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Abstract

In this thesis, we develop a new method for solving the optimal reparametrization
problem within the square root velocity framework. The method is based on a
dynamic programming approach, but with a more accurate update equation than
previous methods. While previous methods are fully discretized, the new method
is only semi-discretized. This is utilized to give both a better convergence rate and
a lower computational complexity compared to similar methods.

To construct the method, we introduce new auxiliary variables, and establish
di�erential equations characterizing the optimal reparametrizers. The resulting
method is linear in the reparametrizers and quadratic in the distance estimate.
In certain situations, these convergence rates can be improved to quadratic and
super-quadratic, respectively, by the use of extrapolation. This is supported by
numerical experiments.
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Sammendrag

I denne oppgaven utvikler vi en ny metode for optimal omparametrisering av kurver
ved bruk av rothastighetstransformasjonen (the square root velocity transform).
Metoden bruker dynamisk programmering, men med en bedre håndtering av grun-
ntilfellene enn tidligere metoder. Mens tidligere metoder er fullstendig diskretisert,
er den nye metoden kun delvis diskretisert. Dette utnyttes til å oppnå både en
bedre konvergensrate og lavere asymptotisk kjłretid sammenlignet med tilsvarende
metoder.

Under utviklingen av metoden introduser vi nye hjelpevariabler og nye di�er-
ensialligninger som karakteriserer optimale lłsninger. Metoden er lineær i om-
parametriseringsfunksjonene, og kvadratisk i avstandsestimatet. I enkelte tilfeller
kan henholdsvis kvadratisk og super-kvadratisk konvergens oppnås ved hjelp av
ekstrapolasjon. Dette underbygges av numeriske eksperimenter.
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Ô Introduction

Shape analysis is the �eld concerned with the analysis of geometric shapes. The
�eld includes topics such as object recognition and classi�cation, and it is accord-
ingly important within applications such as computer vision and medical imaging.

Within shape analysis, it is important to have well-posed de�nitions of geomet-
ric shapes. Although the concept of a geometric shape can be de�ned in multiple
ways, it is common to consider shapes represented by curves or surfaces, and we
will in this thesis consider curves in particular. Here, it is important that the con-
cept of a shape is invariant with respect to to the parametrization of the curves.
To ensure this, we de�ne ashapeas an equivalence class in the space of parametric
curves, where two curves are considered equivalent if one curve can be continu-
ously reparametrized to the other. Representing shapes by curves is useful since
this gives access to tools from di�erential geometry. For example, it is common to
de�ne similarities and dissimilarities between shapes through Riemannian metrics.
Again, it is important that such metrics are invariant to the parametrization of the
curves.

A popular choice of a Riemannian metric is the so-calledelastic metric [1, 2,
3, 4]. This metric considers elastic deformations of the curves by measuring the
bending and stretching required to deform one curve into another. In this thesis,
we will consider a speci�c elastic metric, de�ned through the Square Root Velocity
Transform as introduced in [4]. This metric has a key property: If two curves are
optimally parametrized, we have explicit formulae for the geodesics between the
shapes of the curves. Here, we consider two curves to be optimally parametrized if
the geodesics between their shapes can be computed using the curves themselves,
i.e., without reparametrization.

The concept of optimal parametrization can be formulated as a variational
problem. We consider two parametric curves (representing two shapes), and de�ne
optimality as the reparametrizations of the curves which minimize some metric on
the space of parametric curves. This is commonly denoted as the curve registration
problem since a solution provides a registration of points on each curve.

Each curve is typically parametrized using some abstract �time� parameter.
Accordingly, the optimal reparametrization problem can be seen as a problem of
�nding a matching between the time domains of the curves in question. Further,
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we assume that the time domains are monotone, meaning that we want to �nd a
monotone matching between the domains. For such problems, dynamic program-
ming methods are typically available. This holds for the optimal reparametria-
tion problem where both gradient based method and dynamic programming based
methods [5] have been used.

The main contribution of this thesis is a new dynamic programming approach
which is more accurate than previous dynamic programming based methods. The
new method agrees with the previous approach in that the time domains of the
curves are discretized. Where the two methods di�er is in the base cases of the
dynamic programming. The previous method searches for the optimal velocity
of the reparametrizations among a discrete set of velocities. In other words, the
previous method is a fully discretized method. In our new approach, we construct
the base cases using a continuous optimization problem, meaning that the method
as a whole is only semi-discretized. The new construction of the base cases is used
to both obtain a better convergence rate and a lower computational cost.

The thesis consists of three parts. In Chapter 2, we start by de�ning the
optimal reparametrization problem as a variational problem. We review useful
reformulations to simplify the problem, and reformulations necessary to ensure
existence of solutions. Then, we review previous results, and provide a new re-
sult characterizing the optimal reparametrizations. The chapter is concluded by
de�ning auxiliary variables used to construct the dynamic programming method.
Although these variables have been used to derive the previous dynamic program-
ming based methods, there has been little to no emphasis on the properties of the
variables. Under certain regularity assumptions of the auxiliary variables, we pro-
vide di�erential equations governing both the auxiliary variables and the optimal
reparametrizations. Additionally, we demonstrate how the auxiliary variable can
be de�ned through a hyperbolic partial di�erential equation. Lastly, conditions
for the appearance of shocks and di�erential equations governing the evolution of
shock paths are established.

In Chapter 3 we show how the auxiliary variables can be used to construct
a numerical solver. The method is motivated by the special case of the general
reparametrization problem where we assume both curves to be linear. This is then
used as a base case to construct a dynamic programming method where we as-
sume the curves to be piecewise linear. Through the di�erential equations derived
in the previous chapter, we demonstrate how the dynamic programming method
can be interpreted as a �nite di�erence scheme, and we show how to retrieve the
optimally reparametrized curves. We also demonstrate how the approximated so-
lution can be used to compute geodesics. Assuming that the auxiliary variable
is absolutely continuous, the resulting method has a linear convergence rate for
the optimally reparametrized curves and a quadratic convergence for the similar-
ity / dissimilarity estimates. We show how extrapolation can be used to improve
these convergence rates to quadratic and super-quadratic, respectively, if no shock
solutions are present.

In Chapter 4, we demonstrate the convergence rates of the solvers empirically.
We consider both simple problems where analytic solutions are available, and more
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interesting problems, where exact solutions must be estimated. Where shock so-
lutions do not appear, the theoretical convergence rates are veri�ed. In this case,
however, extrapolation does not improve the asymptotic convergence rates.





ò A Shape Space Metric

In this chapter, we review current theory on the existence and charactrization
of optimal reparametrizers within the square root velocity framework. We then
expand the theory on the characterization of the optimal solutions, and de�ne
auxiliary variables related to a measure of similarity between two curves. Lastly, we
will see how these auxiliary variables can be used to construct di�erential equations
governing the optimal reparametrizers, and how the auxiliary variables are governed
by a hyperbolic PDE.

2.1 The Shape Space for Parametric Curves

A parametric curve is a mapping c : I ! Rd which belongs to a certain regularity
class. The assumed regularity class varies from application to application � we will
for now assume that the curves areC2-continuous. Further, we will only consider
open curves, hence the unit intervalI = [0 ; 1] is a natural choice of domain. For
closed curves, it is common to choose the unit circleI = S1.

On the space of parametric curves, we are interested in de�ning a metric which
encapsulates the geometric properties of the curves. It would be natural to de-
�ne this metric on the images of the curves since the images really do include all
geometric aspects. This, however, is a hard task and the smoothness properties
of the curves are much easier to exploit when the curves are of parametric form,
rather than de�ned by their images. Additionally (see Figure 2.1), the image does
always contain all the information of the curve. Therefore, we are interested in an
equivalence class other than the class of curves with the same image.

Consider the set of curves that are reparametrizations of one another. Here, a
reparametrization is de�ned as a right composition c 7! c � ’ for some ’ 2 Di�( I ),
where Di�( I ) denotes the set of orientation preservingC2-di�eomorphisms from I
to I . The orientation preserving property can be ensured by the constraint _’ > 0.
Additionally, we de�ne shapes modulo translations: If two curves only di�er by
a translation, they should belong to the same shape. This can be ensured by
only considering curves starting at the origin. Lastly, we will only consider curves
with non-zero velocity everywhere. If we would allow zero-velocity curves, this
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would allow sharp corners which contravenes the assumed smoothness properties.
Therefore, we will de�ne our space of parametric curves as

C := Imm( I; Rd) := f c 2 C2(I; Rd) j c(0) = 0 ; j _cj > 0g:

The notation Imm is a natural choice since the set consists of immersions. We then
de�ne the shapeof a curve c 2 C as the equivalence class

[c] := f c � ’ j ’ 2 Di�( I )g:

This is actually an equivalence class sinceDi�( I ) is a group which ensures that
[c � ’ ] = [ c]. Consequently, the entire equivalence class can be identi�ed from any
single representativec. We will denote the set of shapes[c] as the shape spaceS.

(b)(a)

Figure 2.1: Curves with given starting positions where we can (a) and cannot
(b) uniquely determine the orientation from their images.

The shape and the image of a curve are two separate concepts. Since the image
of a parametric curve does not depend on its parametrization, all curves that
belong to the same shape have the same image, as desired. However, the reverse
it not true in general. This is easy to see for open curves where we simply reverse
the orientation of the curve. Then, the reversed curve and the curve itself have
the same image, but there is no orientation-preserving reparametrization from the
reversed curve to the curve itself. Additionally, we cannot determine whether the
curve in Figure 2.1b goes through the right or left loop �rst. Therefore we cannot
determine the orientation of this curve, as opposed to the orientation of the curve
in Figure 2.1a, which is unique due to the assumed smoothness properties.

Since we want to de�ne a metric on the space of parametric curves which encap-
sulates the geometric features of the curves, it is natural to de�ne it on the shape
spaceS. Now, consider any metric dC(c1; c2) de�ned on the space of parametric
curves. We can then de�ne a metric onS by minimizing dC over all representatives
of the two shapes. Such a metric can be de�ned as

dS ([c1]; [c2]) = inf
b1 2 [c1 ];b2 2 [c2 ]

dC(b1; b2);

or equivalently

dS ([c1]; [c2]) := inf
’ 1 ;’ 2 2 Di�( I )

dC(c1 � ’ 1; c2 � ’ 2): (2.1)
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With this de�nition we only require a well de�ned metric dC. However, this metric
must be constructed with care. A tempting choice could be theL 2-metric. How-
ever, de�ning dC(c1; c2) = kc1 � c1kL 2 does not induce a well de�ned shape space
metric. It has been shown that for any pair of curves, theL 2-distance between the
curves vanishes when we minimize over all reparametrizations of the curves [6, 7, 8].
In other words, using the L 2-metric as the metric on the space of parametric curves
will result in a shape space �metric� which satis�es dS ([c1]; [c2]) = 0 , regardless of
c1 and c2. Therefore, we need to construct other metrics for the parametric curves.

2.2 The Square Root Velocity Transform

Consider the square root velocity transform (SRVT) as introduced in [4]. In our
context, this can be seen as a mappingR : Imm( I; Rd) ! C1(I; Rd n f 0g) given by

R(c)( t) =
_c(t)

p
j _c(t)j

;

with associated inverse

R� 1(q)( t) =
Z t

0
q(s)jq(s)jdt:

Throughout this thesis we will use the notation q = R(c). The mapping R acts on
the entire spaceImm( I; Rd) and is hence an injection. Additionally, since we only
consider curves starting at the origin, we do not need to consider the initial value
of the integral. This ensures that both the left and right inverse of R is de�ned
everywhere, meaning thatR is a bijection betweenImm( I; Rd) and C1(I; Rd nf 0g).
Hence, all relevant information of a curvec is captured by its SRVT q. The SRVT
is used to construct a metric on the space of parametric curves which takes the
form

dC(c1; c2) = kq1 � q2kL 2 :

This metric on the space of parametric curves can further be used to de�ne a shape
space metric through (2.1). To do so, we need to know how the SRVT behaves
under reparametrization. We have that

R(c � ’ ) =
(_c � ’ ) _’

p
j(_c � ’ ) _’ j

=
(_c � ’ )

p
j(_c � ’ )j

p
_’ = ( R(c) � ’ )

p
_’:

This implies that the shape space metric induced by the SRVT can be de�ned as

d(c1; c2) = inf
’ 1 ;’ 2 2 Di�( I )

 (q1 � ’ 1)
p

_’ 1 � (q2 � ’ 2)
p

_’ 2


L 2

: (2.2)

The motivation behind the SRVT induced metric comes a speci�c Riemannian
metric. A Riemannian metric on Imm( I; Rd) is given by an inner product on each
tangent spaceTc Imm( I; Rd) for c 2 Imm( I; Rd). Consider a curvec and an element
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of h of the tangent spaceTc Imm( I; Rd). SinceTc Imm( I; Rd) can be identi�ed with
C2(I; Rd), h can be seen as aC2-continuous curve from I to Rd. We reparametrize
h according to the arc length of c. Then, we consider derivatives ofh of the form
D sh, where we de�neD s := j _cj � 1@t . Further, we decomposeD sh into its tangential
and normal components relative to the parametrization ofc. Speci�cally, denote

(D sh)? = hD sh; D sci D sc;

(D sh)> = D sh � (D sh)? :

Note that D sc = _c=j _cj is in fact the unit tangent to the curve c. With this notation,
we de�ne the elastic metric as

Gc(h; k) :=
Z

I
a2


(D sh)? ; (D sk)? �
+ b2


(D sh)> ; (D sk)> �
ds

for some positive constantsa2 and b2. This was �rst introduced in [3]. Note that
this is an arc length integral with ds = j _cjdt, which ensures that the metric is
invariant under reprametrizations of c. There is a quite nice interpretation of this
metric. The �rst part of the integrand, weighted by a2, considers the tangential
components of h and k, and can therefore be seen as a measure of stretching.
Similarly, the second part, weighted byb2, can be seen as a measure of bending, as
it is only concerned with the normal components ofh and k. Additionally, since
these parts are independently weighted, the weights can be chosen to favor either
bending or stretching.

The weights are commonly chosen to bea2 = 1 and b2 = 1=4. It has been shown
that the pullback of the L 2-norm via the SRVT is the elastic metric using these
weights [4]. This is an especially useful result since geodesics in theL 2-topology
are easy to compute. In fact, the geodesic between anyq1; q2 2 L 2(I; Rd) is simply
given by � 7! (1 � � )q1 + �q2. This, however, is not a well de�ned geodesic on the
space of immersions. If there existt; � 2 I such that �q1(t) + (1 � � )q2(t) = 0 ,
this construction of the geodesics allows zero-velocity curves, which contradicts
the curves being immersions. In Section 2.3, we will additionally see that through
reparametrization, we must allow the reparametrized curvesc1 � ’ 1 and c2 � ’ 2 to
have zero velocity to ensure that optimal reparametrizations exist. In other words,
geodesics between certain curves will be outside the space of parametric curves
(with nonzero velocity everywhere). To cope with this, geodesic completion has
been discussed in the square root velocity framework in [9], and for more general
Sobolev metrics in [10]. Additionally, we refer to [9, 4, 3] for further readings on
the elastic metric and choice of SRVT.

There are certain properties of the SRVT which are of interest. Firstly, consider
the arc length of the curve c, which we denote asL (c). We have that

L (c) :=
Z

I
j _cjdt =

Z

I

�����
_c

p
j _cj

�����

2

dt = kqk2
L 2 :

In other words, the squaredL 2-norm of a square root velocity transformed curve
equals the length of the original curve. This implies that the space of unit length
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curves is mapped by the SRVT to the unit sphere ofL 2-functions. Additionally,
since the length of a curve is not dependent of its parametrization, we have that
k(q � ’ )

p
_’ k2

L 2 = kqk2
L 2 for any ’ 2 Di�( I ). This motivates two reformulations.

2.2.1 Redundancy of the Problem

The invariance property of the SRVT leads to redundancy of the variational prob-
lem. Since the functional is invariant under joined reparametrizations, we will never
have uniqueness of solutions (if solutions exist). If(’ �

1; ’ �
2) is a solution, then for

any  2 Di�( I ), the joined reparametrizatzers(’ �
1 �  ; ’ �

2 �  ) be a solution as well.
It is therefore common to apply certain constraints to the search space to remove
this redundancy. One idea is to only reparametrize one of the curves and de�ne
the variational problem as

d(c1; c2) = inf
’ 2 Di�( I )

 q1 � (q2 � ’ )
p

_’


L 2
:

This is a common idea, and it is a valid reformulation since the search spaceDi�( I )
is a group. However, we will in the next section see that we need to allow zero-
derivatives of the paths, i.e. either allow _’ 1 = 0 or _’ 2 = 0 to ensure existence of
solutions. This breaks the group property of the search space, which implies that
we cannot consider reformulations such as the one above.

Still, additional constraints might come in handy to cope with the redundancy,
and we will eventually consider the constraint

_’ 1 + _’ 2 = 2 :

Note that this is equivalent to ’ 1(t)+ ’ 2(t) = 2 t. In other words, if (’ 1(t); ’ 2(t)) =
(x0; y0), then t is uniquely de�ned as t = 1

2 (x0 + y0). This property holds for all
(’ 1; ’ 2) which pass through the point (x0; y0). In the next chapter, we will optimize
over all paths which pass through the point (x0; y0) where this constraint will be
useful. However, the constraint is optional and we will for now not assume this
nor any other additional constraints to hold. We will only assume _’ 1 + _’ 2 = 2
wherever explicitly stated.

2.2.2 Maximization of the Inner Product

The connection between the length of the curve and theL 2-norm of the SRVT,
L (c) = kqk2

L 2 motivates another reformulation of the variational problem (2.2). By
expansion of the square, we have that

kq1 � q2k2
L 2 = kq1k2

L 2 + kq2k2
L 2 � 2hq1; q2i L 2

= L (c1) + L (c2) � 2hq1; q2i L 2 :

SinceL (c1) and L (c2) are invariant to the parametrization of c1 and c2, the above
equality can be used to reformulate the variational problem as a maximization of
the inner product, rather than a minimization of the norm. Speci�cally, de�ne

s(c1; c2) := sup
’ 1 ;’ 2 2 Di� ( I )

F (’ 1; ’ 2); (2.3)
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where
F (’ 1; ’ 2) :=

D
(q1 � ’ 1)

p
_’ 1; (q2 � ’ 2)

p
_’ 2

E

L 2
:

Here, and throughout the rest of the thesis, the notation F (’ 1; ’ 2) assumes �xed
q1 and q2.

We denotes(c1; c2) as thesimilarity between the curvesc1 and c2 since a larger
value of s is associated with a smaller distance. There is a strictly monotone
(in fact linear) mapping between the functionals of the variational problems (2.2)
and (2.3), which means that any local solution of one of the problems will be a
local solution of the other. This holds even though the linear mapping is strictly
decreasing, as the two optimization problems di�er in that one is a maximization
problem, while the other is minimization problem. In other words, the problems
can be said to be equivalent, and choice of either one of them is only a matter of
preference. However, we experience that the equations that arise when maximizing
the similarity are more compact and intuitive than when minimizing the distance.
Therefore, we will in this thesis consider methods for solving (2.3). If the distance
is speci�cally of interest, it can be retrieved through the equality

d(c1; c2)2 = L (c1) + L (c2) � 2s(c1; c2): (2.4)

We can also �nd bounds for the distance and the similarity. First of all, both
the distance and the similarity are nonnegative. The distance is trivially nonneg-
ative since it is de�ned as the in�mum of a norm. To see why the similarity is
nonnegative, consider the following pair of functions:

 1(t) =

(
0; t 2

�
0; 1

2

�
;

2t � 1; t 2
� 1

2 ; 1
�
;

 2(t) =

(
2t; t 2

�
0; 1

2

�
;

1; t 2
� 1

2 ; 1
�
:

For all t, these functions satisfy _ 1 _ 2 = 0 , which ensures that F ( 1;  2) = 0 .
Although these functions are not di�eomorphic, they are absolutely continuous
which means that they can be arbitrarily well approximated by di�eomorphisms.
Further, since our functional F is continuous, we can construct di�eomorphisms
(’ 1; ’ 2) for which F (’ 1; ’ 2) is arbitrarily close to zero. This implies that the
supremum and hence alsos(c1; c2) is nonnegative. Combining the nonnegativity
of the distance and the similarity with the equality (2.4), we obtain the following
bounds:

0 � d(c1; c2)2 � L (c1) + L (c2);

0 � 2s(c1; c2) � L (c1) + L (c2):

2.3 Reformulation to Ensure Existence of Solutions

From the current de�nition of the problem, we do not allow zero derivatives of
the reparametrizers, i.e. _’ 1 = 0 or _’ 2 = 0 . Unfortunately, this implies that the
problem will in many cases not attain a solution. The easiest way to see this is to
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consider the extreme case wherehq1(x); q2(y)i < 0 for all x; y . Then, for any pair
di�eomorphisms ’ 1; ’ 2, we have that F (’ 1; ’ 2) < 0. However, as we have seen,
we can approximate a pair of functions which satisfy _ 1 _ 2 = 0 arbitrarily well,
meaning that we can get arbitrarily close to F (’ 1; ’ 2) = 0 . In other words, we
have that

sup
’ 1 ;’ 2 2 Di�( I )

F (’ 1; ’ 2) = 0 :

It is clear that there is no pair of di�eomorpshism for which the supremum is
attained, and it is therefore of interest to reconstruct the search space to possibly
ensure the existence of a solution.

Rather than considering di�eomorphic reparametrizations, we will assume the
reparametrizatizers to be absolutely continuous, and we will additionally allow their
derivatives to be zero. In other words, we will consider reparametrizers of the form

�([ t0; t1]; [x0; x1]) =
�

’ 2 AC([ t0; t1]; [x0; x1]) j’ (t0) = x0;
’ (t1) = x1;

_’ � 0 a.e.
	

;

and rede�ne the problem as

s(c1; c2) = sup
’ 1 ;’ 2 2 �( I )

F (’ 1; ’ 2): (2.5)

We will use the abbreviation �( I ) = �( I; I ). This problem has been thoroughly
studied in [9] where a proof is provided that the problem has a solution for all
C1-continuous curves c1; c2 with nonzero velocity almost everywhere. Although
the optimization problems have di�erent search spaces, the original search space
Di�( I ) is dense in�( I ). Further, since F is continuous in ’ 1 and ’ 2, the problems
will therefore have the same supremum.

Remark 1. Note that this reformulation is in fact compatible with the constraint
_’ 1 + _’ 2 = 2 . To see this, observe that any pair of functions’ 1; ’ 2 2 �( I ) can be
seen as a curve(’ 1; ’ 2) 2 AC( I; I � I ). Since this curve is absolutely continuous,
we are free to choose a constant speed parametrization of the curve. By measuring
the speed in theL 1-norm, we get that ’ 1 + ’ 2 must be constant, as desired.

2.3.1 Concatenation of Reparametrization Paths

Another useful property of absolutely continuous functions is that the concatena-
tion of absolutely continuous functions is also absolutely continuous. For some
’ 2 �([ t0; t1]; [x0; x1]) and # 2 �([ t1; t2]; [x1; x2]), we de�ne their concatenation by

’ � # : t 7!

(
’ (t); t 2 [t0; t1);
#(t); t 2 [t1; t2]:

Note that we require the endpoint of the �rst curve to be equal the start point of the
second curve, both in argument (t1) and value (x1). Now, since piecewise absolutely
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continuous functions are absolutely continuous (given that they are continuous),
we have that ’ � # 2 �([ t0; t2]; [x0; x2]).

We also have that F is additive under concatenation. To see this, we start by
generalizing the functional to be domain dependent by de�ning

F[t 0 ;t 1 ](’ 1; ’ 2) :=
Z t 1

t 0

hq1 � ’ 1; q2 � ’ 2i
p

_’ 1 _’ 2dt:

Observe that the full functional can then be de�ned as F = FI . Further, assume
that

’ 1 2 �([ t0; t1]; [x0; x1]); #1 2 �([ t1; t2]; [x1; x2]);
’ 2 2 �([ t0; t1]; [y0; y1]); #2 2 �([ t1; t2]; [y1; y2]);

Then, F is additive under concatenation in the sense that

F[t 0 ;t 2 ](’ 1 � #1; ’ 2 � #2) = F[t 0 ;t 1 ](’ 1; ’ 2) + F[t 1 ;t 2 ](#1; #2):

This property is very useful as we want to construct the optimal reparametrizers
iteratively. Note that this result could be derived with di�eomorphisms as well. To
do so, however, we require additional constraints to the functions to ensure that
the concatenated functions are still di�eomorphic. These additional constraints are
avoided by absolutely continuous functions, emphasizing why absolutely continuous
functions might be more suitable.

2.4 Characterisations of Optimal Paths

Although we do not in general have explicit formulae for the solutions to the op-
timization problem (2.5), we can say quite a bit about the general behaviour of
the solutions. In this section, we will prove that an optimal solution path satis�es
_’ 1(t) = 0 or _’ 2(t) = 0 if and only if hq1(t); q2(t)i � 0. But before we get there, we
need to consider a few auxiliary results.

Consider the decomposition of the unit interval given by

A(’ 1; ’ 2) = f t 2 I : hq1(’ 1(t)) ; q2(’ 2(t)) i � 0g;
B (’ 1; ’ 2) = f t 2 I : hq1(’ 1(t)) ; q2(’ 2(t)) i < 0g:

It is clear that I = A(’ 1; ’ 2) [ B (’ 1; ’ 2) for all ’ 1; ’ 2 2 �( I ). Additionally, since
q1 � ’ 1 and q2 � ’ 2 are continuous, then A must be closed and that B must be
open. In the following lemma, we will show that if B (’ 1; ’ 2) is nonempty, we
can construct another path such that the integral over B (’ 1; ’ 2) can be neglected.
The idea is as follows: IfB (’ 1; ’ 2) is nonempty, there exists some open interval
(t0; t1) such that the inner product between the reparametrized SRVTs is negative.
In Figure 2.2 this is drawn as the path between(’ 1(t0); ’ 2(t0)) = ( x0; y0) and
(’ 1(t1); ’ 2(t1)) = ( x1; y1). Since the interval is open, we have that

Z t 1

t 0

hq1 � ’ 1; q2 � ’ 2i
p

_’ 1 _’ 2dt � 0:
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(' 1(t); ' 2(t))

(x0; y0)

(x1; y1)

Figure 2.2: A path passing through a region wherehq1(x); q2(y)i < 0, shaded
blue.

By replacing (’ 1; ’ 2) by a piecewise horizontal or vertical path (drawn as a dashed
line in the �gure), we are enforcing _’ 1 _’ 2 = 0 . This in turn ensures that the above
integral becomes exactly zero, which means that we can neglect the interval(t0; t1).

Lemma 2.4.1. [9, Lemma 16]For all ’ 1; ’ 2 2 �( I ), there exists  1;  2 2 �( I )
such that

Z

I
hq1 �  1; q2 �  2i

q
_ 1 _ 2dt =

Z

A ( ’ 1 ;’ 2 )
hq1 � ’ 1; q2 � ’ 2i

p
_’ 1 _’ 2dt:

Proof. The proof is taken directly from [9, Lemma 16]. If B (’ 1; ’ 2) is empty, the
lemma is trivially proven by setting  1 = ’ 1 and  2 = ’ 2. Therefore, assume that
B (’ 1; ’ 2) is nonempty. SinceB is open, it can be constructed as the union of a
countable set of open intervals, which we denote asB =

S
k I k where I k = ( t �

k ; t+
k ).

Additionally, we split the intervals in half by de�ning I �
k = ( tk ; 1

2 (t �
k + t+

k )] and
I +

k = ( 1
2 (t �

k + t+
k ); t+

k ). We construct ( 1;  2) in the following way:

 1(t) =

8
><

>:

’ 1(2t � t �
k ); t 2 I �

k ;
’ 1(t+

k ); t 2 I �
k ;

’ 1(t) otherwise;

 2(t) =

8
><

>:

’ 2(t �
k ); t 2 I �

k ;
’ 2(2t � t+

k ); t 2 I �
k ;

’ 2(t) otherwise:

This construction ensures that  1;  2 2 �( I ). Additionally, for all t 2 I �
k we have

that _ 1 = 0 and for all t 2 I +
k we have that _ 2 = 0 . In other words, for all t 2 B ,

we have that _ 1 _ 2 = 0 . This gives

Z

B ( ’ 1 ;’ 2 )
hq1 �  1; q2 �  2i

q
_ 1 _ 2dt = 0
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Since I = A(’ 1; ’ 2) [ B (’ 1; ’ 2), we obtain
Z

I
hq1 �  1; q2 �  2i

q
_ 1 _ 2dt =

Z

A ( ’ 1 ;’ 2 )
hq1 �  1; q2 �  2i

q
_ 1 _ 2dt

=
Z

A ( ’ 1 ;’ 2 )
hq1 � ’ 1; q2 � ’ 2i

p
_’ 1 _’ 2dt

concluding the proof.

This lemma tells us that if a path passes through a region for which we have
that hq1(x); q2(y)i < 0, we can always alter the path such that this region does not
contribute negatively towards the objective function. A direct consequence is given
in the following result.

Corollary 2.4.2. We have that

sup
’ 1 ;’ 2 2 �( I )

F (’ 1; ’ 2) = sup
’ 1 ;’ 2 2 �( I )

F + (’ 1; ’ 2) (2.6)

where F + is given by either of the following equivalent de�nitions

F + (’ 1; ’ 2) :=
Z

A ( ’ 1 ;’ 2 )
hq1 � ’ 1; q2 � ’ 2i

p
_’ 1 _’ 2dt

:=
Z

I
max

�
hq1 � ’ 1; q2 � ’ 2i ; 0

	 p
_’ 1 _’ 2dt:

Proof. For all ’ 1; ’ 2 2 �( I ), we have that F + (’ 1; ’ 2) � F (’ 1; ’ 2). However, as
seen in Lemma 2.4.1, we can for all’ 1; ’ 2 2 �( I ) construct  1;  2 2 �( I ) such
that F ( 1;  2) = F + (’ 1; ’ 2). Hence

sup
 1 ; 2 2 �( I )

F ( 1;  2) = sup
’ 1 ;’ 2 2 �( I )

F + (’ 1; ’ 2);

concluding the proof.

Note that Corollary 2.4.2 applies both when optimizing over di�eomorphisms
and optimizing over absolutely continuous functions sinceDi�( I ) is dense in�( I )
and that both F and F + are continuous. The corollary tells us that the similarity,
which can now be expressed as the supremum overF + , does not �see� the regions
where the curves are negatively correlated. However, if(’ 1; ’ 2) solves the right
hand side of (2.6), it does not necessarily solve the left hand side. This is because
the positive functional F + only ensures that we do not need to consider the regions
where the curves are negatively correlated. From this formulation, we cannot say
anything about the behavior of the solution in these regions.

A similar argument to the proof of Lemma 2.4.1 can also be used to prove
positivity of the similarity, assuming that the curves are somewhere positively
correlated. This is formally described in the following lemma:

Lemma 2.4.3. We have a positive similarity s(c1; c2) > 0 if and only if there exist
a point (x; y) such that hq1(x); q2(y)i > 0.
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Proof. Step 1: proving that a positive similarity implies a at some point positive
inner product. Assume to the contrary that hq1(x); q2(y)i � 0 for all x; y . Via
Corollary 2.4.2, we have that s(c1; c2) = 0 . This contradicts s(c1; c2) > 0, conclud-
ing this part of the proof.

Step 2: proving that a at some point positive inner product implies a positive
similarity. Sinceq1 and q2 are continuous, there exist some open rectangle(x0; x1)�
(y0; y1) for which hq1(x); q2(y)i > 0. Now, construct ’ 1; ’ 2 in the following way:

_’ 1 =

8
>>>>>><

>>>>>>:

x 0
t 1

; t 2 [0; t1);
0; t 2 [t1; t2];
x 1 � x 0
t 3 � t 2

; t 2 (t2; t3);
(1 � x 1 )
t 4 � t 3

; t 2 [t3; t4);
0; t 2 [t4; 1];

_’ 2 =

8
>>>>>><

>>>>>>:

0; t 2 [0; t1);
y0

t 2 � t 1
; t 2 [t1; t2];

y1 � y0
t 3 � t 2

; t 2 (t2; t3);
0; t 2 [t3; t4);
(1 � y1 )
1� t 4

; t 2 [t4; 1];

for some0 < t 1 < t 2 < t 3 < t 4 < 1. Using initial conditions ’ 1(0) = ’ 2(0) = 0 , we
have that ’ 1; ’ 2 2 �( I ), meaning that the path is feasible. Further, we have that
hq1(’ 1(t)) ; q2(’ 2(t)) i

p
_’ 1(t) _’ 2(t) > 0 for all t2 < t < t 3, and

p
_’ 1(t) _’ 2(t) = 0

otherwise. This gives

F (’ 1; ’ 2) =
Z t 3

t 2

hq1(’ 1(t)) ; q2(’ 2(t)) i
p

_’ 1(t) _’ 2(t)dt > 0:

Therefore, the supremum must also be positive, concluding the proof.

Although Lemma 2.4.3 might be trivial, it is a nice result. If there is some
positively correlated parts of the curves, the similarity between the curves will be
positive, and vice versa.

The last concept we need before introducing the main result in this section, is
de�ning the variation of F . The variation of F measures the change inF for small
changes in the reparametrization path(’ 1; ’ 2) in a feasible direction ( 1;  2). We
say that the direction is feasible if for su�ciently small h, (’ 1 + h 1; ’ 2 + h 2) is still
inside the search space. In other words, for( 1;  2) to be a feasible direction, we
need that ’ 1 + h 1; ’ 2 + h 2 2 �( I ). This is ensured by the following requirements:

(i)  1;  2 2 AC( I; R).
(ii)  1(0) =  2(0) =  1(1) =  2(1) = 0 .

(iii) If _’ 1(t) = 0 , then _ 1(t) � 0. If _’ 2(t) = 0 , then _ 2(t) � 0.
(iv) _ 1 + _ 2 = 0 .

The last condition is optional, and is only used to ensure _’ 1 + h _ 1 + _’ 2 + h _ 2 = 2
which we will ignore. We can now state and prove the main result in this section.

Theorem 2.4.4. If (’ 1; ’ 2) solves(2.5), then

(a) for a.e. t 2 I s.t. _’ 1(t); _’ 2(t) > 0, we have thathq1(’ 1(t)) ; q2(’ 2(t)) i � 0.

(b) for a.e. t 2 I s.t. hq1(’ 1(t)) ; q2(’ 2(t)) i > 0, we have that _’ 1(t); _’ 2(t) > 0.
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Proof of (a). Assume to the contrary that there is a set with nonzero measure for
which _’ 1(t); _’ 2(t) > 0 and hq1(’ 1(t)) ; q2(’ 2(t)) i < 0. Then, we have that

Z

I
hq1 � ’ 1; q2 � ’ 2i

p
_’ 1 _’ 2dt <

Z

A ( ’ 1 ;’ 2 )
hq1 � ’ 1; q2 � ’ 2i

p
_’ 1 _’ 2dt

In other words, F (’ 1; ’ 2) < F + (’ 1; ’ 2). However, via Lemma 2.4.1, we can con-
struct a feasible path  1;  2 such that F ( 1;  2) = F + (’ 1; ’ 2). Hence (’ 1; ’ 2)
cannot be optimal.

Proof of (b). Assume to the contrary that there is a set with nonzero measure for
which hq1(’ 1(t)) ; q2(’ 2(t)) i > 0.

Case 1: _’ 1(t) _’ 2(t) = 0 for almost every t 2 I . This implies that F (’ 1; ’ 2) = 0 .
However, by assumption, there is at least one point(x; y) such that hq1(x); q2(y)i >
0. Via Lemma 2.4.3, we have that

sup
 1 ; 2 2 �

F ( 1;  2) > 0 = F (’ 1; ’ 2):

Hence,(’ 1; ’ 2) is not optimal.
Case 2: there is a set with nonzero measure for which_’ 1; _’ 2 > 0. We want to

prove this by contradiction. By assuming that Theorem 2.4.4b does not hold, we
will show that there exist a feasible direction ( 1;  2) for which the objective func-
tion increases, meaning that(’ 1; ’ 2) cannot be optimal. An informal description
of the construction of the construction of this direction, together with an informal
summary of the following proof, can be found after the completion of the proof.

De�ne

C1 = f t 2 I j _’ 1(t) = 0 ; h’ 1(t); ’ 2(t)i > 0g;
C2 = f t 2 I j _’ 2(t) = 0 ; h’ 1(t); ’ 2(t)i > 0g;
D1 = f t 2 I j _’ 1(t) = 0 g;
D2 = f t 2 I j _’ 2(t) = 0 g:

Observe that C1 � D1 and C2 � D2. As established in Section 2.3, we can safely
assume that _’ 1(t) + _’ 2(t) > 0 for all t. Hence, we can safely assume thatC1 and
C2 are essentially disjoint. This also holds forD1 and D2.

With this notation, we want to prove that C := C1 [ C2 has measure zero.
Therefore, assume to the contrary thatC has nonzero measure. We construct the
direction ( 1;  2) in the following way:

_ 1(t) =

8
>>><

>>>:

1; t 2 C1

0; t 2 D1 n C1;
0; t 2 D2;
� k1 _’ 1(t); otherwise;

_ 2(t) =

8
>>><

>>>:

1; t 2 C2

0; t 2 D2 n C2;
0; t 2 D1;
� k2 _’ 2(t); otherwise;
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for some k1; k2 > 0. We choosek1 such that the constraint  1(1) =
R

_ 1 = 0 is
satis�ed. Inserting  1, we obtain

Z
_ 1dt =

Z

C1

1dt +
Z

D 1 nC1

0dt � k1

Z

I nD
_’ 1dt

= jC1j � k1

Z

I nD
_’ 1dt = 0 :

Here, we de�ne D := D1 [ D2. By assumption, I n D has nonzero measure, which
implies that the last integral is strictly positive, ensuring that k1 is well-de�ned.
The same argument holds fork2. Additionally, we have that _’ 1 + h _ 1 = _’ 1(1� hk1)
and _’ 2 + h _ 2 = _’ 2(1 � hk2) which are nonnegative for su�ciently small h. Lastly,
since ’ 1 and ’ 2 are absolutely continuous, so are 1 and  2, which means that
( 1;  2) is a feasible direction.

We decompose the functional into

F (’ 1 + h 1; ’ 2 + h 2) = I 1 + I 2 + I 3

where I 1, I 2 and I 3 are the integration over D1, D2 and I n D , respectively. In
other words, we de�ne

I 1 :=
Z

D 1

hq1(’ 1 + h 1); q2(’ 2 + h 2)i
p

( _’ 1 + h _ 1)( _’ 2 + h _ 2)dt;

I 2 :=
Z

D 2

hq1(’ 1 + h 1); q2(’ 2 + h 2)i
p

( _’ 1 + h _ 1)( _’ 2 + h _ 2)dt;

I 3 :=
Z

I nD
hq1(’ 1 + h 1); q2(’ 2 + h 2)i

p
( _’ 1 + h _ 1)( _’ 2 + h _ 2)dt:

Consider the �rst integral I 1. Recall for all t 2 D1 we have that _’ 1 = 0 and by
construction _ 1 = 0 . Hence, we have that

_’ 1 + h _ 1 =

(
1; t 2 C1;
0; t 2 D1 n C1;

_’ 2 + h _ 2 = _’ 2:

In other words, the integration over D1 n C1 vanishes and we are left with

I 1 =
p

h
Z

C1

hq1(’ 1 + h 1); q2(’ 2 + h 2)i
p

_’ 2dt:

Since q1 and q2 are continuously di�erentiable, the integrand converges linearly
with h. Further, since _’ 2 is integrable, the whole integral converges linearly with
h. We obtain a similar result for I 2, replacing C1 with C2 and _’ 2 with _’ 1. Since
C = C1 [ C2 is non-negligible, the sum of the integrals overC1 and C2 are strictly
positive, and there exists a positive constantK such that

I 1 + I 2 > K
p

h
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for su�ciently small h.
For the third integral, I 3, we have that _’ 1 + h _ 1 = _’ 1(1 � k1h) and _’ 2 + h _ 2 =

_’ 2(1 � k2h). Inserting this gives

I 3 =
p

(1 � k1h)(1 � k2h)
Z

I nD
hq1(’ 1 + h 1); q2(’ 2 + h 2)i

p
_’ 1 _’ 2dt:

We have that
p

(1 � k1h)(1 � k2h) is continuously di�erentiable at h = 0 , with
Taylor expansion 1 � 1

2 (k1 + k2)h + o(h). Further, we have the following Taylor
expansion

hq1(’ 1 + h 1); q2(’ 2 + h 2)i = hq1(’ 1); q2(’ 2)i + O(h):

Since ’ 1; ’ 2;  1;  2 are absolutely continuous and that q1 and q2 are continuously
di�erentiable, this O(h) has a uniform constant with respect tot. Since the integral
is always �nite, we obtain

I 3 = (1 � 1
2 (k1 + k2)h + o(h))

Z

I nD

�
hq1(’ 1); q2(’ 2)i + O(h)

� p
_’ 1 _’ 2dt

=
Z

I nD
hq1(’ 1); q2(’ 2)i

p
_’ 1 _’ 2dt + O(h)

= F (’ 1; ’ 2) + O(h):

We have here used that both _’ 1 and _’ 2 and hence also
p

_’ 1 _’ 2 are integrable.
Combining all three integrals, this gives

F (’ 1 + h 1; ’ 2 + h 1) = I 1 + I 2 + I 3

= F (’ 1; ’ 2) + K
p

h + O(h)
> F (’ 1; ’ 2)

for su�ciently small h. In other words, we can �nd another feasible path with a
higher objective value. This contradicts that (’ 1; ’ 2) is optimal, concluding the
proof.

The feasible direction in case 2 of the proof Theorem 2.4.4b is visualized in
Figure 2.3. The continuous line represents the proposed solution path(’ 1; ’ 2),
and the dashed line represents a small step(h 1; h 2) added to the proposed path.
We want to particularly consider the regions where either _’ 1 = 0 or _’ 2 = 0 . This
is where the path is either horizontal or vertical, which is accented in the �gure.
Where the path is either horizontal or vertical, and the inner product is greater
than zero (case (a) and (b)), we nudge the path to become slightly less horizontal
or vertical. Where the path is either horizontal or vertical, but the inner product
is negative (case (c) and (d)), we do not alter the slope of the path. Although the
position of the path might be slightly altered, it is only important that the slope
is not changed. For the remaining part of the path, we only do slight alterations
to ensure that the path remains feasible, while ensuring that no parts of the curve
becomes horizontal or vertical which was not already horizontal or vertical.
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(a)

(b)

(c)

(d)

Figure 2.3: Example of the feasible variation constructed in case 2 of proof
of Theorem 2.4.4b. The solid line represents(’ 1; ’ 2), the dashed line
represents (’ 1 + h 1; ’ 2 + h 2) and the shaded region represents where
hq1(x); q2(y)i < 0. The parts of (’ 1; ’ 2) which are either horizontal or
vertical (a, b, c, d) are accented.

Since the integrand in the functional is proportional to
p

_’ 1 _’ 2, the slight alter-
ations in (a) and (b) will contribute with a positive change in the functional value
which is proportional to

p
h. All remaining parts will contribute with a change in

the functional value proportional to h, which can be neglected for smallh. There-
fore, we have constructed a feasible direction for which the functional increases,
meaning that the proposed path is not optimal.

Theorem 2.4.4 is to our knowledge a new result, and it provides insight into how
solutions to the problem behave. In regions where the inner product is negative,
we must have a vertical or horizontal slope to avoid a negative contribution to
the objective value. In regions where the inner product is positive, we must have
positive derivatives of the reparametrizers. Having an either vertical or horizontal
slope could in this case be seen as �waste� of a positive correlation between the
curves.

2.5 Auxiliary Similarity Metrics

In the following, we will present three auxiliary metrics which gives additional in-
sight into the problem. These metrics are constructed as generalizations of the
similarity metric (2.5). Since Di�( I ) is dense in �( I ), the metrics could be in-
troduced using di�eomorphisms as well. However, as we have seen, we choose to
de�ne the metrics using �( I ) to ensure the existence of solutions.

2.5.1 Partial Similarity

An important idea in this thesis, is that of de�ning a similarity on only parts of
each curve. Speci�cally, we want to de�ne a similarity metric, assuming smaller
domains [x0; x1] and [y0; y1] for curve c1 and c2, respectively. To be consistent with
previous de�nitions, we require 0 � x0 � x1 � 1 and 0 � y0 � y1 � 1. We can
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apply this idea through the changing the reparametrizations in the de�nition of
the similarity. Since the support of the reparametrizations acts as the domain of
each curve, we can simply change the support of’ 1 and ’ 2 to [x0; x1] and [y0; y1].
In other words, we assume’ 1 2 �([0 ; 1]; [x0; x1]) and ’ 2 2 �([0 ; 1]; [y0; y1]) and
de�ne the partial similarity as

P (x0; y0; x1; y1) := sup
’ 1 2 �([0 ;1];[x 0 ;x 1 ]) ;
’ 2 2 �([0 ;1];[y0 ;y 1 ])

F (’ 1; ’ 2);

First of all, note that P (0; 0; 1; 1) = s(c1; c2). This is as we expect, since in this case,
we do not restrict the domain of either c1 or c2. Since P is de�ned on arbitrary
sub-rectangles of the unit square, it can be used to incrementally construct the
total similarity s. This will be done using a dynamic programming approach in the
next chapter.

There are certain interesting properties of the partial similarity P . First of
all, P nonnegative for the same reason thats(c1; c2) is nonnegative. Furthermore,
if x0 = x1 or y0 = y1, we have that P (x0; y0; x1; y1) = 0 . This is because’ 2
�([0 ; 1]; [x0; x0]) satis�es _’ = 0 everywhere, which ensures that the functional
evaluates to zero.

Additionally, for x0 � x1 � x2 and y0 � y1 � y2, we have that

P (x0; y0; x2; y2) � P (x0; y0; x1; y1) + P (x1; y1; x2; y2): (2.7)

This property is due to the fact that we can concatenate the solutions to the
optimization problems in P (x0; y0; x1; y1) and P (x1; y1; x2; y2). Further, the second
inequality (2.7) reduces to an equality if and only if there is an optimal path which
passes through the point(x1; y1).

Remark 2. The property (2.7) is actually related to the triangle inequality. If we
would have de�ned P by minimizing the norm, rather than maximizing the inner
product, the inequality sign in (2.7) would be reversed. Hence, the property could
be seen as a triangle inequality for monotone triples of points(x0; y0), (x1; y1),
(x2; y2).

2.5.2 Cumulative Similarity

Consider the cumulative similarity , which we de�ne by the abbreviation S(x; y) =
P (0; 0; x; y). Written out, this reads

S(x; y) := sup
’ 1 2 �([0 ;1];[0;x ]) ;
’ 2 2 �([0 ;1];[0;y ])

F (’ 1; ’ 2); (2.8)

For now, we consider(x; y) as a point in Rd. The denotion of cumulative simi-
larity comes from the fact as S measures the cumulative integration of the inner
product over optimal paths starting at (0; 0). Although S is only a special case
of the more general variableP , the cumularive similarity S has certain properties
which will become very useful. First of all, S is monotone increasing, which is
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a direct consequence of (2.7). Further properties ofS are discussed in the next
chapter. Additionally, there is one reformulation which should be mentioned. If
’ 2 �([0 ; 1]; [0; 1]), then we have that t 7! x’ (t) 2 �([0 ; 1]; [0; x]). This can be
used to reformulate S in the following way:

S(x; y) := sup
’ 1 ;’ 2 2 �( I )

F (x’ 1; y’ 2): (2.9)

2.5.3 Restricted Similarity

We want to consider a similarity measure when we restrict the solution to pass
through a point (x; y). Such points are often called landmarks and landmark-guided
shape analysis has been studied both in the context of curves [5] and surfaces [11].
However, we want to de�ne the restricted similarity metric for all (x; y), regardless
of whether the point is a landmark or not. We de�ne the restricted similarity as

Sjx;y := sup
’ 1 ;’ 2 2 �( I )

F (’ 1; ’ 2) s.t. 9t : ’ 1(t) = x; ’ 2(t) = y:

Although we will not use this variable in the development of our method, this
is a great tool for evaluating the �tness of the solution. If an optimal solution
passes through the point(’ 1(t); ’ 2(t)) = ( x; y) for some t 2 [0; 1], then Sjx;y =
s(c1; c2). In other words, Sjx;y stays constant, equal to the total similarity along
the path (x; y) = ( ’ 1(t); ’ 2(t)) . For that reason, the restricted similarity can be
used to determine if we have found a solution. If a path(’ 1; ’ 2) is locally optimal,
then Sjx;y should be non-increasing in all directions orthogonal to the path for all
(x; y) = ( ’ 1(t); ’ 2(t)) . Lastly, as a direct consequence of (2.7), we have that

Sjx;y = P (0; 0; x; y) + P (x; y; 1; 1):

This comes from the fact that the inequality (2.7) has equality if and only if the
optimal path passes through the point (x; y) (denoted as(x1; y1) in equation (2.7)).
In the de�nition of Sjx;y we force all paths to pass through this point, hence we can
apply (2.7). The property hints as to why a dynamic programming approach might
be suitable. If we know that the optimal paths passes through the point(x; y), the
optimization problem can be reduced to �nding the optimal reparametrizations on
the regions [0; x] � [0; y] and [x; 1] � [y; 1] independently.

2.6 Di�erential Properties of S

Solutions to variational problems are often governed by di�erential equations. This
is also true for the optimal reparametrization problem, and the auxiliary variable
S is very helpful in this regard. We start with one of the fundamental properties
of S:
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Proposition 2.6.1. S is continuous.

Proof. This follows directly from the continuity of F and that x; y and ’ 1; ’ 2
are coupled linearly. Formally, we have the following argument. Writing out the
functional F , the de�nition of S as given in (2.9) can be reformulated as

S(x; y) = sup
’ 1 ;’ 2 2 �( I )

hR(xc1 � ’ 1); R(yc2 � ’ 1)i L 2

For simplicity, we will consider absolutely continuous curves which belongs to
AC0 = f c 2 AC( I; Rd); c(0) = 0 g � C . This allows us to use certain results
from [9]. We have that

(i) (c; x) 7! xc is a continuous map fromAC0 � R to AC0,

(ii) (c; ’ ) 7! c � ’ is a continuous map fromAC0 � �( I ) to AC0 [9, Proposition
7],

(iii) c 7! R(c) is a continuous map fromAC0 to L 2 [9, Lemma 4].

This ensures that the mapping

(c1; c2; ’ 1; ’ 2; x; y) 7! hR(xc1 � ’ 1); R(yc2 � ’ 1)i L 2

is continuous. Now, consider any sequence(xn ; yn )n ! (x; y). Since the above
mapping is continuous, we have that

lim
n !1

S(xn ; yn ) = lim
n !1

sup
’ 1 ;’ 2

hR(xn c1 � ’ 1); R(yn c2 � ’ 1)i L 2

= sup
’ 1 ;’ 2

lim
n !1

hR(xn c1 � ’ 1); R(yn c2 � ’ 1)i L 2

= sup
’ 1 ;’ 2

hR(xc1 � ’ 1); R(yc2 � ’ 1)i L 2

= S(x; y);

concluding the proof.

We want to slightly alter the notation for the optimal reparametrizers for a
better synergy with S. Speci�cally, we will from now on denote optimal paths as
(x; y). This is motivated by the de�nition of S where ’ 1 is analogous tox and ’ 2
is analogous toy. Using this notation, we have a particularly useful property of
optimal paths:

S(x(t); y(t)) =
Z t

0
hq1(x(s)) ; q2(y(s)) i

p
_x(s) _y(s)ds: (2.10)

Using Corollary 2.4.2, we can reformulate this to

S(x(t); y(t)) =
Z t

0
Q(x(s); y(s))

p
_x(s) _y(s)ds; (2.11)
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where we de�ne Q(x; y) := max fhq1(x); q2(y)i ; 0g. Through this equation we have
an explicit expression for S along an optimal path. Note the connection to the
method of characteristics, where one solves a PDE along certain paths called char-
acteristics. We will come back to this later.

Using (2.11), we can compute the temporal derivative ofS along optimal paths.
The fundamental theorem of calculus gives us

d
dt S(x(t); y(t)) = Q(x(t); y(t))

p
_x(t) _y(t);

or _S = Q
p

_x _y, for short. Further, assuming that x; y are di�erentiable at t and S
is di�erentiable at x; y , we have that _S = Sx _x + Sy _y. In other words, we have two
expressions for _S which together becomes

Sx _x + Sy _y = Q
p

_x _y: (2.12)

This is a central equation in the proof of the following results.

Proposition 2.6.2. Assume that S is di�erentiable. Then, we have that (x; y)
solves(2.8) if and only if

Sx _x � Sy _y = 0 ; if Sx + Sy > 0; (2.13)
_x _y = 0 ; if Sx + Sy = 0 :

almost everywhere.

Proof. Note that if _x = 0 , _y > 0, the property (2.12) implies that Sy = 0 , which
means that the di�erential equation (2.13) is trivially satis�ed. This also holds for
_x > 0, _y = 0 . We can therefore assume_x; _y > 0.

In general, the derivatives of a function varies a lot faster than the function
value itself. In other words, _x and _y varies a lot faster than x and y. This means
that the optimization problem (2.5) can locally be seen as an optimization problem
over _x and _y. The objective function will then be the temporal derivative of the
objective function as given in (2.10). Still, we must have that (2.12) is satis�ed. In
other words, using the abbreviationsu = _x(t) and v = _y(t), we get that u and v
must solve

sup
u;v> 0

Q
p

uv s.t. Sx u + Sy v = Q
p

uv;

where Q = Q(x(t); y(t)) , Sx = Sx (x(t); y(t)) and Sy = Sy (x(t); y(t)) . The �rst
order optimality system for this optimization problem is given by

Sx + 1
2 (1 � � )Q

p
v=u = 0 ;

Sy + 1
2 (1 � � )Q

p
u=v = 0 ;

Sx u + Sy v = Q
p

uv;
u; v > 0:

where � is the Lagrange multiplier for the constraint Sx u + Sy v = Q
p

uv. We
do not need a Lagrange multiplier for the constraint u; v > 0 since this is already
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assumed to hold. Multiplying the �rst two equations by u and v, respectively, gives

Sx u + (1 � � ) 1
2 Q

p
uv = 0 ;

Sy v + (1 � � ) 1
2 Q

p
uv = 0 :

By subtracting the two equations, we obtain Sx u � Sy v = 0 , as desired.

This proposition gives a foundation for computing the optimal reparmetriza-
tions, given that S is known. Later on, we will see that if S is piecewise bilinear,
then the solution of (2.13) is a pair of piecewise linear functions. It should be
noted that (2.13) portrays the invariance under reparametrization property for the
problem. The equation is invariant under simultaneous scaling of _x and _y, and
hence also under simultaneous reparametrization.

We can also use Proposition 2.6.2 to formulate a partial di�erential equation
for S.

Proposition 2.6.3. If S is di�erentiable, then S solves the nonlinear partial dif-
ferential equation

Sx Sy =
1
4

Q2 (2.14)

on the unit square, with boundary conditionsS(x; 0) = S(0; y) = 0 and the mono-
tonicity constraints Sx ; Sy � 0.

Proof. Note that the boundary conditions and the monotonicity has already been
established. We start by assuming either _x = 0 or _y = 0 . Via theorem 2.4.4 we
have that Q = 0 , and via proposition 2.6.2 we have that eitherSx = 0 or Sy = 0 .
In other words, (2.14) is satis�ed. Now assume_x; _y > 0.

The squares of the equations (2.12) and (2.13) gives the system of equations
given by

S2
x ( _x)2 + 2Sx Sy _x _y + S2

y ( _y)2 = Q2 _x _y;

S2
x ( _x)2 � 2Sx Sy _x _y + S2

y ( _y)2 = 0 :

Subtracting the two equations and dividing by _x _y on both sides yields4Sx Sy = Q2,
concluding the proof.

Remark 3. Propositions 2.6.2 and 2.6.3 are great examples as to why we obtain
nicer results by maximizing the inner product rather than minimizing the norm
of the SRVTs. If we de�ne D as the cumulative distance in the same way as we
de�ned S as the cumulative similarity, the equations equivalent to (2.13) and (2.14)
would read

(D x � j _c1(x)j) _x � (D y � j _c2(y)j) _y = 0 ;

(D x � j _c1(x)j)(D y � j _c2(y)j) =
1
4

Q2:

Although the properties of the di�erential equations remains the same, the equa-
tions derived from the similarity are much more compact, and arguably much easier
to comprehend.
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The value of S is de�ned through optimal reparametrization paths. Since
the reparametrizations are monotone, they can be considered as characteristics
in the context of hyperbolic partial di�erential equations. In other words, the
nonlinear PDE (2.14) is hyperbolic. Further, we can write the PDE of the form
G(x; y; S; Sx ; Sy ) = 0 , where

G(x; y; S; Sx ; Sy ) = Sx Sy �
1
4

Q(x; y)2:

For PDEs of this form, the method of characteristics is given by

_x = �S y ;
_y = �S x ;
_S = 2 �S x Sy ;

_Sx = 1
2 �QQ x ;

_Sy = 1
2 �QQ y ;

where � is some scaling factor. We can also obtain the �rst two equations directly
from (2.13). The third equation is easily derived from the �rst two by the following
steps:

_S = Sx _x + Sy _y = �S x Sy + �S y Sx = 2 �S x Sy :

Figure 2.4: Behaviour of optimal paths around a shock path. Optimal paths
are drawn with arrows, and the shock path is drawn black.

A common phenomenon for solutions of PDEs are shock. These occur when
the characteristics collide, meaning that the system of ODEs is overdetermined.
In our context, a characteristic is actually a reparemtrization path. Accordingly,
we expect shock solutions to appear whenever we have two linearly independent
directions which are optimal and that S decreases in both of these directions.
Since the reparametrization paths are monotone, we expect the shock paths to be
monotone as well. Additionally, from numerical experiments, there seems to only
be a �nite number of shock paths regardless of the curves in question. One example
of how the optimal paths behave around a shock solution is visualized in Figure 2.4.

To help us analyse the behavior of the shocks, consider the following notation
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for the left and right derivatives of S:

Sx + (x; y) = lim
h ! 0

1
h

�
S(x + h; y) � S(x; y)

�
;

Sx � (x; y) = lim
h ! 0

1
h

�
S(x; y) � S(x � h; y)

�
;

Sy+ (x; y) = lim
h ! 0

1
h

�
S(x; y + h) � S(x; y)

�
;

Sy � (x; y) = lim
h ! 0

1
h

�
S(x; y) � S(x; y � h)

�
:

With this notation, the derivatives Sx + and Sy � corresponds to the partial deriva-
tives of S in the south-east region relative to the shock path. Similarly, the deriva-
tives Sx � and Sy+ corresponds to the derivatives ofS in the north-west region
relative to the shock path. Further, using the assumption that the shock paths are
monotone increasing, the di�erential equation (2.14) can be written as either of

Sx + Sy � =
1
4

Q2; Sx � Sy+ =
1
4

Q2;

which holds even if we are on a shock path.

Proposition 2.6.4. Shock solutions appear when either of the following inequali-
ties are satis�ed

Sx + Sy+ >
1
4

Q2; Sx � Sy � >
1
4

Q2: (2.15)

Proof. Either applying Sx � Sy+ = 1
4 Q2 to the �rst inequality or applying Sx + Sy � =

1
4 Q2 to the second inequality, we obtain

Sx + > S x � ; or Sy+ > S y � ;

respectively. This implies that we have a shock solution.

Now that we know when shock paths arises, we need to address the evolution
of the shock paths. This is described in the following proposition.

Proposition 2.6.5. The evolution of shock paths are governed by either of the
following di�erential equations

Sx + _x = Sy+ _y;
Sx � _x = Sy � _y:

Proof. The value of S in the south-east and north-west regions on each side of the
shock path, can be seen as two independent surfaces. With this interpretation,
the shock path can be seen as the intersecting path between the two surfaces. In
other words, it is the path for which the value of S is equal for the south-east and
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north-west regions. Furthermore, this implies that _S must be the same for both
regions along this path. In other words, we have that

Sx + _x + Sy � _y = Sx � _x + Sy+ _y: (2.16)

We start by assuming Q = 0 . First of all, not left and right partial derivatives of
S can be zero (in this case we would not have a shock). However, (2.15) must be
satis�ed, meaning that we must have eitherSx + = 0 or Sy � = 0 and either Sx � = 0
or Sy+ = 0 . We have two cases:

(i) Sx � = Sy � = 0 . In this case, (2.16) readsSx + _x = Sy+ _y, as desired. The
other di�erential equation we wanted to prove trivially holds as it in this case
reads0 = 0. This argument also holds if we assumeSx + = Sy+ = 0 .

(ii) Sx + = Sx � = 0 . In this case, all optimal paths are horizontal, i.e. they satisfy
_y = 0 . This also holds for the shock path. Hence the di�erential equations
are satis�ed. A similar argument holds for Sy+ = Sy � = 0 .

Now assumeQ > 0. This also means that all left and right directional derivatives
of S are positive. Rearranging the terms of (2.16) gives

(Sx + � Sx � ) _x = ( Sy+ � Sy � ) _y:

Inserting the identity Sy+ Sx � = Sy � Sx + = 1
4 Q2 on the right hand side, we obtain

(Sx + � Sx � ) _x =
1
4

Q2
�

1
Sx �

�
1

Sx +

�
_y:

Multiply by Sx + Sx � on both sides to obtain

Sx + Sx + (Sx + � Sx � ) _x =
1
4

Q2(Sx + � Sx � ) _y:

Finally, dividing by (Sx + � Sx � ), and applying either of the equalities Sy+ Sx � =
1
4 Q2 or Sy � Sx + = 1

4 Q2, we obtain either of Sx + _x = Sy+ _y or Sx � _x = Sy � _y, con-
cluding the proof.

We have in this section presented new di�erential equations which gives new
insight into the behaviour of the optimal reparametrization paths. By assuming
that S is di�erentiable, we derived a hyperbolic di�erential equation for S, as
given in (2.14). Additionally, we derived a di�erential equation for the optimal
reparametrization path, as given in (2.13), and showed how reparametrization paths
can be considered characteristics for the hyperbolic partial di�erential equation.





ç Dynamic Programming

In the problem of �nding optimal reparametrizations, we are only concerned with
monotone reparametrizations. In other words, the curves in question are assumed
to have a de�ned orientation which should be preserved through the reparametriza-
tion. This is especially useful if we know some feature point of the curves. Then,
the problems of �nding optimal reparametrizations before and after this feature
point are separate, independent problems. This property can be translated to
the concept of optimal substructure within computer science, and can be used to
construct e�cient solvers for the problem in question, if used correctly.

In this chapter, we will review previous dynamic programming based methods,
and present a new framework for computing solutions to the optimization problem.
The framework can in general be applied to any (orienting preserving) optimal
reparametrization problem for curves on bounded domains. However, we will see
how the optimization problem (2.5) is particularly suitable for the framework.

3.1 A Fully Discretized Method

One idea is to consider a full discretization of the problem by constructing the so-
lutions as piecewise linear functions by connecting grid nodes on a rectilinear grid.
An example of such a path can be seen in Figure 3.1. This method approximates
the variational optimization problem by an alternative optimization problem that
is both discrete and �nite. Additionally, this alternative problem has overlapping
subproblems and optimal substructure, meaning that a dynamic programming ap-
proach is suitable. To keep the monotonicity of the solution, we need to constrain
which nodes are allowed to connect to each other. Therefore, to allow a connection
(k; l ) ! (i; j ), we require k < i and l < j . This ensures that no loops are allowed,
a property which is essential to the optimal substructure property.

The dynamic programming method is common for problems concerned with
curve alignment. We refer to [5] for implementation details for the reparametriza-
tion problem within the square root velocity framework. The method is not, how-
ever, limited to this framework and has been constructed or similar reparametriza-
tion problems [12]. Although the method is simplistic and easily implemented,
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Figure 3.1: Example of a piecewise linear path de�ned by connecting grid
points in a regular grid.

Figure 3.2: Example of restrictions to node connections.

the method has some drawbacks, especially related to computational complexity.
Assuming a grid with n � n nodes, there areO(n4) ways of constructing mono-
tone paths between the grid nodes, starting at(0; 0) and ending at (1; 1). This
computational complexity is not compatible with practical applications, and it is
common to apply constraints to the node connections. One way to do this, is by
only allow nodes in a neighborhood of(i; j ), to connect to (i; j ). An example of
this is illustrated in Figure 3.2. To ensure convergence, however, the size neighbor-
hood must depend onn. This is because in the limit, the path should be able to
attain all possible slopes at all points. This requires that the set of slopes possible
should in the limit be dense in the positive real numbers. If the neighborhood
is chosen as in Figure 3.2 for alln, we would not have convergence since only a
�nite possible slopes are available. To ensure convergence, the asymptotic com-
plexity of this method will therefore be O(n2jN (n)j), where jN (n)j is the size of
the neighbourhoods.

To combat the substantial computational costs, approximative improvements
of the dynamic programming methods has been studied in [13, 14]. These methods
are based on a key property of the optimization problem: Assume that(’ 1; ’ 2) is
a good estimate of a true solution, and consider the reparametrized optimization
problem

sup
 1 ; 2 2 �( I )

F (’ 1 �  1; ’ 2 �  2): (3.1)

If we assume that the curvesc1; c2 are C1 as in [9], the above optimization problem
is equivalent to (2.5). Further, since (’ 1; ’ 2) is assumed to be a good approxima-
tion to the true solution, we would expect the solution ( �

1 ;  �
2 ) of (3.1) to be close

to the pair identity functions. At least, we expect the graph of the functions to
be inside a strip along the diagonal of the unit square, as visualized in Figure 3.3.
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Figure 3.3: Expected domain for solutions to (3.1).

Therefore, one can improve the similarity (or distance) estimate by obtaining a
rough approximation (’ 1; ’ 2) and using (3.1) to improve this estimate. This has
proved to be more e�cient than the basic dynamic programming approach. How-
ever, the method requires an e�ciency-optimality tradeo�. The narrower the the
strip along the diagonal, the more e�cient the method. However, the method is no
longer guaranteed to solve the optimization problem, and with a narrower strip, it
is more likely that the true solution is outside the strip.

3.2 A Semi-Discretized Method

Piecewise linear functions, constructed by connecting grid nodes, are not very �ex-
ible, as they only allow the direction to change at the grid nodes. In this thesis,
we will will loosen this restriction, and allow the solution to change direction at
intersections of grid lines. One example of such a path is visualized in Figure 3.4.

Figure 3.4: Example of a piecewise linear path only allowed to change slope
when intersecting grid lines on a regular grid.

To approximate solutions to the optimization problem (2.8), we will do a grid
search, similarly to the previous method. Where the two method di�ers, is in the
update equation at each grid point. The previous method approximates solutions
by discretizing both x; y and the directions _x; _y. While we will still discretize
x; y , we will construct a method which is continuous in _x; _y. In other words, we
will construct a semi-discretized method. In the update equation for each grid
point, this can be done by optimizing over the south and west boundaries of the
belonging grid cell, rather than a neighboring set of grid nodes. This idea can be
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Figure 3.5: Linear paths connected to the north east point on a grid cell.

seen in Figure 3.5. We will see that using consistent approximations toc1; c2, we
obtain a consistent approximation to S. Additionally, we will see how the method
is analogous to a �rst order �nite di�erence scheme for the nonlinear di�erential
equation for S, derived in Proposition 2.6.3.

The fully discretized dynamic programming approach has one great bene�t.
Once we have iterated through the whole grid, we can easily use backtracking to re-
trieve the optimal reparametrization path. For all grid nodes, we just have to store
the previous grid node, i.e. the optimal predecessor. For the new semi-discretized
approach, we have to retrieve the optimal reparametrizations in a slightly di�erent
way. We will see that if we assume a bilinear approximation toS, a solution path
can be constructed explicitly using Proposition 2.6.2. The new method will ignore
shock solutions and have anO(n2) computational complexity.

In the following derivations, we will apply the optional constraint _’ 1 + _’ 2 = 2
to avoid the redundancy of the problem. In that context, we will introduce a new
notation for the search space to keep the derivations compact. Consider

	( x0; y0; x1; y1) = f (’ 1; ’ 2) j ’ 1 2 �([ t0; t1]; [x0; x1]);
’ 2 2 �([ t0; t1]; [y0; y1]);
_’ 1 + _’ 2 = 2 ;
t0 = ( x0 + y0)=2;
t1 = ( x1 + y1)=2g:

Then, we can de�ne our optimization problem as

S(x; y) = sup
( ’ 1 ;’ 2 )2 	(0 ;0;x;y )

F[0;(x + y )=2](’ 1; ’ 2):

3.3 Linear Curves

The building blocks of a successful dynamic programming method are the base
cases, where we do not divide the problem into smaller subproblems. It is important
to have a well de�ned base case to ensure that the method as a whole is both e�cient
and correct. For our method, the base case will be each grid cell on the rectilinear
grid. For su�ciently small grid cells, the curves are approximately linear, which
means that hq1(x); q2(y)i is approximately constant. To motivate the derivation of
the dynamic programming method, we will therefore consider a special case of the
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problem where we assume thathq1(x); q2(y)i = Q0 is constant, for which we for
now will assume to be positive.

To start, we will consider the most trivial case whereQ0 = 1 on the entire unit
square. In this case, the optimization problem reads

s(c1; c1) = sup
’ 1 ;’ 2 2 	(0 ;0;1;1)

Z

I

p
_’ 1 _’ 2dt:

The supremum can easily be found via the AM-GM inequality, which gives
Z

I

p
_’ 1 _’ 2dt �

Z

I

1
2

( _’ 1 + _’ 2)dt =
1
2

(’ 1(1) + ’ 2(1)) = 1 :

Further, we have equality if and only if _’ 1 = _’ 2 for all t. This, together with
_’ 1 + _’ 2 = 2 gives _’ 1 = _’ 2 = 1 . In other words, the problem is uniquely solved
by the pair of identity functions. Note that without the constraint _’ 1 + _’ 2 = 2 ,
we will still have the same supremum. But in this case, the solutions are only
identi�ed by _’ 1 = _’ 2. Still, this is quite intuitive since the problem is (without
any constraints) invariant under reparametrizations. The result can be generalized
for positive correlations Q0 > 0 on general rectangles[x0; x1] � [y0; y1]. In this case,
the problem reads

P (x0; y0; x1; y1) = sup
’ 1 ;’ 2 2 	( x 0 ;y 0 ;x 1 ;y 1 )

Z

I
Q0

p
_’ 1 _’ 2dt;

which has supremumP (x0; y0; x1; y1) = Q0
p

(x1 � x0)(y1 � y0) and solution given
by the pair of linear functions given by

’ 1(t) = x0 +
x1 � x0

t1 � t0
(t � t0);

’ 2(t) = y0 +
y1 � y0

t1 � t0
(t � t0):

on the interval [t0; t1] = [ 1
2 (x0 + y0); 1

2 (x1 + y1)]. This generalization follows directly
from applying change of domain, and that the problem is invariant under (positive)
rescaling. With these simple expressions, we can also �nd analytic solutions for
problems with linear boundaries and linear boundary conditions.

Proposition 3.3.1. Consider solution paths starting at the boundaryx � 0, y = 0 ,
and assume thatS(x; 0) = ax + b and Q(x; y) = Q0 � 0 for x; y � 0 with a > 0.
Then, we have that

S(x; y) =

(
b+ ax + Q 2

0
4a y; 4a2x � Q2

0y;
b+ Q0

p xy; 4a2x < Q 2
0y;

for x; y > 0.

Proof. Consider any point (x; y) such that x; y > 0. Due to the monotonicity of
reparametrization paths, we can �nd the value of S by optimizing over the part
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of the x-axis which is allowed to reach(x; y). This is the the interval [0; x] which
means that our optimization problem becomes

S(x; y) = sup
0� x � � x

S(x � ; 0) + sup
( ’ 1 ;’ 2 )2 	( x � ;0;x;y )

Z

I
Q0

p
_’ 1 _’ 2dt

= sup
0� x � � x

ax� + b+ Q0
p

(x � x � )y:

De�ning � 2 = ( x � x � ), we can rewrite this equation into

S(x; y) = sup
0� � �

p
x

� a� 2 + Q0
p

y� + ax + b; (3.2)

which is a quadratic optimization problem with a unique solution since a > 0.
The unconstrained optimization has solution � � = Q0

p y=(2a). Therefore, since
the optimization problem is concave, the constrained optimization problem has
solution

� � = P[0;
p

x ]

�
Q0

p y
2a

�
;

where P[a;b](x) = max f minf x; bg; ag is a projection operator. If the maximum is
attained at � � =

p
x, the maximum is b+ Q0

p xy , and if � � <
p

x, the maximum
is given by

S(x; y) = ax +
Q2

0
4a

y + b;

concluding the proof.

A typical solution as constructed in Proposition 3.3.1 is visualized in Figure 3.6.
In Figure 3.6a, the blue lines denote the solutions where the optimal value was
attained at � � <

p
x, while the black lines denote the rarefaction part where� � =p

x. A similar result to Proposition 3.3.1 holds when we assume the paths to start
from a vertical boundary, and this situation is visualized in Figure 3.7. In general,
the proposition can be modi�ed to work for any linear boundary de�ned from the
equation cx + dy = 0 as long asc; d � 0 and not both c = 0 and d = 0 . However,
we will for now consider either horizontal or vertical boundaries since we want to
approximate the solution on rectangular grid cells.

For the horizontal boundary in Proposition 3.3.1, the optimal paths are unique
for a > 0, and the direction of the path is given by ( _x; _y) / (( � � )2; y). For 4a2x �
Q2

0y, i.e. in the linear part, we have that

Sx = a; Sy =
Q2

0
4a

; _x /
Q2

0
4a2 y; _y / y:

Observe that the solutions satisfy both Sx _x � Sy _y = 0 and Sx Sy = 1
4 Q2

0. In other
words, both di�erential equations derived in Section 2.6 are satis�ed. For the region
where 4a2x < Q 2

0y, i.e. in the rarefaction part, we have that

Sx =
Q0

2

r
y
x

; Sy =
Q0

2

r
x
y

; _x / x; _y / y:

Again we have that both Sx _x � Sy _y = 0 and Sx Sy = 1
4 Q2

0 are satis�ed.
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(a) (b)

Figure 3.6: Visualization of optimal paths (a) and values of S (b) for the
problem discussed in Proposition 3.3.1.

(a) (b)

Figure 3.7: Visualization of optimal paths (a) and values of S (b) for the
problem discussed in Proposition 3.3.1, but now for paths starting from
(x; y) = (0 ; �).

3.3.1 Shock and Rarefaction Waves

Until now, we constrained the solutions such that they were only allowed to start
from one of the boundaries. However, we clearly need to allow the solutions to start
from either of the south and west the boundaries. Again, this can be formulated as a
maximization problem over the boundaries. To do this, we consider each boundary
separately, which means that we for each point(x; y) have two possible values ofS
and two �optimal� paths, one starting at each boundary. Then, by comparing the
values ofS, the true optimal path can be determined. In other words, if SS denotes
the value of S when paths must start from the south boundary, and SW denotes
the value of S when the paths must start from the west boundary, we obtain S
through

S(x; y) = max f SS (x; y); SW (x; y)g:

The optimal direction at this point is given by

( _x; _y) =

(
( _x; _y)S ; S(x; y) = SS (x; y);
( _x; _y)W ; S(x; y) = SW (x; y);

where ( _x; _y)S and ( _x; _y)W denotes the optimal directions when the paths start at
the south and west boundaries, respectively.
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The above construction of the optimal solution paths is unambiguous wherever
SS (x; y) 6= SW (x; y). If the two values are equal, however, we have two choices for
the optimal direction ( _x; _y). Note that since the optimal paths are straight lines,
we will always have that the slopes satie�es( _y=_x)S � ( _y=_x)W . This means that we
have two cases. Either, the slopes are equal, given by_y=_x / y=x. In this case, the
optimal path originates in the origin, and we get a rarefaction wave. If the slopes
are not equal on the other hand, we get a shock wave. These cases are visualized
in Figure 3.8 and 3.9, respectively.

To see which cases gives shock and rarefaction waves, consider a corner bound-
ary, with piecewise linear initial condition

S(x; y) =

(
aS (x � x0) + b; x > 0; y = 0 ;
aW (y � y0) + b; x = 0 ; y > 0;

for some aS ; aW � 0. For the non-rarefaction part of the solution, the optimal
slopes are given by

�
dt
dx

� S

=
Q2

0
4(aS )2 ;

�
dt
dx

� W

=
4(aW )2

Q2
0

:

We get shock solutions if the optimal paths from each of the boundaries are col-
liding, and rarefaction waves if the optimal paths are diverging. Further, we will
observe colliding optimal paths whenever(dy=dx)S > (dy=dx)W . In other words,
we get shock solutions ifaSaW > 1

4 Q2
0. Similarly, we get diverging optimal paths

and rarefaction waves ifaSaW < 1
4 Q2

0. At the origin, aS is equivalent to Sx and
aW is equivalent to Sy . Hence, the condition for a shock solution can be written
as Sx Sy > 1

4 Q2, which is exactly the condition we obtained in Proposition 2.6.4.

3.3.2 Shock Paths

Given that we have a shock path, this path can be found from the intersection
between the surfaces(x; y) 7! SS (x; y) and (x; y) 7! SW (x; y). In other words, the
path is de�ned from

sup
0� x � � x

aSx � + b+ Q0
p

(x � x � )y = sup
0� y � � y

aW y� + b+ Q0
p

x(y � y� )

As before, we introduce� 2 = ( x � x � ), and now also� 2 = ( y � y� ) which gives

sup
0� � �

p
x

aS (x � � 2) + Q0
p

(y � y0)� = sup
0� � � p y

aW (y � � 2) + Q0
p

(x � x0)�:

Since the optimal paths are straight lines and we assume that there is a shock, the
solutions of these optimziation problems will be attained at � � <

p
x and � � < p y,

which means that the supremums are

aSx +
Q2

0
4aS y = aW y +

Q2
0

4aW x:

After simpli�cation, this gives aSx = aW y, which is equivalent to the shock paths
Sx + _x = Sy+ _y, derived in Proposition 2.6.5.
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(a) (b)

Figure 3.8: Diverging optimal paths (a) resulting in a rarefaction wave for
S, shaded in (b).

(a) (b)

Figure 3.9: Colliding optimal paths (a) resulting in a shock wave for S,
shaded in (b).

3.4 A General Dynamic Programming Framework

We will now de�ne the general framework for the dynamic programming algorithm.
Consider a regionN (x; y) � R2 which separates the rectangle[0; x] � [0; y] into two
regions, one containing the origin(0; 0) and one containing (x; y). An example of
such a region is visualized in Figure 3.10. We will in general assume thatN (x; y)
is unit dimensional, and denote such regions asseparating paths. Since the path
separates the origin from the point (x; y), we know that any monotone increasing
path from (0; 0) to (x; y) must pass throughN (x; y).

(0; 0)

(x; y)

Figure 3.10: A separating pathN (x; y).

We want to show that using separating paths, we can decompose the search
space by function concatenation. To do so, we need to generalize the concept of
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function concatenation to sets of functions. Speci�cally, for two setsA and B of
absolutely continuous functions, we de�ne

A � B = f a � b j a 2 A; b 2 B g:

This requires that the sets A and B are compatible in the sense that the �last�
point of all functions a 2 A equals the ��rst� point of all functions b 2 B . In
particular, 	(0 ; 0; x � ; y� ) and 	( x � ; y� ; x; y) are by construction compatible.

Lemma 3.4.1. For any separating path N (x; y), we can decompose our search
space by the relation

	(0 ; 0; x; y) =
[

(x � ;y � )2N (x;y )

	(0 ; 0; x � ; y� ) � 	( x � ; y� ; x; y):

Proof. SinceN (x; y) is a separating path, we have the decomposition

	(0 ; 0; x; y) =
[

(x � ;y � )2N (x;y )

	(0 ; 0; x; y)jx � ;y � ;

where

	(0 ; 0; x; y)jx � ;y � = f (’ 1; ’ 2) 2 	(0 ; 0; x; y) j’ 1(t � ) = x � ;
’ 2(t � ) = y� ;

t � = 1
2 (x � + y� )g:

Now, the restriction of any absolutely continuous function can be done by the
concatenation of two absolutely continuous functions. For all ’ 2 �([0 ; t]; [0; x]),
there exists  2 �([0 ; t � ]; [0; x � ]) and # 2 �([ t � ; t]; [x � ; x]) such that ’ =  � #.
The reverse also holds in the sense that for all 2 �([0 ; t � ]; [0; x � ]) and # 2
�([ t � ; t]; [x � ; x]), then  � # 2 �([0 ; t]; [0; x]). In other words, we can identify

	(0 ; 0; x; x )jx � ;y � = 	(0 ; 0; x � ; y� ) � 	( x � ; y� ; x; y);

concluding the proof.

Lemma 3.4.1 can be used to reformulate the optimization problem (2.8). Firstly,
recall that our functional F is additive under concatenation, as seen in Section 2.3.
In other words, if ( 1;  2) 2 	(0 ; 0; x � ; y� ) and (#1; #2) 2 	( x � ; y� ; x; y), then

F[0;t ]( 1 � #1;  2 � #2) = F[0;t � ]( 1;  2) + F[t � ;t ](#1; #2):

Using this property, together with Lemma 3.4.1, we obtain the following theorem.

Theorem 3.4.2. Let N (x; y) be a separating path. Then, we have that

S(x; y) = sup
(x � ;y � )2N (x;y )

S(x � ; y� ) + P (x � ; y� ; x; y): (3.3)
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Proof. We have that

S(x; y) = sup
( ’ 1 ;’ 2 )2 	(0 ;0;x;y )

F[0;(x + y )=2](’ 1; ’ 2)

= sup
(x � ;y � )2N (x;y )

sup
( ’ 1 ;’ 2 )2 	(0 ;0;x;y ) j x � ;y �

F[0;(x + y )=2](’ 1; ’ 2)

= sup
(x � ;y � )2N (x;y )

 

sup
(  1 ; 2 )2 	(0 ;0;x � ;y � )

F[0;(x � + y � )=2]( 1;  2)

+ sup
(# 1 ;# 2 )2 	( x � ;y � ;x;y )

F[( x � + y � )=2;(x + y )=2](#1; #2)

!

= sup
(x � ;y � )2N (x;y )

S(x � ; y� ) + P (x � ; y� ; x; y):

Theorem 3.4.2 gives a foundation for constructing dynamic programming based
solvers for our optimization problem (2.8). But it is not limited to being a solver
for this optimization problem in particular. In order to apply the theorem, we only
need an optimization problem which has

(i) a search space of monotone, absolutely continuous / Lipchitz functions with
a �xed start end end point,

(ii) an integral functional (or any other functional which is additive under con-
catenation).

If these requirements are ful�lled, we can apply Theorem 3.4.2. However, this
dynamic programming framework might be more suitable for certain problems.
Speci�cally, we are interested in problems where we can �nd a su�ciently nice
separating path N (x; y) such that with su�ciently nice approximations of S(x � ; y� )
and P (x � ; y� ; x; y), the remaining optimization problem (3.3) is easy to solve.

3.5 Local Approximations

We will now see how the base cases discussed in Section 3.3 together with the frame-
work de�ned in Section 3.4 can be used to construct a consistent approximation to
S. To apply the analytical solutions from Section 3.3, we will consider piecewise
linear approximations to the curves, or equivalently piecewise constant approxi-
mations to the SRVTs. This is equivalent to approximating Q(x; y) as piecewise
constant on some rectilinear grid. Sinceq1 and q2 are continuously di�erentiable,
we can approximateQ by

Q(x; y) = Q0 + O(h)

for all x; y in some grid cell [x0; x1] � [y0; y1]. Here, we de�ne h = max f hx ; hy g
wherehx = x1 � x0 and hy = y1 � y0 denotes the width and height of the grid cell,
respectively. We will now focus on using this approximation to get an estimate of
S at the north-east point (x1; y1), but the following derivations will work for any
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point in the grid cell. For any point (x � ; y� ) 2 [x0; x1] � [y0; y1], we have that

P (x � ; y� ; x1; y1) = sup
’ 1 ;’ 2 2 	( x � ;y � ;x 1 ;y 1 )

Z

I
(Q0 + O(h))

p
_’ 1 _’ 2dt

= ( Q0 + O(h))
p

(x1 � x � )(y1 � y� )

= Q0
p

(x1 � x � )(y1 � y� ) + O(h2):

As before, we have that any path which passes through the rectangle[x0; x1] �
[y0; y1], must enter this rectangle through its south or west boundary. In other
words, for the problem of �nding optimal paths from (0; 0) to (x1; y1), the union
of the south and west boundaries is a separating path. Now, the only remaining
part we need is an approximation ofS(x � ; y� ) for any boundary point (x � ; y� ) 2
N (x1; y1). To do so, we will use linear approximations between the corner points
on the rectangle. In other words, for the south boundary, we approximate

S(x � ; y0) �
x1 � x �

hx
S(x0; y0) +

x � � x0

hx
S(x1; y0);

and for the west boundary, we approximate

S(x0; y� ) �
y1 � y�

hy
S(x0; y0) +

y� � y0

hy
S(x0; y1):

To obtain an error estimate for S, we need to assume certain regularity properties
for the variable. From experiments,S seems to beC2-continuous everywhere except
the boundaries (0; �) and (�; 0) and certain shock paths. These shock paths seem
to occur on a negligible subset of the unit square. Therefore, we will assumeS to
be piecewiseC2, meaning that we assume that the above approximation isO(h2)
almost everywhere.

We can now apply the results from Section 3.3 directly. To do so, we need the
directional derivatives of S at the boundaries, which are given by

aS =
S(x1; y0) � S(x0; y0)

hx
; aW =

S(x0; y1) � S(x0; y0)
hy

:

Inserting these expressions into (3.2) and shifting the origin to(x0; y0), we obtain

SS (x1; y1) = max
0� � �

p
h x

S(x0; y0) + ( x1 � � 2)
S(x1; y0) � S(x0; y0)

hx
+ Q0

p
hy �:

This can also be done for the paths starting from the west boundary, and after
rescaling the variable� , we end up with the following approximation for S(x1; y1):

S(x1; y1) = max f SS ; SW g;

where

SS = max
� 2 [0;1]

S(x1; y0) + Q0
p

hx hy � � (S(x1; y0) � S(x0; y0)) � 2;

SW = max
� 2 [0;1]

S(x0; y1) + Q0
p

hx hy � � (S(x0; y1) � S(x0; y0)) � 2:
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If the C2 assumption holds for S, this is an O(h2) approximation. Further, this
is a quadratic optimization problem on a closed interval, meaning that a solution
can be e�ciently found in constant time.

The above notation can be adapted to a grid with grid nodes(x i ; yj ) and ab-
breviations Si;j = S(x i ; yj ) and Qi;j = hq1(x i ); q2(x j )i . Using this notation, the
above update equation can be reformulated as

Si;j = max f SS ; SW g; (3.4)

where

SS = max
� 2 [0;1]

Si;j � 1 + Qi;j
p

hi hj � � (Si;j � 1 � Si � 1;j � 1)� 2; (3.5)

SW = max
� 2 [0;1]

Si � 1;j + Qi;j
p

hi hj � � (Si � 1;j � Si � 1;j � 1)� 2:

This is the update equation we will use in the grid search algorithm. The error of
these approximations will be O(h2) if we can assume thatS is piecewiseC2. If S
is C1- but not C2-continuous, we will have anO(h) error.

3.5.1 An Alternative Update Equation

It should be noted that there is another choice of the separating pathN (x; y)
which also gives an update equation we can compute in constant time. Consider
the diagonal between the north west and the south east corner of the rectangle.
Any point (x � ; y� ) on this diagonal can be parametrized by

x � = 1
2 (1 + � )x0 + 1

2 (1 � � )x1;

y� = 1
2 (1 � � )y0 + 1

2 (1 + � )y1:

for � 1 � � � 1. Note that this implies that
p

(x1 � x � )(y1 � y� ) =
p

(x1 � x0)(y1 � y0)
p

1 � � 2

=
p

hx hy
p

1 � � 2:

If we now assume a linear approximation toS on the diagonal, and insert the above
expressions, we get the following optimization problem

S(x1; y1) = sup
� 1� � � 1

1
2

(1 + � )S(x0; y1) +
1
2

(1 � � )S(x1; y0) + Q0
p

hx hy
p

1 � � 2;

for which the maximum is given by

S(x1; y1) =
1
2

�
S(x0; y1) + S(x1; y0)

+
q

(S(x0; y1) � S(x1; y0))2 + Q2
0hx hy

�
:
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Note that in this case, the requirement Q0 � 0 is crucial for correctness. On a
rectilinear grid, this update equation reads

Si;j =
1
2

�
Si � 1;j + Si;j � 1 +

q
(Si � 1;j � Si;j � 1)2 + Q2

i;j hi hj

�
: (3.6)

Observe how both update equations relies on the coupled variableQi;j
p

hi hj . One
interpretation of the update equations is that we rescale the grid cells to be uint
squares in size. SinceQ(x; y) /

p
j _c1(x)jj _c2(y)j, linearly rescaling the interval

[x i � 1; x i ] to [0; 1] implies rescalingQ(x; y) by
p

hi . This also holds for rescalingy
which implies rescalingQ(x; y) by

p
hj .

3.5.2 Relationship to Finite Di�erence Methods

The proposed methods has nice interpretations as a �nite di�erence scheme for the
nonlinear PDE Sx Sy = 1

4 Q2. One way to formulate a �nite di�erence scheme for
this equation is by backwards di�erences, given by

S(x; y) � S(x � hx ; y)
hx

S(x; y) � S(x; y � hy )
hy

=
1
4

Q(x; y)2

which on a rectilinear grid is given by

Si;j � Si � 1;j

hi

Si;j � Si;j � 1

hj
=

1
4

Q2
i;j :

Observe that this is a quadratic equation for Si;j , for which the solution is given
by

Si;j =
1
2

�
Si +1 ;j + Si;j +1 +

q
(Si +1 ;j � Si;j +1 )2 + Q2

i;j hi hj

�
:

And �out of the blue,� we obtain the second update equation (3.6). However, to
con�dently apply �nite di�erence schemes, numerical stability needs to be estab-
lished. The following example illustrates that the stability is not trivial: We can
also obtain the �rst derived update equation by considering another form of �nite
di�erences. Speci�cally, we use the following approximation

S(x; y � hy ) � S(x � hi ; y � hy )
hi

S(x; y) � S(x; y � hy )
hy

=
1
4

Q(x; y)2;

which on a rectilinear grid is given by

Si;j � 1 � Si � 1;j � 1

hi

Si;j � Si;j � 1

hj
=

1
4

Q2
i;j :

This equation is linear in Si;j with solution

Si;j = Si;j � 1 +
Q2

i;j hi hj

4(Si;j � 1 � Si � 1;j � 1)
:
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This is exactly the solution of the unconstrained version of the optimization prob-
lem (3.5). However, the unconstrained problem allows the paths to start on an
in�nitely long boundary, which clearly would mean that the constant approxima-
tion to Q(x; y) will not be O(h). In other words, we cannot simply apply �nite
di�erence methods to the nonlinear di�erential equation without investigating the
numerical stability of the �nite di�erences.

3.6 Grid Search

Now that we have an update equation for each grid cell, we can assemble this into
a grid search algorithm. Assume that the grid is constructed with grid nodes at
the points

x i = g1(i=n); yj = g2(j=n )
for i; j = 0 ; : : : n and some smooth, bijective, monotone increasing mapsg1; g2 :
[0; 1] ! [0; 1]. We require the mappings to be smooth to ensure that the grid cells
has width and height hx ; hy = O(h), where h = n� 1 is the average width / height
of the grid cells. Recall that for (x; y) 2 I � I , we have that

F (x’ 1; y’ 2) =
p

xy
Z 1

0
Q(x’ 1; y’ 2)

p
_’ 1; ’ 2dt:

Further, for small x and y, this implies that S(x; y) � p xy . This imposes a problem
since we assumed thatS is C2-continuous in the update equation derived in the
previous section. This is, however, why we do not consider regular grid, but some
irregular rectilinear grid as described above. Speci�cally, forg1; g2 � 0 we have
that S(g1(x); g2(y)) �

p
g1(x)g2(y). Therefore, by requiring that g1(x) � x2 and

g2(y) � y2 for small x and y, the convergence result is maintained.
Given that S is C2, we have that the truncation error is O(h2). This means

that we get a global error of O(h) as we integrate over the grid nodes. IfS is not
continuously di�erentiable, we only have a O(h) truncation error, which integrates
to O(1). However if the assumption that we only have a �nite number of shocks
hold, and that S is therefore piecewiseC2, we will still maintain an O(h) error.

Concerning the computational complexity of this algorithm, it should be clear
that it is asymptotically O(n2). For small n, however, we can use parallelization
to achieve a linear apparent running time. The method can be parallelized in the
following way: consider the set of nodes for whichi + j = k, given by

Ak = f (i; j ) j i; j 2 f 0; : : : ; ng; i + j = kg:

The value of S at these nodes are only dependent on the value ofS at the nodes
in Ak � 1 and possibly Ak � 2 (depending on whether we use the �rst or second
update equation). This means that �nding the value of S at the nodes in Ak
are independent problems, which can be ran in parallell. Using update equation
(3.4), an outline of the parallelized algorithm can be seen in Algorithm 1. Here,
the innermost for-loop can be run in parallel. In the algorithm, we used the �rst
update equation. However, the second update equation can be used by replacing
lines 9, 10 and 11 with equation (3.6).
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Algorithm 1 Approximate Similarity
Require: q1; q2: SRVT’s of c1, c2,

g1; g2: Grid transformations,
n: Number of grid points.

Ensure: S: Point estimates Si;j = Ŝ(g1(i=n); g2(j=n )) .

1: procedure Similarity (q1, q2, g1, g2, n)
2: x i  g1(i=n); i = 0 ; : : : ; n
3: yj  g2(j=n ); j = 0 ; : : : ; n
4: Qi;j

p
hi hj  maxfhq1(x i ); q2(yj )i ; 0g

p
(x i +1 � x i )(yj +1 � yj ),

i; j = 0 ; : : : ; n
5: Si; 0  0; i = 0 ; : : : ; n
6: S0;j  0; j = 0 ; : : : ; n
7: for k = 0 ; : : : ; 2n � 2 do
8: for i; j 2 f 0; : : : ; n � 1g s.t. i + j = k do
9: SS  max� 2 [0;1] Si +1 ;j + Qi;j

p
hi hj � � (Si +1 ;j � Si;j )� 2

10: SW  max� 2 [0;1] Si;j +1 + Qi;j
p

hi hj � � (Si;j +1 � Si;j )� 2

11: Si +1 ;j +1  maxf SS ; SW g
12: end for
13: end for
14: end procedure

3.7 Retrieving the Optimal Reparametrizations

Recall that we in Proposition 2.6.2 derived a di�erential equation for the optimal
reparametrizers, given by

Sx _x � Sy _y = 0 ; if Sx + Sy > 0; (2.13)
_x _y = 0 ; if Sx + Sy = 0 :

The following proposition gives a foundation for computing explicit solutions to
the di�erential equation, when we assume that S is piecewise bilinear.

Proposition 3.7.1. If S(x; y) is piecewise bilinear, then the solution to the di�er-
ential equation

Sx _x � Sy _y = 0
_x + _y = 2

is piecewise linear.

Proof. It is su�cient to prove that the solution is linear in any grid cell [x0; x1] �
[y0; y1]. In this grid cell, S is bilinear, and can hence be expressed as

S(x; y) = a0 + ax x + ay y + axy xy;
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for some constantsa0, ax , ay and axy . In particular, this implies that

Sx (x; y) = ax + axy y;
Sy (x; y) = ay + axy x:

Inserting this into (2.13), we obtain

(ax + axy y) _x � (ay + axy x) _y = 0 ;

which has the solution (ay + axy x) = K (ax + axy y) for some constantK . This,
together with _x + _y = 2 ensures that we have a linear solution.

Since any solution path is piecewise linear, the slope of the path will be piecewise
constant. This means that we only need to know the slope at a single point of any
grid cell to know the solution on the entire grid cell. On the grid cell [x i ; x i +1 ] �
[yj ; yj +1 ], the bilinear variable S can be expressed as

S(x; y) = Si;j + � i Si;j
x � x i

hi
+ � j Si;j

y � yj

hj
+ � i � j Si;j

(x � x i )(y � yj )
hi hj

:

Here, � i Si;j and � j Si;j denotes the integer forward di�erences ofS in direction
x and y, respectively. In this grid cell, assume that we know one point(xk ; yk ) =
(x i + hi �; y j + hj � ) where �; � 2 [0; 1] are the values forx and y, normalized to the
current grid cell. The partial derivatives of S at this point are given by

hi Sx (xk ; yk ) = � i Si;j + � � i � j Si;j �
= (1 � � )(Si +1 ;j � Si;j ) + � (Si +1 ;j +1 � Si;j +1 ):

and

hi Sy (xk ; yk ) = � i Si;j + � � i � j Si;j �
= (1 � � )(Si;j +1 � Si;j ) + � (Si +1 ;j +1 � Si +1 ;j ):

The values of hi Sx (xk ; yk ) and hj Sy (xk ; yk ) provides a direction for the piece-
wise linear solution in the current grid cell. Further, since the solution path only
changes direction when intersecting a grid line, the solution can be expressed using
sequences(xk ) and (yk ), where each point (xk ; yk ) lies on a grid line. Whenever
a solution passes through a grid cell, we need two points to determine the solu-
tion within that grid cell; the point where the solution enters the grid cell, and
the point where the solution exits. Due to the monotonicity of (x; y), there are
only two ways the backtracking solution can enter a grid cell: through the north
boundary or through the east boundary. Similarly, the solution can only exit the
grid cell through the south or west boundary. The four ways a solution can enter
and exit a grid cell are visualized in Figure 3.11.

The next point in the backtracking sequence,(xk � 1; yk � 1) can be found by

xk � 1 = x i + hi max
�

� � �
hj Sy

hi Sx
; 0

�
;

yk � 1 = yj + hj max
�

� � �
hi Sx

hj Sy
; 0

�
:

(3.7)
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(xk � 1; yk � 1) (xk ; yk )

Figure 3.11: The four ways a path can enter and exit a grid cell.

Here, we have used the abbreviationsSx = Sx (xk ; yk ) and Sy = Sy (xk ; yk ). To see
why this gives the next point in the backtracking sequence, we refer to the following
derivation: since the path is linear in the grid cell, the slope is constantly given by
_x= _y = ( yk � yk � 1)=(xk � xk � 1). Inserting the above expressions, we obtain

_y
_x

=
yk � yk � 1

xk � xk � 1
=

hj � � hj max
n

� � � h i Sx
h j Sy

; 0
o

hi � � hi max
n

� � � h j Sy
h i Sx

; 0
o =

Sx

Sy

minf �h i Sx ; �h j Sy g
minf �h j Sy ; �h i Sx g

=
Sx

Sy
:

This implies Sx _x � Sy _y = 0 , as desired.
Note that there are a few special cases we need to take care of. The one-step

equation (3.7) only holds whenever bothSx > 0 and Sy > 0. If, on the other hand,
Sx > 0 but Sy = 0 , the above equations includes division by zero, which can be
ambiguous. In this case, it is not problematic as the di�erential equation (2.13)
gives _x = 2 and _y = 0 . This is enforced with the one-step equation

yk � 1 = yj ; xk � 1 = xk :

Similarly, if Sx = 0 but Sy > 0, we use the following one-step equation:

yk � 1 = yk ; xk � 1 = x i :

Lastly if both Sx = 0 and Sy = 0 , both horizontal and vertical paths solves the
di�erential equation. In these cases, we will always choose a horizontal path in
order to be consistent. Additionally, in the case where we are on thex-axis, given
by xk = 0 but yk > 0, the path must be de�ned from _x = 0 and _y = 2 , to ensure
that we do not exit the unit square. We have similar constraint for the y-axis. In
these cases we also apply one of the special case one-step equations above.

An outline of the backtracking algorithm can be seen in algorithm 2. In the
algorithm, we compute a rescaled sequence(~xk ; ~yk )k which is scaled such that
xk = g1(~xk ) and yk = g2(~yk ). This rescaling has several bene�ts. First of all, the
grid cells in the rescaled system are unit squares. Additionally, the current grid cell
can easily be found from(i; j ) = ( d~xk e � 1; d~yk e � 1) which implies that � = ~xk � i
and � = ~yk � j . Here, d�edenotes the ceiling operator.

The estimate for the optimal reparametrization path is found analytically by
the linear ordinary di�erential equation, given a bilinear approximation to S. If
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the solution is unique, i.e. if Sx + Sy > 0 in a region around the optimal path,
and that S has an O(h) error, then both ( _x; _y) and (x; y) will have O(h) error.
However, we expect a slightly better convergence result, which is that(

p
_x;

p
_y)

has anO(h) error. We have two cases:

(i) If both Sx > 0 and Sy > 0, we have that derivatives satisfy _x > 0 and _y > 0,
meaning that the square root of the derivatives will have a linear convergence.

(ii) If in some region we have that Sx = 0 but Sy > 0, it could seem like we would
get O(

p
h) convergence for(

p
_x;

p
_y). However, in and around this region,

we have that Sx = Q2=(4Sy ). Since _y / Sx , this means that _y approach
this region at least quadratically, which again implies that

p
_y approach the

region at least linearly. A similar argument holds for wheneverSx > 0 and
Sy = 0 .

In other words, we expect the square root of the derivatives to have linear conver-
gence, given that the solution is unique. This reads

x(t) = xk + O(h);
y(t) = yk + O(h);

p
_x(t) =

p
� xk =� tk + O(h);

p
_y(t) =

p
� yk =� tk + O(h);

for all t 2 [tk ; tk+1 ] = [ 1
2 (xk + yk ); 1

2 (xk+1 + yk+1 )]. In particular, this means that
the estimated optimal reparametrizations have linear error. This reads

q1(x(t))
p

_x(t) = q1(xk )
p

� xk =� tk + O(h);

q2(y(t))
p

_y(t) = q2(yk )
p

� yk =� tk + O(h)
(3.8)

on the same interval. This holds since the sequence produced by the backtracking
algorithm satis�es � tk = O(h). However, further investigation is needed to get a
rigorous proof of this property.

If the path passes through a region whereSx + Sy = 0 , the solution will not be
unique, and evaluation of convergence of the optimal path, might be problematic.

3.7.1 Improving the Similarity Estimate

Interestingly, we can use the approximations tox and y to obtain a better estimate
of s(c1; c2). For both methods, we can evaluate the �tness of the path(x; y) via
the approximation to S(1; 1). And for the previous dynamic programming method,
this approximation is equal to the approximated functional

F ((xk ); (yk )) =
X

k

hq1(xk ); q2(yk )i
p

� xk � yk ; (3.9)

for some optimal sequence of points(xk ; yk )k . As for the previous method, the
new approach computes a sequence for which we can evaluate the functionalF as
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Algorithm 2 Backtracking
Require: S: Point estimates Si;j = S(g1(i=n); g2(j=n )) ,

g1; g2: Grid transformations.
Ensure: (xk ; yk )k : Point estimates (x(tk ); y(tk )) = ( xk ; yk ).

1: procedure OptimalReparametrisations (S, g1, g2)
2: x0  n
3: y0  n
4: k  0
5: while xk > 0 and yk > 0 do
6: i  d xk e � 1
7: j  d yk e � 1
8: �  xk � i
9: �  yk � j

10: � x S  (1 � � )(Si;j +1 � Si;j ) + � (Si +1 ;j +1 � Si +1 ;j )
11: � y S  (1 � � )(Si +1 ;j � Si;j ) + � (Si +1 ;j +1 � Si;j +1 )
12: if � x S = 0 or y = 0 then
13: xk � 1  i
14: yk � 1  yk
15: else if � y S = 0 or x = 0 then
16: xk � 1  xk
17: yk � 1  j
18: else
19: xk � 1  i + max f � � � � x S=� y S;0g
20: yk � 1  j + max f � � � � y S=� x S;0g
21: end if
22: k  k � 1
23: end while
24: K  � k . Length of the sequence.
25: x l  g1(xk � K =n); k = 0 ; : : : ; K . Normalize the sequence.
26: yl  g2(yk � K =n); k = 0 ; : : : ; K
27: tk  (xk + yk )=2; k = 0 ; : : : ; K
28: end procedure
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above. However, this estimate will not be equal to the estimate ofS(1; 1) since the
approximation of S uses a grid search algorithm, while the pathx; y need not pass
through the grid points. By constructing a similar estimate to (3.9), we can obtain
a better estimate of the total similarity. Taking the inner product of the optimal
reparametrizers, applying the approximations in (3.8) and multiplying with � tk ,
we obtain

hq1(x(t)) ; q2(y(t)) i
p

_x(t) _y(t)� tk = hq1(xk ); q2(yk )i
p

� xk � yk + O(h2):

This holds for all t 2 [tk ; tk+1 ]. In other words, we expect to have anO(h2) estimate
of F (x; y) = s(c1; c2). Note that this convergence should apply even if the solution
is not unique.

3.8 Computation of Geodesics

We are working in the L 2-topology for the SRVTs, which implies that the geodesic
between q1 and q2 is given as a straight line between the two. In other words, a
geodesic takes the formq(� ) = (1 � � )q1 + �q2. If (q1 � x)

p
_x and (q2 � y)

p
_y are

optimally reparametrized, we have that

q(� )( t) = (1 � � )q1(x(t))
p

_x(t) + �q2(y(t))
p

_y(t):

Inserting the approximations in (3.8), we get

q(� )( t) = (1 � � )q1(xk )

s
� xk

� tk
+ �q2(yk )

s
� yk

� tk
+ O(h):

for all t 2 [tk ; tk+1 ]. In other words, we have a consistent approximation to the
geodesic in SRVT form. However, we want to retrieve the geodesic curve as well.

Recall that given the SRVT, the original curve can be retrieved through the
integral

c(� )( t) =
Z t

0
q(� )(s)jq(� )(s)jds:

Since � tk = O(h), the approximating sequence can be used through a Riemann
sum to obtain an estimate of c(� ). We have that

c(� )( t) =
k � 1X

i =0

�
q(� )( t i )jq(� )( t i )j� t i + O(h2)

�

=
k � 1X

i =0

�
q
p

� t
�

i

���
�
q
p

� t
�

i

��� + O(h)

for all t 2 [tk ; tk+1 ], where we de�ne
�
q
p

� t
�

i := (1 � � )q1(x i )
p

� x i + �q2(yi )
p

� yi :
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Algorithm 3 Geodesics
Require: q1; q2: SRVT’s of c1, c2,

(xk ; yk )k : Point estimates (x(tk ); y(tk )) = ( xk ; yk ),
� : Geodesic time.

Ensure: (ck )k : Point estimates ck = c(� )( tk ).

1: procedure Geodesics (q1, q2, � , (xk ), (yk ))
2: c0  0
3: for k = 0 ; : : : ; K do
4: � xk  xk+1 � xk
5: � yk  yk+1 � yk
6: (q

p
� t)k  (1 � � )q1(xk+1 )

p
� xk + �q2(yk+1 )

p
� yk

7: ck+1  ck + ( q
p

� t)k j(q
p

� t)k j
8: end for
9: end procedure

An outline of the algorithm computing the geodesics is given in Algorithm 3.
If we are working with curves of equal length, however, it might be more suitable

to consider length preserving geodesics. Recall that the set of unit length curves
corresponds to the unit sphere of SRVTs. Further, geodesics on the unit sphere are
given by

q(� ) =
sin(� (1 � � ))

sin(� )
q1 +

sin(�� )
sin(� )

q2

where � = arccos(hq1; q2i ), which for optimally reparametrized curves means that
� = arccos(s(c1; c2)) . In general, any geodesics which is linear inq1 and q2 can be
approximated in the same way. For any geodesic of the formq(� ) = f 1(1 � � )q1 +
f 2(� )q2, the same method applies, with altered de�nition of q given by

�
q
p

� t
�

i := f 1(1 � � )q1(x i )
p

� x i + f 2(� )q2(yi )
p

� yi :

3.9 Richardson Extrapolation

We have seen that if the variableS is continuously di�erentiable, the update equa-
tion for S has O(h2) truncation error. It is only due to the summation over such
errors that we get an O(h) error in total. However, through extrapolation, we can
achieve a quadratic convergence rate. LetS(h ) be the approximation of S with
average cell sizeh. We assume that

S(h ) = S + k1h + k2h2 + o(h2):

If this holds, we can use the following extrapolation:

2S(h=2) � S(h ) = S � 1
2 k1h2 + o(h2):
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This technique is known as Richardson Extrapolation. Note that if the extrapo-
lation works, this will a�ect the convergence rate of x; y and c as well. A bilinear
approximation is an O(h2) approximation method, which means that the bilinear
approximation to the extrapolated S, will be O(h2). Therefore

p
_x;

p
_y and hence

also x; y and c will have the same error.
If we have a greater Taylor series, i.e. if for exampleS(h ) = S + k1h + k2h2 +

k3h2 + o(h3), we can apply several steps of extrapolation which could yield a better
convergence rate forS. However, we expect this to not work for x; y and c. This
is because the quadratic error we obtain when using the bilinear approximation to
S dominates the possibly higher convergence rate ofS at the grid points.

The estimate of total similarity s, as given in equation (3.9), already has a
quadratic error. Therefore, to increase the convergence rate, the extrapolation has
to be done slightly di�erently. If we assume that

s(h ) = s + k2h2 + k3h3 + o(h3);

we can use the extrapolation

4s(h=2) � s(h )

3
= s � 1

6 k1h3 + o(h3):

However, we do not have results on the Taylor expansion ofs, and we cannot deter-
mine whether this extrapolation will work or not. We know that the extrapolation
will be o(h2), but this need not be signi�cantly better than quadratic convergence.

For the extrapolation to work, we need to have an even �ner grid at the bound-
aries. For one step of extrapolation, we need the grid transformations to go as
g1(x) � x4 and g2(y) � y4 for small x and y. Further, to use two steps of extrapo-
lation, they must go as x6 and y6 etc. To ensure that the grid transformations are
not the limiting factor for applying extrapolation, we suggest using smooth grid
transforms which satisfy dk =dxk g1(0) = dk =dxk g2(0) = 0 for all 0 � k < 1 . One
such example is

g1(t) = g2(t) = exp
�

1 �
1
t2

�
:





¥ Numerical Experiments

The method derived in this thesis is consistent, however under assumptions which
not necessarily hold. Therefore, numerical experiments are needed to test whether
we have the convergence rates we expect. To do so, we will both study simple
problems where analytical solutions are available, and more complicated problems
to support the theoretical convergence results. To evaluate the convergence, we
need a to construct error estimates for the approximations. Notation wise, we will
for any variable, say x, use x̂ (h ) denote the approximation to x using an average
grid cell sizeh.

Since the total similarity is just a real number, we de�ne the error as es(h) :=
jŝ(h ) � sj. For the approximation to S, it is natural to use the pointwise max-norm
over the grid, and de�ne the error as

eS (h) := max
i;j 2 0;:::n

��Ŝ(h )
i;j � S(g1(i=n); g2(j=n ))

��:

If S is smooth, this error estimate is a consistent approximation to the max-norm
kS(h ) � Sk1 over the unit square. For the error of the optimal path and the
geodesics, there are di�erent natural choices for the error based on whether analytic
solutions are available or not.

In all the following experiments, we used the second update equation (3.6).
From experience, there seems to be next to no di�erence in accuracy between the
update equations. However, the second update equation seems to be slightly less
computationally intensive, hence a better choice. We used grid transformations
g1(t) = g2(t) = exp f 1 � 1=t2g as suggested in Section 3.9. The experiments were
implemented in Python, parallelized using NumPy, and ran on a 2.7 GHz Intel Core
i5 processor with 8 GB of memory. The processor has two cores, but e�ectively,
four threads can be ran in parallel.

4.1 Line and Circle

Problems where analytic solutions are available are of especial interest, as global
convergence can be determined. One example where we have an analytic solution
is when the curves are given by a line and a half circle, oriented such that they
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Figure 4.1: Shadings ofS for experiment 4.1. Approximations to S(x; y) and
Sjx;y are shaded in sub�gure (a) and (b), respectively, and the theoretical
and approximated alignment path are drawn. Here,n = 100 discretisation
points were used.
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Figure 4.2: Convergence plots for experiment 4.1. Convergence for both the
standard method (SM) and Richardson extrapolation (RE) are plotted, and
the variable of convergence is denoted in the bottom right corner of each
sub�gure.
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are always positively correlated. Here, we can de�ne the SRVTs of these curves
by q1(t) = [cos( �t ); sin(�t )]T and q2(t) = [0 ; 1]T . Derivations for the similarity,
optimal reparametrization path and geodesics can be found in appendix A.1 and
the curves in question are drawn in Figure 4.3.

c1 c2

Figure 4.3: Curves analysed in experiment 4.1.

For this problem, analytic solutions are available if we only reparametrize the
second curve. Therefore, we measure the error of the reparametrizery(x) by the
point-wise maximum error. Similarly, for the geodesics, we measure the error by the
maximum pointwise euclidian distance. These error estimates can be approximated
by

ey (h) := max
k2 0;:::K ( h )

�� ŷ(h )
k � y(xk )

��;

ec(h) := max
k2 0;:::K ( h ) ; l 2 0;:::n

�� ĉ(h )
l;k � c(� l )(x (h )

k )
��:

Here, we are maximizing over the parametric timesxk generated by the backtrack-
ing algorithm, and over a discrete set of geodesic times� l = l=n for l = 0 ; : : : ; n.

The algorithms presented in this thesis were ran onc1 and c2 with n = 100 dis-
cretisation points in each direction. The similarity estimate was S(1; 1) = 0 :7045
which is close to the theoretical value ofS(1; 1) = 1=

p
2 � 0:7071. Further, the

approximated and theoretical optimal reparametriser and approximations of the
cumulative similarity S(x; y) and restricted similarity Sjx;y are visualised in Fig-
ure 4.1. As one can see, the estimated reparametriser is almost identical to the
theoretical. Additionally, one can see that the reparametriser is located at a max-
imum of the restricted similarity Sjx;y as expected.

Both the standard algorithm, and the algorithm with one step of Richard-
son extrapolation were ran with di�erent number of discretization points, and
the resulting convergence plots are visualized in Figure 4.2. It is clear that the
standard method converges linearly for the cumulative similarity S, the optimal
reparametrizer y(x) and the geodesicsc. For the same variables, one step of
Richardson extrapolation gives a quadratic convergence rate. This is in line with
what we expect since this problem do not have shocks inS.

For the total similarity s(c1; c2) the standard method gives a quadratic conver-
gence. Again, this is in line with what we expect. We also applied Richardson
extrapolation to the estimates of s(c1; c2). It is clear that the extrapolation yields
a much better estimate. The actual convergence rate, is hard to determine, but it
is likely close to cubic, and at least superquadratic. The sporadic behavior of the
convergence, however, might indicate that the improved convergence rate is more
or less coincidental, and just a special case for this problem.
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Figure 4.4: Convergence plots for experiment 4.2. Convergence for the
standard method (SM), Richardson extrapolation (RE), and the previous
method using three di�erent neighbourhoods are plotted, and the variable
of convergence is denoted in the bottom right corner of each sub�gure.
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Figure 4.5: Running times for estimating S in experiment 4.2. In (a), the
running times is plotted against the number of discretization points n, and
in (b), the the error of the optimal path x; y is plotted against the running
time.
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4.2 Comparison of Neighbourhoods

A major benchmark for our method is comparing the performance of the method
with previous dynamic programming based methods. To do so, we will consider
�xed sets of neighbouring nodes on the form

Nm (i; j ) = f (k; l ) j i � m � k < i; j � m � l < j; gcd(i � k; j � l) = 1 g
[ f (i � 1; j )g [ f (i; j � 1)g:

The constraint gcd(i � k; j � l) = 1 is included to ensure that a grid connection
does not pass over another grid point. For example, we do not want to allow
(0; 0) to connect with (2; 2) since this can be done in two steps:(0; 0) ! (1; 1)
and (1; 1) ! (2; 2). We will also allow the path to be vertical or horizontal, to be
consistent with the new approach. These types of sets form = 2 ; 3; 4 are visualized
in �g. 4.6. We approximate the update equation for the previous method using a
one point right Riemann sum, given by

S(x i ; yj ) = max
(k;l )2N m (x i ;y j )

S(xk ; yl ) + hq1(x i ); q2(yj )i
q

(x i � xk )(yj � yl ):

There are more precise methods to approximate the update equation. However,
using the above update equation, parallelization is especially e�cient and easy to
implement. Further, with �xed neighbourhoods, the maximum step size of the
path is O(h), meaning that the error from the one point right Riemann sum will
vanish ash ! 0.

N2 N3 N4

Figure 4.6: Examples of sets of neighbouring nodes.

We revisit the line � half circle problem, and the convergence results are vi-
sualized in �g. 4.4. As one can see, the new approach outperforms the previous
method for all variables. Even though the previous method gives a decent estimate
of the total similarity s(c1; c2), the optimal path x; y and the geodesics are not well
approximated. The estimate of S is even worse. However, the previous method
was not constructed particularly to estimate S(x; y) for all x; y . Hence, it might be
an unfair comparison. Observe that the error for previous method with �xed sets
of neighbouring nodes does not converge. This is as expected since we for �xed
sets of neighbouring nodes do not allow the path to attain all possible slopes.

The running times for this experiment are visualized in �g. 4.5a. For small n,
the running times seem to grow linearly with n, while for larger n, the running
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Figure 4.7: Shadings of the PDE (2.14) for experiment 4.3. The exact
value of 1

4 Q2 are shaded in (a), and approximations to Sx Sy are shaded
in (b). Approximated optimal alignment path is drawn. Here, n = 100
discretization points were used.
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Figure 4.8: Convergence plots for experiment 4.3. Convergence plots for
both the standard method (SM) and Richardson extrapolation (RE) are
plotted, and the variable of convergence is denoted in the bottom right
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times grows quadratically. This is exactly what we expect. Whenn is small, the
e�ect of parallelization is seen as a linear computational complexity, while for large
n, the e�ect is no longer apparent. We emphasise that these results should be seen
as a proof of concept, as the implementation is not optimized. In particular, the
running times are highly dependent on NumPy’s parallelization procedures and
memory handling. It is also interesting to plot the error of the method against
the running time. Since the approximation of the optimal reparametrization path
is the most important method in this thesis, the error of y(x) is plotted against
the running time in �g. 4.5b. As one can see, the extrapolation yields a better
approximation than all other methods for equal running times.

4.3 Presence of Shock Solutions

In this experiment, we want to study how the appearance of shock solutions a�ect
the convergence rates. To do so, we constructed two natural cubic splines (which
are C2-continuous), as visualized in Figure 4.9. From experience, shock solutions
seem to appear whenever the two curves are oppositely curved, which is the case
in this experiment.

c1 c2

Figure 4.9: Curves analysed in experiment 4.3.

To start, recall that we expect the nonlinear partial di�erential equation Sx Sy =
1
4 Q2 to hold. In Figure 4.7, shadings of the left and right hand side of this PDE
are visualized together with the optimal reparametrization path for this problem.
First of all, observe that the values of the right and left hand size seems be equal
almost everywhere, indicating that the PDE holds. There seems to be two cases
where the PDE is not satis�ed:

(i) At the x- and y-axes. This is as expected. Consider thex-axis where we
have that Sx = 0 and Sy = + 1 (wherever hq1(x); q2(0)i > 0). The in�nite
directional derivative cannot be well approximated numerically, which is why
we see a discrepancy between the left and right hand side).

(ii) Three distinct paths where Ŝx Ŝy is much larger than 1
4 Q2. These are the

shock paths we expect. At the paths,S is not di�erentiable, which explains
why the numerical estimates of the di�erential equation does not hold. Note
that we expect the theoretical shock paths to be unit dimensional, and it is
due to the discretization that they are thicker.

In this experiment, we do not have analytic solutions to the optimization prob-
lem, and we must therefore approximate the convergence rates. We will also re-
formulate the error for the optimal path and the geodesics. For the optimal path,
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recall that the constraint _x + _y = 2 ensures that the path is Lipchitz continu-
ous. We are now considering reparametrization paths of the formx(t); y(t) where
t = 1

2 (x + y). This can be utilized to construct a consistent approximations to the
optimal path and the geodesics on the form

ex;y (h) := max
k2 0;:::K ( h )

�� ŷ(h )
k � y(tk )

��;

ec(h) := max
k2 0;:::K ( h ) ; l 2 0;:::n

�� ĉ(h )
l;k � c(� l )( t (h )

k )
��:

Note that we here de�ne the error of the optimal path using only y. In fact, the
error for x and y will be always the same since

�� ŷ(h )
k � y(tk )

�� =
�� (̂2tk � x (h )

k ) � (2tk � x(tk ))
�� =

�� x̂ (h )
k � x(tk )

��:

Still, we do not have analytic solutions to the optimization problems. Therefore,
we used a very �ne grid of n = 104 and the extrapolation method to approximate
�theoretical� solutions for s, S, x, y and c.

Convergence plots for this experiments are visualised in Figure 4.8. For the
standard method, the convergence rates are exactly as expected. Even though
we have shocks appearing, they are only on a unit-dimensional subset of the unit
square, which means that the linear convergence rates forS, x; y and c are main-
tained. Additionally, we have a quadratic convergence rate fors. When we apply
Richardson extrapolation, we do not gain any additional convergence rate inS.
This is as expected sinceS is now only piecewiseC2, meaning that the max-error
for the extrapolation will still have a linear convergence.

For the convergence ofx; y and c, the situation is slightly di�erent. For course
grids, the convergence seems to be quadratic when using extrapolation. This in-
dicates that that the Richardson extrapolation works for S almost everywhere.
However, when the grid gets �ne enough, the convergence curve �attens out. This
can be understood from looking at theL 1-error of S, which we approximate by

eS;L 1 (h) :=
n � 1X

i;j =0

jS(h )
i;j � S(x i ; yj )j� x i � yj :

Convergence of theL 1-norm is visualized in Figure 4.10. One can see that theL 1-
error converges quadratically when using extrapolation, at least for course grids.
In other words, the shock solutions seems to make extrapolation only locally un-
available. However, the error obtained from the shock solutions does not seem to
propagate, which is why the extrapolation is available for almost all points (x; y).
Using extrapolation, the convergence rate fors(c1; c2) might be slightly better than
the standard method. However, it should be clear that the method does not have
cubic convergence.

Lastly, observe that any path must pass through a region with negative corre-
lation. And from Figure 4.7a, one can see that the optimal path is either vertical
or horizontal when passing through such regions. This supports the result on the
characterisation of optimal paths we obtained in Theorem 2.4.4.
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Figure 4.10: Convergence of theL 1 error of S for experiment 4.3.

4.4 Almost C 2-continuous Curves

To stress test our method, we consider curves which are piecewiseC2-continuous
with a strict C1-condition. Speci�cally, we consider composite BØzier curves repre-
senting the chess pieces pawn and queen, as seen in Figure 4.11. The length of the
pawn curve is normalized toL (c1) = 1 , while the queen has lengthL (c2) = 1 :69.
The curves are in this case arc length parametrized. The geodesics for the right
halves of the curves are visualized in Figure 4.12. As one can see, the geodesics
registers part of the curves which we expect to be registered.

c1 c2

Figure 4.11: Curves analysed in experiment 4.4.

Figure 4.12: Geodesics between halves of the chess pieces pawn and queen.
Both c(�; t i ) and c(� i ; �) are drawn for selectedt i and � i . Due to symmetry,
the second halves look identical.
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As for experiment 4.1, we shaded the cumulative and restricted similarity which
can be seen in Figure 4.13 together with the approximated optimal path. Again,
the optimal path is located a the maximum ridge of the restricted similarity Sjx;y .
Observe that the optimal path is almost linear for approximately the �rst and last
third of the unit interval. This �ts well with the shapes of the curves in question.
The bottom part of the curves (i.e. for t / 1=3 and t ’ 2=3) are almost identical
up to a scaling factor. This explains why the path is almost linear.

As for the previous experiment, we estimate the theoretical values of the vari-
ables in question usingn = 104 discretization points. Then, the methods were
ran on the curves with di�erent number of discretization points, and the result-
ing convergence plots are visualized in Figure 4.14. First of all, observe that the
method converges for all variables of interest. The standard method seems to con-
verge almost linearly for both S, x, y and c. This indicates that the method can
handle problems with less regular curves. It is, however, not surprising that the
extrapolation does not work for this problem, as we do not have a uniform �rst
order Taylor expansion ofq1 and q2. Lastly, observe that the estimate for the total
similarity s converges superlinearly but not quite quadratic. This �ts well with the
convergence ofx; y which seems to be almost linear.





  Conclusion and Future Work

In this thesis, we have constructed a new method for solving the reparametrization
problem within the square root velocity framework. The method builds upon the
idea of an existing dynamic programming approach, but while the previous method
is fully discretized, the new method is only semi-discretized. This is utilized to give
both a better convergence rate and a lower computational complexity.

The method is based on new theoretical insight into the problem. We have
expanded the theory characterizing the optimal reparametrization paths, and in-
troduced a new auxiliary variable, S, which allows us to construct a di�erential
equation describing the evolution of the optimal path x; y . A dynamic program-
ming method is constructed to approximateS, and we have shown that consistent
approximations to S give consistent approximations to x; y . In addition, we have
shown how these approximations can be used to obtain consistent approximations
to the reparametrized curves and the geodesics, and that extrapolation can be uti-
lized to increase the order of convergence in certain cases. Numerical experiments
have demonstrated that the method converges, and the numerical order of conver-
gence support the expected convergence rates. Experiments also indicate that the
method works even if the regularity assumptions of the curves and the auxiliary
variable S are not strictly met.

Although the numerical experiments demonstrate convergence, more work is
needed on the theoretical aspects of the method in order to rigorously prove the-
oretical convergence. In addition, we constructed the method as a special case of
a more general framework which might be applicable to a greater set of problems.
We will therefore conclude this thesis with the following research proposals:

Study of the Di�erential Properties. The method derived in this thesis re-
lies on the assumption that S is piecewiseC2-continuous. Although numerical
experiments indicate that we have su�cient regularity for convergence, theoretical
regularity properties of S need to be established.

We believe that the method can be adapted to handle the shock solutions inS.
The dynamic programming framework builds upon analytic solutions to the base
cases of the optimization problem, where we assume thatS is piecewise linear on
some boundary and that the curvesc1 and c2 are linear. Further, we believe that
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piecewise linear approximations toS can be established in these base cases, which
means that the method could handle shock solutions. This is particularly desired,
as extrapolation would then work in all situations.

There is also work to be done concerning the di�erential properties ofx; y .
We claim that the method gives consistent approximations to

p
_x and

p
_y. This,

however, needs a rigorous proof.

Adaptation to Closed Curves. We have derived a method for computing opti-
mal reparametrization of open curves. As many applications consider closed curves,
it is natural to ask whether our method can be adapted to work for closed curves
as well.

Applications to Other Variational Problems. Although we constructed the
dynamic programming method to solve the reparametrization problem using the
square root velocity transform, the general framework of the method is not limited
to this problem. We only require a problem of �nding a monotone function with
�xed start and end points. Such problems include any reparametrization problem
for curves and the problem concerned with alignment of cumulative distribution
functions.
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A Analytic Solutions

A.1 Line and Circle

Consider the unit arc-length curves de�ned as a half circle and a line. The SRVT’s
of these curves can be expressed as

q1(t) =
�
cos(�t )
sin(�t )

�
and q2(t) =

�
0
1

�
;

and the restricted similarity is given by

S(x; y) = sup
’ 2 Di�([0 ;1])

p
xy

Z 1

0
sin(�xt )

p
_’ (t)dt:

To ensure that ’ (1) = 1 , we must have that
p

_’ 2 S1, where S1 denotes the unit
sphere. Further, since the projection of any element onto the unit sphere is given by
a scalar multiplication, the supremum is attained at

p
_’ (t) = C sin(�xt ) for some

constant C. It is important to note that this is a valid projection since sin(�xt ) � 0
for all x; t 2 [0; 1]. This gives

’ (t) =
C2

2

�
t +

sin(2�xt )
2�x

�
:

To ensure’ (1) = 1 , we must require that C2=2 = (1 + sinc(2 x)) � 1, where we de�ne
sinc(x) := sin( �x )=(�x ). In particular, for x = y = 1 , the constant collapses to
C =

p
2 and optimal reparametrisation becomes

’ (t) = t +
sin(2�t )

2�
:

Moreover, the restricted similarity can now be computed as

S(x; y) =

s
2xy

1 + sinc(2x)

Z 1

0
sin2(�xt )dt =

r
1
2

xy(1 + sinc(2x)) :
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In particular, we have that s(c1; c2) := S(1; 1) = 1=
p

2. We consider arc-length
preserving geodesics, which means that the geodesic distance is given by the �angle�
between the SRVTs, given by� = arccos(s(c1; c2)) = �= 4. Therefore, the geodesics
are de�ned from

q(� )( t) =
p

2 sin
� �

4 (1 � � )
� �

cos(�t )
sin(�t )

�
+ 2 sin

� �
4 �

� �
0

sin(�t )

�
=

�
a cos(�t )

(a + b) sin(�t )

�

where we have introduceda =
p

2 sin
� �

4 (1 � � )
�

and b = 2 sin
� �

4 �
�
. Using this

notation, the squared absolute value of the geodesics can be computed by

jq(� )j2 = a2 + (2 ab+ b2) sin2(�t )

= ( a + b)2 � (2ab+ b2) cos2(�t ):

Recall that given q, the inverse square root velocity transform is given byR� 1(q) =R
qjqjdt up to a translation. Writing the interpolated curve on the form c(� )( t) =

[x(� )( t); y(� )( t)]T , the components can now be expressed as

x(� )( t) = a
Z

cos(�t )
q

a2 + (2 ab+ b2) sin2(�t )dt

= �
a

2�

 

sin(�t )
q

a2 + (2 ab+ b2) sin2(�t )

+
a2

p
2ab+ b2

arcsinh
� p

2ab+ b2

a
sin(�t )

� !

;

y(� )( t) = ( a + b)
Z

sin(�t )
p

(a + b)2 � (2ab+ b2) cos2(�t )dt

=
a + b
2�

 

cos(�t )
p

(a + b)2 � (2ab+ b2) cos2(�t )

+
(a + b)2

p
2ab+ b2

arcsin
� p

2ab+ b2

a + b
cos(�t )

� !

:


