the two-phase simulation, the AD calculations are separated
from the linear solver, similar to the previous tests. The simulation in Figure 6.4 used approximately
150 time steps, and for each time step, the Newton–Raphson method used two iterations to solve the
pressure equations and approximately six iterations to solve the transport equations. The benchmark
is essentially the same simulation, but without the linear solver and the update of the pressure and
water saturation. This will give us a good estimation on how much time the simulator spend on
AD during the simulation. As mentioned in section 5.3, since the benchmark does not update the
pressure and water saturation, we need to double check that the compiler does not understand that
it can skip iterations, since it calculates the same thing over and over again. It was not the case in
section 5.3, and it is not the case here. The benchmark is performed for the local AD-, CJAD- and
MRST method. The results of the benchmark can be seen in Table 6.2. The table shows that CJAD
and MRST perform similar, with approximately 30 seconds in total. The local AD outperforms both
of the two other methods, and for this specific test, it is approximately five times as fast. This result
gives us an even stronger indication that Julia is a language that can be used both to create quick
simulators using a high-level and user-friendly AD method, like what is implemented in MRST, as
well as to create more performance strong simulators, using low-level implementations like in OPM.

Table 6.2: Table with speed tests of different AD methods assembling the two-phase incompressible flow
residual equations. The number of equations assembled corresponds to what was performed in the simulation
for Figure 6.4.

Local AD CJAD MRST

5.89s 31.97s 30.15s
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Figure 6.4: Color plot of the water saturation development in the SPE10 grid over a period of three years. Total
injected water after three years is 13.5% of the total pore volume in the reservoir.
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Chapter 7
Conclusion and Further Work

This thesis has investigated the possibility of using the new programming language, Julia, as a
language both for implementing prototypes of new oil reservoir simulators, as well as building
efficient industrial simulators.

The process of creating an industrial simulator usually consists of first creating a prototype and
subsequently developing a more comprehensive industrial simulator based on the prototype model.
SINTEF’s approach is to implement the prototype and the finished simulator in two different
languages: a high-level scripting language for the prototype, and a lower-level compiled language
for the industrial simulator. The possibility of performing the entire implementation in Julia may
contribute to significantly increase the efficiency of developing new computational tools.

To investigate this, the thesis has explored solving PDEs that describe flow in porous media, using
AD and a finite-volume method. The PDEs are solved by discretizing the gradient- and divergence
operator so that the discrete equations can be implemented in almost the same form as the
continuous formulas. By setting up the equations as a vector function in residual form, the system
can be solved using AD to obtain the Jacobian of the system and the Newton–Raphson method to
find the roots of the function. The focus of the thesis has been to examine the performance of the AD
tools. Three new AD implementations in Julia have been presented and compared to a third-party
implementation in Julia and AD tools from MRST.

The AD libraries were benchmarked against each other in a prototype of a single-phase flow
solver, simulating primary production from a reservoir with a single well producing oil. The
third-party implementation of AD in Julia, with its dense matrix structure, proved ineffective for
calculating the sparse Jacobians corresponding to the residual functions. For this simulation,
it was more than 30 times slower than the other AD tools and was eliminated for further
consideration. The first two implementations in Julia are called ForwardAutoDiff(FAD) and
CustomJacobianAutoDiff(CJAD). These are high-level AD tools that are easy to use and that
are based on the implementation in MRST. CJAD is an extension of FAD, where FAD only uses
sparse matrix structure for its Jacobians, CJAD makes optimized calculations when the Jacobian is
a diagonal-, identity-, or null matrix. For the single-phase simulation, CJAD and MRST performed
similarly, while FAD was approximately twice as slow.

The last AD tool in Julia is called local AD and was implemented motivated by the properties of
the single-phase simulation, as well as the way AD is implemented in OPM. Hence, local AD is a
lower-level implementation than FAD and CJAD, and since OPM is the tool SINTEF recommends
for creating efficient industrial simulators, it was expected that this would offer an improved
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performance. For the single-phase solver, local AD was indeed approximately six times faster
than CJAD and MRST. To further test the capabilities of local AD in Julia, a second simulator was
implemented. This was a two-phase solver, simulating the flow of water in a single layer of the SPE10
Model 2 reservoir, when injecting water into the center of the reservoir. For this simulation, CJAD
and MRST continue to exhibit similar performance, while the local AD method was approximately
five times faster.

The implementation and benchmarks of CJAD indicate that Julia is well suited for making quick
prototypes of simulators, and the benchmarks of local AD provide good indications that it may
also be possible to create efficient industrial simulators for oil recovery. However, the local AD
implementation has only been tested on a grid with less than 15,000 cells and not on a fully realistic
simulation model. As a point of reference, the full SPE10 Model 2 grid has 1,122,000 cells. A natural
next step in testing Julia is to make an implementation in MATLAB, similar to local AD, and compare
the two languages. Since local AD depends on fast execution of for-loops, it is not expected that
MATLAB will manage to execute local AD efficiently, but it is a good test to see if Julia actually is a step
forward compared to MATLAB.

Macro functions to parallelize for-loops are currently under development in Julia. It would be easy
to insert these into the functions that assemble the equations in local AD. This has already been
attempted, but the macro functions are too unstable at the moment. When these functions become
more stable, it will be interesting to see if, and possibly by how much, this can improve the current
implementation. A final investigation will necessarily be to confirm whether Julia can match the
computational efficiency of OPM or other industrial simulators in a full-scale realistic simulation.
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