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Abstract

In this thesis we discuss multiple hypothesis testing procedures and their properties in
general, and the closed testing procedure introduced by Marcus et al. (1976) in particular.
Various closed testing procedures were used to maintain familywise error rate (FWER)
control for multiple pairwise comparisons of means. The specific case comparing three
group means was explored, where the closed testing procedure provides FWER control
with very little computational cost added. Simulation results using generated data show
that the F-test commonly used in a one-way analysis of variance gives a powerful closed
testing procedure in this scenario, confirming earlier results by Shaffer (1981).

Goeman et al. (2011) presented away to use closed testing procedures for the purpose of
making confidence statements about the false discovery proportion (FDP). Thismethodwas
applied for the purpose of model selection in multiple linear regression, and was compared
to conventional methods such as lasso regression and best subset selection based on the
Akaike information criterion (AIC). False discovery rate control with the Benjamini &
Hochberg procedure (Benjamini and Hochberg, 1995) was also tested. Simulation results
using generated data from various randomly constructed linear models show that the
performance of the multiple testing procedures was similar to that of conventional methods
in many cases, and generally better with respect to identifying relevant covariates. The FDP
based method appeared somewhat strict when it came to making predictions on unseen
data, while the Benjamini & Hochberg procedure was comparable to conventional methods
for this purpose.

I denne oppgaven diskuterer vi metoder for multippel hypotesetesting generelt, og fokuserer
spesifikt på lukket testing, introdusert av Marcus et al. (1976). Ulike lukkede testmetoder
ble brukt for å kontrollere familywise error rate (FWER) ved parvis sammenligning av
forventningsverdier. Spesialtilfellet med sammenligning av tre grupper ble undersøkt, hvor
lukket testing tilføyer svært lite ekstra beregningstid. Simuleringresultater basert på gener-
erte data viser at F-testen fra en-veis variansanalyse gir en sterk lukket testmetode i dette
tilfellet, noe som bekrefter tidligere resultater av Shaffer (1981).

Goeman et al. (2011) presenterte en metode som bruker lukket testing for å lage kon-
fidensutsagn om false discovery proportion (FDP). Vi har anvendt denne metoden for å
utføre modellseleksjon i multippel lineær regresjon, og sammenlignet den med konven-
sjonelle metoder som lassoregresjon og modellseleksjon basert på AIC, samt Benjamini
& Hochbergs metode (Benjamini and Hochberg, 1995) for kontroll av false discovery rate.
Resultater fra simuleringer med data fra ulike, tifeldig genererte lineære modeller tyder på
at metodene basert på hypotesetesting var sammenlignbare med konvensjonelle metoder i
mange tilfeller, og generelt bedre til å identifisere kovariater som påvirker responsvariabe-
len. Den FDP-baserte metoden synes allikevel å være for streng i forhold til å gjøre gode
prediksjoner på usett data, mens Benjamini & Hochbergs metode ga like gode resultater
som konvensjonelle metoder på dette området.
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Chapter 1
Introduction

Hypothesis testing is an important part of scientific research, as scientific discoveries
are most commonly the results of rejected statistical hypotheses. It is therefore of great
importance that the procedures used in hypothesis testing are mathematically and statisti-
cally sound, in order to have some control of potentially misleading scientific discoveries
(Goeman and Solari, 2014).

A common occurrence is the testing of multiple hypotheses, which inflates the probabil-
ity of committing false rejections. Our test methods must therefore be adjusted, resulting in
multiple testing procedures. We discuss the control of the familywise error rate (FWER),
the false discovery proportion (FDP), and the false discovery rate (FDR), and methods
based on these criteria.

The closed testing procedure by Marcus et al. (1976) is most commonly known for
its role in FWER control. It has played an important part in the development of FWER
controlling methods, with specific examples being the development of methods by Holm
(1979) and Hochberg (1988). These sequentially rejective methods are constructed as
closed testing procedures, utilizing the well known Bonferroni method and the global test
by Simes (1986), respectively. We define and discuss closed testing procedures. We further
discuss their properties, explore options for how to construct them, and apply them to two
different multiple hypothesis testing scenarios.

We discuss coherence and consonance, introduced by Gabriel (1969), which are prop-
erties a multiple testing procedure can have. The former is closely connected to the closed
testing procedure, a connection which has been explored by Sonnemann (1988, 2008) and
Finner (1988). Consonance was further explored by Romano et al. (2011) and is beneficial
in methods that control the FWER.

The first application of closed testing procedures that we discuss is the pairwise com-
parisons of means. When multiple comparisons of means are made, the closed testing
procedure is simplified, leading to strong and simple procedures. This is especially the
case when three group means are compared. We present results from a study similar to that
of Shaffer (1981). The goal was to investigate how well various closed testing procedures
would perform in this scenario.

1



Chapter 1. Introduction

Goeman et al. (2011) also discussed consonance, and have presented an FDP based
method for multiple testing using closed testing procedures. Their method takes advantage
of the dissonant rejections that can occur if the closed testing procedure is not consonant.
The information gained from these rejections is unused in FWER control, but still serves
a purpose in FDP based methods.

We present results from a study of how well the FDP based method performs for the
purpose of model selection in multiple linear regression, when compared to conventional
methods of lasso regression and best subset selection with the Akaike information crite-
rion (AIC). We additionally explore how useful the well known Benjamini & Hochberg
procedure for FDR control is for the same purpose (Benjamini and Hochberg, 1995).

2



Chapter 2
Theory

This section contains basic theory regarding multiple hypothesis testing, specifically re-
garding the familywise error rate, false discovery proportion and false discovery rate, and
the closed testing procedure. It also contains descriptions of properties a multiple testing
procedure may have, namely coherence and consonance, and some results regarding these
properties.

We define and discuss the closed testing procedure, and discuss a method proposed by
Goeman et al. (2011) for constructing confidence sets for the false discovery proportion,
methods for pairwise comparisons ofmeans, andmodel selectionmethods inmultiple linear
regression. Finally we discuss various ways to test intersections of hypotheses, which we
need to construct closed testing procedures.

2.1 Multiple testing
Let X be data from some distribution Pθ , where the parameter of interest, θ (potentially a
vector), lies in some parameter space Ω. We consider hypotheses of the form H : θ ∈ ω,
where ω ⊂ Ω is some subset of the parameter space. We say that a hypothesis H is true
if θ ∈ ω. Typical examples of hypotheses are H : θ = θ0 and H : θ1 = θ2, corresponding
to ω = {θ0} and ω = {θ | θ1 = θ2}, respectively, where θ1 and θ2 are components of the
vector of parameters.

We consider a set or familyH = {H1,H2, . . . ,Hm} of hypotheses of interest, that are to
be tested simultaneously, where Hi : θ ∈ ωi ⊂ Ω for i ∈ {1,2, . . . ,m} = M . For a nonempty
I ⊂ M we use the notation HI for the hypothesis HI : θ ∈ ωI =

⋂
i∈I ωi . We somewhat

misleadingly call HI an intersection of hypotheses. Note that H{i } = Hi for all i ∈ M .
If Hi ∈ H for all i ∈ I ⊂ M implies HI ∈ H we say that H is closed (under

intersection). LetH denote the closure ofH , i.e.

H = {HI | I , ∅, I ⊂ M} .

Thus a familyH of hypotheses is closed ifH = H .

3



Chapter 2. Theory

Hypothesis is
Hypothesis is true false total
rejected V U R
not rejected m0 − V m1 −U m − R
total m0 m1 m

Table 2.1: Table for multiple hypothesis testing, indicating the number of hypotheses involved in
specific scenarios. R and m are known values, the rest are unknown.

Observe that a hypothesis Hi implies another Hj if ωi ⊂ ωj . In this case we say that Hj

is a component of Hi , and a proper component if additionally Hj , Hi . We call a hypothesis
Hi in a family H elementary if it implies no other hypothesis in H , i.e. it has no proper
components. IfH is a family consisting only of (at least two) elementary hypotheses, it is
easy to see that it is not closed.

If the family of hypotheses of interest is not closed, considering also the rest of its
closure might provide useful information for testing. The additional hypotheses can be
used in construction of methods that control the familywise error rate, and they have some
more direct use in methods based on the false discovery proportion.

To obtain a framework for discussion of multiple testing procedures, we consider the
different outcomes for a total of m hypothesis tests. Table 2.1 shows an overview of the
number of hypotheses that are true and false, and the number of hypotheses that are or
are not rejected. The number of true and false hypotheses are m0 and m1, respectively. V
is the number of type I errors (rejections of true hypotheses) made and U is the number
of true positives, adding up to R, the total number of rejected hypotheses. The number of
true negatives is m0 −V , and m1 −U is the number of type II errors (failures to reject false
hypotheses) made. R and m are known, and V , U, m0 and m1 are unknown.

2.1.1 Familywise error rate
The familywise error rate (FWER) of a multiple testing procedure is the probability that at
least one of the true hypotheses is rejected,

FWER = P(V > 0).

In other words, the FWER is the probability that at least one type I error is made. Amultiple
hypothesis testing procedure that guarantees that the FWER is at or below a threshold α is
said to control the FWER at level α. Other types of control can be used when performing
multiple hypothesis testing, but FWER plays a particularly important part as the main form
of control used in confirmatory research.

If the procedure controls the FWER at level α only in the case where all hypotheses are
true, it is said to control the FWER weakly. If the procedure controls the FWER at level α
for any subset of the hypotheses, regardless of how many that are true, it is said to control
the FWER strongly.

The most commonly known method for FWER control is that of Bonferroni, for which

4



2.1 Multiple testing

each hypothesis is tested at the adjusted level α/m, in the case where there are m hypotheses
to test (Goeman and Solari, 2014).

2.1.2 False discovery proportion
The false discovery proportion (FDP) is the proportion of falsely rejected hypotheses, not
to be confused with the false discovery rate. The FDP is defined as

FDP =

{
V
R , if V > 0
0, otherwise.

(2.1)

Methods based on the FDP aim to create confidence sets, confidence intervals or point
estimates for the FDP. Methods that seek to estimate or create confidence statements for
V , the number of true hypotheses in a given subset of hypotheses, are naturally equivalent
to FDP based methods. In particular, the special case of estimating π0, the number of true
hypotheses in the complete set of hypotheses, has been explored by several researchers
(Goeman et al., 2011).

FDPbasedmethods let the user select the set of rejected hypotheses, and then confidence
statements for the FDP of this selected set can bemade. R is thus known because it is chosen
directly. This contrasts methods that control the FWER or FDR at some predetermined
level, where the methods themselves select which hypotheses to reject.

FWER control can be considered quite strict, which is beneficial in confirmatory
research. FDP based methods, on the other hand, grant the user a lot more freedom,
which is highly useful in exploratory research. The purpose of FDP based methods is
not to produce final results, but to explore which hypotheses to look further into. This is
particularly useful in for example genomics, as the initial number of hypotheses might be
very large (Goeman and Solari, 2014).

2.1.3 False discovery rate
The false discovery rate (FDR) is the expected value of the FDP, and is thus defined as

FDR = E[FDP].

Similarly to how a procedure has FWER control at level α if it guarantees that the FWER
is at most α, a procedure that has level α FDR control ensures that the FDR is at most α.
In order words, it ensures that the expected value of the proportion of type I errors among
all rejections is smaller than or equal to α.

Themost commonmethod for FDRcontrol is the procedure byBenjamini andHochberg
(1995) (B&H). This is a step-up procedure with critical values iα/m, i = 1,2, . . . ,m. With
p(i) meaning the ith smallest p-value, this means that the procedure finds the largest j such
that p(j) ≤ jα/m, and rejects all hypotheses corresponding to p-values p(1), p(2), . . . , p(j). If
no such j exists no hypotheses are rejected. The validity of the procedure is believed to be
robust for the case with asymptotically normal, two-sided tests, which is what we will be
mainly concerned with (Goeman and Solari, 2014).

5



Chapter 2. Theory

2.2 The closed testing procedure

Closed testing was introduced by Marcus et al. (1976). We first describe the procedure in
the context of a closed family of hypothesesH = {Hi | i ∈ M}, with M = {1,2, . . . ,m}.

A closed testing procedure controls the FWER at a predetermined level α for the
hypotheses in H . The rejection of hypotheses is discussed in two ways. The event that a
hypothesis Hi is rejected by a level α test is denoted Li , and the test is called a local test.
The event that a hypothesis Hi is rejected by the closed testing procedure is denoted Ci .
The procedure is then defined by

Ci =
⋂

ω j ⊂ωi

Lj .

A hypothesis Hi is thus rejected by the closed testing procedure if all hypotheses that imply
it (hypotheses of which Hi is a component) are rejected by the local tests.

Unless all hypotheses in H are false, there exists a unique true hypothesis in H such
that all the other true hypotheses are components of it. To see this, let T ⊂ M be the set of
indices of true hypotheses inH , and consider the hypothesis HT . Since ωT =

⋂
i∈T ωi , we

must have ωT ⊂ ωi for all true hypotheses Hi .
No true hypothesis is rejected by the closed testing procedure unless HT is, and since

the rejection of HT by the closed testing procedure depends on a local level α test (as well
as tests for any hypothesis Hj : θ ∈ ωj with ωj ⊂ ωT ), this occurs with probability at most
α. Thus the closed testing procedure ensures level α FWER control.

Consider now the case with a family of elementary hypothesesH = {Hi | i ∈ M}. We
know that this family is not closed, and that for any i, j ∈ M , i , j, we have ωi 1 ωj .
Note that the set of true hypotheses in H is a subset of the set of true hypotheses in H ,
and thus at least one true hypothesis inH is rejected only if at least one true hypothesis in
H is rejected. Therefore FWER control of the hypotheses inH implies FWER control of
the hypotheses inH , and we obtain FWER control of the hypotheses inH by applying the
closed testing procedure on the hypotheses inH .

We denote the event that a hypothesis HI is rejected by a level α test by LI , and the
event that a hypothesis HI is rejected by the closed testing procedure by CI . The definition
of the closed testing procedure above now leads to the following

CI =
⋂
J⊃I

LI .

Regarding rejection of the elementary hypotheses we obtain

Ci =
⋂
J 3i

LJ .

An elementary hypothesis Hi is rejected by the closed testing procedure if all intersections
of hypotheses that have Hi as a component can be rejected by local level α tests.
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2.3 Coherence
Gabriel (1969) discussed properties of a testing procedure. He argued that when a procedure
rejects a hypothesis, it should also reject any hypothesis implying it. This property is called
coherence. The rejection of a hypothesis means that we conclude that it is false. Thus, if a
hypothesis has a component that we have rejected, we should conclude that the former is
false as well.

A method is coherent if a hypothesis Hi is rejected only if Hj is rejected for every j
such that ωj ⊂ ωi . The closed testing procedure is thus coherent by definition. If all the
hypotheses in H are elementary, a method is coherent if a hypothesis HI ∈ H is rejected
only if all hypotheses HJ ∈ H such that J ⊃ I, are also rejected.

Romano et al. (2011) described the results by Sonnemann (1988, 2008) and Finner
(1988), who showed both that any coherent multiple testing procedure is equivalent to a
closed testing procedure, and that any incoherent procedure can be improved by a coherent
one. This further underlines the role of coherence in regards to closed testing, and adds
to the assertion by Gabriel (1969) that the property is beneficial for a testing procedure to
have.

2.3.1 Any coherentmultiple testing procedure is equivalent to a closed
testing procedure

We now summarize briefly how any coherent multiple testing procedure can be expressed
as a closed testing procedure. Let H be the family of hypotheses of interest, and R ⊂ H
be the set of hypotheses that the coherent procedure rejects. Now we express the procedure
as a closed procedure as follows. The local test for Hi ∈ H rejects Hi if there exists any
Hj ∈ R such that ωj ⊃ ωi . Thus the local test for Hi rejects it if any of its components
(which could be the hypothesis itself) was rejected by the original procedure.

Now we can observe that if Hi ∈ R, the local tests reject all Hj ∈ H such that ωj ⊂ ωi ,
which means that the closed testing procedure also rejects Hi , by the definition of the closed
testing procedure.

If the closed testing procedure rejects Hi ∈ H , it must be the case that the local test for
Hi rejects it. This means that Hi has a component Hj ∈ R that was rejected by the coherent
procedure. By coherence we therefore also have Hi ∈ R, and we conclude that the original
method and the closed testing procedure reject the exact same hypotheses.

2.3.2 Coherentization
Romano et al. (2011) described a method to construct a coherent multiple testing proce-
dure that rejects the same hypotheses and possibly more than an incoherent one, while
still maintaining FWER control at the same level. The method is appropriately named
coherentization.

Suppose an incoherent multiple testing procedure controls the FWER for a closed
family H = {Hi | i ∈ M} of hypotheses at level α, and rejects Hi when we observe data
X ∈ Ri , for i ∈ M . Ri is called the critical region of Hi . The coherentized procedure is
constructed by rejecting Hi when we observe data X ∈ R′i , for i ∈ M , where
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R′i =
⋃

j : ω j ⊃ωi

Rj .

Since ωi ⊃ ωi , we have Ri ⊂ R′i , and so the coherentized procedure rejects at least as
much as the incoherent one does. We add the rejections of all Hi for which there exists Hj

with ωj ⊃ ωi and where Hj is rejected by the incoherent procedure. This means that if
a hypothesis Hi has a component that is rejected by the incoherent procedure, Hi will be
rejected by the coherentized procedure. Thus the resulting procedure is coherent, since if
a hypothesis is rejected, so will all that has it as a component.

If the coherentization adds the rejection of a true hypothesis Hi , it must have been
the case that a component Hj of Hi , which thus means Hj is true, was already rejected
by the incoherent procedure. Therefore the coherentization adds no rejection of a true
hypothesis unless a true hypothesis was already rejected by the incoherent procedure. Thus
the probability of rejecting at least one true hypothesis is not changed, and the FWER
control is maintained at the same level.

2.4 Consonance
Another property discussed by Gabriel (1969) is consonance. A method is consonant if the
rejection of a hypothesis Hi implies the rejection of at least one of its proper components,
if such a hypothesis exists.

We argue that this general definition has some issues, for instance in a scenario with
hypotheses H1 : θ ∈ (0,2) and H2 : θ ∈ (0,1). Note that H2 is not elementary. In this case,
rejecting H2 and not rejecting H1 causes a dissonance by the definition of Gabriel (1969),
and we call it a dissonant rejection. However, it could be the case that θ ∈ (1,2), and so it
would be nonsensical to reject H1 for the sole reason that H2 is rejected.

We will instead focus on the case where we test the hypotheses from a family H of
elementary hypotheses, along with its closure H . We say that a closed testing procedure
is consonant if the rejection of HI implies the rejection of at least one of its elementary
components, i.e. Hi for some i ∈ I. This is the definition used by Romano et al. (2011)
and Goeman et al. (2011). If an intersection of hypotheses is false, at least one of the
elementary components must also be false, which makes this definition of consonance
seem like a natural property for a testing procedure to have.

In the context of using closed testing procedures to control the FWER, the rejection
of an intersection of hypotheses, HI , without the rejection of at least one of the involved
elementary hypotheses, can be considered awasted rejection (Goeman et al., 2011).Without
it, the set of rejected elementary hypotheses remains the same.

Unlike the case for coherence, not all closed testing procedures are consonant. Marcus
et al. (1976) discussed both consonant and non-consonant procedures. Goeman et al.
(2011) discussed applications in exploratory research where the information gained from
a dissonant rejection is used, in the context of creating confidence sets for the number of
true hypotheses in any chosen subset of the elementary hypotheses.

Romano et al. (2011) showed results regarding consonance that were similar to the
findings of Sonnemann and Finner regarding coherence. Specifically they showed that
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any non-consonant procedure can be replaced by a consonant one that rejects exactly the
same elementary hypotheses, and thus still controls the FWER at the same level. They also
showed that in specific cases, the procedure can even be improved to reject false hypotheses
with greater probability. Thus consonant methods are preferable when only the rejections
of elementary hypotheses are of interest, for example when the purpose is FWER control.

2.4.1 Consonantization
Romano et al. (2011) described a method of consonatization, which we summarize here.
The method creates a consonant closed testing procedure from a non-consonant one,
without altering which elementary hypotheses the procedure rejects, thus maintaining the
same level of FWER control.

Suppose a non-consonant closed testing procedure controls the FWER for a family of
elementary hypotheses H = {Hi | i ∈ M} at level α. Suppose further that the procedure
rejects HI when we observe data X ∈ RI , for I ⊂ M . The consonantized procedure is
constructed by rejecting HI when we observe data X ∈ R′I , for I ⊂ M , where

R′I =
⋃
i∈I

⋂
J⊂M ,i∈J

RJ .

If any hypothesis Hi is rejected by the original procedure, we must have X ∈ RJ for all
J ⊂ M such that i ∈ J, since the method is coherent. Thus X ∈

⋂
J⊂M ,i∈J RJ , which means

X ∈ R′I for all I ⊂ M such that i ∈ I, including I = {i}. The new procedure thus rejects Hi

as well.
If a hypothesis Hi is rejected by the new procedure, we must have X ∈ R′

{i }
=⋂

J⊂M ,i∈J RJ . Specifically we thus have X ∈ R{i }, which means that the original procedure
rejects Hi . Thus the twomethods reach the exact same conclusions regarding the elementary
hypotheses.

For any I ⊂ M we have R′I =
⋃

i∈I R′
{i }

, so that X ∈ R′I implies X ∈ R′
{i }

for at least one
i ∈ I. Thus an intersection of hypotheses is rejected by the new procedure only if at least
one of its elementary components is rejected, which makes the new procedure consonant.

Consonantization as described above does not impact which elementary hypotheses
are rejected. Romano et al. (2011) did however describe how the method can be improved
so that the consonant procedure created maintains the same level of FWER control, yet
has increased power. The consonantization removes points from the critical regions of
hypotheses with non-consonant local tests. This decreases the level of these local tests,
which means other points may be added to the reduced critical regions without increasing
the levels of the tests past their initial value. A simple, two-dimensional example was
presented by Romano et al. (2011).

2.5 Confidence sets for number of false discoveries
Goeman et al. (2011) presented an FDP based method that takes advantage of the informa-
tion gained from dissonant rejections caused by a non-consonant closed testing procedure.
The resulting method grants the researcher a high degree of freedom in which hypotheses
to investigate, as the method produces simultaneous confidence statements for the FDP of
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all possible subsets of the hypotheses. The setting is exploratory research, and the goal is
to reduce a large number of hypotheses to a smaller number of promising hypotheses to
further investigate with stricter testing procedures.

A setH = {Hi | i ∈ M = {1,2, . . . ,m}} of elementary hypotheses is considered, along
with its closureH . A closed testing procedure is applied at some level α. LetU denote the
set of nonempty subsets I ⊂ M for which HI is rejected by a local test, and X denote the
set of nonempty subsets J ⊂ M for which HJ is rejected by the closed testing procedure.

A subset of the elementary hypotheses R ⊂ H is selected by the user. Rather than
creating confidence sets for the FDP of this set, Goeman et al. (2011) constructed confidence
sets forV(R), the number of true hypotheses inR. Dividing by R, the number of hypotheses
in R, will result in a confidence set for the FDP.

Let tα(R) = max{|I | | {Hi | i ∈ I} ⊂ R, I < X}, meaning tα(R) is the size of the
largest subset of R for which the intersection is not rejected by the closed testing procedure.
If all such intersections are rejected, we set tα(R) = 0. A 1 − α-confidence set for V(R) is
then

{0,1, . . . , tα(R)},

which means that with probability at least 1 − α we have at most tα(R) true hypotheses in
R, or that rejecting the hypotheses in R leads to at most tα(R) false discoveries.

The reason behind the coverage probability ties into the proof that the closed testing
procedure controls the FWER. The probability that no true hypothesis is rejected by the
closed testing procedure is at least 1− α. In the case that no true hypothesis is rejected, the
number of true hypotheses in R can not be larger than tα(R). If there were more than tα(R)
true hypotheses in R, the intersection of these hypotheses would not have been rejected,
which leads to a contradiction, since tα(R) was the size of the largest subset of R for which
the intersection is not rejected.

The confidence sets for all R ⊂ H depend on the same event, that no true hypothesis is
rejected by the closed testing procedure. Thus all of these confidence sets are simultaneous.
This means that the user is free to consider the confidence sets for any subset, without
compromising the coverage probability (Goeman et al., 2011).

2.5.1 Example of construction of confidence sets
Consider an example where we are interested in the setH = {H1,H2,H3,H4} of elementary
hypotheses. Suppose all hypotheses with H1 as a component, as well as the hypotheses
H{2,3,4} and H{2,3} are rejected by the closed testing procedure, and the rest are not. See
Figure 2.1 for an illustration.

H{2,4} and H{3,4} are the intersections involving the largest number of hypotheses inH
that are not rejected. Thus tα(H) = 2, and we conclude that {0,1,2} is a 1 − α-confidence
set for the number of true hypotheses in H . Thus we observe that there are likely at least
two false hypotheses among our elementary hypotheses, even though H1 was the only
elementary hypothesis rejected by the closed testing procedure.

Similarly, if we considerR = {H2,H3}, H2 or H3 is the intersection involving the largest
number (only one) of hypotheses in R that are not rejected. Thus tα(R) = 1, and {0,1} is a
1 − α-confidence set for the number of true hypotheses in R. This tells us that the second
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Figure 2.1: Intersections of elementary hypotheses H1, H2, H3 and H4. Hypotheses framed in red are
rejected by a closed testing procedure. The rejections of H{2,3,4} and H{2,3} are dissonant rejections,
since none of their elementary components are rejected. Note that the hypothesis HI here is denoted⋂

i∈I Hi .

false hypothesis, the first being H1, is likely either H2 or H3, and that investigating these
hypotheses further could be useful.

Note that the information that lead to the conclusions in the previous paragraph is
gained from the rejection of H{2,3}, a dissonant rejection. A consonant method resulting in
the same set of rejected elementary hypotheses would not have rejected H{2,3} (or H{2,3,4}),
which would result in a larger confidence set for the number of true hypotheses inR. In fact,
we would obtain tα(R) = 2, resulting in the trivial confidence set {0,1,2}, and a complete
loss of the information originally gained from the dissonant rejection.

2.5.2 Defining rejections
The defining rejections of the closed testing procedure are the rejected hypotheses HI ∈ H

such that no HJ with J , ∅, J ⊂ I is rejected (Goeman et al., 2011). In other words,
a defining rejection is a rejected hypothesis with no rejected proper components. As an
example, the defining rejections in Figure 2.1 are H1 and H{2,3}, since these are the only
rejections with no rejections further down in the hierarchy.

If no true hypothesis is rejected, any rejected hypothesis must have at least one false
elementary component. Since the defining rejections have no rejected proper components,
the elementary hypotheses involved in defining rejections are the smallest subsets of el-
ementary hypotheses of which at least one is false. For our example H1 and H{2,3} are
defining rejections, and so {H1} and {H2,H3} are the smallest subsets that must contain at
least one false hypothesis, conditioned on the event that no true hypothesis is rejected. This
also means that at most all but one of the elementary components of a defining rejection
are true.

Thus, if HI is a defining rejection, and R = {Hi | i ∈ I}, we have tα(R) = |I | − 1 =
|R |−1. If no incorrect rejections have beenmade,R contains at most |I |−1 true hypotheses,
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and at least one false hypothesis. Note that the defining rejections with only one elementary
component are the elementary hypotheses rejected by the closed testing procedure, and
thus if only these are selected to be rejected we actually maintain FWER control at level α.

2.6 Pairwise comparisons of means
A common study is that of pairwise comparisons of means. This often appears in one-factor
problems, such as a study of the effects of different treatments (Walpole et al., 2016, pp.
527, 543–544). An example can be for example testing to see if the expected time to finish
a race is different for people applying different running techniques.

The random variables Y1,Y2, . . . ,Ym corresponding to some response variable for m
different groups, are investigated. The goal of the study is to determine whether or not the
respective means, µ1, µ2, . . . , µm, are equal, and which means that are. The parameter of
interest is thus θ = (µ1, µ2, . . . , µm), and the elementary hypotheses are

Hi j : µi = µj,

where 1 ≤ i < j ≤ m, with alternative hypotheses

H ′i j : µi , µj .

Note that there are m(m − 1)/2 elementary hypotheses. The global hypothesis is the inter-
section of all the elementary hypotheses,

H12...m : µ1 = µ2 = . . . = µm,

with alternative hypothesis

H ′12...m : µi , µj,

for some i and j.
In our discussion and later simulations, we assumeYi , i = 1,2, . . . ,m, to be independent

and to come from normal distributions with the same variance σ2. For n independent
realizations of each the m variables, we thus have Yi j ∼ N(µi, σ2) for i = 1,2, . . . ,m,
j = 1,2, . . . ,n.

The group sample mean, pooled sample mean, group sample variance and pooled
sample variance are thus given by

Ȳi =
1
n

n∑
j=1

Yi j, Ȳ =
1
m

n∑
i=1

Ȳi,

S2
i =

1
n − 1

n∑
j=1

(
Yi j − Ȳi

)2
, S2

p =
1
m

m∑
i=1

S2
i , (2.2)

respectively (Casella and Berger, 2002, p. 528).
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2.6.1 Testing the elementary hypotheses
The elementary hypothesis Hi j : µi = µj is commonly tested with the two-sample t-test.
The test statistic for this test is

T ′i j =
Ȳi − Ȳj√
(S2

i + S2
j )/n

,

which has a t-distribution with 2(n − 1) degrees of freedom (Casella and Berger, 2002, p.
409). We will focus on an alternative test statistic, namely that of the pooled t-test

Ti j =
Ȳi − Ȳj√

2S2
p/n

, (2.3)

which has a t-distribution with m(n − 1) degrees of freedom (Casella and Berger, 2002, p.
529). Here the additional information from the samples of Yk , k , i, j is also used in the
estimation of σ2.

2.6.2 Familywise error rate control in pairwise comparisons
Since we are testing multiple elementary hypotheses, we should perform some correc-
tion. We consider how to achieve FWER control at level α. A simple approach is to use
Bonferroni’s method, and test each elementary hypothesis at level α/(m(m − 1)/2).

Tukey’s procedure simultaneously tests all pairwise comparisons while maintaining
FWER control at a desired level α (Walpole et al., 2016, p. 546). The test is based on the
studentized range distribution, which is the distribution of

Q =
Ȳmax − Ȳmin√

S2
p/n

, (2.4)

where Ȳmax is the largest observed group mean and Ȳmin is the smallest.
The test statistic used by Tukey’s procedure for the elementary hypothesis Hi j : µi = µj

is

Qi j =
|Ȳi − Ȳj |√

S2
p/n

,

which is tested using a studentized range distribution with m groups and m(n − 1) degrees
of freedom (Walpole et al., 2016, p. 546). Note that this test statistic is similar to that of
the pooled t-test, as Qi j =

√
2|Ti j |. Each difference in observed means is tested by Tukey’s

procedure as though they had the distribution of the largest, and thus the tests for the
non-largest observed differences will be conservative.

The test for the elementary hypotheses inTukey’s procedure is strictlymore conservative
than the pooled t-test when used only to test a single, arbitrary, elementary hypothesis,
unless there are only two groups in total. This is illustrated for the case m = 3, n = 30 in
Figure 2.2, which in black shows the density function of the studentized range distribution,
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Figure 2.2: The density functions of Q and
√

2|T |, both with 3(30 − 1) = 87 degrees of freedom,
with three groups. The 0.95-quantile for each distribution is marked with a dotted line.

Q, and in blue the transformed t-distribution,
√

2|T |. The corresponding 1 − α-quantiles
are marked with dotted lines for α = 0.05.

We see that if an observed test statistic q leads to a rejection by Tukey’s procedure,
meaning it is larger than the 1 − α-quantile of the studentized range distribution, marked
by the black dotted line, it must also be the case that it is rejected by the t-test, since its
corresponding 1 − α-quantile, marked with a blue dotted line, is smaller. The reason is
that the studentized range distribution is based on the largest difference of means, and the
t-distribution is based on an arbitrary difference, which explains that the probability mass
for the former is shifted towards larger values compared to the latter.

The same reason that makes the tests in Tukey’s procedure conservative also causes it
to achieve level α FWER control, however. If all elementary hypotheses are true, no true
hypothesis is rejected unless the one corresponding to the largest observed difference is,
and the test for this has level α. If only a subset of the groups have the same mean, no
true hypothesis is rejected unless we reject the one corresponding the the largest observed
difference in mean between two of these groups. This observed difference is tested against
a critical value which assumes that the number of groups with equal mean is larger, which
naturally must be larger than the critical value corresponding to the actual number of groups
with equal mean. Thus the probability of committing a type I error is always smaller than
or equal to α.

Another alternative to achieve FWER control is to use a closed testing procedure. In
pairwise comparisons this leads to some interesting simplifications, since some intersec-
tions of hypotheses coincide. Thus not all 2m(m−1)/2 − 1 intersections have to be tested,
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reducing the computational cost. We consider the case m = 3 in particular in the next
chapter and in our experiments.

2.7 Model selection in multiple linear regression
In multiple linear regression the goal is to model the relationship between a response
variableY and multiple covariates x1, x2, . . . , xm. In the simplest case it is assumed that this
relationship takes the formY = β0+ β1x1+ β2x2+ . . .+ βmxm+ε , where the βs are constant
coefficients and ε is normally distributed noise with mean 0 and unknown variance σ2. For
n independent data points we thus have Yj ∼ N(β0 + β1x1j + β2x2j + . . . + βmxmj, σ

2), for
j = 1,2, . . . ,n.

The coefficient estimates, β̂0, β̂1, β̂2, . . . , β̂m, are typically chosen by minimizing the
residual sum of squares (RSS), defined as

RSS =
n∑
j=1

(
yj − ŷj

)2
=

n∑
j=1

(
yj −

(
β̂0 +

m∑
i=1

β̂i xi j

))2

,

resulting in the least squares coefficient estimates. When comparing the predictions of
models it is normal to report the mean of the RSS, the mean square error (MSE) (James
et al., 2013, pp. 29, 62, 72).

An important part of regression is to determinewhich covariates that affect the response.
The relevance of a particular covariate xi is investigated through a hypothesis test of
Hi : βi = 0 versus its alternative H ′i : βi , 0, and we call xi a significant covariate if Hi is
rejected.

The distribution of the least squares estimates for the coefficients is

β̂ ∼ N(β, (XT X)−1σ2),

where σ2 is the unknown variance of ε and X is the design matrix, meaning row j of X is
(1, x1j, x2j, . . . , xmj), for observations j = 1,2, . . . ,n (Hastie et al., 2001, p. 47). Thus a test
statistic for the elementary hypothesis Hi : βi = 0 is

Ti =
β̂i

σ̂
√
vi
, (2.5)

where

σ̂2 =
1

n − m − 1

n∑
j=1

(
yj − ŷj

)2
=

RSS
n − m − 1

,

is the estimated variance of ε , and vi is the ith diagonal element of (XT X)−1. Ti has a
t-distribution with n − m − 1 degrees of freedom (Hastie et al., 2001, pp. 47–48).

Seldom will all the covariates be truly relevant for the response, and including the
irrelevant ones in the model will add noise that increases the variance of its predictions.
Thus it is beneficial to perform model selection to reduce the set of covariates in the
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model. Conventional methods for this are subset selection methods using some optimality
criterion, and regularized regression (James et al., 2013, pp. 203–204).

The hypothesis tests for the significance of covariates are typically not used directly for
model selection. F-tests can be used to compare the full model to a reduced one (described
in the next section), but are not used extensively formodel selection. Doing sowould require
some multiplicity correction, and we suspect that FWER control is too strict. Despite the
fact that including irrelevant covariates in the model adds noise to the predictions, the
exclusion of a relevant covariate may also have a large, negative impact on the model. Thus
type II errors are also important to limit. We have explored if control milder than that of
FWER has merit, specifically by applying the FDP based method by Goeman et al. (2011).

There is an issue with model selection in general when it comes to inference about the
reduced model. The reported p-values for the covariates in a reduced model may not take
the selection process into account, and may therefore be unreliable (Goeman et al., 2011).
This is beyond the scope of what we explore here, although it is important to keep in mind
when working with a reduced model.

2.7.1 Best subset selection
In best subset selection, all 2m possible submodels ofY = β0+ β1x1+ β2x2+ . . .+ βmxm+ε
are considered, and the one that optimizes some specified criterion is selected as the best
model. We consider the Akaike information criterion (AIC), which for a model with k
covariates is defined as

AIC = −
2
n
`(β̂) +

2k
n
,

where `(β̂) is the maximum log-likelihood for the model and n is the number of data points
(Hastie et al., 2001, p. 231). For our linear regression model with normally distributed
errors, this is equivalent to comparing

AIC′ =
1

nσ̂2

(
RSS + 2kσ̂2

)
,

where σ̂2 is the estimated variance of ε , calculated by using the full model (James et al.,
2013, pp. 211–212).

The AIC combines a measure of how well the model fits the data, the first term, with
a penalty term for the complexity of the model. By selecting the model with the minimal
AIC value, we thus end up with covariates that contribute to explain the response well, and
exclude covariates that seem the least likely to affect the response.

2.7.2 Regularization
In regularized regression the coefficient estimates of the model are shrunk towards 0,
in order to reduce the variance of the model’s predictions. Lasso regression is a form
of regularized regression, where instead of only minimizing the RSS, we restrict the
coefficient space by the condition Σm

i=1 |βi | ≤ s, where s is some tuning parameter. An
equivalent formulation is to choose the coefficient estimates that minimize
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n∑
j=1

(
yj − β0 −

m∑
i=1

βi xi j

)2

+ λ

m∑
i=1
|βi | = RSS + λ

m∑
i=1
|βi |,

where λ is a tuning parameter (James et al., 2013, pp. 219–221).
If λ = 0, the minimization yields the regular least squares estimates, and if for λ = ∞ all

estimated coefficientswill be 0. For the first formulationwith the restriction this corresponds
to s = ∞ and s = 0, respectively.

The region defined by Σm
i=1 |βi | ≤ s has straight edges, and a consequence of this is that

some coefficient estimates are forced to 0 for certain values of the tuning parameter. Figure
2.3 shows why this is the case. Because the edges of the region are straight, the contours
of the error are likely to intersect the region at coefficient axes. Thus the corresponding
coefficient estimates will be 0, and the method performs model selection in addition to the
regularization.

The value of the tuning parameter is often chosen by cross-validation, where an estimate
of the test MSE, the MSE the model would obtain when used on new data, is calculated for
many values of λ. The data is partitioned, into what is called folds, and the data in each fold
is treated as test data while the model is fitted on the remaining data. The average of the
MSE values for each fold is then an estimate for how well the model fits new data, and the
value of λ that minimizes this estimate is then used to fit the final model. If the number of
folds is k the procedure is called k-fold cross-validation, and if it is equal to the number of
data points, the procedure is called leave-one-out cross-validation (LOOCV) (James et al.,
2013, pp. 176–182, 227).

2.8 Tests for intersections of hypotheses
In order to use a closed testing procedure, we need to have local tests for each intersection
of hypotheses. There are many ways to select the local tests, where some depend only
on the p-values for tests of the elementary hypotheses, while others depend on the joint
probability distribution which the observed data comes from. A method that controls the
FWER for a familyHI = {Hi | i ∈ I} of hypotheses at level α can also be used to create a
local level α test for HI .

2.8.1 Constructing local tests using a procedure that controls the
FWER

Suppose we have a multiple testing procedure forHI that controls the FWER at level α. A
level α test for HI requires P(LI ) ≤ α in the case that HI is true, where LI is the event that
HI is rejected.

To reject HI whenever the multiple testing procedure with level α FWER control rejects
Hi for at least one i ∈ I, is a level α test for HI . To see this, let Li be the event that Hi

is rejected by the procedure, and note that in the case that HI is true, the rejection of any
elementary component of HI is a type I error. Therefore
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Figure 2.3: Two-dimensional example of lasso regression, with contours of the error as a function of
the coefficients in red, the least squares estimate of β marked with a dot, and the restricted coefficient
space in light blue. The figure is used with permission, and is made by Dag Johnsrud Kristiansen for
the purpose of his own master’s thesis, inspired by a similar figure by James et al. (2013, p. 222).

P(LI ) = P

(⋃
i∈I

Li

)
= P(V > 0) = FWER ≤ α,

whereV is the number of elementary components of HI that are rejected. Thus any method
that controls the FWER for a set of hypotheses can be used to construct a hypothesis test
for the intersection of the same hypotheses.

2.8.2 Local tests for intersections based on the p-values from the ele-
mentary hypotheses

For the elementary hypotheses H1,H2, . . . ,Hm with corresponding p-values p1, p2, . . . , pm,
let p(1), p(2), . . . , p(m) be the same p-values sorted in ascending order. For a non-empty subset
I ⊂ M , let pI

(1), p
I
(2), . . . , p

I
( |I |)

be the sorted p-values for the hypotheses inHI = {Hi | i ∈ I}.
Bonferroni’s method for FWER control can be used to create local test in the manner

described above. For the hypothesis HI , a level α test would thus be to reject HI if, for
some i ∈ I, Hi is rejected by the Bonferroni method at level α. Hi is rejected by the
Bonferroni method if pi ≤ α/|I |. Thus the resulting local test for HI is to reject it whenever
pI
(1) ≤ α/|I |. This test is valid regardless of the distributions of the test statistics for the

elementary hypotheses, as long as the tests of the elementary hypotheses themselves are
valid.
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2.8 Tests for intersections of hypotheses

The closed testing procedure obtained when using Bonferroni’s method to construct
local tests was found by Holm (1979). The procedure is a sequentially rejective multiple
test procedure which rejects H(j) corresponding to p(j) for all j smaller than the smallest
k such that p(k) > α/(m − k + 1), and all hypotheses if no such k exists. Note that using
Holm’s method to construct local tests for a closed testing procedure in the same manner
also results in Holm’s method, because it rejects at least one hypothesis in HI in exactly
the same case as Bonferroni’s method, namely when pI

(1) ≤ α/|I |.
Another test for an intersection of hypotheses based only on p-values is Simes’ global

test, introduced by Simes (1986). An intersection of hypotheses HI can be rejected at level
α by Simes’ global test if for at least one i ∈ I we have pI

(i)
≤ iα/|I |. Simes’ global test

is valid when the test statistics are independent, but is also believed to be valid in other,
specific cases; the two-sided t-tests are asymptotically normal, in which case it is believed
that the validity of Simes’ test is robust (Goeman and Solari, 2014), and simulations studies
by Simes and others also indicate that Simes’ global test is in valid for t-tests for pairwise
comparisons (Shaffer, 1995).

Hommel (1988) considered the closed testing procedure obtained when using Simes’
global test for the local tests. This procedure is slightly more complex than for example
Holm’s method, and rejects all Hj with pj ≤ α/k, where k = max{i ∈ M | p(m−i+k) >
kα/i for k = 1,2, . . . , i}. Hochberg (1988) presented a slightly weaker simplification of
this procedure, which rejects H(j) corresponding to p(j) for all j smaller than or equal to
the largest k such that p(k) ≤ α/(m − k + 1), and no hypotheses if no such k exists.

2.8.3 Local tests for intersections based on the distribution of the data
We discuss how to test the intersections of elementary hypotheses from the pairwise
comparisons and linear regression settings. In both cases, the elementary hypotheses are
two-sided t-tests.

One-way analysis of variance

The one-way analysis of variance (ANOVA) is, despite its name, a common method for
the analysis of means of random variables from different groups (Casella and Berger,
2002, pp. 521–534). The observations are assumed to come from the model Yi j = µi + εi j ,
where i = 1,2, . . . ,m and j = 1,2, . . . ,n, where εi j are independent and from a normal
distribution with mean 0 and unknown variance σ2, corresponding to the assumptions we
made in Section 2.6.

A common way to test the global hypothesis H12...m : µ1 = µ2 = . . . = µm is to use the
F-statistic

F =
n

m−1
∑m

i=1
(
Ȳi − Ȳ

)2

S2
p

, (2.6)

which under H is F-distributed with m − 1 and m(n − 1) degrees of freedom (Casella and
Berger, 2002, pp. 533–534).

The numerator estimates the variance of the group means, and the denominator esti-
mates the overall variance. If the expected values are equal for each group, it is unlikely
to observe an estimate of the variance of the group means that is large compared to the
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overall variance. Thus a large value of F suggests that the means are different, supporting
the rejection of H. If H is rejected, we merely conclude that a difference in means exists,
but we do not know which specific pair of groups that are different.

The ANOVA can also be used to construct tests for the intersections between the global
hypothesis and the elementary hypotheses, but here we are only concerned with testing the
global hypothesis, for reasons that will become clear in the next chapter.

The studentized range procedure

The test performed for the elementary hypotheses in Tukey’s procedure can also be used
to test the global hypothesis in the multiple comparisons setting. We will refer to this as
the range test. We then only test the comparison of the largest and smallest observed mean,
and use the test statistic

Q =
Ȳmax − Ȳmin√

S2
p/n

,

which has a studentized range distribution with m groups and m(n− 1) degrees of freedom
(Shaffer, 1995).

Observe that this can be seen as the result of using Tukey’s procedure for FWER control
to construct a test for the global hypothesis. If at least one elementary hypothesis is rejected,
it must be the case that the hypothesis corresponding to the largest observed difference in
means is rejected, since all differences are compared to the same critical value.

F-tests for intersections of hypotheses in regression

F-tests can be used as local tests also in the regression setting. Assuming a hypothesis
HI : βi = 0 for i ∈ I is true can be seen as restricting the model from the full model
Y = β0 +

∑m
i=1 βi xi + ε to the reduced model Y = β0 +

∑
i∈{1,2,...,m}\I βi xi + ε . If the full

model fits the data much better than the reduced model, we have evidence supporting the
rejection of HI . The test statistic used is

FI =
(RSSI − RSStot)/|I |
RSStot/(n − m − 1)

, (2.7)

where RSSI is the RSS of the model reduced by the restrictions of HI , and RSStot is the
RSS of the full model. FI is F-distributed with |I | and n−m−1 degrees of freedom. When
I = {i}, the test is equivalent to the previously mentioned t-test of Hi (James et al., 2013).
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Applications

In this section we discuss applications of the closed testing procedure. For the first applica-
tion the closed testing procedure is used to control the FWER for pairwise comparisons of
means. Here several intersections of hypotheses coincide, granting the benefit of a closed
testing procedure with little added cost in the calculations. The second application is in
model selection in multiple linear regression, and is discussed by Goeman et al. (2011).
Here the FDP is of interest, and so we are interested in the information gained by dissonant
rejections.

3.1 Pairwise comparisons of means

Pairwise comparisons of three means lead to some interesting simplifications in the closed
testing procedure, since we end up with coinciding intersections of hypotheses.

Let Y1, Y2 and Y3 be independently and normally distributed random variables with
means µ1, µ2 and µ3 and equal, unknown variance σ2. We wish to compare their means,
so that the parameter of interest is θ = (µ1, µ2, µ3). We have the elementary hypotheses
H12 : µ1 = µ2, H23 : µ2 = µ3 and H13 : µ1 = µ3, with alternative hypotheses H ′12 : µ1 , µ2,
H ′23 : µ2 , µ3 and H ′13 : µ1 , µ3, respectively. Suppose n samples are collected of each of
the three variables. A closed testing procedure will be used to maintain FWER control.

We realize that the closure of {H12,H23,H13} only introduces one additional hypothesis,
namely the global hypothesis H123 : µ1 = µ2 = µ3, since H{12,23} = H{23,13} = H{12,13} =
H123. Using the closed testing procedure, we thus first test the global hypothesis with a
level α test, and if it is rejected, we test each of the elementary hypotheses also at level α.
Hence we obtain level α FWER control without needing to adjust the level of the tests of
the elementary hypotheses, so long as the global hypothesis is rejected by its local test.

We discuss options for the local test used for this closed testing procedure, and in the
next chapter we discuss experiments we have performed to test these options.
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3.1.1 Local tests for the elementary hypotheses

For the local tests of the elementary hypotheses we use the pooled t-tests. Thus we use the
test statistic Ti j from (2.3), for 1 ≤ i < j ≤ 3, which under Hi j has a t-distribution with
3(n − 1) degrees of freedom.

Since we are using two-sided t-tests, we only consider the absolute value of T12,T23 and
T13. With observed test statistics t12, t23 and t13 we thus get p-values pi j = 2(1 − F(|ti j |)),
where F is the cumulative distribution function of a t-distribution with 3(n− 1) degrees of
freedom.

3.1.2 Local test for the global hypothesis based on the p-values for the
elementary hypotheses

To test the global hypothesis,wemayuseBonferroni’smethod, regardless of the dependence
structure of the test statistics for the tests for the elementary hypotheses. This method allows
us to reject the global hypothesis if p(1) ≤ α/3. The resulting closed testing procedure lets
us reject any elementary hypothesis Hi j with pi j ≤ α/3, and if this is the case for at least
one hypothesis, any remaining hypotheses with a p-value smaller than α.

Note that the closed testing procedure using Bonferroni’s method to test the global
hypothesis is uniformly stronger than a multiple testing procedure using only the t-tests
with Bonferroni-correction. The latter rejects only elementary hypotheses with p-values
smaller than or equal to α/3, but the closed procedure might reject additional hypotheses
if this is the case for at least one of them.

A second alternative is Simes’ global test. In our casewe can reject the global hypothesis
if p(1) ≤ α/3, p(2) ≤ 2α/3, or p(3) ≤ α. It is trivial to see that this test is stronger than that
of Bonferroni.

For these tests we can observe a consequence of having coinciding intersections of
hypotheses. In the general case, using Bonferroni’s method to create tests for the inter-
sections in a closed testing procedure results in Holm’s method. For the case with three
hypotheses, this method would reject the hypotheses in a step-down fashion with adjusted
levels α/3, α/2 and α (Holm, 1979). For our case with coinciding intersections, we instead
get adjusted levels α/3, α and α, meaning the resulting method is slightly stronger.

Another consequence is that for our case of three elementary hypotheses, the method
constructed with Simes’ global test is consonant. In all three cases that the global hypothesis
is rejected by Simes’ global test, we must have at least one p-value smaller than α. Thus
the corresponding elementary hypothesis is also rejected.

Note that the latter observation is not the case in general, when we also must consider
H{12,13}, H{12,23} and H{23,13} as separate hypotheses. The closed testing procedure will
not reject any elementary hypothesis if for example H{12,13} and H{12,23} are not rejected
by their local tests. If we get the p-values p13 = p23 = 2α/3 and p12 > α for the elementary
hypotheses, the global hypothesis is rejected, since p(2) ≤ 2α/3. However, neither H{12,13}
or H{12,23} are rejected, since p13, p23 > α/2 and p12 > α. Thus none of the elementary
hypotheses can be rejected by the closed testing procedure, and the rejection of the global
hypothesis is a dissonant rejection.
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3.2 Multiple testing for model selection in regression

3.1.3 Local test for the global hypothesis based on the distribution of
the data

A one-way ANOVA can be used to test the global hypothesis. For our case with m = 3 the
test statistic in (2.6) becomes

F =
n
2
∑3

i=1
(
Ȳi − Ȳ

)2

S2
p

, (3.1)

which under H123 has an F-distribution with 2 and 3(n − 1) degrees of freedom. Notably
the resulting closed test procedure is equivalent to Fisher’s LSD-test (Fisher, 1935), which
for more than three groups does not provide FWER control (Sonnemann, 2008).

We may also use the range test for the global hypothesis, with the test statistic Q from
(2.4). With m = 3 this has a studentized range distribution with 3 groups and 3(n − 1)
degrees of freedom.

The resulting closed testing procedure using the range test for the global hypothesis will
be very similar to Tukey’s procedure. The largest difference in means is tested using the
studentized range distribution, as with Tukey’s procedure, but the remaining two differences
are tested with the t-distribution. Thus this resulting closed testing procedure is uniformly
more powerful than Tukey’s procedure. It is also consonant, since a hypothesis rejected
using the studentized range distribution will also be rejected when using the t-distribution
(see Section 2.6.2 and Figure 2.2). For our case this closed testing procedure is equivalent
to the Newman–Keuls (Newman, 1939; Keuls, 1952) test (Sonnemann, 2008).

3.2 Multiple testing for model selection in regression
Goeman et al. (2011) discussed using their FDP based method to select covariates in
multiple regression. When referencing the usage of the method by Goeman et al. (2011)
in this manner, we will refer to it as the confidence method. Our family of elementary
hypotheses is H = {Hi : βi = 0 | i ∈ {1,2, . . . ,m}}, where the βs are the constant
coefficients in the model Y = β0 + β1x1 + β2x2 + . . . + βmxm + ε and {x1, x2, . . . , xm} are
the covariates we wish to investigate. The elementary hypotheses are tested against their
two-sided alternative hypotheses.

Differently from conventional model selection methods, described in the previous
chapter, we now use the actual hypothesis tests for selection, instead of optimizing some
loss function. The goal is to find some promising subset of the covariates for further
research, and thus the confidence method thus seems appropriate. The method lets us
choose a subset of covariates that the procedure tells us contains at least a certain number
of relevant covariates with 1 − α confidence.

We imagine a setting where we divide the selection process in two steps. The first step
is exploratory, and the goal is merely to find candidates among the covariates that seem
interesting to investigate further in the second step. We have tested how the confidence
method performs in step one, before using conventional model selection methods on the
resulting subset of covariates in step two. Additionally we have tested the Benjamini &
Hochberg procedure for FDR control for the same purpose as the FDP based method.
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Since we depend on a closed testing procedure, we must choose local tests for the
hypotheses in the closure ofH . We benefit from dissonant rejections, since the information
gained from these is of interest. Ideally, the local tests have some computational shortcuts,
to combat the issue of having to compute the results of 2m − 1 tests.

3.2.1 Local tests for the elementary hypotheses
For the elementary hypotheses Hi : βi = 0, i = 1,2, . . . ,m, we use the test statistic Ti from
(2.5), which under Hi has a t-distribution with n−m−1 degrees of freedom.With observed
test statistics t1, t2, . . . , tm we thus get p-values pi = 2(1−F(|ti |)), for i = 1,2, . . . ,m, where
F is the cumulative distribution function of a t-distribution with n − m − 1 degrees of
freedom.

3.2.2 Local tests for intersections based on the p-values for the ele-
mentary hypotheses

For the local tests of intersections of hypotheses we may consider the tests discussed
for the application in pairwise comparisons, namely a test based on Bonferroni’s method
and Simes’ global test. Note that none of the intersections of hypotheses coincide in this
example, so saving time during the calculations is very beneficial.

The method based on Bonferroni’s method is consonant in our case (see A.2 in the
Appendix). Thus there will be no dissonant rejections, resulting in trivial confidence
statements about the number of true hypotheses in a subset of all the hypotheses, and thus
the only defining rejections are of elementary hypotheses. The calculations will be fast, but
if we conclude to reject only hypotheses that were rejected by the closed testing method,
we end up with FWER control. In this case no additional hypothesis we choose to reject
can improve the number of false hypotheses we are confident to have rejected, and thus the
strengths of the confidence method are not utilized.

Unlike Bonferroni’s method, Simes’ global test is not consonant, as shown by the
example in section 3.1.2. The occurrence of such dissonant rejections does however appear
to be rare, see Table 3.1, which shows the results of simulations where Simes’ global test
was used to test intersections of hypotheses in the regression setting. Simes’ global test
does however have a shortcut in its calculations, as described by Goeman et al. (2011),
which is a benefit for the computations.

3.2.3 Local tests for intersections based on the distribution of the data
Similarly to the pairwise comparisons example, we can use the F-tests as local tests also
in the regression setting. We use the test statistics FI from (2.7), based on the restrictions
of HI , for all HI in the closure ofH .

A disadvantage of the F-test is the computational cost, as it requires all 2m − 1 reduced
models to be made in order to calculate their RSS values. There is no shortcut for the
F-test, unlike the tests based on the p-values of the elementary hypotheses. An additional
disadvantage is in the case that m > n, where there is no unique least squares estimates for
the coefficients. In this case the confidence method with local F-tests cannot be used, since
we are unable to fit the models we need. Model selection with for example lasso regression
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3.2 Multiple testing for model selection in regression

Simes’ global test F-test True
Bound Defining Rate Bound Defining Rate complexity
4.030 4.037 0.006 4.069 4.567 0.211 4.482

Table 3.1: Simulation results for comparing Simes’ global test and the F-test in the regression
setting. “Bound” is the lower confidence bound for the number of relevant covariates in the entire set
of covariates, “Defining” is the number of hypotheses involved in any defining rejection, and “Rate”
is the rate at which the method caused at least one dissonant rejection. 1000 simulations were run
with randomly constructed linear models with 12 covariates to consider, of which a random number
were in the true model.

can be used to avoid this problem (James et al., 2013). This disadvantage is present also
for the previously mentioned local tests, since they depend on the p-values obtained from
fitting the full model.

Table 3.1 shows results from simulations similar to those described in the next chapter,
comparing the F-test to Simes’ global test when used as local tests for the intersections.
1000 randomly constructed linear models were used to create data, and Simes’ global test
and the F-test were used in the confidence method. We kept track of the lower confidence
bound for the number of relevant covariates that each method yielded, how large the subset
of hypotheses involved in the defining rejections were (see the next subsection), and the
rate at which the method resulted in at least one dissonant rejection. We also kept track of
how many covariates that actually were relevant in each model.

The results indicate that the F-test more frequently yields dissonant rejections, and a
very slightly larger confidence bound for the number of relevant covariates. To obtain the
larger bound we must however include slightly more covariates in the model (reject slightly
more hypotheses). With so few dissonant rejections the Simes’ global test is close to FWER
control, and we see that the average number of hypotheses kept is actually smaller than
the average complexity of the true model. If we want to discover all relevant covariates
the F-test thus seems to be a good choice, since even though it is less certain about which
of the hypotheses that are most likely to be relevant, it informs us about a larger set of
interesting covariates to select than Simes’ global test does.

For our simulations we consider only the case where n > m, so that we are actually
able to use a closed testing procedure in our experiments. Despite the fact that the F-tests
come at an increased computational cost, we choose these as our local tests over Simes’
global test.

3.2.4 Choosing which hypotheses to reject with the confidencemethod
To simplify the usage of the confidence method when running many simulations, and to
avoid having tomanually review every confidence statement each time, we use an algorithm
to make the choice of which hypotheses to reject. The algorithm preferably avoids checking
the confidence statements of every subset of hypotheses, to reduce computational cost. One
natural choice is a union of non-overlapping subsets obtained by looking at the defining
rejections. The lower confidence bound for the number of false hypotheses in this set grows
by one each time we add the hypotheses involved in a defining rejection, so long as none
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of these hypotheses are in our set already.
Though simple, this is not the optimal choice. If for example the defining rejections are

H{1,2},H{1,3} and H{2,3}, the lower confidence bound for the number of false hypotheses
in {H1,H2,H3} is 2. Choosing only non-overlapping subsets will however result in only
rejecting two hypotheses, with a confidence bound of 1. A solution to this specific case is
to iterate through all the sets of hypotheses from defining rejections, and add them to our
set of rejections so long as this increases the lower confidence bound.

A problem can occur with this algorithm if for example the defining rejections are
H{1,2},H{3,4},H{1,3},H{1,4} and H{2,3}. Here we have a lower confidence bound of 2 for
{H1,H2,H3,H4} and 1 for {H1,H2}. This means that we would add H3 and H4 to our
rejections if we iterate through the defining rejections in that order, although we only need
to reject for example {H1,H2,H3} to obtain the same lower confidence bound of 2.

A very simple way to select covariates is to just reject all hypotheses involved in any
defining rejection. The lower confidence bound for the number of false hypotheses in this
resulting set is the same as the bound for the set of all elementary hypotheses (a proof of
this is found in the Appendix, see A.1), so this choice ensures we select all the covariates
that the closed testing procedure believes with 1 − α confidence to be relevant.

Although this selection process can fail to fully use the information from the dissonant
rejections, these rejections are not very frequent (seen in Table 3.1), and we remove the
randomness that can occurwith the previous algorithmproposed. If for example the defining
rejections are H{1,2} and H{1,3}, the previous algorithm would make an arbitrary choice.
Perhaps more importantly, we use the confidence method as an exploratory first step, and
therefore argue that it is more important to keep the potentially relevant covariate x3, by
rejecting H1,H2 and H3, even though only rejecting the first two gives the same lower
confidence bound.

Note that using an algorithm removes one of the method’s strengths, namely that the
user is normally able to choose freely which covariates to select. In our simulations the
choice is done out of necessity, firstly because manually selecting a subset a large number
of times is very time consuming, and secondly because even though we include some
randomness in the construction of the true models, we have knowledge that may affect our
choice of covariates. One could argue regarding the latter that this corresponds to using
expert knowledge in a situation with real data, which is a scenario where the confidence
method would benefit, though this argument is rather vague and subjective. When using
the method on real data it may very well be the case that the algorithms described are not
optimal, and a more informed choice of covariates should probably be made if time and
knowledge is available for the researcher to do so.
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Experiments

In this section we describe the experiments that were performed to investigate the ca-
pabilities of the closed testing procedures in the applications described in the previous
chapter. For both applications we ran experiments using artificially created datasets, in
order to be able to know for certain which hypotheses were actually true, and that our
model assumptions were fulfilled.

4.1 Pairwise comparisons of means
For each simulation we created n = 30 samples of each of Y1, Y2 and Y3 from a normal
distribution


Y1
Y2
Y3

 ∼ N ©«

µ1
µ2
µ3

 , σ2

1 0 0
0 1 0
0 0 1

ª®¬ .
We calculated the sample means, ȳ1, ȳ2 and ȳ3, sample variances, s2

1 , s2
2 and s2

3 , pooled
sample mean ȳ, and pooled sample variance s2

p according to (2.2). These were then used
to calculate the corresponding test statistics t1, t2 and t3, (2.3), and p-values p1, p2 and
p3 for the elementary hypotheses. The global hypothesis H123 : µ1 = µ2 = µ3 was tested
with Bonferroni’s method, Simes’ global test, the range test, and the F-test from a one-way
ANOVA.

H1, H2 and H3 were thus tested through closed testing procedures with various global
tests, to control the FWER at level α = 0.05. Tukey’s procedure for the elementary
hypotheses was also used for comparison.

Shaffer (1981) conducted a similar experiment, and also tested the studentized range
procedure and the F-test for the global hypothesis. Here we investigate some more tests
for the global hypothesis. Additionally, we separate correct and incorrect rejections, and
report the any-pair power (the rate at which at least one false hypothesis is rejected) and
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all-pairs power (the rate at which all false hypotheses are rejected), as suggested by Jaccard
et al. (1984).

Two sets of experiments were run, one with µ1 = µ2 = 0 and with µ3 taking 30 evenly
spaced values from 0.1 to 1.0, and the other with µ1 = 0, µ2 taking 30 evenly spaced
values from 0.1 to 0.7, and µ3 = 2µ2. For each of these 60 experiments we ran N = 10 000
simulations. Outside of these intervals, the methods gave trivial results, either rejecting
close to all hypotheses or close to none.One experimentwas also runwith µ1 = µ2 = µ3 = 0
to confirm the validity of the methods also in this case, with N0 = 100 000 simulations.
For all simulations, σ2 = 1 was used.

The goal is to compare the different closed testing procedures obtainedwith the different
local tests for the global hypothesis, with respect to their ability to reject false hypotheses
and not reject true ones.

4.2 Multiple testing for model selection in regression
4.2.1 Data
We used n = 1000 data points in each simulation. We used m = 12 covariates for the
regression, where xj = (x1j, x2j, . . . , xmj)

T , j = 1,2, . . . ,n, were drawn either from N(0,Σ)
or N(0, I). Σ was a semi-arbitrary covariance matrix with all variances equal to 1 (see
Appendix B for more information), and I was the m by m identity matrix. This resulted in
two design matrices Xcorr and Xuncorr, respectively, which each were used for half of the
experiments.

We wanted to test a varied set of linear models, with different number of relevant
covariates and different sizes of coefficients. For each simulation we created n independent
samples εj , j = 1,2, . . . ,n, from a standard normal distribution. The number of covariates to
be included in the model, m′, was drawn uniformly from either {1,2, . . . , bm/3c} for one set
of experiments and {bm/3c +1, bm/3c +2, . . . , b2m/3c} for the other. A set J of m′ indices
was then drawn without replacement from {1,2, . . . ,m}, and m′ coefficients {βi | i ∈ J}
were drawn independently and uniformly from the interval [−0.25,−0.05] ∪ [0.05,0.25]
for one set of experiments and [−0.5,−0.25] ∪ [0.25,0.5] for the other. Thus we had 8
experiments, with covariates that were uncorrelated or correlated, few or many relevant
covariates, and small or large coefficients.

The response was calculated as yj = β0 +
∑m

i=1 βi xi j + εj , for j = 1,2, . . . ,n, where
βi = 0 for i < J. We focus only on the m parameters corresponding to covariates other than
the intercept, and chose β0 = 5, large enough that H0 : β0 = 0 was rejected at any sensible
level for all simulations.

4.2.2 Experiment design
The first step in our model selection is to use either the confidence method with local level
αFDP = 0.05 F-tests, or FDR control with the Benjamini & Hochberg procedure to restrict
the set of covariates. For the FDR control a mild level of αFDR = 0.25 was used, because
further selection was to be performed.
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Either lasso regression or best subset selection with AIC were then used as a second
step, considering only the restricted set of covariates, to obtain a final set of covariates for
the model. 5-fold cross-validation was used to choose the λ in the lasso regression. If one
or zero covariates were kept during the first step, no further selection was performed.

Selection using only lasso regression or subset selection with AIC were also tested on
the full set of covariates, without prior restrictions, and covariates selected by the methods
in the first step were also used to fit models without any further selection performed. In
each simulation the dataset was split equally in a training set and a test set. All selection
and model fitting was performed using the training data, and the resulting models were
tested on the test data.

In summary, the 8 resulting composite methods were tested in the 8 different exper-
iments obtained by letting the covariates be uncorrelated or correlated, the number of
relevant covariates be small or large, and the size of the coefficients be either small or large.
In essence, we investigated if there were some benefit to restricting the set of covariates in
a hypothesis testing setting before doing conventional model selection.

We ran one simulation to illustrate the process, and N = 500 simulations for each of
the 8 experiments to evaluate the composite methods.
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Chapter 5
Analysis

In this section we present and discuss the results from the simulation experiments described
in the previous chapter.

5.1 Pairwise comparisons of means
5.1.1 Reported results
For all simulations we reported the rate at which no hypothesis was rejected (in the column
named “None”), and how often only one elementary hypothesis was rejected (“Contr.”).
The latter outcome is of interest because it is contradictory. If for example µ1 , µ2, it
cannot be the case that µ2 = µ3 and µ1 = µ3.

For the simulations where not all means were different, in which case committing a
type I error was impossible, we reported the rate at which at least one type I error among
the elementary hypotheses occurred, which is an estimate of the FWER. Note that we
only counted the occurrence of type I errors among the elementary hypotheses, meaning
a dissonant rejection of the global hypothesis in the case that all means are equal was
not counted. This was only a concern for the global F-test, as all the other methods are
consonant.

For the simulations with at least one mean different from the others we also reported
the rate at which at least one false elementary hypothesis was rejected (“Any-pair”), and
the rate at which all false elementary hypotheses were rejected (“All-pairs”).

The names of the rows in the presented tables (Table 5.2 through 5.5) correspond to the
different testing procedures tested. “Bonf.”, “Simes”, “F”, and “Range” refer to the closed
testing procedures using Bonferroni’smethod, Simes’ global test, the F-test from a one-way
ANOVA, and the range test, respectively, as the local test for the global hypothesis. “Tukey”
refers to Tukey’s procedure for FWER control, applied to the elementary hypotheses.

Note that for a probability p, the proportion of successes in N independent trials, p̂, is
the mean of N independent Bernoulli trials with probability p of success, and the limits of
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p̂ 0.5 0.4 or 0.6 0.3 or 0.7 0.2 or 0.8 0.1 or 0.9 0.05 or 0.95
Width 0.0062 0.0061 0.0057 0.0050 0.0037 0.0027

Table 5.1: The width of approximate 95% confidence intervals for a probability p when estimated
with N = 100 000 simulations, for different values of the observed p̂.

an approximate 95% confidence interval for the p are thus

p̂ ± 1.96
√

p̂(1 − p̂)/N (5.1)

(Casella and Berger, 2002, p. 502).
For N = 100 000 the widths of such intervals given for certain values of p̂ in Table

5.1. Note that though many of the reported results for our analysis are probabilities, in
many of the cases the probability is not the same across all experiments, contradicting
the underlying assumptions for the confidence intervals. We are however not necessarily
interested in the exact estimates themselves, but rather in comparing estimates for different
methods, and believe the intervals will suffice for this purpose.

5.1.2 All means equal to zero
The simulation results from N0 = 100 000 simulations in the case where all the three means
were equal to zero can be seen in Table 5.2. The limits of the corresponding approximate
95% confidence intervals are included for the FWER estimates. We see that for the first
three methods the FWER estimates are smaller than α = 0.05, and for the last two α is
inside the approximate confidence intervals. Had we included the incorrect rejection of
the true global hypothesis in our FWER estimate, α would also be inside the confidence
interval for the F-test. A further explanation of this comes later.

Simes’ global test rejects more than Bonferroni’s method, which is expected since it is
uniformly stronger. The results for the range test and Tukey’s procedure are equal, since
the local test the former uses for the global hypothesis is the same test used by the latter.
Tukey’s procedure yields contradicting results slightly more often than the other methods.

For all methods except the one using a local F-test, we see that the values in the two
first columns add up to 1. The explanation is that the F-test is not consonant, and the
missing 0.0008 is the rate at which there occurred a dissonant rejection. Rejecting the
true global hypothesis is a type I error, but we have chosen to only report the estimated
FWER among the elementary hypotheses, since only these are of interest with respect to
the FWER control. The only resulting difference is for the closed testing procedure using
the local F-test, and only in this particular case when all means are equal to zero.

5.1.3 One or two means different from zero
One mean different from zero

The results from simulations with µ1 = µ2 = 0 and µ3 ∈ [0.1,1.0] can be seen in Table
5.3. We see that all the methods maintain the desired level of FWER control. The closed
testing procedures had smaller FWER estimates when the third mean was small. This is
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None FWER Contr.
Bonf. 0.9559 0.0441 ± 0.0013 0.0266
Simes 0.9534 0.0466 ± 0.0013 0.0266
F 0.9507 0.0485 ± 0.0013 0.0273
Range 0.9493 0.0507 ± 0.0014 0.0317
Tukey 0.9493 0.0507 ± 0.0014 0.0440

Table 5.2: The results from N0 = 100 000 simulations of pairwise comparisons of means with
different methods when all means are equal to 0, with approximate 95% confidence limits for the
FWER estimates.

because in this case the global hypothesis, and thus any elementary hypothesis, including
the true one, was less likely to be rejected. We also observe that Tukey’s procedure was
conservative for all values of µ3.

The any-pair power was quite even for all five methods, with a slight edge to the
procedures using the F-test or the range test. Tukey’s procedure also performed well
according to this criterion, which was expected since the method is based on the largest
observed difference. Because of this one could think that The range test and Tukey’s
procedure would have the same any-pair power. It is however possible that the largest
observed difference in means is between group 1 and 2, and that the pooled t-test rejects
the hypothesis corresponding to the second largest observed difference while Tukey’s
procedure does not.

When considering the all-pairs power we clearly see the weakness of Tukey’s procedure
compared to the closed testing procedures. The F-test provided the best results also for this
criterion, and we observe that Simes’ global test here beat the range test, while Bonferroni’s
method performed the worst of the closed testing procedures.

When it comes to making contradictory conclusions, Tukey’s procedure once again
provided the worst results. The closed testing procedures using Bonferroni’s method or
Simes’ global test rejected exactly one elementary hypothesis under the same circum-
stances, namely when p(1) ≤ α/3 and p(2), p(3) > α. The rate at which these two method
rejected exactly one hypothesis was smaller than for the other methods, which corresponds
to the rest of the results that suggest that their overall power was slightly lower.

Two means different from zero

The results from simulations with µ1 = 0, µ2 ∈ [0.1,0.7] and µ3 = 2µ2 can be seen in
Table 5.4. In this case all the hypotheses were false, and thus no type I errors could be
committed. Again we can observe that the closed procedure using the local F-test caused
dissonant rejections. The sum of the overall rates at which no rejections at all, and at least
one elementary hypothesis was rejected, is 0.3305 + 0.6684 = 0.9989, meaning that the
F-test caused a dissonant rejection 0.11% of the time.

When all three means were different from each other the any-pair power for Tukey’s
procedure and the closed testing procedure using the range test were equal, because the
largest difference in means corresponded to a false hypothesis. Here we also see a benefit
from using the range test for the global hypothesis, as this resulted in a larger any-pair
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None FWER Any-pair All-pairs Contr.
Bonf. 0.8550 0.0274 0.1392 0.0551 0.0688

µ1 = 0 Simes 0.8485 0.0294 0.1457 0.0595 0.0688
µ2 = 0 F 0.8417 0.0305 0.1503 0.0605 0.0723
µ3 ∈ [0.1,0.4] Range 0.8413 0.0295 0.1520 0.0578 0.0786

Tukey 0.8413 0.0193 0.1484 0.0292 0.1205
Bonf. 0.4559 0.0430 0.5432 0.3659 0.1435

µ1 = 0 Simes 0.4423 0.0444 0.5568 0.3782 0.1435
µ2 = 0 F 0.4309 0.0453 0.5661 0.3816 0.1491
µ3 ∈ [0.4,0.7] Range 0.4331 0.0441 0.5658 0.3735 0.1578

Tukey 0.4331 0.0197 0.5644 0.2532 0.2975
Bonf. 0.0928 0.0493 0.9072 0.8136 0.0731

µ1 = 0 Simes 0.0859 0.0495 0.9141 0.8204 0.0731
µ2 = 0 F 0.0816 0.0496 0.9177 0.8218 0.0752
µ3 ∈ [0.7,1.0] Range 0.0839 0.0495 0.9160 0.8176 0.0779

Tukey 0.0839 0.0192 0.9159 0.7094 0.1942
Bonf. 0.4679 0.0399 0.5299 0.4115 0.0952

µ1 = 0 Simes 0.4589 0.0411 0.5389 0.4194 0.0952
µ2 = 0 F 0.4514 0.0418 0.5447 0.4213 0.0989
µ3 ∈ [0.1,1.0] Range 0.4528 0.0410 0.5446 0.4163 0.1048

Tukey 0.4528 0.0194 0.5429 0.3306 0.2040

Table 5.3: Each of the three first parts of the table shows results from 100 000 simulations of pairwise
comparisons of means with different methods when two means are equal to zero and the third is
different. The last part shows the average of all 300 000 simulations.
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None Any-pair All-pairs Contr.
Bonf. 0.7556 0.2444 0.0024 0.1057

µ1 = 0 Simes 0.7472 0.2528 0.0024 0.1057
µ2 ∈ [0.1,0.3] F 0.7396 0.2584 0.0024 0.1086
µ3 = 2µ2 Range 0.7372 0.2628 0.0024 0.1192

Tukey 0.7372 0.2628 0.0003 0.1890
Bonf. 0.2496 0.7504 0.0605 0.1820

µ1 = 0 Simes 0.2408 0.7592 0.0605 0.1820
µ2 ∈ [0.3,0.5] F 0.2351 0.7637 0.0605 0.1840
µ3 = 2µ2 Range 0.2324 0.7676 0.0605 0.1935

Tukey 0.2324 0.7676 0.0156 0.3839
Bonf. 0.0186 0.9814 0.3513 0.0588

µ1 = 0 Simes 0.0173 0.9827 0.3513 0.0588
µ2 ∈ [0.5,0.7] F 0.0167 0.9832 0.3513 0.0589
µ3 = 2µ2 Range 0.0162 0.9838 0.3513 0.0603

Tukey 0.0162 0.9838 0.1737 0.1815
Bonf. 0.3413 0.6587 0.1381 0.1155

µ1 = 0 Simes 0.3351 0.6649 0.1381 0.1155
µ2 ∈ [0.1,0.7] F 0.3305 0.6684 0.1381 0.1172
µ3 = 2µ2 Range 0.3286 0.6714 0.1381 0.1243

Tukey 0.3286 0.6714 0.0632 0.2514

Table 5.4: Each of the three first parts of the table shows results from 100 000 simulations of pairwise
comparisons of means with different methods when all three means are different. The last part shows
the average of all 300 000 simulations.
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power than for the other closed testing procedures.
Similarly to the case where one mean was different from the others, the all-pairs power

of Tukey’s procedure was smaller also in the case where all means were different from
each other. Here the difference is even larger, with Tukey’s method having less than half
the estimated probability of rejecting all false hypotheses, compared to the closed testing
procedures.

Interestingly the estimates for the all-pairs powers were equal for all the closed testing
procedures. Shaffer (1981) observed the same result in her simulations. This suggests that
for all conducted simulations, when all the elementary hypotheses were rejected by their
respective local t-tests, all the different local tests for the global hypothesis also lead to
rejection. This is actually the case in general for all the closed testing procedures tested, at
least when α = 0.05 and n = 30.

All elementary hypotheses are rejected if the absolute value of the t-statistics from
(2.3) are larger than or equal the 1 − α/2-quantile of the t-distribution, tα/2,87 = 1.99.

In other words we have Ȳ(1)/
√

2S2
p/n + 2tα/2,87 ≤ Ȳ(2)/

√
2S2

p/n + tα/2,87 ≤ Ȳ(3)/
√

2S2
p/n

This specifically implies that the largest observed absolute value of a t-statistic is at least
2tα/2,87 = 3.98.

Further we have that 3.98 > tα/6,87 = 2.44, which means that the p-value for the t-test
corresponding to the largest observed difference is smaller than α/3. We also have 3.98 >
qα,3,87 = 3.37, where qα,3,87 is the 1−α-quantile of the studentized range distribution with
3 groups and 87 degrees of freedom. Thus the range test, Bonferroni’s method and Simes’
global test all reject the global hypothesis. The test statistic from (3.1) can be written as the
mean of the squared t-statistics, and if each of these surpass their critical values, so does
the F-statistic, meaning the F-test also rejects the global hypothesis.

The estimated probability of rejecting exactly one elementary hypothesis was very large
for Tukey’s method, approximately twice the value obtained for the other methods. For the
range test this estimated probability was slightly larger than for the other closed testing
procedures, for which the estimates were quite even.

Table 5.5 shows the averaged results from all the simulations with either one or two
means different from zero, from a total of 600 000 simulations. Overall the closed testing
procedures using the F-test or the range test performed better than the other closed testing
procedures, and far better than Tukey’s method. When it comes to the comparison between
the two, the F-test generally had comparable or better all-pairs power and smaller prob-
ability of contradictory results, while the range test generally had comparable or better
any-pair power. The differences were very slight, however.

5.2 Multiple testing for model selection in regression
5.2.1 Reported results
From our hypothesis testing point of view, we are interested in how many type I errors we
make, which means the true hypotheses we reject, or the irrelevant covariates we include in
our model. From the model selection point of view we are also interested in type II errors,
the false hypotheses we fail to reject, or the relevant covariates that we fail to include in
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None FWER Any-pair All-pairs Contr.
Bonf. 0.4046 0.0200 0.5943 0.2748 0.1053
Simes 0.3970 0.0205 0.6019 0.2787 0.1053

F 0.3910 0.0209 0.6066 0.2797 0.1080
Range 0.3907 0.0205 0.6080 0.2772 0.1146
Tukey 0.3907 0.0097 0.6072 0.1969 0.2277

Table 5.5: The table shows the average of the results from 600 000 simulations of pairwise compar-
isons of means with different methods when either one or two means are different from zero.

our model. Additionally we care about the connection between the different types of errors
and how well the model predicts the response for unseen data.

For our simulations, we thus reported the rate at which at least one type I error occurred,
the estimated FWER, and the rate at which at least one type II error occurred, which we call
FWER-II (familywise type II error rate). We also reported the average FDP, the proportion
of true hypotheses among the ones that are rejected (irrelevant covariates included in the
model), or V/R (see (2.1) and Table 2.1), which is an estimate of the FDR.

We additionally reported the rate at which exactly the correct covariates were chosen
(in the column named “Perf.”), the complexity of the chosen model (“Comp.”), and the test
MSE obtained by making predictions on the test set (“MSE”). The lower confidence bound
for the number of relevant covariates chosen by the confidence method is mentioned in the
caption of each table.

The names of the rows in the presented tables (Tables 5.9 through 5.12) correspond
to the different composite model selection methods. “None” means no selection was done
either prior to or after using the other listed method, with “None - None” meaning that
the full model was used. “AIC” and “Lasso” refers to the conventional model selection
methods, “Conf.” refers to the confidence method, and “B&H” refers to the Benjamini &
Hochberg procedure for FDR control. “Truth” refers to the underlying model, which was
used to create the data.

5.2.2 Illustrative example of the selection process
We include an example to illustrate the selection process. All subset models were fitted,
AIC values and F-statistics were calculated, and the 8 composite methods described in
the previous chapter were performed. The underlying true model was constructed with
few relevant covariates, small coefficients and correlated covariates, as described in the
previous chapter.

The summary of the full model is shown in Table 5.6. The reported p-values were used
for the B&H procedure, and were used together with the F-statistics for the confidence
method. The p-value of 0.0014 < αFDP = 0.05 for the global hypothesis for the regression
told us that there would be at least some defining rejection(s) when using the confidence
method with local F-tests for the intersections of hypotheses. At level αFDR = 0.25, the
B&H procedure selected the covariates x5 and x12.

The defining rejections obtained by the confidence method were H{5,12} and H{1,3,5,11},
which meant our algorithm selected x1, x3, x5, x11 and x12. We could tell from the defining
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Estimate Std. Error t-statistic p-value
β0 4.9633 0.0467 106.29 0.0000
β1 −0.0838 0.0508 −1.65 0.0994
β2 0.0186 0.0504 0.37 0.7118
β3 −0.0325 0.0560 −0.58 0.5616
β4 −0.0101 0.0529 −0.19 0.8491
β5 0.1466 0.0511 2.87 0.0043
β6 −0.0289 0.0505 −0.57 0.5674
β7 −0.0065 0.0559 −0.12 0.9070
β8 −0.0675 0.0519 −1.30 0.1943
β9 −0.0432 0.0545 −0.79 0.4283
β10 0.0234 0.0531 0.44 0.6592
β11 0.0516 0.0536 0.96 0.3356
β12 −0.1731 0.0507 −3.41 0.0007

F-statistic: 2.727 on 12 and 487 DF p-value: 0.0014

Table 5.6: Summary of the multiple linear regression model fitted on the training data, using all 12
covariates.

rejections that H{1,3,11,12} was not rejected, as otherwise either it or one of its components
would have been a defining rejection. This gave a lower confidence bound of only one
relevant covariate for our selected set of covariates. Since none of the defining rejections
had only one elementary component, FWER control with the closed testing procedure
would in this case have lead to no rejected hypotheses, and thus included no covariates in
the model.

Table 5.7 shows the 10 models with the smallest AIC values, and the one with the
19th smallest. The covariates are marked with different colors corresponding to whether or
not they were in the subsets of covariates selected by the confidence method or the B&H
procedure. The first model is the one that had the minimal AIC.

Note that the composite method of the confidence method and subset selection with
AIC corresponds to selecting the model with the minimal AIC that only contains covariates
selected by the confidence method. In Table 5.7 we see that the third model is the first
containing only covariates selected by the confidence method. Similarly, the model selected
by the composite method of the B&H procedure and subset selection with AIC is the one
that had the 19th smallest AIC overall. These are marked with stars in Table 5.7.

Figure 5.1 shows the selection of the value for λ in the lasso regression with no prior
restrictions. The value that minimized the estimation for the test MSE was chosen, and the
corresponding model complexity can also be observed in the figure.

In Table 5.8 the resulting models are shown, including the true model. Covariates
correctly included are marked with blue, incorrect inclusions with orange. In this case, the
B&H procedure selected only the correct covariates, and naturally also achieved the best
test MSE. Using only AIC, lasso or the confidence method resulted in too complex models,
although the regularization of the lasso reduced the issue of including too many covariates.
The composite method of the confidence method and AIC made only one type I error, and
the resulting model was almost as good as the one achieved with the B&H procedure.
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AIC-rankings x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
1 Y N N N Y N N Y N N N Y
2 Y N N N Y N N Y N N Y Y
3* Y N N N Y N N N N N N Y
4 Y N N N Y N N N N N Y Y
5 N N N N Y N N Y N N N Y
6 Y N N N Y N N Y Y N N Y
7 Y N Y N Y N N Y N N N Y
8 Y N N N Y Y N Y N N N Y
9 Y N N N Y N N N Y N N Y
10 Y N N Y Y N N Y N N N Y
19* N N N N Y N N N N N N Y

Table 5.7: The best subset models judged by the AIC values, where the top model corresponds to
the model with the minimal AIC. Covariates marked with green were in the subsets of covariates
restricted by both the confidence method and the B&H procedure. Covariates marked in blue were
only in the former, and covariates marked in black were in neither. The models marked with a star, the
one with the 3rd smallest and the one with the 19th smallest AIC value, were the models selected by
the AIC when the set of covariates was restricted by the confidence method or the B&H procedure,
respectively.

Figure 5.1: The selection of λ in the lasso regression. The x-axis shows the values of the tested
values of λ (on a logarithmic scale), the y-axis shows the cross-validation estimate of the test MSE,
and the top axis shows the model complexity the corresponding λ value yielded. The first dotted line
shows the λ value that minimized the MSE estimate, and the second dotted line shows the largest λ
that yielded an MSE estimate within one standard deviation of the minimum.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 MSE
None - AIC X N N N Y N N X N N N Y 1.0047
None - Lasso X N X N Y N N X N N N Y 1.0008
Conf. - None X N X N Y N N N N N X Y 1.0049
Conf. - AIC X N N N Y N N N N N N Y 0.9997
Conf. - Lasso X N X N Y N N N N N X Y 1.0041
B&H - None N N N N Y N N N N N N Y 0.9914
B&H - AIC N N N N Y N N N N N N Y 0.9914
B&H - Lasso N N N N Y N N N N N N Y 0.9918
None - None X X X X Y X X X X X X Y 1.0091
Truth N N N N Y N N N N N N Y 0.989

Table 5.8: The resulting models from the various composite selection methods. Covariates that were
correctly included are marked with blue, and erroneous inclusions are marked with orange.

5.2.3 Model selection for randomly generated linear models
Table 5.9 shows the mean values for all simulations when running N = 500 simulations
for each of 8 experiments, for a total of 4000 simulated linear models. The best values for
each category other than complexity are marked in bold text, the worst are underlined.
Tables 5.10, 5.11 and 5.12 show the comparisons of mean values for all simulations for
the experiments with few and many relevant covariates, small and large coefficients, and
uncorrelated and correlated covariates, respectively.

Table C.1 in the Appendix shows the widths of approximate 95% confidence intervals
for the probabilities or the expectations of the values in Table 5.9. The largest values of
widths for the FWERestimates is 0.015, 0.014 for FWER-II estimates, 0.007 for FDR, 0.015
for rate of perfect model, 0.102 for complexity (this is for lasso, the other methods have
slightly narrower confidence intervals), and 0.0021 for MSE. Note that these intervals do
not take any multiplicity adjustment into account, as we are not concerned with any single
result, but rather the overall performance of the procedures. The differences observed
in the error rates, FDR and rate of perfect covariate selection between the results from
procedures with different methods used in step one are all far greater than the widths of
the confidence intervals. For the MSE the differences are less significant, although all
procedures performed better than using the full model, and a lot worse than the true,
underlying model.

One immediate observation, and something which might seem very natural, is that
there is a balance going on between the type I and type II errors. Going to either extreme
negatively impacts the test predictions. If we use the full model we make no type II errors,
but the model complexity may cause overfitting and increase the test MSE by having a
too large variance. If we use the empty model (predict only the sample mean, ignoring the
covariates) we make no type I errors, but the model complexity may cause underfitting and
increase the test MSE by having a too large bias. The optimal complexity thus must be
somewhere between the extremes. We call a method strict if it rejects few hypotheses, and
mild if it rejects many. Thus a strict method is likely to make fewer type I errors and more
type II errors than a mild one.

The conventional selection methods appeared mild, and tended to select larger models
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FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.712 0.224 0.250 0.220 5.386 1.0213
None - Lasso 0.904 0.124 0.400 0.062 7.492 1.0202
Conf. - None 0.242 0.299 0.088 0.550 4.556 1.0189
Conf. - AIC 0.211 0.323 0.069 0.561 4.318 1.0187
Conf. - Lasso 0.241 0.300 0.087 0.550 4.540 1.0186
B&H - None 0.504 0.269 0.154 0.337 4.912 1.0200
B&H - AIC 0.482 0.273 0.146 0.353 4.826 1.0198
B&H - Lasso 0.504 0.269 0.154 0.337 4.912 1.0196
None - None 1.000 0.000 0.626 0.000 12.000 1.0268
Truth 4.483 1.0001

Table 5.9:Model selection results for 4000 simulations, showing the mean across all simulations and
all experiments. The best results within the different categories are marked in bold text, the worst
results are underlined. The mean of the lower confidence bound of the number of relevant covariates
chosen by the confidence method was 3.732.

than the hypothesis testing and composite methods, resulting in large FWER estimates as
irrelevant covariates were included, and small FWER-II estimates as relevant covariates
were rarely dropped. The B&H procedure yielded models of slightly smaller complexity,
with a smaller FWER estimate and somewhat larger FWER-II estimate. The resulting
test MSE values were very similar to those obtained by the conventional methods. The
confidence method was stricter, with a much smaller FWER estimate and only slightly
larger FWER-II estimate, compared to the B&H procedure. The balance obtained with the
confidence method appeared optimal, as these methods achieved the best test predictions
overall, and quite often selected exactly the covariates that were in the true model.

An interesting observation is thus that even though FDR and FDP basedmultiple testing
procedures are normally considered to be mild in the context of testing hypotheses, they
were stricter than the conventional model selection methods in the current context. The
significance levels used in the multiple testing procedures, αFDR = 0.25 and αFDP = 0.05,
can however be increased to obtain milder procedures.

Note that the estimated FDR and FWER are very closely connected. This is unsur-
prising, since the FDR is bounded by the FWER (Goeman and Solari, 2014). We see
that the AIC and lasso methods yielded models where a relatively large proportion of the
included covariates were irrelevant, corresponding to the large FWER and FDR estimates
observed. Notice that even though the B&H procedure was used to control the FDR at level
αFDR = 0.25, the estimated FDR seemed to indicate that the procedure was conservative.
Table 5.10 does however show that when fewer covariates were actually relevant, the es-
timated FDR was closer to αFDR. This is because the B&H procedure controls the FDR
at level αFDR · m0/m, where m0 is the number of true hypotheses, or irrelevant covariates
(Goeman and Solari, 2014).

While inference on a reduced model is problematic, the lower confidence bound for the
number of relevant covariates does give us a little piece of information about our resulting
model in the case where we use only the confidence method for model selection. The lower
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Few FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.804 0.150 0.376 0.167 3.836 1.0202
None - Lasso 0.841 0.128 0.471 0.104 5.348 1.0175
Conf. - None 0.210 0.265 0.107 0.574 2.701 1.0163
Conf. - AIC 0.191 0.279 0.088 0.587 2.494 1.0159
Conf. - Lasso 0.208 0.267 0.105 0.574 2.675 1.0159
B&H - None 0.463 0.218 0.196 0.393 3.015 1.0172
B&H - AIC 0.457 0.218 0.191 0.399 2.971 1.0171
B&H - Lasso 0.463 0.218 0.196 0.393 3.014 1.0168
None - None 1.000 0.000 0.793 0.000 12.000 1.0279
Truth 2.486 1.0014
Many FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.620 0.299 0.125 0.273 6.937 1.0224
None - Lasso 0.966 0.120 0.330 0.019 9.637 1.0230
Conf. - None 0.274 0.334 0.068 0.526 6.411 1.0216
Conf. - AIC 0.232 0.366 0.050 0.536 6.143 1.0216
Conf. - Lasso 0.274 0.334 0.068 0.526 6.407 1.0213
B&H - None 0.545 0.319 0.112 0.280 6.810 1.0228
B&H - AIC 0.508 0.328 0.101 0.308 6.682 1.0225
B&H - Lasso 0.545 0.319 0.112 0.280 6.810 1.0224
None - None 1.000 0.000 0.460 0.000 12.000 1.0257
Truth 6.481 0.9988

Table 5.10: Model selection results for 2000 simulations in each part, comparing the case with few
covariates in the true model to the case with many. The best results within the different categories
are marked in bold text, the worst are underlined. The mean of the lower confidence bound of the
number of relevant covariates chosen by the confidence method was 2.034 for the experiments with
few relevant covariates and 5.430 in the experiments with many.

bound given for the confidence method was on average a bit smaller than the complexity of
the true model, 3.732 and 4.483, respectively. If we were to use FWER control, the number
of rejected hypotheses would be smaller than or equal to the bound from the confidence
method, since we would ignore any defining rejection with more than one elementary
component. This seems to indicate that FWER control would be too strict, since we would
almost surely ignore a lot of relevant covariates.

A good portion of the covariates selected by the confidence method seemed to be truly
relevant ones, despite the pessimistic lower confidence bound, as we observed small values
for the FDR. The small lower confidence bound did however indicate that the confidence
method might have been a little strict, as the confidence method came with a cost of a
higher FWER-II estimate compared to the other methods. Ultimately the method seemed
to balance type I and type II errors well, since it achieved the best scores both for the test
MSE and the rate at which the method selected the correct set of covariates.

In Table 5.10 one can observe the differences in the results when there were either
few (1, 2, 3 or 4) or many (5, 6, 7 or 8) covariates in the true model. Table C.2 in the
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Appendix shows the widths of approximate 95% confidence intervals for the probabilities
or the expectations of the same values. The interval estimates are based on half as many
observations as the mean across all simulations, and correspondingly have slightly larger
widths (except for complexity, which naturally has a smaller variance when separated by
size).

When there were few relevant covariates, all the methods performed significantly better
than the full model with respect to the test MSE. The differences between the methods
were also large, with the confidence method coming out on top, with respect to all but the
FWER-II estimate.

When there were many relevant covariates, there were fewer type I errors to commit. As
a consequence the FDR values were smaller for everymethod, compared towhen there were
few relevant covariates. As more covariates were relevant, the need for model selection was
smaller. All methods performedworse thanwhen few covariates were relevant, although the
difference was largest for the hypothesis testing procedures. The AIC actually had a smaller
FWER estimate when there were many relevant covariates, unlike the other procedures,
although its FWER-II estimate was increased more. Naturally, the FWER-II estimate was
larger for all methods when more relevant covariates existed that the methods could fail to
include.

For the case with many relevant covariates, the confidence interval width of 0.003 for
the MSE tells us that there were no significant differences between the different procedures
with respect to this criterion, and barely any difference from using the full model.

The comparison of the experiments with small (absolute values between 0.05 and 0.25)
and large (0.25 and 0.50) coefficients can be seen in Table 5.11. Table C.3 shows the widths
of the corresponding approximate confidence intervals. It is very noticeable that when the
coefficients were large enough, hardly any of the methods dropped any relevant covariates.
Their effects were easily noticed by all methods, and thus the type I errors became more
important to focus on. This gave the hypothesis testing methods an advantage, especially
the confidence method. The confidence bound of 4.541 for the confidence method was very
close to the complexity of its chosen models, 4.624, meaning there were few dissonant
rejections, and the method was close to having FWER control. This can also be observed
in the FWER estimate, which was very close to αFDP = 0.05.

When the coefficients were small, the FWER-II estimates were much larger for all
methods, since the effects of the covariates were harder to detect. The confidence method
gave a small lower bound, 2.924, while its average model complexity, 4.488, was similar
to that of the true model. This means that the defining rejections generally had many
components, and the large FWER-II estimate indicates that the selected covariates were
not always the relevant ones. This suggests that the confidence method was too strict in this
case. The B&H procedure, though only slightly milder, obtained significantly better results
with respect to type II errors, rate of selecting the perfect model, and test MSE, though the
lasso and AIC also performed well with respect to the latter.

A natural concern arises from the observations in Table 5.11, namely whether the
models consideredwhen the coefficientswere large are representative of naturally occurring
relationships between covariates and response variables. These models were used in half
of the simulations, and thus impacted the overall results seen in Table 5.9 greatly. The
apparent advantage the confidence method had over conventional methods in terms of test
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Small FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.720 0.449 0.268 0.144 5.086 1.0195
None - Lasso 0.876 0.248 0.385 0.055 7.133 1.0170
Conf. - None 0.433 0.595 0.156 0.154 4.488 1.0218
Conf. - AIC 0.372 0.642 0.119 0.176 4.032 1.0214
Conf. - Lasso 0.431 0.598 0.153 0.155 4.457 1.0213
B&H - None 0.476 0.537 0.155 0.206 4.447 1.0187
B&H - AIC 0.459 0.546 0.148 0.213 4.369 1.0186
B&H - Lasso 0.476 0.537 0.155 0.206 4.446 1.0182
None - None 1.000 0.000 0.627 0.000 12.000 1.0237
Truth 4.473 0.9975
Large FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.705 0.000 0.233 0.295 5.687 1.0232
None - Lasso 0.931 0.000 0.416 0.068 7.851 1.0234
Conf. - None 0.051 0.004 0.020 0.946 4.624 1.0161
Conf. - AIC 0.050 0.004 0.019 0.946 4.604 1.0160
Conf. - Lasso 0.051 0.004 0.020 0.946 4.624 1.0160
B&H - None 0.532 0.000 0.153 0.468 5.378 1.0213
B&H - AIC 0.506 0.000 0.143 0.494 5.284 1.0210
B&H - Lasso 0.532 0.000 0.153 0.468 5.378 1.0209
None - None 1.000 0.000 0.626 0.000 12.000 1.0299
Truth 4.494 1.0028

Table 5.11:Model selection results for 2000 simulations in each part, comparing the case with small
coefficients in the model to the case with large. The best results within the different categories are
marked in bold text, the worst are underlined. The mean of the lower confidence bound of the number
of relevant covariates chosen by the confidence method was 2.924 for the experiments with small
coefficients and 4.541 in the experiments with large.
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Uncorrelated FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.704 0.200 0.246 0.228 5.383 1.0197
None - Lasso 0.899 0.107 0.395 0.066 7.464 1.0188
Conf. - None 0.197 0.305 0.069 0.566 4.369 1.0178
Conf. - AIC 0.191 0.315 0.063 0.567 4.292 1.0177
Conf. - Lasso 0.197 0.305 0.069 0.566 4.369 1.0176
B&H - None 0.524 0.237 0.156 0.337 4.971 1.0185
B&H - AIC 0.512 0.240 0.152 0.347 4.921 1.0184
B&H - Lasso 0.524 0.237 0.156 0.337 4.971 1.0181
None - None 1.000 0.000 0.628 0.000 12.000 1.0252
Truth 4.470 0.9999
Correlated FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.721 0.249 0.255 0.211 5.390 1.0229
None - Lasso 0.908 0.141 0.406 0.057 7.521 1.0216
Conf. - None 0.287 0.293 0.107 0.533 4.743 1.0201
Conf. - AIC 0.232 0.330 0.075 0.555 4.345 1.0198
Conf. - Lasso 0.285 0.295 0.104 0.534 4.712 1.0197
B&H - None 0.484 0.300 0.152 0.337 4.854 1.0215
B&H - AIC 0.453 0.306 0.140 0.360 4.732 1.0212
B&H - Lasso 0.484 0.300 0.152 0.337 4.853 1.0211
None - None 1.000 0.000 0.625 0.000 12.000 1.0284
Truth 4.497 1.0003

Table 5.12: Model selection results for 2000 simulations in each part, comparing the case with
uncorrelated covariates to the casewith correlated ones. The best resultswithin the different categories
are marked in bold text, the worst are underlined. The mean of the lower confidence bound of the
number of relevant covariates chosen by the confidence method was 3.756 for the experiments with
uncorrelated covariates and 3.709 in the experiments with correlated.

MSE disappears if the simulations with large coefficients are ignored. It should however be
noted that in the case where the coefficients were small the confidence method still selected
fewer irrelevant covariates and overall selected exactly the correct ones slightly more often
than the conventional methods.

What constitutes the optimal balance between type I and type II errors is evidently
dependent on the underlying model. We see that while the balance greatly favoured the
strictest method when the coefficients were large, the milder methods performed better
when the coefficients were small. The B&H procedure appeared comparable to or better
than subset selection with AIC and lasso in most of the experiments, and especially when
there were few relevant covariates, as seen in Table 5.10.

The comparison of the results from the experiments with uncorrelated and correlated
covariates is shown in Table 5.12, with the corresponding widths of approximate confi-
dence intervals in Table C.4 in the Appendix. The differences between the two cases were
generally small, except that all the methods performed worse with respect to the test MSE
in the case where the covariates were correlated. The relative performance between the

45



Chapter 5. Analysis

methods was the same in the two cases. With correlated covariates the confidence method
resulted in slightly higher complexities and a slightly smaller confidence bound for the
number of relevant covariates, suggesting that the defining rejections in general had more
elementary components. Otherwise the methods seemed equally capable of identifying
relevant covariates whether they were correlated or not.

Note that we have not looked into what specific effects the different correlations have
in the case where the covariates are correlated. Goeman et al. (2011) mentioned that unlike
other selection methods, the confidence method will not differentiate between two highly
correlated covariates in its selection, but instead conclude that both are important. We
have not concerned ourselves with this effect, and only looked at the overall effects having
correlated covariates had on the measured results.

The largest disadvantage associated with the confidence method is its computational
cost. When compared to subset selection with AIC this is not an issue, as all reduced
models have to be fitted anyway. It is however possible to adjust the subset selection
method to reduce computational time, for example by only considering models up to a
certain complexity. This cannot be done with the F-test based confidence method, because
we need to test every possible intersection of hypotheses. The lasso regression and B&H
procedure do not share this issue. Restricting the original set of covariates with the B&H
procedure can even be used to reduce the computational time for the AIC, as then only a
reduced number of models have to be fitted.

The simulation results suggest that subset selection with AIC was quite robust to
variations in the underlying model. Its performance was very similar whether there were
few or many covariates, and was generally only slightly worse when the coefficients were
large or the covariates were correlated, compared to when the coefficient were small or the
covariates uncorrelated, respectively. With respect to identifying the relevant covariates it
did however appear to be too mild, as it generally selected rather large portions of irrelevant
covariates.

The lasso regression generally achieved good test MSE values, even though the error
rate estimates seem suboptimal. The method often included a large number of irrelevant
covariates, seen by the large FDR values. The shrinking of the coefficients did however
seem to limit the negative impact of including these, since the testMSEwas generally small.
The considerations of error rates based on whether the coefficients are exactly zero or not
might be unfair to the lasso regression, as some coefficients may be essentially ignored
by having small, non-zero coefficients that contribute little to the predictions. Therefore,
if the purpose of the model selection is not to make good predictions, but to accurately
identify relevant covariates, lasso regression might not be perfectly suited for the task.
Some adjustments can be done, however, such as choosing a slightly larger value for λ than
the one that minimizes the estimated MSE, though this was not considered for this thesis.

The confidence method performed very well in all the experiments that used large
coefficients for the covariates in the true model, and as such appeared to be a good
method for specifically identifying covariates with large effects on the response. When the
coefficients were small, the method appeared too strict. With real data expert knowledge
can be applied to make a more informed selection of covariates, rather than relying on an
algorithm. It does however appear from our simulations that the choice generally should
not be stricter than ours. On the other hand a milder choice, selecting a larger subset than
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our algorithm, does not increase the lower confidence bound for the number of relevant
covariates, and hence would not use all information gained from dissonant rejections.

We used a fixed value of αFDR = 0.25 for the B&H procedure, and cannot conclude
whether or not this was optimal. Note that using for example cross-validation to select
αFDR will interfere with the validity of the FDR control. It could potentially improve the
predictions, but the procedure must then be treated differently than as a form of correction
for multiple hypothesis testing. The B&H procedure seemed generally promising for the
purpose of model selection, both with respect to test MSE and selecting correct covariates.
The procedure was milder than the confidence method, which was detrimental when the
coefficients were large. It did however achieve better results with respect to test MSE when
the coefficients were small. The B&H procedure was also more stable with respect to
variations in the underlying model.

Another observation regarding the confidence method and the B&H procedure is that
the resulting models very rarely changed when using lasso regression or subset selection
with AIC afterwards. The former almost never lead to additional rejections, although the
regularization of the coefficient estimates generally reduced the test MSE. The latter lead
to a small amount of additional rejections, and also a general reduction of the test MSE.
However, none of the results indicate that using the conventional methods after the initial
application of the hypothesis testing procedures provides a significant advantage over using
only the testing procedures.

Since the multiple testing procedures were stricter than the conventional methods in
our simulations, this observation makes sense, and hints that a reversal of the roles could
have been better. We have however already mentioned the downside to this, namely that if
we use the hypothesis testing methods after the set of covariates has been reduced by for
example AIC as part of one selection process, the p-values are not necessarily valid.
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Chapter 6
Conclusions

6.1 Pairwise comparisons of means
The simulation results clearly indicate that in the case of pairwise comparisons of three
means, a closed testing procedure should be used over both Bonferroni correction and
Tukey’s procedure. Bonferroni correction for the elementary hypotheses is a weaker mul-
tiple testing procedure than the closed testing procedure using Bonferroni’s method to test
the global hypothesis, and this was the closed testing procedure with the worst performance
in the simulations. Tukey’s procedure is weaker than the closed testing procedure using
the range test for the global hypothesis, and performed worse than all the other procedures
tested, especially with respect to the all-pairs power. Using Tukey’s procedure did result in
a large any-pair power, but since the tests for the remaining pairs were weaker than those
used by the other methods, it more often lead to contradictory results. Since computational
cost is a non-issue when there only is one additional hypothesis to test, closed testing
procedures should be preferred in this scenario.

Regarding the different closed testing procedures, Simes is uniformly stronger than
Bonferroni, and performed slightly better for all the experiments. The estimates for the
any-pair and all-pairs powers of Simes were consistently smaller than those of the F-test,
though the latter caused contradictory results slightly more often. Comparing the F-test to
the range test, we see that the F-test achieved a slightly larger all-pairs power, and that the
range test generally achieved a slightly larger any-pair power. In some cases the F-test was
superior with respect to both kinds of power, though overall the differences were hardly
significant. The range test caused contradictory results slightly more often. All in all the
common F-test appears to be common for a reason, although there is little to lose from
using the range test instead. This conclusion corresponds to the onemade by Shaffer (1981).

Though the F-test is consonant, an adjustment can theoretically be made to increase
the power of the corresponding closed testing procedure. Some of the critical region for
the F-test can be removed through consonantization (2.4.1), and we saw in Table 5.2 that
this would have resulted in a FWER estimate significantly smaller than α = 0.05. This
means that the consonantized procedure is conservative, and we can thus add points to the
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critical region without sacrificing FWER control. If we choose to add points that are also
in the critical region of at least one of the local t-tests for the elementary hypotheses, the
overall power of the procedure will increase. This example is three-dimensional, though
very similar to the two-dimensional example presented by Romano et al. (2011).

The simplification of the closed testing procedure in the case m = 3 is well known,
and, though interesting, only applies to a very small set of multiple comparisons studies.
Closed testing procedures for larger m are also simplified, and it may very well be that the
optimal local tests for these cases are different from when m = 3.

6.2 Multiple testing for model selection in regression
We experienced that the multiple testing procedures of FDR control with the Benjamini &
Hochberg procedure and the FDP based method by Goeman et al. (2011) were stricter than
conventional model selection methods of lasso regression and subset selection with AIC,
resulting in sparser models. The confidence method was the strictest, and only performed
better than conventional methods with respect to test MSE in a selection of the experiments.
The test MSE of the B&H procedure was generally comparable to or better than that of the
conventional methods. The overall optimal balance between type I and type II errors with
respect to making good predictions thus appears to be somewhere around what the B&H
procedure achieved. This seems to confirm our initial suspicion that FWER control is too
strict for model selection in the general case.

Though it is questionable whether or not the models created with large coefficients
(or any of the models, for that matter) are representable of naturally occurring covariate-
response relationships, it shows that if the goal of the model selection is to indentify only
the covariates which largely impact the response, a strict selection procedure is beneficial.
Here the confidence method comes with the added benefit that the final selection is up
to the user, who can make even stricter decisions than those our algorithm performed, if
wanted or needed.

The confidence method in particular was unstable with regards to variation in the
underlying model when it came to achieving a good test MSE. The B&H procedure and
subset selection with AIC fared better at this regard, as their MSE values were generally
more stable for the different experiments. Lasso regression resulted in good MSE values
especially when the coefficients were small. Even though the method often had non-zero
coefficients for irrelevant covariates, the shrinkage of the coefficients negated some of the
negative impact these would otherwise have on the test MSE.

Overall the conclusion regarding the confidence method is that it was better than the
conventional selectionmethods with respect to specifically identifying covariates that affect
the response largely, but its predictions appeared less robust when it came to variations
in the underlying model. The B&H procedure was generally better than the conventional
methods at identifying relevant covariates. The resulting test MSE values for these methods
were also comparable. The fact that the multiple testing procedures were stricter than the
conventional methods meant that the second step in the selection often had very little effect.
Performing the conventional methods before the testing procedures could be an interesting
approach, but this requires the two steps to be separate experiments, in order to retain the
validity of the testing procedures.
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The fairly promising results should be more thoroughly investigated. The perhaps
biggest unaswered question is whether or not the simulated models are representative of
real covariate–response relationships, and thus if the same conclusions will apply when the
methods are tested on actual datasets. The problem in that scenario is of course that there is
no way to know what the true model actually is, though the ability to make predictions on
an untouched dataset can still be tested. For this particular purpose it does however seem
that the confidence method may be too strict, as the importance of avoiding type II errors
appears equally important to or even more important than avoiding type I errors. Testing
milder levels of αFDP, and also other values of αFDR, could be interesting. The effects of
correlated covariates should also be investigated more specifically.
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Appendix A
Proofs

A.1 Lower confidence bounds by the confidence method
The setD, of all elementary hypotheses involved in a defining rejection of a closed testing
procedure (see Section 3.2), has the same lower confidence bound for the number of false
hypotheses as the setH = {H1,H2, . . . ,Hm} of all elementary hypotheses. Expressed with
the notation used in Section 2.5:

|D| − tα(D) = |H | − tα(H),

where tα(R) is the size of the largest subset of R for which the corresponding intersection
of elementary hypotheses is not rejected (the upper confidence bound for the number of
true hypotheses in R).

Proof. Suppose we have a closed testing procedure for a family of elementary hypotheses
H and its closure. Recall that a defining rejection is a rejected hypothesis with no rejected
proper components. If HJ is a defining rejection and a component of HI , we call it a
defining component of HI .

If HI has a defining component, the coherence of the closed testing procedure tells us
that HI is also rejected. If HI is rejected, it either is a defining rejection, or it has a proper
component that is. Either way it has a defining component. Thus a hypothesis is rejected if
and only if it has a defining component.

Let M = {1,2, . . . ,m}, D be the set of indices of hypotheses in D, and E = M \ D.
Note that since E contains no index of a hypothesis involved in a defining rejection, HE

has no defining components, and is not rejected.
If there are no defining rejections, there are no rejections at all, and so |D| − tα(D) =

|H | − tα(H) = 0. If D = H the statement also obviously holds. Otherwise D and E are
both proper, nonempty subsets of M .

Let J be the largest subset of D such that HJ is not rejected, and let K be the largest
subset of M such that HK is not rejected.
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Note that K ∩ E = E . Otherwise there would be an e ∈ E \ K , that could be added
to K to create a larger set for which the corresponding hypothesis is not rejected, since
HK has no defining components and He is not involved in any defining rejection. Thus
|K | = |K ∩ D | + |K ∩ E | = |K ∩ D | + |E |. We want to show that

|K ∩ D | = |J |.

Assume that |K ∩ D | > |J |. By the definition of J, HK∩D must be rejected. By coherence
so is HK , which is a contradiction to the definition of K . Note that the possibility of J = ∅
is covered by this case.

Assume that |K∩D | < |J |. Consider HJ∪E . This hypothesis must be rejected, otherwise
it contradicts the definition of K . This means that HJ∪E has a defining component. Since
E contains no indices of hypotheses involved in defining rejections, this means that the
defining component must also be a component of HJ , which is a contradiction since HJ by
definition is not rejected.

Thus we have |H | − tα(H) = |M | − |K | = (|D | + |E |) − (|J | + |E |) = |D | − |J | =
|D| − tα(D). �

A.2 Closed testing with Bonferroni local tests in multiple
linear regression is consonant

Here we present a short proof that in the case where no intersections of elementary
hypotheses coincide, the closed testing procedure obtained by using the Bonferroni method
to construct local tests is consonant.

Proof. Consider the elementary hypotheses H1,H2, . . . ,Hm, and let M = {1,2, . . . ,m}.
Suppose the closed testing procedure rejects HI , where I , ∅ and I ⊂ M .

Since the closed testing procedure is coherent, HJ is rejected for all J such that
I ⊂ J ⊂ M . Since HI is rejected, it must be the case that for some i ∈ I, pi ≤ α/|I |. Now
let {i} ⊂ K ⊂ I. We have |K | ≤ |I |, and so pi ≤ α/|I | ≤ α/|K |. Thus HK is rejected for
all {i} ⊂ K ⊂ I and HJ is rejected for all I ⊂ J ⊂ M , which means Hi is rejected by the
closed testing procedure, since HL is rejected for all {i} ⊂ L ⊂ M . �
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Appendix B
Construction of a semi-arbitrary
covariance matrix

To create an arbitrary covariance matrix, we needed to construct a positive definite matrix
Σ. A symmetric, real matrix Σ is postive definite if and only if all its eigenvalues are
positive, in which case Σ = PT DP, where P is an orthogonal matrix and D is a diagonal
matrix with the postive eigenvalues of A on its diagonal (Johnson, 1970).

We found an orthogonal matrix P by generating an m by m matrix M of m2 samples
from a standard normal distribution, and applying the Gram–Schmidt process (Kincaid
et al., 2009). This works as long as M has full rank, which is likely. We then let D =
diag(λ1, λ2, . . . , λm), where the λs were evenly spaced between 3/2 and 2/3 (not for any
particular reason, except that we needed values different from all being equal to 1, since
that would yield the identity matrix).

Thus PT DP was positive definite, and thus a covariance matrix. We chose to use the
corresponding correlation matrix (scaling the matrix so that all diagonal elements are equal
to 1), so that all the covariates would be on the same scale.

The resulting covariance matrix, which then was used in every experiment with corre-
lated covariates in Chapter 5, can be seen in Table B.1.Most covariates were not particularly
correlated, and the largest correlation coefficients were ρ14 = −0.29 and ρ48 = 0.30.
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1 2 3 4 5 6 7 8 9 10 11 12
1 1.00 0.18 0.13 −0.29 −0.03 −0.05 0.16 −0.02 0.00 −0.21 0.03 −0.17
2 0.18 1.00 0.18 −0.17 0.10 0.04 0.21 −0.01 0.05 −0.09 −0.24 −0.02
3 0.13 0.18 1.00 −0.02 −0.26 −0.11 −0.11 0.14 −0.08 −0.03 −0.06 0.15
4 −0.29 −0.17 −0.02 1.00 0.04 0.13 −0.09 0.30 0.06 −0.07 0.03 0.01
5 −0.03 0.10 −0.26 0.04 1.00 0.04 −0.06 −0.01 −0.12 −0.22 0.07 −0.07
6 −0.05 0.04 −0.11 0.13 0.04 1.00 0.08 −0.07 −0.12 0.10 −0.11 −0.15
7 0.16 0.21 −0.11 −0.09 −0.06 0.08 1.00 −0.13 −0.31 0.01 −0.16 −0.19
8 −0.02 −0.01 0.14 0.30 −0.01 −0.07 −0.13 1.00 0.22 −0.05 −0.06 −0.14
9 0.00 0.05 −0.08 0.06 −0.12 −0.12 −0.31 0.22 1.00 0.07 −0.14 −0.08

10 −0.21 −0.09 −0.03 −0.07 −0.22 0.10 0.01 −0.05 0.07 1.00 −0.06 0.13
11 0.03 −0.24 −0.06 0.03 0.07 −0.11 −0.16 −0.06 −0.14 −0.06 1.00 0.14
12 −0.17 −0.02 0.15 0.01 −0.07 −0.15 −0.19 −0.14 −0.08 0.13 0.14 1.00

Table B.1: Covariance matrix for the correlated covariates used in simulations in Chapter 5.
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Appendix C
Additional simulation results in
model selection

This section contains tables showing the width of the approximate confidence intervals for
the values shown in Chapter 5. The estimates that are for probabilities, “FWER”, “FWER-
II” and “Perf.” are calculated according to (5.1) (note that we assume that the probability of
a given event is constant for all simulations, which is not likely to be the case, as for example
type II errors are less likely when the coefficients are large), while the remaining values
are assumed to be normally distributed. We also assume that the number of observations is
large enough that the t-distribution can be approximated by a standard normal distribution,
resulting in width

2 · 1.96
σ̂

n
,

where σ̂ is the sample standard error and n is the number of observations used for the
calculation of the estimatedmean that the approximate 95%confidence interval corresponds
to. The complexity is certainly not normally distributed, since it is discrete. We did however
care more about the error and perfection rates, as well as the test MSE, and were thus not
particularly concerned with the confidence interval estimate for the complexity.
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FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.014 0.013 0.007 0.013 0.066 0.0020
None - Lasso 0.009 0.010 0.007 0.007 0.102 0.0020
Conf. - None 0.013 0.014 0.006 0.015 0.081 0.0021
Conf. - AIC 0.013 0.014 0.005 0.015 0.075 0.0021
Conf. - Lasso 0.013 0.014 0.006 0.015 0.080 0.0021
B&H - None 0.015 0.014 0.006 0.015 0.080 0.0020
B&H - AIC 0.015 0.014 0.006 0.015 0.077 0.0020
B&H - Lasso 0.015 0.014 0.006 0.015 0.080 0.0020
None - None 0.000 0.000 0.006 0.000 0.000 0.0021
Truth 0.071 0.0020

Table C.1: Widths of approximate 95% confidence intervals for the expectations or probabilities
from all simulations shown in Table 5.9.

Few FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.017 0.016 0.011 0.016 0.066 0.0029
None - Lasso 0.016 0.015 0.011 0.013 0.131 0.0029
Conf. - None 0.018 0.019 0.010 0.022 0.085 0.0029
Conf. - AIC 0.017 0.020 0.009 0.022 0.071 0.0029
Conf. - Lasso 0.018 0.019 0.010 0.022 0.083 0.0029
B&H - None 0.022 0.018 0.011 0.021 0.077 0.0029
B&H - AIC 0.022 0.018 0.010 0.021 0.074 0.0029
B&H - Lasso 0.022 0.018 0.011 0.021 0.077 0.0029
None - None 0.000 0.000 0.004 0.000 0.000 0.0029
Truth 0.049 0.0028
Many FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.021 0.020 0.005 0.020 0.061 0.0029
None - Lasso 0.008 0.014 0.006 0.006 0.083 0.0029
Conf. - None 0.020 0.021 0.006 0.022 0.075 0.0029
Conf. - AIC 0.018 0.021 0.004 0.022 0.068 0.0029
Conf. - Lasso 0.020 0.021 0.006 0.022 0.075 0.0029
B&H - None 0.022 0.020 0.005 0.020 0.075 0.0029
B&H - AIC 0.022 0.021 0.005 0.020 0.072 0.0029
B&H - Lasso 0.022 0.020 0.005 0.020 0.075 0.0029
None - None 0.000 0.000 0.004 0.000 0.000 0.0029
Truth 0.049 0.0028

Table C.2: Widths of approximate 95% confidence intervals for the expectations or probabilities
from all simulations where the true model contained few or many covariates, respectively, shown in
Table 5.10.
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Small FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.020 0.022 0.011 0.015 0.088 0.0028
None - Lasso 0.014 0.019 0.010 0.010 0.149 0.0028
Conf. - None 0.022 0.022 0.010 0.016 0.124 0.0029
Conf. - AIC 0.021 0.021 0.008 0.017 0.108 0.0029
Conf. - Lasso 0.022 0.021 0.009 0.016 0.124 0.0029
B&H - None 0.022 0.022 0.009 0.018 0.110 0.0029
B&H - AIC 0.022 0.022 0.009 0.018 0.106 0.0029
B&H - Lasso 0.022 0.022 0.009 0.018 0.110 0.0029
None - None 0.000 0.000 0.008 0.000 0.000 0.0029
Truth 0.100 0.0027
Large FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.020 0.000 0.010 0.020 0.096 0.0029
None - Lasso 0.011 0.000 0.009 0.011 0.138 0.0029
Conf. - None 0.010 0.003 0.004 0.010 0.103 0.0029
Conf. - AIC 0.010 0.003 0.004 0.010 0.102 0.0029
Conf. - Lasso 0.010 0.003 0.004 0.010 0.103 0.0029
B&H - None 0.022 0.000 0.008 0.022 0.112 0.0029
B&H - AIC 0.022 0.000 0.008 0.022 0.109 0.0029
B&H - Lasso 0.022 0.000 0.008 0.022 0.112 0.0029
None - None 0.000 0.000 0.008 0.000 0.000 0.0030
Truth 0.100 0.0028

Table C.3: Widths of approximate 95% confidence intervals for the expectations or probabilities
from all simulations where the coefficients where small or large, respectively, shown in Table 5.11.
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Uncorrelated FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.020 0.018 0.010 0.018 0.093 0.0029
None - Lasso 0.013 0.014 0.009 0.011 0.146 0.0029
Conf. - None 0.017 0.020 0.007 0.022 0.109 0.0029
Conf. - AIC 0.017 0.020 0.007 0.022 0.106 0.0029
Conf. - Lasso 0.017 0.020 0.007 0.022 0.109 0.0029
B&H - None 0.022 0.019 0.009 0.021 0.112 0.0029
B&H - AIC 0.022 0.019 0.008 0.021 0.109 0.0029
B&H - Lasso 0.022 0.019 0.009 0.021 0.112 0.0029
None - None 0.000 0.000 0.008 0.000 0.000 0.0029
Truth 0.101 0.0028
Correlated FWER FWER-II FDR Perf. Comp. MSE
None - AIC 0.020 0.019 0.010 0.018 0.093 0.0029
None - Lasso 0.013 0.015 0.009 0.010 0.143 0.0029
Conf. - None 0.020 0.020 0.009 0.022 0.119 0.0029
Conf. - AIC 0.018 0.021 0.007 0.022 0.105 0.0029
Conf. - Lasso 0.020 0.020 0.009 0.022 0.118 0.0029
B&H - None 0.022 0.020 0.009 0.021 0.114 0.0029
B&H - AIC 0.022 0.020 0.008 0.021 0.109 0.0029
B&H - Lasso 0.022 0.020 0.009 0.021 0.114 0.0029
None - None 0.000 0.000 0.008 0.000 0.000 0.0029
Truth 0.100 0.0028

Table C.4: Widths of approximate 95% confidence intervals for the expectations or probabilities
from all simulations where the covariates where uncorrelated or correlated, respectively, shown in
Table 5.12.
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Appendix D
R Code used in simulations

D.1 Pairwise comparisons of means

#### Func t i o n s −−−−
l i b r a r y ( mvtnorm )
S imu l a t e _Y = f unc t i on (mu , Sigma ,m, n ,N ) { . . . }
# Crea t e s n∗N r e a l i z a t i o n s o f Y from N(mu , Sigma )
Y_mean = f unc t i on ( Ys ) { . . . }
Y_var = f unc t i on ( Ys ) { . . . }
Y_ poo l ed _mean = f unc t i on (Y_means ) { . . . }
Y_ poo l ed _var = f unc t i on (Y_ v a r s ) { . . . }
# Ca l c u l a t e s t h e s t a t i s t i c s i n e q ua t i o n ( 2 . 2 ) i n Chapter 2 . 6

t t o p s = f unc t i on (Y_means ,m, n ,N ) { . . . }
#The numera tor f o r t h e t − t e s t and Tukey ’ s p rocedure

t _ t e s t = f unc t i on (Y_means ,Y_ poo l _var ,m, n ,N ) { . . . }
# Ca l c u l a t e s t h e p−v a l u e s f o r t h e poo l ed t − t e s t s

Tukey s r e j = f unc t i on (Y_means ,Y_ poo l _var ,m, n ,N, a l p h a ) { . . . }
#De te rm ine s which h y po t h e s e s Tukey ’ s p rocedure r e j e c t s

F_ t e s t = f unc t i on (Y_means ,Y_ poo l _mean ,Y_ poo l _var ,m, n ,N ) { . . . }
Simes_ t e s t = f unc t i on ( ps ,m,N ) { . . . }
Bonf_ t e s t = f unc t i on ( ps ,m,N ) { . . . }
Range_ t e s t = f unc t i on ( t u k ey s ) { . . . }
# Per forms t h e v a r i o u s g l o b a l t e s t s

make_ps = f unc t i on (mu , Sigma ,m, n ,N, a l p h a ) { . . . }
# Ca l l s t h e above f u n c t i o n s , r e t u r n s t h e r e j e c t i o n s
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# from t h e d i f f e r e n t methods

Run_ s im u l a t i o n = f unc t i on (mus , Fac t s , Sigma ,m, n ,N, a l p h a ){
ps = make_ps (mus , Sigma ,m, n ,N, a l p h a )
t t e s t = ps$ t _ps
F t e s t = ps$F_ps
Simes = ps$S_ps
Bonf = ps$B_ps
Range = ps$Range_ r s
TukeyR = ps$T_ r s
Re s u l tA r r a y = array ( 0 , dim=c ( 5 , 5 ) )
rownames ( R e s u l tA r r a y ) = c ( " Bonf . " , " Simes " , "F" ,

" Range " , " Tukey " )
colnames ( R e s u l tA r r a y ) = c ( "None " , "FWER" , "Any␣power " ,

" Power␣ a l l " , " Con t r . " )
g l o b s = rbind ( Bonf < a lpha , Simes < a lpha , F t e s t < a l ph a )
# R e j e c t i o n s o f t h e g l o b a l h y p o t h e s i s

None = c (1− apply ( g lobs , 1 ,mean ) ,1 −mean ( Range ) ,
1−mean ( TukeyR [ 1 , ] | TukeyR [ 2 , ] | TukeyR [ 3 , ] ) )

t r e j e c t s = t t e s t < a l ph a
# R e j e c t i o n s o f e l emen t a r y h y po t h e s e s by t h e t − t e s t s

BonfR = t ( t ( t r e j e c t s ) & g l ob s [ 1 , ] )
SimesR = t ( t ( t r e j e c t s ) & g l ob s [ 2 , ] )
FR = t ( t ( t r e j e c t s ) & g l ob s [ 3 , ] )
RangeR = t ( t ( t r e j e c t s ) & Range )
# R e j e c t i o n s by t h e c l o s e d t e s t i n g p roc edu r e s

i f ( F a c t s [ 1 ] ∗ ( ! Fa c t s [ 2 ] ) ∗ ( ! Fa c t s [ 3 ] ) ) { . . .
} e l s e i f ( ( ! Fa c t s [ 1 ] ) ∗ ( ! Fa c t s [ 2 ] ) ∗ ( ! Fa c t s [ 3 ] ) ) { . . .
} e l s e i f ( F a c t s [ 1 ] ∗ Fa c t s [ 2 ] ∗ Fa c t s [ 3 ] ) { . . .
} e l s e { . . . }
# Ca l c u l a t e s "None " , "FWER" , "Any power " , " Power a l l " ,
# depend ing on which h y po t h e s e s are t r u e / f a l s e

Con t r a = c (mean ( apply ( BonfR , 2 , sum )==1 ) ,
mean ( apply ( SimesR , 2 , sum )==1 ) ,
mean ( apply (FR , 2 , sum )==1 ) ,
mean ( apply ( RangeR , 2 , sum )==1 ) ,
mean ( apply ( TukeyR , 2 , sum ) ==1 ) )

Re s u l tA r r a y [ , 1 ] = None
Re s u l tA r r a y [ , 2 ] = FWER
Re su l tA r r a y [ , 3 ] = Power1
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Re su l tA r r a y [ , 4 ] = PowerAl l
Re s u l tA r r a y [ , 5 ] = Con t r a

re turn ( R e s u l tA r r a y )
}
#### Parame te r s −−−−
s igma2 = c ( 1 , 1 , 1 )
Sigma = diag ( 3 ) ∗ s igma2
m = 3
n = 30
N = 10000
N0 = 100000
a l ph a = 0 .05
#### A l l z e r o −−−−
s e t . s e ed ( 0 )
mu = c ( 0 , 0 , 0 )
A l l _ t r u e = Run_ s im u l a t i o n (mu , c (T , T , T ) , Sigma ,m, n , N0 , a l p h a )
A l l _ t r u e = Al l _ t r u e [ , − c ( 3 , 4 ) ] #Removes t h e power columns
Al l _ t r u e
#### One d i f f e r e n t −−−−
num_ each = 10

mu1s = rep ( 0 , 3∗num_ each )
mu2s = rep ( 0 , 3∗num_ each )
mu3s = seq ( 0 . 1 , 1 , l eng th . ou t =3∗num_ each )
mus = rbind ( mu1s , mu2s , mu3s )
F a c t s = c (T , F , F )
One_ d i f f = array ( 0 , dim=c ( 5 , 5 , 3∗num_ each ) )

f o r ( i i n 1 : ( 3 ∗num_ each ) ) {
One_ d i f f [ , , i ] = Run_ s im u l a t i o n (mus [ , i ] , Fac t s ,

Sigma ,m, n ,N, a l p h a )
}
#### A l l d i f f e r e n t −−−−
mu1s = rep ( 0 , 3∗num_ each )
mu2s = seq ( 0 . 1 , 0 . 7 , l eng th . ou t =3∗num_ each )
mu3s = 2∗mu2s
mus = rbind ( mu1s , mu2s , mu3s )
F a c t s = c ( F , F , F )
A l l _ d i f f = array ( 0 , dim=c ( 5 , 5 , 3∗num_ each ) )

f o r ( i i n 1 : ( 3 ∗num_ each ) ) {
A l l _ d i f f [ , , i ] = Run_ s im u l a t i o n (mus [ , i ] , Fac t s ,

Sigma ,m, n ,N, a l p h a )
}
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D.2 Model selection in multiple linear regression

#### Load f u n c t i o n s and l i b r a r i e s −−−−
l i b r a r y ( mvtnorm )
l i b r a r y ( s t a t s )
l i b r a r y ( r j e )
l i b r a r y ( c h e r r y ) #Goeman (2011 )
l i b r a r y ( g lmne t )
l i b r a r y ( p rod l im )
l i b r a r y ( g t o o l s )

make_data = f unc t i on (X, n ,m, sigma , t r a i n t e s t s p l i t ,
f ew f a l s e =TRUE, sma l l c o e f =TRUE, i n t e r c e p t = 0 ) { . . . }

# Crea t e s da ta as d e s c r i b e d i n Chapter 4 . 2 . 1

a n a l y s i s = f unc t i on ( v a r i a b l e s , data , s u b s e t s , t r a i n t e s t s p l i t ,
i n t r c =FALSE , s i l e n t =FALSE ) { . . . }

# F i t s f u l l model , t h en c a l l s make_ a l l

make_ a l l = f unc t i on ( s u b s e t s , hypo the s e s ,m, data , RSStot , s i g2 ,
i n t r c =FALSE , s i l e n t =FALSE ) { . . . }

# Crea t e s a l l s u b s e t models , f i n d s a l l AIC va lue s , F s t a t s

c t _FDP = f unc t i on ( hypo the s e s ,m, pva l s , g l o b a l _ pva l , a l p h a ) { . . }
# Per forms c l o s e d t e s t i n g w i t h t h e Cherry package

s e l e c t _FDP= f unc t i on ( d e f i n i n g , c t ,FWER=FALSE , A l l =FALSE ) { . . . }
#Uses d e f i n i n g r e j e c t i o n s t o s e l e c t a s u b s e t o f c o v a r i a t e s ,
# d e s c r i b e d i n Chapter 3 . 2 . 4

s e l e c t _FDR = f unc t i on ( hypo the s e s , pva lue s , a l p h a ) { . . . }
# Per forms t h e Ben jamin i & Hochberg procedure

do_AIC = f unc t i on ( s u b s e t s , AICs , h y p o t h e s e s f u l l , hypo the s e s ,
data , t e s t d a t a , i n t r c =FALSE ) { . . . }

# Per forms s u b s e t s e l e c t i o n w i t h AIC

do_Lasso = f unc t i on ( hypo the s e s , data , t e s t d a t a , k =5 ,
lambda_min=FALSE , s t d z =FALSE , i n t r c =FALSE ) { . . . }

# Per forms l a s s o r e g r e s s i o n w i t h k− f o l d CV

do_Noth ing = f unc t i on ( hypo the s e s , data , t e s t d a t a ,
i n t r c =FALSE ) { . . . }

# F i t s a model w i t h t h e s e l e c t e d c o v a r i a t e s ( h y p o t h e s e s )
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few_ l e f t = f unc t i on ( var_ l e f t , data , t e s t d a t a , i n t r c =FALSE ) { . . . }
#Handles t h e case when on l y 1 or 0 c o v a r i a t e s
# are l e f t a f t e r i n i t i a l s e l e c t i o n

#### Decide parame t e r s −−−−
n = 1000
m = 12
a l ph a _FDP = 0 .05
a l ph a _FDR = 0 .25
sigma = 1
i n t e r c e p t = 5
t r a i n t e s t s p l i t = n / 2
l a s s o f o l d s = 5
l a s s om in = T
i n t r c = ( i n t e r c e p t ! = 0)
p a r ame t e r s = data . frame ( FewFalse=c ( rep (T , 4 ) , rep ( F , 4 ) ) ,

Smal lCoef=rep ( c (T , F ) , 4 ) , IndX=rep ( c (T , T , F , F ) , 2 ) )
NumComb = dim ( p a r ame t e r s ) [ 1 ]
NumRuns = 500

#### Crea t e d e s i g n ma t r i c e s −−−−
# See Appendix B
s e t . s e ed ( 0 )

p = qr .Q( qr (matrix ( rnorm (m^2 ) , m) ) )
# A r b i t r a r y o r t h ogona l ma t r i x

Sigma = cov2co r ( crossprod ( p , p∗ seq (3 / 2 ,2 / 3 ,
l eng th . ou t = m) ^ 2 ) )

depX = array ( data= t ( rmvnorm ( n , rep ( 0 ,m) , Sigma ) ) ,
dim=c (m, n ) )

Sigma2 = diag (m)
indX = array ( data= t ( rmvnorm ( n , rep ( 0 ,m) , Sigma2 ) ) ,

dim=c (m, n ) )

#### NumComb∗NumRuns s i m u l a t i o n s −−−−
Re su l tA r r a y = array ( 0 , dim=c ( 1 0 , 7 ,NumComb, NumRuns ) )

h y p o t h e s e s f u l l = s p r i n t f ( "X%d" , seq ( 1 :m) )
s u b s e t s = powerSetMat (m) [ 2 : ( 2 ^m−1 ) , ]
s u b s e t s = s u b s e t s ∗ c o l ( s u b s e t s )

f o r ( t i n 1 :NumRuns ){
#Run s im u l a t i o n
f o r ( j i n 1 :NumComb){
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# f o r each e xp e r imen t
f ew f a l s e = p a r ame t e r s $FewFalse [ j ]
sma l l c o e f = p a r ame t e r s $Smal lCoef [ j ]
i f ( p a r ame t e r s $ IndX [ j ] ) {X = indX}
e l s e {X = depX}

d = make_data (X, n ,m, sigma , t r a i n t e s t s p l i t , f ew f a l s e ,
sma l l c o e f , i n t e r c e p t )

T ru t h = d$Tru th
T e s t F u l l = d$ T e s t F u l l

t r a i n d a t a = d$data [ 1 : t r a i n t e s t s p l i t , ]
t e s t d a t a = d$data [ ( t r a i n t e s t s p l i t + 1 ) : n , ]
d = 0
#### Do t h e s e l e c t i o n −−−
#No r e s t r i c t i o n s
i n f o = a n a l y s i s ( h y p o t h e s e s f u l l , t r a i n d a t a , s u b s e t s ,

t r a i n t e s t s p l i t , i n t r c = i n t r c , s i l e n t =TRUE)
onlyAIC = do_AIC ( s u b s e t s , i n f o $AICs , h y p o t h e s e s f u l l ,

h y p o t h e s e s f u l l , t r a i n d a t a , t e s t d a t a , i n t r c = i n t r c )
on lyLas so = do_Lasso ( h y p o t h e s e s f u l l , t r a i n d a t a , t e s t d a t a ,

k= l a s s o f o l d s , lambda_min= la s somin , i n t r c = i n t r c )

# R e s t r i c t i n g w i t h FDP /FDR
c t = c t _FDP( h y p o t h e s e s f u l l ,m, i n f o $ a l l _ps , i n f o $ g l o b a l _p ,

a l p h a _FDP)
d e f i n i n g = d e f i n i n g ( c t )
d e f i n i n g = d e f i n i n g [ order ( sapply ( d e f i n i n g , l eng th ) ,

d e c r e a s i n g =F ) ]
FDP_ keeps = m ix ed so r t ( s e l e c t _FDP( d e f i n i n g , c t , A l l =TRUE) )
FDR_ keeps = s e l e c t _FDR( h y p o t h e s e s f u l l , i n f o $ e l emen t a r y _ps ,

a l p h a _FDR)

# S e l e c t i n g w i t h FDP− r e s t r i c t e d da ta
m_FDP = l eng th (FDP_ keeps )

i f (m_FDP == m) { . . .
} e l s e i f (m_FDP > 1 ) { . . .
} e l s e { . . . }
# Per forms AIC , l a s s o or no t h i n g on w i t h s e t o f c o v a r i a t e s
# r e s t r i c t e d by t h e c o n f i d e n c e method

# S e l e c t i n g w i t h FDR− r e s t r i c t e d da ta
m_FDR = l eng th (FDR_ keeps )
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i f (m_FDR == m) { . . .
} e l s e i f (m_FDR == m_FDP){
i f ( prod (FDR_ keeps == FDP_ keeps ) ) { . . .
} e l s e { . . . }
} e l s e i f (m_FDR > 1 ) { . . .
} e l s e { . . . }
# Per forms AIC , l a s s o or no t h i n g w i t h s e t o f c o v a r i a t e s
# r e s t r i c t e d by t h e Ben jamin i & Hochberg procedure

Re s u l t s = l i s t (AIC=onlyAIC , Lasso=onlyLasso ,
FDP_None=FDP_None , FDP_AIC=FDP_AIC , FDP_Lasso=FDP_Lasso ,
FDR_None=FDR_None ,FDR_AIC=FDR_AIC ,FDR_Lasso=FDR_Lasso ,
F u l l = T e s t F u l l , T ru t h=Tru th )

K = l eng th ( R e s u l t s )
f o r ( k i n 1 :K){
r e s u l t = R e s u l t s [ [ k ] ]
m_ r e s = l eng th ( r e s u l t $Va r i a b l e s )

TP = l eng th ( i n t e r s e c t ( T ru t h $Va r i a b l e s , r e s u l t $Va r i a b l e s ) )
# In re s va r , i n t r u t h v a r ( r e j e c t e d , s hou l d be )
FP = m_ r e s − TP
# In re s va r , no t t r u t h v a r ( r e j e c t e d , shou ldn ’ t be )
FN = l eng th ( T ru t h $Va r i a b l e s ) − TP
#Not i n r e s va r , i n t r u t h v a r ( no t r e j e c t e d , s hou l d be )
TN = m−TP−FN−FP
#Not i n e i t h e r ( no t r e j e c t e d , shou ldn ’ t be )

FDR = 0
i f ( ( TP + FP ) ! =0){FDR = FP / ( TP+FP )}
Re s u l tA r r a y [ k , 1 , j , t ] = ( FP ! = 0)
Re s u l tA r r a y [ k , 2 , j , t ] = (FN ! = 0)
Re s u l tA r r a y [ k , 3 , j , t ] = FDR
Re su l tA r r a y [ k , 4 , j , t ] = ( ( FP+FN) == 0)
Re s u l tA r r a y [ k , 5 , j , t ] = m_ r e s
Re s u l tA r r a y [ k , 6 , j , t ] = p i ck ( c t , r e s u l t $Va r i a b l e s , s i l e n t =T)
Re s u l tA r r a y [ k , 7 , j , t ] = r e s u l t $MSE
}}}
colnames ( R e s u l tA r r a y ) = c ( "FWER" , "FWER− I I " , "FDR" , " P e r f . " ,
"Comp . " , "Bound " , "MSE" )

rownames ( R e s u l tA r r a y ) = c ( "None␣−␣AIC" , "None␣−␣Lasso " ,
" Conf . ␣−␣None " , " Conf . ␣−␣AIC" , " Conf . ␣−␣Lasso " ,
"B&H␣−␣None " , "B&H␣−␣AIC" , "B&H␣−␣Lasso " ,
"None␣−␣None " , " T ru th " )
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