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Abstract

This thesis looks at how the functional form of potentially misspecified covariates in
an accelerated failure time model, can be estimated using two methods applied to
the Cox-Snell residuals of the model. Two methods are looked at. One using Loess
to smooth the Cox-Snell residuals. The other uses a method for nonparametric
exponential regression called the covariate order method, to estimate the hazard for
Cox-Snell residuals. We simulate data and do various simulations and calculations
in R to showcase and illustrate the methods for estimating the functional form, and
their effectiveness. We also apply the methods and analyze two real datasets. One
regarding the post-election survival times of popes. The other containing data from
a study on the fatal chronic liver disease PBC. We conclude with both methods
being able to estimate the functional form of a covariate, and we see that even if
a there are no clear underlying functional forms, we can still get ideas on how to
improve a model through the estimate of the functional.

Sammendrag

Denne oppgaven undersøker hvordan funksjonell formen til en potensielt misspe-
sifisert kovariat i en akselerert levetids modell kan bli estimert ved hjelp av to
forskjellige metoder anvendt p̊a Cox-Snell residualene til modellen. Den ene meto-
den bruker Loess for å glatte residualene i modellen. Den andre benytter en metode
for ikke-parametrisk eksponentiell regresjon, kalt covariate order method, p̊a Cox-
Snell residualene. R blir brukt til diverse simuleringer og kalkulasjoner for å anal-
ysere og illustrere metodene som blir presentert. To virkelige datasett blir ogs̊a
analysert. Det ene datasettet inneholder hvor lenge paver lever etter de har blitt
valgt inn som pave. Det andre best̊ar av levetider fra en kjent studie som omhan-
dlet leversykdommen PBC. Vi konkluder med at begge metodene presentert er i
stand til å estimere funksjonell formen til en misspesifisert kovariat, og vi har sett
at dersom det ikke er en tydlig underliggende funksjonell form, s̊a kan estimatet av
denne likevel gi hint til forbedringer av den tilpassede modellen.
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Chapter 1

Introduction

In survival analysis the cox-hazard model is widely used to model the relationship
between event times and covariates. One of the drawbacks of this model is that
it requires proportional hazards, and the number of probability distributions that
can be model with it is some what limited. An alternative for modelling the
relationship between event times and covariates is what is called the accelerated
failure time model. While a proportional hazard model makes the assumption that
the effect of a covariate is to multiply the hazard of the lifetime by some constant, an
accelerated failure time model (AFT model) assumes that the effect of a covariate
is to accelerate or decelerate the lifetime. An AFT model is a parametric regression
model that is applied in various fields, including economics, reliability engineering,
and biostatistics. The AFT model can be written on the form

log Y = f(X) + σW. (1.1)

Y is the lifetime or event time; X = (X1, X2, . . . , Xp) is a vector of covariates,
which is called a covariate vector; f(.) is a function determining the effect of the
covariates on the lifetime, which will be referred to as the functional form of the
covariates; σW is an error term where σ is a positive scale parameter, and W
is assumed to follow a fully specified standard distribution such as the standard
Gumbel of the smallest extreme, standard normal distribution, or standard logistic
distribution. The distribution of W gives the distribution of the lifetimes. If W
is distributed according to the standard Gumbel of the smallest extreme, then
Y is Weibull distributed. In case W follows the standard normal distribution or
the standard logistic distribution, then Y is log-normal or log-logistic distributed,
respectively.

In this project we initially assume that f(.) is parametric and on the linear form

f(X) = β0 + β1x1 + · · ·+ βpxp. (1.2)

β0 is an intercept term, and β1, . . . , βp are coefficients of a regression model that
can be estimated using maximum likelihood. The idea that this project will look
at is that the true form of f(.) is not necessarily linear as in equation (1.2), but

9
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the covariates in X can have a more general, non-linear effect on the lifetimes in
equation (1.1). By first fitting and estimating a potentially misspecified linear AFT
model to data, we will look at using methods applied to the Cox-Snell residuals of
this model to check and estimate the functional form, and potentially suggest better
functional forms f(Xi) of the covariates. One of these methods uses some of the
estimated regression parameters of the potentially misspecified model, along with
an estimate of the expectation of the fitted residuals conditional on the covariate,
to estimate the functional form for said covariate. The other method is based
on what is called the covariate order method, which is a method to do censored
nonparametric exponential regression, to find an estimate for the functional form
of a covariate. [13]

First we will present some general theory in statistics and survival analysis,
necessary to understand how to estimate the functional forms. Then we will sim-
ulate four datasets of n = 100 Weibull distributed lifetimes, with different degrees
of censoring, in which one of the covariates has an underlying logarithmic func-
tional form. We will then do residual analysis and try to produce an estimate of
this functional form using two different methods. Afterwards, we will investigate
two more real datasets for any underlying functional forms. The first of these real
datasets describes the post-election survival times of popes, and the two covariates
we will look at is the year the popes where elected, and at what age they were
elected. The second real dataset is from a well-known study on the fatal chronic
liver disease PBC. The dataset contains 18 variables, but we will limit ourselves to
looking at the effect of five covariates.



Chapter 2

Theory

2.1 Survival Analysis

Survival Analysis is a field in Statistics focused on analyzing and modelling the
”lifetimes”, commonly denoted by T , or survival of an item or an individual. The
term lifetime does not necessarily mean the duration of time a person is alive.
The term is also commonly used to denote the time until failure for a mechanical
component or an item of some sort. We always have that T ≥ 0. Lifetimes are
modelled using probability density functions, and we can have both continuous and
discrete lifetimes. For continuous lifetimes the probability density function (PDF),
fT (t), must integrate to 1 ∫ ∞

0

fT (t)dt = 1 (2.1)

The cumulative distribution function (CDF) for the lifetime T is

FT (t) = P (T ≤ t) =

∫ t

0

fT (u)du, (2.2)

and gives the probability that a subject/item on test has failed prior to time t.
Another central function in survival analysis is what is called the reliability or
survival function. The survival function of T is

RT (t) = 1− FT (t) = P (T > t) =

∫ ∞
t

fT (u)du, (2.3)

and it gives the probability that the subject/item on test has not failed at time t.

2.2 Poisson Distribution, HPP, and NHPP

An experiment that yields the number of outcomes, X, during a time interval or
specified region is called a Poisson experiment. A Poisson experiment is derived

11



12 CHAPTER 2. THEORY

from what is called a Poisson process. The orthodox case is what is called a homo-
geneous Poisson process (HPP), which fulfills the following 3 properties.

1) Independent events. The number of events in a given time interval is inde-
pendent of the number of events in a disjoint time interval.

2) The number of events occurring in a time interval is proportional to the length
of the time interval and independent of events occurring outside of the interval in
question.

3) The probability that two events happens simultaneously is negligible. P (X(t, t+
h) ≥ 2) = o(h)

The random variable X, modelling the number of events that happens during
a Poisson experiment is said to follow the Poisson distribution. The Poisson dis-
tribution is a discrete probability distribution, and the probability mass function
for a Poisson distributed random variable X is given as

p(x; t) =
e−λt(λt)x

x!
, x = 0, 1, 2, ... (2.4)

where λ is the average number of events per time unit. A HPP is a stationary point
process for which the number of events is in an interval is only depending on the
length of the interval. Alternatively to the HPP, it is also possible to have a non
homogeneous Poisson process (NHPP). For the NHPP, the intensity or hazard, λ,
varies as a function of time. Non homogeneous Poisson processes can for example
be used to model repairable systems, and they are extensively used since they can
model trends in the rate of failures. For more details on HPP and NHPP see [1].

2.3 Exponential Distribution

The exponential distribution is one of the most well known probability distributions
in math, and it is the most applied distribution in survival analysis. The probability
density function of the exponential distribution is

fT (t) = λe−λt, t > 0, λ > 0. (2.5)

λ is often referred to as the rate parameter. If the rate parameter equals 1 then
variables are said to be unit exponentially distributed. The mean and variance of
the exponential is

E[T ] =
1

λ
,

Var[T ] =
1

λ2
.

(2.6)

The Survival function is

RT (t) = e−λt, t > 0, λ > 0. (2.7)
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An important and useful property of the exponential distribution is what is
referred to as the memoryless property. The memoryless property can be seen as
a result from computing the conditional probability of the exponential.

RT (s|t) = Pr(T > s+ t|T > t) =
Pr(T > s+ t)

Pr(T > t)

=
e−λ(s+t)

e−λt
= e−λs = RT (s).

(2.8)

This shows that an item’s time to failure at time s is independent of how long it
has been on test/active. In other news we say that the item is basically ”as good as
new”. The memoryless property is part of what makes the exponential distribution
easy to work with, but on the other hand it is not realistic for an item that has
been operation for an extended duration of time to be ”as good as new”, so it can
also be viewed as weakness of the exponential.

2.4 The Gumbel distribution of the smallest ex-
treme

Assume an independent set of identically distributed lifetimes, Ti for n components
with ordered values such that T(1) < T(2) < · · · < T(n). T(1) is then the minimum
lifetime in the set. For large n, T(1) is approximately Weibull distributed. [6]
This is a motivation for the widespread use of the Weibull to model lifetimes in
survival analysis. Assume now that the Tis have support (−∞,∞) and are no
longer lifetimes. For a normalized version of T(1), the limiting distribution will be
equal to the CDF of a random variable Y

FY (y) = 1− e−e
y−µ
σ , −∞ < y <∞. (2.9)

Here, µ > 0 and σ are constants called the mode and scale, respectively. This is
the PDF for what is called the Gumbel distribution of the smallest extreme. The
Gumbel distribution is an important asymmetric distribution due to its extreme
value behaviour.

An important case of Y ∼ Gumbel(µ, σ) is the standard Gumbel distribution,
W ∼ Gumbel(0, 1). It follows from (2.9) that the CDF of the standard Gumbel is

G(w) = 1− e−e
w

, −∞ < w <∞. (2.10)

From the relation R(w) = 1 − G(w) it follows that the reliability function of the
standard Gumbel is

R(w) = e−e
w

, −∞ < w <∞. (2.11)

The PDF is

g(w) = ewe−e
w

, −∞ < w <∞. (2.12)



14 CHAPTER 2. THEORY

2.5 The Weibull distribution

The Weibull distribution is one of the most utilized distributions in survival anal-
ysis. Its PDF, mean, and variance are given as

fT (t) =
α

θ

(
t

θ

)α−1
e−(

t
θ )
α

, t > 0, θ > 0,

E[T ] = θ · Γ
(

1

α
+ 1

)
,

V ar[T ] = θ2
(

Γ

(
2

α
+ 1

)
− Γ2

(
1

α
+ 1

))
.

(2.13)

α > 0 and θ are known as the shape and scale parameters, respectively. Γ(.) is the
well-known Gamma function defined by the integral Γ(a) =

∫∞
0
ua−1e−udu. From

the PDF in (2.13) it can be seen that α = 1 gives the PDF for the exponential
distribution. Thus, the exponential distribution is a special case of the Weibull.
The Reliability function for the Weibull is

RT (t) = e−(
t
θ )
α

, for t > 0. (2.14)

2.6 Censoring

A lifetime is said to be censored if the failure time is not observed directly. The
most common forms of censoring is right, left, and interval censoring. If it is known
when a subject is put on test but not when it fails, then the lifetime for the subject
is said to be right censored. If the time of failure is known while the time the
subject is put on test is unknown, then we have left censoring. Assume the exact
time a subject fails is unknown, but it is known that the subject fails sometime
between time t1 and t2, the lifetime for the subject is then said to be interval
censored.

2.7 Accelerated failure time model

Observations in this project are assumed to be realizations of the random vector
(X,W,C). X is a vector of covariates that can take both discrete and continuous
form. W is an error that is distributed according to some probability distribution
function φ(.), with a corresponding cdf Φ(.). W is assumed independent of X
and in addition, φ(u) > 0 ∀u ∈ (−∞,∞). C denotes the censoring time of the
observation, which is an absolutely positive random variable that is distributed
according to some distribution that can depend on X.

An individual Y has a true lifetime given by

log Y = f(X) + σW, (2.15)
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where σ is a positive scale parameter, and f(X) is a parametric function of the
covariate vector X. The observed lifetimes are given by T = min(Y,C). It follows
that the censoring indicator is given by ∆ = I(Y ≤ C).

Let h(.|.) and H(.|.) denote the PDF and CDF of Y conditional on X, respec-
tively. Assume further an observed i.i.d. sample (ti, δi,xi) of (T,∆,X). Under the
assumption that the distributions of X and C are independent of the parameters
of h(.|.) we have the following likelihood for survival analysis. [9]

n∏
i=1

{h(ti|xi)}δi{H(ti|xi)}1−δi , (2.16)

the parameters of h(.|.) is here the scale parameter and the specification of f(X).

2.8 Residuals for AFT models

Standardized residuals are a common and natural type of residuals for Accelerated
failure time models. These residuals can be found by solving (2.15) for W . It then
follows that

S =
log T − f(X)

σ
. (2.17)

It can then be seen that conditionally on X, S follows a distribution Φ(.). For
observed data {(ti, δi, xi), i = 1, . . . , n}, the standardized residuals are defined by
(ŝi, δi), i = 1, . . . , n

ŝi =
ln ti − f̂(xi)

σ̂
, (2.18)

where f̂(.), and σ̂ are satisfactory estimates of the underlying functional form
f(.), and the scale parameter σ in the model. [14] These estimates are normally
computed based on maximum likelihood estimation. The idea behind this form
of residuals is that if the specified model is good, then (ŝi, δi) will behave like a
censored sample from the distribution function of the error W in (2.15). If there
are right censored observations ti, then this will correspond to the standardized
residuals ŝi becoming ”small”.

Cox-Snell residuals are another commonly applied form of residuals in survival
analysis. Like Standardized residuals, Cox-Snell residuals are mainly used for model
checking. The basis for Cox-Snell is that for a lifetime Y , where G(t) = P (Y > t)
is the corresponding survival function, the random variable − logG(t) will be unit
exponentially distributed. Note from (2.15) that

G(t|X) = P (Y > t|X) = 1− Φ

(
log t− f(X)

σ

)
. (2.19)

It further follows by taking − log of (2.19), that
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R = − logG(Y |X) = − log

(
1− Φ

(
log Y − f(X)

σ

))
, (2.20)

should be unit exponential given X. Thus, the Cox-Snell residuals of a fitted model
is given by (r̂i, δi), for i = 1, . . . , n, where

r̂i = − log

(
1− Φ

(
log ti − f̂(xi)

σ̂

))
. (2.21)

If the fitted model is good for the data {(ti, δi, xi), i = 1, . . . , n}, then (2.21) will
behave akin to a censored sample from the unit exponential distribution. From
(2.17) and (2.20) it is seen that

R = − log(1− Φ(S)),

S = Φ−1(1− e−R).
(2.22)

When calculating residuals for a fitted model, censored data needs to be han-
dled. An often used method to account for censoring is by simply adding the
expected value of the residual distribution to the residuals corresponding to cen-
sored observations, and then proceed as if the set of data is non-censored. Cox-Snell
residuals are expected to follow the unit exponential distribution. Thus, censoring
can simply be handled by adding 1 to the censored residuals due to the memoryless
property of the exponential distribution. This is called 1-adjusted residuals. An
alternative way of handling censoring for Cox-Snell is by log 2-adjusted residuals.
This follows from the mean residual life of a unit exponentially distributed random
variable being equals to log 2. The log 2-adjusted residuals are computed by adding
log 2 to the censored residuals.

To analyze the residuals you can plot the residuals versus the covariate compo-
nents of the covariate vector X. If there are censored residuals this can be slightly
misleading due to small censored residuals. The introduction of censored residuals
is in hopes of mitigating this. Adjusted residuals might work well unless there is a
high degree of censoring, in which case the effect of the covariates on the residuals
might become blurred due to adjusting. A common way of presenting residual
plots is by plotting the logarithm of the residuals as a function of covariates due
to better symmetry of the residuals. For a good fit the logarithm of Cox-Snell
residuals should be symmetric with respect to the covariate axis.

2.9 Covariate Order Method

The covariate order method is a nonparametric method for censored exponential
regression. It can be shown that this method leads to a consistent estimator of the
hazard rate as a function of the covariate. [13] The covariate order method will
be used in this project as a means to get an estimate of the functional form of an
AFT model with Weibull distributed lifetimes.
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Assume n independent observations (T1, δ1,X1), ..., (Tn, δn,Xn), where T =
min(Y,C) is the observation time, δ = I(Y ≤ C) is the censoring indicator,
and X is the covariate vector. For given X = x, Y is assumed to be expo-
nentially distributed with an unknown hazard rate λ(x) such that the pdf of Y
is fY (t|x) = λ(x) exp (−λ(x)t). C follows some unknown censoring distribution
fC(t|x) which could be dependent on X, but is independent of Y . C is called the
censoring time, and Y is called the lifetime. Furthermore, assume that X, which
is a subset χ of Rm, remains continuous over time, and that λ(x) is continuous on χ.

-

0 S1 S2 Sr s

T1/n︷ ︸︸ ︷ T2/n︷ ︸︸ ︷ T3/n︷ ︸︸ ︷ Tn/n︷ ︸︸ ︷. . .

For the 1-dimensional case of the method, start with sorting the set of obser-
vations {(Tj , δj ,Xj), j = 1, . . . , n}, such that X1 ≤ X2 ≤ · · · ≤ Xn. If there are
a small number of ties in the covariate data, then this can be dealt with by ar-
ranging the corresponding observations in random order. Proceed by diving the
observation times with the number of observations, n. Then treat T1

n ,
T2

n , . . . ,
Tn
n

as inter-arrival times of an artificial Poisson process illustrated in the above figure
(figure provided by Bo Lindqvist). Let the endpoints of the intervals that cor-
respond to uncensored observations be considered as events that occur at times
S1, S2, . . . , Sr, while censored observations are not considered as events. We have
that r =

∑n
j=1 δj . Formally we have that

Si =

k(i)∑
j=1

Tj
n
, k(i) = min(s|

s∑
j=1

δj = 1) (2.23)

The covariate order method as described by Kvaløy and Lindqvist, uses density
estimation to estimate the intensity of the artificial point process, ρ(s), which can
then be transformed into an estimator of the intensity λ(x) at given values of x by
inverting

ρ̂(s) = nλ̂(X(s)). (2.24)

The key to this estimate is the relationship between X1, . . . , Xn on the covariate
axis, and the process S1, . . . , Sr on the s-axis. This relationship can be estimated
by for example a step-function

s̄(x) =
1

n

j∑
i=1

Ti, Xj ≤ x ≤ Xj+1, (2.25)
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called the correspondence function. The correspondence function can be replaced
with more sophisticated estimators to get a smoother estimate, but in many cases
the step-function should prove sufficient. Now define

λ̂(x) = ρ(s̄(x)) (2.26)

The main motivating idea behind the method is that if λ(x) = λ is constant,
then the process of the artificial process S1, . . . , Sr is a homogeneous Poisson pro-
cess. So, if λ(x) does not vary too much, then the process S1, . . . , Sr can be imag-
ined to be a nearly non-homogeneous Poisson process, and the intensity can be
estimated by combining the the estimate of the correspondence function in (2.25)
with the kernel estimate (2.24). For more details and theory on the covariate order
method see Kvaløy and Lindqvist (2004). [13]



Chapter 3

Simulated data

3.1 Simulating data and Cox-Snell Residuals

To get an idea of how well our methods for estimating the functional form performs,
we start off by simulating some datasets with different degrees of censoring, and
then apply the methods for estimating the functional form of covariates. We look at
simulated data since we can then simulate a covariate with a clear functional form,
and see how well our methods can recover that functional form from a misspecified
linear AFT model. Looking at data with different degrees of censoring should give
an idea of how censoring affects the estimate of the functional form.

It is known that the log-location scale model,

log T = βTZ + f(X) + σW, (3.1)

models Weibull distributed lifetimes whenW ∼ Gumbel(0, 1). Here β = (β0, β1, . . . , βk)
is a vector of coefficients, Z = (1, z1, . . . , zk) is a vector of covariates. It follows
that Weibull distributed lifetimes can be simulated from

T = eβ
TZ+f(X)+σW . (3.2)

To simulate Weibull lifetimes using (3.2), it is necessary to simulate W from
the standard Gumbel distribution of the smallest extreme. An algorithm to do this
can be developed by means of the inverse transformation method described in [15].
By using the fact that the CDF of a random variable takes values in [0, 1], we can
simulate u ∼ Unif[0, 1]. Then set u equals to the CDf (2.10) and solve for w.

1− e−e
w

= u,

−ew = log(1− u),

w = log[− log(1− u)],

w = log[− log(u)].

(3.3)

19
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w in (3.3) is a realization from the standard Gumbel distribution if u ∼ Unif[0, 1].
The last transition in equation (3.3) follows from u ∼ Unif[0, 1].

We have that Φ is the CDF of the residual distribution of our model. Hence,
Φ is the CDF of the standard Gumbel (2.10), and an expression for the Cox-Snell
residuals of a Weibull AFT model can be found by solving for W in (3.2) and
inserting into (2.20). It follows that the Cox-Snell residuals for a Weibull AFT
model is

R̂i = − log[1− FW (Wi)],

= − log(e−e
Wi

) = eWi ,

= e
log Ti−β

T zi−f(xi)
σ .

(3.4)

By utilizing the relation between Cox-Snell and standardized in (2.22), the stan-
dardized residuals are found to be

Ŝi = log R̂i =
log Ti − βTzi − f(xi)

σ
. (3.5)

To simulate lifetimes with censoring, let Ψ(.) be the CDF of the censoring times
C. Ψ(.) can be dependent on the covariate X, but in this project assume that C and
X are independent. For this project the censoring times C are simulated according
to the Exponential distribution described in section 2.3. It follows that censored
lifetimes can be simulated as

Yi = min(Ti, Ci),

where Ti is simulated according to (3.2). Furthermore, the censoring indicator is

δi = 1 if Ti < Ci,

δi = 0 if Ti ≥ Ci.

We will simulate four datasets of n = 100 observations, with different degrees
of censoring. The motivation behind doing this is to explore how our two meth-
ods for estimating the functional form performs under controlled circumstances
with various censoring, where the true functional form is known. 1 uncensored
and 3 censored data sets with 20%, 60%, and 80% censoring are simulated. The
parameters for the simulation are set to

β0 = 0,

β1 = 1,

f(x) = log x,

σ = 1.

(3.6)

Thus, Ti is simulated according to
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Ti = eβ1zi+log xi+σWi (3.7)

zi is simulated from the standard normal distribution, while xi is simulated from
the exponential distribution with rate parameter λ = 1/2.

After simulating a set of failure times, 3 sets of censoring times {Ci, i = 1, .., n}
were simulated independently from the exponential distribution with rate parame-
ters λ = [9, 0.77, 0.2] to give 3 censored data sets with 20%, 60%, and 80% censoring
respectively. The simulated uncensored data, and the censored data are given in
Appendix A.1, while the code used to simulate the data are given as Appendix B.1.

3.2 Estimation of covariate functions

For a lifetime T assume that the correct model is given by

log T = β0 + βTZ + f(X) + σW. (3.8)

X is a component of the covariate vector X in section 2.7, the remaining compo-
nents of X is denoted as Z. Thus, X is more formally denoted as X = (X,Z).
Given the data {(ti, δi, xi, zi); i = 1, ..., n}, the goal is now to derive an expression
for the functional form for the covariate X, f(X).

To begin with fit the linear model

log T = β0 + βTZ + γX + σW. (3.9)

Using maximum likelihood, where the likelihood function is (2.16), the estimated,
potentially misspecified, model (3.9) is

log T = β̂0 + β̂
T
Z + γ̂X + σ̂W. (3.10)

By inserting the estimated model (3.10) into formula (2.18) it follows that the
standardized residuals are

ŝi =
log ti − β̂0 − β̂

T
zi − γ̂xi

σ̂
. (3.11)

The theory on residuals in section 2.8 says that if model (3.9) is correctly specified,
and f(x) is linear in x, then the standardized residuals should behave as a sample
from the distribution Φ(.). If on the other hand f(x) is not linear in x, Kvaløy
and Lindqvist has shown that the standardized residuals can be used as a means
to infer the functional form. [14] If a model is defined by parameters that could be
false, (β∗0 ,β

∗, γ∗, σ∗), the theoretical standardized residuals are

S∗ =
log T − β∗0 − β

∗TZ − γ∗X
σ∗

. (3.12)

Inserting the true model (3.8) for log T in (3.12) gives
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S∗ =
σ

σ∗
W +

(β0 − β∗0) + (β − β∗)TZ + f(X)− γ∗X
σ∗

. (3.13)

If f(x) is in fact linear, then it can be seen from (3.13) that S∗ conditional on
(X,Z) is distributed according to W . Solving for f(X) gives

f(X) = −σW − (β0 − β∗0)− (β − β∗)TZ + γ∗X + σ∗S∗ (3.14)

Taking the conditional expectation given X = x yields

f(x) = −σE(W )− (β0 − β∗0)− (β − β∗)TE(Z|X = x) + γ∗x+ σ∗E(S∗|X = x).
(3.15)

Assume that X and Z are independent, it then follows that −σE(W )− (β0 −
β∗0)− (β − β∗)TE(Z|X = x) is independent of x and is just a displacement of the
curve f(x). This leads to the equation

f(x) = const+ γ∗x+ σ∗E(S∗|X = x), (3.16)

where const denotes some displacement of the curve. As a consequence, f can be
estimated by

f̂(x) = γ̂x+ σ̂Ĥ(x), (3.17)

where Ĥ(x) is an estimate of

H(x) = E(S∗|X = x), (3.18)

and can be found by smoothing {(xi, ŝi); i = 1, ..., n}. Observe that if the poten-
tially misspecified model in equation (3.10) is indeed a good model, then E(S∗|X =
x) is approximately zero and consequently

f̂(x) ≈ γ̂x. (3.19)

In practice we will mainly work with Cox-Snell residuals. Assuming Weibull
distributed lifetimes it follows that Ĥ(x) can instead be estimated by smoothing
the adjusted Cox-Snell residuals ri = log si. We will be working with 1-adjusted
Cox-Snell residuals as described in section 2.8

Moving on we will apply equation (3.17) to a linear model fitted to the simulated
data in Appendix A.1. This is done by using the survreg function in the survival
library in R. The code for fitting the models to the uncensored, and censored data
sets are given in Appendix B.6. The model

log Yi = β0 + β1x1i + γx2i,

was fitted to the data with no censoring, 20%, 60%, and 80% censoring, and gave
the parameter estimates in Table 3.1
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censoring β̂0 β̂1 γ̂ σ̂ log σ̂
0 −0.6235(0.2145) 0.9531(0.1152) 0.4443(0.0976) 1.08 0.0746(0.0782)

20% −0.6654(0.2384) 1.0613(0.1478) 0.4913(0.1148) 1.11 0.1068(0.0882)
60% −1.536(0.344) 1.260(0.241) 1.219(0.247) 1.13 0.122(0.120)
80% −1.0603(0.4786) 1.3195(0.3424) 0.8818(0.3074) 1.02 0.0195(0.1735)

Table 3.1: Parameter estimates for the misspecified linear Weibull AFT model
log T = x1 + x2 + σW , that was fitted to the simulated datasets in Appendix A.1
using survreg. The underlying correct model for the simulated data is log T =
x1 + log(x2) + σW .

x1 is what has previously been referred to as z, while x2 is the misspecified
covariate which has been referred to as x. From Table 3.1 we can read off the
parameter estimates that we will use in (3.17) to estimate functional form. The
Cox-Snell residuals can also be calculated by inserting the parameter estimates
into (3.4). In order to investigate whether the fitted models provide good fits
for their respective datasets, we look at plots of the logarithm of the Cox-Snell
residuals against the covariates. Plots of the logarithm of the Cox-Snell against
the covariates are illustrated in Figure 3.1, 3.2, 3.3, and 3.4 for the uncensored
dataset, and the data with 20%, 60%, and 80% censoring, respectively. The Cox
Snell residuals for the models fitted to the censored datasets have been adjusted
by adding 1 as described in section 2.8
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Figure 3.1: Log of Cox-Snell residuals as a function of the covariates for the mis-
specified model corresponding to the uncensored dataset

From Figure 3.1 there appears to be no dependency between the residuals and
x1 as the logarithm of the Cox-Snell residuals appears to be symmetric around 0
with no apparent patterns as a function of x1. For x2 most of the residuals can be
found between 0 and 2 on the covariate axis, and the value of the residuals look
like they increase as a function of x2. Thus, it is clear from Figure 3.1 that the
fitted linear model to the uncensored data set is not a good fit as there is a pattern
for x2.
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Figure 3.2: Log of 1-adjusted Cox-Snell residuals as a function of the covariates for
the misspecified model corresponding to the dataset with 20% censoring. The red
dots are censored residuals which have been adjusted by adding 1, while the black
dots are uncensored residuals.

Similarly to Figure 3.1, Figure 3.2 shows no dependency between the residuals
and x1. For x2 the same pattern present in Figure 3.1 appears. So the regardless
of the 20% censoring the pattern in the residuals as a function of x2 is still clear.
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Figure 3.3: Log of 1-adjusted Cox-Snell residuals as a function of the covariates
for the misspecified model corresponding to the dataset with 60% censoring. The
red dots are censored residuals which have been adjusted, while the black dots are
uncensored residuals.

In Figure 3.3 there is large number of censored residuals that have been ad-
justed. For x1 there appears to be no pattern like the two previous cases but we
can see that for the residual axis, the observations above 0 are primarily censored
residuals that have been adjusted, while most uncensored residuals are less than 0.
For x2 the pattern present in the previous two cases appears to have disappeared
to a large extent. While most residuals are still located between 0 and 3 along the
covariate axis for x2, it does not look as clear that the value of the residuals is
increasing as x2 increases. This might be a result of the high degree of censoring
in the simulated data, effectively masking the functional form.
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Figure 3.4: Log of 1-adjusted Cox-Snell residuals as a function of the covariates for
the misspecified model corresponding to the dataset with 80% censoring. The red
dots are censored residuals, while the black dots are uncensored residuals.

For Figure 3.4 like the 3 previous cases there appears to be no dependency
between the residuals and x1. For x2 there appears to be more of a pattern present
than in the case for 60% censoring, and we observe that between 0 and around 1.5
on the covariate axis, the unadjusted, uncensored residuals increase as x2 increases.
However, the pattern does appear to largely disappear as in the previous case with
60% censoring.

From all 4 residual plots there looks like there is no dependency between the
residuals and the covariate x1 for any level of censoring. For the misspecified
covariate x2 on the other hand, there is a clear pattern and dependency between
the covariate and the residuals for the first two cases, but this disappears to a large
extent for the last two cases. It can be observed from Figure 3.2, 3.3, and 3.4 that
1-adjusting the censored residuals contribute to ”blurring” the pattern present in
the residual plot for the misspecified covariate.

We now move on to estimating the functional form of the misspecified covariate
x2. Using LOESS in R, with span = 0.75, to smooth the logarithm of the adjusted
Cox-Snell residuals we get an estimate of Ĥ(x2). Inserting the estimated values for
γ̂ and σ̂ given in the Table 3.1, along with the estimate for Ĥ(x2), into equation
(3.17) gives the estimated functional form of x2 in Figure 3.5 for the 4 models.
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Figure 3.5: Functional form of the misspecified covariate x2 using equation (3.17),
for the data with no censoring, 20%, 60%, and 80% censoring. The solid lines show
the true functional form f(x2) = log x2, while the dots is the estimated functional
form.

For the case with no censoring and 20% censoring the functional form appears
to have been recovered and it looks clear that it is f(x2) = log x2. For the case with
60% censoring the functional form appears to be a bit more linear, and at the very
least its hard to say that the functional form has been recovered. For the case with
80% censoring the functional form appears to be more similar to the logarithmic one
than the case with 60% censoring. This might be a result of chance, as you would
expect the estimate of the functional form the become gradually worse the more
censoring is present. Also, observe that the displacement of the curve increases for
higher censoring. This is likely due to the estimated regression parameters being
further from the true underlying regression parameters for the case higher censoring
cases, which leads to a larger displacement of the curve by equation (3.15).

3.3 Covariate Order Method

The goal now is to implement and apply the covariate order method described in
section 2.9 to estimate the functional form of the misspecified covariate.

Let Cox-Snell residuals r̂i and the data be as given in section 3.2. The main
idea is to consider a synthetic data set {(r̂i, δi, xi), i = 1, . . . n)}, where xi denotes
the value for a specific covariate at time yi, where we impose an exponential model
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with hazard rate λ(x) for r̂ given x. Now we apply exponential regression to the
synthetic data set in order to estimate the hazard rate λ(.). The estimate is denoted

by λ̂(.).
By applying the connection between Cox-Snell and standardized residuals in

(2.22) to H(x) = E(S∗|X = x), H(x) can be written in terms of the Cox-Snell
residuals as

H(x) ≡ E(Φ−1(1− exp(−R∗))|X = x). (3.20)

Assuming the exponential model for the Cox-Snell residuals given the parameter-
ization in section 2.3, the expected value of R∗ for a given x is 1

λ̂(x)
. Thus, by

replacing R∗ by its expected value in (3.21), the estimate Ĥ(x) of H(x) is

Ĥ(x) = Φ−1(1− exp(1/λ̂(x))). (3.21)

Φ−1(1− e−r) is concave for the Weibull model, thus the right-hand side of (3.21)

is convex in λ̂(x). Jensen’s inequality says that for any concave function

E[f(X)] ≤ f(E[X]).

Thus, it follows from Jensen’s inequality that

E(Ĥ(x)) ≥ Φ−1(1− exp(1/E(λ̂(x)))).

This indicates a possibility of overestimating. In addition, under the given as-
sumptions, if λ̂(x) is a consistent estimator for the hazard rate, then Ĥ(x) is also
a consistent estimator for H(x) [14].

For Weibull AFT models we have that

Φ−1(x) = log(− log(1− x)), for 0 < x < 1. (3.22)

It follows from (3.22) that H(x) = E(logR∗|X = x). Ĥ(x) can thus be found
by smoothing the points (xi, log r̂i). In addition, it follows that Ĥ(x) can also be
written as

Ĥ(x) = − log λ̂(x), (3.23)

By inserting (3.23) into (3.17) this leads to

f̂(x) = γ̂x− σ̂ log λ̂(x). (3.24)

As mentioned in section 2.9, the covariate order method is a nonparametric
method for censored exponential regression. Thus, by applying the covariate or-
der method to the synthetic data (r̂i, δi, xi), the hazard λ(x) can be estimated,
assuming the Cox-Snell residuals are approximately exponentially distributed.

To implement an algorithm to estimate λ(x) via the covariate order method,
start by sorting the set of observations as described in section 2.9, and computing
the times {Si, i = 1, . . . , r}, where r =

∑n
j=1 δj .
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Let K(.) denote a positive kernel function that integrates to 1 and disappears
outside the interval [−1, 1]. Furthermore, let hs be a smoothing parameter that
can either be constant or varying along the s-axis.

λ̂(x) =
1

nhs

r∑
i=1

K

(
ŝ(x)− Si

hs

)
; x ∈ χ (3.25)

λ̂(x) in equation (3.25) was proven by Kvaløy and Lindquist to be a uniformly
consistent estimator of λ(x). [13] ŝ(x) is the correspondence function as described
in section 2.9.

The performance of a kernel is measured by MISE (mean integrated squared
error) or AMISE (asymptotic MISE). Any kernelK(.) that satisfies the assumptions
can be used, but we will use the Epanechnikov kernel, since this produces the
minimal MISE for kernels of order (0,2) [11]. The Epanechnikov kernel is given as

K(x) =
3

4
(1− x2)I[−1,1]. (3.26)

where I[−1,1] is an index function in the interval [−1, 1]. In practice the estimator
in (3.25) will be downward biased near the endpoints. In order to handle this we
can implement a boundary kernel or use the reflection method. We can for example
use the boundary kernel

Kc(x) =

{
12

(1+c)4 (1 + x)
[
x(1− 2c) + 3c2−2c+1

2

]
, −1 ≤ x ≤ c,

0, otherwise.
(3.27)

from Zhang and Karunamuni, which is a natural continuation of the Epanechnikov
kernel (3.26). [19]

The reflection method on the other hand is based on reflecting the data points
around both endpoints, and is what we will use in this project to handle problems
in the kernel estimation near the endpoints. By using the reflection method the
estimator (3.25) becomes

λ̂(x) =
1

nhs

r∑
i=1

[
K

(
ŝ(x)− Si

hs

)
+K

(
ŝ(x) + Si

hs

)
+K

(
ŝ(x) + Si − 2S

hs

)]
,

(3.28)
where S =

∑n
j=1 Tj/n. The parameter hs is a smoothing parameter that cor-

responds to smoothing over a certain amount of data along the s-axis. On the
covariate axis a corresponding parameter hx, which covers approximately the same
data, is defined via the relation between the points on the s-axis and the covariate
axis. Generally, if one of the smoothing parameters is held constant, then the other
will be varying. Using a constant hs corresponds to ordinary density estimation on
the s-axis. By using a constant value for hx, (3.28) becomes
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λ̂(x) =
1

nhs(ŝ(x))

r∑
i=1

[
K

(
ŝ(x)− Si
hs(ŝ(x))

)
+K

(
ŝ(x) + Si
hs(ŝ(x))

)
+K

(
ŝ(x) + Si − 2S

hs(ŝ(x))

)]
.

(3.29)
While Epanechnikov should be a good choice of kernel, the choice of kernel is

not as important as the choice of smoothing parameter. The function implementing
the covariate order method is given in Appendix B.2.

3.4 Finding the smoothing parameters using cross-
validation, and estimating the functional form
using the covariate order method

There are two main approaches to finding the smoothing parameter, the plug-
in approach, and the classical approach. We will focus on trying to use cross-
validation, primarily leave-one-out cross-validation (loocv), which falls under the
classical approach. The Covariate Order method is implemented so that it is pos-
sible to smooth along either the covariate or the event axis. Since x1 is simulated
from the standard normal distribution, while x2 is simulated from the exponential
distribution with rate λ = 1/2, and it would be preferable to avoid a constant
smoothing parameter on this axis with a varying number of observations in each
interval. Since, we will look using the reflection method to handle the boundaries
in the density estimation instead of using the boundary kernel in the covariate
order method, the cross-validation algorithms we will look at uses reflection when
it calls the covariate order function.

The likelihood function for censored survival data without truncation is given
by

L(θ;x, δi) =

n∏
i=1

[f(xi; θ)]
δi , [H(xi; θ)]

1−δi . (3.30)

where f(.) is the PDF and H(.) is the Survival function. The Cox-Snell residuals
are denoted as R̂i, while Xi denotes the covariate used in the Covariate Order
method. It follows that the likelihood of the Cox-Snell residuals is

L(λ(.)) =

n∏
i=1

[λ(Xi)e
−λ(Xi)R̂i ]δi [e−λ(Xi)R̂i ]1−δi . (3.31)

This gives the log-likelihood

l(λ(.)) =

n∑
i=1

[δi log λ(Xi)− λ(Xi)R̂i]. (3.32)

The idea behind using loocv is to use all of the data except for observation i to
estimate the hazard function λ(x). We then proceed by using using this estimate
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of the hazard rate to find the hazard rate of the left out observation i. Let λ−i(x|h)
denote the hazard rate for the left out observation, this gives the likelihood loocv
criterion

lCV (h) =

n∑
i=1

[δi log λ̂−i(Xi|h)− λ̂−i(Xi|h)R̂i]. (3.33)

The idea is that the value of h that gives the largest value of the lCV criterion
in equation (3.33) should be the ”optimal” value of the smoothing parameter h
for use in the Covariate Order method function. The code for calculating the lCV
criterion for a specified value of h can be found in Appendix B.3.

It was found that the function in Appendix B.3 seems to break down for values
of h smaller than 0.3 when applied to the Cox-Snell residuals corresponding to the
model fitted to the uncensored data. Using the covariate order method to estimate
the functional form of x2, based on the uncensored dataset, for 4 different values
of h is plotted in Figure 3.6.
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Figure 3.6: Estimated functional form of x2 using various values for h in the
Covariate order function. The points are the estimated functional form, whereas
the lines is the true functional form log(x2).

From Figure 3.6 we can see that the two upper plots do a good job of finding
the functional form of covariate x2, whereas the two lower plots do not recover the
functional form. Thus, it appears that a small value of h is necessary in this case.
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Since our implementation of the aforementioned likelihood cross-validation method
breaks down for h < 0.4, we try a different criterion to find a good value of h.

We will attempt to implement a method that uses the Kernel density estimate
to produce a criterion for choosing h instead of using that Cox-Snell residuals follow
an exponential distribution if they provide an adequate fit to the model, to propose
the aforementioned likelihood criterion. From equation (2) in Ximing Wu (2018),
the likelihood cross-validation criterion

lCV (h) = max
h

1

n

n∑
i=1

ln f̂i(h), (3.34)

is provided. f̂i(h) = 1/(n− 1)
∑
j 6=iKh(Xi −Xj) is here the leave-one-out density

estimate. [18] Where observation i is left out of the density estimation. We can
apply equation (3.34) to the kernel estimate of the Si referred to in section 2.9.
We estimate the density r times, where r is number of S values. n in (3.34) is the
number of observations in the dataset. It follows that the Kernel estimate of the
Si values using the reflection method becomes

f̂i(h) =
1

(n− 1)hs

∑
j 6=i

[
K

(
Si − Sj
hs

)
+K

(
Si + Sj
hs

)
+K

(
Si + SJ − 2S

hs

)]
.

(3.35)

h as a function of the lCV criterion for covariate x2 in (3.34) is plotted for the
four datasets in Figure 3.7.
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Figure 3.7: cross-validation criterion lCV (h) against h for the covariate order
method applied to the four simulated datasets. The red dots are the maximum
lCV values.

The maximum value of the cross-validation criterion and the corresponding h
for x2 is given in Table 3.2

uncensored 20% 60% 80%
lCV (h) 0.096869771 0.114686311 0.005902621 0.157389683

h 0.09 0.08 0.09 0.04

Table 3.2: Maximum value for lCV (h) with corresponding h for x2 with no cen-
soring, 20%, 60%, and 80% censoring.

Using the values of h in Table 3.2 in the covariate order function to estimate
the hazard rates and using this estimate of the hazard rate in equation (3.24), gives
the functional form of x2 in Figure 3.8.
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Figure 3.8: Estimated functional form of x2 for the data with no censoring, 20%,
60%, and 80% censoring. The points are the estimated functional form, whereas
the solid lines are the true functional form log(x2).

Figure 3.8 indicates that the functional form of x2 for the uncensored case and
the case with 20% censoring is log(x2). From the two lower plots showing the
functional form for the case with 60% and 80% censoring, it is hard to say that the
true functional form is logarithmic, as was the case for the method of estimating
the functional form presented in section 3.2. For the two high censoring cases the
plot of the functional form appears to be fairly linear for values of x2 over 2. The
reason for why the functional form appears to be linear for x2 > 2 for the two
high censoring cases in Figure 3.8 might not only be the high number of censored
observations, but due to the fact that most of the uncensored residuals in Figure
3.3 and Figure 3.4 correspond to x2 < 2. For x2 < 2 in the high censoring cases in
Figure 3.8, the curve is slightly displaced, but the functional form does look as if
it could be logarithmic.

Looking at the estimated hazard λ̂(x2) computed by the covariate order method
can give an indication of model fit and trends in the hazard. Figure 3.9 shows the
estimated hazard against x2.
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Figure 3.9: Log of the estimated hazard, λ̂(x2), as a function of the covariate x2
for the data with no censoring, 20%, 60%, and 80% censoring.

If the fitted linear model is correct, the logarithm of the hazard would be ex-
pected to be around zero. For no censoring and 20% censoring there is a decreasing
trend in the hazard until approximately 2 on the covariate axis. For x2 > 2 there
is an increasing trend until the hazard levels out and is approximately constant.
For the two high censoring cases there is a similar pattern, but the hazard is not
as turbulent and it levels out closer to zero and becomes constant.

3.5 Testing for covariate effect

If there was no trend in the hazard (λ(x) ≡ λ), there would be no covariate effect,
and the artificial point process S1, S2, . . . , S2 is a homogeneous Poisson process.
This suggests that covariate effect can be tested by any statistical test that tests
for the Null hypothesis of a HPP versus the alternative hypothesis of any variant
of NHPP. In Kvaløy (2002), Kvaløy outlines various statistical tests, constructed
based on the covariate order method, that tests for covariate effect in survival
data.[12] Kvaløy recommends to use an Anderson Darling type test since it shows
to have good properties for both monotonic and non-monotonic alternatives to a
constant hazard. The AD test for trend constructed based on the covariate order
method is
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AD = −1

r̂

[
r̂∑
i=1

(2i− 1)(ln
Si
S

+ ln(1− Sr̂+1−i

S
))

]
− r̂, (3.36)

where S =
∑n
i=1 Ti/n, and r̂ is defined as

r̂ =

{
r if Sr < S

r − 1 if Sr = S
(3.37)

The Anderson Darling statistic for the estimated hazard λ̂(x2) in the four
datasets is computed by equation (3.36) to be

ADx2 = 7.677 for uncensored,

ADx2 = 7.432 for 20% censoring,

ADx2 = 3.003 for 60% censoring,

ADx2 = 6.968 for 80% censoring.

(3.38)

For datasets with few lifetimes Kvaløy states that the level properties of the
AD test can be improved by using resampling techniques such as bootstrap or
permutation methods. [12] However, using the asymptotic null distribution of
equation (3.36) gives a more conservative result for small sample sizes than one
would expect to get by using resampling methods. Still, the asymptotic distribution
is a good approximation to the real distribution for sample sizes as small as n = 10.
The asymptotic null distribution of the AD statistic was derived by Anderson and
Darling (1952). [8] The null hypothesis of no covariate effect is rejected at a 5%
significance level if AD ≥ 2.492. It follows that the null hypothesis is rejected for
all the four cases, and thus we conclude that there is a significant trend in the
hazard. It follows that the Cox-Snell residuals are dependent on the covariate x2
and we can conclude that the fitted model is not correct.
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Chapter 4

Popes data

We now turn to a real dataset that we will refer to as the popes data. The dataset
consists of post-election survival times for all 62 popes starting from and including
Pope Innocent VII, who began his pontificate in 1404, up until, and not including,
Pope Francis who began his pontificate in 2013 and is at the time of writing this
project still the pope. [17] The dataset can be found in Appendix A.2. The 15th
century was chosen as the starting point since date of birth, age of election, year
of election, and death (resignation) is accurately documented from this point on
wards. [17] All popes aside from Pope Gregory XII who resigned in 1415 and died
in 1417, and Pope Emeritus Benedict XVI who resigned on 28 February 2013, died
in office. Pope Emeritus Benedict XVI is still alive at the time of writing this
project, and he is the only censored observation in the dataset. The version of the
dataset that is being analyzed is from the 25th of December 2016, and at that time
Pope Emeritus Benedict XVI has a post-election survival time of 11.7 years.

We will look at fitting a model including 2 explanatory variables. The first
being at what age were the popes elected (Age.Election), and the second being in
which year were they elected (Year.Elected). The median age of election is 63.5
years, while the median post election survival time of the 61 popes (Benedict XVI
excluded) is 9 years.

4.1 Analysis of popes data

Fitting a linear Weibull AFT model to the popes data with Age.Election and
Y ear.Elected denoted as the covariates x1 and x2, respectively, gives the summary

Call:

survreg(formula = surv_obj ~ x1 + x2, data = popes, dist = "weibull")

Value Std. Error z p

(Intercept) 0.975920 1.226590 0.80 0.4262

x1 -0.027200 0.011484 -2.37 0.0179

x2 0.001807 0.000661 2.73 0.0063

Log(scale) -0.133331 0.111860 -1.19 0.2333

39
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Scale= 0.875

Weibull distribution

Loglik(model)= -196.6 Loglik(intercept only)= -201.5

Chisq= 9.74 on 2 degrees of freedom, p= 0.0077

Number of Newton-Raphson Iterations: 7

n= 62

From the summary we observe that both the covariates x1 and x2 are statisti-
cally significant at a 5% significance level. By using equation (2.21) we calculate
the Cox-Snell residuals and plot them as a function of the covariates in Figure 4.1.
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Figure 4.1: Log of Cox-Snell residuals versus the covariates. The red dot is the
residual corresponding to Pope Emeritus Benedict XVI, which is censored and has
been 1-adjusted. The triangles correspond to the popes that died withing 1 year
of election.

Looking at the Residual plots in Figure 4.1 the triangles are clear outliers. These
Residuals correspond to popes that died within a year of being elected. Aside from
Pope John Paul I who died in 1978, all the popes that died in less than a year
were popes in the 17th and 18th century. Pope John Paul I died of a heart attack
September 1978, 33 days after being elected pope. [3] Pope Leo XI died at the age
of 70, of fatigue 27 days after being elected in 1605. The 5 other popes who died in
the 17th century are reported to have died of an illness of some sort. Pope Gregory
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who was pope for approximately 10 months and died at age 56 from complications
with gallstones. [2] Pope Innocent IX died of a fever 2 months after being elected
pope, whereas the 3 other short lived popes of the 17th century all died within a
month of being elected. Aside from the outliers, there does not appear to be much
of pattern present in the residuals.

To estimate a functional form for the covariates, we first look at using the
method in Section 3.2, more specifically equation (3.17). Using the estimates in

the summary σ̂ = 0.875, β̂2 = −0.0272, and β̂3 = 0.001807, along with an estimate
Ĥ(x) and inserting into equation (3.17), gives the estimated functional forms in

Figure 4.2 for the two covariates. β̂2 and β̂3 correspond to γ for x1 and x2 in
equation 3.17, respectively. Ĥ(x) is estimated by smoothing log of the fitted Cox-
Snell residuals versus the covariates by using the loess function in R with span = 2.
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Figure 4.2: Estimated functional form for covariates x1 (top) and x2 (bottom)
using equation (3.17).

The estimated functional form of x1 in Figure 4.2 is linearly decreasing until
approximately 70, after which the functional form becomes close to constant. For
x2 the functional form appears to be close to constant until around 1600, and then
it linearly increases.

Moving on we look at using the covariate order method on the Cox-Snell resid-
uals of the fitted model in order to get an estimate of the hazard λ̂(x), which can
in turn be used to estimate the functional form by equation (3.24). To choose a
smoothing parameter h, calculate and plot the lCV criterion in equation (3.35) as
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a function of h.
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Figure 4.3: cross-validation criterion lCV (h) against h for the 2 covariates x1 (top)
and x2 (bottom).

In Figure 4.3 the value of h corresponding to the maximum value of lCV for
the two covariates is found to be 1.08 and 1.09 respectively. Observe that the curve
in Figure 4.3 is fairly flat for values of h in the interval 0.3 to around 1.3. Since
the value of the cross validation criterion does not change much in this interval we
choose a smaller value of h on this interval in addition to ones corresponding to
the maximum of the cross-validation criterion. The reason for this is that a smaller
value of h will not smooth as much as a larger value of h and might give some
valuable insight into the functional form.
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Figure 4.4: Estimated functional form for covariates x1 (top) and x2 (bottom).

The solid line is the estimated linear covariate function β̂2x1 for the upper plots,
and β̂3x2 for the bottom plots. on the left-hand side, the functional forms are
estimated using h = 0.3 in the covariate order function to estimate the hazard.
On the right-hand side, the functional forms are estimated using the values of h
corresponding to the maximum values of lCV mentioned previously.

Figure 4.4 shows the estimated functional form of x1 and x2. The functional
form is estimated by using the covariate order method to estimate the hazard rate
and inserting this estimate into equation (3.24) along with the estimated parameter
values in the summary for the model fitted to the popes data. We use the reflection
method to handle the boundaries in the kernel density estimation in the covariate
order, and we smooth along the event-axis using h = 0.3 and h equals to the value
corresponding to the maximum value of the lCV .

Figure 4.4 shows that for the values of h corresponding to the maximum value
of the cross validation criterion, the functional form appears to be linear. The
estimated functional forms for the covariates coincides with the solid lines β̂i+1xi,
where β̂i+1 is the estimated regression coefficient corresponding to covariate xi.
According to equation (3.17) you would expect that if the fitted model is a good
fit, then Ĥ(x) ≈ 0, and the estimated functional form is approximately the one

estimated in the fitted model, f̂(xi) ≈ β̂i+1xi for covariate xi.
For the case with smoothing parameter h = 0.3 in Figure 4.4 the true functional

forms of x1 and x2 could be close to linear. However, looking at the functional form
of x2 there might a better functional form than the linear one. Observe that for
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x2 the functional form is approximately constant prior to 1600, and it looks to
linearly increasing after this point. A suggestion for the functional form of x2
could be something along the lines of

f(x2) =

{
α, for 0 ≤ x2 ≤ 1600

α+ β(x2 − 1600), for 1600 < x2.
(4.1)

α and β in equation 4.1 are constants. To check whether or not equation 4.1 is
better than the estimated linear covariate function for x2 we can transform the
data and fit a new linear model in survreg and analyze this. But first we look for
any trend in the estimated hazards.

Figure 4.5 shows plots of the log of the estimated hazards λ̂(x1) and λ̂(x2)
versus the covariates x1 and x2, respectively.
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Figure 4.5: Log of the estimated hazard, λ, as a function of the covariates x1 (top)
and x2 (bottom).

From Figure 4.5 there looks as if there is an increasing trend for values of x1
from 54 until approximately 66. For values of x1 larger than 66 there appears to
be a decreasing trend. However, the values on the log(λ) axis span −0.15 to 0.15,
so log(λ) is fairly close to zero which hints at a good model fit. Similarly for x2 the
points lie close to zero, which hints at a good model. For x2 there looks as if there is
a small increasing trend from 1400 until around 1570/1580. After this point there
is a small decreasing trend until approximately 1800. To test more rigorously for
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covariate effect we apply the Anderson Darling test for covariate effect presented
in section 3.5.

Using equation (3.36) the AD statistic for x1 and x2 are computed to be

ADx1 = 0.5355,

ADx2 = 0.4204.
(4.2)

The null hypothesis of no significant trend in the hazard is rejected at a 5%
significance level if ADxi ≥ 2.492. It follows that we keep the null hypothesis
for both covariates since the computed statistics in equation (4.2) are significantly
smaller than the one for the null hypothesis. Thus, the conclusion is that there are
no significant trends in the two hazards. It follow that the Cox-Snell residuals for
the model fitted to the popes data are independent of the covariates, and the fitted
linear model is believed to be a good model.

While the linear model appears to be a good model, applying some transforma-
tions to the covariates and fitting a new model could potentially produce a better
model. For example the functional form for x2 (Year.elected) proposed in equation
(4.1), might improve upon the linear AFT model. To check whether or not the
transformation will yield a better model we can for example look at the Akaike
information criterion (AIC) of the original linear model, and the model where x2
is transformed by equation (4.1). The AIC value for a model is

AIC = 2k − 2 log(L̂), (4.3)

where k is the number of estimated parameters in the model, and log(L̂) is the
estimated log-likelihood of the model. Since the original linear model and the
model where x2 is transformed by equation (4.1), will have the same estimated
parameters k, comparing the model using AIC is reduced to choosing the model
with The largest value of log(L̂).

The summary of an AFT model using survreg contains an estimated value
log(L̂). Fitting a new model where x2 is transformed by equation (4.1), gives the
following summary.

> summary(popes_model2)

Call:

survreg(formula = surv_obj2 ~ x1 + x2T, data = popes, dist = "weibull")

Value Std. Error z p

(Intercept) 3.739718 0.726501 5.15 2.6e-07

x1 -0.027767 0.011633 -2.39 0.0170

x2T 0.002671 0.000944 2.83 0.0047

Log(scale) -0.140063 0.111794 -1.25 0.2103

Scale= 0.869

Weibull distribution
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Loglik(model)= -196 Loglik(intercept only)= -201.5

Chisq= 11.01 on 2 degrees of freedom, p= 0.0041

Number of Newton-Raphson Iterations: 7

n= 62

From the summary of the original model in the beginning of this section we
observe the value log(L̂) = −196.6. The estimated log-likelihood of the new model
is log(L̂) = −196. Since the log-likelihood for the new model is slightly higher than
the original model, we conclude that the new model is slightly better than the old.
Thus, we observe that even if there is no significant trend in the estimated hazard,
estimating the functional form can still lead to clues on how to improve upon a
model.
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PBC data

Moving on we will have a look at a well-known dataset from the Mayo Clinic trial on
Primary biliary cirrhosis (PBC) of the liver. The trial was conducted between 1974
and 1984. The trial consists of 424 patients who between the 10 year interval met
the eligibility criteria for this randomized, double-blinded, placebo controlled trial
of the drug D-penicillamine (DPCA). [5] The first 312 patients in the dataset agreed
to take part in the trial, and for these patients. histologic, clinical, serologic, and
biochemical parameters were recorded. The remaining 112 patients did not agree
to take part in the trial, but they did however agree to have basic measurements
recorded and to be followed for survival. Six of these 112 individuals were lost
in the follow up and are excluded from the data. The data consists of the 312
patients that took part in the trial, along with the 106 patients that agreed to take
basic measurements. For the 312 patients that took part in the trial the follow-up
lasted until July 1986. At which point 125 of the 312 had died, and only 11 of
these deaths were not due to PBC. 8 of these 312 were lost in the follow-up and
are censored in the data, while 19 of them received a liver transplant.

PBC is a rare type of fatal chronic liver disease, estimated to only occur in
approximately 50 per 1 million population. For a patient with PBC the immune
system mistakenly attacks the bile ducts, which leads to the bile ducts becoming
injured or damaged. This causes bile to build up in the liver and can lead to scarring
of the liver (cirrhosis), or liver failure if the illness is left untreated. [4] The Mayo
clinic trial on DPCA established that DPCA is not an effective treatmeant of PBC.
Until recent times treatment for PBC was limited to supportive care. Today, PBC
is mainly treated with a drug called UDCA, and in severe casses it requires a live
transplant. While DPCA did not show to be effective, the data that was gathered
during the trial is still very valuable to specialists working with liver disease, and
here in this project we will look at trying to find the functional forms of some of
the variables in the dataset.
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5.1 Analysis of PBC data

The PBC dataset can be found by typing pbc in the survival library in R. The
Table 5.1 contains all the variables in the full dataset, with a short description of
them.

Variable Description

1. age in years
2. albumin serum albumin (g/dl)
3. alk.phos alkaline phosphotase (U/liter)
4. ascites presence of ascites

5. ast
aspartate aminotransferase

(U/ml)
6. bili serum bilirubin (mg/dl)
7. chol serum cholesterol (mg/dl)
8. copper urine copper (ug/day)

9. edema
0 no edema, 0.5 untreated or
successfully treated, 1 edema

despite diuretic therapy

10. hepato
presence of hepatomegaly or

enlarged liver
11. id case number
12. platelet platelet count
13. protime standardised blood clotting time
14. sex m/f

15. spiders
blood vessel malformations in

the skin

16. stage
histologic stage of disease (needs

biopsy)

17. status
status at endpoint, 0/1/2 for

censored, transplant, dead

18. time

number of days between
registration and the earlier of
death, transplantion, or study

analysis in July, 1986

19. trt
1/2/NA for D-penicillmain,

placebo, not randomised
20. trig triglycerides (mg/dl)

Table 5.1: Variables in the PBC dataset

The final model proposed by Fleming and Harrington (1991) consists of 5 of the
variables in 5.1 that were shown to be significant. [10] Thus, we will limited our-
selves to only looking at models including these five variables. The covariates in the
final model proposed by Fleming and Harrington was age, edema, log(bilirubin),
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log(protime), and log(albumin). We will start with a linear Weibull AFT model
consisting of the covariates age, edema, bilirubin, protime, and albumin. In ad-
dition, reduce the dataset to only contain the 312 individuals that agreed to take
part in the trial, since these are complete observations where no variable values are
missing. The fitted model is

log Y = β0 + βage · xage + βedema · xedema + βbili · xbili
+ βprotime · xprotime + βalbumin · xalbumin + σW.

(5.1)

The parameter estimates in equation (5.1) are found in the following summary
of the fitted model.

> summary(pbc_model)

Call:

survreg(formula = surv_obj ~ PBC$age + PBC$edema + PBC$bili +

PBC$protime + PBC$albumin, data = PBC, dist = "weibull")

Value Std. Error z p

(Intercept) 8.90246 0.78129 11.39 < 2e-16

PBC$age -0.02120 0.00602 -3.52 0.00043

PBC$edema -0.58436 0.19863 -2.94 0.00326

PBC$bili -0.07388 0.00913 -8.09 5.7e-16

PBC$protime -0.18144 0.04859 -3.73 0.00019

PBC$albumin 0.77625 0.14695 5.28 1.3e-07

Log(scale) -0.42850 0.07237 -5.92 3.2e-09

Scale= 0.651

Weibull distribution

Loglik(model)= -1105.4 Loglik(intercept only)= -1188.8

Chisq= 166.79 on 5 degrees of freedom, p= 3.5e-34

Number of Newton-Raphson Iterations: 6

n= 312

To compute the Cox-Snell residuals for the fitted model, insert the lifetimes Yi
along with the parameter estimates for the regression coefficients β̂i, and the scale
parameter σ̂, in the above summary into equation (3.4). Of the 312 observations
used to fit the model, only 125 are uncensored, corresponding to 60% censoring.
We plot the log of the 1-adjusted Cox-Snell residuals as a function of the covariates
to get an idea of the model fit, and if the covariates are appropriately represented
in the model.
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Figure 5.1: Log of 1-adjusted Cox-Snell residuals versus the covariates age (top),
and edema (bottom). The red dots show the censored residuals which have been
adjusted by adding 1.
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Figure 5.2: Log of 1-adjusted Cox-Snell residuals versus the covariates bilirubin
(top), protime (middle), and albumin (bottom). The red dots show the censored
residuals which have been adjusted by adding 1.

From the top residual plot in Figure 5.1 we observe that the value of the log
of the 1-adjusted Cox-Snell residuals are fairly low. However, there is no apparent
pattern in them. Thus, we believe that the age covariate is well represent as a
linear term in the model. In the bottom residual plot of 5.1 we observe the effect of
the discrete covariate edema on the residuals. From this plot there is no indication
that the residual distributions for the three covariate values of edema deviate from
one another. Thus, it is believed that the edema covariate is not misspecified in
the fitted model.

Looking at the residual plot for the bilirubin covariate (bili) in Figure 5.2,
observe that most residuals are found for lower values of bilirubin, and it appears
that there could be a pattern in log of the Cox-Snell residuals as a function of
bilirubin. In the middle residual plot in Figure 5.2 there appears to be a some
outliers for higher values of the protime covariate, and while it is difficult to observe
a clear pattern in the 1-adjusted residuals, the residuals do not appear to completely
symmetric with respect to zero on the residual-axis. Consequently, protime could
potentially be modelled slightly better. For the lower residual plot of the albumin
covariate it is hard to observe any pattern or asymmetries.

We will try to estimate the functional form of the age, bilirubin, protime, and
albumin covariates, using the covariate order method. To start we compute the
cross-validation criterion in equation (3.35) for a vector of h values, for each of the
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four covariates. This is to get an idea of what smoothing parameters to use in the
covariate order function in each case. Figure 5.3 shows plots of the cross-validation
criterion as a function of h for the four covariates. Table 5.2 shows the maximum
value of the cross-validation criterion with the corresponding value of h for the
four covariates. Since the edema covariate was found to be well represented in the
fitted model, and the covariate order method cannot be used for discrete covariates,
we choose to not estimate the functional form for this covariate. To see how to
estimate the functional form for a discrete covariate such as edema, see Kvaløy,
Lindqvist, and Aaserud (2015). [14]
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Figure 5.3: cross validation criterion (lCV) as a function of h for the four covariates
age, bilirubin, protime, and albumin.

age bilirubin protime albumin
lCV (h) -0.006167469 0.113054127 -0.004831749 -0.006493977

h 0.03 0.07 0.22 0.41

Table 5.2: Maximum value for lCV (h) with corresponding h for the four covariates
age, bilirubin, protime, and albumin.

Observe from Figure 5.3 that lCV (h) is flat for a large number of small values
of h, for all covariates but bilirubin, which has a clear global maximum before
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lCV (h) decreases. Thus, choose the value h = 0.07 corresponding to the maximum
value of lCV as a smoothing parameter for the bilirubin covariate in the covariate
order function. For the age covariate we also select the smoothing parameter
corresponding to the value of lCV , h = 0.03. In the case of the protime and albumin
covariates we observe the values h = 0.22 and h = 0.41 in Table 5.2, respectively.
Since the curves in Figure 5.3 are flat for values of h from approximately 0.05 until
around h = 0.5, we choose to use h = 0.05 instead of the values corresponding to
the global maximum for these two covariates, this because we want to capture more
of the variance in the estimated functional form. We choose the aforementioned
values of h as smoothing parameters in covariate order function, where we smooth
along the event-axis, and use reflection to handle boundary problems in the kernel
estimation. The resulting estimates of the corresponding hazards are inserted into
equation (3.24) along with the estimated parameter values in the summary for the
fitted model. This gives the estimated functional forms for the four covariates in
Figure 5.4
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Figure 5.4: The dotted plots are the estimated functional forms for the four covari-
ates age, bilirubin, protime, albumin, using the covariate order method. The solid
black lines are the linear lines β̂ixi, i ∈ {age, bili, protime, albumin}.

The estimated functional form for age in Figure 5.4 looks to fluctuate over and
under the linear solid line after age 40, but it hard to see if there is a clear underlying
functional form for this covariate, or if the linear functional form is sufficient. For
the bilirubin covariate the functional form clearly appears to be logarithmic. In the
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case of the protime and albumin covariates, their linear functional forms appear to
be sufficient. To look more into whether or not the covariates are well represented in
the fitted model, we plot the logarithm of the estimated hazard rates as a function
of the covariates in Figure 5.5. We also compute the Anderson Darling test statistic
for covariate effect in equation (3.36). Table 5.3 contains the computed AD test
statistics for the four covariates.
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Figure 5.5: Plot of the log of the estimated hazard rates of the Cox-Snell residuals
in the linear model versus the covariates.

age bilirubin protime albumin
AD statistic 0.5789 8.569 0.9311 0.3511

Table 5.3: Maximum value for lCV (h) with corresponding h for the four covariates
age, bilirubin, protime, and albumin.

From Figure 5.5 there is a large increasing trend for the bilirubin covariate. For
the 3 other covariates there are both some increasing and decreasing trends. From
Table 5.3, all of the statistics aside from bilirubin is smaller than 2.492. Thus, only
the trend for the bilirubin covariate is significant at a 5% significance level.

Since we discovered that the functional form of bilirubin appears to be loga-
rithmic we fit a new model
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log Y = β0 + βage · xage + βedema · xedema + βbili · log(xbili)

+ βprotime · xprotime + βalbumin · xalbumin + σW,
(5.2)

using survreg in R. survreg only takes linear covariates, thus we apply a logarithmic
transformation to the bilirubin covariate in the data set and fit a linear Weibull
AFT model to the data. The summary for the fitted model is as follows.

> summary(pbc_model2)

Call:

survreg(formula = surv_obj ~ PBC$age + PBC$edema + PBC$bili +

PBC$protime + PBC$albumin, data = PBC, dist = "weibull")

Value Std. Error z p

(Intercept) 9.4719 0.8219 11.52 < 2e-16

PBC$age -0.0207 0.0054 -3.83 0.00013

PBC$edema -0.5585 0.1809 -3.09 0.00201

PBC$bili -0.5314 0.0586 -9.07 < 2e-16

PBC$protime -0.1628 0.0529 -3.08 0.00208

PBC$albumin 0.5744 0.1419 4.05 5.2e-05

Log(scale) -0.4731 0.0709 -6.68 2.5e-11

Scale= 0.623

Weibull distribution

Loglik(model)= -1088.7 Loglik(intercept only)= -1188.8

Chisq= 200.05 on 5 degrees of freedom, p= 2.8e-41

Number of Newton-Raphson Iterations: 6

n= 312

To see if the new model is an improvement upon the first we can compare the
hazards for xbilirubin, and log(xbilirubin). The hazard for log(xbilirubin) is estimated
using the covariate order method with h = 0.16 found by using the cross-validation
criterion in equation (3.35). Figure 5.6 shows the estimated hazard rates for biliru-
bin and log of bilirubin.
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Figure 5.6: Plot of the log of the estimated hazard rates of the Cox-Snell residuals
against the first model using only bilirubin on its regular scale (left), and a model
using log of bilirubin (right).

From Figure 5.6, observe from the right-hand side that most of the trend has
disappeared, and the covariate is much better modelled by using log(bilirubin) in
the model. From the AD-statistic for log(bilirubin) in Figure 5.6 observe that it is
smaller than 2.492, so the trend is not significant at a 5% significance level. Thus,
the bilirubin covariate is much better modelled as log(bilirubin).

In the final model proposed by Fleming and Harrington (1991), the five vari-
ables age, edema, bilirubin, protime, and albumin, where as mentioned previously,
modelled as the covariates age, edema, log (bilirubin), log (protime), log (albumin).
While we did not observe any clear functional forms of any covariates aside from
bilirubin in Figure 5.4, and the Anderson-darling test only showed significant trend
in bilirubin, we can check if models including log (protime) and log (albumin) gives
better fits by the same approach we just used for bilirubin. Fit two models, one
where the covariates are age, edema, bilirubin, log (protime), and albumin. The
other where the covariates are age, edema, bilirubin, protime, and log (albumin).
The hazards for the two models are again estimated using the covariate order
method with reflection to handle kernel boundaries, and smoothing along the event-
axis with h = 0.05. h = 0.05 was chosen since its the same value used for the pro-
time and albumin in the original AFT model with covariates age, edema, bilirubin,
protime, and albumin. Figure 5.7 shows the estimated hazards for protime and
albumin in the original model, and the hazards for log (protime) and log (albumin)
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in the two new models.
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Figure 5.7: Plot of the log of the estimated hazard rates of the Cox-Snell residuals
against the first model using protime and albumin on their regular scales (left),
and two new models with log of protime (upper right) and log of albumin (lower
right).

From Figure 5.7 we observe that the hazards for log (protime) and log (albumin)
are less significant than the ones for protime and albumin. The AD-statistics also
shows less significant trend for log (protime) and log (albumin) than protime and
albumin, less so for albumin. Thus, we can conclude that modelling protime and
albumin as log (protime) and log (albumin) is an improvement. The model with
the covariates age, edema, log (bilirubin), log (protime), log (albumin) is a better
model than the one where the variables are on its original scale, or where only one
of bilirubin, protime, and albumin is applied the log transform.
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Chapter 6

Conclusion

In this project we have shown two ways of estimating the functional form for a
potentially misspecified accelerated failure time model. One where you can use a
smoothing of the Cox-Snell residuals for the model, along with the model’s esti-
mated regression parameters, to estimate the functional form as shown in section
3.2. The other method uses the covariate order method to estimate the hazard for
the Cox-Snell residuals.

For the first method of estimating the functional form of the simulated data in
section 3.2 we saw that for uncensored and low censoring data the functional form
is recovered. If the data contains a large degree of censoring then the estimate of
the functional form becomes gradually worse, and the displacement of the curve
increases. From section 3.3 we saw that the choice of smoothing parameter largely
influences the estimated hazard produced by the covariate order method. While
the cross-validation criterion gave an idea of what smoothing parameter to use, it
would be interesting to look at more ways of finding a good choice for h. From the
functional form estimate produced through the covariate order method, we saw that
while it captured the functional form for low values of the covariate, it did not for
higher values. This is probably due to most of the uncensored Cox-Snell residuals
corresponding to lower values of the covariate which lead to few events for higher
covariate values in the covariate order method. If there were more observations
in the data, then we would expect the covariate order method to give a better
estimate even if the degree of censoring remained the same.

For the Popes data we did not know if there was any underlying functional
form unlike the simulated data. While, we did not find any glaring functional here,
we saw how the functional form estimate can still be used to make improvements
upon an already adequate model. We also saw the usefulness of comparing hazards
of covariates to see if changing the functional form is an improvement. Our final
model suggests to model the post election lifetimes with the covariates Age.Elected
and f(Year.Elected), where f(.) is given by equation (4.1).

The analysis of the PBC data showed a clear logarithmic functional form for
bilirubin. Furthermore, we again saw the value of estimating and analyzing haz-
ards to see if an alternate functional form is an improvement for a covariate.
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log(protime) and log(albumin) were shown to be improvements over a model with
protime and albumin.
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Appendix A

Datasets

A.1 Simulated datasets with Weibull lifetimes, with
various degrees of censoring

t y20 y60 y80 delta20 delta60 delta80 x1 x2 W
1 1.37 1.37 1.37 0.22 1 1 0 0.40 0.69 0.28
2 2.78 2.78 0.29 0.00 1 0 0 -0.61 5.19 -0.01
3 1.49 1.49 0.26 0.10 1 0 0 0.34 1.91 -0.58
4 0.11 0.11 0.11 0.11 1 1 1 -1.13 3.59 -2.34
5 8.41 3.67 1.54 0.07 0 0 0 1.43 1.25 0.47
6 3.38 0.04 0.45 0.22 0 0 0 1.98 4.35 -2.23
7 0.10 0.10 0.10 0.00 1 1 0 -0.37 2.59 -2.87
8 0.44 0.44 0.29 0.22 1 0 0 -1.04 3.03 -0.88
9 3.17 3.17 0.36 0.25 1 0 0 0.57 3.87 -0.77
10 3.32 1.03 0.88 0.22 0 0 0 -0.14 1.37 1.02
11 15.35 11.61 0.97 0.05 0 0 0 2.40 0.88 0.46
12 2.54 2.54 0.10 0.03 1 0 0 -0.04 1.52 0.55
13 1.12 1.12 1.12 0.09 1 1 0 0.69 1.50 -0.98
14 0.49 0.49 0.49 0.22 1 1 0 0.03 0.50 -0.04
15 0.08 0.08 0.08 0.02 1 1 0 -0.74 0.66 -1.34
16 1.59 1.59 0.39 0.10 1 0 0 0.19 1.89 -0.36
17 0.14 0.14 0.14 0.13 1 1 0 -1.80 2.63 -1.10
18 0.04 0.04 0.04 0.00 1 1 0 1.47 1.08 -4.81
19 1.72 0.05 0.14 0.23 0 0 0 0.15 1.53 -0.03
20 2.32 2.32 0.11 0.18 1 0 0 2.17 1.05 -1.38
21 0.04 0.04 0.04 0.04 1 1 1 0.48 0.41 -2.70
22 3.53 3.53 0.41 0.08 1 0 0 -0.71 4.63 0.44
23 1.81 1.81 0.03 0.11 1 0 0 0.61 2.30 -0.85
24 1.31 0.76 0.51 0.26 0 0 0 -0.93 1.60 0.73
25 0.09 0.09 0.04 0.03 1 0 0 -1.25 0.24 0.28
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26 3.13 2.48 0.00 0.46 0 0 0 0.29 2.46 -0.05
27 1.95 1.95 1.06 0.07 1 0 0 -0.44 0.70 1.46
28 1.48 1.48 0.88 0.02 1 0 0 0.00 1.54 -0.04
29 0.24 0.24 0.24 0.14 1 1 0 0.07 1.62 -1.97
30 0.54 0.54 0.43 0.06 1 0 0 -0.59 0.90 0.07
31 0.61 0.61 0.61 0.09 1 1 0 -0.57 1.47 -0.32
32 0.05 0.05 0.02 0.05 1 0 1 -0.14 0.11 -0.67
33 0.35 0.35 0.15 0.01 1 0 0 1.18 0.15 -0.35
34 0.75 0.75 0.01 0.01 1 0 0 -1.52 2.05 0.52
35 0.46 0.46 0.46 0.09 1 1 0 0.59 1.35 -1.66
36 0.90 0.90 0.54 0.28 1 0 0 0.33 1.60 -0.91
37 0.23 0.23 0.23 0.08 1 1 0 1.06 0.35 -1.47
38 2.21 2.19 0.01 0.58 0 0 0 -0.30 1.35 0.80
39 2.08 2.08 0.49 0.42 1 0 0 0.37 4.44 -1.13
40 0.94 0.94 0.15 0.26 1 0 0 0.27 0.81 -0.12
41 0.09 0.09 0.09 0.09 1 1 1 -0.54 0.80 -1.62
42 2.90 2.90 1.33 0.28 1 0 0 1.21 1.99 -0.83
43 0.24 0.24 0.24 0.03 1 1 0 1.16 0.31 -1.41
44 3.28 3.28 0.39 0.92 1 0 0 0.70 2.75 -0.52
45 6.38 0.07 0.27 0.15 0 0 0 1.59 2.05 -0.45
46 0.10 0.10 0.10 0.10 1 1 1 0.56 0.25 -1.44
47 2.27 2.27 1.73 0.20 1 0 0 -1.28 2.17 1.32
48 0.13 0.13 0.13 0.12 1 1 0 -0.57 0.32 -0.30
49 0.12 0.12 0.12 0.12 1 1 1 -1.22 1.33 -1.17
50 1.00 1.00 0.35 0.03 1 0 0 -0.47 4.36 -1.00
51 1.22 1.22 0.60 0.20 1 0 0 -0.62 3.07 -0.30
52 0.03 0.03 0.03 0.03 1 1 1 0.04 0.21 -1.90
53 0.72 0.72 0.72 0.43 1 1 0 -0.91 2.17 -0.19
54 1.05 1.05 1.05 0.49 1 1 0 0.16 0.64 0.34
55 2.59 1.51 0.41 0.97 0 0 0 -0.65 1.88 0.97
56 29.71 2.59 3.91 0.21 0 0 0 1.77 2.20 0.84
57 7.40 7.35 0.16 0.42 0 0 0 0.72 3.14 0.14
58 1.04 0.99 0.14 0.88 0 0 0 0.91 0.64 -0.42
59 2.26 2.26 0.18 0.34 1 0 0 0.38 3.73 -0.89
60 6.02 6.02 0.56 0.13 1 0 0 1.68 1.24 -0.11
61 0.04 0.04 0.04 0.04 1 1 1 -0.64 0.89 -2.40
62 1.81 0.46 0.39 0.16 0 0 0 -0.46 2.35 0.20
63 3.67 3.02 2.62 0.38 0 0 0 1.43 1.12 -0.25
64 5.27 5.27 0.33 0.29 1 0 0 -0.65 9.17 0.10
65 0.17 0.17 0.17 0.17 1 1 1 -0.21 0.50 -0.85
66 0.91 0.91 0.64 0.45 1 0 0 -0.39 0.99 0.30
67 0.63 0.63 0.51 0.63 1 0 1 -0.32 1.17 -0.31
68 0.17 0.17 0.17 0.01 1 1 0 -0.28 0.82 -1.32
69 7.35 1.74 2.42 0.12 0 0 0 0.49 1.81 0.91
70 0.09 0.09 0.09 0.08 1 1 0 -0.18 0.78 -2.02
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71 0.84 0.84 0.07 0.43 1 0 0 -0.51 1.29 0.08
72 1.41 0.50 0.17 0.72 0 0 0 1.34 2.10 -1.74
73 2.62 2.62 0.60 0.16 1 0 0 -0.21 3.06 0.06
74 1.96 1.96 1.56 0.08 1 0 0 -0.18 2.14 0.09
75 1.77 1.77 0.94 0.05 1 0 0 -0.10 2.63 -0.30
76 1.14 1.14 0.60 0.01 1 0 0 0.71 4.89 -2.17
77 0.16 0.16 0.16 0.09 1 1 0 -0.07 1.16 -1.93
78 0.09 0.09 0.09 0.09 1 1 1 -0.04 0.10 -0.06
79 0.02 0.02 0.02 0.00 1 1 0 -0.68 0.15 -1.38
80 0.16 0.16 0.16 0.16 1 1 1 -0.32 5.52 -3.21
81 1.07 0.67 0.43 0.31 0 0 0 0.06 1.21 -0.18
82 0.18 0.18 0.18 0.10 1 1 0 -0.59 0.96 -1.08
83 10.73 0.60 0.09 0.06 0 0 0 0.53 6.88 -0.09
84 0.36 0.36 0.36 0.19 1 1 0 -1.52 1.44 0.12
85 0.66 0.66 0.10 0.41 1 0 0 0.31 1.74 -1.28
86 0.00 0.00 0.00 0.00 1 1 1 -1.54 0.00 0.47
87 0.11 0.11 0.11 0.11 1 1 1 -0.30 0.44 -1.08
88 1.86 1.86 0.49 0.10 1 0 0 -0.53 1.50 0.74
89 2.03 2.03 2.03 0.01 1 1 0 -0.65 2.77 0.34
90 4.26 4.26 0.02 0.36 1 0 0 -0.06 2.32 0.66
91 0.02 0.02 0.02 0.02 1 1 1 -1.91 0.10 0.36
92 4.71 4.71 0.25 0.04 1 0 0 1.18 0.51 1.04
93 0.29 0.29 0.29 0.03 1 1 0 -1.66 3.50 -0.81
94 0.53 0.53 0.19 0.53 1 0 1 -0.46 6.35 -2.02
95 0.01 0.01 0.01 0.01 1 1 1 -1.12 0.09 -1.39
96 0.15 0.15 0.15 0.15 1 1 1 -0.75 1.39 -1.48
97 9.35 8.55 2.32 0.18 0 0 0 2.09 1.47 -0.24
98 0.21 0.21 0.03 0.21 1 0 1 0.02 0.23 -0.11
99 0.12 0.12 0.12 0.07 1 1 0 -1.29 2.03 -1.56
100 0.05 0.05 0.05 0.05 1 1 1 -1.64 0.55 -0.69

Table A.1: t are the uncensored lifetimes, yi are lifetimes with
i% censoring. deltai is the censoring indicator for the lifetimes
with i% censoring. x1 and x2 are simulated covariates, while W is
simulated from the standard Gumbel distribution of the smallest
extreme. How these data are simulated is described in section 3.1.

A.2 Post-election survival times of popes

Common.name Year.Elected Age.Election Years.as.Pope Survival Censored
1 Benedict XVI 2005.00 78.00 7.87 11.70 1.00
2 John Paul II 1978.00 58.00 26 26.00 0.00
3 John Paul I 1978.00 65.00 <1 0.09 0.00
4 Paul VI 1963.00 65.00 15 15.00 0.00
5 John XXIII 1958.00 76.00 4 5.00 0.00
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6 Pius XII 1939.00 63.00 19 19.00 0.00
7 Pius XI 1922.00 64.00 17 17.00 0.00
8 Benedict XV 1914.00 59.00 7 8.00 0.00
9 Pius X 1903.00 68.00 11 11.00 0.00

10 Leo XIII 1878.00 67.00 25 26.00 0.00
11 Pius IX 1846.00 54.00 31 31.00 0.00
12 Gregory XVI 1831.00 65.00 15 15.00 0.00
13 Pius VIII 1829.00 67.00 1 2.00 0.00
14 Leo XII 1823.00 63.00 5 5.00 0.00
15 Pius VII 1800.00 59.00 23 24.00 0.00
16 Pius VI 1775.00 57.00 24 24.00 0.00
17 Clement XIV 1769.00 63.00 5 5.00 0.00
18 Clement XIII 1758.00 65.00 10 10.00 0.00
19 Benedict XIV 1740.00 65.00 17 18.00 0.00
20 Clement XII 1730.00 78.00 9 9.00 0.00
21 Benedict XIII 1724.00 75.00 5 6.00 0.00
22 Innocent XIII 1721.00 66.00 3 2.00 0.00
23 Clement XI 1700.00 51.00 20 20.00 0.00
24 Innocent XII 1691.00 76.00 9 9.00 0.00
25 Alexander VIII 1689.00 79.00 1 1.00 0.00
26 Innocent XI 1676.00 65.00 12 13.00 0.00
27 Clement X 1670.00 79.00 6 7.00 0.00
28 Clement IX 1667.00 67.00 2 2.00 0.00
29 Alexander VII 1655.00 56.00 12 12.00 0.00
30 Innocent X 1644.00 70.00 10 10.00 0.00
31 Urban VIII 1623.00 55.00 20 21.00 0.00
32 Gregory XV 1621.00 67.00 2 2.00 0.00
33 Paul V 1605.00 54.00 15 16.00 0.00
34 Leo XI 1605.00 69.00 <1 0.07 0.00
35 Clement VIII 1592.00 55.00 13 14.00 0.00
36 Innocent IX 1591.00 72.00 <1 0.17 0.00
37 Gregory XIV 1590.00 55.00 <1 0.86 0.00
38 Urban VII 1590.00 69.00 <1 0.03 0.00
39 Sixtus V 1585.00 63.00 5 5.00 0.00
40 Gregory XIII 1572.00 70.00 12 13.00 0.00
41 Pius V 1566.00 55.00 12 13.00 0.00
42 Pius IV 1559.00 59.00 6 7.00 0.00
43 Paul IV 1555.00 78.00 4 5.00 0.00
44 Marcellus II 1555.00 53.00 <1 0.06 0.00
45 Julius III 1550.00 62.00 5 5.00 0.00
46 Paul III 1534.00 66.00 15 15.00 0.00
47 Clement VII 1523.00 45.00 11 11.00 0.00
48 Adrian VI 1522.00 62.00 1 2.00 0.00
49 Leo X 1513.00 37.00 8 8.00 0.00
50 Julius II 1503.00 59.00 9 10.00 0.00
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51 Pius III 1503.00 64.00 <1 0.07 0.00
52 Alexander VI 1492.00 61.00 11 11.00 0.00
53 Innocent VIII 1484.00 51.00 7 8.00 0.00
54 Sixtus IV 1471.00 57.00 13 13.00 0.00
55 Paul II 1464.00 47.00 6 7.00 0.00
56 Pius II 1458.00 52.00 5 6.00 0.00
57 Calixtus III 1455.00 76.00 3 3.00 0.00
58 Nicholas V 1447.00 49.00 8 8.00 0.00
59 Eugene IV 1431.00 47.00 15 16.00 0.00
60 Martin V 1417.00 48.00 13 14.00 0.00
61 Gregory XII 1406.00 81.00 8 10.90 0.00
62 Innocent VII 1404.00 67.00 2 2.00 0.00

Table A.2: Dataset of post-election survival times of popes. Some
unused columns such as date pontificate start, end, age death, were
deleted. For a version containing these columns see [16].
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Appendix B

R-code

B.1 Simulating data sets

1 #gumbel sim s imu la t e s n e lements from the standard gumbel d i s t r i b t u i o n
2 gumbel sim <− f unc t i on (n) {
3 u <− r un i f (n )
4 y <− l og (− l og (u) )
5 r e turn (y )
6 }
7

8 s e t . seed (1 )
9 n <− 100

10 beta1 <− 1
11 beta2 <− 1
12 sigma <− 1
13 gumb <− gumbel sim (n)
14 #lambdas <− c ( 0 . 5 7 , 0 . 22 , 0 . 05 )
15 lambdas <− c (9 , 0 . 77 , 0 . 2 )
16

17 x1 <− rnorm (n)
18 x2 <− rexp (n , r a t e = 1/2)
19

20 t <− exp ( beta1 ∗x1 + beta2 ∗ l og ( x2 ) + sigma∗gumb)
21 c en so r i ng s <− rep (0 , 3 )
22

23 #20% censo r ing
24 c20 <− rexp (n , r a t e = 1/ lambdas [ 1 ] )
25 de l ta20 <− as . numeric ( t < c20 )
26 #censor i nd i ca to r , 1=true l i f e t im e , 0 = censored
27 y20 <− pmin ( t , c20 )
28 c en so r i ng s [ 1 ] <− sum( de l ta20==0)/n
29

30 #60% censo r ing
31 c60 <− rexp (n , r a t e = 1/ lambdas [ 2 ] )
32 de l ta60 <− as . numeric ( t < c60 )
33 #censor i nd i ca to r , 1=true l i f e t im e , 0 = censored
34 y60 <− pmin ( t , c60 )
35 c en so r i ng s [ 2 ] <− sum( de l ta60==0)/n
36
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37 #80% censo r ing
38 c80 <− rexp (n , r a t e = 1/ lambdas [ 3 ] )
39 de l ta80 <− as . numeric ( t < c80 )
40 #censor i nd i ca to r , 1=true l i f e t im e , 0 = censored
41 y80 <− pmin ( t , c80 )
42 c en so r i ng s [ 3 ] <− sum( de l ta80==0)/n
43

44 W <− gumb
45

46 datase t <− data . frame ( t , y20 , y60 , y80 , de l ta20 , de l ta60 , de l ta80 , x1 ,
x2 , W)

47

48 pr in t ( c en so r i ng s )
49

50

51 #Write CSV in R
52 #wr i t e . csv ( dataset , f i l e = ”simData n100 v2 . csv ”)
53

54 #dat <− read . t ab l e ( ’ simData n100 . csv ’ , header = TRUE, sep = ’ , ’ , row .
names = 1)

B.2 Covariate order method

Covariate Order method code based on code by Jan Terje Kvaløy. [7]

1 l i b r a r y ( s u r v i v a l )
2 l i b r a r y (MASS)
3

4 #sx i s a func t i on that c a l c u l a t e s corrspondance func t i on f o r a
s p e c i f i e d gr id , xgr id .

5 sx <− f unc t i on ( xgrid , Xdata , dat ) {
6 n <− l ength ( xgr id ) #length o f c ova r i a t e vec to r
7 sx <− vec to r ( l ength=n)
8 f o r ( i in 1 : n ) {
9 sx [ i ] <− t a i l ( c (0 , dat [ Xdata<xgr id [ i ] ] ) , 1 )

10

11 }
12 r e turn ( sx )
13 }
14

15 #Epanechnikov ke rne l
16 epK <− f unc t i on (u) {
17 i f e l s e ( abs (u)<1, 3/4 ∗ (1−uˆ2) , 0)
18 }
19

20 #boundary ke rne l from Zhang and Karunamuni ( JSPI , 1998)
21 epbK <−f unc t i on ( t , c ) {
22 i f e l s e ( abs ( t )<1 & t<c , 12/(1+c ) ˆ4 ∗ (1+t ) ∗ ( t ∗(1−2∗c ) +(3∗cˆ2−2

∗c+1)/2 ) , 0)
23 }
24

25 #Covar iate order func t i on
26 CovOrder<− f unc t i on ( survt imes , x , de l ta , h , xgr id = 1 , s p l o t = F, edge

= ”BK” , smoothing = ” s ” ) {
27 #input arguments
28 #x i s the cova r i a t e vec to r
29 #survt imes i s a vec to r o f s u r v i v a l t imes
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30 #de l t a i s the cen so r ing i nd i c a t o r ; 0 = censored , 1 = not censored
31 #edge handles boundar ies in the dens i ty e s t imat i on . BK = boundary

ke rne l i s de fau l t , R = r e f l e c t i o n .
32 #smooth s p e c i f i e s wheter to smooth over the s−ax i s (” s ”) , or the

c ova r i a t e ax i s (”x”)
33

34 n <− l ength (x ) #number o f ob s e rva t i on s
35

36 #so r t i n g data
37 ordered <− order ( x ) #i nd i c e s cor re spond ing to ordered x
38 x <− x [ ordered ]
39 de l t a <− de l t a [ ordered ]
40 survt imes <− survt imes [ ordered ]
41 #ca l c u l a t e ba s i c q u an t i t i e s
42 V <− survt imes /n #S i s r e a l i z a t i o n s o f the po i s son po int p roce s s
43 V <− cumsum(V)
44 Vend <− V[ n ] #endpoint
45 S <− V[ de l t a==1] #only i n c l ud ing po in t s f o r non censored inc id en t s ,

the se are the obs e rva t i on s in the po i s son proce s s .
46 xs <− x [ d e l t a==1] #x−va l s cor re spond ing to the obs e rva t i on s in the

po i s son proce s s .
47 K <− l ength (S) #number o f r e a l i z a t i o n s in the po int p roce s s
48

49 t i l d e s x <− V #correspondance func t i on as a step−f unc t i on
50 #i f ( s p l o t == TRUE) {
51 # plo t (x , t i l d e s x )
52 #}
53

54 #ca l c u l a t i n g correspondance func t i on us ing sx i f xgr id i s s p e c i f i e d ,
i f not us ing the d e f au l t step−f unc t i on

55 lambdaest <− vec to r ( l ength=n) #i n i t i a l i z e vec to r to hold lambda
e s t imate s

56 i f ( l ength ( xgr id ) > 1) {
57 xordered <− order ( xgr id )
58 unordered <− order ( xordered )
59 xgr id <− xgr id [ xordered ]
60 t i l d e s x <− sx ( xgrid , x , V)
61 }
62

63 i f ( l ength ( xgr id ) == 1) {
64 xgr id <− x
65 unordered <− order ( ordered )
66 t i l d e s x <− V
67 }
68

69 ########
70 l en xgr id <− l ength ( xgr id )
71 i f ( edge != ”R” ) {
72 i f ( smoothing == ” s ” ) {
73 #smoothing along s−ax i s
74 f o r ( i in 1 : l en xgr id ) {
75 i f (h > Vend/2) {
76 h <− Vend/2
77 }
78 #look at ke rne l c a s e s depending on where on the g r id we are
79 i f ( t i l d e s x [ i ]<h) {
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80 lambdaest [ i ] <− sum( epbK( ( t i l d e s x [ i ]−S) /h , t i l d e s x [ i ] /h )
) / (n∗h)

81 }
82 i f ( t i l d e s x [ i ]>=h & t i l d e s x [ i ]<=Vend−h) {
83 lambdaest [ i ] <− sum( epK( ( t i l d e s x [ i ]−S) /h) ) / (n∗h)
84 }
85 i f ( t i l d e s x [ i ]>Vend−h) {
86 lambdaest [ i ] <− sum( epbK( −( t i l d e s x [ i ]−S) /h , (Vend−t i l d e s x [

i ] ) /h ) ) / (n∗h)
87 }
88 }
89 }
90

91 e l s e {
92 #smoothing along x−ax i s
93 f o r ( i in 1 : l en xgr id ) {
94 h sx <− sx ( xgr id [ i ] + h/ 2 , x , V) − sx ( xgr id [ i ] − h/ 2 , x , V)
95 i f (h sx > Vend/2) {
96 h sx <− Vend/2
97 }
98 #look at ke rne l c a s e s depending on where on the g r id we are
99 i f ( t i l d e s x [ i ]<h sx ) {

100 lambdaest [ i ] <− sum( epbK( ( t i l d e s x [ i ]−S) /h sx , t i l d e s x [ i ] /h
sx ) ) / (n∗h sx )

101 }
102 i f ( t i l d e s x [ i ]>=h sx & t i l d e s x [ i ]<=Vend−h sx ) {
103 lambdaest [ i ] <− sum( epK( ( t i l d e s x [ i ]−S) /h sx ) ) / (n∗h sx )
104 }
105 i f ( t i l d e s x [ i ]>Vend−h sx ) {
106 lambdaest [ i ] <− sum( epbK( −( t i l d e s x [ i ]−S) /h sx , (Vend−

t i l d e s x [ i ] ) /h sx ) ) / (n∗h sx )
107 }
108 }
109 }
110 }
111 ####
112 #using r e f l e c t i o n method to handle boundar ies .
113 i f ( edge == ”R” ) {
114 i f ( smoothing == ” s ” ) {
115 f o r ( i in 1 : l en xgr id ) {
116 lambdaest [ i ] <− (1 / (n∗h) ) ∗ ( sum( epK( ( t i l d e s x [ i ]−S) /h) ) +

sum( epK( ( t i l d e s x [ i ]+S) /h) ) + sum( epK( ( t i l d e s x [ i ]+S−2∗Vend) /h) )
)

117 }
118 }
119

120 e l s e {
121 f o r ( i in 1 : l en xgr id ) {
122 h sx <− sx ( xgr id [ i ] + h/ 2 , x , V) − sx ( xgr id [ i ] − h/ 2 , x , V)
123 lambdaest [ i ] <− (1 / (n∗h sx ) ) ∗ ( sum( epK( ( t i l d e s x [ i ]−S) /h sx ) )

+ sum( epK( ( t i l d e s x [ i ]+S) /h sx ) ) + sum( epK( ( t i l d e s x [ i ]+S−2∗
Vend) /h sx ) ) )

124 }
125 }
126 }
127 #####
128
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129

130 i f ( s p l o t == TRUE) {
131 p lo t ( xs , S , type=” s ” )
132 po in t s ( xs , S )
133 }
134

135 out <− l i s t ( x=xgrid , x unsorted = xgr id [ unordered ] , lambdaest=
lambdaest , lambdaest unsorted = lambdaest [ unordered ] , s=S)

136 r e turn ( out )
137 }

B.3 Leave-one-out likelihood cross-validation

1 l oocv <− f unc t i on (h , data , CS, x , d e l t a = ’ uncensored ’ ) {
2 source ( ’ CovOrderAlt .R ’ )
3 l i b r a r y ( s p l i n e s )
4 # Inputs :
5 #h i s the value f o r smoothing paramater we wish to
6 #data i s the datase t
7 #CS i s the cox−s n e l l f o r which we use loocv on through the CovOrder

func t i on
8 #x i s the c ova r i t e vec to r f o r the CovOrder func t i on
9 #de l t a i s the name o f c enso r ing i nd i c a t o r in data as a s t r i ng ,

uncensored i s d e f au l t
10

11

12 #output :
13 #lcv = th i s i s the value o f the l i k e l i h o o d cros s−va l i d a t i o n

c r i t e r i o n .
14

15 n <− l ength (CS)
16 i f ( d e l t a != ’ uncensored ’ ) {
17 de l t a <− data [ [ d e l t a ] ]
18 }
19 e l s e {
20 de l t a = rep (1 , n)
21 }
22

23 l c v <− 0
24 f o r ( i in 1 : n ) {
25 #es i t ima t e lambda without obse rvat i on i and add to l cv c r i t e r i o n
26 out <− CovOrder (CS[− i ] , x[− i ] , d e l t a [− i ] , h , xgr id = 1 , s p l o t = F,

edge = ”R” , smoothing = ” s ” )
27 #in t e r pSp l i n e g i v e s p i e c ew i s e i n t e r p o l a t i o n r ep r e s en t a t i on .
28 #po lySp l ine g i v e s polynomial r ep r e s en t a t i on o f the s p l i n e
29 s p l i n e <− po lySp l i ne ( i n t e r pSp l i n e ( out$x , out$ lambdaest ) )
30 predSp l ine <− p r ed i c t ( sp l i n e , x [ i ] )
31 lambdaPredict <− predSp l ine $y
32 l c v <− l c v + de l t a [ i ] ∗ l og ( lambdaPredict ) − lambdaPredict ∗CS[ i ]
33 }
34 r e turn ( l cv )
35 }
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B.4 Cross-validation criterion equation (3.35)

1 #sx i s a func t i on that c a l c u l a t e s corrspondance func t i on f o r a
s p e c i f i e d gr id , xgr id .

2 sx <− f unc t i on ( xgrid , Xdata , dat ) {
3 n <− l ength ( xgr id ) #length o f c ova r i a t e vec to r
4 sx <− vec to r ( l ength=n)
5 f o r ( i in 1 : n ) {
6 sx [ i ] <− t a i l ( c (0 , dat [ Xdata<xgr id [ i ] ] ) , 1 )
7

8 }
9 r e turn ( sx )

10 }
11

12 #Epanechnikov ke rne l
13 epK <− f unc t i on (u) {
14 i f e l s e ( abs (u)<1, 3/4 ∗ (1−uˆ2) , 0)
15 }
16

17 #boundary ke rne l from Zhang and Karunamuni ( JSPI , 1998)
18 epbK <−f unc t i on ( t , c ) {
19 i f e l s e ( abs ( t )<1 & t<c , 12/(1+c ) ˆ4 ∗ (1+t ) ∗ ( t ∗(1−2∗c ) +(3∗cˆ2−2

∗c+1)/2 ) , 0)
20 }
21

22 # loocv , only handl ing the r e f l e c t i o n method f o r boundary problems
23

24 l oocv CovOrder <− f unc t i on (h , survt imes , x , de l ta , xgr id = 1 ,
smoothing = ” s ” ) {

25

26 l c v <− 0
27 n <− l ength (x )
28 #so r t i n g data
29 ordered <− order ( x ) #i nd i c e s cor re spond ing to ordered x
30 x <− x [ ordered ]
31 de l t a <− de l t a [ ordered ]
32 survt imes <− survt imes [ ordered ]
33 #ca l c u l a t e ba s i c q u an t i t i e s
34 V <− survt imes /n #S i s r e a l i z a t i o n s o f the po i s son po int p roce s s
35 V <− cumsum(V)
36 Vend <− V[ n ] #endpoint
37 S <− V[ de l t a==1] #only i n c l ud ing po in t s f o r non censored inc id en t s ,

the se are the obs e rva t i on s in the po i s son proce s s .
38 xs <− x [ d e l t a==1] #x−va l s cor re spond ing to the obs e rva t i on s in the

po i s son proce s s .
39

40 ########
41 l en xgr id <− l ength ( xgr id )
42 l c v <− 0 #loocv−c r i t e r i o n that w i l l be the re turn parameter
43 k <− sum( de l t a )
44

45 counter <− 0 #number o f g e lements
46 g <− rep (0 , k )
47 f o r ( j in 1 : k ) {
48 counter <− counter + 1
49 #remove e lements j cor re spond ing to the S j
50 Si <− S[− j ]
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51

52 i f ( smoothing == ” s ” ) {
53 g [ counter ] <− (1 / ( ( n−1)∗h) ) ∗ ( sum( epK( ( S [ j ]−Si ) /h) ) + sum(

epK( ( S [ j ]+ Si ) /h) ) + sum( epK( ( S [ j ]+Si−2∗Vend) /h) ) )
54 }
55

56 e l s e {
57 h sx <− sx ( xgr id [ i ] + h/ 2 , x , V) − sx ( xgr id [ i ] − h/ 2 , x , V)
58 g [ counter ] <− (1 / ( ( n−1)∗h sx ) ) ∗ ( sum( epK( ( S [ j ]−Si ) /h sx ) ) +

sum( epK( ( S [ j ]+ Si ) /h sx ) ) + sum( epK( ( S [ j ]+Si−2∗Vend) /h sx ) ) )
59 }
60

61 }
62 l c v <− sum( log ( g ) ) /k
63 r e turn ( l cv )
64 }

B.5 AD test

1 ADtest <− f unc t i on (x , T, de l t a ) {
2 #x i s the covar i a t e , T i s the obse rvat i on times , d e l t a i s the

cen so r ing i nd i c a t o r
3 ordered <− order ( x )
4 x <− x [ ordered ]
5 T <− T[ ordered ]
6 de l t a <− de l t a [ ordered ]
7

8 n <− l ength (x )
9 S <− cumsum(T) /n #S i s r e a l i z a t i o n s o f the po i s son po int p roce s s

10 Smax <− S [ n ]
11 S <− S [ de l t a==1]
12

13 i f ( d e l t a [ n ] == 1) {
14 rhat <− sum( de l t a ) − 1
15 }
16 e l s e {
17 rhat <− sum( de l t a )
18 }
19

20 AD <− 0
21

22 f o r ( i in 1 : rhat ) {
23 AD <− AD + (2 ∗ i −1)∗ ( l og (S [ i ] /Smax) + log (1 − S [ rhat+1− i ] /Smax) )
24 }
25 AD <− −1/ rhat ∗AD − rhat
26 r e turn (AD)
27 }

B.6 Simulated data analysis

1 l i b r a r y ( s u r v i v a l )
2 l i b r a r y (MASS)
3 source ( ’ l oocv ke rne l .R ’ , echo=FALSE)
4 source ( ’ CovOrderAlt .R ’ , echo=FALSE)
5 source ( ’ ADtest .R ’ , echo=FALSE)
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6

7

8 data <− read . t ab l e ( ’ simData n100 v2 . csv ’ , header = TRUE, sep=’ , ’ , row .
names = 1)

9

10 #f i t model f o r uncensored data
11 n <− 100
12 surv <−Surv ( data$ t )
13 x1 <− data$x1
14 x2 <− data$x2
15 de l t a <− rep (1 , n)
16 t <− data$ t
17 f i t <− survreg ( surv ˜x1 + x2 , data , d i s t = ”we ibu l l ” )
18

19 #f i t t i n g models to censored data
20 #20% censo r ing
21 y20 <− data$y20
22 de l ta20 <− data$ de l ta20
23 surv20 <− Surv ( y20 , de l ta20 , type = ” r i gh t ” )
24 f i t 2 0 <− survreg ( surv20 ˜x1 + x2 , data , d i s t = ”we ibu l l ” )
25

26 #60% censo r ing
27 y60 <− data$y60
28 de l ta60 <− data$ de l ta60
29 surv60 <− Surv ( y60 , de l ta60 , type = ” r i gh t ” )
30 f i t 6 0 <− survreg ( surv60 ˜x1 + x2 , data , d i s t = ”we ibu l l ” )
31

32 #80% censo r ing
33 y80 <− data$y80
34 de l ta80 <− data$ de l ta80
35 surv80 <− Surv ( y80 , de l ta80 , type = ” r i gh t ” )
36 f i t 8 0 <− survreg ( surv80 ˜x1 + x2 , data , d i s t = ”we ibu l l ” )
37

38 #ca l c u l a t i n g CS r e s i d u a l s
39 CS <− exp ( ( l og ( t ) − f i t $ c o e f f i c i e n t s [ [ 1 ] ] − f i t $ c o e f f i c i e n t s [ [ 2 ] ] ∗x1 −

f i t $ c o e f f i c i e n t s [ [ 3 ] ] ∗x2 ) / f i t $ s c a l e )
40 CS20 <− exp ( ( l og ( y20 ) − f i t 2 0 $ c o e f f i c i e n t s [ [ 1 ] ] − f i t 2 0 $ c o e f f i c i e n t s

[ [ 2 ] ] ∗x1 − f i t 2 0 $ c o e f f i c i e n t s [ [ 3 ] ] ∗x2 ) / f i t 2 0 $ s c a l e )
41 CS60 <− exp ( ( l og ( y60 ) − f i t 6 0 $ c o e f f i c i e n t s [ [ 1 ] ] − f i t 6 0 $ c o e f f i c i e n t s

[ [ 2 ] ] ∗x1 − f i t 6 0 $ c o e f f i c i e n t s [ [ 3 ] ] ∗x2 ) / f i t 6 0 $ s c a l e )
42 CS80 <− exp ( ( l og ( y80 ) − f i t 8 0 $ c o e f f i c i e n t s [ [ 1 ] ] − f i t 8 0 $ c o e f f i c i e n t s

[ [ 2 ] ] ∗x1 − f i t 8 0 $ c o e f f i c i e n t s [ [ 3 ] ] ∗x2 ) / f i t 8 0 $ s c a l e )
43

44 #adju s t i ng the censored CS r e s i d u a l s
45 #CS20 [ de l ta20==0] <− CS20 [ de l ta20==0] + 1
46 #CS60 [ de l ta60==0] <− CS20 [ de l ta60==0] + 1
47 #CS80 [ de l ta80==0] <− CS20 [ de l ta80==0] + 1
48

49 h va l s <− seq ( 0 . 0 4 , 1 , 0 . 0 1 )
50 counter <− 1
51 l c v <− l ength (h va l s )
52 l cv20 <− l c v
53 l cv60 <− l c v
54 l cv80 <− l c v
55

56 f o r (h in h va l s ) {
57 l c v [ counter ] <− l oocv CovOrder (h , CS, x2 , d e l t a = rep (1 , n) )
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58 l cv20 [ counter ] <− l oocv CovOrder (h , CS20 , x2 , de l ta20 )
59 l cv60 [ counter ] <− l oocv CovOrder (h , CS60 , x2 , de l ta60 )
60 l cv80 [ counter ] <− l oocv CovOrder (h , CS80 , x2 , de l ta80 )
61 counter <− counter + 1
62 }
63

64

65 l c v max <− c (max( l cv ) , max( l cv20 ) , max( l cv60 ) , max( l cv80 ) ) #holds the
best h value f o r the 4 data s e t s

66 h max <− c (h va l s [ l c v==lcv max [ 1 ] ] , h va l s [ l cv20==lcv max [ 2 ] ] , h va l s [
l cv60==lcv max [ 3 ] ] , h va l s [ l cv80==lcv max [ 4 ] ] )

67 par (mfrow=c (2 , 2 ) )
68

69 p lo t (h vals , lcv , xlab = ”h” , ylab = ” l cv (h) ” , main = ”uncensored ” )
70 po in t s (h max [ 1 ] , l c v max [ 1 ] , c o l = ” red ” )
71

72 p lo t (h vals , lcv20 , xlab = ”h” , ylab = ” l cv (h) ” , main = ”20% censo r ing
” )

73 po in t s (h max [ 2 ] , l c v max [ 2 ] , c o l = ” red ” )
74

75 p lo t (h vals , lcv60 , xlab = ”h” , ylab = ” l cv (h) ” , main = ”60% censo r ing
” )

76 po in t s (h max [ 3 ] , l c v max [ 3 ] , c o l = ” red ” )
77

78 p lo t (h vals , lcv80 , xlab = ”h” , ylab = ” l cv (h) ” , main = ”80% censo r ing
” )

79 po in t s (h max [ 4 ] , l c v max [ 4 ] , c o l = ” red ” )
80

81 cov obj <− CovOrder (CS, x2 , de l ta , h max [ 1 ] , xgr id = 1 , s p l o t = F,
edge = ”R” , smoothing = ” s ” )

82 cov obj20 <− CovOrder (CS20 , x2 , de l ta20 , h max [ 2 ] , xgr id = 1 , s p l o t =
F, edge = ”R” , smoothing = ” s ” )

83 cov obj60 <− CovOrder (CS60 , x2 , de l ta60 , h max [ 3 ] , xgr id = 1 , s p l o t =
F, edge = ”R” , smoothing = ” s ” )

84 cov obj80 <− CovOrder (CS80 , x2 , de l ta80 , h max [ 4 ] , xgr id = 1 , s p l o t =
F, edge = ”R” , smoothing = ” s ” )

85

86 fx2 <− f i t $ c o e f f i c i e n t s [ [ 3 ] ] ∗cov obj $x − f i t $ s c a l e ∗ l og ( cov obj $
lambdaest )

87 fx2 20 <− f i t 2 0 $ c o e f f i c i e n t s [ [ 3 ] ] ∗cov obj20 $x − f i t 2 0 $ s c a l e ∗ l og ( cov
obj20 $ lambdaest )

88 fx2 60 <− f i t 6 0 $ c o e f f i c i e n t s [ [ 3 ] ] ∗cov obj60 $x − f i t 6 0 $ s c a l e ∗ l og ( cov
obj60 $ lambdaest )

89 fx2 80 <− f i t 8 0 $ c o e f f i c i e n t s [ [ 3 ] ] ∗cov obj80 $x − f i t 8 0 $ s c a l e ∗ l og ( cov
obj80 $ lambdaest )

90

91 par (mfrow=c (2 , 2 ) )
92 p lo t ( cov obj $x , fx2 , xlab = ”x” , ylab = ” f ( x ) ” , main = ”uncensored ” ,

t i t l e ( ) )
93 l i n e s ( s o r t ( x2 ) , l og ( s o r t ( x2 ) ) )
94

95 p lo t ( cov obj20 $x , fx2 20 , xlab = ”x” , ylab = ” f ( x ) ” , main = ”20%
censo r ing ” )

96 l i n e s ( s o r t ( x2 ) , l og ( s o r t ( x2 ) ) )
97

98 p lo t ( cov obj60 $x , fx2 60 , xlab = ”x” , ylab = ” f ( x ) ” , main = ”60%
censo r ing ” )
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99 l i n e s ( s o r t ( x2 ) , l og ( s o r t ( x2 ) ) )
100

101 p lo t ( cov obj80 $x , fx2 80 , xlab = ”x” , ylab = ” f ( x ) ” , main = ”80%
censo r ing ” )

102 l i n e s ( s o r t ( x2 ) , l og ( s o r t ( x2 ) ) )
103

104 par (mfrow=c (2 , 2 ) )
105 p lo t ( cov obj $x , l og ( cov obj $ lambdaest ) , x lab = expr e s s i on (x [ 2 ] ) , y lab =

expr e s s i on ( paste ( ” l og ( ” , lambda , ” ( ” , x [ 2 ] , ” ) ) ” ) ) , main = ”
Uncensored” )

106 ab l i n e (0 , 0 )
107 p lo t ( cov obj20 $x , l og ( cov obj20 $ lambdaest ) , x lab = expr e s s i on (x [ 2 ] ) ,

y lab = expr e s s i on ( paste ( ” l og ( ” , lambda , ” ( ” , x [ 2 ] , ” ) ) ” ) ) , main = ”20%
Censoring ” )

108 ab l i n e (0 , 0 )
109

110 p lo t ( cov obj60 $x , l og ( cov obj60 $ lambdaest ) , x lab = expr e s s i on (x [ 2 ] ) ,
y lab = expr e s s i on ( paste ( ” l og ( ” , lambda , ” ( ” , x [ 2 ] , ” ) ) ” ) ) , main = ”60%
Censoring ” )

111 ab l i n e (0 , 0 )
112 p lo t ( cov obj80 $x , l og ( cov obj80 $ lambdaest ) , x lab = expr e s s i on (x [ 2 ] ) ,

y lab = expr e s s i on ( paste ( ” l og ( ” , lambda , ” ( ” , x [ 2 ] , ” ) ) ” ) ) , main = ”80%
Censoring ” )

113 ab l i n e (0 , 0 )
114

115 AD1 <− ADtest ( x2 , CS, de l t a )
116 AD2 <− ADtest ( x2 , CS20 , de l ta20 )
117 AD3 <− ADtest ( x2 , CS60 , de l ta60 )
118 AD4 <− ADtest ( x2 , CS80 , de l ta80 )
119 pr in t (AD1)
120 pr in t (AD2)
121 pr in t (AD3)
122 pr in t (AD4)

B.7 Data analysis popes

1 l i b r a r y ( readr )
2 l i b r a r y ( s u r v i v a l )
3 l i b r a r y (MASS)
4

5 source ( ’ l oocv ke rne l .R ’ , echo=FALSE)
6 source ( ’ CovOrderAlt .R ’ , echo=FALSE)
7 source ( ’ ADtest .R ’ , echo=FALSE)
8 ###s c r i p t to do ana l y s i s on the popes data
9

10 popes <− read csv ( ”popes 25 December 2016 . csv ” )
11 #Removing pope Franc i s from data
12 popes <− popes [ 2 : 6 3 , ]
13 #popes <− popes [ popes $Years . as . Pope !=”<1” ,] #to remove o u t l i e r s
14

15 #died or r e s i gned at age r ep r e s en t s the l i f e t im e in t h i s case .
16 t <− popes$ Surv iva l
17 #de l t a i s c en so r ing i nd i c a t o r ; 0=censored , 1=not censored
18 popes$Censored <− as . i n t e g e r ( popes $Censored == 0)
19 de l t a <− popes$Censored
20
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21 x1 <− popes$Age . E l e c t i on
22 x2 <− popes$Year . E lected
23

24 surv obj <− Surv ( t , de l ta , type = ” r i gh t ” )
25 popes model <− survreg ( surv obj ˜ x1 + x2 , data=popes , d i s t = ”we ibu l l ”

)
26 CS <− exp ( ( l og ( t ) − popes model$ c o e f f i c i e n t s [ [ 1 ] ] − popes model$

c o e f f i c i e n t s [ [ 2 ] ] ∗x1 − popes model$ c o e f f i c i e n t s [ [ 3 ] ] ∗x2 ) /popes
model$ s c a l e )

27 CS[ de l t a==0] <− CS[ de l t a==0] + 1 #Adjust ing the censored r e s i d u a l s .
This l i n e i s ”removed” when computing anything based on the
cova r i a t e order method

28

29 par (mfrow=c (2 , 1 ) )
30 p lo t ( x1 , l og (CS) )
31 po in t s ( x1 [ d e l t a ==0] , l og (CS [ de l t a ==0]) , c o l = ” red ” )
32 po in t s ( x1 [ popes $Years . as . Pope==”<1” ] , l og (CS [ popes $Years . as . Pope==”<1”

] ) , pch = 24)
33 ab l i n e (0 , 0 )
34

35 p lo t ( x2 , l og (CS) )
36 po in t s ( x2 [ d e l t a ==0] , l og (CS [ de l t a ==0]) , c o l = ” red ” )
37 po in t s ( x2 [ popes $Years . as . Pope==”<1” ] , l og (CS [ popes $Years . as . Pope==”<1”

] ) , pch = 24)
38 ab l i n e (0 , 0 )
39

40 h va l s <− seq ( 0 . 0 4 , 5 , 0 . 0 1 )
41 counter <− 1
42 l cv1 <− rep (0 , l ength (h va l s ) )
43 l cv2 <− l cv1
44 f o r (h in h va l s ) {
45 l cv1 [ counter ] <− l oocv CovOrder (h , CS, x1 , d e l t a )
46 l cv2 [ counter ] <− l oocv CovOrder (h , CS, x2 , d e l t a )
47 counter <− counter + 1
48 }
49

50 par (mfrow=c (2 , 1 ) )
51 p lo t (h vals , lcv1 , xlab = ”h” , ylab = ”lCV(h) ” , main = ”x1” )
52 p lo t (h vals , lcv2 , xlab = ”h” , ylab = ”lCV(h) ” , main = ”x2” )
53

54 l c v max <− c (max( l cv1 ) , max( l cv2 ) )
55 h max <− c (h va l s [ l cv1==lcv max [ 1 ] ] , h va l s [ l cv2==lcv max [ 2 ] ] )
56

57 #out <− CovOrder ( t , x1 , de l ta , s p l o t = T, lambdaplot = T)
58 out1 <− CovOrder (CS, x1 , de l ta , 0 . 3 , edge = ”R” , s p l o t = F)
59 out11 <− CovOrder (CS, x1 , de l ta , 1 . 08 , edge = ”R” , s p l o t = F)
60

61 #smal l h va lue s g i v e s r e s u l t more s im i l a r to o ld method than the h
found us ing cv .

62 fx1 <− popes model$ c o e f f i c i e n t s [ [ 2 ] ] ∗out1$x − popes model$ s c a l e ∗ l og (
out1$ lambdaest )

63 fx11 <− popes model$ c o e f f i c i e n t s [ [ 2 ] ] ∗out11$x − popes model$ s c a l e ∗ l og (
out11$ lambdaest )

64

65 out2 <− CovOrder (CS, x2 , de l ta , 0 . 3 , edge = ”R” , s p l o t = F)
66 out22 <− CovOrder (CS, x2 , de l ta , 1 . 09 , edge = ”R” , s p l o t = F)
67
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68 fx2 <− popes model$ c o e f f i c i e n t s [ [ 3 ] ] ∗out2$x − popes model$ s c a l e ∗ l og (
out2$ lambdaest )

69 fx22 <− popes model$ c o e f f i c i e n t s [ [ 3 ] ] ∗out22$x − popes model$ s c a l e ∗ l og (
out22$ lambdaest )

70

71 par (mfrow=c (2 , 2 ) )
72 p lo t ( out1$x , fx1 , xlab =”x1” , ylab=” f ( x1 ) ” , main = ” f un c t i o na l form f o r

x1 us ing h = 0 .3 ” )
73 l i n e s ( x1 , popes model$ c o e f f i c i e n t s [ [ 2 ] ] ∗x1 )
74 p lo t ( out11$x , fx11 , xlab =”x1” , ylab=” f ( x1 ) ” , main = ” f un c t i o n a l form

f o r x1 us ing h = 1.08 ” )
75 l i n e s ( x1 , popes model$ c o e f f i c i e n t s [ [ 2 ] ] ∗x1 )
76

77 p lo t ( out2$x , fx2 , xlab =”x2” , ylab=” f ( x2 ) ” , main = ” f un c t i o na l form f o r
x2 us ing h = 0 .3 ” )

78 l i n e s ( x2 , popes model$ c o e f f i c i e n t s [ [ 3 ] ] ∗x2 )
79 p lo t ( out22$x , fx22 , xlab =”x2” , ylab=” f ( x2 ) ” , main = ” f un c t i o n a l form

f o r x2 us ing h = 1.09 ” )
80 l i n e s ( x2 , popes model$ c o e f f i c i e n t s [ [ 3 ] ] ∗x2 )
81

82 i = order ( x1 )
83 smt1 <− l o e s s ( l og (CS) ˜ x1 , pch=19, cex =0.1 , span = 2)
84 smt1 <− popes model$ c o e f f i c i e n t s [ [ 2 ] ] ∗x1 [ i ] + popes model$ s c a l e ∗smt1$

f i t t e d [ i ]
85

86 j = order ( x2 )
87 smt2 <− l o e s s ( l og (CS) ˜ x2 , pch=19, cex =0.1 , span = 2)
88 smt2 <− popes model$ c o e f f i c i e n t s [ [ 3 ] ] ∗x2 [ j ] + popes model$ s c a l e ∗smt2$

f i t t e d [ j ]
89

90 par (mfrow=c (2 , 1 ) )
91 p lo t ( x1 [ i ] , smt1 , lwd=1, xlab =”x1” , ylab=” f ( x1 ) ” , main = ” f un c t i o na l

form f o r Age . E l e c t i on ” )
92 p lo t ( x2 [ j ] , smt2 , lwd=1, xlab =”x2” , ylab=” f ( x2 ) ” , main = ” f un c t i o na l

form f o r Year . E lected ” )
93

94 par (mfrow=c (2 , 1 ) )
95 p lo t ( out1$x , l og ( out1$ lambdaest ) , x lab = ”x1” , ylab = expr e s s i on ( paste (

” l og ( ” , lambda , ” ) ” ) ) )
96 ab l i n e (0 , 0 )
97 p lo t ( out2$x , l og ( out2$ lambdaest ) , x lab = ”x2” , ylab = expr e s s i on ( paste (

” l og ( ” , lambda , ” ) ” ) ) )
98 ab l i n e (0 , 0 )
99

100

101 #Anderson Dar l ing t e s t f o r c ova r i a t e e f f e c t
102 AD x1 <− ADtest ( x1 ,CS, de l t a )
103 AD x2 <− ADtest ( x2 ,CS, de l t a )
104 pr in t (AD x1 )
105 pr in t (AD x2 )
106

107 ##te s t i n g to see i f the t rans fo rmat ion to year . e l e c t e d proposed in the
p r o j e c t w i l l improve the model

108

109 popes$Year . E lected [ 3 5 : 6 2 ] <− 0
110 popes$Year . E lected [ 1 : 3 4 ] <− popes$Year . E lected [ 1 : 3 4 ] − 1600
111
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112 x2T <− popes$Year . E lected
113

114 surv obj2 <− Surv ( t , de l ta , type = ” r i gh t ” )
115 popes model2 <− survreg ( surv obj2 ˜ x1 + x2T , data=popes , d i s t = ”

we ibu l l ” )
116 CS2 <− exp ( ( l og ( t ) − popes model2$ c o e f f i c i e n t s [ [ 1 ] ] − popes model2$

c o e f f i c i e n t s [ [ 2 ] ] ∗x1 − popes model2$ c o e f f i c i e n t s [ [ 3 ] ] ∗x2T) /popes
model2$ s c a l e )

117 CS2 [ de l t a==0] <− CS2 [ de l t a==0] + 1 #ad ju s t i ng the censored r e s i d u a l s
118

119 par (mfrow=c (2 , 1 ) )
120 p lo t ( x2 , l og (CS) )
121 po in t s ( x2 [ d e l t a ==0] , l og (CS [ de l t a ==0]) , c o l = ” red ” )
122 po in t s ( x2 [ popes $Years . as . Pope==”<1” ] , l og (CS [ popes $Years . as . Pope==”<1”

] ) , pch = 24)
123 ab l i n e (0 , 0 )
124

125 p lo t (x2T , l og (CS2) )
126 po in t s (x2T [ de l t a ==0] , l og (CS2 [ d e l t a ==0]) , c o l = ” red ” )
127 po in t s (x2T [ popes $Years . as . Pope==”<1” ] , l og (CS2 [ popes $Years . as . Pope==”<1

” ] ) , pch = 24)
128 ab l i n e (0 , 0 )
129

130 summary( popes model2 )
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