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Abstract

In this thesis, five Lévy models and a multilayer perceptron has been implemented
to compare the pricing of European call options against the Geometric Brown-
ian motion stock price dynamics of the Black-Scholes formula. Statistical analysis
has been done on the underlying assets, where it was found that the Lévy models
clearly are a better fit than the Geometric Brownian motion. However, the pricing
performance did not reflect this. On the contrary, for the option prices, the Geo-
metric Brownian motion outperforms several of the models. It is also found that
the multilayer perceptron generalizes well, despite of few observations, and outper-
forms all the models for the longest maturity option which is held completely out
of the training data. In the end, it is concluded that more data is needed to say
anything definite.
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Sammendrag

I denne oppgaven har fem Lévy-modeller og et kunstig nevralt nettverk blitt imple-
mentert for å sammenligne prising av europeiske kjøpsopsjoner mot den geometrisk
brownske bevegelsesdynamikken i Black-Scholes-formelen. Statistisk analyse er ut-
ført på de underliggende aksjene, hvor det ble funnet at Lévy-modellene er en mer
beskrivende modell enn den geometrisk brownske bevegelsen. Prissettingspressisjo-
nen reflekterte imidlertid ikke dette. Derimot presterer den gemoetrisk brownske
bevegelsesmodellen bedre enn flere av de andre modellene. Det blir også funnet at
det nevrale nettverket presterer og generaliserer bra, til tross for få observasjoner,
og overgår alle modellene for den lengste forfallsdatoen som er holdt utenfor tren-
ingsdataen. Til slutt konkluderes det med at mer data er nødvendig for å kunne si
noe mer konkret.
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Chapter 1

Introduction

Modelling financial markets is a great been an area of interest and started with
Bachelier [6] modelling stock prices as a Brownian motion with drift. In 1973,
Black & Scholes [13] and Merton [43] made an important contribution to the field
of financial derivatives. In particular, they derived the Black-Scholes formula -
a closed form solution of the Black-Scholes partial differential equation for Eu-
ropean options, which they in 1997 received the Nobel Prize in Economics for.
The Black-Scholes model has since dominated the pricing of financial derivatives,
mainly because of its simplicity. In particular, it models the underlying asset as a
Geometric Brownian motion which, in light of empirical data, has proven to be a
poor fit.

In the late 1980s and early 1990s, several Lévy models were proposed that take
the empirical observations in to account with several stylized features to the mar-
ket. Barndorff-Nielsen [8] applied the Normal Inverse Gaussian process on financial
data in 1995. The same year, the Hyperbolic process on financial data was pub-
lished as well by Eberlein & Keller [20]. Madan et al. [36] proposed the general
Variance Gamma process. It was first considered for the symmetric case by [39]
and [40] along with [38]. Carr et al. [14] extended the three parameter Variance
Gamma, to the four parameter CGMY, providing more flexibility.

The Normal Inverse Gaussian, Variance Gamma and the Hyperbolic process are
special cases of the Generalized Hyperbolic process, also proposed by Barndorff-
Nielsen [7]. This model was originally considered as a model for the log particle
size of sand in 1977. The whole family of Generalized Hyperbolic distributions
were studied for financial modelling by Eberlein and Prause [21] and Prause [47]
in 1998 and 1999 respectively.

At around the same time, studies comparing the performance of the non-parametric
artificial neural networks to Black-Scholes were published, e.g. by Hutschinson et
al. [31], finding them to be superior to Black-Scholes, indicating that artificial
neural networks can learn option prices with high precision for historical prices.

1



CHAPTER 1. INTRODUCTION 2

The data sets that have been used in earlier literature is usually from the 1990s.
This motivates for training deep artificial neural networks on more recent data.
A lot of the earlier artificial neural networks are also small and shallow, but with
evolving computing power, deeper and more computationally expensive networks
can be built. The evolving computer power has caused a renaissance of artificial
neural networks in recent years.

This thesis aims to compare not only the exponential Lévy models and artificial
neural networks to the Geometric Brownian motion framework of the Black-Scholes
model, but also comparing the proposed models to each other to examine if the
artificial neural networks can compete with the improved option pricing models.
This is an extension to the work done in my project thesis where an artificial neural
network was implemented to compare pricing accuracy against Black-Scholes for
European call options based on daily closing stock prices from S&P 500 [53].

In chapter 2, some fundamental theory on finance and probability will be cov-
ered. Chapter 3 will start by introducing the Geometric Brownian motion as a
stock price model, then give a brief motivation for Lévy models in general before
presenting five Lévy models. The mathematical preliminaries will be given. Chap-
ter 4 will set them in a market context, doing a statistical analysis on the fitted
market models to empirical data.

In chapter 5, the theory that exists on artificial neural networks today will be
given1, before the model set up and network architecture particularly for option
pricing will be presented. Finally, in chapter 6, we will see numerical results and
a discussion concerning these, on the data set considered. We will discuss wether
the non-parametric artificial neural network can compete with the more intuitive
Lévy models.

For the exponential Lévy models, a brute-force Monte Carlo method has been
used. This is a computationally expensive and time-consuming method. It should
be noted that Monte Carlo operates better in higher dimensions where it does bet-
ter time wise with regards to complexity, but as computational speed has not been
the main focus in this thesis, there was not spent time researching refined Monte
Carlo methods or other pricing methods such as exploiting the closed form of the
characteristic functions with Fast Fourier transform, but more on this can be found
in e.g. [16] and [27].

1Note that this is still a major area of research.



Chapter 2

Theory

In this chapter, an introduction of the necessary financial basics of options and
their underlying, as well as pricing rules will be given in section 2.1. In section 2.2,
probability theory needed in order to present the Lévy models of chapter 3 will be
presented.

2.1 Financial Theory

Financial Market
A financial market is is a common term for markets that trade different financial
securities and derivatives. The market liquidity tells us about the degree to which
the purchase and sale of assets influence their price. When there exists a high
number of buyers and sellers on a market, the price a buyer offers, called the bid
price, and the price a seller accepts, called the ask price, is close and the market is
highly liquid. When the spread between bid and ask price increases, the market is
becoming more illiquid.

Stocks
Stocks are issued by a company and its value reflect both the value of the company’s
real assets as well as the company’s earning power. Through stocks, an investor
may obtain partial ownership of a company. Stocks of publicly quoted companies
are quoted and traded on a stock exchange.

Indices
Stock indices measures the performance of a section of the stock market. It may
be thought of as a portfolio consisting of a collection of stocks representing some
segment of the market, usually constructed by some weighted average. There are
several types of indices. A broad-based index for instance, represents the perfor-
mance of the whole market, while a narrow-based index contains only a few stocks

3



CHAPTER 2. THEORY 4

usually representing a certain sector of industry. The weighting of the stocks can
also be done in several ways. A price-weighted index for instance, weighs the
stocks based on the price per share, while a capitalization-weighted index weighs
the stocks based on total market value, i.e. number of outstanding shares times
price per share.

2.1.1 Pricing Rules

In this section, we will follow the theory of Cont & Tankov [18] closely.

Let a market scenario space, defined by (Ω,F , {Ft, t ∈ [0, T ]}), describe all possible
evolutions for time t ∈ [0, T ] in the market, with information flow at time t, Ft
where Ft is such that

• Ft ⊆ F ∀t

• Fs ⊆ Ft for s ≤ t.

An underlying asset on this market, may be described as an F-adapted process1

S : [0, T ]×Ω 7→ Rd+1

(t, ω) 7→
(
S0
t (ω), S1

t (ω), . . . Sdt (ω)
)

such that Sit is the value of asset i at time t.

S0
t is called a numeraire, usually taken to be a cash account with interest rate
r, that is S0

t = S0e
rt. For any portfolio with value θt at time t, the discounted

price is then θ̂t = θt/S
0
t and the discount factor is B(t, T ) = S0

t /S
0
T , which is equal

to e−r(T−t) if S0
t = S0e

rt.

Contingent Claims

A contingent claim is a financial contract whose value at expiration T is determined
by the price process of its underlying assets up to time T .

Let {Ft, t ∈ [0, T ]} be the information flow, for the history of an asset, up to
time t. A contingent claim with expiry T can be represented by a terminal payoff
function H(ω) for each scenario ω ∈ Ω. H may depend on the entire price process
St(ω), t ∈ [0, T ], or only on SiT .

The pricing rule assigns each H with a value Πt(H) for each point in time. There
are some requirements for the pricing rule, Πt(H).

• F-adapted. See definition 2.1.3. Means that any information given at time t
should be used to compute Πt(H).

1See definition 2.1.3.



5 CHAPTER 2. THEORY

• Positiveness. A claim with a positive payoff has a positive value.

∀ω ∈ Ω,H(ω) ≥ 0 =⇒ ∀t ∈ [0, T ],Πt(H) ≥ 0 (2.1)

• Linearity. The value of a portfolio is given by the value of its components2.

Πt

( J∑
j=1

αjHj

)
=

J∑
j=1

αjΠt(Hj), αj ∈ R, j = 1, . . . , J (2.2)

Next, we want to conclude with the risk-neutral pricing formula given in definition
2.1.1. To do so, we must define the probability measure Q which will be defined by
first considering the event A ∈ F , such that the terminal payoff be represented by
the indicator function 1A

3. Then the discount factor Πt(1Ω) is equal to e−r(T−t).
That is the present value of one unit of currency paid out at time T . Now, let
Q : F 7→ R be such that

Q(A) =
Π0(1A)

Π0(1Ω)
= erTΠ0(1A). (2.3)

From (2.1) and (2.2), the following holds for Q,

• 0 ≤ Q(A) ≤ 1, because 0 ≤ 1A ≤ 1, and Q(Ω) = 1.

• If A and B are disjoint events (A ∩ B = ∅), then 1A∪B = 1A + 1B , and by
(2.2)

Q(A ∪B) = Q(A) + Q(B).

By extending to an infinite sum, we find that Q becomes a probability measure
over (Ω,F , {Ft, t ∈ [0, T ]}).

Now we will show that if H =
∑
i ci1Ai , by linearity, the risk-neutral pricing

formula holds. First, for H = 1A,

Π0(H)
4
= e−rtQ(A) (2.4)

= e−rtEQ[H]. (2.5)

Now, if H =
∑
i ci1Ai ,

Π0(H)
5
=
∑
i

ciΠ0(1Ai) (2.6)

= e−rt
∑
i

ciQ(Ai) (2.7)

= e−rtEQ[H]. (2.8)

2This may however not hold for large portfolios given a discount market price.
3equal to 1 if x ∈ A and 0 otherwise.
4by (2.3)
5by (2.2)
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As every H can be approximated by
∑
i ci1Ai , by the monotone approximation

theorem, the risk-neutral pricing formula holds.

Definition 2.1.1 Risk-neutral pricing formula. For a probability measure Q
on (Ω,F , {F , t ∈ [0, T ]}) and any random payoff function H ∈ H for a set H con-
taining all contingent claims of interest such that a dominated convergence theorem
holds, the value of a random payoff is given by its discounted expectation under Q,

Π0(H) = e−rTEQ[H]. (2.9)

Arbitrage

A fundamental requirement for a pricing rule is that it does not allow for arbitrage,
meaning an opportunity to make a profit without risk. If that would be possible,
arbitrageurs could make profit of the market in an unlimited quantity, without
exposure to risk, making it impossible for the market to be in equilibrium.

To be able to define arbitrage, we must first specify what is meant by a self-
financing strategy.

Definition 2.1.2 Self-financing strategy. Let a portfolio, θt, contain n stocks
and let hit denote the number of shares of stock i at time t. If Sit is the value of
stock i at time t, then

θt =

n∑
i=1

hitS
i
t .

The portfolio is self-financing if
n∑
i=1

dhitS
i
t = 0

which means that

dθt =

n∑
i=1

hitdS
i
t .

6

An arbitrage opportunity is the value process of a self-financing strategy, θ, that
may generate a terminal profit without any intermediate loss,

P(∀t ∈ [0, T ], Vt(θ) ≥ 0) = 1

P(VT (θ) > V0(θ)) 6= 0.

P is often called the real world probability measure and tells us something about
the probability of the scenarios (Ω,F , {Ft, t ∈ [0, T ]}) such as investors belief in the
future. Any arbitrage-free pricing rule is given by an equivalent martingale mea-
sure. Hence, to conclude arbitrage-free pricing rules, we must define an equivalent
martingale measure which will be derived by the following set of definitions.

6for continuous time, in a frictionless market
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Definition 2.1.3 F-adapted. A stochastic process X = {Xt, t ≥ 0} is F-adapted
if the random variable Xt is Ft-measurable7 for each t ∈ I.

F-adapted means that the stochastic process is forward-looking - it can only see
history up to time ≤ t.

Definition 2.1.4 Martingale. A stochastic process X = {Xt, t ≥ 0} is a mar-
tingale relative to (P,F) if

• X is F-adapted.

• E[|Xt|] <∞ ∀t ≥ 0.

• E[Xt|Fs] = Xs
8 almost surely with respect to P for 0 ≤ s ≤ t.

A martingale models fair game because the best guess about the future value of X
based on the current information, is the value of X at the current moment.

Definition 2.1.5 Equivalent probability measures. P and Q are equivalent
probability measures if they define the same sets of impossible events, i.e. they
have the same null sets,

P ∼ Q : ∀A ∈ F Q(A) = 0 ⇐⇒ P(A) = 0. (2.10)

Definition 2.1.6 Equivalent martingale measures for the pricing prob-
lem. An equivalent martingale measure, Q, fulfills for an asset Si, traded at price
Sit at time t, generating a terminal payoff SiT ,

EQ[e−rTSiT |Ft] = e−rtSit .

Now, we can conclude with two propositions on arbitrage-free pricing.

Proposition 2.1.1 Arbitrage-free pricing. In a market described by the prob-
ability measure P, any arbitrage-free pricing rule is given by

Πt(H) = e−r(T−t)EQ[H|Ft] (2.11)

for an equivalent martingale measure Q.

Proposition 2.1.2 Fundamental theorem of asset pricing. A market defined
by scenario (Ω,F , {Ft, t ∈ [0, T ]}), probability measure P and asset prices {St, t ∈
[0, T ]} is arbitrage-free if and only if there exists a probability measure Q ∼ P such
that the discounted prices {Ŝt, t ∈ [0, T ]} are martingales with respect to Q.

Proposition 2.1.1 shows that if an equivalent martingale measure exists, then the
market is arbitrage free while proposition 2.1.2 shows the converse.

7A random variable is Ft-measurable if its value is revealed at time t. See [18] for details.
8E[Xt|Ft] = E[Xt|Xr, 0 ≤ r ≤ s] = Xs ∀0 ≤ s ≤ t.
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2.1.2 Options
An option is a contingent claim where the holder of the option buys the right to
sell or purchase an underlying asset at some specified price K, called strike price
or just strike, at (or by) a specified time T , called maturity or expiry. The value
of the underlying asset at time t will be denoted by St.

- A call option gives the holder the right to buy the underlying asset.

- A put option gives the holder the right to sell the underlying asset.

European Options

A European option9 is one of the most common types of options where the option
can only be exercised at maturity, T . The terminal payoff is therefore given by

HCall = max{ST −K, 0} (2.12)

HPut = max{K − ST , 0}. (2.13)

Hence, the value of the European option at time t = 0 is the discounted risk-neutral
expectation

ΠCall
0 = e−rTEQ[HCall] (2.14)

ΠPut
0 = e−rTEQ[HPut]. (2.15)

Put-call parity

The put-call parity describes a relationship between a European call and put option
and is a result of the no-arbitrage assumption. Consider a portfolio, θt, consisting
of a put option, Pt and a short position in a call, Ct, on the same underlying asset
and with the same strike price and expiry, K, T , and one unit of the underlying
asset St,

θt = St + Pt − Ct. (2.16)

The terminal payoff is then given by

θT =

{
ST + 0− (ST −K) = K if ST ≥ K
ST + (ST −K)− 0 = K if ST ≤ K

meaning the portfolio will always have a terminal payoff K. K can be obtained
risklessly at time t < T by depositing Ke−r(T−t) at the bank. By the no-arbitrage
assumption, the value of the portfolio at time t < T must therefore be

θt = St + Pt − Ct = Ke−r(T−t).

Hence, we may always compute the value of a put option given the price of a call
option on the same underlying asset, with the same strike price and expiry, and
vice versa.

9also called plain vanilla option.
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2.1.3 Dividends
The risky asset that has been considered until now has been assumed to pay out
no dividend. Assume now that a continuously compounded dividend at rate q per
annum is paid out to the shareholders. The stock price then follows the process

St = e−qtS̄t

where S̄t is the price process without any dividends. For the previously obtained
results, this only means we discount by a rate r − q instead of r. For the put-call
parity, that is

θt = e−q(T−t)St + Pt − Ct = Ke−r(T−t).

Definition 2.1.7 Equivalent martingale measures with dividends. An equiv-
alent martingale measure, Q, fulfills for an asset Si with constant dividend rate q,
traded at price Sit at time t, generating a terminal payoff SiT ,

EQ[e−(r−q)TSiT |Ft] = e−(r−q)tSit

Proposition 2.1.3 Arbitrage-free pricing with dividends. In a market de-
scribed by the probability measure P, any arbitrage-free pricing rule is given by

Πt(H) = e−(r−q)(T−t)EQ[H|Ft] (2.17)

for an equivalent martingale measure Q.

2.2 Probability Theory
When modelling stock prices in a financial market, it is common to assume that it
follows the Efficient Market Hypothesis to some degree. That is, the price at time
t, fully reflects the information given at time t. This suggests the stock price is a
Markov process.

Definition 2.2.1 Markov process. A stochastic process, X = {Xt, t ≥ 0}, is
said to have the Markov property if, for an information flow {Ft, t ∈ [0, T ]},

P (Xt = x|Fs) = P (Xt = x|xs) for s < t. (2.18)

Next, we will define some properties of random variables.

Definition 2.2.2 Characteristic function. The characteristic function of a
random variable, X, is given by

φX(u) = E[exp(iuX)] =

∫ ∞
−∞

exp(iux)dF (x) (2.19)

where F (x) = P (X ≤ x) is the distribution function of X.
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Assuming X has a kth order moment10, it can be derived from φX by the following
equation

E[Xk] = i−k
d

duk
φX(u)

∣∣∣
u=0

.

Definition 2.2.3 Infinite Divisibility. Suppose a distribution F on Rd, has a
characteristic function φ(u). Then we say that the distribution is infinitely divisible
if, for every integer n ≥ 2, φ(u) is also the nth power of a characteristic function,
φn(u). I.e.

φ(u) = (φn(u))n. (2.20)

Definition 2.2.3 is the same as saying that a random variable Z ∼ F is infinitely
divisible if

Z
F
= Y1 + · · ·+ Yn

for independent and identically distributed variables Yi, i = 1, . . . n.

Definition 2.2.4 Skewness. For a random variable, X, with mean µX and vari-
ance σ2

X , its skewness is defined as its third order standardized moment,

γ1 =
E[(X − µX)3]

(σ2
X)3/2

. (2.21)

The skewness measures the degree of asymmetry in a distribution. A symmetric
distribution will have skewness equal to zero, while distributions with longer left
tail than right tail is said to have negative skewness and vice versa for positive
skewness. In finance, skewness is a result of risk adverse investors in encounter
with the risk of price jumps.

Definition 2.2.5 Kurtosis. For a random variable, X, with mean µX and vari-
ance σ2

X , its kurtosis is defined as its fourth order standardized moment,

γ2 =
E[(X − µX)4]

(σ2
X)2

. (2.22)

A distribution with kurtosis equal to 3 is said to be mesokurtic. If a distribution
has kurtosis larger than 3 it is said to be leptokurtic and will have a higher peak
and heavier tails than a mesokurtic distribution, while a distribution with kurtosis
less than 3 will have a flatter top and less heavy tails is said to be platykurtic.
Excess kurtosis is a result of the price jumps and is reflected in the risk premium
on deep in- and out-of-the-money options11.

10E[|X|k] <∞
11If an option expires with value of the underlying far from the strike price.
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2.3 Lévy Processes
Definition 2.3.1 Lévy process. A cadlag12 stochastic process X = {Xt, t ≥ 0}
with values in Rd on (Ω,F ,P) such that X0 = 0, is a Lévy process if

• it has independent increments, i.e. for an increasing time sequence t0, t1, . . . tn,
the increments Xt0 , Xt2 −Xt1 , . . . Xtn −Xtn−1 are independent.

• it has stationary increments, i.e. Xt+h−Xt has the same distribution as Xh.

• it is stochastically continuous, i.e. ∀ε > 0, limh→0 P(|Xt+h −Xt| ≥ ε) = 0.

For Lévy processes, the following theorem is true for infinite divisibility.

Theorem 2.3.1 Infinite divisibility for Lévy Processes. If X = {Xt, t ≥ 0}
is a Lévy process, then for every t, Xt has an infinitely divisible distribution F ,
or conversely, if F is an infinitely divisible distribution, then there exists a Lévy
process X = {Xt, t ≥ 0} such that X1 ∼ F .

Definition 2.3.1 tells us there is a bijection between Lévy processes and infinitely
divisible distributions.13 Furthermore, a Lévy process is uniquely determined by
its Lévy triplet [γ,Σ, ν(dx)] which comes from the Lévy-Khintchine formula.

Theorem 2.3.2 Lévy-Khintchine formula. For a Lévy process X = {Xt, t ≥
0} taking values in Rd, γ ∈ Rd, a positive definite matrix Σ ∈ Rd×d and ν(dx) a
nonnegative measure on R \ {0} with

∫
R\{0}(1∧ |x|

2)ν(dx) <∞, the characteristic
exponent ψ(u) satisfies the following

φXt(u) = E[eiuXt ] = e−tψ(u) (2.23)

ψ(u) = −iu>γ +
1

2
u>Σu−

∫ ∞
−∞

(eiu
>x − 1− iu>x1|x|≤1)ν(dx) u ∈ Rd. (2.24)

γ represents the deterministic drift components, Σ the Brownian components and
ν(dx) is the Lévy measure which represents the jump components. If ν(dx) is
on the form ν(dx) = u(x)dx, u(x) is called the Lévy density and follows the same
mathematical restrictions as a probability density function apart from having to be
integrable and it must have zero mass at the origin. The jumps in a Lévy process
with Lévy measure ν(dx), of sizes in a set A, occur according to a Poisson process
with intensity

∫
A
ν(dx).

Next, two properties of Lévy processes will be presented, namely variation and
activity.

Proposition 2.3.1 Variation. Let X = {Xt, t ≥ 0} be a Lévy process with Lévy
triplet [γ,Σ, ν(dx)]. Then if

- Σ = 0 and
∫
|x|≤1 |x|ν(dx) <∞, almost all paths of Xt is of finite variation.

12right-continuous with left-limits
13See [51] for details.
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- Σ 6= 0 or
∫
|x|≤1 |x|ν(dx) <∞, almost all paths of Xt is of infinite variation.

Proposition 2.3.2 Activity. Let X = {Xt, t ≥ 0} be a Lévy process with Lévy
triplet [γ,Σ, ν(dx)]. Then if

- ν(R) <∞, Xt is of finite activity.

- ν(R) =∞, Xt is of infinite activity.

Activity tells us if the number of jumps on any finite interval is finite or not. For
proof, please see Theorem 21.3 and 21.9 in Sato [51].

Concluding this chapter, we will define a useful class of Lévy processes.

Definition 2.3.2 Subordinator. A subordinator is a nonnegative nondecreasing
Lévy process. Its Lévy triplet is [γ, 0, ν(dx)] such that γ ≥ 0 and ν(dx)|Rx≤0

= 0.



Chapter 3

The Lévy Market Model

In this chapter, we will have a look at the Black-Scholes framework and motivate
for, and present, five Lévy models.

We will consider a financial market on (Ω,F ,P), with information flow {Ft, t ∈
[0, T ]}, consisting of two assets, namely the risk-free asset {Bt, t ∈ [0, T ]} satisfy-
ing {

dBt = rBtdt, t ∈ [0, T ]

B0 = 1,

where r is the risk free interest rate, and the risky asset, (St)t∈[0,T ], being a stock
or index, satisfying

St = S0e
Xt . (3.1)

When the log returns Xt = log(St)− log(S0) follow the increments of length t of a
Lévy process, equation (3.1) is called the exponential Lévy model.

3.1 The Brownian Motion
The first Lévy process we will consider for the log returns is the Brownian motion
which implies that (3.1) is of the form

St = S0 exp(XNormal
t ) (3.2)

(3.2) solves the stochastic differential equation

dSt = St(µdt+ σdWt) (3.3)

where {Wt, t ≥ 0} is a standard Brownian motion1. Applying Itô’s formula2, (3.2)
yields that XNormal

s+t −XNormal
s ∼ Normal

(
(µ− 1

2σ
2)t, σ2t

)
.

1A Lévy process with Normally distributed increments with mean 0 and variance equal to the
length of the time increment.

2See Appendix C.

13
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Definition 3.1.1 Normal distribution. The Normal distribution, Normal(µ, σ2),
can be expressed through its density function and characteristic function respec-
tively,

fNormal(x;µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (3.4)

φNormal(u;µ, σ2) = eiuµe−
1
2σ

2u2

. (3.5)

As we can see from definition 3.1.1, the Normal distribution does not have a jump
component, hence its Lévy triplet is given by [µ, σ2, 0]. Moments of the Normal
distribution are listed in table 3.1.

Table 3.1: Moments of the Normal distribution.

Normal(µ, σ2)

mean µ

variance σ2

skewness 0

kurtosis 3

From table 3.1, we can see that the Normal distribution is a symmetric and
mesokurtic distribution. In addition, the Brownian motion is of infinite varia-
tion3.

When the log returns follow a Brownian motion, the stock price itself follows a
Geometric Brownian motion (GBM), and is lognormally distributed.

The stock price under the risk-neutral price measure Q, is unique since the market
model is complete4, and can be derived by Girsanov theorem [26]. The risk-neutral
log returns, X̃t, are then given by

X̃Normal
t ∼ Normal

(
(r − q − 1

2
σ2)t, σ2t

)
.

We can see that there has been introduced a risk-neutral drift, µ̃ = r − q where r
is the risk-free interest rate and q is the dividend rate.

3.1.1 Shortcomings of the Geometric Brownian Market Model

The lognormally distributed underlying asset is the framework of the Black-Scholes
formula, which is built upon several assumptions5, which has several weaknesses.

3does not make sense to give meaning to activity for a Brownian motion.
4Every contingent claim can be perfectly replicated by a dynamic trading strategy.
5See e.g. [52].
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In the Geometric Brownian motion pricing dynamics, we have a complete market,
meaning that options are redundant as all risk can be hedged away by dynamically
trading the underlying asset. In reality, we do not have a complete market, and
options are not redundant.

The properties of table 3.1 shows that the Normal distribution is a symmetric
and mesokurtic distribution. However, log returns are often observed with signif-
icant negative skewness. Large movements in asset price are also observed more
frequently than in the Normal distribution. This can be seen as a higher peak
and heavier tails in the empiric distribution of the log returns than in the Normal
distribution and indicate a leptokurtic distribution. These two features motivate
for distributions with more flexibility in the third and fourth order standardized
moments.

Another important observation is the volatility. In the Black-Scholes model, the
volatility is assumed to be constant during the life-span of the option, while empir-
ically, we observe that the volatility changes stochastically. We may also observe
volatility clusters by considering the absolute value of the log returns which shows
that periods with high variance more often are followed by new periods with high
variance and periods with low variance more often are followed by new periods
with low variance.

In addition, the Brownian motion is a continuous process which means it does not
allow for any discontinuous jumps, whereas asset prices are often observed with
jumps. This motivates for finding processes which allow for jumps to occur. As
mentioned in section 2.2, the skewness is a consequence of the risk associated with
the jumps. The Geometric Brownian motion, being a continuous model, hence,
can not account for this.

For stock prices we may also observe aggregated normality. Stock prices may
be collected several times a day, daily, weekly or monthly and so on. The larger
the intervals between price observations are, the closer to a Brownian motion the
price paths appear. This is observed by e.g. Eberlein & Keller [20] for estimated
parameters of the Hyperbolic distribution for increased time lags. However, the
shorter the intervals, the more evident the discontinuities become. Hence, the time
horizon is important to consider.

The processes which are presented next, have both the wanted flexibility in skew-
ness and kurtosis as well as the ability to model jumps. In addition, they are
incomplete, meaning options are not redunant. They can also be expanded to
allow for stochastic volatility.6

6See for example [52].



CHAPTER 3. THE LÉVY MARKET MODEL 16

3.2 The Normal Inverse Gaussian Process

The Normal Inverse Gaussian distribution (NIG) was introduced by Barndorff-
Nielsen [8] in 1995.

Definition 3.2.1 Normal Inverse Gaussian distribution. The Normal In-
verse Gaussian distribution, NIG(α, β, δ), can be expressed through its density func-
tion and characteristic function respectively,

fNIG(x;α, β, δ) =
αδ

π
exp(δ

√
α2 − β2 + βx)

K1(α
√
δ2 + x2)√

δ2 + x2

φNIG(u;α, β, δ) = exp(−δ(
√
α2 − (β + iu)2 −

√
α2 − β2))

for α > 0, |β| < α and δ > 0, where K1 is the modified Bessel function of the third
kind with index 1.7

From definition 3.2.1, we can define the Normal Inverse Gaussian process, XNIG =
{XNIG

t , t ≥ 0}. As the characteristic function of the process satisfies

E[exp(iuXNIG
t )] =(φNIG(u;α, β, δ))t

φNIG(u;α, β, tδ),

the increments of the process follow XNIG
s+t − XNIG

s ∼ NIG(α, β, tδ). Moments of
the Normal Inverse Gaussian are listed in table 3.2.

Table 3.2: Moments of the Normal Inverse Gaussian process.

NIG(α, β, δ)

mean δβ/
√
α2 − β2

variance α2δ(α2 − β2)−3/2

skewness 3βα−1δ−1/2(α2 − β2)−1/4

kurtosis 3
(
1 +

α2 + 4β2

δα2
√
α2 − β2

)

The Lévy triplet is given by [γ, 0, νNIG] such that

γ =
2δα

π

∫ 1

0

sinh(βx)K1(αx)dx

and

νNIG(dx) =
δα

π

exp(βx)K1(α|x|)
|x|

dx.

7See Appendix B.



17 CHAPTER 3. THE LÉVY MARKET MODEL

The process is of infinite variation and infinite activity and may be written as an
Inverse Gamma subordinated Brownian motion. Let XIG

t ∼ IG(t, δ
√
α2 − β2) be

an Inverse Gamma process8. For a standard Brownian motion W = {Wt, t ≥ 0},

XNIG
t = βδ2XIG

t + δWXIG
t
.

3.3 The Variance Gamma Process
The Variance Gamma process (VG) was first introduced by Madan & Seneta [39],
and was considered along with [40] and [38] for the symmetric case, before the
general case allowing skewness was presented by Madan et al. [36].

Definition 3.3.1 Variance Gamma distribution. The Variance Gamma dis-
tribution, VG(σ, ν, θ), can be expressed through its density function and character-
istic function respectively,

fVG(x;σ, ν, θ) =

√
2 exp(θx/σ2)

σ
√
πν1/νΓ ( 1

ν )

(
|x|√

2σ2

ν + θ2

) 1
ν−

1
2

K 1
ν−

1
2

(
|x|
√

2σ2

ν + θ2

σ2

)
(3.6)

φVG(u;σ, ν, θ) = (1− iuθν +
1

2
σ2ν2)−1/ν (3.7)

for σ > 0, ν > 0, θ ∈ R.

From definition 3.3.1, we can define the Variance Gamma process,XVG = {XVG
t , t ≥

0}. As the characteristic function of the process satisfies

E[exp(iuXVG
t )] =(φVG(u;σ, ν, θ))t

φVG(u;σ
√
t, ν/t, tθ),

the increments of the process follow XVG
s+t −XVG

s ∼ VG(σ
√
t, ν/t, tθ). Moments of

the Variance Gamma are listed in table 3.3.

Table 3.3: Moments of the Variance Gamma process.

VG(σ, ν, θ)

mean θ

variance σ2 + νθ2

skewness θν(3σ2 + 2νθ2)/(σ2 + νθ2)3/2

kurtosis 3(1 + 2ν − νσ4(σ2 + νθ2)−2)

The Variance Gamma process is of finite variation and infinite activity and may be
8See Appendix A.
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written as a Gamma subordinated Brownian motion. Let XG
t ∼ Gamma(t/ν, 1/ν)

be a Gamma process9. For a standard Brownian motion W = {Wt, t ≥ 0},

XVG
t = θXG

t + σWXG
t
.

The Variance Gamma process is also often encountered with two other parametriza-
tions. If we write

C = 1/ν > 0

G = (

√
1

4
θ2ν2 +

1

2
σ2ν − 1

2
θν)−1

M = (

√
1

4
θ2ν2 +

1

2
σ2ν +

1

2
θν)−1,

we can express the Lévy triplet as [γ, 0, νVG], such that

γ =
−C(G(e−M − 1)−M(e−G − 1))

MG

and

νVG(dx) =

{
C exp(Gx)|x|−1dx, x < 0

C exp(−Mx)x−1dx, x > 0.

The characteristic function is then

φVG(u;C,G,M) =
( GM

GM + (M −G)iu+ u2

)C
.

From this parametrization, we can see that the process may also be expressed as
the difference between two independent Gamma processes,

XVG
t = XG1

t −X
G2
t

where XG1
t ∼ Gamma(Ct,M) and XG2

t ∼ Gamma(Ct,G).

3.4 The Generalized Hyperbolic Process

The Generalized Hyperbolic process (GH) was introduced by Barndorff-Nielsen [7]
for the purpose of modelling distributions of the mass size of aeolian sand deposits
in 1977. The subclasses of the distribution were first proposed for financial data,
before the generalized distribution itself was studied as a model for financial log-
returns by Eberlein & Prause [21] and Prause [47].

Definition 3.4.1 Generalized Hyperbolic distribution. The Generalized Hy-
perbolic distribution, GH(α, β, δ, λ), can be expressed through its density function

9See Appendix A.
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and characteristic function respectively,

fGH(x;α, β, δ, λ) = a(α, β, δλ)(δ2 + x2)(λ−1/2)Kλ−1/2(α
√
δ2 + x2) exp(βx) (3.8)

φGH(u;α, β, δ, λ) =
( α2 − β2

α2 − (β + iu)2

)λ/2Kλ(δ
√
α2 − (β + iu)2)

Kλ(δ
√
α2 − β2)

(3.9)

where

a(α, β, δ, λ) =
(α2 − β2)λ/2

√
2παλ−1/2δλKλ(δ

√
α2 − β2)

,

Kλ is the modified Bessel function of the third kind with index λ10 and

δ ≥ 0 |β| < α if λ > 0

δ > 0 |β| < α if λ = 0

δ > 0 |β| ≤ α if λ < 0.

From definition 3.4.1, we can define the Generalized Hyperbolic process, XGH =
{XGH

t , t ≥ 0}. As the distribution is infinitely divisible, we can see that the incre-
ments follow

E[exp(iuXGH
t )] = (φGH(u;α, β, δ, λ))t.

However, the Generalized Hyperbolic process is not closed under convolution, so it
is not as straightforward changing the time-scale of the process. Moments of the
Generalized Hyperbolic are listed in table 3.4.

Table 3.4: Moments of the Generalized Hyperbolic process.
ξ = δ

√
α2 − β2

GH(α, β, δ, λ)

mean δβ(α2 − β2)−1/2Kλ+1(ξ)K
−1
λ (ξ)

variance δ2
(Kλ+1(ξ)

ξKλ(ξ)
+

β2

α2 − β2

(Kλ+2(ξ)

Kλ(ξ)
−
K2
λ+1(ξ)

K2
λ(ξ)

))

The Generalized Hyperbolic process does not have a Brownian component. Its
Lévy measure is given by equation (3.10). The process is of infinite variation and
infinite activity.

νGH(dx) =


exp(βx)

|x|

( ∫∞
0

exp(−|x|
√

2y + α2)

π2y(J2
λ(δ
√

2y) +N2
λ(δ
√

2y))
dy + λ exp(−α|x|)

)
, λ ≥ 0

exp(βx)

|x|
∫∞
0

exp(−|x|
√

2y + α2)

π2y(J2
−λ(δ

√
2y) +N2

−λ(δ
√

2y))
dy, λ < 0

(3.10)
10See Appendix B
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Jλ(z) and Nλ(z) are Bessel functions of first and second kind respectively11.

The Generalized Hyperbolic process may also be written as a Generalized Inverse
Gaussian subordinated Brownian motion.

The processes described in section 3.2 and 3.3 are special cases of the Gener-
alized Hyperbolic distribution when λ = −1/2 and δ → 0 respectively. The
change of parametrization for the Variance Gamma process is given by λ = 1/ν,
α = (

√
(2σ2/ν) + θ2)/σ2, β = θ/σ2. The last special case of the Generalized Hy-

perbolic process used in financial modelling we will consider is when λ = 1 which
is called the Hyperbolic process .

3.5 The Hyperbolic Process

The Hyperbolic distribution (H) was first applied to financial data by Eberlein &
Keller [20]. The model is also studied in Bingham & Kiesel [12].

Definition 3.5.1 Hyperbolic distribution. The Hyperbolic distribution, H(α, β, δ),
can be expressed through its density function and characteristic function respec-
tively,

fH(x;α, β, δ) =

√
α2 − β2

2δαK1(δ
√
α2 − β2)

exp(−α
√
δ2 + x2 + βx) (3.11)

φH(u;α, β, δ) =
( α2 − β2

α2 − (β + iu)2

)1/2K1(δ
√
α2 − (β + iu)2)

K1(δ
√
α2 − β2)

. (3.12)

for α > 0, 0 ≤ |β| < α and δ > 0.

From definition 3.5.1, we can define the Hyperbolic process, XH = {XH
t , t ≥ 0}.

As the distribution is infinitely divisible, its increments follow

E[exp(iuXH
t )] = (φH(u;α, β, δ))t.

Moments of the Hyperbolic are listed in table 3.5.

The Hyperbolic process does not have a Brownian component. Its Lévy measure is
given by equation (3.13). The process is of infinite variation and infinite activity.

νH(dx) =
exp(βx)

|x|

(∫ ∞
0

exp(−|x|
√

2y + α2)

π2y(J2
1 (δ
√

2y) +N2
1 (δ
√

2y))
dy + exp(−α|x|)

)
(3.13)

Jλ(z) and Nλ(z) are Bessel functions of first and second kind respectively12.

11See Appendix B.
12See Appendix B.
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Table 3.5: Moments of the Hyperbolic process.
ξ = δ

√
α2 − β2

H(α, β, δ)

mean δβ(α2 − β2)−1/2K2(ξ)K
−1
1 (ξ)

variance δ2
( K2(ξ)

ξK1(ξ)
+

β2

α2 − β2

(K3(ξ)

K1(ξ)
− K2

2 (ξ)

K2
1 (ξ)

))

3.6 The CGMY Process

The last Lévy model we will consider is the CGMY process which was introduced
by Carr et al. [14] as a more flexible alternative to the VG process by adding an
extra parameter, Y , to the C,G,M -parametrization. It was later generalized by
Carr et al. [15] to a six parameter distribution by splitting C and Y into a positive
and negative part, but only the four parameter model will be considered in this
thesis.

Definition 3.6.1 CGMY distribution. The CGMY distribution, CGMY(C,G,M, Y ),
can be expressed through its characteristic function,

φCGMY(u;C,G,M, Y ) = exp(CΓ (−Y )((M−iu)Y −MY +(G+iu)Y −GY )) (3.14)

for C,G,M > 0 and Y < 2.

The CGMY density function does not exist on closed form, but its characteristic
function does. From definition 3.6.1 we can define the CGMY process, XCGMY =
{XCGMY

t , t ≥ 0}. As the characteristic function of the process satisfies

E[exp(iuXCGMY
t )] =(φCGMY(u;C,G,M, Y ))t

φCGMY(u;Ct,G,M, Y ),

the increments of the process follow XCGMY
s+t − XCGMY

s ∼ CGMY(Ct,G,M, Y ).
Moments of the CGMY are listed in table 3.6.

Table 3.6: Moments of the CGMY process.

CGMY(C,G,M, Y )

mean C(MY−1 −GY−1)Γ (1− Y )

variance C(MY−2 −GY−2)Γ (2− Y )

skewness C(MY−3 −GY−3)Γ (3− Y )/(C(MY−2 −GY−2)Γ (2− Y ))3/2

kurtosis C(MY−4 −GY−4)Γ (4− Y )/(C(MY−2 −GY−2)Γ (2− Y ))2 + 3
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The Lévy triplet is given by [γ, 0, νCGMY] such that

γ = C
(∫ 1

0

(exp(−Mx)− exp(−Gx))x−Y dx
)

and

νCGMY(dx) = C|x|−1−Y (exp(Gx)1(x<0) + exp(−Mx)1(x>0))dx).

The variation and activity of the CGMY process is dependent on Y . The prop-
erties are listen in table 3.7. The CGMY process may also be represented as a

Table 3.7: Variation and activity of the CGMY process.

Variation Activity

Y < 0 Finite Finite
Y ∈ (0, 1) Finite Infinite
Y ∈ (1, 2) Infinite Infinite (quadratic)

subordinated Brownian motion. For details, please see Madan & Yor [37].

3.7 Adding Drift

We will introduce an additional drift term for all the processes. This is merely
a translation by a value µ ∈ R and does not influence the properties of infinite
divisibility or activity and variation. Denote the original Lévy process, its density
function, characteristic function and Lévy triplet respectively by X̄, f̄ , φ̄, [γ̄, σ̄2,
ν̄]. The obtained process with additional drift, µ, in terms of the original process
becomes, for the characteristic function, an additional factor

φ(u) = φ̄(u) exp(iuµ),

for the process, an additional deterministic term,

Xt = X̄t + µt,

for the Lévy triplet, an additional term for the drift component,

γ = γ̄ + µ σ2 = σ̄2 ν(dx) = ν̄(dx)

and for the density function, a translation,

f(x) = f̄(x− µ).
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3.8 Equivalent Martingale Measure
For all the Lévy market models presented, apart from the Geometric Brownian
motion, the market models are incomplete. Hence, there are several equivalent
martingale measures that satisfies the risk-neutral pricing. In this thesis, the mean-
correcting martingale measure have been found, but another popular choice in lit-
erature is the Esscher transform13.

The mean-correcting equivalent martingale measure changes the drift term µ, pre-
sented in section 3.7, such that the discounted exponential Lévy model becomes a
martingale. This is done by introducing a new drift term, µ̃, satisfying

µ̃ = µ+ r − q − log(φ(−i)). (3.15)

The new mean-corrected equivalent martingale measure are listed in table 3.8.

Table 3.8: Mean-corrected martingale measure.

Model Mean-corrected drift, µ̃

GBM r − q
VG r − q − (1 + θν − 1

2
σ2ν)−1/ν

NIG r − q + δ(
√
α2 − (β + 1)2 −

√
α2 − β2)

GH r − q − log
(( α2 − β2

α2 − (β + 1)2

)λ/2Kλ(δ
√
α2 − (β + 1)2

Kλ(δ
√
α2 − β2)

)
H r − q − log

(( α2 − β2

α2 − (β + 1)2

)1/2K1(δ
√
α2 − (β + 1)2

K1(δ
√
α2 − β2)

)
CGMY r − q − CΓ (−Y )((M − 1)Y −MY + (G+ 1)Y −GY )

13See e.g. [52].
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Chapter 4

Analysis of Market Fit

In this chapter, we will consider how we fit the Lévy models to the market, before
testing them on empirical data.

4.1 Parameter Estimation

The Class of Generalized Hyperbolic Processes
The classes of Generalized Hyperbolic processes was handled with the ghyp-package
in R [35]. In ghyp, these distributions can take three parametrizations. For the
Normal Inverse Gaussian, Generalized Hyperbolic and Hyperbolic process, the al-
pha.delta-parametrization was used. It represents the multivariate Generalized
Hyperbolic process as follows

fX(x;α,β, δ,∆, λ, µ) =
(α2 − β>∆β)λ/2

(2π)d/2
√
|∆|αλ− d2 δλKλ(δ

√
α2 − β>∆β)

×
Kλ− d2

(α
√
δ2 + (x− µ)>∆−1(x− µ))eβ

>(x−µ)

(
√
δ2 + (x− µ)>∆−1(x− µ))

d
2−λ

,

such that

α > 0 β ∈ {x ∈ Rd : α2 − x>∆x > 0} δ > 0 ∆ ∈ {A ∈ Rd×d : |A| = 1} λ ∈ R
µ ∈ Rd.

For the Generalized Hyperbolic process presented in chapter 3 and its special cases,
denoting parameters of ghyp by ,̃ this representation implies that

α̃ = α β̃ = β δ̃ = δ ∆̃ = 1 λ̃ = λ µ̃ = µ d = 1.

For the Variance Gamma distribution, the chi.psi -parametrization was used which

25
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is given by the following parameter change,
(α,β, δ,∆, λ, µ)→ (χ, ψ, γ,Σ, λ, µ):

Σ = ∆, γ = ∆β, χ = δ2, ψ = α2 − β>∆β (4.1)

The parameters are found through maximum likelihood using an EM-scheme. For
details, please see [35].

The CGMY Process
As the CGMY process does not have an analytical expression for the density func-
tion, parameter estimation through maximum likelihood is more complicated. Sev-
eral approaches to parameter estimation have been explored. One can exploit that
the characteristic function is of a known analytic form by finding the empirical char-
acteristic function of the data, φ̂(u) through Fast Fourier transformation. Then do
a curve fitting with φCGMY(u;C,G,M, Y, µ) as given in equation (3.14) with addi-
tional drift.1

Another approach is the method of moments where one considers the difference
of the moments of the distribution and the empirical moments. As we, with the
additional drift, have five unknowns (C,G,M, Y, µ), one can find the fifth order
standardized moment such that one obtains a system of five equations and five
unknowns. .

Definition 4.1.1 Hyperskewness. For a random variable X with mean µX and
variance σ2

X , its hyperskewness is defined as its fifth order standardized moment,

γ3 =
E[(X − µX)5]

(σ2
X)5/2

.

The system obtained is given in table 4.1 and was solved using the nleqslv -package
in R [29], by the Broyden method.

Table 4.1: System of equations for method of moments, CGMY.

µX = C(MY−1 −GY−1)Γ (1− Y ) + µ

σ2
X = C(MY−2 −GY−2)Γ (2− Y )

γ1 = C(MY−3 −GY−3)Γ (3− Y )/(C(MY−2 −GY−2)Γ (2− Y ))3/2

γ2 = C(MY−4 −GY−4)Γ (4− Y )/(C(MY−2 −GY−2)Γ (2− Y ))2 + 3

γ3 = C(MY−5 −GY−5)Γ (5− Y )/(C(MY−2 −GY−2)Γ (2− Y ))5/2

+10C(MY−3 −GY−3)Γ (3− Y )/(C(MY−2 −GY−2)Γ (2− Y ))3/2

1This was implemented without success due to difficulties with fitting complex curves.
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4.2 Test of Fit

In this section, the models presented in chapter 3 will be fit to the log returns on
the adjusted closing prices of four data assets - two of which represents indices of
different sizes and liquidities, and two representing single assets with different liq-
uidities. An assumption in the option pricing models is that the market considered
has required liquidity. Hence, it is of interest to see how the models adjust to the
different liquidities.

Though the Lévy models considered in this thesis, are univariate, they have been
considered on indices previously, e.g. by Madan et al. [36] and is in fact only con-
sidered for the S&P 500 index in Schoutens [52]. We might see if this affects the fit.

Data was downloaded using the quantmod -package in R [50] from Yahoo Finance.
The details are given in table 4.2. For the parameter estimation, Madan et al. [36]
used 691 data points on S&P 500 from January 1992 to September 1994, while
Schoutens [52] considers both S&P 500 over a 30 year period as well as a 2 year pe-
riod. Including historical data covering more than 10 years does not seem relevant.
Both a 3 and a 5 year historical data set was considered, with 750 and 1250 data
points respectively. These showed however little difference, so a 5 year historical
data set was chosen.

Table 4.2: Details of data set of underlying assets.

Asset/Index Ticker Data Quoted in

Apple Inc. AAPL 2014-06-12 to 2019-05-31 USD
OMX Stockholm ^OMX 2014-06-16 to 2019-05-31 SEK
Norsk Hydro ASA NHY.OL 2014-06-06 to 2019-05-31 NOK
Oslo Stock Exchange Index OSEBX.OL 2013-02-15 to 2018-02-07 NOK

4.2.1 Apple Inc.

Apple Inc. is a multinational technology company, considered as one of the Big
Four tech companies. It is the largest information technology company by revenue
and its stocks are traded on Nasdaq, the second largest stock exchange in the
world by market capitalization. I.e. it is a highly liquid asset. Fitted densities and
quantile-quantile plots are given in figure 4.1a and 4.1b, while estimated parameters
and moments are given in table 4.3 and 4.4 respectively.

4.2.2 OMX Stockholm 30 Index

The OMX Stockholm 30 Index is an index of the 30 most traded stock on the
Stockholm Exchange. OMX is a capitalization-weighted index, i.e. the stocks are
weighted according to the company’s overall market value. This weighting changes
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Density fits for AAPL
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(a) Fitted densities for Apple Inc. log returns.
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(b) Quantile-Quantile plot for Apple Inc. log returns.

Figure 4.1: Density and Quantile-Quantile plot for Apple Inc. log returns.

Table 4.3: Table of fitted parameters for Apple Inc. log returns.

GBM µ = 0.00058 σ = 0.01547

NIG µ = 0.00146 α = 49.78274 β = −3.66282 δ = 0.01192 λ = −0.5
VG µ = 0.00040 Σ = 0.01513 ψ = 2.23396 γ = −0.00032 λ = 1.11698

GH µ = 0.00146 α = 54.13586 β = −3.61052 δ = 0.01121 λ = −0.3674
H µ = 0.00115 α = 97.06485 β = −2.51911 δ = 0.0031 λ = 1

CGMY µ = 0.00194 C = 0.00303 G = 36.61029 M = 48.04055 Y = 1.11252

Table 4.4: Table of estimated moments for Apple Inc. log returns.

Empirical GBM NIG VG GH H CGMY

µX 0.00057 0.00057 0.00057 0.00057 0.00055 0.00057 0.00057

σ2
X 0.00024 0.00024 0.00024 0.00023 0.00024 0.00023 0.00024

γ1 −0.35056 0 −0.28583 −0.05789 −0.2749 −0.10044 −0.35056
γ2 7.25733 3 8.16529 5.68466 7.9016 5.68548 7.25733

daily. All the underlying assets have perfect liquidity. Fitted densities and quantile-
quantile plots are given in figure 4.2a and 4.2b, while estimated parameters and
moments are given in table 4.5 and 4.6 respectively.

4.2.3 Norsk Hydro ASA
Norsk Hydro ASA is a Norwegian aluminium and renewable energy company traded
on the New York Stock Exchange (NYSE) and Oslo Stock Exchange (OSE). Though
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Density fits for ^OMX
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(a) Fitted densities for OMX Stockholm 30 Index log
returns.
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(b) Quantile-Quantile plot for OMX Stockholm 30 In-
dex log returns.

Figure 4.2: Density and Quantile-Quantile plot for OMX Stockholm 30 Index log
returns.

Table 4.5: Table of fitted parameters for OMX Stockholm 30 Index log returns.

GBM µ = 0.00008 σ = 0.01055

NIG µ = 0.00106 α = 113.2662 β = −9.02901 δ = 0.01227 λ = −0.5
VG µ = 0.00152 Σ = 0.01035 ψ = 3.80486 γ = −0.00144 λ = 1.90243

GH µ = 0.00080 α = 122.9841 β = −6.66119 δ = 0.01237 λ = −0.37137
H µ = 0.00121 α = 162.2381 β = −10.49482 δ = 0.00701 λ = 1

CGMY µ = 0.00163 C = 0.00017 G = 29.88516 M = 58.55552 Y = 1.52606

Table 4.6: Table of estimated moments for OMX Stockholm 30 Index log returns.

Empirical GBM NIG VG GH H CGMY

µX 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008

σ2
X 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011

γ1 −0.54744 0 −0.20321 −0.21977 −0.13441 −0.18856 −0.54744
γ2 7.83977 3 5.22127 4.56587 4.97066 4.77225 7.83977

it is a large company in Norway and it is traded on NYSE, it is still smaller and more
illiquid than large international companies such as Apple Inc.. Fitted densities and
quantile-quantile plots are given in figure 4.3a and 4.3b, while estimated parameters
and moments are given in table 4.7 and 4.8 respectively.
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Density fits for NHY.OL
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(a) Fitted densities of Norsk Hydro ASA log returns.
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(b) Quantile-Quantile plot for Norsk Hydro ASA log
returns.

Figure 4.3: Density and Quantile-Quantile plot for Norsk Hydro ASA log returns.

Table 4.7: Table of fitted parameters for Norsk Hydro ASA log returns.

GBM µ = 0.00007 σ = 0.01911

NIG µ = 0.00044 α = 57.81315 β = −1.03205 δ = 0.02092 λ = −0.5
VG µ = 0.00013 Σ = 0.01894 ψ = 3.20022 γ = −0.00006 λ = 1.60011

GH µ = 0.00027 α = 48.75914 β = −0.2975 δ = 0.0247 λ = −1.0441
H µ = 0.00029 α = 84.41623 β = −0.62699 δ = 0.00994 λ = 1

CGMY µ = 0.00057 C = 0.00138 G = 28.70874 M = 31.45093 Y = 1.32063

Table 4.8: Table of estimated moments for Norsk Hydro ASA log returns.

Empirical GBM NIG VG GH H CGMY

µX 0.000007 0.000007 0.000006 0.000007 0.00017 0.000006 0.000007

σ2
X 0.00037 0.00037 0.00036 0.00036 0.00036 0.00036 0.00037

γ1 −0.09068 0 −0.04870 −0.00558 −0.01457 −0.02392 −0.09068
γ2 6.48457 3 5.48442 4.87506 5.5747 5.01366 6.48457

4.2.4 Oslo Stock Exchange Index

Oslo Stock Exchange Index is Oslo Stock Exchange’s index which contains 70 com-
panies and is supposed to be a representative selection of all traded stocks on OSE.
OSE is the only independent stock exchange for the Nordic countries and is Nor-
way’s only regulated market for securities trading. The index is audited twice a
year. Fitted densities and quantile-quantile plots are given in figure 4.4a and 4.4b,
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while estimated parameters and moments are given in table 4.9 and 4.10 respec-
tively.

Density fits for OSEBX.OL
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(a) Fitted densities for Oslo Stock Exchange Index log
returns.
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(b) Quantile-Quantile plot for Oslo Stock Exchange
Index log returns.

Figure 4.4: Density and Quantile-Quantile plot for Oslo Stock Exchange Index log
returns.

Table 4.9: Table of fitted parameters for Oslo Stock Exchange Index log returns.

GBM µ = 0.00044 σ = 0.00969

NIG µ = 0.00128 α = 101.2096 β = −8.94183 δ = 0.0094 λ = −0.5
VG µ = 0.00114 Σ = 0.00956 ψ = 2.89454 γ = −0.00069 λ = 1.44727

GH µ = 0.00127 α = 92.07335 β = −8.77391 δ = 0.01013 λ = −0.71974
H µ = 0.00126 α = 161.5059 β = −8.8891 δ = 0.00389 λ = 1

CGMY µ = 0.00111 C = 0.00384 G = 78.87235 M = 93.10434 Y = 1.00857

Table 4.10: Table of estimated moments for Oslo Stock Exchange Index log returns.

Empirical GBM NIG VG GH H CGMY

µX 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045

σ2
X 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009

γ1 −0.19865 0 −0.2742 −0.15487 −0.28551 −0.1952 −0.19865
γ2 5.94092 3 6.26477 5.04038 6.44086 5.28717 5.94092
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For all the assets, the Geometric Brownian motion clearly has the worst fit based
on the density plots and quantile-quantile plots. In addition, because of its limited
third and fourth order standardized moments, it is not able to pick up the negative
skewness and leptokurtic behaviour in the data.

CGMY is the best model based on the estimated moments, but its parameters
are found through the method of moments so it should perform well for these.
Aside from the CGMY model, it may look as if the Normal Inverse Gaussian dis-
tribution and the Generalized Hyperbolic distribution comes closest in estimating
the moments. Apart from looking at the OSEBX.OL data set, in which the Hyper-
bolic and the Variance Gamma process’ moments come quite close to the empirical
moments. For the AAPL, OMX and NHY.OL data set, the Variance Gamma dis-
tribution looks to be underestimating the skewness and leptokurtic behaviour.

Note on parameter estimation with CGMY

The Lévy models were fitted to several assets not presented here, which showed
that the CGMY model had problems estimating parameters to some of the data
sets. For instance for S&P 500, it estimated Y to be −8 which corresponds to a
compound Poisson with finite activity and finite variation and makes a very poor
fit. Perhaps it is the combination of empirical moments that makes the system of
equations in table 4.1 hard to optimize. One possible solution could be to solve the
constrained optimization problem by constraining the parameters to their given
range, in particular Y ∈ (0, 2).

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test is a test constructed to check the equality of con-
tinuous one-dimensional distributions to compare a sample with a reference dis-
tribution. It does so by quantifying the largest distance between the cumulative
distribution function of the reference distribution and the empirical cumulative
distribution function of the observations. Denote F (x) the cumulative distribu-
tion function of the model we want to test and Fn(x) as the empirical cumulative
distribution function such that for n independent observations Xi,

Fn(x) =
1

n

n∑
i=1

1Xi≤x

where 1 is the indicator function. The null hypothesis is then

H0 : Fn(x) = F (x).
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Theorem 4.2.1 Kolmogorov’s Theorem. Denote the Kolmogorov-statistic by
Dn such that

Dn = sup
x
|Fn(x)− F (x)|.

Then, for every z ≥ 0,
lim
n→∞

P (
√
nDn ≤ z) = K(z)

where K(z) is the cumulative Kolmogorov distribution,

K(z) =

√
2π

x

∞∑
k=1

e−(2k−1)
2π2/(8x2).

We thus reject the null hypothesis if
√
nDn > Kα, where

P (K ≤ Kα) = 1− α.

Table 4.11 shows the qauntiles of the Kolmogorov distribution and table 4.12

Table 4.11: Quantiles of the Kolmogorov distribution.

α 0.5 0.3 0.2 0.1 0.05 0.025 0.01 0.001

Kα 0.8276 0.9731 1.0728 1.2238 1.3581 1.4802 1.6276 1.9495

Table 4.12: Observed values of Kα.

AAPL ^OMX NHY.OL OSEBX.OL

GBM 3.0493 1.59 1.9408 2.045

NIG 0.6633 0.7008 0.6106 0.5132

VG 0.9070 0.6380 0.4493 0.6638

GH 0.6498 0.8033 0.6800 0.5056

H 0.9005 0.6483 0.5036 0.6060

CGMY 1.3088 0.6903 0.7752 0.7578

shows calculated test statistics. First, note that we would reject the Geometric
Brownian motion at a 0.025 significance level for all data sets and at a 0.01 level
for all assets apart from OMX. Though the CGMY model came closest to estimat-
ing the moments for all data sets, it is rejected at a 0.1 significance level for the
AAPL data set. The Generalized Hyperbolic and the Variance Gamma looks to
have p-values somewhere between 0.5 and 0.3, but this would not have been of sig-
nificance in a typical hypothesis test. All the values not mentioned, have p-values
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> 0.5, meaning we would not reject the null hypothesis.

We note that the liquidities and index or single underlying asset does not seem
to have any implications on the fit. In fact, the Variance Gamma, Normal In-
verse Gaussian, Hyperbolic and Generalized Hyperbolic have better values for the
Kolmogorov-Smirnov test for the least liquid assets.
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(a) Cumulative distributions for densities fitted to
Apple log-returns.
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(b) Cumulative distributions for densities fitted to
OMX Stockholm log returns.
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(c) Cumulative distributions for densities fitted to
Norsk Hydro log returns.
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Figure 4.5: Cumulative distributions for all fitted densities.

In figure 4.5a-4.5d the cumulative distributions of the models are compared to
the empirical cumulative distribution. The Geometric Brownian motion seems
to fit worst for the AAPL and OSEBX.OL log returns. This is reflected in the
Kolmogorov-Smirnov values in table 4.12. The other Lévy models seem to fit the
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empirical cumulative density function quite well which is also confirmed by table
4.12.

Value at Risk

The Value at Risk (VaR) is another way of measuring the goodness of the fit by
considering the behaviour of the tails of the distributions. It was introduced as a
way of quantifying risk in complex portfolios. The VaR is defined such that for
a given probability level, α, it is the maximum loss possible for a portfolio over a
future holding period.

Definition 4.2.1 VaRα. The VaR of a random variable, X, with a cumulative
distribution function, FX(x), at a probability level α,

V aRα(X) = − inf{x ∈ R : FX(x) > α}.

In figure 4.6a-4.6d, the VaR has been visualized for probability levels α ∈ [0.05, 0],
i.e. we are looking at extreme cases which there are very few observations for.

For all the data sets, the Geometric Brownian motion is definitely the worst fit
of the tail behaviour. For the smaller Norwegian asset and index, NHY.OL and
OSEBX.OL, there is quite similar tail behaviour of all the Generalized Hyperbolic
distributions, but for the larger, more liquid index and asset, OMX and AAPL, the
distributions seem to be more spread.

4.3 Monte Carlo Simulation

In this section, we will go through how the pricing of options are done through
Monte Carlo simulation after the models have been fitted to empirical data.

Generating Random Variables

Our market model is given by equation (3.1). First, the time series of the log
returns are simulated by drawing random variables from the Lévy processes. This
can be done in several ways. One can exploit the fact that all of the Lévy pro-
cesses described, can be expressed as subordinated Brownian motions of simpler
processes. Asmussen and Rosinski [5] showed that small jumps in a Lévy process
can be approximated by a Brownian motion. Then the process can be divided
into a compound Poisson process and a Brownian motion for small jumps. In this
thesis, the random variables from the class of Generalized Hyperbolic processes
were simulated using the ghyp-package in R [35]. For the the CGMY process, the
analytic expression of the characteristic function was vectorized, before it was Fast
Fourier transformed2 to a vectorized probability distribution which could be used
to generate the random variables using the sample-function in R.

2See [1].
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(a) VaR visualized for Apple Inc. log-returns.
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(b) VaR visualized for OMX Stockholm 30 Index log
returns.
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(c) VaR visualized for Norsk Hydro ASA log returns.
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(d) VaR visualized for Oslo Stock Exchange Index
log returns.

Figure 4.6: VaR visualized for all fitted densities.

Generating Price Paths and Pricing Options
Assume that N random variables from the Lévy processes has been generated,

Xj
∆ti

, ∆ti = ti+1 − ti, ti = t0, . . . tN , j = 1 . . . Nsim.

Stock price paths are then simulated as

Sjti = Sj0(

i∑
k=1

Xj
∆tk

), ti = t0, . . . tN , j = 1 . . . Nsim.

for Nsim simulations and an equally spaced time grid such that t0 = 0 and tN = T .
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Because of the put-call parity, we may always find the price of a put option given
the price of a call option and vice verse. Hence, we limit ourselves to only finding
the call option price. The estimate of the call option price at time t = 0, Π̂Call

0 , is
then found by calculating the discounted expectation of the terminal payoff,

Π̂Call
0 = e−rT

1

Nsim

Nsim∑
j=1

max{SjT −K, 0}.

Two remarks about the described approach is that this is an exact solution to the
stochastic differential equation,

dSt = StdXt. (4.2)

Hence, the spacing in the time grid should not make a significant difference. Also,
this is a very straight forward simulation approach, there are several ways in which
to improve the simulation. Please see e.g. Glasserman [27].

In figure 4.7a-6.2f, 20 stock price paths have been simulated for 100 days with
a time space grid of 1 day for AAPL adjusted closing prices. The black price
path is the true AAPL adjusted closing price path and the coloured paths are
simulations.
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(a) 20 Monte Carlo simulated Geometric Brow-
nian Motion price paths.
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(b) 20 Monte Carlo simulated Normal Inverse
Gaussian price paths.
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(c) 20 Monte Carlo simulated Variance Gamma
price paths.
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(d) 20 Monte Carlo simulated Generalized Hy-
perbolic price paths.
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(e) 20 Monte Carlo simulated Hyperbolic price
paths.
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(f) 20 Monte Carlo simulated CGMY price paths.

Figure 4.7: Monte Carlo simulated price paths for Apple Inc. adjusted closing
prices.



Chapter 5

Artificial Neural Networks

Artificial Neural Networks are loosely inspired by the biological neural network in
the brain and how it processes information, thereby the name. McCulloch and
Pitts [42] were the first who tried to represent the brain of a mammal through an
artificial neural network represented by basic brain cells they called neurons.

Rosenblatt [48] a bit later introduced the perceptron built up of linear threshold
units (LTUs). An LTU sums over weighted inputs and applies the step function
which outputs 1 if the sum is larger than some threshold and 0 if it is below. An
LTU is illustrated in figure 5.1. The perceptron is then constricted by an input
layer, a layer of LTUs connected to all the inputs and produces an output vector
containing only binary values. However, the perceptron was restricted. Later, the
neocognitron was introduced by Fukushima [23], a hierarchical multilayer neural
network - what motivated for further work on multilayer perceptrons.

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 5.1: An LTU with input of dimension three.
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Figure 5.2: Illustration of a MLP with input dimension of five, a one-dimensional
output and one hidden layer with three neurons.

5.1 Multilayer Perceptron

Multilayer perceptrons (MLPs) are networks consisting of multiple layers of neu-
rons. The first layer is an input layer, the last layer is an output layer and the
layers between are called hidden layers. The network is deep if it consists of two
or more hidden layers.

MLPs are a class of feedforward neural networks. Feedforward neural networks
are the most essential deep learning models. It is called feedforward because it is a
directed acyclic graph built up of chain structures and the input x floats forward
through the network to produce an output y. The goal of the network is to approx-
imate some function y = f∗(x) by defining a mapping y = f(x;θ) and learning
the parameters θ that best fit f∗.

An MLP is constructed similar to a perceptron, consisting of an input layer with
an input vector and a bias term usually initialized to zero. The input layer is
connected to the first hidden layer such that every unit in the hidden layer is con-
nected to every input unit. The difference from the perceptron is in the nonlinear
activation function. Where the perceptron would use a binary step function, the
MLP units can use a wide range of activation functions producing a real-valued
output which it passes on to units in the next layer. The process continues like
this until it reaches the output layer.
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5.1.1 Activation Function
The reason for using activation functions is the nonlinear element, namely the pos-
sibility of solving nonlinear functions. If all the activation functions are linear, one
simply has multiple linear regression. An activation function also gives a restric-
tion on the outputs of the neurons. This can be useful if one wants to squeeze
the output into a range. In addition it increases training stability. Different layers
can have different activation functions. The choice of activation function is closely
related to the choice of cost function1.

In the 1980s, the sigmoid activation function was very popular as it performed
well on small neural networks. One avoided the use of rectified linear units until
as late as the early 2000s because of its undefined derivative. However, in practice,
the nondifferentiability is not a problem as the optimizer does not actually find
a local minimum, but just a very low value in addition to the fact that there is
some numerical error which means that when the analytic gradient is zero, the
estimated gradient will not be exactly zero. Jarrett et al. [32] observed that the
use of rectified nonlinearity was the most important factor of improvement among
several other factors that they examined. For this reason, ReLU and its variations
such as Leaky ReLU, Parametric ReLU and ELU has had increased popularity as
of recently.

In this thesis, ELU and the softplus function, given by the equations in table
5.1, has been used as activation functions. Both ELU and softplus are very similar
to ReLU. Softplus only outputs positive values, but has a softer transition around
z = 0. ELU outputs small values also for negative input values.

Table 5.1: Activation functions.

ELU f(z) =

{
α(ez − 1) if z < 0

x if z ≥ 0

Softplus f(z) = ln(1 + ez)

5.1.2 Cost Function
The cost function is a performance measure for the neural network and what is
actually optimized with respect to the parameters θ. Important properties of the
cost function is to have large and predictable enough gradients. However, if acti-
vation functions saturates for some values, the cost function tends to saturate as
well. Hence, the combination of activation functions and cost functions should be
chosen with care.

Another problem that occurs in deep neural networks is that the cost functions
1See section 5.1.2.
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one usually evaluates become non-convex, i.e. they are harder to optimize as we
might not find a global minimum, but merely just a very low value. We there-
fore use iterative and stochastic gradient-based optimizers. They do not have any
global convergence guarantee and may be sensitive to initial values. The weights
are usually initialized to small random values and the bias to small positive values
or even zero.

A common choice of cost function for regression tasks that is used in this the-
sis, is the root-mean-square error which is given by (5.1).

J(θ) =

√√√√ 1

n

n∑
i=1

(f(xi;θ)− yi)2 (5.1)

5.1.3 Backpropagation

In order to minimize the cost function, the gradient of the model has to be cal-
culated. This is done using the backpropagation algorithm. The backpropagation
algorithm was popularized and first used on multilayer neural networks by Rumel-
hart et al. [49]. The backpropagation algorithm consists of two parts, the forward
pass and the backward pass.

Forward Pass

In the forward pass, the training samples are propagated forward through the net-
work, calculating the output of each neuron in a layer and passing forward to the
next layers to produce the output.

Let x ∈ Rd, y ∈ R, b(l) ∈ R for l = 1, . . . , n and wl be the activation function
of layer l. In addition, let W (1) ∈ Rm1×d, W (l) ∈ Rml×ml−1 for l = 2, . . . n− 1 and
W (n) ∈ Rmn−1 be the matrices such that element W l

ij is the weight from node j in
layer (l − 1) to node i in layer l. Then the forward pass is given by

h(1) = w1(b(1) +W (1)x)

h(2) = w2(b(2) +W (2)h(1))

...

h(n−1) = wn−1(b(n−1) +W (n−1)h(n−2))

y = wn(b(n) +Wn>h(n−1)).

The algorithm is presented in Algorithm 1.
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Backward Pass

The goal of the backpropagation algorithm is to calculate the gradient of the cost
function with respect to any weight or bias in the network,

∂J

∂W
(l)
ij

,
∂J

∂b(l)
.

It does so by starting with the output layer. Let δ(n) be such that

δ(n) = ∇hJ ◦ w′(z(n)), (5.2)

where

z(l) = W (l)h(l−1) + bl

and ∇h is the partial derivative with respect to each node in the output layer,
∂/∂hnj . Next, δ(l) is calculated for layer l given δ(l+1),

δ(l) =
(

(W (l+1))T δ(l+1)
)
◦ w′(z(l)). (5.3)

We thus obtain the equations for the gradients,

∂J

∂W
(l)
ij

= h
(l−1)
j δ

(l)
i (5.4)

∂J

∂b(l)
= δ(l). (5.5)

The backward pass starts by calculating δ(n) for the output layer and iterates back-
wards through the layers using (5.3) and (5.2). Finally, the gradients are obtained
by equation (5.4) and (5.5).

The algorithm is presented in Algorithm 2.
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for k = 1 to m1 do
z
(1)
k =

∑d
j=1W

(1)
jk xij

h
(1)
k = w1(z

(1)
k )

end
for l = 2 to n do

for k = 1 to ml do
z
(l)
k =

∑ml−1

j=1 W
(l)
jk h

(l−1)
j

h
(l)
k = wl(z

(1)
k )

end
end

Algorithm 1: Forward Pass

for j = 1 to mn do
δ
(n)
j = ∂J

∂h
(n)
j

w′(znj )

∂Ji
∂W

(n)
jk

= δ
(n)
j h

(n−1)
k

end
for l = n− 1 to 1 do

for j = 1 to ml do
δ
(l)
j = w′(z

(l)
j )
∑ml+1

k=1 δ
(l+1)
k W

(l+1)
jk

∂Ji
∂W

(l)
jk

= δ
(l)
j h

(l−1)
k

end
end

Algorithm 2: Backward Pass

5.1.4 Optimization

The parameters in the MLP are usually updated with some version of stochastic
gradient descent. Stochastic gradient descent divides the training set into non-
overlapping, roughly equal subsets called batches and computes an approximate
gradient on the batches which it iterates over2. By doing so, it is possible to obtain
an unbiased estimator of the gradient as we average over a batch of identically
independently distributed samples.

Stochastic gradient descent relies on a hyperparameter - a parameter that is not
decided by the algorithm, namely the learning rate with which each update is made.
Typically, this parameter needs to decrease in each iteration because the gradient
estimate includes some noise that does not vanish at the minimum. In this thesis,

2In contrast to a gradient descent method that computes the exact gradient using the whole
training set in each iteration.
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a version of stochastic gradient descent called Adam algorithm has been used as
the optimization algorithm.

Adam
Adam, short for adaptive moments, is an algorithm with an adaptive learning rate
presented by Kingma and Ba in 2014 [33]. It first computes a first- and second-
order moment for which it secondly performs a bias correction to account for the
initialization made at 0. The algorithm is presented in Algorithm 3.

Data: step size, ε (default: 0.001)
Data: exponential decay rates for momentum, ρ1, ρ2 ∈ [0, 1) (default: 0.9,

0.999)
Data: small constant δ for numerical stabilization (default: 10−8)
initialize weights θ
initialize first and second momentum: s = 0, r = 0
t← 0
while stopping criterion not met do

sample minibatch of size m, input {x1, . . . ,xm} with corresponding
output {y1, . . . , ym}
compute gradient: g← 1

m∇θ

∑m
i=1 J(f(xi;θ), yi)

t← t+ 1
update first biased momentum: s← ρ1s + (1− ρ1)g
update second biased momentum: r← ρ2r + (1− ρ2)g ◦ g
correct first biased momentum: ŝ← s

1−ρt1
correct second biased momentum: r̂← r

1−ρt2
compute update: ∆θ = −ε ŝ√

r̂+δ
update: θ ← θ +∆θ

end
Algorithm 3: Adam

5.1.5 Generalization
The Universal Approximation Theorem first presented by Cybenko [19] showed
that any function that is continuous on a closed and bounded set of R can be rep-
resented by a single hidden layer feedforward network with the sigmoid activation
function and a linear output. Hornik et al. [30] then showed that this is true for
a wide range of activation functions. However, we do not know the number of
neurons needed and have no guarantee for the ability of our network to learn this
representation.

Generalization is the ability the model has to predict unobserved data. Empir-
ically, e.g. by Bengio et al., [10], the more layers we add, the better the generaliza-
tion of the neural network and the less neurons are needed. To observe how well
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our model generalizes, it is common to divide the data into a training and a test set.

The training set is used to train the model and the test set is used to measure
the error for unobserved data. If the training error is not sufficiently low, we have
what is called underfitting, or high bias. If the training error is sufficiently low, but
the gap between the training and test error is high, we have overfitting, or high
variance. Overfitting occurs from sensitivity to small deviations in the data often
causing the network to model noise. In deciding on a network architecture, we
encounter the bias-variance trade-off problem. Increased number of hidden units
will increase variance and decrease bias causing overfitting, while too few hidden
units may lead to underfitting. Hence, we want the train and test error to have as
small of a gap as possible and choose a model based on minimizing the test error
as this is the best indicator of the ability our model has to generalize.

5.2 Model Setup

5.2.1 Data Calibration

Hutchinson et al. [31] made the first attempt to solve option pricing using an MLP
on both Geometric Brownian Monte Carlo simulated underlying stock price for
option prices as well as real S&P 500 futures and options using only two input
parameters, namely time to maturity and the moneyness - the ratio between the
underlying stock price and the strike price, at the start of the option. The output
was the ratio between the option price, and the strike price.

Reducing the number of input parameters reduces the complexity of the model
and necessity for hidden units. In addition, normalized input data to the same
order of magnitude also reduces the complexity of the model as the weight updates
are proportional to the input data. Hutchinson et al. [31] argued for the use of only
two input parameters by Theorem 8.9 of Merton [44] where it is stated that the
option pricing formula is homogeneous of degree one in stock price per share and
strike price. Garcia and Gencay [24] also showed the use of this assumption in feed-
forward neural networks greatly improves performance. The authors of Hutchinson
et al. [31] also argued that with the assumption that the volatility and the risk-free
rate is constant during the life of the option, this will not be picked up by the
model. However, this is one of the limitations of the Black-Scholes formula, and
providing the model with some measure of the latter two might be useful. For fur-
ther work, it has been suggested in Fogarasi [22] to start out with a lower number
of input variables which one increases to achieve more accuracy. This was done
by e.g. Amilon [3], using a total of nine input variables, including 10- and 30-days
historical volatilities as well as lagged prices of the underlying stock.

In this thesis, only one underlying has been used, for only one start date. This
means that the volatility, interest rate and initial stock price are the same for all
samples so these parameters were left out of the input. In addition, instead of using
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the homogeneity principle as used by e.g. Hutchinson et al. [31] or Garcia [24] ,
the input and output data has been scaled between 0 and 1 by equation (5.6), if
xij is an element of matrix X,

xscaledij =
xij −minj{X}

maxj{X} −minj{X}
. (5.6)

Scaling the data is recommended because the data is now of the same order as the
output of the activation functions which increases stability and reduces complex-
ity. Unscaled input can cause slow and unstable learning while unscaled output
can result in exploding gradients which might cause the learning process to fail.

Hence, the input consists of only the strike price K and the time to maturity,
T − t, while the output is the quoted call option price, ΠCall

t=T . The structure of
the input matrix, X, is of the following form X = [x1,x2, . . . ,xN ]> such that
xi = [Ki, Ti − t], and the corresponding output, yi = Π̂Call

t=T .

5.2.2 Network Architecture
In Hutchinson et al. [31], the authors experimented with three different neural net-
works - Radial Basis Functions(RBFs), Projection Pursuit Regression(PPR) and
MLP, discovering that MLP performed best. In combination with it’s straightfor-
ward configuration, this most likely motivated the further research on the use of
MLP for option pricing.

Anders et al. [4], Gencay and Salih [25] and Yao et al. [57] mainly focused on
the use of MLP, but used small and shallow networks. Hutchinson et al. [31] used
a one hidden layer network with 4 hidden units and 2 inputs. Benell & Sutcliff [11]
experimented with one hidden layer with 3-5 hidden units and 3-7 inputs. Anders
et al. [4] experimented with a sparse network (networks where not all units are con-
nected) with one hidden layer, 3 hidden units and 4 inputs. They all still achieved
good performance, hence one might expect that a deeper and wider network would
perform even better. This belief is also supported by studies on better generaliza-
tion with deeper networks (Bengio et al. [10]). By today’s computer power it is
possible to get results for networks with several hundred hidden units and several
hidden layers in reasonable time.

An MLP has been implemented using Keras [17]3. The network architecture is
presented in table 5.2.

The softplus activation function was chosen for the output layer as it maps from
the whole real line to all nonnegative values which is consistent with option prices.
For the hidden layers, the choice of activation function is harder because they are
not directly connected to the input or output. ReLU has empirically proven to
be a good learning objective [32], but has one major drawback. The fact that its

3See appendix E for code.
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Table 5.2: Network architecture.

Layer Neurons (Trainable )Parameters Activation Function

Input layer 2
Hidden layer 1 100 300 ELU
Hidden layer 2 80 8080 ELU
Hidden layer 3 60 4860 ELU
Hidden layer 4 40 2440 ELU
Hidden layer 5 20 820 Softplus
Output layer 1 21

Batch size Epochs Optimizer Loss function Train size Test size

5 400 Adam RMSE 135 34

gradient is zero for half of its domain means that it cannot learn when the output
is zero. Several variations of ReLU has been made to guarantee that a gradient
exists for all inputs. One of these is ELU, which was applied to all the hidden layers.

The batch size was set to 5 which is a quite small size, but is set with consid-
eration of the small data set. In general, batch sizes are set in consideration to the
robustness of the gradient of the loss function used in the optimizer. Lower batch
sizes are more unstable while larger batch sizes give a more stable optimizer, but
might not give as accurate estimates. In figure 6.1a and 6.1b, loss plotted for each
iteration through the whole data set - called epoch - is plotted for a batch size of
5 and 20 showing more stability in the latter size. Smaller batch size can though
provide a regularizing effect, but has a higher run time because it requires more
iterations both due to the size and the need for a reduced learning rate, making
the optimizer converge more slowly.

Adam was chosen as optimizer applied with the default values given in Algorithm 3.

Please note that the architecture is very problem dependent. There is a lot of
ongoing research on the topic and there are no clear guidelines or theoretical re-
sults discovered yet. Hence, it was chosen based on previous work in combination
with monitoring the performance on the out-of-sample data.
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Results and Analysis

6.1 Data Set

To analyze the results for the call option prices, option ask and bid prices on Apple
Inc. stock has been downloaded. The option prices were downloaded using the
quantmod -package in R [50] at 2019-05-31 with six different maturities and con-
tains a total of 257 prices1. A description of the data set is listed in table 6.1. The
risk free interest rate used was collected from The U.S. Department of Treasure [2]
which at 2019-05-31 was at 2.35% per annum.

For the MLP, about 20 percent of the samples were held as an out-of-sample data
set in which the MLP will not train on. In addition, it would be interesting to
see how the MLP performs on a maturity it has not trained on. Hence, all sam-
ples for the longest maturity, 385 days, were held out in an unobserved maturity
data set. The remaining samples were split by an 80-20 ratio of train and test set
respectively, to monitor the train and test error.

1Its been proven difficult to get hold of historical option data which is the reason for the limited
data set.

Table 6.1: Details of data set of call option prices.

Collected Maturity Length Samples

2019-05-31 2019-06-21 21 days 49
2019-07-09 49 days 45
2019-09-20 112 days 26
2019-10-18 140 days 41
2020-01-17 231 days 51
2020-06-19 385 days 45

49
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6.2 Error Measures
For the error measures, we will follow Schoutens [52]. Let Ciobs be observed market
call option prices which is taken to be the mean of the bid and ask price, Cimod be
model call option prices and i = 1 . . . nobs the number of prices. Then the average
percentage error (APE), average absolute error (AAE), average relative percentage
error (ARPE) and the root-mean-square error (RMSE) are defined by equation
(6.1)-(6.4).

APE =
( 1

nobs

nobs∑
i=1

Ciobs

)−1 nobs∑
i=1

|Ciobs − Cimod|
nobs

(6.1)

AAE =

nobs∑
i=1

|Ciobs − Cimod|
nobs

(6.2)

ARPE =
1

nobs

nobs∑
i=1

|Ciobs − Cimod|
Ciobs

(6.3)

RMSE =

√√√√nobs∑
i=1

(Ciobs − Cimod)2
nobs

(6.4)

Note that the ARPE is undefined if Ciobs is equal to zero. For this reason, some
values are missing for this error measure.

The rest of this chapter will be devoted to introduce the performance of the Lévy
models and the MLP for all six maturities. These will be discussed, before perfor-
mance for test, train and finally an overall performance will be evaluated.
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(a) RMSE loss for the MLP for each epoch with a
batch size equal to 5.
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Figure 6.1: RMSE loss for MLP per epoch for different batch sizes.
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Table 6.2: Error measures for all maturities.

GBM NIG

APE AAE ARPE RMSE APE AAE ARPE RMSE

21 days 0.05413 1.13644 1.72242 0.05361 1.12559 1.70212

49 days 0.05056 1.18348 0.31409 1.71839 0.05152 1.20593 0.30662 1.75095

112 days 0.05956 0.99744 0.21062 1.31150 0.06458 1.08164 0.19710 1.45406

140 days 0.13579 2.76518 0.28807 6.88841 0.13852 2.82076 0.28004 6.96239

231 days 0.028842 1.05685 0.32419 1.19381 0.02950 1.08085 0.32524 1.22096

385 days 0.05464 1.65754 0.45266 2.01547 0.05039 1.52858 0.44143 1.91921

VG GH

APE AAE ARPE RMSE APE AAE ARPE RMSE

21 days 0.05508 1.15639 1.74241 0.05511 1.15708 1.74943

49 days 0.05202 1.21773 0.33177 1.76476 0.05229 1.22414 0.30656 1.77613

112 days 0.06225 1.04264 0.17480 1.41045 0.06185 1.03580 0.19640 1.38931

140 days 0.13725 2.79508 0.25008 6.93251 0.13731 2.79627 0.27041 6.93753

231 days 0.02810 1.02968 0.27245 1.16282 0.02920 1.06996 0.31247 1.20527

385 days 0.04650 1.41067 0.38842 1.74754 0.04941 1.49882 0.43878 1.88620

H CGMY

APE AAE ARPE RMSE APE AAE ARPE RMSE

21 days 0.05501 1.15506 1.74161 0.04834 1.01495 1.55653

49 days 0.05318 1.24499 0.31179 1.80325 0.04058 0.95002 0.37343 1.36404

112 days 0.06751 1.13062 0.13865 1.56164 0.04844 0.81123 0.43752 0.90442

140 days 0.13927 2.83608 0.21424 6.99144 0.12779 2.60230 0.64283 6.44431

231 days 0.02793 1.02337 0.24895 1.16427 0.04680 1.71476 0.67083 2.01895

385 days 0.04198 1.27336 0.36103 1.62448 0.14792 4.48695 0.87417 4.76119

MLP

APE AAE ARPE RMSE

21 days 0.05855 1.22923 1.75278

49 days 0.05237 1.22589 6.80260 1.62358

112 days 0.07572 1.26822 0.35074 1.66524

140 days 0.12224 2.48928 0.25384 5.51703

231 days 0.03962 1.45192 0.20334 1.93980

385 days 0.03116 0.94509 0.26827 1.18331
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Table 6.3: Error measures for train, test and complete data set.

Train set

APE AAE ARPE RMSE

GBM 0.08083 1.67372 0.31221 3.39913

NIG 0.07783 1.60692 0.31806 3.32019

VG 0.08239 1.70292 0.27841 3.45166

GH 0.07948 1.64453 0.30582 3.37316

H 0.08039 1.65933 0.26954 3.40250

CGMY 0.07133 1.48511 0.35982 3.17744

MLP 0.07885 1.70640 1.60315 3.13934

Out-of-sample set

APE AAE ARPE RMSE

GBM 0.05152 1.74190 0.20297 2.98121

NIG 0.04974 1.68558 0.20262 2.90835

VG 0.05283 1.78319 0.15595 3.03676

GH 0.05112 1.72989 0.18240 2.96885

H 0.05142 1.73520 0.13912 2.98403

CGMY 0.04790 1.65258 0.22446 2.89736

MLP 0.05522 1.90690 2.54708 2.81879

Complete data set

APE AAE ARPE RMSE

GBM 0.06588 1.53210 0.31793 2.62552

NIG 0.06690 1.54355 0.31026 2.66151

VG 0.06523 1.49916 0.28350 2.60361

GH 0.06601 1.52500 0.30492 2.63889

H 0.06597 1.50168 0.25493 2.62902

CGMY 0.08230 2.11305 0.59976 3.09858

MLP 0.05508 1.51946 1.47284 2.38048
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6.3 Numerical Results

Tables 6.2 shows error measures for all the maturities, for the Lévy models sim-
ulated at a 1 day time step and 1 × 105 simulations2. Table 6.3 shows the error
measures for the train set, the test set and the complete data set separately. Figure
6.2a-6.1g shows the true and predicted option prices for all the models, for all matu-
rities. In figure 6.2a-6.1g, we can see the true and predicted option prices for all the
models, for only the test set that was held out of training for the MLP, while in fig-
ure 6.2a-6.1g, we can see the true and predicted option prices for all the models, for
the 385 days maturity that was held completely out of training for the MLP as well.

We may observe from table 6.2 that all the models have largest RMSE for the
140 days maturity. In figure 6.2a-6.1g, we may see that this part of the data set
obviously has some outliers which probably explains the heavy mispricing of this
maturity. The MLP does performs best for this maturity, however, the 140 days
maturity is part of the training set. CGMY has the best error measures for the 21,
49 and 112 days maturities, but the worst error measures for the 385 and 231 days
maturities. VG has best error measures for the 231 days maturity, while a rather
intriguing result for the MLP, is the error on the 385 days maturity. Prices for this
maturity was kept completely out of the train-test set, but the model still manages
to get better error performance for this maturity than all the Lévy models. The
GBM outperforms several of the models for 21, 49, 112 and 231 days maturities.

From table 6.3 it is clear that the MLP has the lowest RMSE for all parts of
the data set3. That the training error is low is to be expected as the network is
trained with respect to this data set. However, that the test error is low as well
indicates that the network generalizes well to unobserved data which also is con-
firmed for the performance on the 385 days maturity.

For the overall performance of the Lévy models, CGMY has the worst error mea-
sures which is a result of the heavy mispricing for the two longest maturities. All
the other Lévy models have very similar overall error measures, though NIG has
slightly higher RMSE than the remaining models and VG has slightly lower RMSE
than the remaining models. The GBM outperforms NIG, GH, H and CGMY. The
relatively poor pricing of the CGMY does coincide with the Kolmogorov-Smirnov
test observed in section 4.2. However, the better performance of GBM does not
coincide with what was observed in section 4.2 where it came out as the worst fit.

From figure 6.2a-6.1g of unobserved maturity, the Lévy models seem to overprice
the options with higher strikes, while the MLP seems to underprice the same op-
tions. The CGMY looks to do the the most severe overpricing. From figure 6.1g,
the MLP underprices the lowest strike options and overprices the shortest maturity

2This was used as it was observed that the error did not improve with increased number of
simulations. See table D.1 in appendix D.

3We may note that it has the largest ARPE for all parts of the data set. This seems odd as
all models are tested on the same data set and might be a calculation.
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options around strikes at 200.

6.4 Discussion
A remark regarding the results is the size of the data set which is quite small.
Madan et al. [36] e.g. had 8245 option prices. Especially with respect to the neu-
ral network which has 16 521 trainable parameters and is a model which is usually
trained on much larger data sets. This makes the results of the MLP quite unstable
as there is a lot of stochastic behaviour, for example in the shuffling and splitting
of data set, initializing of parameters and hyperparameters and in the stochastic
gradient descent-type optimizing.

The small size of the data set could also be the reason why we do not get co-
herent results for the option pricing with the market fit analysis. With such few
samples, it makes it hard to be able to say anything of statistical significance. We
have also just considered options on one underlying asset. This was due to the
difficulties of obtaining option price data. Comparing with other underlying assets
or indices would be of interest to see how the models perform on underlying of
different size and liquidity.

We have touched upon it briefly, but looking more into level of under- or over-
pricing for different maturities would also be interesting. However, with little data,
I think it would be hard to say anything definite for this case.

As discussion in section 4.2, there was some optimizing problems with CGMY
parameters. This could be a contributing factor to the poor pricing of the CGMY
model. Using another optimizing algorithm or estimating the parameters in an-
other way - e.g. maximum likelihood as the generalized hyperbolic class distribu-
tions were, could perhaps improve both the fit and the pricing.

It is also important to mention that the MLP has used quoted option prices di-
rectly to learn, while the Lévy models has been fitted indirectly, with respect to the
underlying asset, in order to price. Had the parameters of the Lévy models been
found through calibration with the market prices, as done in e.g. Schoutens [52],
they might have performed better. It would be interesting to compare the pricing
performance of the Lévy models through fit of underlying asset and calibrating
with market option prices.

It is hard to do a deeper analysis of the MLP than comparing various error mea-
sures, as it cannot be analyzed to the same degree as the Lévy models4. This
is generally a major drawback with deep neural network-type models, that they
become a black box because of the limited knowledge we have of them.

4Yet?
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To comment on the computational speed and complexity of the models, it needs
to be said that Monte Carlo simulation has been done for one underlying asset,
and is not competitive with regards to speed and does not get competitive until
the dimension is at least three. There are other ways to price options with Lévy
dynamics such as Fast Fourier transforms of characteristic functions as done by
e.g. Carr & Madan [16], or solving the partial differential integral equation which
follows from the Feynman-Kac formula for Lévy processe.5 Deep neural networks
are usually time consuming to train as they have a lot of parameters and usually
a lot of training data. However, when the training is done, the predictions can be
quite fast.

Madan et al. [36] found that option pricing errors for Black-Scholes and the sym-
metric VG were highly correlated with degree of moneyness at maturity, but not
for the non-symmetric VG. It could be interesting to examine the correlation of
the pricing error with the symmetry in the model. More generally, it would also
be interesting to look at correlation in mispricing and moneyness as well.

When evaluating performance, it could be informative to look at the delta hedg-
ing performance as done by several others, e.g. Hutchinson et al. [31], Anders et
al. [4]. Or evaluating statistical significance for the MLP e.g. by moving block
bootstrappingas done by Amilon [3]. Several adjustments could have been tried for
the MLP. For instance, there was no regularization applied such as early stopping,
setting a dropout rate or L1/L2 regularization. One could also experiment more
with the architecture, use of optimizer and default settings for hyperparameters,
activation functions, batch size and number of epochs. Amilon [3] for instance,
experimented with the input and output by adding lagged values of the stock price
to the input and made it output the bid and ask price in order to compute the
bid-ask spread.

5See e.g. [45] for more on this.
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(c) True and predicted option prices for Variance
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(e) True and predicted option prices for Hyperbolic.
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(g) True and predicted option prices for MLP.

Figure 6.1: True and predicted option prices for full data set.

100 150 200 250 300

0
20

40
60

80
10

0
12

0

GBM

Strike

O
pt

io
n 

P
ric

e

21 days
49 days
112 days
140 days
231 days
predicted

(a) True and predicted option prices for Geomtric
Brownian motion.

100 150 200 250 300

0
20

40
60

80
10

0
12

0

NIG

Strike

O
pt

io
n 

P
ric

e

21 days
49 days
112 days
140 days
231 days
predicted

(b) True and predicted option prices for Normal In-
verse Gaussian.



CHAPTER 6. RESULTS AND ANALYSIS 58

100 150 200 250 300

0
20

40
60

80
10

0
12

0

VG

Strike

O
pt

io
n 

P
ric

e

21 days
49 days
112 days
140 days
231 days
predicted

(c) True and predicted option prices for Variance
Gamma.

100 150 200 250 300

0
20

40
60

80
10

0
12

0

GH

Strike

O
pt

io
n 

P
ric

e

21 days
49 days
112 days
140 days
231 days
predicted

(d) True and predicted option prices for Generalized
Hyperbolic.

100 150 200 250 300

0
20

40
60

80
10

0
12

0

H

Strike

O
pt

io
n 

P
ric

e

21 days
49 days
112 days
140 days
231 days
predicted
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(f) True and predicted option prices for CGMY.
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Figure 6.1: True and predicted option prices for out-of-sample data set.
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Figure 6.1: True and predicted option prices for unobserved maturity data set.



Chapter 7

Concluding Remarks

In this thesis, five Lévy models and a multilayer perceptron has been implemented
to compare pricing performance with the Geometric Brownian motion stock price
dynamics of the Black-Scholes formula as the all the models has been proposed in
literature to outperform Black-Scholes. In section 4.2, we saw that the Lévy mod-
els clearly were a better fit on the underlying assets than the Geometric Brownian
motion based on estimates of moments, a goodness-of-fit test and observing the
Value at Risk. However, we saw that this did not result in better option pricing
performance. On the contrary, the Geometric Brownian motion performed better
than several of the models, both for some of the maturities and for an overall per-
formance measure.

The MLP had similar error measures to the other models, which (I) consider in-
teresting because of the small amount of data it was able to train on. Another
interesting result, was the ability it had to generalize to a unobserved maturity
where it actually performed better than all the other models. However, this model
is sensitive because of its many stochastic components, showing inconsistent results
by repeating the experiment. This might also have been because of the amount of
data.

Improvements and further work have been suggested based on the information
at hand such as experimenting with network architecture as well as intput and
output, examining correlation of pricing performance with moneyness as well as a
sensitivity analysis and calibrating Lévy parameters to quoted option prices. Could
faster pricing methods such as Fast Fourier transform be considered to compare
with MLP? In the end, it is hard to conclude with anything definite because of the
small data set.

61



CHAPTER 7. CONCLUDING REMARKS 62



Bibliography

[1] Charfun. https://github.com/cran/CharFun/blob/master/R/cf2DistGP.
R.

[2] Daily Treasury Bill Rates Data. https://www.treasury.gov/
resource-center/data-chart-center/interest-rates/Pages/TextView.
aspx?data=billrates.

[3] Henrik Amilon. A neural network versus Black-Scholes: a comparison of pric-
ing and hedging performances. Journal of Forecasting, 22, 2003.

[4] Ulrich Anders, Olaf Korn, and Christian Schmitt. Improving the pricing of
options: a neural network approach. ZEW Discussion Papers, 1996.

[5] Søren Asmussen and Jan Rosiński. Approximations of Small Jumps of Lévy
Processes with a View Towards Simulation. Journal of Applied Probability,
38(2):482–493, 2001.

[6] Louis Bachelier. théorie de la spéculation. Annales Scientifiques de L’Ecole
Normale Supérieure, pages 21–88.

[7] Ole E. Barndorff-Nielsen. Exponentially decreasing distributions for the loga-
rithm of particle size. Scandinavian Journal of Statistics, 353:401–419, 1977.

[8] Ole E. Barndorff-Nielsen. Normal Inverse Gaussian Distributions and the
modelling of stock returns. Scandinavian Journal of Statistics, 1995.

[9] Ole E. Barndorff-Nielsen. Normal Inverse Gaussian Distributions and Stochas-
tic Volatility Modelling. Scandinavian Journal of Statistics, 24(1):1–13, 1997.

[10] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
Layer-wise Training of Deep Networks. In Proceedings of the 19th International
Conference on Neural Information Processing Systems, NIPS’06, pages 153–
160, Cambridge, MA, USA, 2006. MIT Press.

[11] Julia Bennell and Charles Sutcliffe. Black-Scholes versus artificial neural net-
works in pricing FTSE 100 options. Intelligent Systems in Accounting, Finance
Management, 12(4):243–260, 2004.

63

 https://github.com/cran/CharFun/blob/master/R/cf2DistGP.R
 https://github.com/cran/CharFun/blob/master/R/cf2DistGP.R
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=billrates
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=billrates
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=billrates


BIBLIOGRAPHY 64

[12] Nicholas Bingham and Rüdiger Kiesel. Modelling asset returns with Hyper-
bolic distributions. Return Distributions on finance, 2:61–73, 2001.

[13] Fischer Black and Myron Scholes. The Pricing of Options and Corporate
Liabilities. Journal of Political Economy, 81(3):637–654, 1973.

[14] Peter Carr, Dilip B. Mada, Marc Yor, and Helyette Geman. The Fine Struc-
ture of Asset Returns: An Empirical Investigation. The Journal of Business,
75(2):305–332, 2002.

[15] Peter Carr, Dilip B. Mada, Marc Yor, and Helyette Geman. Stochastic Volatil-
ity for Lévy Models. Mathematical Finance, 2003.

[16] Peter Carr and Dilip B. Madan. Option valuation using the fast Fourier
transform. Journal of Computational Finance, 2:61–73, 1998.

[17] François Chollet. Keras. https://github.com/fchollet/keras, 2015.

[18] Rama Cont and Peter Tankov. Financial Modelling With Jump Processes.
Chapman & Hall/CRC: London, 2004.

[19] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.

[20] Ernst Eberlein and Ulrich Keller. Hyperbolic Distributions in Finance.
Bernoulli, 1(3):281–299, 1995.

[21] Ernst Eberlein and Karsten Prause. The Generalized Hyperbolic Model: Fi-
nancial Derivatives and Risk Measures. 1998.

[22] Norbert Fogarasi. Option Pricing using Neural Networks. 2004.

[23] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position. Biolog-
ical Cybernetics, 36(4):193–202, 1980.

[24] René Garcia and Ramazan Gencay. Pricing and hedging derivative securities
with neural networks and a homogeneity hint. Journal of Econometrics, 94(1-
2):93–115, 2000.

[25] Ramazan Gencay and Aslihan Salih. Degree of Mispricing with the Black-
Scholes Model and Nonparametric Cures. Annals of Economics and Finance,
4(1):73–101, May 2003.

[26] Igor Girsanov. On Transforming a Certain Class of Stochastic Processes by
Absolutely Continuous Substitution of Measures. Theory of Probability and
Its Application, 5(3):285–301, 1960.

[27] Paul Glasserman. Monte Carlo methods in financial engineering. Springer
Verlag, 2004.

https://github.com/fchollet/keras


65 BIBLIOGRAPHY

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[29] Berend Hasselman. nleqslv: Solve Systems of Nonlinear Equations. https:
//CRAN.R-project.org/package=nleqslv.

[30] Kurt Hornik. Approximation Capabilities of Multilayer Feedforward Networks.
Neural Networks, 4(2):251–257, 1991.

[31] James Hutchinson, Andrew Lo, and Tomaso Poggio. A Nonparametric Ap-
proach to Pricing and Hedging Derivative Securities Via Learning Networks.
1994.

[32] Kevin Jarrett, Koray Kavukcuoglu, and Yann Lecun. What is the Best Multi-
Stage Architecture for Object Recognition?, 2009.

[33] Diederik P. Kingma and Jimmy Ba. adam: A method for stochastic optimiza-
tion.

[34] Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Dif-
ferential Equations. Springer-Verlag, 1992.

[35] David Luethi and Wolfgang Breymann. ghyp: A Package on Generalized
Hyperbolic Distribution and Its Special Cases. https://CRAN.R-project.
org/package=ghyp.

[36] Dilip Madan, Peter Carr, Morgan Stanley, and Eric Chang. The Variance
Gamma Process and Option Pricing. European Finance Review, 2:79–105,
1998.

[37] Dilip B. Madan, Robert H. Smith, and Marc Yor. Representing the CGMY and
Meixner Levy Processes as Time Changed Brownian Motions. The Journal of
Computational Finance, 12:27–47, 2008.

[38] Dilip B. Madan and Frank Milne. Option Pricing With V. G. Martingale
Components. Mathematical Finance, 1:39–55, 1991.

[39] Dilip B. Madan and Eugene Seneta. Chebyshev polynomial approximations
and characteristic function estimation. Journal of the Royal Statistical Society,
49:163–169, 1987.

[40] Dilip B. Madan and Eugene Seneta. The Variance Gamma (V.G.) Model for
Share Market Returns. The Journal of Business, 63(4):511–524, 1990.

[41] Mary Malliaris and Linda Salchenberger. A neural network model for estimat-
ing option prices. Appl. Intell., 3:193–206, 09 1993.

[42] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas imma-
nent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133,
1943.

http://www.deeplearningbook.org
 https://CRAN.R-project.org/package=nleqslv
 https://CRAN.R-project.org/package=nleqslv
 https://CRAN.R-project.org/package=ghyp
 https://CRAN.R-project.org/package=ghyp


BIBLIOGRAPHY 66

[43] Robert C Merton. Theory of rational option pricing, volume 4. 1973.

[44] Robert C. Merton. Continuous-time finance. Blackwell., 1991.

[45] David Nualart and Wim Schoutens. Backward stochastic differential equations
and Feynman-Kac formula for Lévy processes, with applications in finance.
Bernoulli, 7(5):761–776, 2001.

[46] Antonis Papapantoleon. An introduction to Lévy processes with applications
in finance. arXiv preprint arXiv:0804.0482, 2008.

[47] Karsten Prause. The Generalized Hyperbolic Model: Estimation, Financial
Derivatives, and Risk Measures. 1999.

[48] Frank Rosenblatt. The Perceptron: A Probabilistic Model for Information
Storage and Organization in The Brain. Psychological Review, pages 65–386,
1958.

[49] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[50] Jeffery A. Ryan, Joshua M. Ulrich, Wouter Thielen, Paul Teetor, and Steve
Bronder. quantmod: Quantitative Financial Modelling Framework. https:
//CRAN.R-project.org/package=quantmod.

[51] Ken-Iti Sato. Lévy Processes and Infinitely Divisible Distributions.

[52] Wim Schoutens. Lévy Processes in Finance: Pricing Financial Derivatives.
Wiley Series in Probability and Statistics. Wiley, 2003.

[53] Julie Uv. A Comparison of Black Scholes, Monte Carlo Simulation and a Deep
Neural Network for Option Pricing. Unpublished project thesis at NTNU, 2018.

[54] Alpha Vantage. ALPHA VANTAGE. https://www.alphavantage.co/.

[55] Paul Wilmott. Paul Wilmott on quantitative finance. John Wiley Sons, 2006.

[56] Paul Wilmott, Sam Howison, and Jeff Dewynne. The mathematics of financial
derivatives: a student introduction. Cambridge University Press, 1995.

[57] Jingtao Yao, Yili Li, and Chew Lim Tan. Option price forecasting using neural
networks. Omega, 28(4):455–466, 2000.

 https://CRAN.R-project.org/package=quantmod 
 https://CRAN.R-project.org/package=quantmod 
https://www.alphavantage.co/


Appendix A

Gamma Process and Inverse
Gaussian Process

Definition A.0.1 Gamma Process. The Gamma distribution, G(a, b), can be
expressed through its density function and characteristic function respectively,

fG(x; a, b) =
ba

Γ (a)
xa−1 exp(−xb), x > 0 (A.1)

φG(u; a, b) = (1− iu/b)−a (A.2)

for a > 0, b > 0. The Gamma Process, X(G) = (X
(G)
t )t≥0 then follows a G(at, b)

distribution.

Definition A.0.2 Inverse Gaussian Process. The Inverse Gaussian distri-
bution, G(a, b), can be expressed through its density function and characteristic
function respectively,

fIG(x; a, b) =
a√
2π

exp(ab)x−3/2 exp(−1

2
(a2x−1 + b2x)), x > 0 (A.3)

φIG(u; a, b) = exp(−a(
√
−2ui+ b2 − b) (A.4)

for a > 0, b > 0. The Gamma Process, X(IG) = (X
(IG)
t )t≥0 then follows a IG(at, b)

distribution.
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Appendix B

Bessel Functions

Bessel functions of the first and second kind, J±v(z) and Nv(z), are solutions to

z2
d2w

dz2
+ z

dw

dz
+ (z2 − v2)w = 0 (B.1)

and satisfies

Jv(z) = (z/2)v
∞∑
k=0

(−z2/4)k

k!Γ (v + k + 1)
(B.2)

Nv(z) =
Jv(z) cos(vπ)− J−v(z)

sin(vπ)
. (B.3)

The modified Bessel functions of the first and third kind, I±v(z) and Kv(z), are
solutions to

z2
d2w

dz2
+ z

dw

dz
− (z2 + v2)w = 0 (B.4)

and satisfies

Iv(z) = (z/2)v
∞∑
k=0

(z2/4)k

k!Γ (v + k + 1)
(B.5)

Kv(z) =
π

2

Iv(z)− I−v(z)
sin(vπ)

. (B.6)
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Appendix C

Itô Calculus

Definition C.0.1 Random Variable. A random variable, X, is measurable
function mapping from a set of possible outcomes, Ω to a space E, X : Ω → E
such that

P (X ∈ S) = P{ω ∈ Ω|X(ω) ∈ S} (C.1)

for S ⊆ E.

Definition C.0.2 Stochastic Process. A real valued stochastic process, X =
(Xt)t≥0, is indexed by a set T such that Xt is a random variable for each t ∈ T .

Itô calculus gives meaning to the integral,∫ t

0

XudYu

for suitable stochastic processes (Xu)u≥0 and (Yu)u≥0. Stochastic differential equa-
tions of the form

dXt = a(t,Xt)dt+ b(t,Xt)dYt, X0 = x0 (C.2)

then satisfies

Xt =

∫ t

0

a(u,Xu)du+

∫ t

0

b(u,Xu)dYu, X0 = x0

Lemma C.0.1 Itô’s Lemma. For a twice differentiable function f(X), and a
stochastic differential equation,

dX = a(t,X)dt+ b(t,X)dWt, (C.3)

where dWt is a Brownian motion, and dW 2
t → dt as dt → 0 with probability 1,

Ito’s Lemma states that

df = b
df

dX
dW + (a

df

dX
+

1

2
b2

df2

dX2
). (C.4)
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Appendix D

Table of Error Measures

Table D.1: Error measures for increasing number of simulations.

GBM NIG

APE AAE ARPE RMSE APE AAE ARPE RMSE

1× 103 0.07564815 1.781361 0.3862617 2.914699 0.07010742 1.597691 0.2463409 2.730876

1× 104 0.06411879 1.4944 0.3141559 2.585825 0.07087047 1.640161 0.3152808 2.788231

1× 105 0.06638995 1.531179 0.311038 2.641402 0.06757532 1.560437 0.3026539 2.685489

1× 106 0.06639483 1.536598 0.31663 2.642696 0.06665405 1.542542 0.312545 2.654586

VG GH

APE AAE ARPE RMSE APE AAE ARPE RMSE

1× 103 0.08178 1.79601 0.25304 2.99955 0.06978 1.56927 0.31734 2.72024

1× 104 0.06434 1.47221 0.29422 2.54851 0.06389 1.48032 0.31494 2.57406

1× 105 0.06635 1.51063 0.25481 2.64177 0.06652 1.53946 0.30348 2.64492

1× 106 0.06534 1.48948 0.26240 2.61143 0.06634 1.53367 0.30533 2.64471

H CGMY

APE AAE ARPE RMSE APE AAE ARPE RMSE

1× 103 0.05705 1.29731 0.30154 2.32971 0.06666 1.61691 0.38732 2.65634

1× 104 0.06161 1.41641 0.30298 2.50675 0.06913 1.69686 0.37480 2.73312

1× 105 0.06390 1.44976 0.24078 2.56836 0.06791 1.66924 0.35593 2.69942

1× 106 0.06483 1.47548 0.25354 2.59345 0.06903 1.704817 0.35707 2.73199

7
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Appendix E

Code

E.1 CGMY

1 fit.CGMY = function(data , initial_values=c(5, 10, 10, 0.1, 0)) {
2 #Description: Fits parameters of the CGMY model to data
3 #Input:
4 # data: log returns to be fitted
5 # initial values: initial values for nleqslv
6 #Output:
7 # List of parameters C, G, M, Y, mu
8 moments <- MASS:: fitdistr(data , densfun=’normal ’)
9 mean = moments$estimate [1]

10 variance = (moments$estimate [2])^2
11 skewness = moments :: skewness(data)
12 kurtosis = moments :: kurtosis(data)
13 hyperskewness = moments :: moment ((data -mean)/sqrt(variance),order =5)

#fifth order central moment , needed for the fifth equation
14 equations <- function(x) {
15 #C = x[1], G = x[2], M = x[3], Y = x[4], mu = x[5]( drift)
16 y <- numeric (5)
17 y[1] <- x[1]*(x[3]^(x[4] -1)-x[2]^(x[4]-1))*gamma(1-x[4]) + x[5] -

mean
18 y[2] <- x[1]*(x[3]^(x[4] -2)+x[2]^(x[4]-2))*gamma(2-x[4]) -

variance
19 y[3] <- (x[1]*(x[3]^(x[4]-3)-x[2]^(x[4] -3))*gamma(3-x[4]))/((x[1]*

(x[3]^(x[4]-2)+x[2]^(x[4] -2))*gamma(2-x[4]))^(3/2)) - skewness
20 y[4] <- 3 + (x[1]*(x[3]^(x[4]-4)+x[2]^(x[4] -4))*gamma(4-x[4]))/((x

[1]*(x[3]^(x[4] -2)+x[2]^(x[4]-2))*gamma(2-x[4]))^2) - kurtosis
21 y[5] <- (x[1]*(x[3]^(x[4]-5)-x[2]^(x[4] -5))*gamma(5-x[4]))/(x[1]*(

x[3]^(x[4]-2)+x[2]^(x[4]-2))*gamma(2-x[4]))^(5/2) + 10*(x[1]*(x
[3]^(x[4]-3)-x[2]^(x[4]-3))*gamma(3-x[4]))/(x[1]*(x[3]^(x[4]-2)+x
[2]^(x[4]-2))*gamma(2-x[4]))^(3/2) - hyperskewness

22 y
23 }
24 params <- nleqslv :: nleqslv(x = initial_values , fn = equations ,

method=’Broyden ’, control=list(maxit =10000000 , allowSingular=TRUE)
)

25 if (params$x[4] < 0 || params$x[4] > 2) {print(’Y out of range ’)}

9
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26 return(list(’C’ = params$x[1], ’G’ = params$x[2], ’M’ = params$x[3],
’Y’ = params$x[4], ’mu’ = params$x[5]))

27 }
28

29 CGMYcf = function(u, t, params) {
30 #Description: Calculates characteristic function of the CGMY model
31 #Input:
32 # u: vector for which characteristic function is to be calculated
33 # t: time increment of process
34 # params: list of parameters
35 #Output:
36 # Vector of values of the characteristic function calculated at u
37 C = params$C
38 G = params$G
39 M = params$M
40 Y = params$Y
41 mu = params$mu
42 return(exp(fAsianOptions :: cgamma(-Y)*((M-1i*u)^Y - M^Y + (G+1i*u)^Y

- G^Y)*C*t + 1i*u*mu*t))
43 }
44

45 rCGMY = function(n, params , dt, res =0.0001) {
46 #Description: Generates random CGMY variates
47 #Input:
48 # n: number of random variates
49 # params: list of parameters
50 # dt: time increment of process
51 # res: resolution of vectorized density function to use for

sampling
52 #Output:
53 # n random CGMY variates
54 cf <- function(t)
55 CGMYcf(t, dt, params)
56 result <- cf2DistGP(cf , option=list(isPlot=FALSE))
57 x = seq(result$xMin , result$xMax , by=res)
58 cf <- function(t)
59 CGMYcf(t, dt, params)
60 result <- cf2DistGP(cf , x, option=list(isPlot=FALSE))
61 return(sample(result$x, size=n, replace=TRUE , prob=result$pdf))
62 }
63

64 dCGMY = function(params , dt , res =0.0001) {
65 #Description: Calculates probability density function of CGMY

distribution
66 #Input:
67 # params: list of parameters
68 # dt: time increment of process
69 # res: resolution of vectorized density function to use for

sampling
70 #Output:
71 # a list with probability density function and x-values , list(’pdf

’, ’x’)
72 cf <- function(t)
73 CGMYcf(t, dt, params)
74 result <- cf2DistGP(cf , option=list(isPlot=FALSE))
75 x = seq(result$xMin , result$xMax , by=res)
76 cf <- function(t)
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77 CGMYcf(t, dt, params)
78 result <- cf2DistGP(cf , x, option=list(isPlot=FALSE))
79 }
80

81 pCGMY = function(x, params , res =0.0001) {
82 #Description: Calculates cumulative distribution function of CGMY

distribution
83 #Input:
84 # params: list of parameters
85 # dt: time increment of process
86 # res: resolution of vectorized density function to use for

sampling
87 #Output:
88 # a list with cumulative distribution function and x-values , list

(’cdf ’, ’x’)
89 dt = 1
90 cf <- function(t)
91 CGMYcf(t, dt, params)
92 result <- cf2DistGP(cf , option=list(isPlot=FALSE))
93 x = seq(result$xMin , result$xMax , by=res)
94 cf <- function(t)
95 CGMYcf(t, dt, params)
96 result <- cf2DistGP(cf , x, option=list(isPlot=FALSE))
97 return(list(cdf = cumsum(result$pdf)/cumsum(result$pdf)[length(

cumsum(result$pdf))], x =result$x))
98 }
99

100 qCGMY <- function(p, params) {
101 #Description: Calculates quantiles of CGMY distribution
102 #Input:
103 # p: vector of probabilities for which to calculate quantiles
104 # params: list of parameters
105 #Output:
106 # a vector of quantiles calculated for p
107 x = numeric(length(p))
108 index =1
109 rv = rCGMY(n=100000 , params , dt=1, res =0.000001)
110 #if (is.unsorted(rv)) {rv <- sort(rv)}
111 rv <- sort(rv)
112 n <- length(rv)
113 for (prob in p) {
114 x[index] = approx(seq(0, 1, length = n)[seq (1 ,100000 , by=10)], rv[

seq (1 ,100000 , by=10)], prob , n=100000)$y
115 index=index+1
116 }
117 return(x)
118 }

Listing E.1: Functions of different features for the CGMY model. Written in R.

E.2 Lévy Models

1 fitDistribution <- function(data , distribution , global , isPlot=FALSE ,
ticker) {

2 #Description: Fits parameters to all distributions
3 #Input:
4 # data: log returns to be fitted
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5 # distribution: list of string with distributions , list(’GBM ’, ’
NIG ’, ’VG ’, ’GH’, ’H’, ’CGMY ’)

6 # global: list of global parameters , list(’r_intraday ’, ’q’)
7 # isPlot: boolean , to plot or not
8 # ticker: ticker of company
9 #Output:

10 # list of list of parameters for each distribution in distribution
11 params = list()
12 r = global$r_intraday
13 q = global$q
14 if (isPlot) {
15 cols = colorspace :: qualitative_hcl(6, ’Dark2’)
16 hist(data , col=’grey95 ’, border=’gray’, breaks =100, freq=FALSE ,

xlab = ’Log -returns ’,
17 main=paste(’Density fits for’, ticker),
18 cex.lab=2, cex.axis=2, cex.main=2,
19 xlim=c(-0.08, 0.08))
20 par(lwd =3)
21 col=vector ()}
22 for (dist in distribution) {
23 if (dist == ’GBM’) {
24 fitGBM <- MASS:: fitdistr(data , densfun=’normal ’)
25 paramsGBM = list(’mu’=fitGBM$estimate [1], ’sigma’=fitGBM$

estimate [2])
26 params = append(params , list(’GBM’ = paramsGBM))
27 if (isPlot) {
28 lines(seq(min(data), max(data), by =0.001) ,
29 dnorm(seq(min(data), max(data), by =0.001) , mean=

paramsGBM$mu , sd=paramsGBM$sigma),
30 type=’l’, col=cols [1])
31 col=append(col ,1)}
32 }
33 if (dist == ’NIG’) {
34 fitNIG <- ghyp::fit.NIGuv(data)
35 paramsNIG = ghyp::coef(fitNIG , type=’alpha.delta’)
36 params = append(params , list(’NIG’ = paramsNIG))
37 if (isPlot) {
38 lines(fitNIG , type=’l’, col=cols [2])
39 col=append(col ,2)}
40 }
41 if (dist == ’VG’) {
42 fitVG <- ghyp::fit.VGuv(data)
43 paramsVG = ghyp::coef(fitVG , type = "chi.psi")
44 params = append(params , list(’VG’ = paramsVG))
45 if (isPlot) {
46 lines(fitVG , type=’l’, col=cols [3])
47 col=append(col ,3)}
48 }
49 if (dist == ’GH’) {
50 fitGH <- ghyp::fit.ghypuv(data)
51 paramsGH = ghyp::coef(fitGH , type=’alpha.delta’)
52 params=append(params , list(’GH’ = paramsGH))
53 if (isPlot) {
54 lines(fitGH , type=’l’, col=cols [4])
55 col=append(col ,4)}
56 }
57 if (dist == ’H’) {
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58 fitH <- ghyp::fit.hypuv(data)
59 paramsH = ghyp::coef(fitH , type=’alpha.delta’)
60 params = append(params , list(’H’ = paramsH))
61 if (isPlot) {
62 lines(fitH , type=’l’, col=cols [5])
63 col=append(col ,5)}
64 }
65 if (dist == ’CGMY’) {
66 paramsCGMY <- fit.CGMY(data)
67 params = append(params , list(’CGMY’ = paramsCGMY))
68 if (isPlot) {
69 lines(dCGMY(paramsCGMY , 1)$x, dCGMY(paramsCGMY , 1)$pdf , type=’

l’,
70 col=cols [6])
71 col=append(col ,6)}
72 }
73 }
74 if (isPlot) {
75 par(lwd =1)
76 legend(’topleft ’, c(’DATA’, distribution),
77 fill=c(’gray’, cols[col]), bty = ’n’, cex=2)
78 }
79 return(params)
80 }

Listing E.2: Fit parameters to data for Lévy models. Written in R.

1 MCSimulation = function(params , distributions , global) {
2 #Description: MC Simulation of stock price paths
3 #Input:
4 # params: list of list of parameters for each distribution in

distribution
5 # distribution: list of string with distributions , list(’GBM ’, ’

NIG ’, ’VG ’, ’GH’, ’H’, ’CGMY ’)
6 # global: list of global parameters , list(’r_intraday ’, ’q’, ’dt’,

’s0’, ’n’, ’nsim ’)
7 #Output:
8 # list of list of simualtions distribution in distribution
9 simulations = list()

10 r = global$r_intraday
11 q = global$q
12 s0 = global$s0
13 dt = global$dt
14 n = global$n
15 nsim = global$nsim
16 for (dist in distributions) {
17 if (dist == ’GBM’) {
18 mu = params$GBM$mu
19 sigma = params$GBM$sigma
20 mu = r-q-0.5*sigma_GBM^2 # Mean -corrected drift
21 dx = matrix(rnorm(n=n*nsim , mean=mu*dt, sd=sqrt(dt)*sigma), nrow

=nsim , ncol=n)
22 sGBM = matrix(s0, nrow=nsim , ncol=n)
23 for (i in 1:nsim) {
24 for (t in 2:n) {
25 sGBM[i, t] = sGBM[i, t-1]*exp(dx[i, t])
26 }
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27 }
28 simulations = append(simulations , list(’GBM’ = sGBM))
29 }
30 if (dist == ’NIG’) {
31 alpha = params$NIG$alpha
32 beta = params$NIG$beta
33 delta = params$NIG$delta
34 omega = delta_NIG*(sqrt(alpha_NIG^2-(beta_NIG +1)^2)-sqrt(alpha_

NIG^2-beta_NIG ^2))
35 mu = r - q + omega_NIG # Mean -corrected drift
36 dx = matrix(ghyp::rghyp(n=n*nsim , object=ghyp::NIG.ad(alpha=

alpha , delta=delta*dt , beta=beta , mu=mu*dt)), nrow=nsim , ncol=n)
37 sNIG = matrix(s0, nrow=nsim , ncol=n)
38 for (i in 1:nsim) {
39 for (t in 2:n) {
40 sNIG[i, t] = sNIG[i, t-1]*exp(dx[i, t])
41 }
42 }
43 simulations = append(simulations , list(’NIG’ = sNIG))
44 }
45 if (dist == ’VG’) {
46 lambda = params$VG$lambda
47 mu = params$VG$mu
48 sigma = params$VG$sigma
49 gamma = params$VG$gamma
50 omega = lambda*log( 1 - sigma^2/(2*lambda) - gamma/lambda )
51 mu = r - q + omega # Mean corrected drift
52 VGobject = ghyp::VG(lambda = lambda*dt , mu = dt*mu , sigma =

sigma*sqrt(dt), gamma = dt*gamma)
53 dx = matrix(ghyp::rghyp(n=n*nsim ,object=VGobject), nrow = nsim ,

ncol = n )
54 sVG = matrix(s0, nrow=nsim , ncol=n)
55 for (i in 1:nsim) {
56 for (t in 2:n) {
57 sVG[i, t] = sVG[i, t-1]*exp(dx[]i, t])
58 }
59 }
60 simulations = append(simulations , list(’VG’ = sVG))
61 }
62 if (dist == ’GH’) {
63 if (dt!=1) {
64 print(’dt must be 1’)
65 dt = 1}
66 alpha = params$GH$alpha
67 beta = params$GH$beta
68 delta = params$GH$delta
69 lambda = params$GH$lambda
70 omega = log (((( alpha^2-beta ^2)/(alpha ^2-(beta +1)^2))^( lambda/2))

*(besselK(delta*sqrt(alpha^2-(beta +1) ^2), lambda)/besselK(delta*
sqrt(alpha^2-beta ^2), lambda)))

71 mu = r - q - omega # Mean corrected drift
72 dx = matrix(ghyp::rghyp(n=n*nsim , object=ghyp::ghyp.ad(lambda=

lambda*dt, alpha=alpha , delta=delta*dt , beta=beta , mu=mu*dt)),
nrow=nsim , ncol=n)

73 sGH = matrix(s0, nrow=nsim , ncol=n)
74 for (i in 1:nsim) {
75 for (t in 2:n) {
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76 sGH[i, t] = sGH[i, t-1]*exp(dx[i, t])
77 }
78 }
79 simulations = append(simulations , list(’GH’ = sGH))
80 }
81 if (dist == ’H’) {
82 alpha = params$H$alpha
83 beta = params$H$beta
84 delta = params$H$delta
85 omega = log((sqrt((alpha^2-beta ^2)/(alpha ^2-(beta +1)^2)))*(

besselK(delta*sqrt(alpha^2-(beta +1)^2), 1)/besselK(delta*sqrt(
alpha^2-beta ^2), 1)))

86 mu = r - q - omega # Mean corrected drift
87 dx = matrix(ghyp::rghyp(n=n*nsim , object=ghyp::hyp.ad(alpha=

alpha , delta=delta*dt , beta=beta , mu=mu*dt)), nrow=nsim , ncol=n)
88 sH = matrix(s0, nrow=nsim , ncol=n)
89 for (i in 1:nsim) {
90 for (t in 2:n) {
91 sH[i, t] = sH[i, t-1]*exp(dx[i, t])
92 }
93 }
94 simulations = append(simulations , list(’H’ = sH))
95 }
96 if (dist == ’CGMY’) {
97 C = params$CGMY$C
98 G = params$CGMY$G
99 M = params$CGMY$M

100 Y = params$CGMY$Y
101 omega = -C*gamma(-Y)*((M-1)^Y - M^Y + (G+1)^Y - G^Y)
102 mu = r - q + omega # Mean corrected drift
103 dx = matrix(rCGMY(n=n*nsim , params=list(’C’=C, ’G’=G, ’M’=M, ’Y’

=Y, ’mu’=mu), dt), nrow=nsim , ncol=n)
104 sCGMY = matrix(s0, nrow=nsim , ncol=n)
105 for (i in 1:nsim) {
106 for (t in 2:n) {
107 sCGMY[i, t] = sCGMY[i, t-1]*exp(dx[i, t])
108 }
109 }
110 simulations = append(simulations , list(’CGMY’ = sCGMY))
111 }
112 }
113 return(simulations)
114 }
115

116 optionPrice = function(sT, r, q, time_to_maturity , strike) {
117 #Description: estimate for option price based on MC simulation
118 #Input:
119 # sT: vector of stock prices at maturity
120 # r: risk free rate
121 # q: dividend rate
122 # time_to_maturity: maturity of option
123 # strike: strike price of option
124 #Output:
125 # estimated ccall option price
126 return(exp(-(r-q)*time_to_maturity)*mean(pmax(sT-strike , 0)))
127 }

Listing E.3: Monte Carlo simulation and pricing. Written in R.
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E.3 Neural Network

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import tensorflow as tf
5 from tensorflow import keras
6 from keras.models import Sequential
7 from keras.layers import Dense
8 from keras.layers import Dropout
9 from keras import optimizers

10 from keras import regularizers
11 from keras.callbacks import EarlyStopping , ModelCheckpoint
12 from sklearn.metrics import mean_squared_error , mean_absolute_error
13 from sklearn import preprocessing
14 from sklearn.preprocessing import MinMaxScaler
15

16 # Preporcessing of data: Remove unobserved maturity , then divie into
train and test set.

17 # Scale data between 0 and 1
18 # Convert to supervised learning problem: Use Strike price and expiry

as input and mean of ask and bid price as output
19 df = pd.read_csv(’AAPLoptionprices_all.csv’)
20 df = df[[’Strike ’, ’Bid’, ’Ask’, ’Exp’, ’s0’]]
21 X = df[[’Strike ’, ’Exp’]]. get_values ()
22 y = 0.5*(df[[’Ask’]]. get_values () + df[[’Bid’]]. get_values ())
23 data = np.column_stack ((X, y))
24 scaler = MinMaxScaler(feature_range =(0, 1))
25 data_scaled = scaler.fit_transform(data)
26 data_df = pd.DataFrame(data_scaled , columns = [’Strike ’, ’Exp’, ’Price

’])
27 exp = max(data_df[’Exp’])
28 unobserved_df = pd.DataFrame(columns= [’Strike ’, ’Exp’, ’Price’])
29 unobserved_df = unobserved_df.append(data_df.loc[data_df.loc[:,’Exp’

]==exp ,[’Strike ’, ’Exp’, ’Price’]])
30 unobserved_data = scaler.inverse_transform(unobserved_df.get_values ())
31 data_df = data_df.drop(data_df [( data_df[’Exp’]==exp)].index , axis =0)
32 values = data_df.get_values ()
33 n_train_size = int(values.shape [0]*0.8)
34 np.random.shuffle(values)
35 train = values [: n_train_size , :]
36 test = values[n_train_size:, :]
37 trainX , trainY = train[:, :-1], np.expand_dims(train[:, -1], axis =1)
38 testX , testY = test[:, :-1], np.expand_dims(test[:, -1], axis =1)
39 testY_true = scaler.inverse_transform(test)[:,-1]
40 trainY_true = scaler.inverse_transform(train)[:,-1]
41 unobservedX = unobserved_df [[’Strike ’, ’Exp’]]. get_values ()
42 unobservedY = unobserved_df [[’Price’]]. get_values ()
43

44 # Create model
45 layers = [100, 80, 60, 40, 20]
46

47 model = Sequential ()
48 model.add(Dense(layers [0], input_dim = trainX.shape [1]))
49 model.add(Dense(layers [1], activation=’elu’))
50 model.add(Dense(layers [2], activation=’elu’))
51 model.add(Dense(layers [3], activation=’elu’))
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52 model.add(Dense(layers [4], activation=’elu’))
53 model.add(Dense(trainY.shape[1], activation = ’softplus ’))
54 model.summary ()
55

56 # Compile model
57 model.compile(loss=’mean_squared_error ’, optimizer=’adam’, metrics =[’

mse’, ’mae’, ’mape’])
58

59 # Fit the model
60 history = model.fit(trainX , trainY , epochs =400, batch_size =5, verbose

=2, validation_split =0.2,
61 shuffle=True)
62 model.evaluate(trainX , trainY , batch_size =5, verbose =1)
63

64 # Predict
65 testY_hat_scaled = model.predict(testX)
66 trainY_hat_scaled = model.predict(trainX)
67 unobservedY_hat_scaled = model.predict(unobservedX)
68

69 # Scale back
70 test_hat = scaler.inverse_transform(np.column_stack ((testX ,

testY_hat_scaled)))
71 train_hat = scaler.inverse_transform(np.column_stack ((trainX ,

trainY_hat_scaled)))
72 unobserved_hat = scaler.inverse_transform(np.column_stack (( unobservedX

, unobservedY_hat_scaled)))

Listing E.4: Option pricing with Multilayer Perceptron. Written in Python.
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