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Abstract

This paper concerns the application of a stochastic interest model based on the LIBOR mar-
ket models (LMM) to evaluate the fair price and risk associated with interest rate derivatives.
After establishing fundamental concepts related to finance and risk management, the func-
tionality of the interest rate model is investigated by inspection of the generated distributions
and pricing of zero-coupon bonds. Furthermore, the model is employed to evaluate two com-
mon interest rate derivatives, namely interest rate floor and swap contracts. The contracts
are priced for a number of different fixed rates, and the associated market risk is quantified
through the risk measures value at risk (VAR) and expected shortfall (ES).

Interest rate derivative transactions are commonly bilateral and subject to counterparty
credit risk. This form of risk and its significance in the financial markets are discussed,
in addition to how to construct a framework to evaluate the counterparty credit exposure.
Increased regulation requires flexibility to account for collateralization, as the majority of
bilateral trades entered into by financial intuitions utilize this form of risk mitigation prac-
tice. The implemented framework is employed to assess the counterparty credit exposure
associated with an interest rate swap contract. Moreover, the effect of collateralization is
investigated by evaluating the impact of each of the standardized collateral agreement pa-
rameters.

The role of stochastic modeling in the financial industry is discussed, particularly in ref-
erence to risk assessment and accounting for the impact of collateralization. Furthermore,
the performance of the implemented stochastic interest rate model is reviewed, with emphasis
on the consequences of the underlying assumptions. In particular, the use of a log-normal
simulation scheme causes a non-negative and asymmetric interest rate distribution and will
be debated in detail.
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Sammendrag

Denne rapporten omhandler bruken av en stokastisk rentemodell, basert p̊a LIBOR mar-
ket models (LMM), til å bestemme prisen til rentederivater, samt risikoen assosiert ved
derivatene. Etter å ha etablert grunnleggende konsept relatert til finans og risikostyring, blir
funksjonaliteten til rentemodellen undersøkt ved inspeksjon av de genererte rente-fordelingene,
samt prising av nullkupongobligasjoner. Videre blir modellen brukt til å evaluere to van-
lige rentederivater; rentegulv-kontrakter og fastrente-kontrakter. Kontraktene er priset for
en rekke forskjellige faste renter, og den tilhørende risikoen er kvantifisert ved bruk av
risikom̊alene value at risk og expected shortfall.

En stor andel av rentederivater er bilaterale, og dermed gjenstand for motpartsrisiko. Denne
formen for risiko, samt dens betydning i dagens finansmarkeder, blir diskutert, i tillegg til
hvordan en kan konstruere et rammeverk for å evaluere motpartseksponering. Økende grad
av regulering gjør at brorparten av bilaterale handler som inng̊as av finansielle institusjoner
bruker sikkerhetsstillelse for å redusere risikoen. Dermed er det nødvendig at et rammev-
erk som skal evaluere motpartseksponering kan ta høyde for denne formen for risikostyring.
Det implementerte rammeverket blir benyttet til å estimere motpartseksponeringen i en fas-
trentekontrakt. Videre blir effekten av sikkerhetsstillelse undersøkt ved å evaluere effekten
til hver av de standardiserte parameterne som definerer sikkerhetsavtalen.

Rollen til stokastisk modellering i finansindustrien blir diskutert, særlig i forbindelse med
risikoevaluering og evnen til å modellere sikkerhetsstillelse. Videre blir ytelsen til rentemod-
ellen vurdert med vekt p̊a konsekvensene av de underliggende antagelsene. Bruken av en
log-normal simuleringsalgoritme gir ikke-negativ og asymmetrisk rente-fordeling, og dette
valget vil bli nøye diskutert.
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1 Introduction

1 Introduction

A widely supported hypothesis in financial economics says that asset prices fully represent
all available information and are traded at their fair value. Further, it says that the market
reacts instantaneously to new information [33]. As the future is largely unknown, so are
future price developments. This motivates the application of stochastic modeling to account
for the uncertainty in the future.

The stochastic nature of financial instruments causes difficulty in predicting future returns,
but perhaps of greater importance, it causes the probability of the actual return deviating
from the expected return to be significant. This is essentially what in finance is referred to
as risk. Hence, the ability to quantify the risk associated with a financial instrument is an
important attribute inherent in a stochastic model.

In this paper, the focus is the application of statistics and stochastic models in the field
of quantitative finance, in particular, modeling of interest rates. It is worth noting that all
models inevitably are imperfect representations of reality, as accurately accounting for the
complex nature of human behavior by a mathematical model is simply not possible [14]. Re-
gardless, stochastic models have proven valuable and may provide useful information despite
its shortcomings. In this respect, it is of great importance to be fully aware of a model’s
assumptions and limitations, in order to apply it where it is appropriate and not overestimate
its capabilities.

The interest rate is the cost of borrowing money, and naturally, it has a profound effect on the
entire economy. Low interest rates cause borrowing to be cheap and stimulates growth, while
high interest rates cause borrowing to be expensive and generally constraints growth [19].
The market nominal of financial instruments dependent on the interest rate is enormous,
just OTC (over-the-counter) interest rate derivatives accounted for roughly $450 trillion in
2017 [25]. Naturally, the importance of market consistent interest rate models able to accu-
rately predict and measure risk associated with future developments is not to be understated.

The modeling of interest rates is more complex than the modeling of asset prices for numer-
ous reasons; the most prominent reason is the vast majority of interconnected and dependent
interest rates. There exist interest rates for a number of maturities, and they are heavily
correlated. If one would simply overlook this dynamic and model one interest rate by one
source of randomness, the model would greatly simplify the interaction between the rates,
and the model would be rendered useless in most practical cases.

A substantial part of this paper is concerned with the formulation, implementation, and
application of the LIBOR market models (LMM), a class of multi-factor interest rate models
capable of capturing the complex correlation structure evident in the interest rate market.
The implemented model is calibrated to historical correlations in the NIBOR rates and em-
ployed to assess the fair price of interest rate derivatives, as well as the associated risk. The
derivatives considered are zero-coupon bonds, interest rate floor contracts, and interest rate
swap contracts.

Further, the model is employed to assess the counterparty credit exposure associated with
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1 Introduction

interest rate derivatives. This is a fundamentally different type of risk and requires a more
sophisticated modeling framework than what is needed to describe market risk (changes in
market variables). This type of risk played a central role in the economic crisis of 2008 [42],
which is commonly referred to as the credit crisis. This destructive display of mismanaging of
counterparty credit risk demonstrates the importance of such models, in addition to effective
risk mitigation practices.

An immensely common risk mitigation practice is collateralization, which entails making
other financial assets (for instance cash) available in the event of a default. This practice
is widespread; hence, in order to construct a realistic framework for credit exposure, one
typically needs to account for collateralization. Collateral usually reduces the exposure sig-
nificantly; however, there are multiple, sometimes subtle, aspects that must be considered
in order to properly assess the true extent of risk reduction. In this paper, the counterparty
credit exposure associated with an interest rate swap contract is evaluated with and without
the presence of collateral, by that quantifying the impact of collateralization.

The report commences by introducing basic financial concepts, which are fundamental when
establishing reasonable constraints on the interest rate models. It includes the concept of
arbitrage, the log-normal random walk for asset prices, interest rates, bonds, financial deriva-
tives, and concepts related to risk.

The next section introduces stochastic interest rate models, starting with the simple one-
factor models, discussing their applications and shortcomings. Subsequently, pricing of bonds
and other interest rate derivatives is discussed, before moving on to the multi-factor interest
rate models, introducing the LIBOR market models (LMM). The section concludes with a
description of the procedure for volatility calibration and how to price interest rate deriva-
tives by a Monte Carlo approach.

Section 4 concerns the last piece of theory needed before embarking on implementing and em-
ploying the interest rate model, namely risk management. As previously stated, quantifying
the risk associated with financial instruments is one of the main applications of a stochastic
model, and in this section two heavily used risk measures are introduced, namely value at
risk (VAR) and expected shortfall (ES). Further, the concept of counterparty credit risk is
formally introduced, including how to measure the risk and common practices employed to
manage it. Particular emphasis is put on the practice of collateralization and how to account
for this effect in a modeling framework.

The next section presents the historical data employed to calibrate the model. In addition
to a plot displaying the historical NIBOR rates, certain descriptive statistics are presented
to describe common tendencies in the rates. Further, the initial rates used for the simulation
are presented, accompanied by the initial yield curve, in order to convey how one would
expect the simulated rates to behave.

Section 6 presents the results and associated discussion. The distribution of rates returned
by the model is evaluated with the true realizations of rates as a reference, before moving
on to pricing interest rate derivatives and quantifying the risk. Thereafter, the counterparty
credit exposure associated with an interest rate swap contract is evaluated. The effect of col-

2



1 Introduction

lateralization is investigated by an individual study of each of the standardized parameters
in a collateral agreement. Lastly follows a conclusion in Section 7, in which the main results
are summarized and discussed.

3
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2 Financial concepts

2 Financial concepts

2.1 Financial markets

A financial market is a broad term describing any marketplace where trading of securities,
including assets, bonds, currencies, and derivatives, occurs [47]. There are many kinds of
financial markets, to mention a few important ones:

(i) Stock markets, where buying, selling and issuance of shares of publicly held companies
take place;

(ii) Bond markets, which deals in government and other bonds;

(iii) Currency markets or foreign exchange markets, where currencies are bought and
sold;

(iv) Commodity markets, where physical assets such as gold, oil and electricity are
traded;

(v) Futures and options markets, on which the derivative products are traded.

2.1.1 Efficient market hypothesis

An important theory in modern financial economics is the efficient market hypothesis
(EHM). Although there are several different versions of the hypothesis, the main conse-
quence coincides: At any time an asset will reflect all available information and trade at
its fair value, implying it is impossible to outperform the market by expert stock selection
or market timing. Hence, current prices reflect all available information, and they will only
shift as a response to new information. As future information is unknown, this theory implies
that asset prices are random. Further, according to this theory, the only way to earn returns
greater than the market, is by taking on greater risk [33].

2.1.2 Arbitrage

Related to the efficient market hypothesis is the concept of arbitrage, which is fundamen-
tal in the theory of financial derivative pricing and hedging. Arbitrage is exploiting market
inefficiencies to make an instantaneous, risk-free profit. An example of arbitrage would be
if the same asset was traded at two different prices, as one in such a case could make an
instantaneous risk-free profit by buying at the lowest price and selling at the highest price.
In efficient markets, such opportunities cannot exist for a significant length of time before
prices move to eliminate them [45].

The concept of arbitrage can be formulated mathematically and serves as a tool when con-
structing statistical models to describe financial instruments. Let Vt denote the value of a
portfolio at time t. If the value satisfies

P (Vt ≥ 0) = 1 and P (Vt 6= 0) > 0, (2.1)

where V0 = 0, then there exists an arbitrage opportunity. Equation 2.1 essentially says
that there exists an opportunity to start without any money, and accumulate a non-negative
amount with a non-zero probability, with no chance of occurring a loss. When constructing a

5



2 Financial concepts

model for a financial instrument one impose a no-arbitrage condition, meaning (2.1) cannot
hold.

2.1.3 Financial assets

A financial asset is a tangible asset that gets its value from a contractual claim, for in-
stance, cash, stocks, or a bank deposit. An important subset of financial assets is financial
securities. A financial security describes a negotiable financial instrument that holds some
type of monetary value [40]. It may represent an ownership position in a publicly traded
company (via stocks), a creditor relationship with a government institution or a corporation
(via bonds), or rights to ownership such as an option.

The main focus in this report is the modeling of interest rates; however, it may be help-
ful to cover a common model for asset prices, as the construction of a stochastic interest rate
model follows the same rationale. The EHM essentially says the asset price is random and
cannot be predicted, and as a result, the price of an asset is often modeled as a random walk.
Suppose at time t the price is S. Consider a small subsequent time interval dt, during which
S changes to S + dS. The most common model decomposes the change into two parts - a
predictable and deterministic change and a random change,

dS = u(t, S)dt+ w(t, S)dX, (2.2)

where dX is a sample from a normal distribution with zero mean and variance dt, i.e.
dX = φ

√
dt, where φ is standard normal. This is known as a Wiener process (Appendix

A). Note that (2.2) does not satisfy (2.1), implying that the model is arbitrage free by con-
struction.

A widely used model on the form (2.2) is the log-normal random walk,

dS = µSdt+ σSdX, (2.3)

where µ is called the drift and σ is called the volatility. This model is used when deriving
the Black-Scholes formula [6], and is hence fundamental for the theory concerning derivative
pricing.

Firstly, note that equation (2.3) does not refer to the past history of the asset price; the
next asset price depends solely on today’s price (Markov property). Secondly, consider the
expectation of dS

E(dS) = E(µSdt+ σSdX) = µSdt, (2.4)

meaning on average the next value for S is higher than the old by an amount µSdt. Thirdly,
the variance of dS is

Var(dS) = E(dS2)− E(dS)2 = E(σ2S2dX2) = σ2S2dt, (2.5)

meaning the standard deviation is proportional to the volatility σ.

By employing an important result, Itô’s lemma [26] (Appendix B), to a function f(S)
one gets the expression

df = σS
df

dS
dX +

(
µS

df

dS
+

1

2
σ2S2 d2f

dS2

)
dt, (2.6)

6



2 Financial concepts

for a small change in f , df . For σ = 0, the change in S is deterministic, and equation (2.3)
models an exponential price development, motivating the choice f(S) = logS. Inserting into
(2.6), and integrating yields

df = σdX +

(
µ− 1

2
σ2

)
dt

=⇒ St = S0 exp

{
σXt +

(
µ− 1

2
σ2

)
t

}
.

(2.7)

That is, St/S0 is distributed according to a log-normal distribution with parameters µ and
σ2 on the form,

log

(
St
S0

)
∼ N

{(
µ− 1

2
σ2

)
t, σ2t

}
. (2.8)

Empirically this model has proven quite successfully, although not without rightful criticism.
Daily log-returns tend to have heavier tails than what is expected from (2.8), and in ad-
dition, realizations close to the mean are observed more frequently than one would expect.
Formally, log-returns are known to be leptokurtic, meaning the occurrence of outliers (ex-
treme outcomes) is more frequent than in a normal distribution [12] [41]. In spite of these
problems, it is widely accepted to be the best simple model and is heavily used in practice.

2.1.4 Financial derivatives

A financial derivative is a financial security with a value that is reliant upon or derived
from an underlying asset or group of assets, usually referred to as simply the underlying [18].

An important subgroup of derivatives is options. An option is a financial contract which
gives the holder of the contract the right to buy or sell an underlying asset, often at a prede-
termined price (exercise price or strike price) and a predetermined time (expiry). The
simplest form of options is the European call and put options. A call option gives the holder
of the contract the right to buy the underlying asset, for instance, a stock, for the exercise
price E, at the expiry date T . Similarly, a put option gives the holder the right to sell for E
at T . Let S be the price of the underlying asset at expiry T , then, with a simple arbitrage
argument, the payoff from a call option C(S, T ) and put option P (S, T ) are

C(S, T ) = max(S − E, 0); (2.9)

P (S, T ) = max(E − S, 0). (2.10)

As one would expect, the payoff from a call option is increasing with the price of the under-
lying asset, while the payoff from a put option is decreasing.

Options have two primary uses: hedging, which will be discussed shortly, and speculation.
The speculation aspect is simply that an investor buys options essentially to make bets on
the movement of the underlying asset, making money, if correct. The holder of an option has
the possibility for an arbitrarily large payoff, with the loss limited to the initial premium. In
addition, buying an option on an asset rather than the asset itself will increase the payout in
percentage of the original investment, as the return of an option responds in an exaggerated
way to changes in the underlying asset. This is known as gearing.

7



2 Financial concepts

2.2 Interest rates

The interest rate is an important quantity in finance, although it is not itself considered a
financial asset as it cannot be bought or sold directly. However, there exists a wide variety of
interest rate derivative products, and the price of other financial assets is highly dependent
on the interest rate.

The interest rate is the cost of borrowing capital, or equivalently, the compensation for
setting money to the disposal of others. That is, the interest rate is the amount charged
by the lender to the borrower for the use of assets, and it is naturally dependent on certain
characteristics of the loan, mainly the time horizon and riskiness [24].

When pricing short term assets, for instance, a stock option, the interest rate is mainly
assumed to be deterministic, often even constant. In reality, interest rates are not deter-
ministic, but when pricing short term assets, the error associated with this simplification is
usually less than 2% [47].

Almost all financial theory assumes the existence of risk-free investments that give a guar-
anteed return with no chance of default. A good approximation to such an investment is
a government bond or a deposit in a sound bank. Following the concept of arbitrage, the
greatest risk-free return than one can make on a portfolio of assets is the same as the return
if the equivalent amount of cash was placed in a bank.

The intuitive rationale for this concept is that if there existed an opportunity to make a
greater risk-free return, sensible investors would exploit this opportunity. By a supply-and-
demand argument that would increase the price to the point that the return would be equal
to that from the risk-free interest.

For valuing derivatives, the most important concept concerning interest rates is that of
present value or discounting. How much is a guaranteed amount E received at the future
time T worth? The answer is found by discounting the future value, E, using continuously
compounded interest. With a constant, risk-free interest rate r, money in the bank M(t)
grows according to

dM

M
= rdt

=⇒ M = cert.
(2.11)

As M = E at t = T ,
M = Ee−r(T−t), (2.12)

or if the interest rate is a known function of time r(t), then

M = E exp

(
−
∫ T

t

r(s)ds

)
. (2.13)

Interest rates are commonly simple, rather than continuously compounded. A simple interest
rate means that if L denotes the rate for an accrual period of length δ (1/4 for three months,
1/2 for six months, etc.), then the interest earned over the period is δL. A forward simple

8



2 Financial concepts

rate is similar. Fix δ and consider a maturity T . The forward rate L(0, T ) is the rate set
at time 0 for the future interval [T, T + δ]. That is, entering into a contract at time 0 to
borrow 1 at time T , the interest made at time T + δ is δL(0, T ). These differences may seem
unimportant, but their significance will become apparent later on.

2.2.1 Bonds

A bond is a debt instrument used to raise capital, mainly issued by governments and larger
companies. The issuer borrows a fixed amount, called the principal, from the buyer of the
bond (the lender). At a predetermined time in the future, the maturity date, the lender is
repaid the principal with interest. It is common that a bond also has annual or semiannual
interest payments, called coupons. If the premium, or any of the coupons are not repaid,
the issuer of the bond is said to default on its debt.

In general, it can be stated that the price of a bond with a given maturity depends on
two things, the interest rate and the riskiness of the loan. For an essentially riskless bond,
like most government bonds, the price is only dependent on the interest rate. For simplicity,
consider a bond with no interest payments, called a zero-coupon bond, with principle
payment Z at maturity T , and let r(t) be the expected short rate for 0 < t < T . For this
simple case, the price of the bond, B(t, T ), is simply the discounted principle payment,

B(t, T ) = Z exp

(
−
∫ T

t

r(s)ds

)
. (2.14)

In the market, the short interest rate r(t) is not directly observable but can be derived from
market prices of zero-coupon bonds with different maturities. For simplicity, let the principle
be one, Z = 1, then by the fundamental theorem of calculus equation (2.14) gives

r(T ) = − ∂

∂T
log(B(t, T ))

= − 1

B(t, T )

∂B

∂T
.

(2.15)

By collecting the prices for a number of bonds with different maturities, equation (2.15) can
be used to deduce the expected short interest rate going forward. Note that if the interest
rate is positive (which it usually is), (2.15) also suggest that

∂B

∂T
< 0, (2.16)

meaning that the longer the lifetime of a bond, the less it is worth.

Closely related to both bonds and interest rates is the yield curve, which is another mea-
sure of the future values of the interest rates. Consider zero-coupon bonds with premium
payment 1, B(T, T ) = 1, and define

Y (t, T ) = − log (B(t, T ))

T − t
. (2.17)

Hence, Y (t, T ) is the average yield on the bond from time t to maturity T . An advantage
with this measure is that it does not require the value to be differentiable with respect to T .

9
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The yield curve is commonly shown as a function of T − t (time to maturity), and the most
common form is increasing - implying it is more rewarding to tie up money for a long time
than for a short time. The development of the yield curve is reported frequently in financial
news as it is known to reflect the market’s expectation concerning several economic aspects,
including expected GDP growth [1], the possibility for a regression [15], as well as the state
of the overall economy going forward [8].

2.2.2 Interest rate derivatives

There exists a wide variety of derivatives relying on the interest rate, including bond options,
floors, caps, and swaps, to mention a few. A bond option is in structure, essentially the
same as a stock option, with the modification that the underlying asset is a bond rather than
a stock. The pricing of a bond option is more complex than the pricing of a stock option, as
the payoff at expiry is dependent on the bond price at that time. As a consequence, the final
condition for the pricing equation is a random variable, adding another layer of uncertainty.
Market practice is therefore often to model the bond price as a log-normal random walk
instead, which is not unreasonable if it is not too close to maturity [46].

Interest rate cap and interest rate floor contracts are commonly used to hedge against
rising and falling interest rates, respectively. A cap is a contract that guarantees to its holder
that an otherwise floating interest rate will not exceed a specified amount, while a floor in
an analogous way guarantees the holder that the interest rate will not go below a specified
amount. A typical cap contract involves multiple possible payments at times ti (for instance
each quarter), called caplets, on the form

Zαi max(rli − rc, 0), (2.18)

where Z is the principal, rli is the floating rate at time ti, rc is the caped rate and αi a time
count fraction corresponding to the form of rL (on a yearly contract, if rl is annual rate and
the caplets are paid every quarter, then α1 would be 1/4 for instance). A cap is thus a sum of
many caplets on the form (2.18). Each caplet can be thought of as a European call option on
the floating rate rL with strike price rc, and is increasing in value with increasing interest rate.

In a similar fashion, a floor is made up of a sum of floorlets on the form,

Zαi max(rf − rli , 0), (2.19)

and can be thought of as a put option on the interest rate. An interest rate floor contract
is decreasing in value as the interest rate increases and thereby increasing in value with
declining interest rate.

An interest swap contract is where two parties agree to exchange payments based on
two different interest rates, often a fixed and a floating interest rate. A swap is thus essen-
tially long a cap and short a floor contract, with cash flow at each payment time proportional
to

max(rli − rc, 0)−max(rc − rli , 0) = rli − rc, (2.20)

implying that the buyer of the floating rate payments profits when the floating rate exceeds
the fixed rate and takes on losses if it declines below.

10
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2.3 Risk

Risk is a broad term essentially describing the chance that an investment’s actual return will
differ from the expected return. A fundamental idea in finance is the relationship between
risk and return. The greater amount of risk an investor is willing to take, the greater the
potential return [17].

Risk is commonly described as being of two types: specific and non-specific. The latter
is also called market risk or systematic risk. Specific risk is the component of risk associated
with a single asset (or a sector of the market), whereas non-specific risk is associated with
factors affecting the whole market. It is possible to diversify away specific risk by having a
portfolio with a large number of assets from different sectors; however, it is not possible to
diversify away the non-specific risk. It is commonly said that specific risk is not rewarded
and that only taking on greater non-specific risk should be rewarded by a greater return [47].

Risk can further be divided into categories depending on the source of uncertainty, for in-
stance, market risk (changes in market variables), operational risk (faults in human or oper-
ational practices), credit risk (default on debt), etc. One may consult, for instance, Wilmott
for an exhaustive categorization of risk types [46] [45]. This will be discussed further in the
context of risk management and counterparty credit risk in Section 4.

2.3.1 Volatility

Volatility is a statistical measure of the dispersion of returns from a given security. Com-
monly, the higher the volatility, the riskier the asset. In section 2.1.3, the standard deviation
of the return was proportional to the volatility of the asset, σ. In this model, the volatility was
assumed to be deterministic and constant; however, in reality, the volatility is stochastic [46].

The volatility is not directly observable in the market and is therefore estimated. There
are two main ways of estimating the volatility of an asset. The implied volatility is the
volatility expected by the market based on the current pricing of options on the asset. This
is done by employing the solution of the Black-Scholes equation (or another relevant closed-
form equation) to obtain the expected volatility based on market prices. This is the volatility
quoted in the VIX-index, which measures the markets overall expected future volatility, com-
monly referred to as the fear index [16].

The second way of estimating the volatility is using the historical volatility. This is
done by calculating the standard deviation of the past returns of an asset and using this
to estimate the volatility going forward. The implied volatility is typically larger than the
historical, as the implied volatility is based on the inversion of an equation building on (2.8),
which, as previously discussed, underestimates the probability of extreme events. Market
prices will naturally reflect the true behavior of the assets, and consequently, the volatility
obtained through inversion of the Black-Scholes equation will typically be higher than the
historical.

Generally, when pricing derivatives, it is preferred to use the implied volatility [30]. The
reason is that it, to a greater extent, represents the current state. The volatility is affected
by recent events, and if using the implied volatility, these are appropriately accounted for as

11
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they are reflected in current market prices. If, however, one would use the historical volatility,
these events would be marginalized.

2.3.2 Hedging

Hedging is making investments, to reduce the risk of adverse price movements in an as-
set. This is usually done by taking an offsetting position, for instance in an option, thereby
taking advantage of the correlation between the asset price and option price. Hedging is in
many ways analogous to taking out an insurance policy. Inherent in hedging is a risk-reward
trade-off - it reduces potential risk, but it also chips away from potential gains [4].

A common example of a hedge that employs the correlation between the asset and its op-
tions, is the delta-neutral approach. Let V be the value of an option, and S the value of
the underlying asset and introduce ∆ as the change in V caused by a change in S, i.e.

∆ =
∂V

∂S
. (2.21)

Now consider a portfolio of n European call options, each with value C(S, t). This portfolio
is sensitive to a change in the underlying asset by n∆. Introduce a short position in n∆ of
the underlying asset to the portfolio, and let Π be the value of the portfolio,

Π = nC(S, t)−∆nS. (2.22)

The portfolio is now hedged against movement in the underlying asset, as

∂Π

∂S
= n

∂C(S, t)

∂S
− n∆

∂S

∂S
= n∆− n∆ = 0.

(2.23)

Hence, a change in the underlying asset causes no change in the value of the portfolio.
However, the portfolio is still sensitive to changes in other relevant parameters. Note that
∆ is not constant over S, so one needs to continuously sell and buy assets to maintain the
hedge.
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3 Stochastic interest rate models

3.1 Stochastic interest rates

As briefly discussed in section 2.2.1, the future interest rates are unknown, but the expected
future rates can be derived from bond prices. However, the realized interest rates can vary
greatly from the expected, stemming from the stochastic nature of the interest rates. The
stochastic modeling of interest rates is therefore of great importance in order to better un-
derstand and predict future developments, as well as to measure risk associated with the
stochastic behavior.

There exists a wide variety of such interest models, with different complexities. The simplest,
the one-factor models, account for one source of uncertainty and are usually used to model
one particular interest rate. The more complex models, the multi-factor models, account for
multiple sources of uncertainty and can be used to model several different interest rates with
different maturities. Firstly, the one-factor models will be discussed before moving on to a
more complex model, introducing the LIBOR market models (LMM).

3.1.1 One-factor models

As the future interest rate is not known and considered uncertain, it is natural to model the
interest rate as a random variable. The one-factor models usually study the behavior of
the interest rate for the shortest possible deposit, commonly referred to as the spot rate.
The stochastic models discussed by Wilmott in [46] are on the form

dr = w(r, t)dX + u(r, t)dt, (3.1)

where dr is the change in the spot rate over a time increment dt, and dX is a Wiener process.

The functional form of w(r, t) and u(r, t) determines the characteristics of the spot rate,
and experience shows that they must have a more complex form than constant coefficients
(like for the asset price model (2.3)). For practical purposes, consider specific forms for u
and w, which have the most general form compatible with a particular tractable class of
solutions [47], namely

w(r, t) =
√
α(t)r − β(t), (3.2)

u(r, t) = −γ(t)r + η(t) + λ(r, t)
√
α(t)r − β(t), (3.3)

for functions α, β, γ, η and λ (which will be discussed further in section 3.1.3). By imposing
suitable restrictions on these functions, one can ensure that the interest rate has specific eco-
nomic properties, for instance, non-negative rates and mean-reverting behavior. The most
popular choices have specific properties and are often named after their inventors. These
models will however, not be discussed in further detail.

As the price of zero-coupon bonds is dependent on the spot rate, a one-factor model builds
up an entire yield curve, essentially from the choice of parameters. If using historical data
to estimate the parameters, the resulting yield curve will not necessarily (extremely seldom)
fit with the market yield curve. As it would be naive to trust the model yield curve over the
one observed in the market, yield curve fitting is often applied to one-factor models. This

13
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is done by allowing one or more of the parameters in the model to be time-dependent and
choosing the form such that the yield curve from the model coincides with the market curve.

A clear advantage of yield curve fitting is that the bond prices, returned by the model,
match the market prices, which makes it market consistent with respect to bonds. However,
this approach has some drawbacks as the model parameters have to be calibrated frequently
in order to capture the high curvature of the short end of the yield curve. One-factor models
are known to be quite inconsistent, largely from the problems concerning the yield curve
fitting.

Another problem with the one-factor models is that all bond prices are related to the same
random factor, and consequently, bond prices are far more correlated in this simplified frame-
work than they are in reality. The importance of the maturity of the bond is underestimated,
as the ability to capture the dynamics concerning multiple interest rates are severely limited
in the one-factor model. This is a consequence of the fact that the development of the yield
curve is very constrained, as one factor drives the development of the entire curve.

3.1.2 Bond pricing with stochastic interest rate

In section 2.2.1, the procedure for pricing risk-free bonds with deterministic future interest
rate, r(t), was covered. This procedure is naturally considerably more complex when one
relaxes the assumption about a deterministic future interest rate and instead models the
interest rate as a stochastic variable.

A derivative is in general, dependent on a variable with uncertain future outcomes, an op-
tion is, for instance, dependent on the price and characteristics of the underlying asset. In
a similar fashion, a bond is dependent on a stochastic variable, the spot rate, and its char-
acteristics. A complication is that in this case there is no underlying asset to hedge with,
as there is when pricing an option. Consider a portfolio with value Π, consisting of long a
bond with value V1 and maturity T1 and short an amount ∆ of a bond with value V2 and
maturity T2,

Π = V1 −∆V2. (3.4)

Similar to when deriving the Black-Scholes formula [6], consider the change in Π over a time
increment dt, employing Itô’s lemma,

dΠ =
∂V1
∂t

dt+
∂V1
∂r

dr +
1

2
w2 ∂

2V1
∂r2

dt−∆

(
∂V2
∂t

dt+
∂V2
∂r

dr +
1

2
w2 ∂

2V2
∂r2

dt

)
. (3.5)

The only stochastic variable in the expression above is dr, so by choosing ∆ = ∂V1

∂r /
∂V2

∂r the
stochastic term disappears, and the change in Π becomes purely deterministic. By appealing
to the concept of arbitrage, this risk-free return should be the same as the return from the
risk-free interest rate,

dΠ =

(
∂V1
∂t

+
1

2
w2 ∂

2V1
∂r2

− ∂V1/∂r

∂V2/∂r

(
∂V2
∂t

+
1

2
w2 ∂

2V2
∂r2

))
dt

= rΠdt

= r

(
V1 −

∂V1/∂r

∂V2/∂r
V2

)
dt

(3.6)

14



3 Stochastic interest rate models

By gathering all terms with V1 on one side, and all terms with V2 on the other side, one
obtains (

∂V1
∂t

+
1

2
w2 ∂

2V1
∂r2

− rV1
)/

∂V1
∂r

=

(
∂V2
∂t

+
1

2
w2 ∂

2V2
∂r2

− rV2
)/

∂V2
∂r

. (3.7)

The right-hand side of the equation above is a function of T1, while the left-hand side is
a function of T2. This implies that both sides are independent of the maturity date, and
therefore it can be written,(

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
− rV

)/
∂V

∂r
= a(r, t), (3.8)

dropping the subscript on V , for some function a(r, t). The function a(r, t) is often written
on the form

a(r, t) = w(r, t)λ(r, t)− u(r, t), (3.9)

for some function λ(r, t) and the functions u(r, t) and w(r, t) as in (3.1). This will prove
convenient later. Inserting for a(r, t), the pricing equation for the zero-coupon bond is

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0. (3.10)

In order to solve this differential equation, the final condition

V (r, T ) = Z, (3.11)

is imposed, simply stating that as the bond is risk-free, the principle is repaid in full at
maturity. Further, in order to solve the equation, the functions u, w and λ need to be
specified, in addition to the boundary conditions in r. This is dependent on the interest rate
model employed and will not be discussed in further detail.

3.1.3 The market price of risk

To give an interpretation of the function λ(t, r) consider an unhedged position in one bond
with maturity T . The change in the value of the bond over a time increment dt is

dV = w
∂V

∂r
dX +

(
∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ u

∂V

∂r

)
dt. (3.12)

From equation (3.10), the factor multiplied by dt can be substituted, and the change in the
bond value can be written

dV = w
∂V

∂r
dX +

(
wλ

∂V

∂r
+ rV

)
dt

=⇒ dV − rV dt = w
∂V

∂r
(dX + λdt).

(3.13)

Note that the left-hand side is the difference between the change in the bond value dV and
the return associated with risk-free interest r, indicating that this difference not zero. In fact,
this difference is not zero as there is some risk associated with the bond. The right-hand side
contains two terms - a deterministic term in dt and a stochastic term in dX. The expected
value of the excess return above the risk-free rate is the deterministic term, hence it may be
interpreted as the excess return above the risk-free rate for accepting a certain level of risk.
As it is proportional to λ, this function is called the market price of risk.
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3.2 The LIBOR market models (LMM)

The LIBOR market model (LMM) is stochastic framework constructed to describe the
forward LIBOR rates (LIBOR is an abbreviation for the London Inter-Bank Offered Rate).
It is also known as the BGM model (Brace Gatarek Musiela model), in reference to the
names of some of the inventors [35].

LIBOR rates are simple, meaning that if L denotes the rate for an accrual period of length
δ (1/4 for three months, 1/2 for six months, etc.), then the interest earned over the period
is δL. The LMM framework aims to model the simple forward LIBOR rates. Fix δ and
consider a maturity T . The forward rate L(0, T ) is the rate set at time 0 for the future
interval [T, T + δ]. That is, entering into a contract at time 0 to borrow 1 at time T , the
interest made at time T + δ is δL(0, T ).

3.2.1 Mathematical formulation

The relation between the rates and bond prices are fundamental in the construction of an
interest rate model, as the quantities are so closely linked. Hence, the relation between the
variables should be used to ensure that the model is reasonable with respect to observed bond
prices. One can obtain the following identity between the forward rates and bond prices,

L(0, T ) =
B(0, T )−B(0, T + δ)

δB(0, T + δ)
(3.14)

Consider a finite set of maturities, referred to as tenor dates, 0 = T0 < T1 < · · · < TM <
TM+1, and let δi = Ti+1−Ti, i = 0, . . . ,M . Let Bn(t) denote the price of a bond maturing at
Tn at time t, 0 ≤ t ≤ Tn, and similarly, let Ln(t) be the forward rate of time t for [Tn, Tn+1].
Rewriting (3.14) yields

Ln(t) =
Bn(t)−Bn+1(t)

δnBn+1(t)
, 0 ≤ t ≤ Tn, n = 0, 1, . . . ,M. (3.15)

The relationship between the bond prices and the forward rates are highlighted in Figure 1.
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T0 T1 T2 TM TM+1
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Figure 1: Illustration of the forward rate term structure

Equation 3.15 implies that bond prices determine the forward rates, however the converse is
not entirely the case. For t equal a tenor date Ti equation (3.15) implies

=⇒ Bn(Ti) =

n−1∏
j=i

1

1 + δjLj(Ti)
, n = i+ 1, . . . ,M + 1. (3.16)

However, at an arbitrary time t, the rates do not directly determine the bond prices as the
discount factor is not entirely specified by the LIBOR rates. For instance, let Ti < t < Ti+1

and consider Bn(t) for some n < i+ 1. Consider pricing with (3.16), and note that LIBOR
rates does not specify the discount factor from Ti+1 to t. Let η(t) be the unique integer such
that

Tη(t)−1 ≤ t ≤ Tη(t), (3.17)

meaning it gives the index of the next tenor date. With this notation

Bn(t) = Bη(t)(t)

n−1∏
j=η(t)

1

1 + δjLj(Ti)
, 0 ≤ t ≤ Tn, (3.18)

thus Bη(t)(t) is the missing factor needed to fully determine the bond price by the LIBOR
rates.

Consider a model on the form

dLn(t)

Ln(t)
= µn(t)dt+ σn(t)>dW (t), 0 ≤ t ≤ Tn, n = 1, . . . ,M. (3.19)
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The coefficients µn and σn may depend on the current rates (L1(t), . . . , LM (t)) and the time
t. The procedure for determining the coefficients is covered by Jamshidian in [27], and by
non-arbitrage considerations with respect to the bond prices he obtains,

µn(t) =

n∑
j=η(t)

δjLj(t)σn(t)>σj(t)

1 + δjLj(t)
. (3.20)

The procedure for determining the volatility structure is somewhat more complicated and
will be covered in detail in Section 3.2.3.

3.2.2 Simulation

In order to simulate from this model, a discretization is required, as simulation in continuous
time is, in general, not feasible. It is only necessary to discretize time, as the maturity
argument is already in a discrete set. Let the time grid be 0 = t0 < · · · < tm < tm+1, in
which the tenor dates are usually included. Simulation of the model can be done in numerous
ways, for instance by an Euler scheme,

L̂n(tt+1) = L̂n(ti) + µn(L̂(ti), ti)L̂n(ti)[ti+1 − ti] + L̂n(ti)
√
ti+1 − tiσn(ti)

>Zi+1, (3.21)

with

µn(L̂n(ti), ti) =

n∑
j=η(ti)

δjL̂j(tj)σn(ti)
>σj(tj)

1 + σjL̂j(ti)
, (3.22)

and where Z1, Z2, . . . , are independent d-dimensional N (0, I) vectors. The hats are used
to identify discretized variables. Given an initial set of bond prices B1(0), . . . , BM+1(0) the
initial values are

L̂n(0) =
Bn(0)−Bn+1(0)

δnBn+1(0)
, n = 1, . . . ,M. (3.23)

An alternative is applying the Euler scheme to logLn, which is particularly attractive in the
case of deterministic σn, as Ln would be close to log-normal in this case. In addition, it does
not allow for negative values, which generally is a desired property. The iteration procedure
is then

L̂n(ti+1) = L̂n(ti) ×

exp

([
µn(L̂(ti), ti)−

1

2
‖σn(ti)‖2

]
(ti+1 − ti) +

√
ti+1 − ti σn(ti)

>Zi+1

)
.

(3.24)

Note that one would only generate L̂n(ti) for n ≥ η(ti), as L̂n cease to be meaningful for
ti > Tn, since the rate is set at Tn and relevant for the interval [Tn, Tn+1].

3.2.3 Calibration and volatility structure

In the previous sections, there has been no discussion about how to determine the volatility
term. In the following section, the procedure for estimating the volatility term in the LMM
setting will be covered, based on the discussions by Glasserman in [20] and by Jamshidian
in [27].
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The variables σn(t) describe two aspects - the level of volatility in the forward rates and
the correlations between the different rates. Firstly, consider the overall level of volatility.
Given the market price of a caplet for the interval [Tn, Tn+1], one can by inverting the Black
formula [5] calculate the implied volatility vn. Hence, for the model to return a caplet price
consistent with the market price, the volatility σn can be any deterministic Rd function
satisfying,

1

Tn

∫ Tn

0

‖σn(t)‖2dt = v2n. (3.25)

By imposing this constraint on all σj , one ensures that the model is calibrated to market
caplet prices.

As the interest rates over accrual periods shorter than [Ti, Ti+1] are not specified, it is cus-
tomary to restrict attention to functions constant between tenor dates. Let each σn be
right-continuous and denote the value over the interval [Ti, Ti+1) by σn(Ti). Suppose for the
time being that d = 1, implying that each σn is scalar valued. In this particular case, it
may be convenient to think of the volatility structure as specified through a lower-triangular
matrix on the form 

σ1(T0)
σ2(T0) σ2(T1)

...
...

. . .

σM (T0) σM (T1) ... σM (TM−1)

 (3.26)

As each Ln(t) cease to be meaningful for t > Tn, the upper half of the matrix is irrelevant.
Note that ∫ Tn

0

σ2
n(t)dt = σ2

n(T0)δ0 + σ2
n(T1)δ1 + · · ·+ σ2

n(Tn−1)δn−1, (3.27)

hence (3.25) further constraints the sum of squares along each row in the matrix.

If σn(t) is only dependent on n and t through the difference Tn − t, the volatility struc-
ture is said to be stationary. In this case, the matrix given in (3.26) takes the form

σ(1)
σ(2) σ(1)

...
...

. . .

σ(M) σ(M − 1) ... σ(1)

 (3.28)

where σ(i) can be thought of as the volatility of a forward rate i periods away from matu-
rity. Note that in this case, the number of variables equals the number of caplets maturities,
and calibration to additional instruments requires introduction of additional factors or non-
stationarity.

In a multi-factor model (d ≥ 2), the entries σn(Ti), i = 1, . . . , n, in (3.26) are replaced
by the norms ‖σn(Ti)‖, as each σn(Ti) is now a vector. With σn(t) piece-wise constant,∫ Tn

0

‖σn(t)‖2dt = ‖σn(T0)‖2δ0 + ‖σn(T1)‖2δ1 + · · ·+ ‖σn(Tn−1)‖2δn−1, (3.29)

19



3 Stochastic interest rate models

implying that the extended model does not provide increased flexibility in matching implied
volatilities from caplet prices. The potential value of a multi-factor model is inherent in its
ability to capture correlations between forward rates of different maturities. From (3.24) it
follows that

ρ(logLj(t), logLk(t)) ≈ σk(t)>σj(t)

‖σk(t)‖ ‖σj(t)‖
, (3.30)

where ρ(·, ·) is used to denote the correlation. A common choice is choosing the volatility
structure such that it matches historical correlations.

In markets such as the Norwegian, where caps are rather illiquid assets, calibration of the
volatility terms based on the method proposed above proves difficult. As a consequence,
models are commonly calibrated to match historical correlations, in particular, if the pur-
pose of the model is not pricing of interest rate derivatives and market consistency is not
of the utmost importance. A way to conduct such a calibration is to choose a stationary
structure, such that the volatility for rate Ln is only dependent on time to maturity,

σn(t) = σ(Tn − t). (3.31)

Further, for an iteration scheme on the form (3.24), calculate the covariance matrix Σ for
the log-differences in the forward rates, and compute the spectral decomposition

Σ = V ΛV −1, (3.32)

where Λ = diag(λ1, . . . , λM ) is a diagonal matrix with increasing eigenvalues along the diag-
onal. The number of factors in the model can then be chosen to be such that it explains a
satisfactory amount of the variability in the data. This is done by employing the result that
the first d factors explain a fraction

∑d
i=1 λi∑M
i=1 λi

(3.33)

of the variability in the original data. Typically, one will choose d such that it explains a
certain percentage of the variability, e.g. 90 %. If the number of factors is d, the volatility
factors are

σin =
√
λiVni, for i = 1, . . . , d, n = 1, . . . ,M, (3.34)

where σin denotes the ith volatility factor a forward rate Tn from maturity. Note that this
implies approximate compliance with the relation (3.30) (exact compliance if the number of
factors equal the number of rates, d = M).
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Figure 2: Hypothetical volatility factors

This type of factor analysis typically produces the qualitative features of the volatility factors
displayed in Figure 2. The first volatility factor is commonly relatively constant across matu-
rities, and as it causes all rates to shift in the same direction, it represents a parallel shift in
the yield curve. The second factor typically shifts from negative values to positive values (or
vice versa) and thereby causes the short and long end of the yield curve to move in opposite
directions. The third factor moves the short and long end in the same direction while mov-
ing the middle in the opposite direction, thereby causing the yield curve to steepen or flatten.

These qualitative features should be present in the volatility factors of a multi-factor in-
terest model and serve as a primary sanity check [38]. However, they will typically not be so
distinct, and deviations may occur. The volatility factors displayed in Figure 2 are calculated
from the hypothetical covariance matrix expressed by

Σij = 0.52 exp

(
−1

2

√
|i− j|

)
, i, j = 1, . . . , 15. (3.35)
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3.2.4 Pricing of interest rate derivatives

The main application of a multi-factor interest rate model is to evaluate the fair price, and
corresponding uncertainty, of interest rate derivatives. In particular, the uncertainty is of
interest, as it may be applied to measure and manage the risk associated with the derivatives.
This will be discussed further in Section 4.

Depending on the procedure for determining the volatility structure, the model will be mar-
ket consistent with respect to different financial instruments. For some derivatives, there
exist close-form solutions [34], however, in the following, emphasis will be on obtaining the
estimates through Monte Carlo approach (Appendix C).

The forward rates are initialized according to (3.15), and as the model is derived with non-
arbitrage considerations, the model should return bond prices consistent with the initial val-
ues. Hence, the pricing of zero-coupon bonds by simulation serves as a useful verification tool.
The procedure to determineBn(0) by simulation is to generate L̂1(T1), L̂2(T2), . . . , L̂n−1(Tn−1)
from the model, and calculate the present value of the bond by

B̂n =

n−1∏
j=0

1

1 + δjL̂j(Tj)
. (3.36)

Averaging over many realizations will give the expected value of the bond, and hence an
estimate of the fair price.

If the volatility structure is calibrated as suggested for the Norwegian market, the model
will not necessarily be market consistent for other interest rate derivatives. However, it may
be employed to give a reasonable estimate of the fair price and to determine the uncertainty
in the expected payoff.

Consider a derivative dependent on L1, L2, . . . , Ln with payoff g(L(Tn)) at time Tn. In
order to price this derivative, simulate to time Tn and calculate the present value of the
payoff

g(L̂(Tn))

n−1∏
j=0

1

1 + δjL̂j(Tj)
. (3.37)

Again, averaging over many independent replications, results in an estimate of the price of
the derivative at time 0.
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4 Risk management

The process of identification, analysis and, finally, acceptance (or mitigation) of uncertainty
related to investments is, in the financial industry, referred to as risk management. As
mentioned in section 2.3, risk is a broad term essentially describing how likely the return is
to deviate from the expectation. Although risk generally provokes predominantly negative
associations, in the financial industry, it is necessary and inseparable from performance ac-
cording to the efficient market hypothesis [47].

The amount of risk one is willing to accept, depends on the risk tolerance, which is an
expression of the capacity to tolerate risk based on specific financial circumstances and the
propensity to do so. In this section, the main focus is describing the different types of risk and
how to quantify the risk through risk measures. The practical application of the measures
includes managing the risk through risk mitigation practices such as netting and collater-
alization. How such practices may be implemented, in addition to how their effect may be
quantified, is also discussed.

4.1 Risk measures

Central in risk management is the use of risk measures, which are statistical measures
quantifying the risk associated with an investment, for instance, determining the amount of
capital necessary to satisfy regulative requirements.

If X is a stochastic variable (e.g. the daily log-returns on a portfolio), then ρ(X) is said
to be a coherent risk measure if it satisfies:

(i) Sub-additivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).
Meaning that the risk associated with two portfolios together cannot be larger than the
sum of the individual portfolios (diversification principle).

(ii) Monotonicity: If X ≤ Y in every scenario, then ρ(X) ≤ ρ(Y ).
That is, if the return of Y is larger than X in every scenario, then Y is the riskier
portfolio.

(iii) Positive homogeneity: If α > 0, then ρ(αX) = αρ(X).
Implying that if the value of the portfolio doubles, so does the associated risk.

(iv) Translation invariant: If γ > 0, then ρ(X + γ) = ρ(X)− γ.
Meaning that adding cash (a risk-free return) to a portfolio, lowers the associated risk.

These assumptions are reasonable to impose on a risk measure, as inconsistencies may cause
non-intuitive results. Hence, coherent risk measures are generally preferred over alternative
risk measures [2].

4.1.1 Value at risk

Value at risk (VAR) is a risk measure heavily used in practice and is a statistical technique
to quantify the risk associated with an asset over a specific time frame. More precisely, if X
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is the return on a portfolio over a given time period, then VARα(X) is defined as the number
corresponding to the lower (1-α)-quantile of the distribution of X,

VARα(X) = inf{x ∈ R : FX(x) > 1− α}. (4.1)

The intuitive interpretation is the loss occurring with probability 1-α. Although this measure
is widely used and easy to grasp, it has certain downsides, in particular, the violation of the
sub-additivity property. As the value at risk measure does not consider the tail of the
distribution, merely the quantile, it is rather easy to construct portfolios to which the value
at risk returns misguiding results, which could discourage diversification [31]. Despite not
being a coherent risk measure, it is simple and easily interpretable, and therefore still an
industry favorite.

4.1.2 Expected shortfall

Expected shortfall (ES) (also referred to as conditional value at risk) is a slightly more
complex risk measure, derived from the value at risk. Expected shortfall quantifies the tail
risk of an investment, by a weighted average of outcomes in the tail beyond the value at risk
cutoff. Mathematically it is defined as

ESα(X) =
1

α

∫ α

0

VARγ(X)dγ. (4.2)

Meaning, it is the expected loss, given that the loss exceeds the value at risk. Contrary to
the value at risk, the expected shortfall is a coherent risk measure, as it considers the entire
lower tail rather than simply the lower quantile. Hence, it provides more information about
the potential loss than the value at risk. However, it is more challenging to get a reasonable
estimate for the expected shortfall as it demands excessive knowledge of the tail, which
generally is the least explored part of the distribution. In order to convey a comprehensive
measure of the risk, the ES is often used in combination with the VAR.

4.2 Counterparty credit risk

Counterparty credit risk describes the risk arising from the possibility that the coun-
terparty does not honor its contractual obligations, i.e., defaults on amounts owned on a
derivative transaction. Only contracts that are privately negotiated between counterpar-
ties, for instance, swap contracts, are subject to counterparty risk. Securities traded on an
exchange are not affected by this type of risk, as the exchange guarantees the cash flows
promised by the derivative.

An important feature inherent in the concept of counterparty credit risk is that the risk
is bilateral; each party has credit risk concerns with respect to the other party. This is a
subtle, but important distinction from what is usually referred to as credit risk, where the
party lending money takes on credit risk while the other party (the lender) takes no such risk.

Although counterparty risk is in one sense a specific form of credit risk, the significance
is greater than what such a description might suggest. Counterparty risk requires knowledge
of a wide specter of different forms of risk, as it is manifested as a combination of credit risk
and other types of risk [21];
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(i) Market risk. The interaction between market and credit risk has long been associ-
ated with counterparty credit risk. The counterparty credit exposure is essentially the
market value of the contract, and as market risk describes the risk arising from changes
in market variables, the exposure to a particular counterparty is naturally subject to
said changes.

(ii) Market liquidity risk. In the case of a defaulting counterparty, the collateral (if
applicable, covered in Section 4.2.4) and the position need to be liquidated and closed
out. This process is subject to market liquidity risk, which refers to the risk that the
asset cannot be traded quickly enough in the market without impacting the price.

(iii) Funding liquidity risk. If the parties of a contract are required to post collateral
(discussed in Section 4.2.4), this may cause liquidity issues if the changes in the contract
valuation are significant enough. This may further question the creditworthiness of the
counterparty.

(iv) Operational risk. The process of managing counterparty risk relies on practices such
as netting and collateralization (Section 4.2.3), which introduce operational risk from
the probability that these practices are poorly or insufficiently handled.

(v) Systemic risk. Market participants are closely linked, and the default of one may
provoke a chain reaction causing other participants to default. Moreover, the use of
central counterparties (Section 4.2.3) introduces greater systemic risk to the market,
due to the possibility that they themselves might fail.

Furthermore, the interaction of these risks plays a defining role in the nature of counterparty
risk. The ability to quantify and manage counterparty risk is crucial for the growth and
stability of the financial markets - the effect of the opposite; poor understanding and man-
agement of counterparty risk is demonstrated by the financial crisis of 2008 [28].

Commonly, counterparty credit risk is divided into three parts; probability of default,
loss given default and counterparty credit exposure. The two former describe the
probability that the counterparty defaults and the loss given that it defaults, respectively.
An exhaustive framework for counterparty credit risk would incorporate all these parts, as
outlined by Chatterjee in [10]. However, this thesis exclusively focuses on the last component
of counterparty credit risk, namely counterparty credit exposure.

4.2.1 Counterparty credit exposure

The counterparty credit exposure (often referred to as simply exposure) is the amount one
could potentially lose in the event that the counterparty defaults. If at any point the coun-
terparty defaults, the exposure is the current value of the remaining future payments. More
precisely, it is the replacement cost of the contract. The value of derivative contracts can
fluctuate significantly over time; hence, it may be useful to consider the exposure at future
times, referred to as potential credit exposure. The current exposure is known, the market
value of the contract, while the future exposure is uncertain.

A defining characteristic of exposure is the fact that a positive valuation of the deriva-
tive corresponds to a claim on a defaulting counterparty, while in the event of a negative
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valuation, one cannot walk away from the contractual obligations. Meaning, if a party is
owed money and their counterparty defaults they will incur a loss, however, in the reverse sit-
uation they will not gain from the default as they will not be released from their liability [21].

Determining the counterparty credit exposure entails calculating the potential loss if the
counterparty defaults at some time. By convention, any recovery value in the event of a
default is ignored, and consequently, the exposure is the loss as defined by the replacement
cost of the derivative. Note that exposure is conditional on counterparty default [9].

Consider an interest rate derivative subject to counterparty credit risk, for instance, an
interest rate swap contract. Denote the value of the derivative Vt at time t, for 0 ≤ t ≤ T .
The value of the derivative may take both positive or negative values, depending on the
particular derivative - a swap may for instance yield cash flows in both directions depending
on the movements in the underlying interest rate.

As previously mentioned, the counterparty credit exposure is the replacement cost of the
contract, i.e., the market value of the contract. The procedure for obtaining the potential
exposure involves generating realizations of the underlying risk factors at future points in
time. For interest rate derivatives, this entails generating the relevant interest rates. Fur-
ther, in order to determine the potential exposure, one needs to calculate the price of the
derivative for each realization of the underlying risk factors. In the absence of a closed form
solution, pricing the derivative requires a new simulation according to (3.37). This procedure
is highlighted in Figure 3.
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Figure 3: Illustration of the simulation procedure to obtain the counterparty credit exposure
in the absence of a closed form solution

The red lines in Figure 3 indicate the generated scenarios of the underlying risk factors,
while the blue lines indicate the simulations required to obtain the price of the derivative.
Note that sub simulations start from where the relevant main simulation ends, at each rel-
evant time indicated by the vertical black lines. There is no need to calculate the value of
the derivative for other times, and consequently, there is no need for sub simulations. Fi-
nally, note that the main simulations continue until the maturity T , and the red lines are
removed prior to the sub simulations purely to avoid the graph from becoming overpopulated.

From the derivative values generated by the procedure above, one can construct the em-
pirical price distribution at each of the predetermined time points. From the distribution
one extracts the desired statistical quantities (discussed in Section 4.2.2). A schematic il-
lustration of the procedure is presented in Figure 4, also highlighting the end product when
aggregating the results for the different time points.
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Figure 4: Illustration of the construction of the potential counterparty credit exposure from
the simulated derivative values

The mathematical definitions of the red and blue line, and their practical implications are
discussed in Section 4.2.2. For the time being, it is sufficient to think of them as describ-
ing some aspect of the counterparty credit exposure. The lines indicating the derivative
value are purely for illustration purposes, as one would not calculate the derivative value at
every time point, merely at the predetermined time points of interest, as previously discussed.

The general form of the exposure profile is descriptive of the typical counterparty credit
exposure inherent in an interest rate swap contract. The current exposure is known, and
naturally, the initial value of all the simulated derivative values coincide at this point. The
potential exposure increases as the future value of the derivative is unknown. The uncertainty
in the underlying risk factors is typically largest at maturity, as the uncertainty increases
the further from the initial condition one considers. However, the exposure is commonly
not largest at maturity, despite the uncertainty in the underlying being the largest. Simul-
taneously with the increase in uncertainty, payments are exchanged, and consequently, the
magnitude of the outstanding payments decrease. As a result, although the uncertainty
increases, the exposure typically decreases slightly close to maturity.
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4.2.2 Counterparty risk measures

As outlined in Section 4.2.1, the simulated values of the derivative, Vt, are used to construct
the empirical distribution. Further, one may extract the statistical quantities of interest,
which describe certain aspects of the counterparty credit exposure. The metrics used to
describe the counterparty credit exposure are fundamentally different from the risk measures
discussed in Section 4.1. While the risk measures discussed previously describe some aspect
of loss, the measures used for exposure are describing gain, as this is the amount at risk if
the counterparty defaults and renders the contract worthless [48].

A frequently employed metric is the expected positive exposure (EPE), defined as

EPEt = E(max(Vt, 0)) = E(V +
t ). (4.3)

The expectation is taken over the positive valuations, as the case of a default in the event of
a negative valuation will not result in a loss.

Potential future exposure (PFE) aims to account for the worst potential exposure one
could have a certain time in the future, defined as

PFEα,t = inf{x ∈ R : P (Vt ≤ x) ≥ α}. (4.4)

Note that the definition is analogous to the definition of VAR (4.1), with the modification that
PFE is associated with a gain rather than a loss. For instance, the PFE at confidence level
α = 99% is the exposure that would be exceeded with a probability no more than 1−α = 1%.

As PFE is defined as the upper quantile of the distribution, the measure is subject to the
same criticism as the value at risk, namely that it violates the sub-additivity property. Con-
sequently, one can construct portfolios to which the PFE fails to accurately capture the
associated risk, by that yielding misleading results.

A possible approach to sidestep this problem is to use the expected shortfall instead; however,
this comes at the added expense of generating a large sample to obtain an accurate estimate.
Expected shortfall is generally employed when it is convenient to take into account events of
significant magnitude that can occur with only a very small probability. A typical example
is credit derivatives (discussed in Section 4.2.3), where the default of the party protected by
the derivative is a low probability event, albeit with significant impact. In this report, the
exposure is described through EPE and PFE.

4.2.3 Counterparty risk management

After having computed the exposure, the next step is to employ it to effectively manage the
counterparty risk. A straightforward manner to mitigate the risk with regards to a particu-
lar counterparty is to restrict the exposure, for instance, based on the value of the PFE, by
not doing any business which would force the PFE above a certain threshold. These limits
will reflect the quality of the counterparty, in addition to the credit risk appetite towards
the particular counterparty. This is also a natural approach to control the exposure to, for
instance, a given geographical region or business type [21].
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Restricting the magnitude of the exposure to a particular counterparty does not reduce
the exposure with regards to contracts already agreed upon. One way of actively reducing
this exposure is netting. Netting is legally offsetting negative and positive positions with the
same counterparty, thereby, in the event of default, giving additional benefits at the expense
of other creditors. More precisely, if a company has n contracts with a counterparty, each
with value vit at time t, i = 1, . . . , n. Then, rather than considering the exposure of each
individual contract and then adding the individual exposures, the contracts are aggregated
prior to calculating the exposure, so one would rather consider

n∑
i=1

vit ≤
n∑
i=1

vi+t . (4.5)

Clearly, the exposure of the netted position is less or equal to the exposure of the un-netted
position. Ignoring the operational costs, netting is essentially free. However, the impact of
netting is finite and heavily dependent on the type of transactions [9]. For instance, netting
has a more significant effect if the contracts are negatively correlated than if they are posi-
tively correlated.

Collateralization is a way to reduce counterparty credit risk more significantly, and in
theory, even eliminate it entirely. However, it is associated with considerable operational
costs, as well as giving rise to other risks, including liquidity risk and operational risk. Col-
lateral may be posted as cash or other liquid assets and is used as protection against the
default of the counterparty. In the event of default, the loss is partially or completely cov-
ered, and, consequently, the potential exposure is reduced by means of collateralization. The
reason to include a collateral agreement in a transaction is naturally to reduce the exposure,
for instance, with the objective to do more business with the particular counterparty without
exceeding the exposure limit. The impact of collateralization is further discussed in Section
4.2.4, in addition to how to account for this effect in a modeling framework.

The use of central counterparties (CCP) is another way to mitigate counterparty credit
risk, or rather, move the exposure to a central counterparty with high credit rating. In effect,
this offers advantages such as risk reduction and operational efficiencies, as all the exposure
is gathered towards one counterparty. The CCP agrees to meet the contractual obligations if
one of the counterparties in the trade defaults, hence the counterparty credit risk is severely
limited by the introduction of a CCP in most cases. However, CCPs potentially allow asym-
metric information flow, in addition to creating greater systematic risk due to the possibility
that they themselves may default.

Counterparty credit risk may also be mitigated in another manner, by hedging through the
purchase of credit derivatives. There exists a wide variety of credit derivatives, many of
them infamous from their central role in the economic meltdown of 2008 [42], including credit
default swaps (CDS) and collateralized debt obligations (CDO). In this case, the derivatives
were employed as speculative vehicles and magnified the overall risk in the market. Despite
the destructive display in the economic crisis, credit derivatives may be useful in reducing
(or even removing) the counterparty credit risk associated with a portfolio.

A credit default swap (CDS) is designed to transfer the credit exposure of a contract
from the buyer of the CDS to the seller. The seller agrees that in the event the debt issuer
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(original counterparty) defaults, the buyer will be reimbursed the outstanding payments in
the security. Thereby, the counterparty credit concerns are in a way transferred to the seller
of the CDS, and typically, these concerns are small as the seller tends to have high credit-
worthiness. In a sense, CDS is constructed such that credit risk can be borne by those in the
best position to bear it. A CDS is usually constructed such that the buyer makes payments
to the seller over the lifetime of the security, analogous to an insurance policy. The pricing of
a CDS, and credit derivatives in general, relies on a framework similar to the one explained
to evaluate the counterparty credit exposure, with emphasis on the extreme outcomes [22]
[23]. In addition, the pricing procedure will have to incorporate the probability of default
and loss given default, which will not be discussed in this paper.

4.2.4 Collateralization

In this section, the quantification of credit exposure is discussed under the presence of col-
lateral. The use of collateral is widespread, as increasing regulation requires all bilateral
trades between financial counterparties to be collateralized [11]. In addition, an increasing
number of bilateral trades with other parties are collateralized as this reduces the associated
risk and generally induces a better deal for both parties [36]. Hence, in order to construct a
realistic framework for credit exposure, one typically needs to account for collateralization.
Collateral usually reduces the exposure significantly; however, there are multiple, sometimes
subtle, aspects that must be considered in order to properly assess the true extent of risk
reduction. Note that collateral often is referred to as margin.

While the cash-flows in a contract may be yearly, the contract is typically valued far more
frequently, often on a daily basis. Collateral may be posted such that the net exposure is zero,
according to the current value of the contract. However, setting up a collateral agreement
is more complex than what such a simple explanation might suggest, as there are multiple
considerations that need addressing to ensure that the agreement mitigates the risk to a sat-
isfactory extent, while not requiring excessive operational mandating. These considerations
translate into collateral agreement parameters that define the impact of the collateraliza-
tion. A brief introduction to the parameters, which correspond to the ones described in the
standardized legal protocol CSA (Credit Support Annex) provided by ISDA (International
Swaps and Derivatives Association) [43], is presented in Table 1.

Parameter Description

Margin frequency The frequency of margin exchanges, i.e. how often one is required to post collateral.
inv

Independent margin Initial collateral posted independent of the market value, and independent of any
subsequent collateralization.

Threshold Value of the contract for which collateral shall start to be exchanged.
Below this value, no collateral is required.

Minimum transfer amount Limits the need to honor margin calls below a certain threshold, aiming to reduce
operational costs.

Eligible collateral Type of collateral required, cash being the most common.
inv

Bilateral or unilateral Determining if both parties or just one party is required to post collateral.
Note that the above parameters may be different for the two parties involved.

Table 1: Collateral agreement parameters.
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Despite the contract being valued rather frequently, it is typically impractical to post col-
lateral equally often, as that would induce higher operational costs, in addition to potential
liquidity issues. Rather, one decides on a margin frequency, with the time between margin
calls referred to as the re-margin period. In an exhaustive framework, one would need to
make further considerations in order to capture the operational dynamics in a margin call
[21]. This includes:

(i) Valuation. This represents the time to compute the exposure and current market
value of the collateral.

(ii) Receiving collateral. This represents the delay due to the counterparty processing
the collateral request.

(iii) Settlement period. Depending on the type of collateral, there will be a settlement
period, implying the collateral will not be received immediately. For cash, the settle-
ment period is typically very short, while other types of assets may be subject to longer
periods.

(iv) Grace period. In the event the relevant collateral is not received following a valid
collateral call, there may be a grace period before the counterparty is deemed to be in
default.

(v) Liquidation. Finally, it will be necessary to liquidate the collateral (if it is not cash),
in order to close out the position.

If these periods can be assumed negligible in comparison to the re-margin period, the defining
quantity is the margin frequency, as illustrated in Figure 5.
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Figure 5: Illustration of the impact of the margin frequency on a collateralized exposure.

As Figure 5 suggests, the exposure of a collateralized contract is determined by the volatility
in the re-margin period, as the position is assumed to well collateralized at each margin call.
In a case where the threshold and MTA are 0, the exposure is entirely a reflection of the
changes between margin calls.

However, simply considering the re-margin period is typically a somewhat too crude as-
sumption, as the margin frequency tends to be rather high. Consequently, in order to real-
istically capture the effect of collateralization, the periods mentioned previously need to be
considered. The period from the margin call to the collateral may be accounted for in the
calculation of the exposure is referred to as the close-out period. In this framework it is
split into settlement period and liquidation period, as illustrated in Figure 6.
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Figure 6: Illustration of the close-out period and its impact on the collateralized exposure.

The period starts at ts at which point the counterparty may have become insolvent and ends
at te at which point the collateral has been liquidated, and the position has been closed
out. The intermediate time point tl indicates the end of the settlement period, which is
from the margin call until the collateral is received. The liquidation period represents the
time it takes to liquidate the collateral and close out the position, in which period it is
assumed that no payments are exchanged. However, as the position is not closed, the expo-
sure is subject to risk accumulation over the entire close-out period, as illustrated in Figure 6.

Commonly, the settlement period is significantly shorter than the liquidation period. In
fact, if the collateral is cash, the settlement period may even be negligible. The length of the
settlement period is of particular significance in relation to derivative transaction cash-flows,
giving rise to what is referred to as collateral settlement risk [29]. In this paper, however,
the collateral is assumed to be cash, and so the close-out period is essentially the liquidation
period. The entire close-out period is typically assumed to be around ten business days and
is referred to as the margin period of risk (MPOR).

Mechanisms aiming to reduce the operational burden give rise to the parameters threshold
and minimum transfer amount. The former describes the exposure for which collat-
eral shall start to be exchanged, while exposures below the threshold are deemed too low to
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require risk mitigation through collateralization. In the case the exposure exceeds the thresh-
old, only the incremental exposure is posted as collateral. The latter describes a threshold
for each individual posting of collateral, thereby limiting the need to honor margin calls be-
low this threshold, hence avoiding frequent transfers of insignificant amounts. Both of these
represent the balance between risk mitigation and operational burden.

As long as the counterparty posting the collateral is not in default, it remains the owner
of the collateral from an economic point of view. Hence, coupon payments, dividends, and
other cash flows must be passed on by the receiver of the collateral. However, in the case of
an immediate margin call, the collateral receiver will typically keep the minimum component
of the cash flow in order to remain appropriately collateralized.

From a modeling perspective, the impact of collateral may be accounted for after the simu-
lation of the exposure, assuming the collateral agreement depends only on the exposure and
not on other market variables. This assumption is typically valid as long as the collateral
does not depend on currency translations, which will not be considered in this paper. This
assumption will greatly simplify the analysis of the collateralized exposure.

Consider an uncollateralized exposure at time t of Et, with the amount of collateral being
held denoted Ctm , where tm represents the time of the last margin call (tm ≤ t). Generally,
there are two sources of risk for a collateralized exposure:

(i) The risk stemming from an increase in exposure in-between margin calls, corresponding
to Et > Etm (as illustrated in Figure 5).

(ii) The risk stemming from imperfect collateralization due to terms in the collateral agree-
ment (threshold, minimum transfer amount, etc.), corresponding to the event Etm >
Ctm .

If the close-out period is non-negligible, the considerations are analogous but somewhat more
tedious. This emphasizes the fact that the treatment of collateral is path-dependent, as the
exposure is dependent on the amount of collateral posted in the past, as is the incremental
amount of collateral required.
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5 Data presentation

5.1 Historical data

The interest model implemented in this paper aims to model the NIBOR (Norwegian Inter-
Bank Offered Rate) of different maturities, employing an LMM framework. In total, 1806
historical NIBOR realizations from 02.01.2012 to 11.03.2019 for a range of maturities are
used for model calibration. An overview of the historical data is displayed in Figure 7,
accompanied by descriptive statistics in Table 2.

Figure 7: Historical NIBOR 02.01.2012 to 11.03.2019
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Maturity Average rate (%) Volatility (%)

3 months 1.42 0.46

6 months 1.37 0.45

9 months 1.36 0.45

1 year 1.37 0.46

1.25 years 1.39 0.49

1.5 years 1.42 0.52

1.75 years 1.45 0.55

2 years 1.49 0.57

3 years 1.60 0.59

4 years 1.73 0.62

5 years 1.86 0.64

6 years 1.99 0.66

7 years 2.11 0.68

8 years 2.21 0.69

9 years 2.29 0.70

10 years 2.37 0.71

12 years 2.47 0.72

15 years 2.55 0.72

Table 2: Descriptive statistics for the historical NIBOR 02.01.2012 to 11.03.2019

Note that the interest rate generally is increasing in maturity, which is what one would ex-
pect - higher yields are typically demanded for tying up money for a longer time. Further,
the spread in interest rates is quite large, indicating that the market expects the interest
rates to increase. In fact, since the financial crisis in mid-2008, the market has expected
an increase in the interest rates, with a continually increasing yield curve. However, the
much-anticipated rise in the interest rates took longer than expected, and the interest rate
offered by the Norwegian Central Bank reached an all-time low 2016 through 2018 [3]. The
interest rate was raised from the record-low values in September 2018, and raised again in
March 2019. It is projected to increase further in the coming years, however, compared to
historical rates, still at what one would consider moderate levels.

Perhaps somewhat counter-intuitively, the volatility seems to be increasing with maturity.
Historically, the shorter rates typically vary more than the longer rates, which tend to be
rather stable. A plausible reason for this abnormal feature is that as the market has been
expecting an increase in the interest rates that is yet to happen, the short rates have been
rather stable at low values, while the long rates have been more varying, reacting to macroe-
conomic trends and indicators from the central bank.

The rates quoted in Table 2 are simple, meaning that if the maturity is δ, and the rate
is r, the interest earned on one unit of currency is rδ. They are however not forward, hence
a transformation is required before applying the LMM framework discussed in 3.2.

These rates are assumed risk-free, meaning there is no chance of default. In reality, this
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is not the case, and presumably, the presence of default risk is reflected in the rates. How-
ever, this risk is considered negligible, as is customary in these sorts of frameworks. As a
consequence, the rates determine the price of a riskless zero-coupon bond for each of the ma-
turities. To calculate the price, a slight modification to (2.14) is required, to account for the
fact that the rates are simple and not continuously compounded. Denote by rT the simple
NIBOR rate for a loan of length T , then the price of a zero-coupon bond with maturity T ,
BT , needs to satisfy

BT (1 + rTT ) = 1

=⇒ BT =
1

1 + rTT

(5.1)

Further, the forward rates follow readily from (3.15).

The derivative contracts considered in this paper do not have maturities exceeding 10 years.
Consequently, rates with maturities exceeding 10 years will be discarded as they do not af-
fect the value of the derivatives. The relevant forward rates, with descriptive statistics, are
presented in Table 3.

Rate Start year (Ti) Stop year (Ti+1) Average rate (%) Volatility (%)

L0 0 0.25 1.42 0.46

L1 0.25 0.50 1.31 0.45

L2 0.50 0.75 1.34 0.46

L3 0.75 1.00 1.35 0.48

L4 1.00 1.25 1.46 0.61

L5 1.25 1.50 1.52 0.65

L6 1.50 1.75 1.59 0.69

L7 1.75 2.00 1.79 0.68

L8 2.00 3.00 1.75 0.61

L9 3.00 4.00 2.01 0.64

L10 4.00 5.00 2.23 0.66

L11 5.00 6.00 2.38 0.65

L12 6.00 7.00 2.47 0.62

L13 7.00 8.00 2.51 0.58

L14 8.00 9.00 2.51 0.55

L15 9.00 10.00 2.47 0.52

Table 3: Descriptive statistics for the historical forward rates 02.01.2012 to 11.03.2019

As evident in Table 3, the forward rate Li is relevant for the interval [Ti, Ti+1]. Hence, a
reasonable interpretation is that Li represents the expected rate at time Ti. Meaning, one
can draw a similar conclusion from this table, namely that it is expected that the interest
rates will increase, as the further from today one considers, the higher the expected rate
tends to be. Note that L0 is not simulated, and its primary purpose is to serve as a discount
factor to obtain the present value when pricing interest rate derivatives by (3.37).

39



5 Data presentation

Depending on the utilization of the forward rates, certain rates may be added by means
of interpolation, while others may be removed. Typically, one would only include forward
rates that are relevant for the particular derivative contract in question. For instance, if the
forward rates are used to evaluate the counterparty credit exposure of a 3-year swap contract
with interest payments every three months, one would add rates at 2.25, 2.50 and 2.75 years,
while removing all rates with maturity larger than three years.

5.2 Initial rates and yield curve

For the purpose of evaluating the performance of the model, the interest rate data from
January 2016 to March 2019 is removed from the data set. In this way, the output from the
model may be compared with the true realizations of the interest rates. The initial interest
rates will be as of 04.01.2016, quoted in Table 4.

Maturity Rate (%)

3 months 1.12

6 months 0.95

9 months 0.87

1 year 0.82

1.25 years 0.79

1.5 years 0.77

1.75 years 0.76

2 years 0.79

3 years 0.86

4 years 0.98

5 years 1.13

6 years 1.29

7 years 1.43

8 years 1.55

9 years 1.66

10 years 1.76

Table 4: Initial rates (04.01.2016)

Commonly the rates for a specific date are displayed in the form of the yield curve, as in
Figure 8, as the raw data typically is somewhat harder to process. However, the significance
of certain initial rates will become apparent when evaluating the value of swap contracts.

A natural way to inquire on whether or not the valuation of a swap contract is correct
is to compare the swap rate that results in a fair value of 0 to the initial rate with the same
maturity as the swap contract. Any discrepancy would result in an arbitrage opportunity,
as both rates essentially represent the same derivative transaction. This follows as the rates
are simple, and therefore one may consider it equal to a swap contract with the same rate
and maturity, and thus simple rates are often referred to as swap rates, as they are fixed for
the duration of the loan.
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Figure 8: Initial yield curve (04.01.2016)

In Figure 8 it is apparent that the short end of the yield curve is inverted [13], meaning
that tying up money for a longer time is not necessarily rewarded by a higher return. A
common way to interpret the yield curve is to consider a specific maturity, for instance, the
1-year rate, and follow the yield curve to the right to deduce what the expectation is going
forward. For instance, in this case, the yield curve implies that the 1-year rate was expected
to decrease slightly in the short term, before increasing in the longer term. The rates with a
longer maturity, however, were expected to increase. For instance, the 5-year rate is slightly
lower than the rates with higher maturity, and one would therefore expect it to increase
slightly going forward. These features of the yield curve may be useful to keep in mind when
evaluating the performance of the model.
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6 Results and discussion

6.1 Volatility structure

In order to simulate an algorithm on the form (3.24), the volatility structure needs to be
determined. The factors are determined as described in Section 3.2.3. The volatility factors
for the forward rate are typically harder to interpret, and although they do exhibit some of
the qualitative features from Figure 2, it is less apparent than for the original NIBOR rates.
The first three volatility factors derived from the covariance matrix for the original NIBOR
rates are displayed in Figure 9.

Figure 9: Volatility factors for the NIBOR rates

Observe that these factors, to a large extent, exhibit the same qualitative features as the
hypothetical case discussed in section 3.2.3. The first factor represents a shift, with equal
signs for all maturities. The second factor represents steeping or flatting of the curve, shifting
the long and short end in opposite directions. Finally, the third factor changes the sign twice
and represents a twisting of the curve. Note that the features are not quite as distinct as
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in the hypothetical case; however, the qualitative interpretations coincide, which is the most
important aspect.

In order to determine the number of factors necessary for the model to account for a satisfac-
tory amount of the variability, consider the cumulative sum of the eigenvalues, as suggested
in Section 3.2.3, displayed in Table 5. Note that this is the eigenvalues of the covariance
matrix for the log-differences of the forward rates, which is the relevant volatility structure
for a simulation on the form (3.24), which will be implemented in this paper.

Number of factors d Eigenvalue Value (10−4)
∑d
i=1 λi/

∑M
i=1 λi

1 λ1 35.32 59 %

2 λ2 10.01 76 %

3 λ3 6.17 87 %

4 λ4 1.95 90 %

5 λ5 1.78 93 %

6 λ6 0.95 95 %

7 λ7 0.72 97 %

8 λ8 0.65 98 %

9 λ9 0.52 98 %

10 λ10 0.38 99 %

11 λ11 0.31 99 %

12 λ12 0.24 99 %

13 λ13 0.20 100 %

14 λ14 0.13 100 %

15 λ15 0.11 100 %

16 λ16 0.06 100 %

Table 5: Eigenvalues and cumulatively explained variability

A suitable number of factors seems to be around 4, which will explain 90% of the covariance
structure observed between the forward rates. In practice, this is a trade-off between goodness
of fit and simplicity. As the model will never be perfect, one could argue that a lower number
of factors would also be acceptable in many situations, as it would improve the running time
and still account for a decent amount of the variability. However, as the primary purpose, in
this case, is to build a solid model and the running time is not a great concern, the number
of factors is chosen to be 4.

6.2 Rate distribution

A natural approach for evaluating the performance of the implemented interest model is to
generate the distribution of different rates at different times and see where the true rate
falls in this distribution. Ideally, the realization of the rate should be in the distribution
generated, as this is the range deemed most probable by the model.
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For the purpose of this exercise, assume that the date is January 4th 2016 and consider
the 1-year rate and 5-year rate at 04.01.2017, 03.01.2018 and 03.01.2019 (approximately one
year, two years and three years from 04.01.16). The true rates are quoted in Table 6.

Rate

Date
04.01.2016 04.01.2017 03.01.2018 03.01.2019

1-year rate (%) 0.82 1.07 0.84 1.26

5-year rate (%) 1.13 1.38 1.42 1.66

Table 6: True NIBOR rates

Observe that the 5-year rate increases steadily, although just slightly, from 2016 to 2019.
The 1-year rate also increases, however, not steadily, as it first increases, thereafter declines
in 2018, before again increasing by 2019. Another important aspect to consider when evalu-
ating the simulated rates is the degree to which it has incorporated the market expectation,
as discussed with the aid of the yield curve in Section 5.2.

The distributions generated for the 1-year rates are displayed in Figure 10, for the three
different cases introduced above. By a simulation scheme on the form (3.24), the rates are
distributed according to a log-normal distribution, which is apparent from Figure 10d. Fur-
ther, this scheme ensures non-zero interest rates, and this feature is also clearly visible in the
histograms.
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(a) 1 year simulation (b) 2 year simulation

(c) 3 year simulation (d) Fitted log-normal density

Figure 10: 1-year rate for N = 500 000 simulations for different times in the future

In terms of performance, it seems that the realizations of the 1-year rate fall well inside
what the model considers the most probable futures rates, in particular for the two latter
cases. In the first case, the realization of the 1-year rate, somewhat surprisingly perhaps,
increases rather than decreases, as one would expect from the yield curve. For this reason,
the realization, in this case, is in the upper tail of the distribution.

It can also be noted that the realizations from the model become increasingly spread as
the length of the simulation increases. For the one year simulation, the realizations are con-
centrated close to the initial rate, while for the longer simulations, the histograms are shifted
longer from the initial rate, in addition to having considerably thicker tails. The interpreta-
tion is simply that the uncertainty in the future interest rate is significant, in particular for
the more extended simulations.
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(a) 1 year simulation (b) 2 year simulation

(c) 3 year simulation (d) Fitted log-normal density

Figure 11: 5-year rate for N = 500 000 simulations for different times in the future

Displayed in Figure 11 are similar visualizations for the 5-year rate, namely the 5-year rates
generated by the model one year, two years, and three years in the future. The histograms
exhibit similar qualitative features as the 1-year rate - a log-normal distribution with increas-
ing standard deviation. Contrary to the 1-year rate, the 5-year rate was expected to increase
following January 2016, and hence the model predicts an increased 5-year in all three cases.

Also, for the 5-year rate, the true rate falls within what the model considers the most prob-
able outcomes. The 5-year rate did, in fact, increase slightly in the years following January
2016, as expected, and so the predictions provided by the model coincide to a great extent
with the true realizations.
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6.3 Pricing of interest rate derivatives

6.3.1 Pricing of zero-coupon bonds

As previously stated, if the algorithm is implemented correctly, then pricing zero-coupon
bonds by simulation should yield prices consistent with the initial bond prices. For the
purpose of pricing, the algorithm is simulated 500 000 times, and displayed in Table 7 are
the resulting prices for the maturities considered in the model.

Maturity (years) Theoretical price Simulated price

0.25 0.9972 0.9972

0.50 0.9953 0.9953

0.75 0.9935 0.9935

1.00 0.9919 0.9919

1.25 0.9902 0.9903

1.50 0.9886 0.9886

1.75 0.9869 0.9869

2.00 0.9845 0.9849

3.00 0.9750 0.9753

4.00 0.9622 0.9621

5.00 0.9463 0.9455

6.00 0.9284 0.9267

7.00 0.9092 0.9046

8.00 0.8895 0.8837

9.00 0.8698 0.8632

10.00 0.8510 0.8479

Table 7: Theoretical and simulated zero-coupon bond prices

As expected, the prices obtained through simulation are very similar to the theoretical prices,
with small deviations. The deviations are larger for the longer bonds, which is reasonable as
they are dependent on a larger number of stochastic variables, inducing larger variance. The
source of the error is both the discretization of the model and Monte Carlo simulation error.
By increasing the number of simulations, the error is reduced. This is illustrated in Figure
12.
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(a) Bond with 5-year maturity (b) Bond with 10-year maturity

Figure 12: Price of zero-coupon bonds as a function of the number of simulations

It is clear from the figures above that the bond prices converge with an increasing number
of simulations, as one would expect. For a low number of simulations, the deviation is
rather large, particularly for the 10-year bond. As this estimation is based on the Monte
Carlo principle, the convergence is of order O(n−

1
2 ) (Appendix C), and consequently, the

convergence stagnates, as evident in the plots. Regardless, the simulated bond prices do
converge to the theoretical price with an increasing number of simulations. However, in
order to obtain estimates fully consistent with the theoretical prices, a large number of
simulations are required, in combination with a small time step, causing the running time to
be quite long. Nevertheless, it seems reasonable to conclude that the algorithm is functioning
as it should.

6.3.2 Pricing of interest rate floor contracts

The last few years have been characterized by low interest rates, and despite an increasing
yield curve, the rates have been stable, or even falling, at abnormally low levels. Conse-
quently, interest rate floors have become ever more popular derivatives, insuring against
interest rates falling below a certain threshold.

Consider an interest rate floor derivative with strike rate rf for each of the accrual peri-
ods [Ti, Ti+1], i = 0, . . . , 9. That is, the payoff at time Ti is

max(rf − Li(Ti), 0). (6.1)

The value of such an interest floor contract is the sum of the discounted payoffs at each Ti,
according to (3.37). To give an interpretation of the contract described, consider a bank issu-
ing a loan of size one at time T0, being repaid the loan at time T10. The bank receives yearly
interest on the loan at the floating rate, but no down-payments, hence the size of the loan
is 1 for the duration of the contract. Buying a floor contract on the form described insures
the issuer of the loan that the interest payments will not fall below rf , being reimbursed
the difference if the floating rate goes below. Calculating the value as specified, yields the
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expected present value of these payoffs, as a fraction of the initial loan.

As previously stated, floor contracts can be thought of as a collection of European put
options on the interest rate with strike rf , with the modification that the contract is de-
pendent on multiple maturities Ti, i = 0, . . . , 9, rather than just one. In an analogous way
as with the put option, the buyer of a floor contract has the possibility for an arbitrarily
large payoff, with the loss limited to the initial premium. Hence, the risk associated with the
derivative is largely on the seller’s side.

Displayed in Figure 13 are simulated values for a 10-year floor contract with different floor
rates, as well as a histogram of the simulated floor values with a strike rate of 1 %, in Figure
13a and 13b respectively.

(a) Value for different floor rates (b) Value floor contract with rf = 1%

Figure 13: Simulations of 10-year interest rate floor contract

Clearly visible from Figure 13a is the fact that the value of the floor contract is increasing
with the strike rate, which is reasonable as it receives a payoff when the observed rate is
below the strike rate. Essentially, the higher this strike rate is, the more likely it is that the
observed rate is below this threshold. Further, the uncertainty in the value is increasing with
the strike price, which is consistent with the observations in Section 6.2. As more realizations
will be below the strike for higher rates, the uncertainty in the floor contract value essentially
reflects the uncertainty in the future rates. In fact, as the floor rate increases, the value of
the floor contract approaches the value of a swap contract with the same rate. This follows
as the rate is almost certain to be below the floor rate, and consequently, the contract reflects
the exchange of a floating rate Li(Ti), i = 0, . . . , 9, with a fixed rate rf . The same conclusion
may be reached from (2.20), as the value of the corresponding cap contract is 0. That this
is the case is confirmed in the next section, in Figure 14a.

Figure 13b exhibits similar features as the rate distributions discussed in Section 6.2, namely
a log-normal like form. Note that (6.1) implies the value of the contract is 0 if Li(Ti) < rf for
all i, resulting in a significant chance that it will expire worthless. The positive evaluations
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essentially represent the distribution of the rates above the strike rate, and is unsurprisingly
similar to the rate distribution to the right of the strike rate, in this particular case a log-
normal like distribution.

The outcome that the contract expires worthless is naturally more likely for smaller strikes,
which is apparent from Figure 13a. Further, one can observe that a floor contract with a
strike rate 0% is deemed worthless by the model, as the probability of negative interest rates
through (3.24) is 0. This is perhaps a drawback of such a model, as negative interest rates
have occurred, and a floor contract with near 0 % strike rate should not be offered free of
charge [37].

6.4 Evaluation of interest rate swap contract market risk

To demonstrate how the algorithm may be employed to evaluate the risk associated with an
interest rate derivative, consider an interest rate swap contract, swapping a floating interest
rate with a fixed rate. From the standpoint of the party receiving the fixed payments, the
contract has a positive payoff if the floating rate is below the fixed rate, and analogously, a
negative payoff if the floating rate is above the fixed rate. If the contract is valid for [Ti, Ti+1],
i = 0, . . . , 9, the payoff at the end of the contract is

9∑
n=0

(rs − Ln(Tn))

n−1∏
j=0

1

1 + δjL̂j(Tj)

 , (6.2)

where rs is the fixed swap rate. The interpretation of this contract is similar to the floor con-
tract, namely that interest payments are exchanged at each time Ti, but no down-payments,
implying that the size of the loan remains unchanged for the duration of the contract. Hence,
the interpretation of the value is the same; the expected present value of all the payoffs as a
fraction of the initial loan. Unlike the floor contract, there is significant risk involved for both
sides of the deal and is thus a more symmetric contract with regards to the risk associated.

The payoff of the contract is simulated for a number of different swap rates, and the re-
sult is presented in Figure 14.
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(a) Value for different swap rates (b) Swap contract payoff with rs = 1.76%

(c) Payoff with risk measures for different swap
rates

Figure 14: Simulations of 10-year interest rate swap contract

For low swap rates the party receiving the fixed rate would demand a premium, while for
high swap rates the party paying the fixed rate would demand a premium. This feature is
clear from Figure 14a, which also reveals that a swap rate around 1.75 % would be such
that neither party would require a premium, as the fair value is 0 in this case. This rate is
significantly higher than the initial rate of 0.84 %, again reflecting that the interest rates are
expected to increase in the long term. In fact, the swap rate that induces a fair price of 0
should coincide with the initial 10-year rate, as the contrary would account for an arbitrage
opportunity. The initial 10-year rate is 1.76%, so this provides further confidence that the
algorithm is functioning as it should.

In figure 14c are the corresponding payoffs, that is, what remains after the fair premium
is paid (or received). Note that when the contract is paid for according to its fair value, the
expected payoff is 0. There is, however, some risk involved, and clearly visible from the plot
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is the fact that the payoff is quite likely to deviate from the expectation. The green and
red points indicate the estimated value at risk and expected shortfall, respectively. Note the
discrepancies in the risk measures across swap rates, in particular for the expected shortfall.
As the value essentially reflects the shifted distribution rs − Li(Ti), there is no reason these
should not coincide. This illustrates an important issue concerning the estimation of risk
measures, namely that it requires large sample sizes to obtain consistent estimates.

Displayed in Figure 14b is a histogram of the simulated payoffs for a swap rate at 1.76%, the
rate such that neither party demands a premium, which is commonly how swap contracts are
constructed. This highlights the feature present in Figure 14c, namely that the distribution
of the payoffs is non-symmetric. This causes the potential loss for the party receiving the
fixed payments to be significantly larger than for the party paying them. This is a feature
inherent in a simulation scheme on the form (3.24), as this causes the distribution to be log-
normal. Such a distribution does not allow negative values, yet high positive values occur
with a relatively high frequency. This attribute was evident when pricing floor contracts,
and also, in this case, it causes somewhat counter-intuitive results.

An important takeaway from these observations is that such a simulation scheme may cause
one to believe that it is more favorable to be on one side of the deal than the other. However,
if the rates are in fact more symmetrically distributed, this may be misleading. Consequently,
this could quite easily lead to a mismanaging of risk in such a situation, as the possible down-
side is significantly larger than one has accounted for. Nevertheless, empirically, high interest
rates tend to occur with a higher frequency than close-to-zero and negative interest rates,
supporting the use of a log-normal distribution.

6.5 Evaluation of counterparty credit exposure

In this section, the algorithm is employed to construct the potential counterparty credit
exposure over the lifetime over an interest rate derivative subject to counterparty credit risk.
Consider an interest rate swap contract similar to the one described in the previous section,
with the modification that it is a 3-year swap contract with quarterly payments. The swap
rate is set equal to the initial 3-year rate, such that the contract is at-the-money (meaning
the market value is 0). The potential exposure is calculated every day over the lifetime of the
contract with the approach outlined in Section 4.2.1. The exposure is from the point of view
of the party receiving the floating rate, which from the previous section is known to have the
largest upside, and therefore, the largest potential exposure. The resulting exposure profile
is displayed in Figure 15.
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Figure 15: Simulated counterparty credit exposure for 3-year swap contract with quarterly
interest payments.

The form of the exposure profile coincides to a great extent to the illustrative case presented
in Section 4.2.1. Further, the form suggests that the distribution of the interest rate is rather
heavy-tailed, evident from the number of extreme outcomes. This is consistent with the
observation made in the previous section, a consequence of the log-normal simulation scheme
(3.24).

Further, the asymmetry in the distribution of the rates is clearly visible also in Figure 15. As
the interest rates are bounded below by 0, the negative exposure (that is, the exposure for
the counterparty), is bounded below by some threshold, which is apparent from the figure.
However, the potential exposure on the other side of the deal has no such bound.

The times of the interest payments are quite evident in the exposure profile, and, in gen-
eral, cause the exposure to decrease in absolute value. This follows as the magnitude of
outstanding payments decreases, and so does the (absolute) value of the contract. For the
first year or so, the payment dates are not visible in the positive exposures, as the reduction
in outstanding payments is countered by an increasing interest rate. However, towards the
end of the contract, the distribution of the rates is stabilizing, in addition to less stochastic
variables affecting the values, and consequently, the effect of the interest payments is clear
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also for the positive exposures.

6.6 Quantification of collateralization impact

In this section, the exposure of the interest rate swap contract considered in the previous
section will be evaluated under the presence of collateral. The most common type of col-
lateral is cash, and as it has the added benefit of not requiring additional modeling, eligible
collateral is assumed to be cash. Further, the collateral agreement is assumed to be bilateral,
meaning both parties are required to post collateral. Additionally, all CSA parameters are
the same for both parties (threshold, minimum transfer amount, etc.)

The effect of each CSA parameter is investigated in the subsequent sections. In order to
best highlight the effect of each parameter, the other parameters are chosen such that the
impact of the parameter in question is most apparent.

From the previous section, it was clear that the magnitude of the exposure is rather low; a
few percent of the notional value. The collateralized exposure will naturally be even smaller,
and to avoid working with such small numbers, the magnitude of the loan is assumed to be
100 million NOK. Consequently, the exposure will be in units of million NOK.

For each parameter, the EPE and 99% PFE will be presented for different choices of the
parameter value, and therefore it may be useful to have the uncollateralized exposure as a
reference, displayed in Figure 16.
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Figure 16: Simulated EPE and 99% PFE for uncollateralized 3-year swap contract.

6.6.1 Independent amount

The independent margin represents the amount of collateral posted by both parties at the
initiation of the deal. It remains unchanged for the duration of the transaction. The EPE
and 99% PFE for different values of the independent margin is presented in Figure 17a and
17b, respectively.
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(a) Expected positive exposure (EPE) (b) 99% potential future exposure (PFE)

Figure 17: EPE and 99% PFE for different values of the independent margin.

From Figure 17 it is clear that an independent margin of 0 is the equivalent to an uncollat-
eralized exposure (as the threshold is set to infinity, causing no additional collateral). The
PFE represents the upper quantile of the exposure, and consequently, the reduction in PFE
compared to the uncollateralized exposure is equal to the magnitude of the independent
amount. This follows as every realization of the exposure is reduced by the size of the in-
dependent margin, including the upper quantile. A common practice is therefore to set the
independent margin equal to the maximum PFE (often referred to as effective potential
future exposure), thereby essentially eliminating the counterparty credit exposure [36]. In
such a case, the deal will be subject to a non-zero exposure with a probability of less than
1% (if matched to the 99% PFE).

The majority of the realizations of the exposure, displayed in Figure 15, are close to zero.
Hence, introducing an independent margin of only 0.2 million will reduce a significant amount
of the realizations to zero, causing a substantial decrease in the EPE. By increasing the in-
dependent margin further, the EPE is decreased, however, by less than the increase in the
independent margin. As only a very few realizations are affected by increasing the indepen-
dent margin further, any subsequent increase results in only a very slight reduction in EPE,
apparent from Figure 17a.

6.6.2 Threshold

The threshold parameter describes the value of the exposure for which collateral shall start
to be exchanged. Only the incremental exposure above the threshold is required as collateral.
The EPE and 99% PFE for different values for the threshold are presented in Figure 18a and
18b, respectively.
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(a) Expected positive exposure (EPE) (b) 99% potential future exposure (PFE)

Figure 18: EPE and 99% PFE for different values of the threshold

From Figure 18 it is clear that the overall effect from the threshold parameter is as one would
expect - a lower threshold reduces the exposure more than a higher threshold. The effect of
increasing the threshold on the EPE, displayed in Figure 18a, is similar to what was observed
with regards to increasing the independent amount. That is, increasing the threshold from 0
to 0.2 has a more significant impact than increasing the threshold from 1.8 to 2, as a larger
portion of the realizations is affected by the former. Moreover, there is practically no differ-
ence in a threshold of, for instance, 1.8 and 2 as so few realizations are above either threshold.

The effect of the threshold is perhaps more visual on the PFE, as the measure is not concerned
with the number of realizations affected, merely by the upper quantile of the realizations.
Consequently, as the threshold is increased, the PFE is shifted by roughly the magnitude of
the increase. In the cases where the uncollateralized exposure is below the threshold, further
increasing it causes no change in the PFE. This is apparent from the last couple of months
in Figure 18b, where the PFE for all thresholds above 0.6 coincides.

OTC interest rate transactions between financial counterparties are required to have a thresh-
old of 0 by the European Market Infrastructure Regulation (EMIR) [11], which also applies
to Norwegian financial institutions. Hence, although the counterparties may consider an
exposure below a certain threshold to be non-significant, they are enforced by regulative en-
tities to collateralize all exposures. Consequently, relieving the operational burdens inherent
in a collateral agreement has to be done by other means, for instance, by agreeing on a high
independent amount.

6.6.3 Minimum transfer amount

The minimum transfer amount represents the balance between risk mitigation and opera-
tional workload, as it limits the need to honor margin calls below a certain threshold. As
collateral cannot be transferred in amounts smaller than this threshold, it will typically cause
an increasing exposure to be slightly under-collateralized while a decreasing exposure will
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be slightly over-collateralized, as the minimum transfer amount also applies to the return of
collateral. This effect is visualized in Figure 19 for the EPE and 99 % PFE with different
values for the MTA parameter.

(a) Expected positive exposure (EPE) (b) 99% potential future exposure (PFE)

Figure 19: EPE and 99% PFE for different values of the minimum transfer amount.

The minimum transfer amount and the threshold are additive in the sense that the exposure
must exceed the sum of the two before any collateral is exchanged, and this feature is evident
in both the EPE and the PFE. In particular, for the PFE it is evident that the exposures
spread after reaching the threshold 0.5, as the actual threshold before collateral is required
is 0.5 (the threshold parameter) plus the minimum transfer amount. Towards the end of the
contract, the exposures for the different MTA values are not necessarily in order of lowest to
highest, as the exposure may be increasingly over-collateralized as a result of a high MTA.

The overall effect of the minimum transfer parameter is like one might expect, a low MTA
results in a lower exposure, while inducing higher operational costs as essentially all margin
calls must be honored. On the other hand, a high MTA causes a higher exposure but relieves
some operational burden as there will be fewer collateral exchanges. Whether lower exposure
or lower operational burden is most desirable will be dependent on the particular transaction
in question. By the same regulations mentioned in the previous section (EMIR [11]), trans-
actions between financial counterparties are required to have an MTA under 500 000 EUR.
Keep in mind that derivative contracts between financial counterparties may quite easily
exceed 100M NOK, so although it is not really applicable to the swap contract considered in
this paper, this constraint limits the flexibility to choose the MTA freely.

6.6.4 Margin frequency

The margin frequency determines how often collateral calls are made. As discussed in Section
4.2.4, the collateralized exposure is largely a reflection of the volatility in the re-margin period.
In order to make this effect most visual, the MPOR is set equal to 1 day. The exposure is
calculated for three choices of the margin frequency, once every 3, 1.5, and 0.6 months. As
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the interest payments are made quarterly, these choices will be such that collateral is posted
once, twice and five times per interest payment, respectively. The resulting EPE and 99 %
PFE are displayed in Figure 20.

(a) Expected positive exposure (EPE) (b) 99% potential future exposure (PFE)

Figure 20: EPE and 99% PFE for different values of the margin frequency.

Note that the exposures for each of the margin frequencies share considerable similarities, de-
spite appearing rather different. For all three cases, the exposure increase following a margin
call, at which the exposure is virtually zero (not exactly zero as there is an MPOR of 1 day).
The increase following a margin call is more substantial at the beginning of the contract than
towards the end. This is a consequence of three features that have been discussed previously.
Firstly, the number of outstanding payments is naturally largest at the initiation of the con-
tract, and thereafter decreasing every three months. Secondly, in the beginning, the value is
dependent on a larger number of stochastic variables which induces a more substantial vari-
ance. Lastly, towards the end of the contract, the distribution of the underlying interest rates
is more stable than early on, causing the changes in between margin calls to be less significant.

As one would expect, the exposure is largest for the lowest margin frequency, as this im-
plies few margin calls, while the exposure is lowest for the highest margin frequency, as this
causes the position to be properly collateralized more often. Hence, if the objective is to
construct a collateral agreement such that the exposure is the lowest, a natural approach
would be to agree on a high margin frequency. Typically, derivative contracts are valued
on a daily basis for accounting purposes, and commonly one agrees on a margin frequency
equally often, and instead limits the operational costs by other means, for instance by a high
independent amount or a high threshold. In fact, trades between financial counterparties are
obliged to have a daily margin frequency by EMIR [11].

6.6.5 Margin period of risk

The margin period of risk (MPOR) describes the period from a margin call until, in the
cause of a defaulting counterparty, the position is closed out. MPOR is not a parameter in
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the sense that it is agreed upon in the collateral agreement, rather is decided for modeling
purposes in order to realistically model the collateralized exposure. Nevertheless, it may be
useful to investigate how the exposure is affected by this choice. The EPE and 99% PFE for
different values of the MPOR is presented in Figure 21a and 21b, respectively.

(a) Expected positive exposure (EPE) (b) 99% potential future exposure (PFE)

Figure 21: EPE and 99% PFE for different values of the margin period of risk.

The effect of MPOR on the exposure is in some ways similar to the margin frequency, in the
sense that the longer it is, the larger the resulting exposure is. This follows as a consequence
of the fact that risk is accumulating over the length of the MPOR, as discussed in Section
4.2.4. This effect is apparent in Figure 21b, on the 99 % PFE, where the larger MPOR
consistently results in a larger exposure. This effect is not as clear in EPE, which follows
from the fact that the majority of the realizations are below the threshold, and therefore,
the effect of MPOR is naturally not as prominent.

Commonly, the margin frequency is rather high, implying that it is unrealistic to consider
the MPOR negligible. The typical choice is to set the MPOR equal to 10 business days.
This is a rather conservative choice, as the actual time to settle the collateral and liquidate
the position in most cases may be significantly shorter. However, the general approach is
to err on the side of caution in these frameworks, so one rather overestimates the risk than
underestimates it, as the latter has far more dramatic consequences [36]. When determining
the MPOR when modeling the exposure for a specific derivative with a specific counterparty,
the MPOR may be adjusted to account for the liquidity of the derivative and the quality of
the counterparty.
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7 Conclusion

The application of statistical methods in finance is nearly inevitable, as it is hard to consider
models describing future developments without including stochastic terms unless the future
is absolutely certain, which it seldom is. All models simplify reality, and thus, the accu-
racy is not necessarily ideal. This highlights an important point regarding financial models,
namely that the assumptions to a great extent determine the scope of the model. Hence,
a substantial task included in the construction of a stochastic model is communicating the
consequences inherent in the underlying assumptions.

A great part of this paper concerned the implementation and demonstration of an inter-
est rate model based on the LMM. Based on the distribution of the rates and the pricing of
zero-coupon bonds, it is reasonable to conclude that the algorithm is functioning as it should.
The realized rates were within the range deemed the most probable by the model, and the
simulated rates reflected the market expectation present in the yield curve. Moreover, the
simulated bond prices were consistent with the theoretical values.

Further, when employed to price interest rate derivatives, namely interest rate floors and
swaps, it returned qualitatively reasonable results. The model was calibrated to match his-
torical correlation patterns in the Norwegian interest rate market. It was not calibrated to
be market consistent to other interest rate derivatives than zero-coupon bonds, and hence
no comparison to relevant market prices was conducted. Nevertheless, the model may be
employed to assess qualitative features and the associated risk, as its ability to reflect pos-
sible future developments in the interest rate seemed to be satisfactory. Furthermore, when
evaluating the 10-year swap contract, the swap rate that results in a fair price of zero was
consistent with the initial 10-year rate. Although this does not guarantee that the pricing
of swap contracts with other swap rates is market consistent, this is less important, as swap
contracts commonly are constructed such that neither party pays a premium at the initiation.

Some skepticism regarding its functionality is however justified, particularly with regards
to its limited flexibility to incorporate negative interest rates. In the current low interest
rate environment, this is a considerable drawback, as interest rates have been known to go
negative [37]. A possible extension of the model is, therefore, to incorporate this possibility,
which can be achieved by employing the iteration scheme (3.21) rather than (3.24). This
comes at the expense of some of the desired properties inherent in the latter; hence it is not
immediately clear whether this is favorable. Another possibility is to perform a transforma-
tion on the rates, and by that move the support below zero. This would keep the asymmetry
in the rates, which based on empirical data is desirable, while having some non-zero proba-
bility of negative rates. However, it is not clear how large this probability should be, neither
what the lower bound on the rates should be. Regardless, in the current low interest rate
environment, the model should allow for negative interest rates, and consequently, the model
would need some adjusting before evaluating derivatives that are sensitive to the probability
of negative interest rates, such as floor contracts.

The financial markets are, to some extent, synonymous with ”ups and downs”, as they,
after all, concern themselves with the trading of stochastic variables. However, after certain
displays of catastrophic ”downs”, such as the economic crisis of 2008, that either partly or
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entirely is to blame on the financial industry, there has been increasing regulation and su-
pervision by the authorities. Consequently, the demand for sophisticated stochastic models
able to describe the risk associated with portfolios and derivatives has seen a similar upsurge.

Collateralization as a risk mitigation practice in the financial industry is widespread, and
presently the majority of bilateral trades employ a collateral agreement - and the use is in-
creasing [36]. Consequently, the ability to realistically capture the effect of collateral when
assessing the risk is crucial. Although the collateralization practice reduces the counterparty
credit risk, the demand for sophisticated models is not reduced. On the contrary, in order
to be able to accurately capture the effect of collateralization, the models need to be more
complex than if the objective is to describe the uncollateralized exposure. For the collat-
eralization practice to actually reduce the risk in the market, rather than magnify it by
misrepresenting the true impact, the effect has to be modeled accurately. Consequently, the
role of stochastic modeling in finance has become increasingly important.

In this paper, a framework accounting for the impact of collateralization was implemented.
The main purpose was to investigate the effect of each of the CSA parameters, both quali-
tatively and quantitatively. The results seemed intuitively reasonable, and the results were
as one might expect. Certain simplifying assumptions were made, including assuming the
collateral was posted as cash and that the settlement period was zero. Both assumptions
hold in most cases; however, in order to construct an exhaustive framework, one would have
to introduce some flexibility to account for cases where these assumptions do not hold. This
does require some additional modeling, particularly to allow for alternative eligible collat-
eral. The fundamental modeling framework would remain the same, and based on the results
presented, it seems reasonable to conclude that it captures the effect of collateralization in
an accurate manner.
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A Wiener process

A Wiener process is a continuous-time stochastic process named in honor of American
mathematician Norbert Wiener. It is often referred to as a standard Brownian motion due
to the historical connection to the physical process known as Brownian movement. Wiener
processes frequently occur in a number of different fields, including economics, quantitative
finance, biology, and physics. A Wiener process, {Wt}∞t=0, is characterized by the following
four properties;

(i) W0 = 0 almost surely, i.e. P (W0 = 0) = 1;

(ii) W has independent increments: for every t > 0, future increments Wt+u −Wt, u ≥ 0,
are independent of the past increments Ws, s < t;

(iii) W has Gaussian increments: Wt+u −Wt ∼ N (0, u)

(iv) W is continuous in t with probability one.

B Itô’s lemma

Itô’s lemma relates small change in a function of a random variable, to a change in the ran-
dom variable itself. It can be heuristically derived by employing the Taylor series expansion
of the function and serves in a sense as the stochastic counterpart to Taylor’s theorem. The
lemma is particularly useful in mathematical finance, as the development of financial assets
commonly is described through stochastic variables.

Let X be a random variable described through the stochastic differential equation

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt = µtdt+ σtdBt, (B.1)

where Bt is a Wiener process. Further, let f be a smooth function of X, then, by Itô’s
lemma, a small change in f , df , is expressed by

df = σt
∂f

∂x
dBt +

(
∂f

∂t
+ µt

∂f

∂x
+

1

2
σ2
t

∂2f

∂x2

)
dt. (B.2)

C Monte Carlo

The Monte Carlo method is a broad class of algorithms relying on the repeated random
sampling of some underlying stochastic variable in order to obtain a numerical result. Es-
sentially, rather than solving some integral analytically (which may not even be possible in
most cases), one approximate this integral by the empirical equivalent. Consider

α = E(g(X)) =

∫
R
g(x)fX(x)dx, (C.1)
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where g(X) is the desired function of the underlying stochastic variable (for instance the
mean g(X) = X or the variance g(X) = (X − E(X))2), and fX(x) is the density function.
By sampling x1, . . . , xn from fX one approximate (C.1) by

α̂n =
1

n

n∑
i=1

g(xi). (C.2)

By the strong law of large numbers [20],

P
(

lim
n→∞

αn = α
)

= 1. (C.3)

Moreover, the estimation error α̂n − α is normally distributed with mean 0 and variance σε,
which may be estimated by

σ̂ε =
1

n(n− 1)

n∑
i=1

(g(xi)− α̂n)2. (C.4)

The order of convergence for an algorithm relying on the Monte Carlo principle is O(n−
1
2 ).

Hence, the convergence rate is rather slow. Nevertheless, the Monte Carlo approach has
significant advantages, most importantly convergence independent of problem dimension.
Furthermore, the procedure of generating scenarios of the underlying stochastic variable
induce both flexibility and insight to the dynamics of the modelling [20].
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