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Abstract

Credit cards have long been a popular form of payment method and the usage is growing
worldwide. Credit card companies must constantly assess the risk of money lending and
one way to measure risk in conjunction with credit card spending is to track the number
of debt collection cases over time. Accurate predictions of the number of customers sent
to debt collection in the future is therefore of great interest to credit card companies. The
aim of this thesis was to forecast the total balance sent to debt collection each month for
the year 2019 based on historical data provided by SpareBank 1 Kredittkort AS in the time
period July 2017 to September 2018. Additionally, we aimed to determine factors that
make some costumers more prone to delinquency in general.

The data provided was longitudinal with repeated measurements each month for more than
500 000 credit card customers in Norway. A mixed effects logistic regression model was
made and used as a classifier to determine whether a customer is sent to debt collection in a
given month. The model was then used to classify and count the number of debt collection
cases in a month. Multiplying with the average amount a customer owes gave predictions
for total balance sent to debt collection each month. The data was highly imbalanced since
most customers are not sent to debt collection. We used random undersampling as well
as a method to adjust the outputs of the classifier. The model forecasted an increase in
the total balance sent to debt collection for the year 2019. A possible improvement of the
model would be to collect additional personal information about each customer that could
possibly explain why some customers are more prone to delinquency. These may include
a customer’s monthly income, other types of unsecured debt and marital status.
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Sammendrag

Kredittkort har lenge vært en populær betalingsmetode og bruken vokser globalt. Kred-
ittkortselskaper må stadig vurdere risikoen forbundet med pengeutlåning og en måte å
måle risiko i forbindelse med kredittkortutgifter er å spore antall inkassosaker over tid.
Nøyaktige prediksjoner over antall kunder som blir sendt til inkasso i fremtiden vil derfor
være svært interessant for kredittkortselskaper. Formålet med denne avhandlingen var å
predikere den totale balansen som blir sendt til inkasso hver måned for året 2019, basert
på historiske data fra SpareBank 1 Kredittkort AS i tidsperioden juli 2017 til september
2018. I tillegg ønsket vi å bestemme hvilke faktorer som gjør at noen kunder er mer utsatt
for mislighold.

Datasettet var longitudinelt med repeterende observasjoner hver måned for mer enn 500
000 kredittkortkunder i Norge. En mixed effects logistisk regresjonsmodell ble konstruert
og brukt som en klassifikator for å bestemme hvorvidt en kunde blir sendt til inkasso i en
gitt måned. Modellen ble deretter brukt til å klassifisere og telle antall inkassosaker i en
måned. Ved å multiplisere med gjenomsnittsbalansen en kunde skylder ga dette predik-
sjoner for den totale balansen sendt til inkasso hver måned. Datasettet var svært ubalansert
siden de fleste kundene ikke blir sendt til inkasso. Vi brukte tilfeldig undersampling i til-
legg til en metode for å justere outputen til en klassifikator. Modellen predikerte en økning
i den totale balansen sendt til inkasso for året 2019. En mulig forbedring av modellen vil
være å samle tilleggsinformasjon for hver kunde som kan forklare hvorfor noen kunder er
mer utsatt for mislighold. Dette kan blant annet være en kundes månedlige inntekt, andre
typer usikret gjeld og sivilstatus.
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Chapter 1
Introduction

The idea of extending credit on durable goods goes all the way back to the 1800s. Already
in the 1920s, some department stores started to offer ”courtesy cards” that resembled the
credit cards we know today (Evans and Schmalensee, 2005). Today, it is safe to say that
the invention of the credit card has been a huge success. For example, in the United States,
75.7% of all consumers possess at least one credit card and the usage as a form of payment
is growing worldwide (Greene et al., 2015).

Credit card companies earn their profit in three different ways. First, credit card com-
panies charge stores somewhere between 2% and 3% for each credit card purchase. With
billions of transactions daily, this amounts to a huge revenue. Secondly, there are addi-
tional credit card fees, such as annual fees that customers must pay to keep their accounts
open. Finally, a large portion of consumers do not pay their bills in full each month. The
costumers’ unpaid credit cards begin to incur interest at rates that are very high. This can
be very lucrative for the bank. However, customers that repeatedly fail to pay their bills
will eventually be sent to debt collection. It is this group of customers that will be of main
interest in this thesis.

Every month, credit card companies will send some customers to debt collection if they
have been unable to pay their billings on time. We will refer to these customers as im-
paired customers. The number of impaired customers the credit card company must send
to debt collection each month may vary from month to month depending on several factors.
These may include seasonal variations, the current unemployment rate and the economy
as a whole. The aim of this thesis is to forecast the total balance that SpareBank 1 Kred-
ittkort AS will send to debt collection each month for the year 2019 based on historical
data provided by the same company from the time period July 2017 to December 2018.
The total balance sent is the sum of all the debt owed by impaired customers. Denote the
month December 2018 as T and the balance sent to collection this month as BT , we thus
want to predict

BT+h for h = 1, 2, . . . , 12.

1



Chapter 1. Introduction

1.1 The Debt Collection Process

This section describes the process of how a customer is sent to debt collection. After
the company issues a credit card to a customer, the he or she receives the credit card
transactions billed in what is known as billing cycles. A billing cycle is usually one month.
The statement date is the last date of each billing cycle. Finance charges are calculated and
added to the customer’s balance and the billing statement is prepared. The customer is then
given a fixed number of days to pay before the payment due date. Varying from country
to country and company to company the period between the statement date and due date
is often 14 days or 21 days. Most customers pay their billing in full while others choose
to revolve their balance. A revolving customer is one who does not pay the total amount
he or she owns at the end of a billing cycle. These types of customers are, for the most
part, lucrative for the credit card company as they will have to pay additional fees. The
extra amount charged for revolving the balance depends on the total size of the balance and
the interest rate of the card. However, if the customer does not pay the minimum amount
required before the due date, he or she will receive a dunning on their next statement date.
14 days after this the credit card company will send a due date dunning. If the customer
still fails to pay, the customer will receive a statement date collection notice and then a
due date collection notice. If the customer still fails to pay, the customer is sent to debt
collection. The whole process described is outlined in the timeline shown in figure 1.1.
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Figure 1.1: A timeline of the debt collection process.

Every month, the credit card company will send some customers to debt collection. Some
customers may pay right away, and the debt collection case is removed. This will not be
the case for all customers. The credit card company often hires a collection agency to
collect their debt for them. Every month, a portion of the total balance sent to collection
by the credit card company represent direct losses for the company. Typically, the whole
debt collection process usually takes somewhere between 60-90 days for a customer.
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1.2 Motivation

1.2 Motivation

For a credit card company, it will be a great advantage to know how the total balance
sent to collection will vary each month, especially when creating budgets and projections
as they will hopefully be more accurate. It is imperative for the credit card company to
always monitor the risk of their portfolio of customers. Credit card companies must walk
a thin line. On one hand, it is very beneficial for the company to keep customers who are
overdue with their bills as they must pay additional interests and fees. On the other hand,
if the risk is too high, customers are not able to pay back what they owe, and this can result
in direct losses to the bank. Therefore, credit card companies constantly track risk, which
can be measured in several ways. One way is to track the number of customers sent to
debt collection. Knowing as early as possible whether or not the number of debt collection
cases will increase, or decrease will be a huge advantage for the credit card company. If
the credit card company predicts that the number of cases will increase, the company can
implement measures at an early stage to counteract this development. For instance, the
company may offer re-financing, tighten rules for issuing new cards or reduce the credit
limit on the cards issued. Similarly, if the company expects the number of debt collection
cases to decrease, they may invest in more advertising or ease the rules for issuing new
credit cards.

1.3 The Data Set

The data set is supplied by SpareBank 1 Kredittkort AS, an alliance of 14 different Nor-
wegian banks that provides credit cards to Norwegian consumers. The data set contains
information for more than 500 000 customers in Norway in the time period July 2017 to
September 2018. That is, for each customer, we have recorded data for a total of 15 months
from July 2017 to September 2018. Each row contains recorded information for one cus-
tomer for one month. Not all customers have 15 registered rows of information, if they for
instance became a customer later or have terminated their credit card. In total, the data set
contains 8 769 272 rows and 79 columns. Appendix A contains a full list of the column
names and a description of each variable. Table 1.1 illustrates the data set and includes a
few examples of different customers, as well as a few examples of some variables in the
data set. The first column shows each customer’s BK ACCOUNT ID. This is an ID number

Table 1.1: A detailed explanation of the data set.

BK ACCOUNT ID YearMonth . . . CustomerAge GENDER NAME . . .
SUM of Payment-
OverDueFlag

. . . DCA0YearMonth DCA0Ind BalanceSent

42 201707 . . . 65 Male . . . 0 . . . NA 0 0.00
42 201708 . . . 65 Male . . . 0 . . . NA 0 0.00... ... ... ... ... ... ... ... ... ... ...
42 201809 . . . 66 Male . . . 0 . . . NA 0 0.00... ... ... ... ... ... ... ... ... ... ...
1521 201707 . . . 44 Female . . . 2 . . . NA 0 0.00
1521 201708 . . . 44 Female . . . 2 . . . 201711 1 47067.67
1521 201709 . . . 44 Female . . . 2 . . . NA 1 47067.67
1521 201711 . . . 44 Female . . . 2 . . . NA 1 47067.67... ... ... ... ... ... ... ... ... ... ...
1521 201809 . . . 45 Female . . . 0 . . . NA 0 0.00... ... ... ... ... ... ... ... ... ... ...

1542168 201809 . . . 26 Male . . . 0 . . . NA 0 0.00

that every customer receives once they acquire a credit card. The BK ACCOUNT ID num-
ber assigned to a customer is randomly assigned and has no meaning apart from separating

3



Chapter 1. Introduction

customers. YearMonth shows the month in which all the data was recorded. Note that
the data is recorded for the last day of the month. Next, the variables CustomerAge and
SUM of PaymentOverDueFlag shows the customer’s age in the current month and
the total number of times the customer has been overdue with his or hers payment in the
last 12 months, respectively. The variable DCA0YearMonth shows the month that the
customer is sent to debt collection, which is always YearMonth + 3 months. The data
set is arranged in this manner such that the response, DCA0Ind, is whether a customer is
sent to debt collection 3 months ahead. Table 1.1 also includes some examples of different
types of customers. First, the customer with BK ACCOUNT ID 42 is a typical example
of a customer who either does not use his credit card or pay his billings on time. He is
not sent to debt collection for any of the months. The customer with BK ACCOUNT ID
1521, however is sent to debt collection in November 2017. Notice that this is registered
in the row where YearMonth is August 2017, i.e. three months before the customer
was sent to debt collection, YearMonth + 3. The customer with BANK ACCOUNT ID
1521 is out of the system for three months, and this is indicated in the response variable
DCA0Ind with three 1s in a row. This does not mean, however, that the customer was
sent to debt collection in September and October 2017 as well. This issue will be handled
in the data preprocessing. Some impaired customers will be permanently dismissed by
the credit card company, while others return as customers which is the case for the female
with ID 1521. Finally, the customer with BK ACCOUNT ID 1542168 is a brand new
customer that joined in September 2018 and we therefore only have one observation for
this customer. This is to illustrate that the number of observations for each customer is
not necessarily the same. Note also that a variable does not need to change for a customer
for all observations. Finally, sensitive information such as names and addresses are not
included in the data set.

4



1.4 Visualization of the Data

1.4 Visualization of the Data
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Figure 1.2: The total balance sent to debt collection each month from January 2015 to December
2018. The total balance has generally increased in the time period. The red dots show the drop in
total balance sent to collection each July, which we refer to as the July effect.

This section is meant to familiarize the reader with the data set. Figure 1.2 shows the total
balance sent to collection each month starting in January 2015 and ending in December
2018. The total balance sent to collection ranges from approximately 22 million NOK in
January 2015 and up to over 60 million NOK for several months in 2018. There seems to
be a clear increasing trend, even though there is great variation in the total balance sent to
collection. Furthermore, there seems to be seasonal trends as well. The points marked red
in figure 1.2 show that the total balance sent to collection is heavily reduced in July. (This
was also the case for July 2018 although the total balance sent to debt collection in Au-
gust 2018 was even lower than July). A very likely explanation for this is that Norwegian
workers receive feriepenger, (directly translated as holiday money), usually in June that
can be used as down payment on debt. We will refer to this as the July effect. Looking at
each year individually, there are also high spikes in the spring months, March, April and
May, except for the first year. However, the explanation for this is more unclear.

Figure 1.3 aims to visualize impaired customers and how they compare to non-impaired
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Chapter 1. Introduction

customers. 1.3(a) shows that men are more likely to be sent to debt collection than women,
with 61.9% of those impaired in the time period July 2017 - December 2018 being male. A
possible explanation might be that women are more risk averse than men and that men can
be overconfident and are less afraid to take on more debt than women (Croson and Gneezy,
2009). 1.3(b) compares customers that have an e-Statement agreement with the credit card
company to those who have not. It is generally considered responsible to have this since
the customer receives an electronic reminder to pay their bills and most customers find it
convenient and easy to use. 1.3(b) shows that impaired customers are less likely to have
an e-Statement agreement, only 23.4% have it compared to 55.8% of those not sent to debt
collection. The blue bars represent impaired customers and the red bars non-impaired cus-
tomers in (c)-(f). The age of impaired customers spans from 18 to 89 years old as shown
in 1.3(c). The bin width is one year. There is a spike of impaired customers at the age of
27 before it starts to decrease. Surprisingly, there is a new peak at 45 years. A possible ex-
planation is that this is a typical age where many people reestablish themselves and builds
new relations and with that often comes financial trouble. Another explanation could be
that some customers find themselves in a midlife crisis and make irrational financial deci-
sions such as buying a new boat or car. After the age of 45, there is a sharp decrease as
most people tend to have a more spacious economy in their 60s and 70s with fewer large
expenses as well. 1.3(d) shows how long customers possess their credit card before they
are impaired. A large number of customers are sent to debt collection fairly quickly. This
means that some customers should probably not have been given a credit card in the first
place. 1.3(e) shows which score the impaired customers have. The score variable is a risk
score computed and assigned to each customer with a value between 0 and 7 based on how
they use their credit card. A score of 0 indicates a very low risk of delinquency and a score
of 7 indicates a very high risk of delinquency. The majority of impaired customer have
a high score, although surprisingly few customers have a score of 7. This could possibly
be a result of that reaching a score of 7 is very difficult. Over 50% of customers that are
non-impaired have a score of 2. Finally, 1.3(f) shows how much impaired customers owe.
The bin width is 10 000 NOK. The large majority owes somewhere around 30 000 NOK,
while some owe much more, above 100 000 NOK.

6



1.4 Visualization of the Data
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Figure 1.3: Visualization of the distribution of impaired customers in terms of gender (a), the e-
statement agreement indicator (b), age (c), number of months since the account was created (d),
score, a value assigned between 0 and 7 (e) and the balance owed (f).

Additionally, the data is visualized by producing a symmetric correlation plot with all
numerical variables in the data set as shown in figure 1.4. The correlation plot is combined
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Chapter 1. Introduction

with a significance test that colours all variables that are found to be insignificant white
(with a significance value of 0.05). The bar on the right-hand side shows how the colors
should be interpreted, with blue indicating positive correlation and red indicating negative
correlation. The last row is of most interest as it shows the response variable DCA0Ind,
which is a binary response equal to 1 if the customer is sent to debt collection and 0
otherwise. Most tiles are white showing no significant correlation with DCA0Ind.
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Figure 1.4: Symmetric correlation plot for all the variables in the data set with a significance test
coloring all insignificant variables white. The bar on the right-hand side shows how the colors should
be interpreted, blue showing positive correlation and red negative correlation.
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1.5 Chosen Approach to the Problem

1.5 Chosen Approach to the Problem

A previous attempt to forecast the total balance sent to debt collection BT has been done
using time series analysis directly on the data (Holck, 2018) shown in figure 1.2, where
the predictions for July were modelled as known additive outliers. A different and indirect
approach is proposed where we rather model and forecast the total number of customers
sent to debt collection for each month, ST . Notice the similarities between figure 1.2 and
1.5 and how both graphs follow the same pattern. If a model that accurately predicts the
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Figure 1.5: The number of customers sent to debt collection each month from January 2015 to
December 2018. Notice the red dots illustrating the July effect with a reduced number of debt
collection cases this month.

total number of impaired customers each month is made, it is a small leap to determine
the total balance sent to debt collection for each month. By simply multiplying with the
average balance an impaired customer owes, we produce predictions that are very close to
the actual balance sent to debt collection, as shown in figure 1.6. (The average balance sent
to debt collection chosen is simply the mean of means for each month and is not adjusted
for inflation. This is simply to illustrate the high accuracy of the predictions). The solid
line shows the actual balance sent to debt collection each month and the dashed line shows
the predicted balance sent to debt collection based on the number of customers sent for
each month multiplied by the average balance sent to debt collection. The main idea will
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Chapter 1. Introduction

be to evaluate a portfolio containing all customers for a given month and based on a trained
model on historic data, accurately predict how many in the portfolio will be impaired. We
will attempt to create a generalized linear mixed model that can accurately predict how
many customers will be sent to debt collection by looking at the current portfolio. A
generalized linear mixed model is a reasonable choice since the data is longitudinal as
shown in table 1.1. Hopefully, we may capture the random effects for each customer.
The response will be a binary one which means we will have a logit connection in our
model. The model will therefore be referred to as a mixed effects logistic regression
model. Furthermore, the model will be constructed in such a way that given this month’s
portfolio, the model predicts how many customers will be impaired three months into
the future. This is a reasonable justification as the debt collection process is roughly 66-
90 days as previously mentioned. A total of 12 mixed effects logistic regression models
will be made, one for each month of the year. We will use a variable selection method
that extends the well-known LASSO method to be applied to generalized linear mixed
models as well, in order to select the explanatory variables that should be included in the
mixed effects logistic regression model. For predictions further than three months ahead,
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Figure 1.6: The total balance sent to debt collection each month from January 2015 to December
2018 (solid line) with forecasts based on the number of impaired customers in the same time period.
The dashed line shows the predicted balance sent to debt collection based on the number of impaired
customers that month multiplied by the mean of balances over all months.
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1.5 Chosen Approach to the Problem

we will use various forecasting techniques to predict how the portfolio containing the
customers will look like in the future. If we can simulate a likely portfolio for the coming
months, we may use our model on these simulated portfolios to accurately predict how
many customers who will be impaired. In order to simulate a likely portfolio, we will
forecast the chosen explanatory variables for the coming months. This will be done in
different ways depending on the explanatory variable in question.
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Chapter 2
Theory

This chapter comprises the necessary theory and methods needed to be able to forecast
the total balance sent to debt collection each month for the year 2019. The first section
considers Generalized Linear Mixed Models, abbreviated as GLMMs. The theory includes
how one can estimate parameters for GLMMs and a way to perform variable selection.
The GLMM is also specified for a binary response with a logit connection to give what
we will refer to as the mixed effects logistic regression model. A section for diagnostic
checking of GLMMs is also included as well as how to perform classification with the
model. The second section deals with imbalanced data and presents different methods
to deal with this issue. The third section contains time series theory and presents most
notably an alternative way for modelling seasonality. Finally, the last section combines all
the different topics presented and outlines how to use them together in order to forecast
the total balance sent to debt collection.

2.1 Generalized Linear Mixed Models

Generalized Linear mixed models can be thought of as an extension of Generalized Linear
Models (GLMs) in the sense that it allows mixed effects in the model, or as an extension
of Linear Mixed Models (LMMs) as it allows the response to come from different distri-
butions. Consider first a study with N different individuals indexed as i = 1, . . . , N that
we gather data on over a time period. In a balanced study, each individual has the same
number of time measurements indexed as t = 1, . . . , T . In some cases though, the number
of measurements is not the same for each individual, t = 1, . . . , Ti. The data is therefore
longitudinal as repeated measurements are performed for each individual i. We assume
that the data is recorded with fixed intervals between each time measurement. The total
number of observations in the entire study will thus be

N∑
i=1

Ti.
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Chapter 2. Theory

By definition, longitudinal data is not independent and this dependency within individuals
must be accounted for when making statistical models (Hedeker and Gibbons, 2006, p. 2).
For each individual i, one records a total of p covariates such that xitk is the kth covariate
for individual i at time measurement t. Furthermore, the response for individual i at time
t is recorded as yit. An individual i can therefore have different responses at different
times. The data layout will then be as shown in table 2.1. We define the covariate vector

Table 2.1: Data layout of N individuals with repeated observations.

Individual Observation Covariates Response
1 1 x111 . . . x11p y11
1 2 x121 . . . x12p y12
...

...
...

...
1 T1 x1T11 . . . x1T1p y1T1

...
...

...
...

N 1 xN11 . . . xN1p yN1

N 2 xN21 . . . xN2p yN2

...
...

...
...

N TN xNTN1 . . . xNTNp yNTN

associated with the fixed effects for individual i at time t as x>it = (1, xit1, . . . , xitp).
We now introduce random effects v>i = (v0i, v1i, . . . , vqi) to our model as well. We
assume that the correlation between the measurements for individual i comes from sharing
unobserved variables. Therefore, there are random effects common to all responses for
a given individual that vary from one individual to another (Gad and Kholy, 2012). We
denote the kth unobserved variable for individual i at time t as zitk and define the covariate
vector associated with the random effects for individual i at time t as z>it = (zit1, . . . , zitq).
Furthermore, we assume the following:

• the responses Yit are conditionally independent given the random effects vi

• the conditional distributions f(yit|vi) are independent and comes from an exponen-
tial family,

f(yit|vi) = exp

{
yitθit − κ(θit)

φ
+ c(yit, φ)

}
,

where θit is the canonical parameter, φ is the dispersion parameter and κ(·) and c(·)
are known functions.

• the random effects v>i = (v0i, v1i, . . . , vqi) are independent and identically dis-
tributed, vi ∼ N(0,Σv) where Σv is a (q + 1)× (q + 1) covariance matrix (Groll
and Tutz, 2012).

Since the responses yit are conditionally independent given the random effects and are as-
sumed to be generated from a distribution in an exponential family, the conditional means
µit = E(yit|vi) are related to the linear predictor ηit = x>itβ + z>itvi through the link

14



2.1 Generalized Linear Mixed Models

function g such that g(µit) = ηit. Hence, a generalized linear mixed model will then have
the form

g(µit) = x>itβ + z>itvi. (2.1)

Equation (2.1) can be written in matrix form for each individual i by collecting all the
observations for each individual in a vector, which we will refer to as individual i’s cluster.
The GLMM for individual i’s cluster can then be written as

g(µi)︸ ︷︷ ︸
Ti×1

= Xi︸︷︷︸
Ti×(p+1)

β︸︷︷︸
(p+1)×1

+ Zi︸︷︷︸
Ti×(q+1)

vi︸︷︷︸
(q+1)×1

, (2.2)

where µi = (µi1, . . . , µiTi)
> is a Ti × 1 vector containing the conditional means, X>i =

(1>,xi1, . . . ,xiTi) is the Ti × (p + 1) design matrix of fixed effects for individual i,
β = (β0, β1, . . . , βp)

> is a vector containing the fixed effects parameters including the
intercept and Z>i = (1>, zi1, . . . ,ziTi) is the Ti × (q + 1) design matrix of random
effects for individual i. Hence, the model can be thought of as having two parts; the fixed
effects for individual i contained inXiβ and the random effects for individual i contained
in Zivi.

2.1.1 Estimation of Parameters for GLMMs
For a generalized linear mixed model, one must estimate both the fixed parameters β
and the parameters associated with the random effects, Σv . The most popular method is
through maximum likelihood estimation. Thus, we need to find the marginal distribution
of the Yits jointly. Recalling our assumptions, the contribution from observations for
individual i is

f(yi|β,Σv) =

∫
vi

f(yi|vi,β)f(vi|Σv)dvi

=

∫
vi

Ti∏
t=1

f(yit|vi,β)f(vi|Σv)dvi

where f(vi|Σv) denotes the density of the random effects assumed to be normally dis-
tributed. Since the clusters are independent of each other, the likelihood is then given
as

L(β,Σv) =

N∏
i=1

f(yi|β,Σv)

=

N∏
i=1

[∫
vi

Ti∏
t=1

f(yit|vi,β)f(vi|Σv)dvi

]
.

(2.3)

This likelihood function cannot be solved analytically, except for the special case when
we have a Linearized Mixed Model (LMM). Therefore, to estimate the parameters in the
GLMM, equation (2.3) must be solved with numerical methods.
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Chapter 2. Theory

There are many ways to estimate the likelihood for GLMMs. Some of the most com-
mon methods are; using a pseudo-quasilikelihood approach (see for instance Wolfinger
and Oconnell, 1993), penalized quasilikelihood (Breslow and Clayton, 1993) and Markov
chain Monte Carlo methods (see for instance Fan et al., 2008). We will use adaptive Gauss-
Hermite quadrature (Liu and Pierce, 1994). The adaptive Gauss-Hermite quadrature have
been found to be generally more accurate than penalized quasilikelihood methods, but
noticeably computationally slower (Bolker et al., 2009). The method is often used for nu-
merical integration in statistics to handle integrals on the very commonly occurring form∫ ∞

−∞
f(x)e−x

2

dx ≈
NAGQ∑
j=1

wjf(xj),

by approximating the integral as a sum over weighted function points. Here, NAGQ is
the number of adaptive quadrature points, xj are the abscissas determined as the roots of
the physicists’ version of Hermite polynomials Hj(·), j = 1, . . . , NAGQ and the xj’s are
symmetric around zero. The associated quadrature weights wj are given by

wj =
2NAGQ−1n!

√
π

n2[HNAGQ−1(xj)]2
.

For further details on the Gauss-Hermite quadrature, see for instance Davis and Rabi-
nowitz, 1975, ch. 2. Additional details on how to efficiently implement this method is
presented in Pinheiro and Chao, 2006.

2.1.2 A Random Intercept Model
The GLMM in eq. (2.1) can be simplified if the random effect term only consist of a
random intercept term, vi = v0i. The GLMM can then be simplified to

g(µit) = x>itβ + v0i, (2.4)

where v0i is normally distributed, v0i ∼ N(0, σ2
v). The subscript 0i is used to indicate that

the variable will affect the intercept for individual i. v0i can be thought of as the influence
of individual i based on the repeated observations. Notice that the random intercept is
constant across time. The random intercept model can be represented in a hierarchical
form as well. Assume that there are p + 1 fixed effects coefficients where β0 represents
the fixed effect intercept term. Thus, equation (2.4) can be partitioned into the following
within-individual model

g(µit) = b0i + b1ixit1 + . . .+ bpixitp (2.5)

and between-individuals model,

b0i = β0 + v0i

bki = βk for k = 1, . . . , p.
(2.6)

The within-individual model (2.5) suggest that individual i’s response at time t is deter-
mined by individual i’s initial level b0i and slopes bki for k = 1, . . . , p. The between-
individuals model (2.6) shows that each individual i has a distinct own initial level which
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2.1 Generalized Linear Mixed Models

consist of the population initial level β0 and an individual contribution v0i (Hedeker and
Gibbons, 2006, p. 49). This term will shift the intercept up or down depending on the in-
dividual. We will from now on assume that the random effects only consist of the random
intercept term v0i.

2.1.3 A Mixed Effects Logistic Regression Model
Consider a random intercept model of the form (2.4) and a binary response yit ∈ {0, 1}.
We assume that these responses are random variables given the random intercept terms
such that Yit|v0i ∼ Bernoulli(pit), where pit = P (Yit = 1) is the probability of individual
i belonging to class 1 at time t. Thus, we may write

Yit|v0i =

{
1 with probability pit
0 with probability 1− pit.

The link function that we will use for a binary response is the logit. Hence,
µit = E(Yit|v0i) = pit such that

g(µit) = log

(
pit

1− pit

)
. (2.7)

This connection arises from the cumulative distribution of a logistic(0,1) distribution. Note
that individual i may have response 0 at one time and response 1 at another time. Com-
bining (2.4) with (2.7) gives the mixed effects logistic regression model

log

(
pit

1− pit

)
= x>itβ + v0i. (2.8)

The ratio pit
1−pit is defined as the odds and is useful for interpreting how the fixed effect

coefficients affects the model. Re-writing (2.8), we get that

pit
1− pit

= exp(β0 + v0i) · exp(β1xit1) · · · · · exp(βpxitp).

Consider now a unit increase in the 1st covariate xit1 to xit1 + 1,

P (Yit = 1|xit1 + 1)

1− P (Yit = 1|xit1 + 1)
= exp(β0 + v0i) · exp(β1(xit1 + 1)) · · · · · exp(βpxitp)

= exp(β0 + v0i) · exp(β1xit1) · exp(β1) · · · · · exp(βpxitp)

=
P (Yit = 1|xit1)

1− P (Yit = 1|xit1)
· exp (β1).

Thus, a unit increase in a covariate will change the odds by a factor exp(βk). If βk > 0,
the odds will increase and vice versa if βk < 0. Solving (2.8) in terms of pit gives that the
probability of individual i belonging to class 1 at time t is

pit = P (Yit = 1) =
exp(x>itβ + v0i)

1 + exp(x>itβ + v0i)
. (2.9)
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Chapter 2. Theory

Alternatively, (2.9) can be re-written in the two-step formulation presented earlier such
that the within-individuals model is

pit =
exp(b0i + b1ixit1 + . . .+ bpixitp)

1 + exp(b0i + b1ixit1 + . . .+ bpixitp)
,

and the between-individual model is still

b0i = β0 + v0i

bki = βk for k = 1, . . . , p.

2.1.4 Estimation of Parameters for a Mixed Effects Logistic Regres-
sion Model

The probability mass function for a Bernoulli distribution can be written as

f(yit|v0i) = pyitit (1− pit)1−yit for yit ∈ {0, 1}.

The likelihood function for a generalized linear mixed model was found in (2.3). Using this
along with the Bernoulli distribution, the likelihood for a mixed effects logistic regression
model becomes

L(β,Σv) =

N∏
i=1

[∫
vi

Ti∏
t=1

(
pyitit (1− pit)1−yit

)
f(vi|Σv)dvi

]

=

N∏
i=1

[∫
vi

exp

(
ln

Ti∏
t=1

pyitit (1− pit)1−yit
)
f(vi|Σv)dvi

]

=

N∏
i=1

[∫
vi

exp

( Ti∑
t=1

yit ln(pit) + (1− yit) ln(1− pit)
)
f(vi|Σv)dvi

]
(2.10)

Notice that the parameters we want to estimate (β,Σv) are not ”visible” in (2.10) as
they lie within the probability pit = pit(β,Σv). As previously mentioned, this likelihood
cannot be computed analytically, and numerical approximations must be used to determine
the parameters.

2.1.5 A Method for Variable Selection
For each individual i, we have recorded p covariates xitk, k = 1, . . . , p at different time
measurements. Ideally, one would like to find a handful of explanatory variables that fit
the data well. GLMM models will have computational problems and is therefore usu-
ally restricted to a few variables. Too many explanatory variables may also give unstable
estimates (Bolker et al., 2009). In order to perform variable selection, we will use the well-
known LASSO method, which was first proposed by Tibshirani, 1996 for GLMs and is a
penalized regression technique that adds a L1 penalty term to perform variable selection.
This penalty term will shrink fixed effects coefficients towards zero and some will be set to

18
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exactly zero. The extension of the LASSO to GLMMs is presented. The general idea is to
maximize the log-likelihood function as usual for maximum likelihood estimation while at
the same time constraining the L1-norm on the fixed effects coefficients β to be less than
some constant s ≥ 0, such that

β̂ = argmax
β

l(β), subject to ||β||1 ≤ s (2.11)

where || · ||1 is the L1-norm, i.e. for the fixed effects coefficient parameter vector β

||β||1 =

p∑
i=1

|βi|

for p covariates. Alternatively, we can formulate (2.11) as

β̂ = argmax
β

(
l(β)− λ||β||1

)
(2.12)

where λ ≥ 0. The tuning parameters, s and λ must be determined, for example through
cross-validation. We need efficient algorithms to solve (2.11) and (2.12). Recall that a
generalized linear mixed model can be written as in (2.2). As previously mentioned, one
popular method that can be used to maximize the likelihood function for GLMMs is the
penalized quasi-likelihood (PQL). We will change the notation slightly from section 2.1.1.
Let the covariance matrix depend on some unknown parameter vector ρ, Σv = Σv(ρ).
We define Φ> = (φ,ρ>) where φ is the dispersion parameter and a parameter vector
δ> = (β>,v>) that contains both the fixed and random effects. The change in notation is
done since the likelihood is usually specified by Φ> and δ> for penalized-based concepts
(Breslow and Clayton, 1993). The log-likelihood is then found by taking the logarithm of
eq. (2.3)

l(δ,Φ) = log

( N∏
i=1

∫
vi

f(yi|δ,Φ)f(vi|Σv)dvi

)

=
N∑
i=1

log

(∫
vi

f(yi|δ,Φ)f(vi|Σv)dvi

)
An approximation to the log-likelihood

lapp(δ,Φ) =

N∑
i=1

log
(
f(yi|δ,Φ)

)
− 1

2
v>Σv(ρ)−1v (2.13)

was first derived by Breslow and Clayton, 1993. The term v>Σv(ρ)−1v stems from
Laplace’s method. We now introduce the penalty term to (2.13) to get the penalized log-
likelihood

lpen(δ,Φ) = lapp(δ,Φ)− λ||β||1

=

N∑
i=1

log
(
f(yi|δ,Φ)

)
− 1

2
v>Σv(ρ)−1v − λ||β||1
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Given Φ, this optimization problem becomes

δ̂ = argmax
δ

lpen(δ,Φ). (2.14)

A gradient ascent algorithm is proposed and implemented to solve (2.14) by Groll and
Tutz, 2012. In order to determine the optimal value of the tuning parameter λ, we will fit
models with different values of λs and compute the Bayesian Information Criterion (BIC)
(Schwarz, 1978) for each model. The BIC is a common criterion for model selection and
is defined as

BIC = k ln
( N∑
i=1

Ti

)
− 2 ln L̂(δ,Φ) (2.15)

where
∑N
i=1 Ti is the sample size, k the number of parameters estimated by the model

in total and L̂ is the estimated maximum value of the likelihood function. One of the
advantages of the BIC is that it penalizes complexity in the model, i.e. the number of
parameters in the model. Hence, we choose the value of λ for which the BIC is minimized
and investigate possible significant explanatory variables at the chosen λ value.

2.1.6 Diagnostics Checking
Diagnostic checking for generalized linear mixed models is not as straightforward as for
generalized linear models (Bolker et al., 2009). We will investigate the residuals and
parameters of the model as outlined in the following.

Residual Diagnostics

Residuals from a GLMM is not as easily interpretable as residuals from GLMs, since the
expected distribution of the data will change with the fitted values. For Pearson residuals
for instance, one reweights the residuals by dividing by the square root of the expected
variance, but the residuals will not be readily interpretable because the residuals will not
be visually homogeneous, even with a correctly specified model. Instead, we will create
interpretable residuals for the mixed effects logistic regression model that are scaled and
can be as easily interpreted as residuals from a linear model. This is a simulation-based
approach proposed by Hartig, 2019 and the procedure can be outlined as follows:

1. Simulate new data from the fitted mixed effects logistic regression model for each
individual i and corresponding observations t = 1, . . . , Ti.

2. For each value of t, compute the empirical cumulative density function F̂ for the
simulated observations, which describes the possible values (and their probability)
at the predictor combination of the observed value, assuming the fitted model is
correct.

3. Define the residual as the value of the empirical cumulative density function F̂ at the
value of the observed data. For instance, if the residual is 0, then all the simulated
values are larger than the observed value, while a residual of 0.5 means half of the
simulated values are larger than the observed value.
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A model that is specified correctly will have observed data that look as if created from the
fitted model. Hence, all residuals should appear with equal probability, and the expected
distribution of the residuals will be uniform between 0 and 1. For further details, see Dunn
and Smyth, 1996; Hartig, 2019.

Parameter Diagnostics

Furthermore, we wish to perform diagnostics on the parameters (β, σv) in the mixed ef-
fects logistic regression model. The best method used to test single parameters is through
bootstrapping as we avoid the asymptotic assumptions of the likelihood ratio test (Bates
et al., 2015). Bootstrapping becomes slightly more complicated when dealing with mod-
els that have mixed effects as the response variable must be generated in two steps. The
non-parametric bootstrapping is performed in the following manner:

1. Fit the mixed effects logistic regression model (2.8) to the data and find the estimated
parameters (β̂, σv) by solving (2.10).

2. Sample the random intercept terms v∗0i from v̂0i with replacement for i = 1, . . . , N .

3. Compute p∗i = p∗i (β̂, σv) from equation (2.9) for i = 1, . . . , N and t = 1, . . . , Ti,
where p∗i = (p∗i1, . . . , p

∗
iTi

).

4. Generate bootstrapped responses Y ∗it ∼ Bernoulli(p∗it) for i = 1, . . . , N and t =
1, . . . , Ti.

5. Fit the mixed effects logistic regression model (2.8) to the bootstraped data to obtain
the bootstrapped estimates (β̂∗, Σ̂∗

v).

6. Repeat steps 2 - 5 B times where B is sufficiently large.

2.1.7 Classification with a Mixed Effects Logistic Regression Model
The mixed effects logistic regression model can be used for classification to determine if
individual i at time t should belong to class 0 or 1. Consider the problem of classifying
the total number of individuals that belong to class 1 in a group consisting of N individ-
uals. Note that this should not be confused with the more common problem of correctly
classifying the class an individual i belongs to. From (2.9), we estimate a probability,
p̂it ∈ (0, 1). The classification will be such that

ŷit =

{
1 if p̂it > α̂,

0 otherwise.
(2.16)

where α̂ ∈ (0, 1) is a threshold value. For our purposes, we are only interested that the total
number of individuals that are classified as belonging to class 1 agrees with the training
set (see table 2.2). Therefore, we choose the optimal α̂ that minimizes

α̂ = argmin
α

N∑
i=1

[∣∣I(pit > α)− I(yit = 1)
∣∣] (2.17)

where I is an indicator function. Several algorithms solve this optimization problem.
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2.2 Handling Imbalanced Data
This section comprises issues that arise from having imbalanced data and methods that can
be used to handle these issues. A skewed or imbalanced data set is one where the number
of observations from one response class far exceeds the others. Consider still a data set
with a binary response, yit ∈ {0, 1}. The data set will then be highly imbalanced if for
instance 99% of the observations belong to class 0 and only 1% belong to class 1. Class 0
is then referred to as the majority class and class 1 the minority class. Consider a mixed
effects logistic regression model trained on such a data set. The result is that the model
will almost always classify every instance as belonging to class 0. Moreover, the model
will receive a very high accuracy since 99% of instances will be classified correctly. There
are several techniques developed to work around this problem, many of which involve
making the data less skewed. It should be noted that most imbalanced data problems deal
with improving either the sensitivity or specificity. This usually involves using a different

Table 2.2: A contingency table for a binary classifier

Class positive Class negative
Assigned positive True Positives (TP) False Positives (FP)
Assigned negative False Negatives (FN) True Negatives (TN)

performance metric than accuracy for the model. However, for our purposes, we are not
interested in False Positives (FP) and False Negatives (FN) and only concern us that the
total number of true positives (TP) are correct (see table 2.2).

2.2.1 Random Undersampling
Random undersampling can be used to adjust the class distribution in a data set if the
data set is imbalanced. Let 0 be the majority class and let 1 be the minority class. To
undersample means reducing the number of observations from the majority class such that
the data set becomes less imbalanced. In random undersampling, we randomly remove
some of the samples from the majority class. For longitudinal data, this means that we
remove all observations for an individual i, i.e. individual i’s cluster. A question that
arises is how one can determine the right number of clusters from the majority class that
should be removed. For instance, we can remove individuals until the training set is evenly
balanced with half of the observations being from the majority class and the other half from
the minority class. However, an undersample ratio r that is too balanced will reduce the
size of the training set as there are not that many instances from the minority class 1. This
may lead to other issues. On the other hand, if the undersample ratio is too low, the model
will still classify all instances as belonging to the majority class. We will solve this issue
by computing the Residual Sum of Squares (RSS) for different undersampling ratios. Let
Λ(yit, ŷit) be the 0-1 loss function at time t such that

Λ(yit, ŷit) = I
(
p̂it > α̂

)
− I
(
yit = 1

)
= I(yit 6= ŷit),

where ŷit is given from (2.16) and α̂ from (2.17). Consider now the problem of correctly
specifying the number of True Positives (TP) of the minority class in a data set. The RSS
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2.2 Handling Imbalanced Data

will then be
RSS(r) =

∑
i

Λ(yit, ŷit)
2(r). (2.18)

The r in parenthesis is included to indicate that the RSS will depend on the undersampling
ratio. Hence, we will choose the undersampling ratio that minimizes

r = argmin
r

RSS(r). (2.19)

2.2.2 Adjusting the Outputs of a Classifier

Consider again a highly imbalanced data set and the classic binary classification problem
where 0 is the majority class and 1 is the minority class. Assume that we have performed
random undersampling in order to create a training set that is not as imbalanced as the full
data set. Assume further that a mixed effects logistic regression model is trained based on
this training set. Applying this model for classification on the full data set may provide
sub-optimal results since the model relies on the prior probabilities of belonging to class
0 and 1 in the training set. These prior probabilities may be completely different than the
prior probabilities of belonging to class 0 and 1 in the full data set. Since the ratio between
the two classes are different in the full data set and the training set, we should adjust the
outputs to account for this since the prior class probabilities have changed from the train-
ing set to the full data set.

Saerens et al., 2002 proposed a method to improve classification accuracy by adjust-
ing the outputs of a classifier to new prior probabilities. The classifications are based
on a collection of observations vectors in a training set at time t, which we denote as
X>t = (x1t, . . . ,xNt). Note that Xi should not be confused with Xt. Xi contains
the covariates recorded for individual i at all time measurements, while Xt contains all
recorded covariates at time t for all individuals. Let pτ (1t) denote the prior probability of
belonging to class 1, the minority class, in the training set at time t where the subscript τ
indicates that the probability is based on the training set. We can estimate this probability
as

p̂τ (1t) =
N

(1t)
τ

Nτ
,

where N (1t)
τ =

∑Nτ
i=1 I(yit = 1)τ is the sum of observations where yit = 1 in the training

set at time t and Nτ is the total number of observations at time t. We estimate pτ (0t)
similarly. Depending on the undersampling, we can set this to a fixed probability. We
suppose that for the two classes 0 and 1, the total number of training examples are inde-
pendently recorded according to the within-class probability densities, p(Xt|1t). Suppose
now a classification model is trained and gives an estimated posterior probability of be-
longing to class 1, p̂τ (1t|Xt). Assume now that we wish to use the mixed effects logistic
regression model that is trained on a training set to classify on a real-life data set where
the prior probabilities p(0t), p(1t) are very different from the trained prior probabilities
pτ (0t), pτ (1t). In order to use this model on the real life data set, the posterior proba-
bilities must be adjusted accordingly. Assume first that p(1t) is known, i.e. a supervised
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learning case. We will later discuss how to handle situations where p(1t) is unknown, an
unsupervised learning case.

Prior Probability Known

In the following we assume that the within-class probability densities do not change for
the training set and the new data set, p(Xt|kt) = pτ (Xt|kt), kt ∈ {0, 1} and that we have
estimates of the prior probabilities p̂(1t), p̂(1t). Note that only the proportion between
positive and negative responses is altered. From Bayes’ theorem, we find that the within-
class probability density is

p̂τ (Xt|1t) =
p̂τ (1t|Xt)p̂τ (Xt)

p̂τ (1t)
. (2.20)

Similarly, for the full data set, we get (without the subscript τ )

p̂(Xt|1t) =
p̂(1t|Xt)p̂(Xt)

p̂(1t)
. (2.21)

Using our assumption, setting (2.20) equal to (2.21), defining f(Xt) = p̂τ (Xt)/p̂(Xt)
and solving for p̂(1t|Xt) gives

p̂(1t|Xt) = f(Xt) ·
p̂(1t)

p̂τ (1t)
· p̂τ (1t|Xt)

Since p̂(0t|Xt) + p̂(1t|Xt) = 1, we obtain that

f(Xt) =

[
p̂(0t)

p̂τ (0t)
p̂τ (0t|Xt) +

p̂(1t)

p̂τ (1t)
p̂τ (1t|Xt)

]−1
Hence, the corrected posterior probability of belonging to class 1 is given by

p̂(1t|Xt) =

p̂(1t)
p̂τ (1t)

p̂(0t)
p̂τ (0t)

p̂τ (0t|Xt) + p̂(1t)
p̂τ (1t)

p̂τ (1t|Xt)
· p̂τ (1t|Xt) (2.22)

Notice that the probability p̂(1t|Xt) is proportional to p̂τ (1t|Xt). The posterior prob-
ability can be thought of as adjusted by a calibration factor to account for the different
proportion between classes in the full data set and the training set, although it should be
noted that the calibration factor is not a constant since the prior probability of belonging
to class 1 based on the training set p̂τ (1t|Xt) is different for each individual i.

Prior Probability Unknown

When the prior probability p̂(1t) is unknown, we are unable to use equation (2.22) directly
to correct the posterior probability. This will be the case when we forecast for t = T+h for
h = 1, 2, . . .. Instead, we will forecast p̂(1T+h) using time series analysis for h = 1, 2, . . .
as presented in section 2.3.
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2.3 A Non-stationary Time Series
A time series is a sequence of observations γt taken sequentially in time t. Denote the
unknown prior probability of belonging to class 1 as γt = p̂(1t). We define a time series
{γt} as weakly stationary (Brockwell and Davis, 2002, p. 15) if

• the mean E(γt) is independent of t

• the covariance function Cov(γt+h, γt) is independent of t for each lag h.

Suppose now rather that {γt} is an observed, mean-corrected time series that appears to
have a time-dependent trend so that the mean E(γt) depends on t and the covariance func-
tion Cov(γt+h, γt) is time-dependent for each lag h. Such a time series is non-stationary
and can be modeled as an Autoregressive Integrated Moving Average process, abbreviated
as an ARIMA process. We introduce the difference operator ∇ = 1 − B where B is the
backward shift operator, Bjγt = γt−j for j = 0,±1, . . . The difference operator can be
applied d times such that ∇d = (1 − B)d. Applying the difference operator on our time
series {γt} d times

∇dγt = (1−B)dγt = wt (2.23)

gives a new stationary time series wt that we can model as an ARMA process

φ(B)wt = θ(B)εt, {εt}
i.i.d∼ WN(0, σ2), (2.24)

where φ(B) = 1−φ1B− . . .−φpBp is the autoregressive operator (AR) and θ(B) = 1+
θ1B+. . .+θqB

q is the moving average (MA) operator. The integers p and q will therefore
determine the order of the AR and MA operator polynomials, respectively. Combining
(2.23) and (2.24) gives the ARIMA-process

φ(B)(1−B)dγt = θ(B)εt. (2.25)

Equation (2.25) can be written with all terms as

∇dγt − φ1∇dγt−1 − . . .− φp∇dγt−p = εt + θ1εt−1 + . . .+ θqεt−q.

Thus, for an observed time series with T observations, we wish to determine the parame-
ters in an ARIMA model that best fit our observed values. Furthermore, if the time series
exhibits seasonal trends, which is common for monthly data, the time series can be mod-
elled as a Seasonal ARIMA model, abbreviated as SARIMA. However, we will propose a
different approach for modelling seasonality as described in section 2.3.2.

2.3.1 Identification and Estimation of Parameters
Identification methods are procedures applied to a time series in order to determine a
model appropriate for further investigation (Box et al., 1994, p. 183). The first step is to
determine suitable values for d and p, q. The value d is determined by differencing the
time series until it is sufficiently (weakly) stationary. In many cases, if the time series
has a linear trend, d = 1. The values p and q are often determined by investigating the
sample partial autocorrelation function plot (PACF) and sample autocorrelation function
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plot (ACF) of the differenced time series, respectively. However, we will mainly rely
on the small-sample-size Akaike Information Criterion, AICC (Hurvich and Tsai, 1989),
which measures the goodness of fit for a model, to determine p and q. When the number
of observations T is small the more well-known AIC may overfit by choosing too many
parameters. Hence, the AICC is preferred. We thus choose the values of p and q that
minimize AICC(φ̂, θ̂)

AICC(φ, θ) = −2 lnL(φ, θ, S(φ, θ)/T ) +
2(p+ q + 1)T

T − p− q − 2
, (2.26)

where L and S are defined in (2.27) and (2.28), respectively. For further details regarding
the AICC, see for instance Brockwell and Davis, 2002, p. 171-174). Estimation of the
parameters of our model φ = (φ1, . . . , φp), θ = (θ1, . . . , θq) and σ2 are based on the
likelihood principle. Assume {γt} is a mean-corrected, stationary, Gaussian time series,
such that E(γt) = 0. Furthermore, let γT = (γ1, . . . , γT )> and γ̂T = (γ̂1, . . . , γ̂T )>,
where γ̂1 = 0 and γ̂j = Ê(γj |γ1, . . . , γj−1), j ≥ 2. We use Ê(γj |γ1, . . . , γj−1) to denote
the best linear predictor combination for γj in terms of γ1, . . . , γj−1. It can then be shown
that the likelihood function can be written as

L(φ, θ, σ2) =
1√

(2πσ2)T r0 . . . rn−1
exp

{
− 1

2σ2

T∑
j=1

(γj − γ̂j)2

rj−1

}
, (2.27)

where rj = E(γj+1 − γ̂j+1)2
/
σ2 for j = 0, . . . , T − 1. A more comprehensive ex-

planation can be found in for instance Brockwell and Davis, 2002, p. 158-160. Taking
the natural logarithm of (2.27), differentiating with respect to σ2 and setting ∂l(φ,θ,σ2)

∂σ2 =
∂ lnL(φ,θ,σ2)

∂σ2 = 0 gives the maximum likelihood estimation for σ2,

σ̂2 =
1

T
S(φ̂, θ̂),

where

S(φ̂, θ̂) =
T∑
j=1

(γj − γ̂j)2

rj−1
. (2.28)

Furthermore, we determine values φ̂, θ̂ that minimize l(φ, θ)

l(φ, θ) = ln

(
1

T
S(φ, θ)

)
+

1

T

T∑
j=1

ln rj−1. (2.29)

2.3.2 An Alternative Approach for Modelling Seasonality
As mentioned, a time series may exhibit seasonal trends as well, in which case the time
series can be modelled as a seasonal ARIMA process. This is particularly common for
monthly data. However, in situations with few observations T , differencing the time series
multiple times can reduce the length of the time series greatly, especially if a seasonal
operator is applied as well. An alternative approach is proposed where the seasonal effects
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are treated as known reoccurring outliers. We will only focus on additive outliers, i.e. out-
liers that does not affect subsequent observations. This seems like a justifiable assumption
for the time series we will analyze. Suppose {γt} is our observed, mean-corrected time
series with T observations. We define ϕ(B) = φ(B)(1 − B)d such that (2.25) can be
formulated as

γt =
θ(B)

ϕ(B)
εt (2.30)

First, assume the time series has only one known outlier at a known time t = t∗ of magni-
tude ω. The time series can then be modelled as

γt = ωI
(t∗)
t +

θ(B)

ϕ(B)
εt, where I(t

∗)
t =

{
1 if t = t∗,

0 if t 6= t∗.
(2.31)

The added indicator term will now shift the time series at time t = t∗ with a magnitude ω
to account for the additive outlier. However, the new parameter ω added to the model must
now be estimated as well. We first define π(B) = θ−1(B)ϕ(B) = 1−

∑∞
i=1 πiB

i, where
we have assumed that the moving average operator is invertible, i.e. the roots of θ(z) = 0
lies outside the unit circle, (Box et al., 1994, p. 69). Further, we multiply (2.31) with π(B)
to obtain

π(B)γt = ωπ(B)I
(t∗)
t + εt (2.32)

Defining et = π(B)γt for t = 1, . . . , T and

π(B)I
(t∗)
t = ξ1t =

{
0 for t < t∗

−πt−T for t ≥ t∗

with π0 = −1, we end up with a linear regression equation of (2.32)

et = ωξ1t + εt for t = 1, . . . , T, (2.33)

where ω now serves as the coefficient in the linear regression equation. Since θ(B)π(B) =
φ(B)(1 − B)d, the coefficients π1, π2, . . . are determined (assuming for simplicity that
d = 1) recursively by

πk = φk−1 − φk + θk −
k−1∑
i=1

πiθk−i for k > 0. (2.34)

To determine an estimate for ω, we use the least squares principle on (2.33) by minimizing

min
ω
ε2t = min

ω
(et − ωξ1t)2.

Differentiating with respect to w and setting the derivative equal to zero yields

ω̂ =
et∗ −

∑T−t∗
t=1 πtet∗+t∑T−t∗
t=0 π2

t

=
π∗(F )et∗

τ2
, (2.35)

where π∗(F ) = 1−π1F−π2F 2−. . .−πTt∗FT−t
∗
, F is the forward shift operator, F jet =

et+j , j = 0,±1, . . . and τ2 =
∑T−t∗
t=0 π2

t . We see from (2.35) that the information about
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an additive outlier t∗ is spread over the proceeding ”residuals” et∗ , et∗+1, et∗+2, . . . with
generally decreasing weights 1,−π1,−π2, . . ., (Box et al., 1994, p. 469-471). Suppose
now that the model contains k seasonal additive outliers at known time points t∗1, t

∗
2, . . . , t

∗
k

with associated weights ω1, ω2, . . . , ωk where t∗j+1 − t∗j = s for j = 1, . . . , k − 1 and s
is the seasonal period between each outlier. For instance, for monthly data the seasonal
period will be s = 12. The time series can then be modelled as

γt =

k∑
j=1

ωjI
(t∗j )

t +
θ(B)

ϕ(B)
εt. (2.36)

Similarly, as (2.33) we get

et =

k∑
j=1

ωjξjt + εt for t = 1, . . . , T. (2.37)

When there are multiple outliers, however, the estimate ofw in (2.35) may become a biased
estimate for the outlier at time t = t∗ due to the other outliers (Chen and Liu, 1993). We
will therefore use an iterative approach to handle the multiple outliers issue based on the
work by Chen and Liu, 1993. However, we will do some adjustments as we assume that
the additive outliers whereabouts are known and reoccurring.

2.3.3 Estimation of Multiple Known Additive Outlier Weights
Suppose now that the time series has k seasonal additive outliers t∗1, t

∗
2, . . . , t

∗
k and that p

and q are determined based on the AICC statistic (2.26). Let ε > 0 be a predetermined,
constant tolerance chosen by the user as a way to control the accuracy of the parameter
estimates. The iterative approach is outlined in the following.

1. Use maximum likelihood estimation (2.27) to estimate φ̂(0)1 , . . . , φ̂
(0)
p , θ̂

(0)
1 , . . . , θ̂

(0)
q

based on the original time series.

2. Use (2.34) to compute the πk’s so that these can be used to determine et = π(B)γt
for t = 1, . . . , T .

3. Perform multiple linear regression on (2.37) to estimate ω̂(0)
1 , . . . , ω̂

(0)
k , where {et}

is the output variable and {ξjt} are the input variables.

4. Obtain the adjusted time series

γ̃t =

{
γt if t 6= t∗1, . . . , t

∗
k,

γt + ω̂
(0)
j if t = t∗1, . . . , t

∗
k.

by removing the outlier effects.

5. Estimate new parameters φ̂(1)1 , . . . , φ̂
(1)
p , θ̂

(1)
1 , . . . , θ̂

(1)
q from (2.27) based on the ad-

justed series γ̃t. Use the new parameters and (2.34) to find adjusted residuals ẽt for
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t = 1, . . . , T . If the relative change of the residual standard error

δet =

√∑T
t=1(ẽt − et)2∑n

t=1 e
2
t

is greater than the tolerance ε > 0, set et ← ẽt and go to step 3 again. If δet < ε,
the procedure is stopped and the latest values ω̂(m)

1 , . . . , ω̂
(m)
k from step 3 are the

estimated weights.

2.3.4 Forecasting
Let {γt} still be a non-stationary time series consisting of T observations. Suppose we
wish to predict further observations, γT+1, γT+2, . . .. The best linear prediction for h
time steps ahead is the conditional expectation γ̂T+h = Ê(γT+h|γT , . . . , γ1) for h =
0, 1, 2, . . . with γ1 = γ̂1. Furthermore, Ê(εT+h|γT , . . . , γ1) = 0 and Ê(εt|γT , . . . , γ1) =
γt − γ̂t for t = 1, . . . , T . Writing out the terms in (2.30) and realizing that ϕ(B) =
φ(B)(1−B)d = 1−ϕ1B− . . .−ϕp+dBp+d is a polynomial of order p+ d, we find that

γT+h = ϕ1γT+h−1+. . .+ϕp+dγT+h−(p+d)+εT+h+θ1εT+h−1+. . .+θqεT+h−q (2.38)

where the coefficients ϕ,1 , . . . , ϕp+d are determined recursively. Taking the conditional
expectation on both sides of (2.38) gives (Box et al., 1994, p. 131-137)

γ̂T+h =

p+d∑
j=1

ϕjÊ(γT+h−j |γT , . . . , γ1) +

q∑
j=1

θjÊ(εT+h−j |γT , . . . , γ1)

=

p+d∑
j=1

ϕj γ̂T+h−j +

q∑
j=h

θj(γT+h−j − γ̂T+h−j) for h = 0,±1,±2, . . . .

(2.39)

Notice that (2.39) is a recursive formula, where we use γ̂T+1 to predict γ̂T+2 and so on.
When h is such that at T +h = t∗ is a known additive outlier, we add an estimated weight
ω̂k+1. Hence,

γ̂T+h =

{∑p+d
j=1 ϕj γ̂T+h−j +

∑q
j=h θj(γT+h−j − γ̂T+h−j) for T + h 6= t∗∑p+d

j=1 ϕj γ̂T+h−j +
∑q
j=h θj(γT+h−j − γ̂T+h−j) + ω̂k+1 for T + h = t∗

(2.40)

The mean of the previous k estimated weights is used in order to estimate the next weight
ω̂k+1,

ω̂k+1 =
1

k

k∑
j=1

ω̂j . (2.41)

2.3.5 Diagnostic Checking

Assume (φ̂, θ̂) have been determined through maximum likelihood estimation (2.27). We
define the residuals as

ε̂t = θ̂−1(B)φ̂(B)wt
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where wt is defined in (2.23). The residuals may be computed recursively as

ε̂t = yt −
p∑
j=1

φ̂jyt−j −
q∑
j=1

θ̂j ε̂t−j for t = 1, 2, . . . , T.

In our analysis, we will investigate the sample autocorrelation function of the residuals to
determine if the residuals are correlated. Additionally, we will determine if the residuals
are identically and independently distributed with mean 0 and variance σ̂2 (Box et al.,
1994, p. 312).

2.4 Forecasting with the Mixed Effects Logistic Regres-
sion Model

This section outlines the procedure for how one can forecast with the mixed effects logis-
tic regression model by combining the theory presented thus far. Assume a mixed effects
logistic regression model is created based on a training set where we have performed ran-
dom undersampling and that estimated parameters of the model have been determined.
In order to forecast with the mixed effects logistic regression model, the covariates xitk,
determined by variable selection, must be forecasted as well.

Let the covariates xitk be known up to time t = 1, . . . , T for all individuals i. We know
wish to forecast the covariates xi(T+h)k for h = 1, 2, . . .. The explanatory variables will
be forecasted in different ways depending on the type of variable. Consider a categori-
cal explanatory variable that can only take a finite number of values. Let this be the kth
covariate such that for individual i at time measurement t, we may treat this as a random
variableXitk. Furthermore, assume thatXitk has the Markov property, i.e. the conditional
probability of a future state only depends on the current state, and not those preceding it.
For categorical variables, this means that the probability thatXi(T+h)k is in a state x given
previous states is given by

P (Xi(T+h)k = x|Xi1k = x1, Xi2k = x2, . . . , Xi(T+h−1)k = xT+h−1) =

P (Xi(T+h)k = x|Xi(T+h−1)k = xT+h−1) for h = 1, 2, . . .

Consider now the kth covariate for individual i at time T + h. Assume it is only possible
to move up one state, down one state or remain in the same state. If for instance individual
i is at state j at time T + h − 1, he or she can only be in either state {j − 1, j, j + 1} at
time T + h. Assume we want to find the probability that individual i is in state j + 1 at
time T + h given that individual i was at state j at time T + h − 1. We can estimate this
probability based on historical data and find the proportion of customers that went from
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state j to j + 1 as

P̂ (Xi(T+h)k = j + 1|Xi(T+h−1)k = j) =∑
i

I
(
Xi(T+h−1)k = j,Xi(T+h)k = j + 1

)
∑

s={j−1,j,j+1}

(∑
i

I
(
Xi(T+h−1)k = j,Xi(T+h)k = s

))
(2.42)

In other words, we count the individuals that transitioned from state j to j+1 and divide by
the number of individuals that transitioned from state j to one of the states, {j−1, j, j+1}.
Other transition state probabilities are estimated similarly.

Consider a different covariate xitk′ with the Markov property that can still be in a finite
number of M states labelled 1, . . . ,M , but assume now that it is possible to move from a
state j at time T + h− 1 to any other state m ∈ {1, . . . ,M} at time T + h. The estimated
probability of moving to state m at time T + h given state j at time T + h− 1 is then

P̂ (Xi(T+h)k′ = m|Xi(T+h−1)k′ = j) =∑
i

I
(
Xi(T+h−1)k′ = j,Xi(T+h)k′ = m

)
M∑
l=1

(∑
i

I
(
Xi(T+h−1)k′ = j,Xi(T+h)k′ = l

))
(2.43)

Furthermore, the unknown prior probabilities γT+h = P̂ (Yi(T+h) = 1) are estimated
using time series analysis as described in section 2.3. Denote the last recorded time mea-
surement as T and assume we want to predict for further months T + h for h = 1, 2, . . ..

pi(T+h) =
exp(x>i(T+h)β + v0i)

1 + exp(x>i(T+h)β + v0i)
for i = 1, . . . , N.

where the covariates xi(T+h) have been forecasted properly depending on the type of ex-
planatory variable. For an unobserved individual i, we set v0i = 0. Once the probabilities
pi(T+h) are calculated they are adjusted according to eq. (2.22) to give the adjusted proba-
bilities p̃i(T+h), which we mark by ∼. α̂ is estimated from eq. (2.17). Finally, the number
of individuals with probabilities larger than α̂ is counted. Let ST+h be the total number of
individuals greater than the threshold value α̂ at time T + h where α is determined from
(2.17). Then the estimated number of True Positives (TP) will be

ST+h =

N∑
i=1

I(p̃i(T+h) > α̂), (2.44)

for h = 1, 2, . . .. Consider now the problem introduced in chapter 1 of predicting the total
balance sent to debt collection BT+h at time T +h. The total number of customers sent to
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debt collection at time T + h will then be ST+h given by equation (2.44) such that BT+h

is
BT+h = Ā · ST+h for h = 1, . . . , 12,

where Ā is the average amount an impaired customer owes based on the entire time period.
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Chapter 3
Analysis of Results

This chapter presents, explains and analyses the results that were obtained by applying the
models and techniques presented in chapter 2 on the data set provided by SpareBank 1
Kredittkort AS. The first section gives a detailed description of how the data was prepro-
cessed before the methods presented were applied. The second section analyzes the mixed
effects logistic regression model. This includes variable selection, handling of imbalanced
data, parameter estimation and diagnostic checking of the model. The third section com-
prises the time series analysis necessary to forecast the prior probability of belonging to
the minority class 1. Finally, the last section fits the model to the year 2018 and forecasts
the total balance sent to debt collection for the year 2019 by combining the results found
in the other sections.

All modelling and computation were done using the program R (R Core Team, 2018).

3.1 Data Preprocessing
The data was processed in many ways before the mixed effects logistic regression model
was created. This included handling the imbalance in the data and creating a training and
test set. First, the data set was made less skewed by removing some of the customers.
Each customer is automatically placed in one of 9 different segments based on how much
they use their credit card and if they pay their credit card bills on time and so on. The
different segments are shown in table 3.1. Note that a customer can also change segment if
their behavioral pattern changes. The second column shows the percentage of customers
that fall into the segment and the third column shows the percentage of customers that
are sent to debt collection that is from the given segment. Customers that fall into the
segment Not active in last 6 months (∼ 5%) are customers that have not yet
activated or used their cards. The segment Active in last 6 months (∼ 6%) are
customers that have been issued a credit card less than 6 months ago and have just started
to use their card. Transactors (∼ 18%) use their credit cards frequently, but always
pay the balance due each month. Revolvers (∼ 15%) use their cards frequently and
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Table 3.1: The different customer segments according to the variable Segment9Name.

Segment9Name %customers %customers sent to debt collection
Not active in last 6 months ∼ 5% < 0.1%
Active in last 6 months ∼ 6% ∼ 9.1%
Transactor ∼ 18% < 1%
Revolver ∼ 15% ∼ 48.1%
Occasional revolver ∼ 25% ∼ 32.5%
Revolve only ∼ 1% ∼ 8.8%
Last active 4-6 months ago ∼ 4% < 0.1%
Last active 7-12 months ago ∼ 5% < 0.1%
Not active in last 12 months ∼ 20% < 0.1%

revolve their balance while Occasional revolvers (∼ 25%) occasionally revolve.
Roughly ∼ 1% of customers Revolve only. Customers that fall into the segments
Last active 4-6 months ago and Last active 7-12 months ago have
not been active in the last 4-6 months and 7-12 months, respectively. Finally, customers
in the segment Not active in last 12 months have not used their credit card
for over a year. Most impaired customers are either revolvers, occasional revolvers or
only revolvers as shown in the third column in table 3.1. In addition, roughly 9% of im-
paired customers fall into the segment Active in last 6 months, which means
that their credit card are less than 6 months old. These customers represent those that
maybe should not have been issued a credit card in the first place. There are also a few
impaired customers that fall into some of the other segments, although this should techni-
cally not be possible. This can be thought of as errors in the data set. Customers that fell
in the segments Not active in last 12 mths, Last active 7-12 mths
ago, Last active 4-6 mths ago, Not active last 6 mths and Trans-
actor were all excluded from the training set (with the exception of the few customers
that were sent to debt collection and fell in one of the said groups). It is no need for the
model to train on customers that will never be sent to debt collection. Removing roughly
52% of the customer base made the data set less skewed.

Furthermore, the data contains, for most customers, 15 observations recorded in the time
period July 2017 to September 2018. As previously noted, the response for individual i in
July 2017 is whether the individual was sent to debt collection in October 2017, i.e. three
months ahead. This is the case for each observation with the response being whether the
customer was sent to debt collection three months ahead. The last observation for Septem-
ber 2018 will therefore tell whether a customer was impaired in December 2018. This is
further illustrated in table 3.2, which shows a preprocessed training set. Note that the vari-
ables will be scaled as well before constructing the model. Some examples of customers
are included as well. The customer with BK ACCOUNT ID 228 is a Revolver, but is not
sent to debt collection. The customer with BK ACCOUNT ID 4046 is an Occasional
revolver and is impaired in December 2018. This is shown in the observation for
September 2018. Finally, BK ACCOUNT ID 1524527 is a new customer and falls into
the segment Active in last 6 months. A mixed effects logistic regression model
was made for each month in year 2018, using three observations. For instance, the model

34



3.1 Data Preprocessing

Table 3.2: Illustration of a preprocessed training set for predicting the number of impaired customers
in December 2018.

BK ACCOUNT ID YearMonth . . . CustomerAge GENDER NAME . . .
SUM of Payment-
OverDueFlag

. . . DCA0YearMonth DCA0Ind BalanceSent

228 201807 . . . 39 Male . . . 0 . . . NA 0 0.00
228 201808 . . . 39 Male . . . 0 . . . NA 0 0.00
228 201809 . . . 39 Male . . . 0 . . . NA 0 0.00... ... ... ... ... ... ... ... ... ... ...
4046 201807 . . . 25 Male . . . 2 . . . NA 0 0.00
4046 201808 . . . 25 Male . . . 2 . . . NA 0 0.00
4046 201809 . . . 25 Male . . . 2 . . . 201812 1 881.03... ... ... ... ... ... ... ... ... ... ...

1524527 201807 . . . 43 Male . . . 0 . . . NA 0 0.00
1524527 201808 . . . 43 Male . . . 0 . . . NA 0 0.00
1524527 201809 . . . 43 Male . . . 0 . . . NA 0 0.00

predicting the number of impaired customers in January 2018 will use the observations
from August 2017, September 2017 and October 2018, since the observations for October
2018 shows if a customer was sent to debt collection in January 2018. Thus, the training
set contained three time measurements for each customer.

Furthermore, all explanatory variables were also scaled accordingly as some of the vari-
ables were on very different scales. The explanatory variables that had a natural lower
and upper bound were scaled between 0 and 1. This was the case for variables such as
CustomerAge and MonthsSinceAccountCreated. Other explanatory variables
were scaled to have mean 0 and variance 1, if the variable could take on both negative
and positive values. Alternatively, all explanatory variables could have been chosen to be
scaled between 0 and 1, but this would possibly diminish the interpretation of the fixed
effects coefficients β. Once, the preprocessing was complete, the explanatory variables
most suited (section 3.2.1) according to our data could be determined and used to create
the mixed effects logistic regression model (section 3.2.3).
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3.2 Mixed Effects Logistic Regression Model Analysis

3.2.1 Determination of Explanatory Variables

YearMonth

SUM_of_CollectionAdviceFlag

Score

SUM_of_CreditLimitIncreaseFlag
SUM_of_CreditLimitDecreaseFlag

SUM_of_PaymentOverDueFlag

0.0

0.5

1.0

0 15 50 100 150 200
λ

β j^

Figure 3.1: Fixed-effects coefficients estimates
versus the penalty parameter λ for the month of
May. The vertical dotted line shows the optimal
value for λ. Note that not all possible explanatory
variables are included as there would be far too
many lines. The figure is mainly meant to illus-
trate the variable selection method process.

The package glmmLasso was used to
perform variable selection (Groll and Tutz,
2012). The explanatory variables were all
standardized to have mean 0 and variance
1. Furthermore, the explanatory variables
used in the mixed effects logistic regres-
sion model was determined by adding a
L1-penalty term as explained in section
2.1.5. The method was run with differ-
ent proportions of positive responses in the
training set to investigate if there were any
differences in the explanatory variables.
Not surprisingly, when the proportion be-
tween the minority and majority class be-
came less skewed, the number of explana-
tory variables increased. If the ratio be-
tween positive and negative response are
highly skewed, i.e. 1:99, the method will
penalize more explanatory variables and
set them to exactly zero. Generally, if
the ratio between positive and negative re-
sponses become less skewed, the LASSO
method would include more possible ex-
planatory variables. The LASSO method was run with 15 different undersampling ratios,
ranging from a proportion of 50% of customers sent to debt collection to only 6.25%. A
total of 12 different models were created, one for each month of the year 2018. This was to
investigate whether or not there were any differences in the explanatory variables for each
month. This proved not to be the case, and the same explanatory variables were chosen for
each month. The approach for determining the explanatory variables was the following; a
range of possible values for the tuning parameter λ = (λ1, λ2, . . . , λn) were chosen where
the values were descending λj > λj+1 for j = 1, . . . , n− 1.

For each j = 1, . . . , n

1. Fit a mixed effects logistic regression model and compute the estimated fixed-effects
parameters β̂ in the model with λj .

2. Compute the Bayesian Information Criterion (BICj) from eq. (2.15) for the model.

Choose the value of j for which the BICj is at a minimum. Use the corresponding value
of λj and find the significant variables 6= 0 at this λj value. The model was run with
λ1 = 200 and λ40 = 5, i.e. the tuning parameter was decreased by 5 units for each run. At
λ1 = 200, none of the covariates were significant. The appropriate percentage of accounts
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sent to debt collection was chosen as described in section 3.2.2. Some of the estimated
fixed-effects coefficients are plotted versus the tuning parameter λ for the month of May as
shown in figure 3.1. Note that there were more than 70 possible explanatory variables, and
most are omitted from figure 3.1 for clarification. The plot shows how more explanatory
variables are different from zero as λ decreases. The variable YearMonth is the first to be
different from zero and others follow as λ decreases. The BIC is minimized at the vertical
dotted line, i.e. at λopt = 15. There were some possible explanatory variables not included
in the model that were significant for some of the months. However, we decided not to
include them since having too many explanatory variables in a GLMM generally makes
the model more unstable (Bolker et al., 2009). The explanatory variables chosen by our
variable selection method, as well as a description, justification and possible explanation
for its presence in the model, are presented in the following.

YearMonth

This variable shows the year and month on the format YYYYMM and is scaled to be
between 0 and 1. This is the time-trend in the model and the fixed-effects coefficient is
positive.

CustomerAgeSquared

This variable was constructed and is the customer’s age squared. The variable selec-
tion method suggest that a linear relationship between logit(pit) and the customer’s age
squared is reasonable. One would expect that customers who are older generally have a
more solid economy as they have worked for many years, while younger customers may
take more risk and are less stable financially. It is therefore reasonable that the fixed effect
coefficient for CustomerAgeSquared is negative.

MonthsSinceAccountCreatedSquared

For a credit card company, it may be hard to determine whether a customer should have
been given a credit card in the first place. Many of the impaired customers have just
recently received their credit card as well, whereas customers who have had their credit
card for many years tend to be more stable and pay their bills. The fixed-effects coefficient
is negative, which is also reasonable.

Score

As previously mentioned, the Score variable is a risk score value computed through a
serious of computations to give each customer an assigned value between 0 and 7 based
on how they use their credit card. For example, if the revolving balance utilization the last
3 months is greater than some value, a customer’s score is increased by +1. A score
of 0 indicates that the customer has a very low risk of delinquency, whereas a score of 7
indicates a very high risk of delinquency, almost 20 times as high delinquency rate as the
average. It is therefore reasonable that the fixed effect coefficient for the Score value is
positive, as a customer with a higher score value is more likely to be impaired.
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SUM of PaymentOverDueFlag

The variable records the total number of times a customer has been overdue with his or her
payment in the last 12 months. It is therefore reasonable that the fixed effect coefficient
estimate for SUM of PaymentOverDueFlag is positive as well.

Hence, the mixed effects logistic regression model used had six explanatory variables,
including the fixed-effect intercept, in addition to the random intercept term unique for
each customer.

3.2.2 Determination of the Undersampling Ratio

0

1 ⋅ 107

2 ⋅ 107

3 ⋅ 107

4 ⋅ 107

1/21/31/41/51/101/16
Proportion of customers sent to debt collection in the training set

R
S

S

Figure 3.2: The residual sum of squares versus proportion of customers sent to debt collection. The
RSS is minimized when the percentage of impaired customers in the training set is 10%.

The data set provided by SpareBank 1 Kredittkort AS was highly skewed with 0 (non-
impaired) as the majority class and 1 (impaired) as the minority class. This is not surprising
as most customers are not sent to debt collection every month. Roughly ∼ 1% of the
responses were positive indicating that a customer had been sent to debt collection. In
order to combat this imbalance, random undersampling was performed as described in
section 2.2.1. We will refer to the undersampling ratio r as the percentage of customers
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sent to debt collection in the training set. This was to decide the optimal percentage of
impaired customers that should be included in the training set by solving equation (2.19).
If the ratio in the training set between impaired and non-impaired customers is too skewed,
e.g. 1:99, the model will classify virtually all customers as non-impaired. If the ratio is
perfectly balanced, i.e. 1:1, the training set will be much smaller since there are far fewer
instances of impaired customers. The training set may become so small that the model
will not have enough instances to train on. It should also be noted that the explanatory
variables will be scaled very differently if the undersampling ratio in the training set is very
different from the actual ratio in the real data set. A method was proposed to determine the
optimal ratio of undersampling, r. For 10 different undersampling ratios, 12 models were
created, one for each month of the year 2018. The Residual Sum of Squares (RSS) was
computed as in eq. (2.18) and plotted versus different percentages of customers sent to debt
collection. Figure 3.2 shows the plot. The undersample ratio ranges from 1/2 to 1/16 =
0.0625. The RSS is very high when the ratio between the minority and majority class is too
evenly distributed. The RSS decreases when the undersampling ratio becomes smaller and
reaches a minimum when the proportion of customers sent to debt collection in the training
set is 1/10 = 10%. This was therefore chosen as the percentage of impaired customers in
the training set that was used when creating the mixed effects logistic regression model.
When the undersampling ratio becomes even smaller the RSS starts to increase again as
shown in figure 3.2.

3.2.3 Estimation of Parameters

Once the undersample ratio was determined to be 10%, we used the glmer function in
the package lme4 (Bates et al., 2015) with 10 quadrature points in the adaptive Gauss-
Hermite quadrature to estimate the parameters in the mixed effects logistic regression
model. As noted, 12 models were created, one for each month of the year with 3 ob-
servations per customer. For instance, the data for customers from January, February and
March was used to predict the total number of impaired customers in June. The grouping
factor was each customer’s BK ACCOUNT ID. The explanatory variables chosen in section
3.2.1 means that the model can be written as

log

(
P̂ (Yit = 1)

1− P̂ (Yit = 1)

)
= (β̂0 + v̂0i) + YearMonthitβ̂1 + CustomerAgeSquareditβ̂2

+ MonthsSinceAccountCreatedSquareditβ̂3

+ Scoreβ̂4 + SUM of PaymentOverDueFlagβ̂5

Note that the random individual effect v0i represents the deviation for customer i from
the group trend. Table 3.3 shows the estimated fixed-effects coefficients for each of the
12 models. The standard errors are written in parenthesis and is computed from the boot-
strapping of the parameters (see section 3.2.4). Note that there is some variation in the
coefficients depending on the month in question.
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Table 3.3: Estimated fixed-effects parameters for every month. Standard errors are written in paren-
thesis.

Month Intercept, β̂0 YearMonth, β̂1 CustomerAgeSquared, β̂2
MonthsSinceAccount-
CreatedSquared

, β̂3 Score, β̂4
SUM of Payment-
OverDueFlag

, β̂5
January -9.497 (0.291) 4.178 (0.143) -2.277 (0.361) -2.949 (0.253) 1.087 (0.230) 1.015 (0.039)

February -9.366 (0.310) 4.220 (0.154) -3.120 (0.383) -3.467 (0.391) 1.206 (0.243) 0.963 (0.041)
March -9.125 (0.290) 4.025 (0.147) -2.847 (0.404) -3.758 (0.358) 1.515 (0.235) 0.857 (0.035)
April -9.253 (0.277) 4.031 (0.132) -2.780 (0.370) -2.676 (0.263) 0.927 (0.238) 0.999 (0.039)
May -9.225 (0.286) 4.152 (0.146) -1.992 (0.351) -2.657 (0.248) 1.135 (0.230) 0.900 (0.035)
June -8.933 (0.271) 4.134 (0.138) -2.799 (0.353) -3.816 (0.365) 1.052 (0.232) 0.843 (0.035)
July -8.654 (0.274) 4.016 (0.148) -3.321 (0.407) -2.097 (0.276) 0.819 (0.234) 0.876 (0.039)

August -9.030 (0.306) 3.898 (0.146) -2.422 (0.409) -2.961 (0.305) 0.543 (0.268) 1.027 (0.044)
September -9.701 (0.288) 4.173 (0.141) -2.419 (0.372) -3.149 (0.271) 1.079 (0.215) 1.020 (0.040)

October -9.477 (0.280) 4.058 (0.132) -2.525 (0.332) -2.910 (0.257) 1.618 (0.239) 0.960 (0.036)
November -9.742 (0.316) 4.153 (0.146) -2.902 (0.382) -2.937 (0.282) 1.927 (0.239) 0.893 (0.038)
December -9.221 (0.276) 4.003 (0.138) -2.863 (0.365) -2.721 (0.249) 1.420 (0.237) 0.878 (0.036)

3.2.4 Diagnostic Checking

This section comprises first the diagnostic checking of the residuals and then the fixed-
effects parameters in the mixed effects logistic regression model. The scaled residuals
were simulated a total of 1000 times as outlined in section 2.1.6.

Residual Diagnostics

The uniformly distributed rescaled residuals were transformed to be normally distributed
in figure 3.3, which shows the distribution of the scaled residuals for the month of January,
presented in a histogram and a Q-Q plot. The residual plots for the other months are
similar and is therefore not included. The mean of the scaled residuals is −0.0047 and the
variance is 0.98. The shape of the histogram in (a) suggest that the residuals appear to be
normally distributed and symmetric around zero. The normality is further backed by the
Q-Q plot in (b) which shows that the scaled residuals follow the straight line marked red
very well.
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(a) Simulated scaled residuals for the mixed ef-
fects logistic regression model for the month of
January.
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Figure 3.3: Simulated scaled residuals from the mixed effects logistic regression model for the
month of January shown in a histogram and Q-Q plot. The scaled residuals appear to follow a
normal distribution and the residuals follows the straight line in the Q-Q plot.
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3.2 Mixed Effects Logistic Regression Model Analysis

The scaled uniform residuals were also plotted versus the explanatory variables
CustomerAgeSquared and MonthsSinceAccountCreatedSquared for the
month of January. Figure 3.4(a) shows the scaled uniform residuals versus the explana-
tory variable CustomerAgeSquared for 2000 randomly sampled observations. The
plot provides 0.25, 0.50 and 0.75 quantile lines across the plot that should match the red
lines. The red lines in (a) generally follows the dotted lines, but are slightly below the
quantile lines towards the end. This is also true for the red lines in 3.4(b), showing the
scaled uniform residuals versus MonthsSinceAccountCreatedSquared. Notice
that outliers are marked red.

(a) Scaled uniform residuals versus the explana-
tory variable CustomerAgeSquared.

(b) Scaled uniform residuals versus the
explanatory variable
MonthsSinceAccountCreatedSquared.

Figure 3.4: Simulated scaled uniform residuals versus the explanatory variables
CustomerAgeSquared (a) and MonthsSinceAccountCreatedSquared (b). The red
lines are slightly below the quantile lines towards the end in both (a) and (b).

Parameter Diagnostics

Non-parametric bootstrapping of the parameters (β, σv) in the mixed effects logistic re-
gression model was performed. The process is further described in section 2.1.6. The
bootstrap procedure was done B = 1000 times. Histograms and Q-Q plots for the fixed-
effects coefficients are shown in figure 3.5 and 3.6 for the month of January. Similar
results are obtained for the other months. The red dotted line in the histograms show
the mean bootstrapped fixed-effect coefficient and the black dashed lines show a 95%
percentile bootstrap confidence interval based on the replicates, (β̂∗k,(0.025), β̂

∗
k,(0.975)),

where β̂∗k,(0.025) and β̂∗k,(0.975) denotes the 0.025 and 0.975 percentile of the bootstrapped
coefficients for k = 0, 1, . . . , 5. The histogram and Q-Q plot for 1000 bootstrapped
Intercept coefficients are shown in figure 3.5(a) and 3.5(b). The shape of the his-
togram appears to be fairly normal, although there is a high spike right of the mean.
The tails in the Q-Q plot are somewhat off. The 95% percentile confidence interval is
rather wide, (β̂∗0,(0.025), β̂

∗
0,(0.975)) = (−10.079,−8.940). The histogram for the vari-
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able YearMonth has a high spike to the left of the mean but looks otherwise normally
distributed, as shown in 3.5(c). 3.5(d) shows that the tails for YearMonth are slightly
above the straight line. The 95% percentile confidence interval is (β̂∗1,(0.025), β̂

∗
1,(0.975)) =

(3.908, 4.471). 3.5(e) and (f) analyze the variable CustomerAgeSquared. The his-
togram appears to follow the normal distribution line but is not entirely symmetric around
the mean. The Q-Q plot shows that the bootstrapped parameters are below the straight
line at the tails. The 95% percentile confidence interval for CustomerAgeSquared is
rather wide, (β̂∗2,(0.025), β̂

∗
2,(0.975)) = (−3.013,−1.590).
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Figure 3.5: Histograms and Q-Q plots for the first three fixed-effects coefficients. The red dotted
line in the histograms shows the mean value for the coefficient and the black dashed lines shows a
95% percentile bootstrap confidence interval.
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Figure 3.6: Histograms and Q-Q plots for the last three fixed-effects coefficients based on 1000
bootstrap replicates. The red dotted line shows the mean value for the coefficient and the black
dashed lines shows a 95% percentile bootstrap confidence interval.
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Figure 3.6 shows the diagnostic checking of the last three explanatory variables included
in the model. 3.6(a) shows that the MonthsSinceAccountCreatedSquared also
has a high spike to the right of the mean, but is otherwise fairly symmetric. The start and
end tail is not entirely on the line either as shown in 3.6(b), while (β̂∗3,(0.025), β̂

∗
3,(0.975)) =

(−3.435,−2.440). Furthermore, the Score variable is not entirely symmetric around
the mean as illustrated in 3.6(c) and both the start and end tail in the Q-Q plot does not
follow the straight line (3.6(d)). The bootstrap confidence interval for the Score coeffi-
cient is (β̂∗4,(0.025), β̂

∗
4,(0.975)) = (0.633, 1.569). Finally, 3.6(e) and 3.6(f) shows that the

SUM of PaymentOverDueFlag is not entirely symmetric around its mean either, but
the tails are close to the line in the Q-Q plot. The bootstrap confidence interval is more
narrow for this variable, (β̂∗5,(0.025), β̂

∗
5,(0.975)) = (0.939, 1.099).

Furthermore, we performed non-parametric bootstrapping on the random-effects parame-
ter estimate, σv , i.e. the conditional standard deviation for the grouping factor
BK ACCOUNT ID (see section 2.1.2). The histogram and Q-Q plot for σv are shown in
figure 3.7. The bootstrap mean is 2.545 and the percentile confidence interval is
(σ̂∗v,0.025), σ̂

∗
v,0.975)) = (2.472, 2.620). The histogram in figure 3.7(a) is not symmetric

around the mean and the tails are somewhat off the straight line in the Q-Q plot in figure
3.7(b).
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Figure 3.7: Histogram and Q-Q plot for the standard deviation σv based on 1000 bootstrap repli-
cates. The red dotted line shows the mean value for σv and the black dashed lines shows a 95%
percentile bootstrap confidence interval.
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3.3 Prior Probability Unknown - Time Series Analysis

This section comprises the time series analysis that was performed to forecast the adjusted
prior probabilities γt = p(1t) of belonging to class 1 (impaired) for 2019. We were given
the proportion of customers sent to debt collection γt for the time period January 2015 to
December 2018. Based on this, an ARIMA model, with known additive outliers to cope
with the July effect, was created. The historical data was adjusted by removing certain
customers that fell in some segments as described in section 3.1. We therefore refer to γt
as the adjusted prior probabilities. The time series analyzed is shown in figure 3.8. The
time series consist of T = 48 data points, 12 for each of the 4 years. The red dots show
how the adjusted percentage number of impaired customers drops for the month of July.
Furthermore, the adjusted percentage sent to debt collection was generally lower in 2015
compared to the other years.
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Figure 3.8: Adjusted percentage of customers sent to debt collection each month in the time period
January 2015 to December 2018. The adjusted percentage is heavily reduced for each July, marked
by red dots.

46



3.3 Prior Probability Unknown - Time Series Analysis

3.3.1 Identification and Estimation of Parameters

The time series {γt} was modelled as an ARIMA(p, d, q)-process with weights on the
known additive outliers for each July month when the number of impaired customers
sharply decreased. We first determined p, d, q. Differencing the time series once, wt =
γt−γt−1 gave a sufficiently (weak) stationary time series. This can be shown in figure 3.8,
which appears to have a generally increasing trend. Notice that figure 3.8 is very similar
in shape to figure 1.2 and 1.5. Hence, d = 1. The order of the autoregressive model p and
the moving average model q were determined through an investigation of the sample ACF
and PACF plots of wt, as well as the AICC criterion described in section 2.3.1. The ACF,
PACF and AICC plots for wt are shown in figure 3.9.

A clear spike at lag 12 is shown in the ACF plot in 3.9(a), but this was ignored as we
have proposed an alternative way of modelling seasonality as described in section 2.3.2.
Furthermore, there were significant spikes at lag 2 for both the ACF and PACF plot. How-
ever, the AICC criterion was mainly relied on since the AICC considers that the time series
was very short and will thus reduce the risk of overfitting. 3.9(c) shows a 3-dimensional
plot of the AICC for p, q ∈ {0, 1, . . . , 5}. Notice that the AICC penalizes higher values of
p and q. The AICC is minimized for p = 0, q = 2 and is slightly higher for p = 1, q = 1.
These two candidates were investigated. An ARMA(p, q) process is said to be causal if
the autoregressive polynomial φ(z) 6= 0 for all |z| ≤ 1. Thus, for the differenced, causal
time series, wt = ∇yt, we have that

wt =

∞∑
j=0

ψjεt−j

where the coefficients are given by the recursive formula ψ0 = 1, ψj = θj+
∑p
i=1 φiψj−i

for j = 1, 2, . . .. We found that there are relatively small differences between the two
candidates since the third coefficient ψ3 is small. Therefore, we chose to model the time
series with p = 1, q = 1.

3.3.2 Fitting the Time Series Model

The ARIMA(1, 1, 1) model with additive outlier weights was fitted. The parameters φ̂1, θ̂1
are determined by minimizing equation (2.29). The weights ω̂ were determined through
the iterative approach presented in section 2.3.3. There are four weights in total, one for
each July in the years 2015 - 2018. The estimated parameters are shown in table 3.4. c
denotes the intercept of the model. Notice that θ̂1 is very close to a unit root. Figure 3.10
shows the observed time series along with the fitted time series. The observed time series
is the solid line and the dashed line is the fitted time series. The fitted time series fits the
original time series well for the most part but are somewhat off hitting the low and high
spikes. The known additive outliers for July are colored purple.
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(a) ACF for the differenced time series wt
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(b) PACF for the differenced time series wt

(c) AICC(p, q) plot for p, q = {0, 1, . . . , 5}.

Figure 3.9: Sample ACF plot (a) and sample PACF plot (b) for the differenced time series wt. 3-
dimensional AICC(p, q) plot (c) for p, q = {0, 1, . . . , 5}. The AICC is minimized for p = 0, q = 2.
The clear spike at lag 12 in the ACF plot is ignored since differencing with respect to seasonality
would further reduce the length of the time series and a different approach is proposed (see section
2.3.2).
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Figure 3.10: Observed time series (solid line) plotted with the fitted time series (dashed line) for the
time period 2015 to 2018 for p = 1, q = 1. The fitted time series fits the original time series well.

Table 3.4: Estimated parameters in the time series model.

φ̂1 0.4564

θ̂1 −0.9995
c 8.2806 · 10−5

σ̂2 1.5727 · 10−6

ω̂1 −0.002242
ω̂2 −0.003616
ω̂3 −0.005087
ω̂4 −0.003640

3.3.3 Forecasting

Figure 3.11 shows the forecasts of the prior probabilities γt for the year 2019 with an
ARIMA(1, 1, 1) model. The time series captures the linear trend of the data. The shaded
blue area shows an 80% prediction interval for the predictions. The prediction interval
becomes wider for forecasts further into 2019. The estimated weight for July 2019 is
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taken as the average of the estimated weights according to eq. (2.41). The unknown
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Figure 3.11: Forecasting the prior probabilities of belonging to the minority class for the year 2019
with a 80% prediction interval. The prior probabilities were forecasted to be generally increasing,
except for July 2019.

prior probabilities will capture the seasonality in the total balance sent to debt collection.
These forecasted values can now be used, in combination with the mixed effects logistic
regression model, to forecast the total balance sent to debt collection for the year 2019.

3.3.4 Diagnostic Checking
The goodness of fit of the time series is evaluated and shown in figure 3.12 by investigating
the rescaled residuals. It is assumed that the rescaled residuals are independent and identi-
cally distributed random variables with mean 0 and variance 1. The rescaled residuals are
illustrated through three different plots. First, the rescaled residuals are shown in (a). The
minimum rescaled residuals is ε̂min = −1.1768 and the maximum is ε̂max = 2.2681. The
mean of the rescaled residuals is above 0, at 0.28 and the rescaled variance is 0.62. There
seems to be a slight decreasing trend, which is further investigated in (b). The blue dashed
lines shows the bounds ±z0.025/

√
T = ±1.96/

√
48 = ± ≈ 0.041 for a 95% confidence

interval. Spikes outside the dashed blue lines shows values significantly different from
zero. As shown, none of the rescaled residuals have significant spikes. Finally, (c) shows
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3.3 Prior Probability Unknown - Time Series Analysis

a Q-Q plot for the rescaled residuals. They do not appear to follow the straight line very
well, especially towards the end when some residuals are well above the line. Overall, the
model does not fit the time series for all data, with some residuals being very large.
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Figure 3.12: Diagnostic checking of the time series applied to the prior probabilities. (a) shows the
rescaled residuals, (b) is the ACF plot for the rescaled residuals and (c) shows a Q-Q plot for the
rescaled residuals.
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3.4 Forecasting with the Mixed Effects Logistic Regres-
sion Model

This section presents the results of forecasting with the mixed effects logistic regression
model. The first subsection fit the model to the year 2018. The second subsection presents
how the explanatory variables were forecasted. Finally, the last subsection forecasts the
total balance sent to debt collection for the year 2019.

3.4.1 Fitted Model for 2018

The average fitted predictions for the total balance sent to debt collection for 2018 are
shown in figure 3.13.
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Figure 3.13: Average fitted predictions for the total balance sent to debt collection for 2018. The
predicted number of impaired customers each month is multiplied by the average balance sent to
debt collection for 2018. The solid line shows the actual balance sent to debt collection and the
dashed line are the fitted values. The blue shaded area shows a 95 percentile bootstrap confidence
interval.

The blue shaded area shows a 95 percentile bootstrap confidence interval based on boot-
strapped parameter (β̂∗(b), σ̂

∗(b)
v ) replicates for b = 1, . . . , 1000. The confidence interval
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3.4 Forecasting with the Mixed Effects Logistic Regression Model

contains the actual number of impaired customers each month, except for July, although
it should be noted that the confidence interval is very wide. The model does not give the
same prediction every time the model is run. Due to this instability of the model, we took
the average of 50 predictions for each prediction. The instability is further discussed in
section 4.1.1. The predicted number of customers sent to debt collection for each month
is multiplied by the average balance sent to debt collection for 2018. The average balance
sent to debt collection for 2018 was 31529.27 NOK. (It should also be noted that an at-
tempt to draw from a gamma distribution that fitted the balances sent to debt collection
did not produce better results). Therefore, we chose to simply use the mean. A predic-
tion that is 100 customers greater or lower than the actual number of impaired customers
will therefore give predictions that are roughly 3 million NOK greater or lower than the
actual total balance sent to debt collection. The predictions do not fit well, especially for
the summer months July and August when the adjusted prior probability of belonging to
class 1 is much lower compared to the other months. Although the predictions should be
significantly lower for these two months, they are simply too low compared to the actual
number of impaired customers. The fitted model fits better for the first four months and
the last four months of the year 2018. The predicted number of impaired customers each
month is shown in table 3.5.

Table 3.5: Predicted number of impaired customers each month in 2018.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Impaired customers, St 1933 1767 1809 1926 1822 1844 1508 1479 1997 2090 1828 1810
Predicted impaired customers, Ŝt 2051 1838 1609 2164 1429 1586 788 1181 2317 1853 2174 1664

3.4.2 Development of the Explanatory Variables

The explanatory variables Score and SUM of PaymentOverDueFlag included in the
model can only take a finite number of values and was modelled as a Markov chain where
each value is a state as described in section 2.4. SUM of PaymentOverDueFlag can
only take the states {0, 1, . . . , 12}. (The variable shows how many times a customer has
been overdue with their payments in the last 12 months and it is therefore technically not
possible to have a value higher than 12). The probabilities of moving from one state to
another are estimated from the historical data according to equation (2.42). Most people
tend to stay in the same state. If a customer has never received a dunning from the credit
card company and is in state 0, the customer is likely not to receive a dunning next month
either. The different probabilities of moving from one state to another for the covariate
SUM of PaymentOverDueFlag from January to February is shown in figure 3.14.
Note that the Markov chain is only shown up until state 5 as very few customers are in
states above this. The last node marked · · · is to illustrate that the Markov chain continues
up until state 12.
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Figure 3.14: Illustration of the different states for SUM of PaymentOverDueFlag with esti-
mated transition probabilities for customers moving a state from January 2018 to February 2018.
The Markov chain is ended at state 5 as there are very few customers in states above this.

More than 99% of customers will stay in state 0 and pay their billing in time, while
0.9% of customers will be overdue and move up to state 1. Customers that are in state 1
have a higher probability of reaching state 2 and customers in state 2 will have a higher
probability of reaching state 3. That means that customer that have been overdue with their
payments are more likely to be overdue again. Based on these estimate probabilities we
simulated the covariates for SUM of PaymentOverDueFlagi(T+h) for i = 1, . . . , N ,
h = 1, 2, . . ..

The estimated probabilities for the Score covariate were also computed. Each customer
is assigned a Score between 0 and 7, where 0 indicates a customer with a very low risk of
delinquency and 7 indicates a customer with a very high risk of delinquency. For this co-
variate, it is possible for a customer to move up and down more than one state. Therefore,
the estimated probabilities are rather shown in a transition matrix.

PScore =

0 1 2 3 4 5 6 7
0 0.469 0.394 0.126 0.010 0.0008 0.0002 0 0
1 0.015 0.662 0.304 0.017 0.002 0.0002 0.00002 0
2 0.002 0.114 0.839 0.034 0.009 0.002 0.00006 0
3 0.001 0.021 0.198 0.568 0.156 0.051 0.006 0.0001
4 0 0.002 0.077 0.248 0.397 0.210 0.064 0.002
5 0 0.001 0.031 0.104 0.309 0.374 0.161 0.019
6 0 0 0.002 0.077 0.190 0.334 0.334 0.062
7 0 0.0004 0.0004 0.008 0.075 0.194 0.354 0.369

(3.1)

PScore shows the transition probabilities from January to February. In general, customers
are most likely to stay in the state they were in and very rarely move more than one state
up or down, although there are exceptions. For instance, 12.6% of customers in state 0
move to state 2, and 19.4% of customers in state 7 move to state 5. Based on the estimated
probabilities in figure 3.14 and (3.1), a likely portfolio for February 2019 was simulated.
The same was done for the other months to produce a complete portfolio.

Additionally, new customers were generated assuming the same percentage increase in
the number of customer as the equivalent month in 2018. The covariates of the generated
customers were sampled from the portfolio and the covariates
SUM of PaymentOverDueFlag and Score for these generated customers were de-
veloped as in the same manner, using figure 3.14 and equation (3.1).
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3.4.3 Forecasting for 2019
The explanatory variables were forecasted so that one could use the mixed effects logistic
regression model to forecast the total balance sent to debt collection for the year 2019.
Figure 3.15 shows the forecasts of the total balance sent to debt collection for each month
for the year 2019. The apriori probability of belonging to class 1, i.e. being an impaired
customer is reduced for July as shown in figure 3.11. This results in a lower forecast
for July 2019. The forecasts are generally higher compared to 2018, predicting that the
total balance sent to debt collection will exceed 70 million NOK for several months. The
blue shaded area shows 80 percentile bootstrap prediction intervals based on bootstrap
replicates of the parameters, (β̂∗(b), σ̂

∗(b)
v ) for b = 1, . . . , 1000. The prediction interval

does not consider the uncertainty associated with forecasting the explanatory variables. It
should also be noted that the prediction interval does not become wider the further into the
future the model forecasts as is the case for time series. This could possibly be the case
if we had included all the uncertainty associated with the mixed effects logistic regression
model.
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Figure 3.15: Forecasts of the total balance sent to debt collection each month in 2019 based on
the mixed effects logistic regression model. The blue shaded area shows a 80 percentile bootstrap
prediction interval based on 1000 bootstrap replicates. The forecasts for 2019 are generally higher
compared to 2018.
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Chapter 4
Summary

This chapter consists of two sections, a discussion and concluding remarks. The first
section presents and discusses general issues with the methods and techniques used. Rec-
ommendations for possible further work are also presented. Finally, concluding remarks
are presented in the last section.

4.1 Discussion
The total balance sent to debt collection each month for the year 2019 was forecasted
based on historical data from the time period July 2017 to September 2018 provided by
SpareBank 1 Kredittkort AS. A mixed-effects logistic regression model that classified cus-
tomers to either belonging to class 1 (impaired) or class 0 (non-impaired) was created. Due
to a highly imbalanced data set where the number of instances from class 0 was far greater
than class 1, the outputs of the classifier were adjusted by using the prior distributions of
belonging to class 0 and 1. The prior probability of belonging to class 1 was forecasted
using time series analysis. An ARIMA model, where the seasonal trends were modelled
as additive outliers, was used to forecast these prior probabilities. Furthermore, the proper
covariates chosen by the LASSO method for GLMMs were forecasted as well. Combining
these techniques with the mixed-effects logistic regression model produced forecasts for
the total balance sent to debt collection for each month in 2019.

4.1.1 Instability of the Mixed-effects Logistic Regression Model
One of the main issues with the mixed-effects logistic regression is instability as the model
does not produce the same forecast every time the model predicts. This is probably a
consequence of the training and test set that is sampled, which is slightly different every
time (depending on which customers are drawn), which again makes the parameters and
threshold value α slightly different each time the model is run. In order to combat this,
we therefore ran the model 50 times, and used the average prediction based off those runs
to account for the instability and investigate the variability in the forecasts. Figure 4.1
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Chapter 4. Summary

shows two plots that analyze the predictions for December 2018; (a) shows 50 different
predictions for the number of customers sent to debt collection. The dashed line shows the
average prediction and the blue line shows the actual number of impaired customers. The
predictions vary greatly, showing the instability of the model. The average prediction is not
very close to the actual value. This is the case for most months. The predictions for July
2018 is particularly too low, although they should be lower than for the other months. A
possible explanation is that the prior probability of belonging to class 1 is much lower for
July, possibly too low. The instability of the model is further illustrated in (b), which shows
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(b) Number of customers versus α.

Figure 4.1: Analysis of predictions of the number of impaired customers for December 2018. (a)
shows 50 predictions for the number of customers sent to debt collection, while (b) plots the number
of impaired customers versus the threshold value α for one of the runs.

the number of customers sent to debt collection versus the threshold value α for December
2018. A total of 1810 customers were impaired this month. A threshold value α = 0.0765
would have given an exact prediction. However, we have estimated that α̂ = 0.085. This
gives a prediction of 1532. The red lines show a ±100 margin for the predictions. In
other words, the threshold value has to be in the short interval α ∈ [0.0738, 0.797] for
forecasts to miss by less than 100 customers. Hence, a small change in α will change the
predictions significantly. Therefore, it is unlikely to believe that the model can consistently
give predictions of the number of impaired customers with a ±100 margin.

4.1.2 Limitations to the Mixed-effects Logistic Regression Model
The random intercept terms v0i are estimated for all the customers in the training set, but
will not be estimated for unobserved individuals in the training set. As a result, the prob-
abilities for unobserved individuals will only be based on the fixed-effects coefficients β,
i.e. the similarities between customers on a population level, not on an individual level.
However, one could possibly estimate the random intercept terms for unobserved individ-
uals by comparing with similar customer with an estimated random intercept term. For
instance, if customer A is comparable to the customers (A1, . . . , An) in terms of covari-
ates, it is not unlikely that customer A’s random intercept term would be similar. We could
therefore estimate customer A’s random intercept based on customers (A1, . . . , An) by for
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4.1 Discussion

instance taking the mean of their random intercepts.

Furthermore, the mixed-effects logistic regression model could have been specified dif-
ferently. For instance, the mixed-effects was reduced to only a random intercept term, v0i.
However, we could have possibly included random slopes that would be unique for each
customer. An example would be to include a random slope to the time term YearMonth,
v1i, such that the model

log

(
P (Yit = 1)

1− P (Yit = 1)

)
= (β0 + v0i) + YearMonthit(β1 + v1i)

+ CustomerAgeSquareditβ2

+ MonthsSinceAccountCreatedSquareditβ3

+ Scoreβ4 + SUM of PaymentOverDueFlagβ5,

would have a specified random slope for each customer. We have assumed that 3 months
should be enough observations per cluster to determine if a customer was sent to debt col-
lection. Alternatively, one could also have used more observations for each customer, for
instance following a customer’s behavior in the last 6 months or last year. Another sugges-
tion might be to track customers weekly, thus dividing each month into four observations.
This would give more observations per customer (12 observations) while at the same time
investigating the most recent time period which is of most interest.

4.1.3 Forecasting for 2019

The explanatory variables included in the model were forecasted such that the mixed-
effects logistic regression model could be used to forecast the total balance sent to debt col-
lection in 2019. The explanatory variables Score and SUM of PaymentOverDueFlag
were forecasted through Markov chain simulation. The explanatory variables YearMonth,
CustomerAge and MonthsSinceAccountCreatedwere also forecasted. The model
assumed a linear relationship between logit(pit) and the square of CustomerAge, as
well as the square of MonthsSinceAccountCreated. An issue that arises is that
the portfolio as a whole will become ”older” the further into future the portfolio is sim-
ulated. We tried to combat this issue by generating new customers as well as removing
some customers at random accordingly. At the same time, the prior probabilities of be-
longing to class 1 were forecasted to increase (except for the month of July). This will
generally increase the predictions further into the future. In other words, simulating the
covariates xi(T+h)k, i = 1, . . . , N , k = 1, . . . , p will generally decrease the predictions as
h increases, while the prior probability γT +h will increase the predictions as h increases.
Of course, it is very hard to determine how the portfolio will look like into the future. For
instance, the credit card company may decide to run advertisement that will attract very
many new customers one month or competing companies may offer credit cards with more
favorable terms such that the credit card company will lose customers. It is therefore very
hard to accurately predict how the portfolio will look like in the future.
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4.1.4 Problems with Variable Selection for GLMMs

Variable selection for generalized linear mixed models in general is not as straightforward
as for GLMs and options are more limited. We computed the BIC criterion for different
values of the tuning parameter λ included in the LASSO method and chose the optimal λ
on the level which the BIC was minimized. The explanatory variables at this λ value was
then evaluated. The advantage of using such an information criterion is that the BIC has its
own penalty term that aims to reduce the number of parameters in the model. Nevertheless,
other methods for variable selection could have been used.

4.1.5 Adjusting the Outputs of a Classifier

The method proposed by (Saerens et al., 2002) of adjusting the outputs of a classifier was
used. However, we did not take into consideration that the longitudinal data was correlated.
One could possibly alter the method to account for this correlation.

4.1.6 Additional Noise in the Data Set

It should also be mentioned that there is always some noise the model cannot explain. For
instance, the credit card company has had trouble in the past sending out debt collection
invoices previously, so that these have been sent at a later time. The result is that the
previous month that had very many debt collection cases will register few cases, but it
appears that the next month will have very many debt collection cases. In addition, as
shown in section 3.1 some customers were sent to debt collection even though they fell
into segments such as Transactor. It will be hard for the model to identify these as
potential impaired customers since this should technically not be possible.

4.1.7 The Debt Register

The Norwegian government have decided to make a gjeldsregister (directly translated as
debt register) with the goal of gathering all the information about consumers unsecured
debt in one place (Finansdepartementet, 2019). Unsecured debt refers to all debt that is
not backed by an underlying asset, such as credit card debt. Mortgages, for instance, is
secured debt as it is backed by real estate. Banks and other financial institutions will thus
have a more complete picture of what a customer owes. The idea is that the debt register
will include everything from student loans to credit card debt. The purpose of this register
is to prevent debt problems in private households. Ideally, it will be easier for credit card
issuers to determine which customers that should be granted a credit card. For instance, a
problem that credit card issuers face today is that some customers are dishonest about their
own financial situation, and actively does not inform about all their debt in order to receive
a credit card. One might think that, in the long run, the number of impaired customers may
decrease if customers who should not have been given a credit card in the first place will
no longer receive one. If this is the case, the model may no longer be applicable or should
be altered. The debt register is scheduled to be operative from the 1st of July 2019.
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4.1.8 Additional Usage of the Model
The mixed-effects logistic regression model predicts the probability that customer i is sent
to debt collection at time t for i = 1, . . . , N and t = 1, 2, . . .. Therefore, the model could
also be used as a measure to determine whether a customer should be given for instance
a credit limit increase on their credit card, or the opportunity to refinance their debt. A
customer that has been financially responsible will receive a low probability according to
our model and it is therefore a smaller risk to give this customer a credit limit increase
on his or her card. On the other hand, a customer that our model has assigned a high
probability will likely be a greater risk for the bank to give a credit limit increase on their
credit card. This usage of the model can be advantageous for the credit card company.

4.1.9 Recommendations for Further Work
The mixed-effects logistic regression model could be further investigated by implement-
ing some of the ideas suggested in section 4.1.2. Furthermore, the model may be greatly
improved by incorporating information such as a customer’s monthly income, marital sta-
tus and overall unsecured debt. This data would then have to be gathered for both new
and existing customers. Other models could be considered as well. For instance, a Mixed-
Effects Random Forest (MERF) (Hajjem et al., 2014) model could be an interesting option,
although random forest methods tend to be biased towards the majority class in an imbal-
anced data set.

As shown in section 3.1, 9.1% of impaired customers fall into the segment Active in
last 6 months, which means that they are sent to debt collection fairly quickly after
receiving their credit card. This represents customers that possibly should not have been
issued a credit card in the first place. The remaining impaired customers are some form of
revolver, i.e. a customer who does not pay the total amount he or she owns at the end of
a billing cycle. It could also be of interest to make separate models for these two groups
and specifically investigate why some customers end up being sent to debt collection after
just a few months.
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4.2 Concluding Remarks
The aim of this thesis was to forecast the total balance sent to debt collection each month
for the year 2019 based on historical data provided by SpareBank 1 Kredittkort AS in the
period July 2017 to September 2018. The data was longitudinal with repeated measure-
ments each month for more than 500 000 credit card customers in Norway. Most customers
had 15 recorded observations, one for each month in the time period July 2017 to Septem-
ber 2018 with a binary response telling whether the customer was sent to debt collection
in three months time. A mixed-effects logistic regression model was made to classify and
count the number of customers sent to debt collection. The data set was highly imbalanced
as only a few customers are impaired each month. We used random undersampling and
adjusted the outputs of the classifier to account for the imbalance in the data set using a
method proposed by Saerens et al., 2002. The prior probability of being impaired had to
be forecasted in order to forecast with the mixed-effects logistic regression model. This
was done by creating an ARIMA(1, 1, 1) time series. The time series showed seasonal
trends for the month of July, but due to the short length of the time series, the seasonal-
ity was rather modelled as known additive outliers. This captured the seasonality of the
time series without reducing the number of observations. Furthermore, the explanatory
variables were included based on the LASSO method extended to apply on generalized
linear mixed models as well. The explanatory variables were also forecasted. Those that
were categorical was modelled as a Markov chain. The time series was fitted to the year
2018 and shows that the model is unstable, as it does not give the same predictions every
time. The reason for this and how to combat instability is discussed. The forecasts for
2019 are generally increasing, with a drop in July 2019. Finally, it should also be noted
that there are other factors that may make the model obsolete. The debt register planned
by the Norwegian government will give credit card companies valuable information about
potential customers and may alter who will be issued a credit card. This may have a great
impact on the mixed effects logistic regression model.
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Appendix A
Variables in the Data Set

Table A.1 provides a description of all the variables in the data set provided by SpareBank
1 Kredittkort AS. The first column is the name of the variable as it occurs in the data set
and the second column is a description of the variable.

Table A.1: Description of all the variables in the data set.

Variables Description
BK ACCOUNT ID Internal account number
PeriodId Date on format YYYYMMDD
Date Date on format YYYY-MM-DD
YearMonth Year and month on format YYYYMM
PNRSerial Digits 7 and 8 in national identification number
CustomerAge Customer’s age in years
MonthsSinceAccountCreated Account’s age in months
PRODUCT NAME Name of product (card type)
STATEMENT DUE DAY OF MONTH NUM Chosen due date (5.,10.,15. or 20.)
ApplicationSalesChannel Channel of application and / or sale
CAMPAIGN NAME Campaign (if any)
CLOSING BALANCE AMT Total amount printed on last statement
DISTRIBUTOR NAME Bank Name
GENDER NAME Gender

HAS DIRECT DEBIT AGREEMENT IND
Indicator, direct debit agreement selected
(avtalegiro in Norwegian)

HAS ESTATEMENT AGREEMENT IND Indicator, e-statement selected (e-faktura in Norwegian)
average credit limit last12 Average credit limit last 12 months
average revolvingbalance last12 Average revolving balance last 12 months
avg rev bal L3M Average revolving balance last 3 months
rev uti currmth Revoling balance divided by credit limit this month
avg payment L3M Average payment last 3 months

rev per uti change L3M
Change in revolving utilization (revolving balance divided by
credit limit) last 3 months

MonthEnd uti Change Change in revolving utilisation by end of month
payment amt change L3M Change in payment amount last 3 months

RevUti12
Average revolving balance last 12 months divided by average
credit limit last 12 months

AvgRevBalL3onL12
(Average revolving balance last 3 months divided by average
credit limit last 3 months) divided by (Average revolving balance last 12
months divided by average credit limit last 12 months)

QCashpartL12 Part of sum of transactions in class Quasi Cash last 12 months
Continued on next page
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Table A.1 – continued from previous page
Variables Description

QCashpartL3 Part of sum of transactions in class Quasi Cash last 3 months

QCashL3onL12
(Part of sum of transactions in class Quasi Cash last 3
months) divided by (Part of sum of transactions in class Quasi Cash last 12
months)

TravelpartL12
Sum of transactions in classes, Airline, Hotel motel and
other transport last 12 months divided by sum of transactions in all classed
last 12 months

TravelpartL3
Sum of transactions in classes, Airline, Hotel motel and
other transport last 3 months divided by sum of transactions in all classed
last 3 months

TravelpartL3onL12

(Sum of transactions in classes, Airline, Hotel motel and
other transport last 3 months divided by sum of transactions in all classed
last 3 months) divided by (Sum of transactions in classes, Airline,
Hotel motel and other transport last 3 months divided by sum of transactions
in all classed last 3 months)

Segment9Name Segment name with 9 segments
Segment23Name Segment name with 23 segments
Score Simple risk score between 0 and 7
SUM of CreditLimitIncreaseFlag Number of credit limit increases last 12 months
SUM of CreditLimitDecreaseFlag Number of credit limit decreases las 12 months
SUM of PaymentOverDueFlag Number of months with payment overdue last 12 months

SUM of FirstDunningFlag
Number of months with dunning (purring in Norwegian) last 12
months

SUM of CollectionAdviceFlag
Number of months with collection advice
(inkassovarsel in Norwegian) last 12 months

SUM of CollectionFlag
Number of months with debt collection (inkasso in Norwegian) last 12
months

SUM of CardFraudFlag
Number of months with card fraud flag (transactions marked as
possible fraud) last 12 months

SUM of CardLostFlag
Number of months with card lost flag (card marked as lost)(
last 12 months

SUM of CardStolenFlag
Number of months with card stolen flag (card marked as lost)(
last 12 months

SUM of AIRLINEL12 Sum of transactions in given class last 12 months
SUM of CLOTHING STORESL12 Sum of transactions in given class last 12 months
SUM of FOOD STORES WAREHOUSEL12 Sum of transactions in given class last 12 months
SUM of HOTEL MOTELL12 Sum of transactions in given class last 12 months
SUM of HARDWAREL12 Sum of transactions in given class last 12 months
SUM of INTERIOR FURNISHINGSL12 Sum of transactions in given class last 12 months
SUM of OTHER RETAILL12 Sum of transactions in given class last 12 months
SUM of OTHER SERVICESL12 Sum of transactions in given class last 12 months
SUM of OTHER TRANSPORTL12 Sum of transactions in given class last 12 months
SUM of RECREATIONL12 Sum of transactions in given class last 12 months
SUM of RESTAURANTS BARSL12 Sum of transactions in given class last 12 months
SUM of SPORTING TOY STORESL12 Sum of transactions in given class last 12 months
SUM of TRAVEL AGENCIESL12 Sum of transactions in given class last 12 months
SUM of VEHICLESL12 Sum of transactions in given class last 12 months
SUM of QUASI CASHL12 Sum of transactions in given class last 12 months
SUM of AIRLINEL3 Sum of transactions in given class last 12 months
SUM of CLOTHING STORESL3 Sum of transactions in given class last 3 months
SUM of FOOD STORES WAREHOUSEL3 Sum of transactions in given class last 3 months
SUM of HOTEL MOTELL3 Sum of transactions in given class last 3 months
SUM of HARDWAREL3 Sum of transactions in given class last 3 months
SUM of INTERIOR FURNISHINGSL3 Sum of transactions in given class last 3 months
SUM of OTHER RETAILL3 Sum of transactions in given class last 3 months
SUM of OTHER SERVICESL3 Sum of transactions in given class last 3 months
SUM of OTHER TRANSPORTL3 Sum of transactions in given class last 3 months
SUM of RECREATIONL3 Sum of transactions in given class last 3 months
SUM of RESTAURANTS BARSL3 Sum of transactions in given class last 3 months
SUM of SPORTING TOY STORESL3 Sum of transactions in given class last 3 months
SUM of TRAVEL AGENCIESL3 Sum of transactions in given class last 3 months
SUM of VEHICLESL3 Sum of transactions in given class last 3 months
SUM of QUASI CASHL3 Sum of transactions in given class last 3 months

Continued on next page
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Table A.1 – continued from previous page
Variables Description

lead1YearMonth YearMonth+1
lead2YearMonth YearMonth+2
lead3YearMonth YearMonth+3

DCA0Ind
Indicator: lead1YearMoth<=
DCA0YearMonth<= lead3YearMonth

BalanceSent Balance sent to DCA (Debt Collection Agency) (in DCA0Month)
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Appendix B
Outputs and Results

Outputs of the mixed-effects logistic regression model each month of 2018. The number
of quadrature points is nAGQ. The data is the training set. Random effects shows
σv , the Number of obs: in the training set and the number of groups. The Fixed
effects and the Correlation of Fixed Effects are also shown.

Mixed-effects Logistic Regression Model for January

Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature,
nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )
Formula: DCA0Ind ˜ YearMonth + CustomerAgeSquared + MonthsSinceAccountCreatedSquared +

Score + SUM_of_PaymentOverDueFlag + (1 | BK_ACCOUNT_ID)
Data: data

Control: glmerControl(optimizer = "optimx", calc.derivs = FALSE,
optCtrl = list(method = "nlminb", starttests = FALSE, kkt = FALSE))

AIC BIC logLik deviance df.resid
10622.2 10682.8 -5304.1 10608.2 42433

Scaled residuals:
Min 1Q Median 3Q Max

-1.5160 -0.0685 -0.0270 -0.0101 5.4291

Random effects:
Groups Name Variance Std.Dev.
BK_ACCOUNT_ID (Intercept) 6.346 2.519
Number of obs: 42440, groups: BK_ACCOUNT_ID, 14181

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.44355 0.23044 -40.981 < 2e-16 ***
YearMonth 4.18482 0.13195 31.716 < 2e-16 ***
CustomerAgeSquared -2.22501 0.43926 -5.065 4.08e-07 ***
MonthsSinceAccountCreatedSquared -2.67862 0.30590 -8.757 < 2e-16 ***
Score 1.05611 0.26279 4.019 5.85e-05 ***
SUM_of_PaymentOverDueFlag 1.00296 0.03757 26.695 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Correlation of Fixed Effects:
(Intr) YrMnth CstmAS MnSACS Score

YearMonth -0.628
CstmrAgSqrd -0.272 -0.014
MnthsSncACS 0.002 -0.042 -0.267
Score -0.635 0.142 -0.032 -0.017
SUM_f_PyODF -0.258 0.148 0.068 -0.168 -0.304

Mixed-effects Logistic Regression Model for February

Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature,
nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )
Formula: DCA0Ind ˜ YearMonth + CustomerAgeSquared + MonthsSinceAccountCreatedSquared +

Score + SUM_of_PaymentOverDueFlag + (1 | BK_ACCOUNT_ID)
Data: data

Control: glmerControl(optimizer = "optimx", calc.derivs = FALSE,
optCtrl = list(method = "nlminb", starttests = FALSE, kkt = FALSE))

AIC BIC logLik deviance df.resid
9729.0 9788.9 -4857.5 9715.0 38513

Scaled residuals:
Min 1Q Median 3Q Max

-1.5172 -0.0640 -0.0252 -0.0095 5.3113

Random effects:
Groups Name Variance Std.Dev.
BK_ACCOUNT_ID (Intercept) 7.172 2.678

Number of obs: 38520, groups: BK_ACCOUNT_ID, 12879

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.38233 0.24948 -37.608 < 2e-16 ***
YearMonth 4.20368 0.14131 29.748 < 2e-16 ***
CustomerAgeSquared -2.81672 0.48553 -5.801 6.58e-09 ***
MonthsSinceAccountCreatedSquared -2.47446 0.33304 -7.430 1.09e-13 ***
Score 0.96567 0.28752 3.359 0.000783 ***
SUM_of_PaymentOverDueFlag 0.97455 0.04026 24.208 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:
(Intr) YrMnth CstmAS MnSACS Score

YearMonth -0.626
CstmrAgSqrd -0.291 -0.012
MnthsSncACS 0.006 -0.029 -0.277
Score -0.651 0.191 -0.035 -0.038
SUM_f_PyODF -0.213 0.061 0.075 -0.144 -0.305
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Mixed-effects Logistic Regression Model for March

Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature,
nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )
Formula: DCA0Ind ˜ YearMonth + CustomerAgeSquared + MonthsSinceAccountCreatedSquared +

Score + SUM_of_PaymentOverDueFlag + (1 | BK_ACCOUNT_ID)
Data: data

Control: glmerControl(optimizer = "optimx", calc.derivs = FALSE,
optCtrl = list(method = "nlminb", starttests = FALSE, kkt = FALSE))

AIC BIC logLik deviance df.resid
9767.3 9827.5 -4876.7 9753.3 39923

Scaled residuals:
Min 1Q Median 3Q Max

-1.3589 -0.0731 -0.0290 -0.0112 5.3374

Random effects:
Groups Name Variance Std.Dev.
BK_ACCOUNT_ID (Intercept) 5.599 2.366

Number of obs: 39930, groups: BK_ACCOUNT_ID, 13334

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.50657 0.23858 -39.847 < 2e-16 ***
YearMonth 4.22629 0.14253 29.653 < 2e-16 ***
CustomerAgeSquared -2.51123 0.43469 -5.777 7.60e-09 ***
MonthsSinceAccountCreatedSquared -3.12670 0.41998 -7.445 9.70e-14 ***
Score 1.54914 0.26406 5.867 4.45e-09 ***
SUM_of_PaymentOverDueFlag 0.88401 0.03548 24.917 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:
(Intr) YrMnth CstmAS MnSACS Score

YearMonth -0.642
CstmrAgSqrd -0.256 -0.016
MnthsSncACS 0.009 -0.029 -0.295
Score -0.659 0.166 -0.035 -0.032
SUM_f_PyODF -0.212 0.056 0.064 -0.153 -0.274
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Mixed-effects Logistic Regression Model for April

Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature,
nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )
Formula: DCA0Ind ˜ YearMonth + CustomerAgeSquared + MonthsSinceAccountCreatedSquared +

Score + SUM_of_PaymentOverDueFlag + (1 | BK_ACCOUNT_ID)
Data: data

Control: glmerControl(optimizer = "optimx", calc.derivs = FALSE,
optCtrl = list(method = "nlminb", starttests = FALSE, kkt = FALSE))

AIC BIC logLik deviance df.resid
10661.9 10722.5 -5324.0 10647.9 42413

Scaled residuals:
Min 1Q Median 3Q Max

-1.5067 -0.0671 -0.0264 -0.0101 5.1446

Random effects:
Groups Name Variance Std.Dev.
BK_ACCOUNT_ID (Intercept) 6.529 2.555

Number of obs: 42420, groups: BK_ACCOUNT_ID, 14170

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.26502 0.23199 -39.937 < 2e-16 ***
YearMonth 4.05177 0.12950 31.287 < 2e-16 ***
CustomerAgeSquared -2.73496 0.46560 -5.874 4.25e-09 ***
MonthsSinceAccountCreatedSquared -2.82571 0.31395 -9.000 < 2e-16 ***
Score 0.97072 0.26280 3.694 0.000221 ***
SUM_of_PaymentOverDueFlag 0.99503 0.03774 26.362 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:
(Intr) YrMnth CstmAS MnSACS Score

YearMonth -0.627
CstmrAgSqrd -0.256 -0.029
MnthsSncACS 0.002 -0.040 -0.258
Score -0.648 0.191 -0.051 -0.024
SUM_f_PyODF -0.261 0.113 0.051 -0.144 -0.292
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Mixed-effects Logistic Regression Model for May

Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature,
nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )
Formula: DCA0Ind ˜ YearMonth + CustomerAgeSquared + MonthsSinceAccountCreatedSquared +

Score + SUM_of_PaymentOverDueFlag + (1 | BK_ACCOUNT_ID)
Data: data

Control: glmerControl(optimizer = "optimx", calc.derivs = FALSE,
optCtrl = list(method = "nlminb", starttests = FALSE, kkt = FALSE))

AIC BIC logLik deviance df.resid
9893.9 9954.1 -4940.0 9879.9 39973

Scaled residuals:
Min 1Q Median 3Q Max

-1.2821 -0.0737 -0.0297 -0.0115 5.0966

Random effects:
Groups Name Variance Std.Dev.
BK_ACCOUNT_ID (Intercept) 5.573 2.361

Number of obs: 39980, groups: BK_ACCOUNT_ID, 13360

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.28858 0.23755 -39.101 < 2e-16 ***
YearMonth 4.15367 0.13810 30.077 < 2e-16 ***
CustomerAgeSquared -1.85315 0.39211 -4.726 2.29e-06 ***
MonthsSinceAccountCreatedSquared -2.50946 0.30438 -8.245 < 2e-16 ***
Score 1.05123 0.26505 3.966 7.31e-05 ***
SUM_of_PaymentOverDueFlag 0.92987 0.03501 26.558 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:
(Intr) YrMnth CstmAS MnSACS Score

YearMonth -0.663
CstmrAgSqrd -0.252 -0.019
MnthsSncACS 0.002 -0.031 -0.288
Score -0.673 0.229 -0.034 -0.018
SUM_f_PyODF -0.210 0.059 0.066 -0.151 -0.289
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Mixed-effects Logistic Regression Model for June

Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature,
nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )
Formula: DCA0Ind ˜ YearMonth + CustomerAgeSquared + MonthsSinceAccountCreatedSquared +

Score + SUM_of_PaymentOverDueFlag + (1 | BK_ACCOUNT_ID)
Data: data

Control: glmerControl(optimizer = "optimx", calc.derivs = FALSE,
optCtrl = list(method = "nlminb", starttests = FALSE, kkt = FALSE))

AIC BIC logLik deviance df.resid
9960.4 10020.6 -4973.2 9946.4 40223

Scaled residuals:
Min 1Q Median 3Q Max

-1.4922 -0.0748 -0.0300 -0.0115 4.9467

Random effects:
Groups Name Variance Std.Dev.
BK_ACCOUNT_ID (Intercept) 5.644 2.376

Number of obs: 40230, groups: BK_ACCOUNT_ID, 13451

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.13261 0.23180 -39.399 < 2e-16 ***
YearMonth 4.22023 0.14270 29.574 < 2e-16 ***
CustomerAgeSquared -2.32161 0.41496 -5.595 2.21e-08 ***
MonthsSinceAccountCreatedSquared -2.44922 0.30031 -8.156 3.47e-16 ***
Score 0.90953 0.26017 3.496 0.000472 ***
SUM_of_PaymentOverDueFlag 0.87604 0.03464 25.291 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:
(Intr) YrMnth CstmAS MnSACS Score

YearMonth -0.649
CstmrAgSqrd -0.270 -0.013
MnthsSncACS 0.006 -0.029 -0.276
Score -0.649 0.156 -0.001 -0.030
SUM_f_PyODF -0.174 0.048 0.029 -0.153 -0.314
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Mixed-effects Logistic Regression Model for July

Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature,
nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )
Formula: DCA0Ind ˜ YearMonth + CustomerAgeSquared + MonthsSinceAccountCreatedSquared +

Score + SUM_of_PaymentOverDueFlag + (1 | BK_ACCOUNT_ID)
Data: data

Control: glmerControl(optimizer = "optimx", calc.derivs = FALSE,
optCtrl = list(method = "nlminb", starttests = FALSE, kkt = FALSE))

AIC BIC logLik deviance df.resid
8296.3 8355.0 -4141.1 8282.3 32723

Scaled residuals:
Min 1Q Median 3Q Max

-1.2932 -0.0760 -0.0307 -0.0117 5.1420

Random effects:
Groups Name Variance Std.Dev.
BK_ACCOUNT_ID (Intercept) 5.742 2.396

Number of obs: 32730, groups: BK_ACCOUNT_ID, 10951

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.9030 0.2269 -39.242 < 2e-16 ***
YearMonth 4.1363 0.1499 27.586 < 2e-16 ***
CustomerAgeSquared -2.5159 0.4752 -5.295 1.19e-07 ***
MonthsSinceAccountCreatedSquared -2.4388 0.3283 -7.429 1.09e-13 ***
Score 0.8389 0.2456 3.415 0.000637 ***
SUM_of_PaymentOverDueFlag 0.8875 0.0389 22.815 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:
(Intr) YrMnth CstmAS MnSACS Score

YearMonth -0.681
CstmrAgSqrd -0.293 -0.020
MnthsSncACS -0.001 -0.036 -0.275
Score -0.521 0.132 -0.029 -0.021
SUM_f_PyODF -0.293 0.128 0.037 -0.156 -0.326
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Mixed-effects Logistic Regression Model for August

Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature,
nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )
Formula: DCA0Ind ˜ YearMonth + CustomerAgeSquared + MonthsSinceAccountCreatedSquared +

Score + SUM_of_PaymentOverDueFlag + (1 | BK_ACCOUNT_ID)
Data: data

Control: glmerControl(optimizer = "optimx", calc.derivs = FALSE,
optCtrl = list(method = "nlminb", starttests = FALSE, kkt = FALSE))

AIC BIC logLik deviance df.resid
8411.8 8470.5 -4198.9 8397.8 32393

Scaled residuals:
Min 1Q Median 3Q Max

-1.3343 -0.0687 -0.0285 -0.0114 4.1737

Random effects:
Groups Name Variance Std.Dev.
BK_ACCOUNT_ID (Intercept) 6.591 2.567

Number of obs: 32400, groups: BK_ACCOUNT_ID, 10829

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.86010 0.25439 -34.828 < 2e-16 ***
YearMonth 3.83845 0.14001 27.415 < 2e-16 ***
CustomerAgeSquared -2.50459 0.50226 -4.987 6.14e-07 ***
MonthsSinceAccountCreatedSquared -2.41539 0.35847 -6.738 1.61e-11 ***
Score 0.41066 0.29249 1.404 0.16
SUM_of_PaymentOverDueFlag 1.00696 0.04261 23.634 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:
(Intr) YrMnth CstmAS MnSACS Score

YearMonth -0.620
CstmrAgSqrd -0.287 -0.004
MnthsSncACS -0.009 -0.041 -0.287
Score -0.632 0.167 -0.020 0.002
SUM_f_PyODF -0.264 0.145 0.046 -0.165 -0.316
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Mixed-effects Logistic Regression Model for September

Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature,
nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )
Formula: DCA0Ind ˜ YearMonth + CustomerAgeSquared + MonthsSinceAccountCreatedSquared +

Score + SUM_of_PaymentOverDueFlag + (1 | BK_ACCOUNT_ID)
Data: data

Control: glmerControl(optimizer = "optimx", calc.derivs = FALSE,
optCtrl = list(method = "nlminb", starttests = FALSE, kkt = FALSE))

AIC BIC logLik deviance df.resid
11074.7 11135.6 -5530.4 11060.7 44013

Scaled residuals:
Min 1Q Median 3Q Max

-1.5769 -0.0550 -0.0213 -0.0080 4.9294

Random effects:
Groups Name Variance Std.Dev.
BK_ACCOUNT_ID (Intercept) 8.081 2.843

Number of obs: 44020, groups: BK_ACCOUNT_ID, 14703

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.62879 0.21700 -44.372 < 2e-16 ***
YearMonth 4.05247 0.12738 31.814 < 2e-16 ***
CustomerAgeSquared -3.12105 0.52359 -5.961 2.51e-09 ***
MonthsSinceAccountCreatedSquared -3.00867 0.35006 -8.595 < 2e-16 ***
Score 1.13747 0.23867 4.766 1.88e-06 ***
SUM_of_PaymentOverDueFlag 1.02866 0.03921 26.237 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:
(Intr) YrMnth CstmAS MnSACS Score

YearMonth -0.633
CstmrAgSqrd -0.314 -0.012
MnthsSncACS 0.028 -0.043 -0.288
Score -0.565 0.233 -0.027 -0.036
SUM_f_PyODF -0.308 0.042 0.031 -0.167 -0.298
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Mixed-effects Logistic Regression Model for October

Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature,
nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )
Formula: DCA0Ind ˜ YearMonth + CustomerAgeSquared + MonthsSinceAccountCreatedSquared +

Score + SUM_of_PaymentOverDueFlag + (1 | BK_ACCOUNT_ID)
Data: data

Control: glmerControl(optimizer = "optimx", calc.derivs = FALSE,
optCtrl = list(method = "nlminb", starttests = FALSE, kkt = FALSE))

AIC BIC logLik deviance df.resid
11610.0 11671.2 -5798.0 11596.0 46223

Scaled residuals:
Min 1Q Median 3Q Max

-1.6769 -0.0716 -0.0288 -0.0112 5.4661

Random effects:
Groups Name Variance Std.Dev.
BK_ACCOUNT_ID (Intercept) 5.926 2.434

Number of obs: 46230, groups: BK_ACCOUNT_ID, 15436

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.24182 0.21955 -42.093 < 2e-16 ***
YearMonth 3.95081 0.12115 32.610 < 2e-16 ***
CustomerAgeSquared -3.17146 0.43537 -7.285 3.23e-13 ***
MonthsSinceAccountCreatedSquared -2.99519 0.30288 -9.889 < 2e-16 ***
Score 1.67835 0.24888 6.744 1.55e-11 ***
SUM_of_PaymentOverDueFlag 0.92427 0.03374 27.394 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:
(Intr) YrMnth CstmAS MnSACS Score

YearMonth -0.654
CstmrAgSqrd -0.234 -0.025
MnthsSncACS 0.018 -0.050 -0.227
Score -0.692 0.254 -0.043 -0.034
SUM_f_PyODF -0.236 0.100 -0.004 -0.172 -0.255
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Mixed-effects Logistic Regression Model for November

Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature,
nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )
Formula: DCA0Ind ˜ YearMonth + CustomerAgeSquared + MonthsSinceAccountCreatedSquared +

Score + SUM_of_PaymentOverDueFlag + (1 | BK_ACCOUNT_ID)
Data: data

Control: glmerControl(optimizer = "optimx", calc.derivs = FALSE,
optCtrl = list(method = "nlminb", starttests = FALSE, kkt = FALSE))

AIC BIC logLik deviance df.resid
10099.2 10159.4 -5042.6 10085.2 40103

Scaled residuals:
Min 1Q Median 3Q Max

-1.7441 -0.0650 -0.0258 -0.0101 4.9176

Random effects:
Groups Name Variance Std.Dev.
BK_ACCOUNT_ID (Intercept) 6.833 2.614

Number of obs: 40110, groups: BK_ACCOUNT_ID, 13403

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.59971 0.24128 -39.787 < 2e-16 ***
YearMonth 4.05532 0.13372 30.327 < 2e-16 ***
CustomerAgeSquared -2.84551 0.48130 -5.912 3.38e-09 ***
MonthsSinceAccountCreatedSquared -2.75558 0.33992 -8.107 5.20e-16 ***
Score 1.70065 0.27587 6.165 7.06e-10 ***
SUM_of_PaymentOverDueFlag 0.91013 0.03644 24.973 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:
(Intr) YrMnth CstmAS MnSACS Score

YearMonth -0.626
CstmrAgSqrd -0.253 -0.020
MnthsSncACS -0.003 -0.031 -0.257
Score -0.686 0.220 -0.040 -0.028
SUM_f_PyODF -0.196 0.041 0.019 -0.156 -0.275
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Mixed-effects Logistic Regression Model for December

Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature,
nAGQ = 10) [’glmerMod’]

Family: binomial ( logit )
Formula: DCA0Ind ˜ YearMonth + CustomerAgeSquared + MonthsSinceAccountCreatedSquared +

Score + SUM_of_PaymentOverDueFlag + (1 | BK_ACCOUNT_ID)
Data: data

Control: glmerControl(optimizer = "optimx", calc.derivs = FALSE,
optCtrl = list(method = "nlminb", starttests = FALSE, kkt = FALSE))

AIC BIC logLik deviance df.resid
10203.6 10263.8 -5094.8 10189.6 39763

Scaled residuals:
Min 1Q Median 3Q Max

-1.4256 -0.0676 -0.0271 -0.0107 4.4169

Random effects:
Groups Name Variance Std.Dev.
BK_ACCOUNT_ID (Intercept) 6.819 2.611

Number of obs: 39770, groups: BK_ACCOUNT_ID, 13288

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.23768 0.23433 -39.421 < 2e-16 ***
YearMonth 3.92088 0.13137 29.846 < 2e-16 ***
CustomerAgeSquared -2.98854 0.48975 -6.102 1.05e-09 ***
MonthsSinceAccountCreatedSquared -2.52470 0.33653 -7.502 6.28e-14 ***
Score 1.27180 0.26993 4.712 2.46e-06 ***
SUM_of_PaymentOverDueFlag 0.90088 0.03759 23.969 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:
(Intr) YrMnth CstmAS MnSACS Score

YearMonth -0.612
CstmrAgSqrd -0.250 -0.020
MnthsSncACS -0.005 -0.023 -0.299
Score -0.661 0.175 -0.042 -0.007
SUM_f_PyODF -0.219 0.081 0.008 -0.145 -0.296
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