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Abstract
Accurate prediction of heat consumption is important when developing new
neighborhoods to ensure a suitable power grid. In this work, we present
latent Gaussian models, estimated in R-INLA, for long-term prediction of
hourly heat consumption per square meter. They include, among other
things, weather conditions and terms for seasonality, both daily, weekly and
annually. An additive regression model is utilized, set up as a latent Gaus-
sian model, to support non-linear terms. Di�erent combinations of covari-
ates and how they are modeled are tested on collections of o�ce buildings
in Oslo and Trondheim. It was found that there was little di�erence in pre-
dictive power between the models explored. The two areas require di�erent
models, where the model for Oslo that was most successful was the one con-
taining the cycles mentioned above, in addition to the weather conditions
temperature and wind speed. For Trondheim, a model similar to the one in
Oslo, but where the e�ect of wind speed is omitted, and a long-term linear
trend is included, o�ered the greatest fit. Both models were able to catch
the underlying process well, but correlation in the residuals signifies that
more work needs to be done.
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Sammendrag
N̊ar man planlegger utbygging av nye omr̊ader, er det viktig med kor-

rekte prognoser for varmeforbruk for å kunne sikre et passende kraftnett. I
denne oppgaven presenterer vi latente gaussiske modeller, implementert i R-
INLA, for langsiktig prediksjon av varmeforbruk per time per kvadratmeter.
Modellene inkluderer blant annet ulike værforhold, og e�ekter for sykluser,
b̊ade daglige, ukentlige og årlige. Vi anvender en additiv regresjonsmodell,
satt opp som en latent gaussisk modell, for å støtte ikke-lineære e�ekter.
Ulike kombinasjoner av kovariater og hvordan de blir modellert er testet
p̊a grupper av kontorbygg i Oslo og Trondheim. Resultatene viste at de to
omr̊adene krevde ulike modeller. Modellen for Oslo som ga best resultat
var den som inkluderte syklusene nevnt ovenfor, i tillegg til værforholdene
temperatur og vindhastighet. I Trondheim var det en lignende modell som i
Oslo som ga best resultat, men e�ekten av vind er utelatt, og en langsiktig
lineær trend er inkludert. Begge modellene fanget opp de underliggende
prosessene som for̊arsaker observasjonene, men vi hadde korrelasjon i resid-
ualene som betyr at videre arbeid med modellene er nødvendig.
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Chapter 1

Introduction

When planning new neighborhoods, knowledge about the estimated future annual heat
consumption is of utter importance. In order to create a suitable power grid that can
handle the demand, but at the same time is not unnecessary extensive, a thorough
understanding of the consumption is crucial in order to avoid financial distress. A
prediction that results in underestimation of actual heat consumption will lead to costly
supplementary services. In the reverse case, when the demand is overestimated, there
will be an excess of supply and complexity of the power system, which is not desirable.

In this study, we will discuss relevant aspects of some statistical models suited for
predicting time series of heat consumption, and we will apply the theory to a data set
provided by Sintef byggforsk to test the performance of the suggested models. Our
goal is to create a model that is able to make good predictions for aggregated heat
consumption per square meter far into the future, as far as one year ahead.

In most of the literature available on power load forecasting, short-term load fore-
casts for electricity have been the area of interest. The interest in short-term is highly
due to the fact that electric utilities1 have to report every day to an energy exchange
market and account for the quantities of electricity that they wish to trade the next
day. Inaccurate predictions can cause severe financial penalties2. For short time-frames,
various univariate forecasting models for electricity have successfully been applied, in-
cluding exponential smoothing methods (Taylor et al., 2006) and (S)ARIMA models
(El-Hawary, 2017). When predicting further ahead than one day, it is critical to directly
allow for weather-induced variations (Taylor and Buizza, 2003). Methods allowing this
include multiple regression (Kaytez et al., 2015) and Kalman filters (Takeda et al.,
2016), to mention some. We can also include here some methods that recently have
become popular to consider, which are artificial intelligence methods such as recurrent
neural networks (Bianchi et al., 2017) and support vector regression (Kaytez et al.,
2015), to name a few. In Bianchi et al. (2017) a comparative study on the use of di�er-
ent classes of neural networks in the short-term load forecasting is found. Furthermore,
Srivastava et al. (2016) provide an extensive review of even more methods, classical as
well as modern approaches.

When it comes to models that have been explored for energy prediction, as the ones
mentioned above, forecasting of electricity consumption rather than heat consumption

1
An example of a large electric utility in Norway is NTE (Nord Trøndelag Elektrisitetsverk).

2
The prices for trading a surplus or a deficit of electricity the next day, if the utilities experience

a significant di�erence between predicted consumption and the actual need, are typically unfavorable

compared to the market where trading for future demand is handled. See more about Nord Pool, one

of the largest European energy exchange markets, at http://www.nordpoolgroup.com.

1

http://www.nordpoolgroup.com
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has been the main concern. Since both the daily and annual power load, or electric-
ity demand, in the relevant literature have the same form as in the heat consumption
data explored in this study, in addition to the dependency on outdoor temperature
mentioned in several of the papers, there is reason to believe that the electricity con-
sumption in general includes heat consumption. Thus it is of highly relevance to treat
models for prediction of electricity in general as comparable to those for heat predic-
tion. Furthermore, the abundance of work on electricity prediction o�ers an incentive
to investigate heat consumption separately.

As described above, developing forecasting models for heat consumption is of high
interest for the building industry. The researchers at Sintef byggforsk therefore have
come up with a suggestion for a model (Lindberg et al., 2019) that can be used for
prediction of heat consumption. They estimate a linear model for each hour of the
day, for each day type. Further, they assume a piecewise linear relationship between
temperature and heat consumption, as seen in Figure 1.1. The change point temperature

(CPT) defines this linear relationship in the sense that when you find the CPT, you say
that the consumption at temperatures below the CPT has a negative linear relationship
with temperature and is temperature dependent, and for consumption at temperatures
above the CPT, the consumption is temperature independent. This is justified by the

Figure 1.1: Illustration of the idea behind the change point temperature (CPT).

idea that above a certain temperature the heating system is switched o� and the con-
sumption consists of just a small basic consumption that cannot be avoided. However,
the CPT is unknown, and Lindberg et al. (2019) use an ad hoc iterative procedure to
find the CPT.

For the work in this thesis we will employ a Bayesian hierarchical model, specifically
a latent Gaussian model (LGM), and R-INLA will be used for model estimation. We
propose to model the dependence between temperature and heat consumption with a
smooth e�ect so that it is not necessary to define the CPT. By exploiting the usefulness
that LGMs impose by being able to model complicated processes through a hierarchy
of simpler models (Hue and Steinsland, 2016), we can hopefully improve the current
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model from Sintef. LGMs are particularly useful because of the freedom to include a
range of di�erent e�ects. As a consequence, we are able to include typical e�ects used
to model time series. Evaluation in R-INLA ensures fast and accurate forecasts. No
papers have been found by the authors on the subject of models for heat prediction that
have been estimated using R-INLA. A related problem, about short-term wind power
forecasting, have been considered in Lenzi et al. (2018). Another motivating factor is
accordingly to contribute with a paper on this topic.

The rest of the report will continue with an introduction of the data set in Chapter 2
before we go through some important background theory and describe how we evaluate
the models in Chapter 3. In Chapter 4 we will present our family of models. Finally,
an analysis and discussion of the models and results are given in Chapter 5.

Remark: In this thesis, the terms ”load”, ”demand” and ”consumption” will be used
interchangeably as there seems to be no distinction between them in the relevant lit-
erature. In addition, ”Sintef” will for simplicity sometimes be used instead of ”Sintef
byggforsk”.
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Chapter 2

Data

The data set with hourly observations of heat consumption was provided by Sintef
byggforsk. The time series were recorded over a period of three years, from January
1st 2009 to December 31st 2011, in 27 o�ce buildings in Norway. The buildings are all
located in either Oslo or Trondheim. In Table 2.1 mean annual heat consumption per
square meter for each building is displayed, along with the size of each building and some
quantitative information about each time series. The size of the buildings ranges from
2 570 m2 to 50 576 m2. In addition to time series of heat for each building, and its floor
area, two time series of outdoor temperature in the same period of time were provided,
one for each county. The same goes for wind speed, and for Trondheim an additional
time series of solar radiation was given. The stations where the weather measurements
are recorded are known: Voll in Trondheim and Blindern in Oslo, controlled by The
Norwegian Meteorological Institute. The exact location of each building within a county
is unknown.

2.1 Aggregated Data Set
Although we have data for each building, we are actually interested in a neighborhood
that is a collection of buildings. In addition, we only have two time series at the most for
each weather measurement. We therefore create two time series of aggregated heat con-
sumption, one for each county. Further, the aggregated consumption is divided by the
sum of the floor area of the buildings in the corresponding county to get measurements
per square meter.

2.1.1 Quality of the Data

Inspection of the data is necessary in order to establish whether there are any outliers
or meaningless values present that should be disregarded and not included in the aggre-
gated data set. Table 2.1 displays the percentage of missing values and zeros in the heat
consumption data. Looking at the information in this table we first of all notice that
three buildings have more than 33% of missing values for heat. The issue with missing
values is not actually an issue. When we create an aggregated data set of heat per
square meter, we simply ignore the observations that are missing and do not add the
area of the associated building to the aggregated area for that observation hour. There
would have been problems with the accuracy of a model devoted to make predictions

5
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for one single building when more than 30% of the observations are missing, but since
we operate on an aggregated level, this is not a concern.

Amount of Amount of Mean annual heat Size
NAs for zeros for consumption (m2)

heat (%) heat (%) (kWh/m2year)

Trondheim

10.96 0.28 71.90 4 923
0.00 4.64 108.38 6 334
2.50 4.20 91.08 6 767

21.65 0.32 46.13 7 065
33.33 0.49 39.96 7 360
0.00 1.63 95.62 9 905
0.12 0.00 103.98 12 427
0.00 0.01 113.61 20 311
3.14 1.91 54.46 20 659
0.39 0.09 74.85 22 957

Oslo

0.00 12.86 109.32 2 570
11.97 5.47 106.67 8 129
0.05 7.41 81.97 9 149
0.00 11.17 83.63 10 750
0.03 3.18 95.50 12 920
3.11 6.03 73.70 13 359

12.03 1.21 69.21 16 600
0.37 0.50 90.88 19 320

44.47 0.00 45.33 21 362
0.00 0.25 95.72 21 723
0.02 3.33 145.29 22 000
4.55 3.96 32.47 50 576
0.00 31.20 59.67 3 528
0.00 18.82 88.93 5 153
0.00 43.72 69.05 5 763
6.18 33.58 29.66 9 018

38.18 23.11 29.16 34 500

Table 2.1: Number of missing values and zeros for each building, in addition to mean
annual heat consumption per square meter observed from 2009 to 2011 and the size of
each building. The buildings marked in red are removed from the aggregated data set.

Next we want to investigate the amount of zeros in each time series to be able to
decide whether any of the time series have an unreasonable amount of zeros and will
give a wrong attribution on an aggregated level. Approximately 8% of the observed
values of heat are zero, and as we can see in Table 2.1 the percentages in 20 of the
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buildings are below that. For about one fourth of the buildings the ratio is higher, in
fact as high as 44% for one of them. It is unreasonable to assume that all these values
are the correct amount of heat consumption considering the low amount in the majority
of the buildings.

An explanation for this could be found in the step sizes for recorded heat consump-
tion. Many of the buildings have values of hourly heat consumption in a range where
the step sizes are rather large; 15, 20 and even 100 kWh/h, which implies that the
recorded values are either rounded to a multiple of the step size, or a value is recorded
as zero unless it exceeds a multiple of the step size. It could also be due to a fault in
the measuring device. Since our data consist of measurements made in the buildings, in
contrast to measurements made at the electric utility providing the power3, the quality
of the data is not expected to be perfect. In any case, the value zero most probably
does not reflect the actual heat consumption in some cases. Five buildings, all in Oslo,
exhibited such a high amount of zeros that it is hard to tell if they are true or not.
Since we want to create a model that is appropriate for all buildings in a county as a
whole, we choose to leave these five buildings out. They are marked in red in Table 2.1.

A new data set is created using observations from 22 of the buildings, excluding five
buildings in Oslo. We reduce the number of locations from 27 to two, and the number
of observations from 709 560 to 52 560, by aggregating the observations in the chosen
buildings and placing them in either Oslo or Trondheim. Each county has time series
of heat per square meter, temperature and wind, and columns with information about
day type (working day, weekend, holiday), day of the year and time of the day. In
addition, Trondheim has a time series of solar radiation. Since we will be working on
an aggregated level, heat consumption will have the unit of measurement kWh/m2h for
the rest of this thesis, and all heat consumption will come from the aggregated data
set, with the exception of in Figure 2.2.

2.1.2 Daylight Saving Time

When we have time series of hourly observations covering a whole year, considerations
must be taken around the transition points regarding Daylight Saving Time. The
transition points appear as time shifts either one hour forward in the spring, or one
hour back in the fall. In the data set that we received the time shifts are apparent
at slightly di�erent hours than when the actual time shifts appear: the hour 00:00
on the transition day in the spring is missing, and the hour 00:00 the day after the
transition day in the fall is counted twice. In Trondheim we notice even more deviating
data: the observations of heat in the extra hour we get in the transition in the fall are
added to the observations at 04:00 on the transition day. To fix the issue with two
observations added together and marked as one, we divide these six measurements (two
measurements for each of the three years) by two.

3
The electric utilities have a stronger need for financial reasons, and therefore better systems, for

accurately measuring the power they are providing.
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At hour 03:00 on the transition day in the spring all observations of heat in Trond-
heim are 0. This is due to the missing hour caused by the time shift forward. To avoid
dealing with obvious false observations, we copy the observations from hour 04:00 to
hour 03:00.

2.1.3 Distribution of the Data

Figure 2.1 displays in the first row the distribution of heat consumption in Oslo and
Trondheim. Both the distributions are skewed which suggest that they might belong

Figure 2.1: Distribution of heat consumption in Oslo (first column) and Trondheim
(second column). First row: before log transformation. Second row: after log transfor-
mation. Third row: kernel density estimate of the log transformed distributions after
separating the observations into seasons.
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to a lognormal distribution. In the second row of the same figure the distributions of
the log transformed heat consumption are displayed. The resulting shapes are no longer
skewed, but they are not exactly as of the familiar shape of the Gaussian, as one would
expect when taking the logarithm of a lognormal distribution. It does, however, look
like the transformed distributions could be a combination of several distributions. We
take a closer look by dividing the transformed observations into seasons. The four new
distributions, in addition to the combined distributions from the second row, are shown
in the bottom row of Figure 2.1. By looking at each season separately, it becomes clear
that the log transformed heat consumption does, in fact, follow the normal distribution.
The season separated distributions are not shown here for the untransformed data, but
they reveal four skewed distributions.

Figure 2.2 reveals the skewness and variability of the original distribution in seven
of the buildings by using box plots and it also, as Figure 2.1, demonstrates how the log
transformation transforms the distribution more close to normal. Since this transfor-
mation removes the skewness and variability of the data we will, from now on, work
with the log transformed time series of heat consumption per square meter.

Figure 2.2: Box plot of heat consumption per square meter in seven of the buildings
in the original scale (left), and after taking the log transformation (right).

2.1.4 Seasonality

In Figure 2.3 the heat consumption for the log transformed time series from the ag-
gregated data set is displayed. The annual pattern is apparent, and it is similar both
across years, but also across the counties. The di�erence between Oslo and Trondheim
is the larger variability that is present in Trondheim. To be able to see the seasonalities
within a year, the log transformed heat load in January 2011 in Oslo is displayed in
Figure 2.4, and the daily periodic patterns are shown in Figure 2.5. The five days
following January 10th in Figure 2.4 are all working days, but they exhibit notably
di�erent amounts of heat consumption. The reason is outdoor temperature. In the
first three out of these five days the daily mean outdoor temperature was considerably
warmer than during the two next days.
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Figure 2.3: Heat consumption for the three years of observations. The labels on the
horizontal axes are placed on January 1st in the given years.

Figure 2.4: Hourly heat load in Oslo in January 2011. Weekends are shaded with a
darker background than workdays.

The daily patterns of heat consumption change depending on di�erent factors. In
Figure 2.5, the data set is divided into the seven days of the week, in addition to
separating holidays, and then averaged over each hour of the day. The main distinction
is between working days and non-working days, but there also is some variation between
the di�erent non-working days, more so in Oslo. Further there exists some disparity
between the two counties. The second half of the day for working days in Trondheim
experiences a steeper decrease in consumption. This decrease also happens a bit earlier
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here than in Oslo. The di�erences between the distinct working days are subtle, but in
both counties the peak load appears on Wednesdays, while Mondays show a trend of
having generally lower consumption throughout the day.

Figure 2.5: Mean daily heat load for all weekdays, included holidays, in Oslo (left)
and Trondheim (right).

2.1.5 Time Trends

One thing that is often included when modeling time series is a linear trend. We want
to examine if that should be included in our model for heat consumption, and for that
reason we have plotted mean monthly values of heat consumption from 2009 to 2011
in Figure 2.6 and 2.7, together with least-squares regression lines.

Figure 2.6: Mean monthly values of heat consumption (blue dots) in Oslo for each
month. The red line shows the best linear model for the consumption, and shaded area
denotes the 95% confidence interval.

The slope of the fitted lines in Figure 2.6 and 2.7 indicates, in Oslo, a monthly aver-
age decrease in heat consumption of 0.006 kWh/m2h, and a monthly average decrease
of 0.015 kWh/m2h in Trondheim.
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Figure 2.7: Mean monthly values of heat consumption (blue dots) in Trondheim for
each month. The red line shows the best linear model for the consumption, and shaded
area denotes the 95% confidence interval.

2.2 Weather Data
The observed time series of outdoor temperature are taken at one weather station in
each county. Time series of wind speed and solar radiation are also provided. The
measurements of solar radiation are only given for Trondheim, and they do not cover
all three years of observations of heat consumption. The solar observations stop at May
4th 2011, and there is a large amount of missing values in 2011 until this date. For the
wind and temperature time series we have little missing data.

It is known that there is a clear relationship between heat consumption and outdoor
temperature. This is because we need to use more heating when it is cold outside to
achieve a comfortable indoor temperature. In Figure 2.8 we have scaled the temperature
in Oslo to the same range as the log transformed heat consumption and plotted the

Figure 2.8: Log transformed aggregated heat consumption per square meter (blue) in
Oslo from 2009 to 2011 together with outdoor temperature (coral). The temperature
is scaled to the same range as the heat consumption.

resulting time series together with observations of heat in Oslo. The correlation between
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them is evident.
In order to further detect any relationship between our time series, heat load values

from all three years of observations are plotted against the various weather conditions
in Figure 2.9, 2.10 and 2.11. Each time series is standardized to zero mean and unit
variance so that values can more easily be compared across data types. A local poly-
nomial regression is fitted in each panel in Figure 2.9, 2.10 and 2.11. We keep Oslo and
Trondheim separated due to di�erent weather time series, and also to be able to reveal
possible di�erences between the counties.

Starting with wind speed, the relationship is weak in both counties. It switches
between negative and positive for increasing wind speed. In Trondheim the regression
curve is not that di�erent from a horizontal line, and with the wide confidence interval
it is not significant. A reason for the divergence between the counties could be that the
buildings in Oslo are more exposed to wind than those in Trondheim. If a building is
surrounded by other buildings or is sheltered in some way, it will not experience the

(a) Oslo (b) Trondheim

Figure 2.9: Heat load values from 2009 to 2011 are plotted with respect to wind speed.
All time series are standardised. A local polynomial regression is fitted to the data in
each panel. Translucent bands denote the 95% confidence intervals.

observed wind exposure that is recorded in a location elsewhere in the same county.
Since we do not know the location of each building other than the county it is located
in, we have no information about the wind exposure of the buildings. Di�erences in
the insulation of the buildings could also be a reason for di�erent impact on heat
consumption with increasing wind speed.

The regression curves in Figure 2.10a and 2.10b show that we have a clear, mostly
negative, relationship between outdoor temperature and heat consumption that is not
linear. The confidence intervals are more narrow than for wind in Figure 2.9 indicating
we have a stronger relationship between temperature and heat. To explain the division
of the data in the upper left corner in Figure 2.10b, which is also slightly visible in
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Figure 2.10a albeit more subtle, we divide the observations of heat and temperature
into two parts in Figure 2.10c and 2.10d. The red color denotes all observations that
are made either at night time on a working day, defined here as the hours from 19:00
to 06:00

(a) Oslo (b) Trondheim

(c) Oslo (d) Trondheim

Figure 2.10: Heat load values from 2009 to 2011 are plotted with respect to temper-
ature. All time series are standardised. A local polynomial regression is fitted to the
data in the top row. Translucent bands denote the 95% confidence intervals.

the next day, or during all hours on non-working days. For the rest of the observations,
which are at day time (07:00 to 18:00) on working days, we have the color blue. The
result is that it is this division that causes the data to separate in the upper left corner
of the temperature-heat plots. The reasoning behind dividing the day into two parts
like this is because of what we saw in Figure 2.5 in Section 2.1.4, namely that the
consumption on non-working days is similar to that at night time on working days.

For the solar radiation in Figure 2.11 there is a negative, close to linear relationship
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with heat consumption, with a wide 95% confidence interval.

Figure 2.11: Heat load values from 2009, 2010 and parts of 2011 are plotted with
respect to solar radiation in Trondheim. The time series are standardised, and a local
polynomial regression is fitted to the data. Translucent band denotes the 95% confi-
dence interval.

In conclusion, temperature is by far the most important predictor of the three. The
plots of wind speed also implied a possible relationship with heat consumption that
is worth considering. Temperature and wind speed will therefore be included in our
model. We are missing observations of solar radiation for relatively large parts of our
time series of heat consumption, and the relationship with heat consumption in Figure
2.11 is weak. Because of this, solar radiation will not be included in our model.

A note on the solar radiation is that measurements thereof have for a long time
been sparse in time, but in recent years more observations are made and are available.
For newer data sets it would therefore be of interest to look more into the relationship
between solar radiation and heat consumption. This would be of particular interest
when predicting for one building rather than an aggregated set as solar exposure varies
largely based on the surroundings of each building.
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Chapter 3

Background

To be able to reach the goal for this thesis, which is to construct a model for prediction of
heat consumption, we need some theory and concepts. In this chapter we will therefore
present some important background theory.

3.1 Latent Gaussian Models
A way to model complicated processes is through a hierarchical model consisting of
three stages with relatively simple statistical models (Hue and Steinsland, 2016). An
often used and quite wide class of models of this structure is that of latent Gaussian
models (LGMs) (Rue et al., 2009). They are a subset of structured additive regression
models with the property that the latent field is Gaussian.

At the first level of an LGM we have a model for the observed data y called the
observation model or observation likelihood. We assume the data to be conditionally
independent given some unobserved (latent) stochastic variables. The likelihood, and
first stage, is then

fi(y | x, ◊1) =
nŸ

t=1
fi(yt | ÷t(x), ◊1),

where y = (y1, ..., yn)€ is the response vector of n observations and x = (x1, ..., xn)€

is the vector of latent variables called the latent field. (·)€ denotes the transpose of a
vector. ◊1 contains some parameters that we call hyperparameters and ÷t is the t-th
linear predictor that connects the data to the latent field. x includes all the parameters
in ÷t, including ÷t. For example, if we choose a Gaussian likelihood yt ≥ N (÷t, ‡

2
‘
) we

have that ◊1 = ‡
2
‘

while ÷t would be the mean µt. The linear predictor ÷t can then be
modeled to include e.g. spatial dependence or the e�ect of covariates as

÷t = —0 + v€— +
pÿ

j=1
fj(zjt), (3.1)

where —0 is a scalar representing the intercept, and the coe�cients — = (—1, ..., —m)€

quantify the linear e�ect of the covariates v = (v1t, ..., vmt)€ on the response. f =
{f1(·), ..., fp(·)} is a collection of functions, defined in terms of the set of non-linear
covariates zt, that models the random or nonlinear e�ects of zt. They can also model
interactions. x now includes (—0, —1, ..., —m, f1, ..., fp, ÷), and Equation (3.1) defines an
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additive regression model.
In the second stage we assign a multivariate Gaussian prior on x with mean 0 and

precision matrix Q(◊2) (Blangiardo and Cameletti, 2015) so that

fi(x | ◊2) ≥ N
1
0, Q≠1(◊2)

2
.

◊2 typically governs the smoothness of the latent field. The third and final stage is
formed by the prior distributions assigned to the hyperparameters ◊ = (◊1, ◊2),

◊ ≥ fi(◊).

LGMs include as a special case many of the models commonly used in statistical
science like mixed-e�ects models and smoothing time series of binomial data. The terms
fj(·) in equation (3.1) can take on many di�erent forms, and for this reason LGMs are
very flexible and can accommodate a wide range of models (Blangiardo and Cameletti,
2015).

The matrix Q can be very large, and if it is dense, computations can be demanding.
But many of the models that are commonly used as prior for fj(·) in Equation 3.1 belong
to the class of Gaussian Markov random fields (GMRF). Examples are autoregressive
models used in time series analysis and random walk models used to model smooth
e�ects of covariates. Many LGMs in the literature satisfy the property that the latent
field in an LGM is a GMRF with sparse precision matrix Q (Rue et al., 2009). The
Markov property is linked to the sparse structure of Q in the sense that if two elements
in x are conditionally independent given the rest, then the corresponding entry in Q is
zero.

3.2 Random E�ects
Some Markov models that can be used to model the smooth e�ects f of Equation (3.1)
are introduced next. Further we will talk more about the additive regression model we
mentioned in Section 3.1 before we will o�er a framework for estimating these models
and its parameters.

3.2.1 Random Walk Models

The general definition of a random walk (RW) is that it is a random process where
we assume that the increments are iid (independent and identically distributed) with
a Gaussian distribution. The second-order random walk, RW2, is commonly used for
smoothing data and for modeling response functions. They are especially useful when
analyzing time series data (Fahrmeir et al., 2013). The RW2 is a Markov model where
the following holds:

�2
zi = zi ≠ 2zi+1 + zi+2

iid≥ N (0, ·
≠1
z

), i = 1, ..., n ≠ 2,
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where ·z is the precision, and the density of the RW2 model is

fi(z) Ã exp
3

≠ ·z

2

n≠1ÿ

i=2
(zi≠1 ≠ 2zi + zi+1)2

4
.

The Markov property ensures that

fi(zi | z≠i) = fi(zi | zi≠2, zi≠1, zi+1, zi+2).

In turn this means that we have a sparse precision matrix.
Since RW are intrinsic models, identification problems can arise when they are used

as prior for smooth e�ects in LGMs. This is because the RW1 is invariant under the
addition of a constant, and the RW2 is invariant under the addition of a constant or
a line. Hence, the overall level of the RW model is arbitrary unless we impose further
restrictions. The fixing of the level of the model is usually obtained by centering the
functions around zero such that you get a sum-to-zero constraint:

Tÿ

t=1
fj(xjt) = 0 for all j œ (1, ..., n),

where T is the length of the vector y.

3.2.2 Autoregressive Models

Another form that fj(zjt) in Equation (3.1) can take on for the element zjt is that of
the autoregressive (AR) model. In this case a value from a time series is regressed on p

previous values of the same time series, contrary to on some additional covariates. The
value p refers to the order of the model, and an AR(p) model is defined as

zjt =
pÿ

i=1
Ïizj,t≠1 + ‘t, t = p + 1, ..., T, |Ïi| < 1,

where Ï1, ..., Ïp are the parameters of the model, and ‘t is white noise. When p = 1,
we get an AR1 model defined by

zjt = Ïzj,t≠1 + ‘t, t = 2, ..., T,

with

‘t ≥ N (0, ·
≠1
‘

).

In the time series vocabulary, you often work with lagged values. A value at lag
k is an observation made k time stamps before observation zjt. zj,t≠k hence denotes
the observation at lag k, compared to time t. A way to measure the linear relationship
between an observation zjt and a lagged value is by the autocorrelation function (ACF).
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The ACF measures the correlation between lagged values of a time series, and for a
given k it is given by (Fahrmeir et al., 2013)

Corr(zjt, zj,t≠k) = Cov(zjt, zj,t≠k)
Var(zjk) .

At lag 0 you will have perfect correlation because you are comparing the time series
to itself, so you get an autocorrelation equal to 1. For lags larger than 0, you compare
the time series to delayed versions of itself.

When you have estimated a model for a time series, looking at the ACF of your
residuals is a useful tool to determine whether your model is able to catch the time
dependencies in your data. Because the error term et in any regression model is as-
sumed to be iid by et

iid≥ N (0, ·
≠1
e

) for all t, a good model would reveal no significant
autocorrelation after lag 0 in a plot of the ACF of the residuals. If you do, however,
have significant spikes in this ACF, your model may benefit from including an AR term.

One important thing to keep in mind when including such a term in your regression
model, is the impact it has on flexibility. The variance ·

≠1
‘

from the AR term for each
zjt can lead to overfitting because the degree of the curve oscillation of the predictions
grows large, and the model is able to fit the data perfectly (Zheng and Bakka, 2018).
To amend this, we can fix the variance of the response yt to a small value.

3.3 Integrated Nested Laplace Approximation
(INLA)

In Bayesian analysis the goal is often to find the posterior marginal distributions fi(xj|y)
and fi(◊k|y) in order to gain knowledge about the unknown distribution of x and the
unknown parameters ◊. This is where integrated nested Laplace approximation (INLA)
o�ers a fast and computationally cheap method as an alternative to more traditional
MCMC methods. It is a method for estimating latent Gaussian models and is therefore
suitable to use for estimation of our model.

INLA utilizes numerical integration to approximate

Âfi(xj|y) =
⁄

Âfi(xj, ◊|y)d◊ =
⁄

Âfi(xj|◊, y)Âfi(◊|y)d◊ (3.2)

and

Âfi(◊k|y) =
⁄

Âfi(◊|y)d◊≠k (3.3)

where ◊≠k denotes the vector ◊ without element k. What we need in order to solve the
integrals in equation (3.2) and (3.3) is to

1. approximate fi(◊|y) by Âfi(◊|y)
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2. approximate fi(xj|◊, y) by Âfi(xj|◊, y).

To approximate (1) INLA utilizes that, in general,

fi(◊|y) = fi(x, ◊|y)
fi(x|◊, y) = fi(y|x, ◊)fi(x|◊)fi(◊)

fi(x|◊, y)fi(y) Ã fi(y|x, ◊)fi(x|◊)fi(◊)
fi(x|◊, y)

¥ fi(y|x, ◊)fi(x|◊)fi(◊)
fĩ(x|◊, y)

----
x=xú(◊)

= Âfi(◊|y),

where fĩ(x|◊, y) is the Gaussian approximation, given by the Laplace approximation
of fi(x|◊, y) at its mode xú(◊) for a given ◊ (see Blangiardo and Cameletti (2015) for
details). This approximation is usually very precise as the prior of x is Gaussian and
the full posterior fi(x|◊, y) is close to Gaussian.

Approximating (2) is more complex with more expensive computation as there tends
to be a larger number of components in x than in ◊. One of the options proposed by
Rue et al. (2009) is to use Laplace approximation again:

fi(xj|◊, y) = fi((xj, x≠j)|◊, y)
fi(x≠j|xj, ◊, y) = fi(x, ◊|y)

fi(◊|y)fi(x≠j|xj, ◊y) Ã fi(x, ◊|y)
fi(x≠j|xj, ◊, y)

¥ fi(x, ◊|y)
fĩ(x≠j|xj, ◊, y)

----
x≠i=xú

≠j(xj ,◊)
:= Âfi(xj|◊, y),

where fĩ(x≠j|xj, ◊, y) is the Laplace approximation of fi(x≠j|xj, ◊, y) at its mode xú
≠j

(xj, ◊)
for a given ◊ and xj.

INLA exploits the fact that Q in the second stage of the LGM is Gauss-Markov,
and thus sparse, to attain computational e�ciency. Approximate results are obtained
very quickly and are usually also very precise. INLA has been used on a large number
of applied projects: disease mapping, evolution of the Ebola virus, search for evidence
of gene expression heterosis, e�ects of measurement errors and so on. More examples
are found in Rue et al. (2016).

3.3.1 Implementation in R-INLA

The R-INLA package is used to implement the models in this thesis. There are two
steps:

1) Define the linear predictor through a formula object.

2) Fit the model using the function inla(). The fitted model is returned as an
inla object.

The formula can include fixed e�ects and random e�ects defined through the f()
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function. The inla object includes the posterior marginal distributions of the latent
e�ects and hyperparameters, as well as summary statistics. Model choice criteria such
as DIC are also available. In R-INLA predictions must be done as a part of the model
fitting itself. As prediction can be regarded as fitting a model with missing data, we can
simply set y[i]=NA for those i’s we want to predict. inla() does not return a predic-
tive distribution, it only returns the posterior marginals of the linear predictor at the
missing locations. To obtain a predictive distribution one has to add the observational
noise to the fitted values.

An example on making predictions in R-INLA is provided in Appendix B.

3.4 Deviance Information Criterion
The deviance information criterion (DIC) is a tool for Bayesian model selection. Spiegel-
halter et al. (2002) proposed this criterion based on a trade-o� between goodness of fit
of the model, and the corresponding complexity of the model. DIC is based on the fit
to observed data given the posterior mean (Tsai, 2015) and is defined by

DIC = ≠2log
1
p(y|◊̂)

2
+ 2pDIC,

where y is the data, p(y|◊̂) is the likelihood and ‚◊ is the posterior mean E(◊|y) of the
parameters ◊. pDIC is an estimate of the so-called e�ective number of parameters in the
model, and it penalizes the complexity of a model by

pDIC = 2
1
log(p(y|◊̂)) ≠ E[log(p(y|◊))]

2
. (3.4)

The expectation in the second term is an average of ◊ over its posterior distribution
(Gelman et al., 2013).

The first term in Equation (3.4) favors a good fit, and the second term penalizes
model complexity. A lower value of DIC of one model compared to another indicates a
better fit.

3.5 Evaluation of the Predictive Performance
In order to evaluate and compare the predictive performance of the di�erent models
to be presented, we will employ two criterions: the root-mean-square error (RMSE)
and the continuous ranked probability score (CRPS). They both measure how close the
predicted values are to the observations, but with di�erent approaches. We will in this
paper work with averaged annual RMSE and CRPS.

3.5.1 RMSE

The definition of the RMSE in year j is
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RMSEj =
ı̂ıÙ 1

T

Tÿ

t=1

1
ŷt ≠ yt

22
,

where T is the number of predictions made in a year (one for each hour), and ŷt and
yt are the predicted value and the observation, respectively, at time t in year j. As
mentioned, the mean annual value of RMSE, averaged over all years r, will be used as
measurement of the predictive performance, and it is found by

RMSE = 1
r

rÿ

j=1
RMSEj.

3.5.2 CRPS

The second criterion that will be used for assessing the predictive power of our models
is the CRPS. This is a probabilistic forecast score that evaluates the performance of
forecast densitites, and is defined, for one predicted value, as

CRPS(F, yt) =
⁄ Œ

≠Œ

1
F (u) ≠ 1{yt Æ u}

22
du.

Here F is the predictive cumulative distribution function and yt is the observed value
of heat consumption. Computation of the CRPS is carried out in R using the function
crps() found in the verification package. Here it is assumed that the posterior
distribution F is Gaussian with mean and standard deviation equal to the posterior
mean and standard deviation of heat consumption. The annual mean is then found by

CRPS = 1
r

rÿ

j=1

1
T

Tÿ

t=1
CRPS

1
Ftj, yj(t)

2
.

When comparing two values of RMSE or CRPS for two di�erent models, a lower
value indicates more accurate predictions.
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Chapter 4

Statistical Models for Heat
Consumption

Theory and knowledge from the preceding chapters will now be used to construct a
number of latent Gaussian models for aggregated heat consumption per hour. A basic
model common for both Oslo and Trondheim will be introduced first, before we test
new covariates and e�ects in addition to estimate separate models for the two counties.
The computations will be carried out using the R-INLA methodology to ensure fast
calculations.

4.1 Basic Model
We will set up the model for the log transformed time series of heat consumption as an
additive regression model with Gaussian likelihood. We choose GMRF priors for the
e�ects of covariates and we are therefore in the family of LGMs. Furthermore, with
priors on the hyperparameters, this is a Bayesian LGM which allows us to use R-INLA
for the model estimation.

With an essentially unlimited number of models, made up by various di�erent com-
ponents, we restrict ourselves to first consider a basic model we believe will capture
most of the patterns that are present in the underlying process. In our basic model for
the linear predictor ÷t we incorporate the dependencies and structures we discovered in
Chapter 2. As mentioned above, the basic model is common for both counties, so we
will train the model on data from both Oslo and Trondheim. For two e�ects we will
make a division between the counties by including an interaction with county in the
smooth e�ect, and by adding a fixed e�ect of county. This way we allow for di�erences
between the areas that after all are located at two rather di�erent locations. The obser-
vations of heat consumption is assumed to follow yt ≥ N (÷t, ‡

2
y
), and the basic model

looks like this:

÷t = x€— + f(temp
t
) + f(day

t
) + f(hourt, daytype

t
) + f(t, county)

yt = ÷t + et.
(4.1)

Here f(temp
t
) represents a smooth e�ect of the observed temperature while f(day

t
) is

a smooth e�ect of the day of the year: day
t

œ (1, ..., 365). For these two e�ects we use
an RW2 model with unknown precision. For the annual cycle we assume the the RW2
model is circular, meaning that the last day of the year is assumed to be neighbor with

25
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the first one. This is because it makes sense to assume that these two time stamps have
a similar e�ect.

The f(hourt, daytype
t
) term indicates an interaction between the hour of the day,

hourt œ (0, ..., 23), and the day type (working day and non-working day). We assume
that each day type has its own daily profile but that all daily profiles have the same
smoothness. We achieve this by using the replicate option in R-INLA when specifying
the corresponding f() function. We assume a circular RW2 model for the daily cycles.
We include this interaction because of what we saw in Figure 2.10c and 2.10d, namely
that the level of heat consumption shift depending on hourt and daytype

t
.

f(t, county) is an AR1 model that is used in order to capture some of the residual
autocorrelation in the time series. We assume that each of the two counties has its own
autoregressive e�ect. Again we model this using the replicate option.

Finally, the x€— part of the model includes linear e�ects of the covariates county
and daytype

t
. We include these linear e�ects due to the fact that replicates of the

daily cycle in the implementation are only allowed di�erent shapes, but they all sum to
zero. Because we know that the heat consumption is larger during working days than
non-working days, we need to allow for di�erent amounts as well as di�erent shapes. In
addition, by including the linear e�ect of county we allow for di�erences between Oslo
and Trondheim. The reference levels, which are included in the intercept, are county =
Oslo and daytype

t
= working day.

The basic model has five hyperparameters for which we employ uninformative priors.
The hyperparameters consist of one precision parameter for each of the random e�ects
and one autocorrelation parameter for the AR1 model. We have chosen to fix the
precision parameter of the likelihood to a high value in order to avoid overfitting. If
we were to not fix it we would have two unstructured random noises at each step of
the time series: one coming from the innovation of the AR1 model and one from the
likelihood error (Zheng and Bakka, 2018). Fixing the likelihood also has the advantage
that the posterior distribution for the linear predictor returned by inla() coincides
with the predictive distribution for the unobserved data.

et is the measurement error that is assumed to be iid by et ≥ N (0, ·
≠1
e

), where ·e is
fixed.

A problem that can arise with the model is stability issues. In Section 2.2 we talked
about the correlation between heat consumption and outdoor temperature. So when
including the annual cycle in the basic model, which is highly correlated to temperature,
stability issues arise (Fahrmeir et al., 2013). Since it is the temperature that causes the
annual cycle, it would seem enough to just include temp

t
(temperature) in the model,

and not day
t

(annual cycle). However, when excluding day
t
, the annual cycle appears

in the residuals. Apparently temp
t

is not able to capture the entire annual cycle, and
day

t
is required in the model. Like we said, because of multicollinearity, this could

cause stability issues when estimating the model.
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4.2 Results from the Basic Model
In this section, and the following one, we present the results of training the basic model,
and more models to be introduced, on all observations from both Oslo and Trondheim.
We therefore talk about fitted values and not predictions.

The annual e�ect is shown in Figure 4.1a. Remembering how one year of consump-
tion looked like in Figure 2.3, we see that the annual e�ect and the observed annual
cycle have, roughly, the same shape. In Figure 4.1b the daily profiles are shown, and
there is a clear distinction between the day types. The shapes are similar to those
in Figure 2.5. For working day there is a sharp increase in the morning with a peak
around 09:00. The consumption then decreases when the working day is over. In the
non-working days the consumption is more or less flat.

It may seem more natural to separate between, perhaps, eight day types, which
represent each of the seven days in the week and holidays. Figure 2.5 suggested that
there was little di�erence between the working days (Monday-Friday), and that the
weekend and holidays share the same characteristics. A basic model with these eight
day types was also tested on the data, and it actually produced a slightly higher value
of DIC and certainly did not improve the predictions. This is why we only work with
two day types in our models.

(a) Annual e�ect. (b) Daily profiles for working days (purple)

and non-working days (orange).

Figure 4.1: Annual e�ect and daily profiles. Translucent band and dashed lines
indicate the 95% credible intervals.

The linear e�ects in the basic model are shown in terms of their posterior marginal
distributions in Figure 4.2. The intercept, which includes the reference levels county =
Oslo and daytype

t
= working day, is shown in Figure 4.2a. In Figure 4.2b we have the

linear e�ect that is added to the linear predictor if county = Trondheim is true. The
mean is small, but the 95% credible interval does not cover zero, so it is significantly
di�erent from zero, and we get a small increase in heat consumption in Trondheim.
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From what we have seen about the consumption in the two counties, the amounts are
similar (see for example Figure 2.3) and thus a small value for the additional e�ect of
Trondheim is to be expected.

When we have a non-working day, the consumption is reduced by about 0.245, as
seen in Figure 4.2c. This is in line with what we saw in Figure 2.5, namely that the
level of consumption on non-working days is lower than on working days.

(a) Oslo and working day (b) Trondheim (c) Non-working day

Figure 4.2: The posterior marginal distributions of the linear e�ects. Shaded areas
denote the 95% credible intervals.

Finally, the e�ect of temperature is shown in Figure 4.3. It is similar to the shape
of the distributions of heat load with respect to temperature in Figure 2.10a and 2.10b
in Section 2.2. As expected, the consumption decreases with higher temperatures. The
curve is relatively flat for very low temperatures and decreases steeply between ≠10°C
and 15°C and shows a tendency to stabilize, with some increase, for temperatures
higher than 15-20°C. This is expected as for high temperatures the heating system is
shut down. The slight increase might be due to the fact that, for some buildings, energy

Figure 4.3: E�ect of temperature. Translucent band indicate the 95% credible inter-
val.
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is used for cooling4. The intervals are wider at the ends of the temperature scale due
to few observations of heat consumption at these temperatures.

4.2.1 Fitted Values Compared to Observations

The shapes and values of the e�ects above tell us little about how well the observations
are estimated. We will in this section compare the fitted values in Oslo from the basic
model with the observed heat consumption. Corresponding plots and results are found
in Appendix A for Trondheim. The estimated value of the linear predictor that is used
for comparison with observations throughout this thesis is the median, or 0.5 quantile.
We use the median instead of the mean because if we want to look at the predictions
in the original scale, i.e. not on the log scale, we can transform the median, but we
cannot do the same for the mean.

In Figure 4.4 we have the fitted values (orange) from the basic model, together with
the observations (blue) for 2011 in Oslo. The observations are hard to see here since
the fitted values overlap with them for large parts of the year. In Figure 4.5 two single
weeks are shown, making it possible to also see the 95% prediction interval.

Figure 4.4: The median of the predictive distribution and observations for a year in
Oslo.

The curves in both Figure 4.4 and 4.5, where orange is the curve for the fitted values,
tell us that the basic model captures the annual cycle well, in addition to the weekly
cycle and the daily cycles. Moreover, it seems as though the e�ect of temperature works
well in the sense that the last five days in the top plot in Figure 4.5, which are working
days, are not all at the same level.

The fitted values follow a smoother curve than the curve for the observations which
is preferable since we do not want to overfit. We notice there seems to be a shift
in the daily peak load in the top plot in Figure 4.5. This could indicate that lagged

4
This information was obtained through communication with researchers at Sintef.
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temperatures would be more appropriate to include as input to the model instead of the
actual temperatures. Figure 2.10a and 2.10b suggested that there is a strong correlation
between outdoor temperature and heat consumption, but it is not obvious how long it
takes for changes in the temperature to appear in the amount of heat that is consumed.
Because buildings in Norway are generally well insulated, it is to be anticipated that
fluctuations in temperature do not appear instantaneously in the demand. We will test
this idea later in Section 4.3.4.

Note that it does not seem like the whole day is shifted, only the peak. Furthermore,
in the bottom plot in Figure 4.5 this shift does not occur as clearly. If the shift is caused
by the e�ect of temperature, it is expected that we do not see this characteristic in this
plot as it shows a week in the summer. Remembering the e�ect of temperature in Figure
4.3, we know that temperature has less e�ect on the consumption for high temperatures.

Figure 4.5: The median of the predictive distribution and observations for two weeks
in 2011 in Oslo along with the 95% prediction intervals.

In Figure 4.4 it is apparent that it is in the summer that our model performs least
well. We see a tendency of what appears to be overestimation of the consumption.
In the bottom plot in Figure 4.5 a week from this period is shown. The small scale
variation of the observations that occur here is not captured by the model. However,
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the larger scale pattern seems to be well represented by the fitted values. Furthermore,
based on the same plot it seems like the assumption we made of overestimation in the
summer is not the case for all consumption here, but rather a lack of hitting the extreme
values, meaning the lowest daily demands.

The increased di�erence between observations and fitted values at summer time is
reflected in the residuals for Oslo in Figure 4.6, where there is a higher variance in
the residuals in the summer. We note that the summer time is the period where heat
consumption is at its lowest. Moderately under- or overestimation of the demand here
will therefore not have a big impact on the calculation of the annual demand.

Figure 4.6: Residuals in Oslo.

The higher variance in the residuals in the summer is the most notable feature of
the residuals. In order to detect whether there is more correlation between them, we
have plotted the ACF of the residuals in Figure 4.7. We see a 24 hour cycle in the ACF

Figure 4.7: ACF of residuals in 2009 in Oslo.
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that the model has not been able to catch. In Figure A.4 in Appendix A the ACF of
the same year is found for Trondheim. The result is similar as in Oslo.

The estimated value of Ï of the AR1 model f(t, county) has a value very close to
1, making the inputs to f(t) highly correlated to the outputs. This, along with the
correlation in Figure 4.7, seems to suggest that the deterministic part of the model
does not capture all the variability in the data.

4.3 Additional Models
We now expand our set of proposal models by altering the basic model. We start by
testing whether adding interactions between covariates improves the model. Next we
introduce new covariates and e�ects. The models are, as in the previous section, trained
on all observations from Oslo and Trondheim. We keep the new e�ects common for
both counties, and in Section 4.4 we will include unique e�ects for each county, allowing
us to discover potential di�erences between them.

4.3.1 Interaction Between Day Type and Season

An interesting question could be whether the daily cycle changes not only depending
on day type, but also from season to season. This could be due to the fact that working
habits are di�erent in winter and summer. To investigate this we add to our model an
interaction e�ect between daily cycles and season. We add the interaction both in the
fixed e�ect and in the random e�ect. This will be called Model S4. We have defined
the four seasons here as winter from December 21st to March 20th, spring is the next
three months, then three months of summer and finally three months of fall, ending
December 20th. This means that now instead of two daily profiles (working day/non-
working day) we have eight (daytype

t
◊ seasont), with two and four levels of daytype

t

and seasont, respectively.
The fixed e�ect seasont = winter is included in the intercept together with the

reference levels Oslo and working day. The posterior marginal distributions of the fixed
e�ects of spring, summer and fall are shown in Figure 4.8. The interaction between these
seasons and working day is found in Figure 4.8a, and the interaction with non-working
day is found in Figure 4.8b.

In Figure 4.8a we see the outcome of giving the linear e�ect of working day the
opportunity to change through the seasons, and the result is that it does not contribute
much to the response. The 95% credible intervals for all interactions cover zero, thus
the e�ects are not significantly di�erent from zero. The mean of the e�ect of summer
is slightly positive, but since zero is included in the credible interval, the e�ect is not
significant.
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(a) Working day (b) Non-working day

Figure 4.8: Posterior marginal distributions of the linear e�ects for interaction be-
tween day type and the seasons spring (purple), summer (orange) and fall (green).
Shaded areas denote the 95% credible intervals.

Figure 4.8b shows the e�ects of season interacting with non-working day. They are
all significantly di�erent from zero, and the similarity between them indicates that it
is non-working day that is the reason for this, and not the interaction with season.

The di�erent daily profiles for f(hourt, daytype
t
, seasont) are shown in Figure 4.9.

We have separated the seasons by di�erent colors, and the day types by solid and dashed
lines.

Figure 4.9: The four seasons are represented in blue (winter), purple (spring), orange
(summer) and green (fall). Dashed lines are non-working days, and solid lines are
working days. The shaded bands denote the 95% credible intervals.

All four e�ects for each day type in Figure 4.9 are similar, but for non-working days
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there is more distinction between the seasons. Or rather, we see groupings of two and
two seasons, where spring and summer are very similar, and so are fall and winter, and
there is a clear di�erence between these two groups. For working days, this grouping
does not appear.

Based on the result of the e�ects for non-working days in Figure 4.9, we replace the
four seasons in seasont by two six-month seasons in Model S2. Spring/summer contains
spring and summer, and fall/winter contains fall and winter. This way we reduce
the model complexity in terms of the number of e�ects we have to estimate, which is
favored by the DIC. The new e�ects for the daily cycles are plotted in Figure 4.10.
The resulting profiles resemble the groupings we saw in Figure 4.9. We notice that the
peaks occur at di�erent times of the day in the spring/summer and in the fall/winter:
for non-working days, the peak occurs about two hours before in the spring/summer
than in the fall/winter, and the peak reaches a higher level here than in the fall/winter.
The peak is higher in the spring/summer for working days as well, but it occurs at the
same time as in the fall/winter. We also see a second, local peak at about 14:00 on
working days in the spring/summer.

Figure 4.10: The daily profiles for the new six-month seasons are represented in blue
(”winter”) and orange (”summer”). Dashed lines are non-working days, and solid lines
are working days. The shaded bands denote the 95% credible intervals.

4.3.2 Adding an E�ect of Wind

Together with temperature and solar radiation, wind speed is considered one of the
climatic factors that can influence the heat load of buildings. Since we saw a possible
relationship between wind and heat consumption in Figure 2.9, we include a smooth
e�ect of wind in Model W by adding

f(windt) ≥ RW2
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to the basic model. The resulting e�ect of wind is shown in Figure 4.11. There is a
small increase in heat consumption for low temperatures, but for higher temperatures
the relationship is weak. We will see later in Section 4.4.2 that there is a di�erence
between the estimated e�ect of wind in Oslo and Trondheim, where the common e�ect
in Figure 4.11 resembles the e�ect in Trondheim. A reason for the e�ect in Trondheim
to dominate for high wind speeds in the common e�ect could be that the highest
observations of wind speeds are recorded in Trondheim: the highest value recorded in
Oslo was about 12.5 m/s, while in Trondheim it was just above 15 m/s.

Figure 4.11: E�ect of wind. Translucent band indicates the 95% credible interval.

4.3.3 Adding a Linear Trend

We include in the model a global time trend in the form of a linear regression with
respect to the number of months from the beginning of the observation time. This is
called Model M. Such a global trend could represent for example an improvement of
the infrastructures that leads to decreasing energy usage. The exploratory analysis in
Section 2.1.5 suggests the presence of a small negative trend in heat consumption over
time that appears more prominent in Trondheim.

The resulting slope of the time trend is shown in Figure 4.12 in terms of its posterior
marginal distribution. The e�ect has a small value, but it is significant. Moreover, the
sign of the e�ect corresponds to the sign of the slopes in Figure 2.6 and 2.7.

Also by looking at the e�ect of time in Model M compared to the basic model,
we can get a hint on how well a linear trend is suited for the data. This is because
f(t, county) picks up the e�ects that are not captured by the deterministic part of the
model. It was intended to catch possible correlation between the fitted values, and if
we have a, say, monthly decrease that is not modeled by any of the other elements of
the model, this will appear in f(t, county).
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Figure 4.12: The posterior marginal distribution of the e�ect of month. Shaded area
denotes the 95% credible interval.

In Figure 4.13 we have compared the e�ect of time from the basic model and Model
M. In both Oslo and Trondheim the e�ects mostly overlap for the two models, but
we see a slight monthly decrease in the e�ect from the basic model compared to the
e�ect from Model M, indicating that a linear trend is suitable, although it is very small.
There is no notable di�erence between the e�ects in Oslo and Trondheim.

Figure 4.13: E�ect of time in the basic model (blue) and in Model M (red).

4.3.4 Lagged Covariates

We talked about in Section 4.2.1 that we are not sure about how long it takes for
changes in the temperature to appear as an increase or decrease in heat consumption.
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The di�erence in when the peak load for one day appears for the observations and for
the fitted values from the basic model in Figure 4.5 suggested that lagged values of the
temperature covariate could be a better choice for input to the model than the actual
temperature. Based on the findings in Skagestad (2018), where likewise buildings in
Norway were studied, we choose a lag of k = 2. The model with a lagged temperature
covariate is called Model LT, and the fitted values from the same week as in the top
of Figure 4.5 is shown in Figure 4.14, together with the fitted values from the basic
model. No change or improvement of the placement of the daily peak loads from the
fitted values can be seen from this figure.

(a) Basic model

(b) Model LT

Figure 4.14: The median of the predictive distribution and observations for one week
in 2011 in Oslo along with the 95% prediction intervals.

4.4 Separating the Counties
The idea behind a common model for both counties is to invoke the possibility of learn-
ing from each other. For instance if the daily profiles are similar in Oslo and Trondheim,
then estimating them on observations from both places renders more observations and
thus a larger training set. However, if the e�ects in our model di�er between the loca-
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tions, the common e�ects would, in the worst case scenario, not be suitable for neither
of the locations. In this section we will first fit the basic model introduced earlier on
one county at a time and compare the new e�ects for each county. Next, more models
from the previous section are estimated on one county at a time. When we only have
observations from one county in the training set, and we make predictions for a year in
the same county, we say that we use a one-county model, in contrast to the common

models presented above.
When we estimate the basic model on each county separately, the interaction in

Equation (4.1) with county is removed from f(t), and the fixed e�ect of county is
omitted. By estimating models on one county at a time, we essentially let all the e�ects
in the model have an interaction with county, creating the possibility of di�erences
between Oslo and Trondheim in all e�ects.

4.4.1 E�ect of Temperature and Cycles

To get an impression of how similar (or dissimilar) these two one-county basic models
are, we look at the smooth e�ects f(temp

t
) in Figure 4.15, and at f(hourt) and f(day

t
)

in Figure 4.16.
For temperatures between 0°C and about 18°C the e�ect of temperature is more

or less identical in Oslo and Trondheim, as seen in Figure 4.15. Furthermore, the
relationship here is close to linear. For temperatures outside this interval, we have a
larger e�ect in Oslo. The decrease in e�ect for the highest temperatures is only seen in
Oslo. The di�erence in e�ect for the extreme temperatures is probably caused by the
uncertainty here due to few observations at said temperatures. The credible intervals
are not shown in Figure 4.15 and 4.16 for readability reasons, but they would have
revealed the same characteristic as seen in Figure 4.3, namely wider intervals at the
ends of the temperature scale.

Figure 4.15: E�ect of temperature.

The daily cycles for working days in Figure 4.16a resemble what we saw in Figure
2.5: the peak load in Trondheim is higher than in Oslo, and the heat consumption
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experiences a steeper decrease at the end of the day in Trondheim. For non-working
days, which are visualized as dashed lines, the shape during a day is similar in both
counties, but is shifted some hours ahead in time for Oslo such that the peak load
happens later in the day. For the annual cycle in Figure 4.16b, we also have similar
shapes in Oslo and Trondheim where the one for Oslo is shifted slightly to the right
compared to Trondheim.

(a) Daily profiles. (b) Annual e�ects.

Figure 4.16: Daily profiles and annual e�ects in Oslo (green) and Trondheim (purple).

4.4.2 E�ect of Wind

The e�ects of wind from the one-county Model W are displayed in Figure 4.17. We first
of all notice how the e�ect of wind in the common Model W is more or less identical
to the e�ect for Trondheim in Figure 4.17b. We also see that the positive linear e�ect

(a) Oslo (b) Trondheim

Figure 4.17: E�ect of wind. Translucent bands indicate the 95% credible intervals.
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with increasing wind speed, which we saw in Figure 2.9a, is present in the e�ect for
Oslo in Figure 4.17a.

4.4.3 E�ect of a Linear Trend

The e�ect of the linear trend in the common Model M was small, but significant. As with
the e�ect of wind, we have from Chapter 2 that the mean monthly decrease is di�erent
between the counties. Thus we expect to see significant di�erences between Oslo and
Trondheim in the new estimated linear e�ects. Our assumption is confirmed: in Figure
4.18 we see that the e�ect of month in Oslo is not significantly di�erent from zero, and
the e�ect in Trondheim is larger than in the common model. Moreover, the e�ects of
time in Figure 4.19 from the one-county basic models and the one-county Model M
show that, for Trondheim, the inclusion of a linear trend removes the decreasing mean
from the AR term f(t).

(a) Oslo (b) Trondheim

Figure 4.18: The posterior marginal distributions of the e�ect of month. Shaded
areas denote the 95% credible intervals.
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Figure 4.19: E�ect of time in the basic model (blue) and in Model M (red).

4.5 Comparison of Goodness of Fit
We will in this section look at the values of DIC for the di�erent models explored in the
previous sections. DIC will not be our main criteria for evaluating which model o�ers
the best fit to our data. This is because it is a measurement of expected predictive power
for out-of-sample prediction. We are more interested in how our models perform when
tasked with actually predicting for unknown observations. However, we still include
the resulting values of DIC from estimating the various models as it is interesting to
discover whether any of the models are strongly preferred compared to another, with
respect to the DIC.

The DIC of all common models that are explored and estimated on all observations
in this chapter are listed in Table 4.1. There is also included a column where the
di�erence between each model and the basic model is listed. The first row in this
column reads the e�ects in the basic model. We have in addition estimated all models
separately for each county. The resulting DICs for the one-county models are shown in
Table 4.2. We have omitted the column with model specification here as it is identical
to the column in Table 4.1, with the exception of the county covariate in f(t), and the
linear e�ect of each county that is removed from x€—.
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Model Formula DIC

Basic model x€— + f(temp
t
) + f(day

t
) -79 563+f(hourt, daytype

t
) + f(t, county)

Model S4 Added interaction with four seasons and daytype
t

-80 256

Model S2 Added interaction with two seasons and daytype
t

-80 141

Model W Added a smooth e�ect of wind -79 576

Model M Added a long-term time e�ect -79 634

Model LT Used lagged temperatures -78 098

Table 4.1: A list of the di�erent models and their DIC. The items in the Formula
column as of the second row refer to the alterations made to the basic model. All
observations are included in the model estimations.

Model DICO DICT

Basic model -41 905 -39 393

Model S4 -42 388 -40 382

Model S2 -42 099 -40 212

Model W -41 898 -39 403

Model M -41 898 -39 405

Model LT -40 056 -39 584

Table 4.2: A list of the di�erent models and their DIC. Subscripts O and T denote
Oslo and Trondheim, respectively. All observations in one county were included in the
model estimation of the same county.

In Table 4.1 Model LT has the highest DIC and Model S4 has the lowest. Consider-
ing the high absolute value of all the DICs in Table 4.1, the di�erences between them is
not that large, and there is not one model that stands out with a significant low value
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of DIC. Likewise, the highest value of DIC found in Table 4.1 is not that di�erent from
the rest.

In both Table 4.1 and 4.2 Model S4 gives the lowest DIC, and Model LT has the
highest value for the common model and for the one-county model in Oslo. In Trond-
heim, we have that the one-county basic model yields the highest value of DIC.

4.6 Predictive Performance
Until now we have included all observations from the data set when estimating the
models. This way we learn whether the models are able to catch the underlying process
causing the observations, and we are also able to decide which e�ects are significant.
Additionally we have compared the DIC of the di�erent models. But as we said in
Section 4.5, we are more interested in how the models perform in terms of the RMSE
and CRPS when predicting for new observations.

4.6.1 RMSE and CRPS

As in Section 4.5 we start by considering the models that are common for both counties.
We create a training set where we remove one year from one county at a time. For
example, when predicting for 2011 in Oslo, we use the observations from 2009 and 2010
in Oslo, and from 2009-2011 in Trondheim. We then compare the predicted values to
the observations. The values of RMSE and CRPS that we will consider are the mean
annual ones. They are found in Table 4.3.

RMSEO RMSET CRPSO CRPST

Basic model 0.213 0.249 0.119 0.146

Model S4 0.215 0.248 0.121 0.144

Model S2 0.212 0.252 0.118 0.146

Model W 0.211 0.250 0.118 0.147

Model M 0.257 0.239 0.157 0.138

Model LT 0.221 0.249 0.124 0.147

Table 4.3: A list of the di�erent models and their RMSE and CRPS. Subscripts
O and T denote Oslo and Trondheim, respectively. Observations from both counties,
excluding the year of prediction in the given county, were included in the training sets.
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For the one-county models, the training set for predicting 2011 in Oslo is only the
observations from 2009 and 2010 in Oslo, and none from Trondheim. Likewise for the
training sets for prediction in Trondheim. The resulting mean annual RMSE and CRPS
are listed in Table 4.4.

For all models except for one, Model M, we have lower values of RMSE and CRPS
in Oslo. Moreover, here the RMSE and CRPS for all models in Table 4.4 are lower than
in Table 4.3, where observations from Trondheim were also included in the training set.
This is to be expected when the e�ects are trained on data from Oslo to predict for
data from Oslo. We do not see the same result for Trondheim: for all but two models,
the RMSE and CRPS in Table 4.4 are higher than in Table 4.3.

RMSEO RMSET CRPSO CRPST

Basic model 0.208 0.256 0.115 0.152

Model S4 0.210 0.252 0.118 0.146

Model S2 0.207 0.264 0.115 0.151

Model W 0.206 0.258 0.115 0.153

Model M 0.249 0.209 0.146 0.115

Model LT 0.215 0.255 0.121 0.152

Table 4.4: A list of the di�erent models and their DIC, RMSE and CRPS. Subscripts
O and T denote Oslo and Trondheim, respectively. Two years of observations from the
county that is predicted for are included in the training set.

4.6.2 Predictions

In Trondheim, the model that gave the lowest value of RMSE and CRPS was the
one-county Model M. The findings in Section 2.1.5 suggested that a linear trend with
a monthly decrease was suitable for Trondheim, and the resulting RMSE and CRPS
endorse this assumption. In Figure 4.20 we show predicted values using both the one-
county basic model and the one-county Model M, along with observations, for one week
in 2011 in Trondheim. The predictions in Figure 4.20a follow the same shape as the
observations, and they mostly stay inside the 95% prediction interval. We do however
see an overestimation of the observed heat consumption throughout the week. In Figure
4.20b, where the predictions from Model M are shown, this overestimation is no longer
present, and we also have that the observations stay inside the prediction interval for
all predictions.
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(a) Basic model

(b) Model M

Figure 4.20: The median of the predictive distribution and observations from one
week in 2011 in Trondheim using the one-county basic model (top) and the one-county
Model M (bottom). Shaded bands denote the 95% prediction intervals.

A year from the one-county Model M is shown in Figure 4.21. What we saw in
Figure 4.20b, which was a good fit in a month in the spring, is also seen in Figure 4.21.
In fact, the model performs remarkably better during the first and last months of the
year than in the summer, where we have an overestimation of the demand. Since Model
S4 is designed to allow for both di�erent levels and daily cycles during the year, and
since this model reported the lowest value of DIC, we look at the predictions from the
one-county Model S4 in Trondheim in the same year as in Figure 4.21. The result is
shown in Figure 4.22, and we see that the overestimation in the summer has not been
reduced with Model S4 compared to Model M. We have a slightly higher level of all
predicted values here, because the linear trend is not included in Model S4.
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Figure 4.21: The median of the predictive distribution and observations for 2011 in
Trondheim with one-county Model M. Shaded band denotes the 95% prediction interval.

Figure 4.22: Median of the predictive distribution and observations for 2011 in Trond-
heim with one-county Model S4. Shaded band denotes the 95% prediction interval.

We saw in Figure 2.3 that there is more variability in the heat consumption in
Trondheim, and in Figure 4.21 and 4.22 we see that the models do not capture this
variability in the summer.

For completeness, we include a plot of the residuals from predicting for 2011 in
Trondheim with the one-county Model M. This is shown in Figure 4.23. As is expected
from both Figure 4.6 and 4.21, we have higher variance in the residuals in the summer.
We also have correlation.
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Figure 4.23: Residuals in Trondheim.

The models with the lowest values of RMSE and CRPS for Oslo was the one-county
Model W. As the di�erence in RMSE between the one-county Model W and the basic
model was minor, we choose to compare predicted values made with the common Model
W and the one-county Model W. The di�erence in RMSE between these two models
was, for Oslo, slightly higher. These predictions are given in Figure 4.24. The most
notable di�erence between these two models, is the width of the prediction intervals.
When all observations from both counties are included in the training set, except the
year in Oslo we make predictions for, it is wider than when we only include two years
of observations from Oslo. The predicted values in Figure 4.24a and 4.24b are more or
less the same, due to the small impact the e�ect of wind yields, as seen in Figure 4.17.
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(a) Common Model W

(b) One-county Model W

Figure 4.24: Median of the predictive distribution and observations from one week
in 2011 in Trondheim using the common Model W (top) and the one-county Model W
(bottom). Shaded bands denote the 95% prediction intervals.

A reason for this decrease in width of the prediction interval may be found in the
e�ect of wind. What is special about this e�ect, compared to the e�ects included in our
other models that rather yield wider intervals for the one-county models, is the large
di�erence in the e�ect of wind between the counties. The e�ect of wind in the common
Model W had a very large credible interval, which we saw in Figure 4.17 was caused
by the e�ect of wind in Trondheim. Thus, when having a common e�ect of wind that
is mostly influenced by the uncertain e�ect in Trondheim, more noise is added to the
predictions and, in turn, the prediction interval is wider.

We also include the predictions for the whole year of 2011 in Oslo using the same
models as in Figure 4.24. They are shown in Figure 4.25 for the common Model W
and in Figure 4.26 for the one-county Model W. The predictions for the common and
one-county Model W are similar. The di�erence is in the width of the prediction
interval, as seen also in Figure 4.24, and that the one-county model underestimates the
consumption more in the summer than the common model does.
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Figure 4.25: Median of the predictive distribution and observations for 2011 in Oslo
with the common Model W. Shaded band denotes the 95% prediction interval.

Figure 4.26: Median of the predictive distribution and observations for 2011 in Oslo
with one-county Model W. Shaded band denotes the 95% prediction interval.
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Chapter 5

Results and Discussion

In this chapter we will analyse how the inclusion of di�erent covariates and interactions
a�ects the predictive performance of the models in Chapter 4. Next, we will study how
the predictive performance of our models compare to that of the model suggested by
Sintef, before we discuss the findings in this work.

5.1 Main Conclusions From the Experimental Re-
sults

We will here summarize and draw conclusions from the experimental results in Chapter
4, with focus on the smooth e�ects.

5.1.1 Temperature

In Figure 4.20 and 4.24 we saw that the predictions follow both the shape and level of the
observations when we have a varying level of the observed day-to-day heat consumption.
This indicates that the e�ect of temperature is strong. This is in line with common
knowledge that we use more heat when the weather is cold.

The shape of the estimated e�ect of temperature is similar to that of the piecewise
linear relationship assumed by Sintef, shown in Figure 1.1. We saw that for a certain
temperature range, the e�ect of temperature is close to linear, and for another range,
namely higher temperatures, the e�ect stabilizes.

Figure 4.5 suggested that a lagged series of temperatures could be appropriate for
our models. A lag of k = 2 was implemented and tested, showing no improvement in
neither the DIC nor the RMSE or CRPS.

5.1.2 Daily Cycle

The estimated daily cycles from our models correspond well to the observed ones in
Figure 2.5. We saw some small changes when we included an interaction with both four
and two seasons, but this had little impact on the predictive performance in neither of
the counties.

51
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5.1.3 Wind Speed

The e�ect of wind appears to be significant in Oslo but not in Trondheim. When the
e�ect of wind is included in the common Model W it appears to increase the uncertainty,
while it improves the predictive performance in Oslo with the one-county Model W.
The reason for this is not known.

5.1.4 Monthly Linear Trend

We revealed a monthly decrease in heat consumption in Figure 2.7. When a long-
term time trend was included in the basic model, which created Model M, we saw
improvements in the predictive power in Trondheim. Both in the RMSE and CRPS,
and also by comparing the one-county basic model and the one-county Model M in
Figure 4.20. Overall, Model M showed the largest improvement, with respect to RMSE
and CRPS, compared to the basic model, among the models considered. Model M was
also the model that produced values of RMSE and CRPS for Trondheim that were
closest to the best results in Oslo.

5.1.5 Learning Between the Counties

A reason to estimate the models on Oslo and Trondheim together is that some of the
e�ects are assumed to be alike. For example the e�ect of temperature and the annual
cycle, which we confirmed in Figure 4.15 and 4.16b. However, we saw that the e�ect of
wind is di�erent, and in Trondheim there is a long-term trend that we do not have in
Oslo.

In Oslo there was little di�erence in RMSE and CRPS between the one-county mod-
els and the corresponding common county models. The one-county models performed
slightly better for each model. In Trondheim we saw lower values of RMSE and CRPS
in general when we used the common models. However, for the model with the lowest
value of RMSE and CRPS, Model M, the one-county model performed better. Model
M stood out in Oslo by yielding a high value of RMSE and CRPS compared to the
others.

We have data from two more buildings in Oslo than in Trondheim in our aggregated
data set. A reason for that the common models yield better results in Trondheim than
the one-county models could be that we have less data here, and if the data in addition
is noisy, the predictions from estimating a model only on observations from Trondheim
will contain noise.

5.1.6 Interaction with Season

In Table 4.1 and 4.2 we saw that the values of DIC of the models that included an
interaction between daily cycle and season with four levels, Model S4, were the lowest
ones recorded. However, the resulting e�ects from these interactions, shown for the
common Model S4 in Figure 4.8, 4.9 and 4.10 showed that the fixed e�ects were not
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significant, and the smooth e�ects showed little change from the basic model, where
only the interaction between daily cycle and day type was included. Furthermore, in
Figure 4.22, Model S4 did not improve the fit of the model in the summer compared
to the fit of the one-county Model M in Figure 4.21. It appears that there is not an
additional e�ect of season that is not already recognized by our models.

5.2 Comparison with the Sintef Model
The model presented by the researchers at Sintef in Lindberg et al. (2019) is actually
a number of linear models, estimated for each hour of the day for di�erent day types.
Unlike the models presented in Chapter 4, no considerations regarding the skewness of
the data is taken. The relationship between heat and temperature is defined di�erently
at each side of the CPT - for heat consumption below the CPT there is a negative linear
relationship, and for temperatures above, the consumption is temperature independent
such that the relationship is modeled as a horizontal line. An ad hoc method is used to
find the CPT as this temperature is unknown. The e�ects they include are the ones of
temperature and day type mentioned above, in addition to daylight and monthly e�ects.
The daylight e�ect is a dummy variable that is equal to one if the time t occurs during
daylight, and zero otherwise, and the monthly e�ect is a factor for each month of the
year. The e�ect of temperature is modeled in two terms: One direct temperature e�ect,
and one 24-hour moving average temperature e�ect. A building specific fixed e�ect is
also included. This is calculated for a number of buildings, and when predicting for an
unknown building, an average of these e�ects for the buildings in the same category,
e.g. o�ce buildings, is employed.

This model was presented to us as a sort of calculator. All we need to (and can) do
is to plug in the floor area of the buildings we want to make predictions for, along with
a time series of temperature for one year. In return we receive the predicted values of
heat consumption per hour for the selected year. No uncertainty measures are provided.
Furthermore, we do not have access to any of the model parameters from the model
by Sintef and can therefore not make any comparison of the e�ects in their model and
ours. The exception is the e�ect of temperature, which we know is modeled as in Figure
1.1.

Since we want to compare their results to our predictions, which are heat per square
meter, we enter 1 m2 as the floor area. We compare the predictions we receive to
transformed quantiles of our predictions. We transform them back to the original scale
so we are in the same scale as Sintef. To be clear, we still work with heat consumption
per square meter in this section, but no longer on the log scale.
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5.2.1 Important Di�erences Between the Models Presented in This Work

and by Sintef

Some alterations to our models were necessary to make sure the comparison with Sintef
is reasonable. In the edition of their model that was used to make predictions for our
aggregated data set, there was no distinction between regular days and holidyas. Thus,
the days in our data set that were holidays and accordingly marked as non-working
days, got a new label. Either working day if the holiday appeared on a Monday to
Friday, or they stayed a non-working day if they appeared in the weekend. Further,
their model is designed to predict for an arbitrary year, so by default January 1st is set
to be a Monday. None of the years in our data set had this property. To ensure that
the time series of temperature provided by us starts on a Monday, we move the start
of the series to the first Monday of the year. In turn we get a little less than a year of
observations.

The only drawback about the method of starting the year on the first Monday is that
Sintef has separate model parameters for each month. So when we present a time series
of temperature that we make their model believe starts on Monday January 1st, but
actually starts at, say, Monday January 3rd, the last predictions in their January will
be marked as January even though the observations actually were recorded in February.
We believe that this will not cause major disadvantages in the predictive performance of
their model. Firstly, because we assume two adjacent months do not have very di�erent
model parameters. And secondly, this problem only occurs for a minor part of the days
of the year.

In 2009, the first Monday appeared on January 5th, while in 2010 and 2011 it
appeared on January 4th and 3rd, respectively. That means that, at the most, we lose
four days in one year to make predictions for.

5.2.2 Models Used for Comparison with Sintef

For Oslo, the one-county Model W is used for making predictions. One year at a
time, the model is trained on the two years from Oslo to predict for the year that
is left out. In Trondheim, where the inclusion of wind showed little e�ect on the
predictive performance, the one-county Model M is applied. This model is trained only
on observations from Trondheim, and we make predictions in the same way as in Oslo.
Plots of predictions from Model M together with predictions from the Sintef model are
available in Appendix A.

We note that we will not use any formal procedure to assess the model fits. This is
because our models and the Sintef model are so di�erent in how they are defined. The
CRPS, for instance, is not possible to calculate for the predictions from Sintef as they
do not come with uncertainty measures.
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5.2.3 Results

In Figure 5.1 the result of predicting for 2011 in Oslo with the one-county Model W and
the Sintef model is shown. The grey peaks that are present in Figure 5.1a come from
the prediction interval. In general we see that both models resemble the form of the
observations. We do see a more rigid pattern in the predictions from the Sintef model
in the summer. This is because they assume temperature has no e�ect here. Their
predictions in the summer are the estimates of the basic consumption that cannot be
avoided.

(a) Model W

(b) Sintef

Figure 5.1: Top: Median of the predictive distribution in Oslo in 2011 estimated
with the one-county Model W along with the 95% prediction interval and observations.
Bottom: Predictions in the same year and county as above, made with the Sintef model,
along with observations.
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We zoom in on Figure 5.1 in Figure 5.2, where we have plotted the predictions from
both models together for three weeks in 2011 in Oslo. The time series in this figure
that are labeled ”Predictions” refer to the predictions made by our model, and the time

Figure 5.2: Median of the predictive distribution using the one-county Model W,
predictions from the Sintef model and observations from three weeks in 2011 in Oslo.
Shaded bands denote the 95% prediction intervals of the predictive distribution from
using Model W.
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series labeled ”Sintef” mark the predictions made by the Sintef model. In February
both models perform well, following the shape of the observations. The temperatures
in this week were in the range where the e�ect of temperature in our model is linear.
Thus the e�ect of temperature, for this week, is modeled in the same way in our model
as in the Sintef model.

For the other two weeks, which are in the spring and summer, there are large
di�erences between the shape of the observations and the predictions from Sintef, as
we also saw in Figure 5.1 and commented above.

5.3 Further Work
As discussed in Section 4.2.1 we have correlation and structure in the residuals which
could be investigated further. The inclusion of informative priors on the hyperparam-
eters, in addition to an analysis of the prior sensitivity of these parameters, would also
be interesting to consider as we did not put much e�ort into choosing the priors.

Finally, for newer observations of heat prediction than the ones considered here, ob-
servations of solar radiation is available. A thorough study on the relationship between
solar radiation and heat consumption would, too, be interesting to consider.

5.4 Discussion
In this work we have presented several latent Gaussian models for prediction of heat
consumption in an aggregated set of o�ce buildings. They include the weather con-
ditions temperature and wind speed, cycles for the daily, weekly and annual load, in
addition to a linear trend, fixed e�ects and interactions with the seasons.

The motivation for modeling heat consumption was to come up with a model that
could compete with the one presented by Sintef in terms of predictive power. A com-
parison between this model and the models presented in this work was made in Section
5.2.3 in Chapter 5. The result is that our models follow the patterns of the observa-
tions more closely than the Sintef model. In addition, we provide uncertainty measures
which Sintef could not provide. By modeling the e�ect of temperature with a smooth
e�ect, we did not need to go through the trouble of finding the CPT. The Sintef model
provides more variability in the predictions which results in overestimation of the peak
loads for various parts of the year. Our models tend to both over- and underestimate
the peak loads. If one is interested in modeling the peaks rather than the expected
values, one should use something like quantile regression (Fahrmeir et al., 2013).

We estimated all the models that were explored both on observations from Oslo
and Trondheim together, and on observations from one county at a time by separate
one-county models. For Oslo, the lowest values of RMSE and CRPS, although only
marginally, for all proposed models, were achieved for the one-county models. The
model that o�ered the best fit for this county was the one-county model that included
a smooth e�ect of wind, Model W, although the e�ect of wind was weak. For Trondheim
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the di�erence in RMSE and CRPS between the best performing model and the second
to best was bigger than in Oslo. The model that o�ered the best fit here was the
one-county Model M which included a long-term time trend. For all models except for
this, Oslo performed better in terms of RMSE and CRPS.

When the one-county models are used for prediction, only two years of observations
are included in the training set. A training set of this size compared to the number of
predicted values, which is one year, is considered small.

In conclusion, the models proposed in this thesis present satisfactory results in terms
of predictive power and the ability to model the heat consumption in Oslo and Trond-
heim. Correlation and lack of constant variance in the residuals suggest that the models
will benefit from further work in terms of informative priors on the hyperparameters,
defining new e�ects for the covariates and possibly the inclusion of new covariates such
as solar radiation, for time series of heat consumption where this is available.
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Appendix A

Additional Results for Trondheim

Some results for Trondheim, which were showed for Oslo in Chapter 4 and 5, are
included here. We first look at the results from estimating the common basic model in
Trondheim, and next we will look how our predictions for Trondheim compare to those
of the Sintef model. This is done in the same way as in Section 5.2.3, namely that we
transform the median of our predictions to the original scale and compare them to the
heat consumption that the Sintef model has predicted for 1 m2.

A.1 Basic Model
The fitted values for Trondheim from the common basic model is shown in Figure A.1
for one year and in Figure A.2 for two weeks. The residuals from 2011 are shown in
Figure A.3, and the ACF of these residuals are plotted in Figure A.4. We see the same
results as for Oslo in Section 4.2.1.

Figure A.1: Median of the predictive distribution and observations for a year in
Trondheim.
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Figure A.2: Median of the predictive distribution from the basic model and observa-
tions for two weeks in 2011 in Trondheim along with the 95% prediction intervals.

Figure A.3: Residuals in Trondheim.



A.1. BASIC MODEL 63

Figure A.4: ACF of residuals in 2009 in Trondheim.
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A.2 Comparison with Sintef
In Section 5.2.3 we showed predictions made for Oslo for one year and for three weeks.
Corresponding results for Trondheim are shown in Figure A.5 and A.6, comparing the
predicted values to those obtained by the Sintef model.

(a) Model M

(b) Sintef

Figure A.5: Top: Median of the predictive distribution in Trondheim in 2011 es-
timated with the one-county Model M along with the 95% prediction interval and
observations. Bottom: Predictions in the same year and county as above, made with
the Sintef model, along with observations.
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Figure A.6: Median of the predictive distribution using the one-county Model M,
predictions from the Sintef model and observations from three weeks in 2011 in Trond-
heim. Shaded bands denote the 95% prediction intervals of the predictive distribution
from using Model W.
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Appendix B

Implementation in R-INLA

An example on how to make predictions for log transformed heat consumption per
square meter in R-INLA is presented here. We will illustrate how to make predictions
for 2011 in Oslo by using the one-county Model W.

B.1 Data Input
A data frame called data with nine columns and 26 280 rows with information about
Oslo from the aggregated data set is created to use as input to the model. The first six
rows are displayed here:

head(data)

## y temp wind hour day daytype daytype2 t year
## 1 -4.119143 -5.7 0.5 1 1 2 2 1 2009
## 2 -4.151404 -5.4 0.3 2 1 2 2 2 2009
## 3 -4.131119 -5.7 0.6 3 1 2 2 3 2009
## 4 -4.056907 -5.6 0.8 4 1 2 2 4 2009
## 5 -3.989406 -6.4 0.2 5 1 2 2 5 2009
## 6 -3.908487 -5.6 2.6 6 1 2 2 6 2009

y is the time series of the log transformed heat consumption in Oslo per square
meter, and temp and wind are the time series of outdoor temperature and wind speed.
hour is a column that repeats the sequence 1,...,24, once for every day, to be input
to the smooth e�ect that models the daily cycles. day is similar to hour in that matter,
only that it repeats the numbers 1,...,365, 24 times for each number, for the three
years of observations. Thus we are able to mark every observation by the day of the
year it belongs to. daytype and daytype2 are identical, but as we use them as input
in two e�ects in our model, we need to make copies of them. They refer to what day
type we have. 1 denotes a working day, and 2 denotes a weekend or a holiday. Since
our time series starts on January 1st, and this is a public holiday, the first elements in
these two columns are 2s. t is a column with 1,...,26 280, such that all observations
in the three years are marked as one time series, to be input to f(t, county). Finally,
year marks what year the observations are made, and we use it to specify what year
we want to predict.
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When we want to make predictions for 2011, we replace the observations y in 2011
by NAs. This way, the model learns from 2009 and 2010 and uses the information
available about 2011 in the data frame, which are all columns except y.

data$y[which(data$year==2011)] = NA

B.2 Model Specification and Prediction
Next, we specify the formula. Recall that Model W for one county is defined as

÷t = x€— + f(temp
t
) + f(day

t
) + f(hourt, daytype

t
) + f(windt) + f(t).

Transferring this to the R-INLA environment yields

formula = y ˜ f(temp, model="rw2", constr=T) +
f(day, model="rw2", cyclic=T, constr=T) +
f(t, model="ar1") +
f(hour, model="rw2", cyclic=T, constr=T, replicate=daytype) +
f(wind, model="rw2", constr=T) +
as.factor(daytype2)

where constr=T in the RW2 models specifies that we impose the constraint of sum-to-
zero, discussed in Section 3.2.1. cyclic=T denotes a circular RW2, which we explained
in Section 4.1.

When formula is specified, we can make inference and predictions using the inla()
function to estimate the model parameters:

model = inla(formula, data=data, verbose=TRUE,
control.predictor=list(compute=T),
control.family=list(hyper=list(theta=list(fixed=TRUE))),
control.compute=list(dic=TRUE), inla.call="remote")

The first line in the preceding code chunk specifies that we want to estimate our
model using formula defined above, and that the covariates and response in formula are
found in the data frame data. Adding verbose=TRUE allows us to see the computations
in the console as inla(). Further, the argument in the second line specifies that we
want to compute the posterior distribution of the linear predictor. In the third line we
fix the precision parameter of the likelihood to a high value, as discussed in Section 4.1.
In the bottom line we specify that we want the DIC returned, and the last argument
tells R-INLA to run inla() on a remote server that we have a connection to.

Retrieving the predictions is simple. They are stored in the object model, and the
fitted values are retrieved by typing model$summary.fitted.values:
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head(model$summary.fitted.values)

## mean sd 0.025quant 0.5quant
## fitted.Predictor.00001 -4.036594 0.05311429 -4.140715 -4.036591
## fitted.Predictor.00002 -4.057386 0.04984726 -4.155099 -4.057385
## fitted.Predictor.00003 -4.034754 0.04734837 -4.127568 -4.034753
## fitted.Predictor.00004 -4.006229 0.04557057 -4.095555 -4.006230
## fitted.Predictor.00005 -3.912899 0.04440196 -3.999940 -3.912897
## fitted.Predictor.00006 -3.928386 0.04345217 -4.013557 -3.928388
## 0.975quant mode
## fitted.Predictor.00001 -3.932455 -4.036585
## fitted.Predictor.00002 -3.959646 -4.057383
## fitted.Predictor.00003 -3.941914 -4.034752
## fitted.Predictor.00004 -3.916869 -4.006232
## fitted.Predictor.00005 -3.825841 -3.912892
## fitted.Predictor.00006 -3.843176 -3.928392

In our case, as we model the log transform of the heat consumption, we will use the
median, 0.5quant, as the predicted value instead of the mean. The reason for this was
explained in Section 4.2.1.

We observe that mean and 0.5quant are very similar. This is because of the as-
sumption of Gaussian distributed log transformed heat consumption. The uncertainty
measures of each prediction are located in the columns 0.025quant and 0.975quant,
constituting the 95% prediction interval.

To get the predictions for the year we left out, 2011, we use the column year in
data:

head(model$summary.fitted.values[which(data$year==2011),])

## mean sd 0.025quant 0.5quant
## fitted.Predictor.17521 -4.529538 0.05854770 -4.644297 -4.529541
## fitted.Predictor.17522 -4.583514 0.06302053 -4.707038 -4.583520
## fitted.Predictor.17523 -4.557791 0.06889907 -4.692842 -4.557794
## fitted.Predictor.17524 -4.511654 0.06970234 -4.648268 -4.511662
## fitted.Predictor.17525 -4.422401 0.07254563 -4.564601 -4.422402
## fitted.Predictor.17526 -4.402019 0.07572685 -4.550445 -4.402027
## 0.975quant mode
## fitted.Predictor.17521 -4.414723 -4.529548
## fitted.Predictor.17522 -4.459924 -4.583529
## fitted.Predictor.17523 -4.422681 -4.557798
## fitted.Predictor.17524 -4.374948 -4.511679
## fitted.Predictor.17525 -4.280142 -4.422405
## fitted.Predictor.17526 -4.253503 -4.402041
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The smooth e�ects are located in model$summary.random. We show the first six
rows of the e�ect of wind as example, where the column ID refers to the wind speed:

head(model$summary.random$wind)

## ID mean sd 0.025quant 0.5quant 0.975quant
## 1 0.0 -0.02438979 0.007858127 -0.03982639 -0.02438760 -0.008978529
## 2 0.1 -0.02363391 0.007542211 -0.03844557 -0.02363323 -0.008838965
## 3 0.2 -0.02288779 0.007307877 -0.03723603 -0.02288822 -0.008550036
## 4 0.3 -0.02216240 0.007138756 -0.03617560 -0.02216384 -0.008154043
## 5 0.4 -0.02146658 0.007018899 -0.03524132 -0.02146910 -0.007690727
## 6 0.5 -0.02081973 0.006934298 -0.03442508 -0.02082341 -0.007207018
## mode kld
## 1 -0.02438210 4.089109e-06
## 2 -0.02363096 2.783882e-06
## 3 -0.02288824 1.671624e-06
## 4 -0.02216591 8.530127e-07
## 5 -0.02147335 3.723921e-07
## 6 -0.02082993 2.216462e-07

The fixed e�ects are located in model$summary.fixed:

model$summary.fixed

## mean sd 0.025quant 0.5quant
## (Intercept) -4.9177180 0.01433494 -4.9459685 -4.9176881
## as.factor(daytype2)2 -0.2226348 0.00557459 -0.2335793 -0.2226351
## 0.975quant mode kld
## (Intercept) -4.8896655 -4.9176365 1.777096e-06
## as.factor(daytype2)2 -0.2116982 -0.2226352 1.056984e-07

And the marginal distribution for each of the fixed e�ects is available in
model$marginals.fixed:

head(model$marginals.fixed$�(Intercept)�)

## x y
## [1,] -5.061258 5.186572e-17
## [2,] -5.032551 9.078260e-11
## [3,] -5.003845 3.693528e-06
## [4,] -4.989492 2.787650e-04
## [5,] -4.975139 1.279472e-02
## [6,] -4.960786 3.263960e-01
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head(model$marginals.fixed$�as.factor(daytype2)2�)

## x y
## [1,] -0.2783979 1.675234e-20
## [2,] -0.2672451 9.699726e-13
## [3,] -0.2560924 1.101437e-06
## [4,] -0.2505161 2.669355e-04
## [5,] -0.2449397 2.395037e-02
## [6,] -0.2393633 7.931067e-01

If we wish to plot these marginal distributions, for example for the intercept, we can
use the function inla.smarginal() to achieve more coordinates for a smoother curve:

x = inla.smarginal(model$marginals.fixed$�(Intercept)�)$x
y = inla.smarginal(model$marginals.fixed$�(Intercept)�)$y

where x is the vector of x-coordinates of the distribution, and y is the vector of y-
coordinates.

Since we added the argument control.compute=list(dic=TRUE) in inla(), we
can get the value of DIC from the model estimation:

model$dic$dic

## [1] -27982.93

Note that the DIC is more interesting to consider when we estimate a model on
data where no observations are left out. We still include it in this example in order to
demonstrate how the value is retrieved.


