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Abstract

Many types of extreme weather are associated with the dependence of precipitation and
temperature. In susceptible regions, periods of high temperature and low precipitation
cause drought, while periods of high precipitation and high temperature are associated
with floods in mountain regions, as the high temperatures increase glacial drainage. In this
work we investigate the relationship by the precipitation events model of De Michele &
Salvadori (2003), to which we include a measure for temperature. All parameters are mod-
eled jointly by multivariate vine copulae, or pair-copula-constructions, which is a flexible
tool for modelling non-Gaussian multivariate distributions. Typical data for hydrological
studies consist of hourly measurements of precipitation and temperature. These contain
many duplicated measurements (ties), in particular in the lower tails, which is a source
of bias in the widely used rank-based estimation methods. Bivariate interval censored
estimation was shown in Li et al. (2016) to be unbiased in the presence of ties. Two meth-
ods are proposed to extend interval censoring to multivariate vine copulae, and these are
tested in a large scale simulation study. The methods are unbiased in the low levels the
vine, but not generally in higher trees when correlations are strong. The best performing
method, denoted full censoring, still shows some improvements in these cases, and is em-
phasized in the application to events. Precipitation events of the model in De Michele &
Salvadori (2003) are assumed to be i.i.d in each season. However, temperature has a clear
seasonal trend, and since the events form an irregular time series, the parameter is mod-
elled by Fourier terms with ARIMA correction. The available data for this study is of low
quality, and the estimated dependence is weaker than expected, so the full precipitation-
temperature modelling of events is more a conceptual demonstration of interval censored
regular vines. We construct one larger weather model to demonstrate structural differences
in each season, and one smaller model to emphasize the relationship between precipitation
intensity, duration and temperature.
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Sammendrag

Mange typer ekstremvær skyldes årsaker som følge av sammenhengen mellom temper-
atur og nedbør. I utsatte områder forårsaker perioder med høy temperatur og lite nedbør
tørke, mens perioder med høy temperatur og nedbør er assosiert med flom i fjellområder,
grunnet økning i smeltevann fra isbreer. I denne oppgaven ser vi på denne sammen-
hengen ved å utvide bygemodellen fra De Michele & Salvadori (2003) til å inkludere
temperatur. Alle modell-parameterne kan modelleres i en simultanfordeling ved bruk av
par-copula-konstruksjoner, som er et generelt verktøy for modellering av ikke-Gaussiske
multivariate fordelinger. Typiske værdata består av timesmålinger av nedbør og temper-
atur. Disse inneholder mange duplikater, spesielt i de lave halene, som bidrar til for-
ventningsskjevhet i estimasjonene av kontinuerlige prosesser. Li et al. (2016) viste at
så kalt ”intervall-sensurert” estimatsjon er forventningsrett i to dimensjoner. Vi foreslår to
metoder for å generalisere intervall-sensurering til multivariate par-copula-konstruksjoner,
og disse blir testet i en simuleringsstudie. Metodene er forventningsrette i lave nivåer av
par-copula-konstruksjonene, men ikke generelt i de høye nivåene når korrelasjonene er
sterke. Den beste metoden er fortsatt noe bedre enn alternativene, og blir fokuset for
anvendelsen til bygemodellen. I modellen fra De Michele & Salvadori (2003) er obser-
vasjonene antatt å være uavhengige realiseringer fra samme fordeling innad i hver sesong.
Temperatur har, imidlertid, en klar sesongbasert trend, og siden bygeobservasjonene er
en irregulær tidsrekke, blir det brukt Fourier-ledd med ARIMA-korreksjon for å mod-
ellere temperatur. De tilgjengelige dataene for denne studien er av lav kvalitet, og den
estimerte avhengigheten mellom temperatur og nedbør er lavere enn forventet, så den
fulle temperatur-nedbørsmodellen er heller en konseptuell demonstrasjon av intervall-
sensurerte regulære par-copula-konstruksjoner. Vi lager en større modell, med fokus på
ulike konstruksjonsstrukturer for hver sesong, og en mindre som mer spesifikt modellerer
forholdet mellom nedbørintensitet, varighet og temperatur.
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Chapter 1
Introduction

The relationship between precipitation and temperature is particularly interesting, as it is
associated with extreme weather. In susceptible regions, long periods of high temperature
and low precipitation cause drought. Furthermore, mountain region floods are connected
to high precipitation and high temperature due to the increased glacial drainage. In this
thesis, we want to model the relationship by precipitation events. Informally, an event is a
period of rain, followed by a by a minimum dry period, i.e. 5 hours. Each event is typically
characterized by the event parameters precipitation volume V , durationW , mean intensity
I = V/W and the length of the preceding dry period D. This model does not typically
include temperature.

According to the Calusius-Clapeyron rate, the water vapor holding capacity increases
with air temperature at a rate of approximately 7%°C−1, which is expected to cause an in-
crease in the precipitation intensity (Panthou et al., 2014). This motivates the construction
of a multivariate event model with the inclusion of temperature. Other works that aim to
model precipitation and temperature generally measure correlation on a larger time scale,
i.e. by looking at monthly or daily means, as in Lenderink & van Meijgaard (2008); Pan-
thou et al. (2014); Molnar et al. (2015). In Panthou et al. (2014) and Molnar et al. (2015),
the authors also use a similar event model, however, mainly to find the rate which intensity
increases with temperature, and not a joint model. Extreme compound events are in short,
events where each contributing factor in it self is not extreme, but jointly, they produce an
extreme compound event, i.e. drought or floods. A full multivariate model can be used to
quantify risk of extreme compound events.

The stochastic modelling of the event parameters has previously been difficult, and was
done under the assumption of multivariate independence between the intensity and dura-
tion of an event. Storms were described as rectangular pulses with an arrival rate following
a Poisson process (Salvadori & Michele, 2007). Independence was assumed as a conse-
quence of modelling difficulty of non-Gaussian multivariate models, and has later been
lifted following advancements in the field by De Michele & Salvadori (2003); Salvadori
& Michele (2007). The authors introduce a precipitation event model which exploits the
theory of copula, and allows for a separate modelling of the joint and marginal distri-
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butions. This was the motivation behind the authour’s previous work Birketvedt (2019),
where the relationship between precipitation intensity and duration at Risvollan, Trond-
heim, Norway, was modelled using copulae. To the authors knowledge, temperature and
precipitation has not been modelled with an event model using copula. This motivates the
extension of the model from Birketvedt (2019) to include temperature.

Hydrological applications of copulae have mostly been restricted to the bivariate case
(De Michele & Salvadori, 2003; Vandenberghe et al., 2010). Bivariate copulae are heav-
ily researched, and there exist few of larger dimension. In Aas et al. (2009), the authors
introduce the vine copula which allows for a construction of a large multivariate copula
by combinations of bivariate copulae. Advancements in model construction and simpli-
fication were later made in Brechmann et al. (2012); Dißmann et al. (2012). Vines, or
pair-copula constructions, have since been applied by Bevacqua et al. (2017) to risk as-
sessment on extreme compound flood events. Due to the general applicability of vines,
this seems like a natural choice for constructing a larger model for precipitation events
also.

The intended topic for this thesis was to apply vines to build a multivariate model
for precipitation events, and investigate the different dependence structures of intensity,
duration and temperature across Norway. The data available was ultimately of insuffi-
cient quality for this purpose. An underlying assumption in copula modelling is that the
processes are continuous, and do not have duplicated measurements (ties). In Norway,
precipitation is most commonly measured over intervals of 1 hour, which will effectively
cause a rounding error in the true precipitation. The 1 hour interval is large to the extent
where the rounding severely affects the measurement precision, and we get many ties.
This issue is rarely mentioned in the literature. In Salvadori & Michele (2006); Panthou
et al. (2014) ties are managed by introducing lower threshold for precipitation volume in
each event, and in Vandenberghe et al. (2010) they introduce random noise to duplicated
measurements. Neither of these approaches are perfect as they either do not sufficiently
account for ties, or cause estimation bias. In Li et al. (2016) the authors propose a solution
for bivariate models, and introduce the concept of interval censoring, which has shown
signs of unbiased estimation in the presence of ties. In this study, we attempt to construct
interval censored vines, and demonstrate a use case on a precipitation event model which
includes temperature. We also provide some methods for constructing precipitation events
that account for temperature.

2



Chapter 2
The Dataset

We collected data about precipitation and temperature from 32 weather stations owned
by the Norwegian Meteorological Institute. The time series span the period from January
1st 1983 to December 31st 2018, and contains hourly measurements of precipitation and
temperature. The overall quality of data is varying across all weather stations, and most
stations have a large amount of missing data. Out of all measurements 9% are missing for
temperature, and 39% for precipitation. We want to select one station for this study. To do
this, we first define an event in Section 2.1, and in Section 2.2 we select one station that
present the highest number of events. In Section 2.2 the selected station is investigated.
Ties cause bias in the modelling of events, and the severity of the issue is quantified. It
turns that the data quality is a larger problem than expected.

2.1 Event Definition
A precipitation event (or storm) is defined as a rainy period, separated from the next rainy
period by a defined number of dry hours. Precipitation events are characterized by the joint
behaviour of several random variables such as volume V , that is the total amount of pre-
cipitation recorded during the event, the event duration W , the mean intensity I = V/W
and the dry period D preceding the event itself. Figure 2.1 shows an illustration of these
parameters. The events model is widely used in the hydrological literature, i.e. De Michele
& Salvadori (2003); Salvadori & Michele (2007); Vandenberghe et al. (2010); Panthou et
al. (2014); Molnar et al. (2015), and was used in the authors previous work Birketvedt
(2019). In the literature, typical choices for the dry separation length range from 5 hours
to 24 hours (Vandenberghe et al., 2010; De Michele & Salvadori, 2003; Birketvedt, 2019).
Here we have chosen the separation length to be 5 hours. The models do not currently
have a suggested parameter for temperature, so we measure eight additional candidate tem-
perature parameters. During the event, we measure the mean temperature T , maximum
temperature TM , minimum temperature Tm and the maximum temperature difference T∆,
and during the dry period we measure mean temperature TD, maximum temperature TDM ,
minimum temperature TDm and the maximum temperature difference TD∆. The precipi-

3
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Figure 2.1: Illustration of the parameters in the standard event model. Each rectangular pulse
denotes an event.

tation is measured by a tipping bucket with a typical measurement resolution of 0.1 mm.
Each time the bucket is filled, its contents are tipped into a larger container. The hourly
rain volume is typically calculated from the number of tips. In some cases, the measure-
ments are negative, which is mostly assumed to be caused by evaporation. All negative
measurements are labeled as missing (NA). There are also outliers present. Hence, the
measurements across all stations are filtered from the most relevant records gathered from
Norgesrekorder (n.d.); Regnværet setter nye rekorder (2014), which give a reasonable in-
dication on the parameter bounds.

Each event is separated by a dry period of 5 hours, and in this regard, missing measure-
ments are treated as dry periods. This means that the 5 hour separation period can consist
of both dry and/or missing measurements. The remaining parameters are calculated from
the relevant non-missing values for each event. That is, V and I are computed by sim-
ply removing missing values, i.e. the series (1, 1,NA, 1) would have V = 3 and I = 1.
Similarly, the temperature parameters are computed from only complete measurements.
For W , we compute the total duration, even for missing rain. Thus, the same series as
before would have W = 4. Following this approach, event parameters could potentially
be calculated from a large amount of missing measurements. There is the possibility that
an event with duration W = 96 could consist of volume measurements V = { 0.1, NA,
NA, NA, NA, 0.1, . . . , NA, 0.1}, such that the parameters V, I would be calculated from
only 20 complete measurements. Figure 2.2 shows histograms of the amount of missing
measurements within each event for the parameters mean temperature T , mean dry period
temperature TD and rain volume V for all weather stations. It is apparent that all param-
eters are calculated from a significant amount of missing measurements, which suggests
that this should be considered when selecting a weather station. There are a significant
amount of events where rain volume V is calculated from over 50% missing measure-
ments. The average dry temperature TD is generally estimated with an even larger amount
of missing measurements, and there are many events with up to 99% measurements miss-
ing. It should be noted that it is more crucial to have few missing measurements in rain
volume V compared to the temperature parameters. Temperature is a much smoother pro-
cess, so the uncertainty induced by missing measurements is smaller than for total rain
volume V . Over 4 hours, large amounts of rain can accumulate, but the mean temperature
is assumed to be relatively unchanged.

Following this event specification, around 20% of all events have a total volume V =

4
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Figure 2.2: Percentage NA measurements in all events for the parameters V , T and TD selected
following a dry period of 5 hours.

0.1 and duration W = 1. This can be considered noise, and it will cause estimation bias
in copula modelling. Commonly, events are filtered by specifying a minimal value, or
threshold, for one parameter, i.e. V or I (Salvadori & Michele, 2007, 2006; Panthou et al.,
2014). We use V > 1 as a threshold for the events.

2.2 Særheim Weather Station
We want to restrict the analysis to one weather station with as many valid events as possi-
ble. This gives the station at Særheim, which is located in Rogaland in western Norway.
There are a total of 3631 events, divided by seasons as shown in Table 2.1. The number of
events for each season ranges from 847 in spring to 980 in summer.

Season # Events

Winter 980
Spring 847
Summer 852
Fall 952

Total: 3631

Table 2.1: Number events at Særheim divided by seasons. The events are selected following a dry
period 5 hours.

While there are many valid events at Særheim, the parameters may still be calculated
based on a large amount of missing measurement. As shown in Figure 2.3, the parameters
V and T have fewer than 33% missing measurements for all events. The parameter TD,
on the other hand, has a significant amount of missing measurement, even close to 100%.
This is not perfect, but still better than the dataset viewed as a whole. Figure 2.4 shows the
observations of intensity I and duration W at Særheim. The mean intensity is 0.9 mm/h
with a few large observations, whereas the mean duration is 19 h.
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Figure 2.3: Percentage NA measurements in events at Særheim for the parameters V , T and TD
selected following a dry period of 5 hours.
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Figure 2.4: Observations of the event parameters intensity I and duration W at Særheim following
a dry period of 5 hours.

In the event model, the underlying multivariate distribution of the event parameters is
assumed to be different for each season, hence, the events are divided into four seasons,
where winter is the months December, January and February, spring is March, April and
May, summer is June, July and August, and fall is September, October and November.
The Figures 2.5 and 2.6 show histograms of I and W for each season. The intensity has
the greatest range in spring, and the smallest in winter. The events are typically shortest in
spring and summer, and longest in winter.

An underlying assumption when applying the theory of copula is that the marginal
distributions are continuous, which means a zero probability of duplicated measurements
(ties). However, even for continuous marginals, duplicates may still occur due to mea-
surement imprecision. Table 2.2 shows the total amount of ties for I,W, V,D and T for
each season, and for the entire dataset. The percentage of ties range from 5% for T during
fall to 92.7% for D during spring. The duration W and volume V are typically around
70% and 90% respectively. In cases where the amount of ties is low, a common practice
is to assume that it does not significantly affect the estimation and inference procedures,
however, this cannot be considered reasonable for these data.

The data quality is in particular poor for the duration W . Table 2.3 shows the amount
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Figure 2.5: Histogram of the mean precipitation intensity I for each season. The observations are
counted in bins of size 0.3 mm/h.

Season\# Ties I W V D T
Winter 230 882 636 910 54
Spring 228 748 581 785 59
Summer 192 782 546 786 93
Fall 192 859 571 884 49

Total: 1593 3516 3061 3513 462

Table 2.2: Tied observations of the characteristic parameters intensity I , duration W , volume V ,
the dry periodD and the mean temperature T for the different seasons based on a selection of events
following a dry periodD of 5 h. Total denotes the ties amongst the full 3631 events, and not the sum
of ties for all seasons.

of ties for W = 1 . . . , 10. For each hour, there are around 50 to 160 duplicates. This
causes estimation bias, and in section 3.6.1 we will go into more detail regarding the
challenges with common practices of treating ties, and discuss interval censoring, which
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Figure 2.6: Histogram of the the precipitation duration W for each season. The observations are
counted in bins of size 1 h.

is an unbiased estimation method in the presence of ties. The large number of ties is an
indication of severe rounding error, and the true values are censored.
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Duration W Frequency
1 41
2 64
3 108
4 127
5 134
6 158
7 144
8 161
9 143
10 123
...

...

Table 2.3: Frequency of measurements for the duration W based on a selection of events following
a dry period 5 hours. In a continuous process, all measurements should ideally have frequency 1.
There are 3631 events in total.
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Chapter 3
Theory

Copulae are multivariate probability distributions with uniform marginals on the interval
[0, 1], and are a popular tool for modelling the joint behaviour of random variables. Their
main feature is that they are able to model the dependence structure independently from
the marginal models. The main theory of bivariate copulae is introduced in Section 3.1,
and common estimation and inference procedures are discussed in Section 3.2. In Section
3.3 we introduce a method to build multidimensional models based on combining bivari-
ate copulae and special graph models called vines. When building vines, there are many
possibilities for construction. In Section 3.4, we introduce some methods for selecting and
estimating a vine. Copula models are based on the assumption that data come from contin-
uous distributions and therefore do not contemplate the presence of ties in the data set. In
reality though, ties are always present. In Section 3.6 we discuss how the presence of ties
influences parameter estimation and present possible solutions to improve the inference.
Section 3.7 is a brief introduction to time series modelling in relation to copulae.

3.1 Definition and Basic Properties

The popularity of copulae in statistical modelling is due to the theorem introduced in Sklar
(1959), which separates modelling of a multivariate distribution into two steps; the joint
behaviour of the random variables and their univariate marginal distributions. This is
achieved by letting the univariate distributions be joined by a d-dimensional copula C.
In this section we only discuss the bivariate case. From a mathematical point of view a
bivariate copula is defined as following:

Definition 3.1.1. Copula: A 2-dimensional copula is a functionC(u, v) on [0, 1]2 → [0, 1]
that satisfies

(i) C(u2, v2)+C(u1, v1)−C(u1, v2)−C(u2, v1) ≥ 0, for u1 ≤ u2, v1 ≤ v2 in [0, 1]2

(ii) C(0, v) = C(u, 0) = 0, for all u, v ∈ [0, 1]
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(iii) C(u, 1) = u and C(1, v) = v, for all u, v ∈ [0, 1].

The popularity of copulae in statistical modelling is due to the following theorem in-
troduced in Sklar (1959):

Theorem 1. Let H be a bivariate distribution function with marginals F and G. Then
there exists a copula C such that for all x, y in [−∞,∞],

H(x, y) = C(F (x), G(y)) = C(P [X ≤ x] , P [Y ≤ y]). (3.1)

If F and G are continuous, then C is unique; otherwise C is uniquely determined on
RanF × RanG, where RanF denotes the range. Conversely, if C is a copula and F and
G are distribution functions, then the function H defined by (3.1) is a joint distribution
function with univariate margins F and G.

In essence, Sklar’s theorem states that it is possible to model the dependence structure
between the random variables X and Y in two separate steps. The dependence captured
by the copula is independent of the marginals, and can thus be estimated separately. Notice
also that the margins F and G can be distributions from different families.

Copulae are differentiable for almost all u, v ∈ [0, 1] so the density function of the
copula can be obtained by:

c(u, v) =
∂2C(u, v)

∂u∂v
. (3.2)

Now the joint density for x and y is found by applying the chain rule:

h(x, y) =
∂2C(F (x), G(y))

∂u∂v
= c(F (x), G(y))f(x)g(y). (3.3)

The conditional copula distribution can be obtained by:

Cv|u(v|u) =
∂C(u, v)

∂u
, (3.4)

which can also be used to find the conditional joint distribution by applying the chain rule
as before.

When analyzing the dependence between two random variables, there are two limiting
cases: (i) the variables are independent, (ii) the variables are a function of each other. Both
cases can be represented by copulae.

For the first case, the independence copula is given by Π(u, v) = uv, and the following
theorem states a correspondence between X and Y being stochastically independent, and
the Π copula:

Theorem 2. (Nelsen, 2006, Theorem 2.4.2) LetX and Y be continuous random variables.
Then X and Y are independent if and only if CXY =

∏
.

At the other extreme, if X and Y are deterministic monotonic functions of each other,
it follows that their dependence structure must be represented by one of the following
copulae:

W (u, v) = max(u+ v − 1, 0) (3.5a)
M(u, v) = min(u, v) (3.5b)
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The copula W captures the decreasing behaviour, while M captures the increasing be-
haviour. These upper and lower bounds for the copula are known as Fréchet-Hoeffding
bounds:

W (u, v) ≤ C(u, v) ≤M(u, v). (3.6)

Figure 3.1 shows contours of the copulae of these bounds, and the independence copula.
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Figure 3.1: Contour plots of the limiting case copulae W,Π and M , respectively.

The most common families of copulae are the elliptical and Archimedean copulae. The
elliptical copulae are generalizations of multivariate Gaussian and student-t distributions.
Table 3.1 shows some one parameter Archimedean copulae and the Gaussian copula. For

Copula C(u, v) Parameter Range
AMH uv

1−θ(1−u)(1−v) θ ∈ [−1, 1)

Clayton
[
max

{
u−θ + v−θ − 1; 0

}−1/θ
]

θ ∈ [−1,∞) \ {0}

Frank − 1
θ log

[
1 + (exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1

]
θ ∈ R \ {0}

Gumbel exp
[
−
(
(− log(u))θ + (− log(v))θ

)1/θ]
θ ∈ [1,∞)

Joe 1−
[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

]1/θ
θ ∈ [1,∞)

Gaussian 1√
1−θ2

exp

{
− θ

2(x2
1+x2

2)−2θx1x2

2(1−θ2)

}
θ ∈ (−1, 1)

Table 3.1: Table of some Archimedian copula and the Gaussian copula. θ is the copula parameter,
and for the Gaussian copula x1 = Φ−1(u) and x2 = Φ−1(v), where Φ−1(·) denotes the inverse
standard normal distribution (Aas et al., 2009).

the Archimedean and Gaussian copulae it is possible to define an explicit link between
the copula parameter θ and the strength of dependence measured by Kendall’s τ = g(θ).
This relationship can be used to compute the copula parameter as θ = g−1(τ). Table 3.2
shows the functions τ = g(θ). For the copulae considered, g is a monotonically increasing
function of θ, hence, an increase in θ indicates stronger dependence. See the books Nelsen
(2006); Joe (1997) for details regarding the specific copulae. Figure 3.2 shows the densi-
ties of the Gaussian (elliptical), Joe and Clayton copula (Archimedean). These illustrate
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Copula g(θ) Dependence Range

AMH 1− 2
3θ −

2(1−θ)2

3θ2 log(1− θ) τ ∈
[

(5−8 log 2)
3 , 1

3

]
Clayton θ

θ+2 τ ∈ [−1, 1)

Frank 1− 4
θ

[
1−D1(θ)

]
τ ∈ [−1, 1)

Gumbel θ−1
θ τ ∈ [0, 1)

Joe 1− 4
∑∞
k=1 1/[k(θk + 2){θ(k − 1) + 2}]∗ τ ∈ [0, 1)

Gaussian 2
π arcsin θ∗∗ τ ∈ (−1, 1)

Table 3.2: Table of the relationship between the copula parameter θ and Kendall’s τ , τ = g(θ).
Dk(θ) = k/θk

∫ θ
0

(t/θ)/(et − 1) dt is the Debye function, defined for any positive integer k, see
(Nelsen, 2006). ∗(Hofert et al., 2012),∗∗(Cramér, 1946).

some of the different dependence structures copulae are able to model. Notice that the
Gaussian copula shows a symmetric dependence, whereas the Joe and Clayton copulae
have increasing depence towards the upper and lower tails (tail dependence), respectively.

-2

0

2

-2 0 2

(a) Gaussian

-2

0

2

-2 0 2

(b) Joe

-2

0

2

-2 0 2

(c) Clayton

Figure 3.2: Contour plots of the Gaussian, Joe and Clayton copula densities for Kendall’s τ = 0.5
with standard normal margins.

The different family of copulae have different ranges of dependence which they are
able to model, i.e. Joe’s copula can by default only model positive dependence. How-
ever, copulae can be rotated, which gives access to negative dependence structure of such
copulas. From Sklar’s theorem (1), we see that if we let u = F (x), v = G(y), where
u, v ∈ [0, 1], we can rotate the data, or flip the axis, by letting 1 − u = F (x), v = G(y).
Here the first axis has been flipped, and will from here be referred to as 90° (counterclock-
wise) rotation. Following this notion, 1− u = F (x), 1− v = G(y) is a 180° rotation, and
u = F (x), 1 − v = G(y) a 270° rotation. Figure 3.3 illustrates this rotation for the Joe
copula.
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Figure 3.3: Rotated Joe copulae with rotations 90°, 180° and 270° with Kendall’s τ = −0.5, 0.5
and −0.5. The margins are standard normal.

3.2 Estimation of Bivariate Copulae
In this section we introduce the steps for estimating and selecting a bivariate copula. In
3.2.5, we also introduce a goodness-of-fit test to evaluate whether the fit of the selected
copula is good.

3.2.1 Test of Independence
Before estimating a copula, we want to check if there is an underlying dependence to be
modelled. Here we show a computationally simple test, which is based on the asymptotic
normality of the sample version of Kendall’s τ . The test is given by

τn =
2

n(n− 1)

∑
i<j

sgn(xi − xj)sgn(yi − yj), (3.7)

where n denotes the number of observations. Under the null hypothesis of independence,
τn will have mean 0, and the sample variance given by 2(2n + 5)/(9n(n − 1)), which
allows for a test of independence by the asymptotic normality of the test statistic

T =

√
9n(n− 1)

2(2n+ 5)
× |τn|. (3.8)

The p-value is calculated as

p-value = 2× (1− Φ(T )), (3.9)

where Φ is the standard normal distribution (Genest & Favre, 2007). This calculation is
computationally inexpensive and can be used to avoid the computations involved in esti-
mating copulae. There are more advanced test available, i.e. in Kojadinovic & Yan (2010),
but these are more computationally costly, and this test is assumed to be sufficient for con-
structing larger models in Section 3.4. It should be noted that Kendall’s τ is unable to
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measure non-monotonic dependence, so the variables may still be dependent even if the
indicates the opposite. This is illustrated by letting X be a vector of equally spaced obser-
vations in the interval [−5, 5], and letting Y = X2. The variables are clearly dependent,
while having Kendall’s τ = 0.

3.2.2 Estimation
If pairs of stochastic variables are found to be dependent, a copula can be estimated. In
the literature there are different methods for estimating the copula, such as inversion of
the relationship θ = g−1(τ) introduced in Section 3.1, see Schölzel & Friederichs (2008);
Genest & Favre (2007). However, estimation by maximum pseudo-likelihood is arguably
the most common, and is required to apply the interval censoring in Section 3.6.1, so
other techniques will not be discussed in detail. The marginal distributions are generally
unknown, so to avoid misspecification, these are estimated by the ranks of the observa-
tions, which can described as follows: let X be a vector of size n, the Rank(Xi)= Ri,
for i = 1, . . . , n is the number of entries in X smaller than Xi plus one. So max(X)
would have rank n, while the smallest would have rank 1. This completely separates the
modelling of the marginal distributions and the underlying joint copula. For an absolutely
continuous copula Cθ, with density cθ, the pseudo-loglikelihood function is then given by

l(θ) =

n∑
i=1

ln

{
cθ

(
Ri1
n+ 1

, . . . ,
Rid
n+ 1

)}
, (3.10)

where Rij denotes the rank of Xij among {X1j , . . . , Xnj} where 1 ≤ i ≤ n. This
function is then maximized to obtain the parameter estimates. This normalized rank trans-
formation of the observations is some times referred to as the pseudo-observation. As
discussed in Genest & Favre (2007), rank based copula estimation retains the most statis-
tical information (Oakes, 1982). Notice that this is in essence the log-likelihood function
with the empirical distribution function as the marginal distribution, normalized by n+ 1
instead of n to avoid problems at the boundary (Kojadinovic & Yan, 2010).

3.2.3 Selection
While it is possible to visually inspect the data, and fit the appropriate copulae according
to the suspected dependence, it is usually more efficient to fit all available copulae and
choose the the best fit in an automated procedure. Selection based on the lowest Akaike
Information Criterion (AIC) was found to be most accurate in a large simulation study
performed by Brechmann (2010). The AIC is given by

AIC = 2k − 2 ln(L̂), (3.11)

where L̂ is the maximum likelihood estimate of the model, and k is the number of pa-
rameters in the model (Akaike, 1974). It should be noted that while selection by AIC is
mostly sufficient, there exist more advanced tools for copula selection that may perform
better for a given task, see Grønneberg & Hjort (2014) and Ko et al. (2019). The AIC
is easily applicable with the interval censored estimation in Section 3.6.1, as it does not
require additional modification.
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3.2.4 Sampling

Once we have fitted and selected a copula, the next step is to assess the fit. This can be
done by a comparison with pseudo-random samples generated from the copula. Gener-
ating pseudo-random samples is also essential for the goodness-of-fit test introduced in
Section 3.2.5. For the bivariate case, the pseudo-random sampling can be performed by
the the inverse probability integral transform of Devroye (1986). Let w1 and w2 be two in-
dependent pseudo-random samples, we can use the inverse conditional copula distribution,
from eq. (3.4), to generate random samples x1 and x2 from a copula C(u, v):

x1 = w1 and x2 = C−1
2|1(w2|x1) =

∂C−1(w1, w2)

∂u
, (3.12)

and x1, x2 are now samples from the copula C with uniform marginals.

3.2.5 Goodness-of-Fit tests

A goodness-of-fit test for copulae is a more formal apporoach for assessing whether the es-
timated copula is in fact the underlying copula. In this section we introduce one goodness-
of-fit test, which can be applied to all types of copulae. The test is based on a parametric
bootstrapping scheme. In Section 3.6.2, we show modifications to the test which increases
its power in the presence of ties. There are other tests available, such as the White test
(Huang & Prokhorov, 2014; White, 1982), however, this requires computation of the Hes-
sian matrix, and is not generalized to account for ties.

For a fitted copula Cθ, a goodness of fit can be based on a comparison with the empir-
ical copula Cn given by

Cn(u, v) =
1

n

n∑
i=1

1

(
Ri
n+ 1

≤ u, Si
n+ 1

≤ v
)
, (3.13)

where 1(A) denotes the indicator function for a set (A). The empirical copula is a rank
based asymptotic estimator of the underlying copula (Deheuvels, 1979, 1981). Under the
null hypothesis that H0 : C ∈ {Cθ}, that is, that the unique underlying copula C is in fact
in the family of the fitted copula Cθ, the test can be based on the empirical process

Cn(u) =
√
n{Cn(u)− Cθ(u)}, u ∈ [0, 1]d. (3.14)

If we let the parameter estimate θ̂ be estimated by ranks, the following statistic was found
to give the best results by Monte Carlo experiments performed by Berg (2009) and Genest
et al. (2009).

Sn =

∫
[0,1]d

Cn(u)2 dCn(u) =

n∑
i=1

{
Cn(Ûi)− Cθ(Ûi)

}2

, (3.15)

where Û denotes pseudo-observations. The underlying distribution can then be approx-
imated by a parametric bootstrap procedure in order to obtain a p-value, see Genest &
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Rémillard (2008). The same can also be done by a multiplier central limit theorem sam-
pling procedure, see Kojadinovic et al. (2011), which for large samples, where the para-
metric bootstrap procedure is too computationally in-feasible, is significantly faster.

While this test is rather computationally demanding, it is also more generally applica-
ble than the White test as the power is less dependent on the number of observations and
does not set restrictions to the differentiability of the copula. One issue is that p-values are
inaccurate when the number of parametric boostrapping samples are fewer than 10 times
the number of observations, which can be very computationally infeasible (Genest et al.,
2009).

3.3 Multivariate Copulae

While there are a large number of bivariate copula models whose properties have been
explored in detail Nelsen (2006); Joe (1997); Genest et al. (2006); Li et al. (2016), the
expansion to multivariate copula models is far from straight forward. There have been
several attempts at such constructions (Bandeen-Roche & Liang, 1996; Joe, 1997; McNeil,
2008), but these are theoretically demanding compared to the bivariate case and not very
flexible when dimensions are large. One way to construct complex, multivariate models
using bivariate copulae as building blocks was proposed by Aas et al. (2009). We first give
some intuition on how a larger multivariate distribution can be decomposed into smaller
bivariate distributions, before giving a more formal definition. Let h(x1, . . . , xd) be a
d-dimensional multivariate density function. This can be factorized as

h(x1, . . . , xd) = f1(x1) · f(x2|x1) · f(x3|x1, x2) · · · f(xd|x1, . . . , xd−1), (3.16)

which is a unique decomposition until we relabel the variables (Aas et al., 2009). For
d = 4 we have:

h(x1, x2, x3, x4) = f1(x1)f2|1(x2|x1)f3|1,2(x3|x1, x2)f4|1,2,3(x4|x1, x2, x3), (3.17)

which is essentially a product of four univariate distributions. By Sklar’s Theorem (1),
copulae separate the joint and marginal behaviour. Following Eq. (3.3), each conditional
density in (3.16) can be written as the product of a copula and a marginal distribution:

f2|1(x2|x1) =
c1,2{F1(x1), F2(x2)}f1(x1)f2(x2)

f1(x1)

= c1,2{F1(x1), F2(x2)}f2(x2). (3.18)

This allows us to write the joint density as

h1,2,3,4 =f1(x1)f2(x2)f3(x3)f4(x4)

c1,2{F1(x1), F2(x2)}c2,3{F2(x2), F3(x3)}c3,4{F3(x3), F4(x4)}
c1,3|2{F1|2(x1|x2), F3|2(x3|x2)}c2,4|3{F2|3(x2|x3), F4|3(x4|x3)}
c1,4|2,3{F1|2,3(x1|x2, x3), F4|2,3(x4|x2, x3)}, (3.19)

18



which is the product of univariate marginal distributions and bivariate copulae. Such de-
compositions are commonly referred to as vine copulae, since the distributions are illus-
trated as trees. Each stochastic variable is represented by a node, which are joined by an
edge representing a bivariate copula. The density (3.19) is illustrated as trees in Figure
3.4.

x1 x2 x3 x4

x1,x2 x2,x3 x3,x4

x1,x2 x2,x3 x3,x4

x1,x3|x2 x2,x4|x3

x2,x4|x3x1,x3|x2

x1,x4|x2,x3

Figure 3.4: Example of a four dimensional vine copula density illustrated as trees. This is commonly
referred to as a four dimensional D-vine, which is a special case of an R-vine.

The parametrization in (3.19) is not unique as we can relabel the variables. This means
that the number of decompositions for a vector of d variables is of order d!. Therefore
we need a strategy for vine construction, and the most general is arguably the regular vine
(R-vine). The R-vine distributions were introduced in Bedford & Cooke (2001, 2002) as a
generalization to Markov trees, and were later given more detailed attention in Kurowicka
& Cooke (2006). In Dißmann et al. (2012), the authors proposed automated methods for
construction and sampling, which even when simplified, yield better results than other
automated alternatives (Brechmann et al., 2012).

An R-vine V on d variables, as defined in (Kurowicka & Cooke, 2006, Definition 4.4),
is built by T1, . . . , Td−1 trees with nodes Ni and edged Ei for i = 1, . . . , d−1 that satisfy
the following requirements:

Definition 3.3.1. R-vine (Kurowicka & Cooke, 2006, Chapter 4.4)
V is an R-vine on d elements if

1. T1 is a spanning tree with nodes N1 = {1, . . . , d} and a set of edges denoted E1.

2. For i = 2, . . . , d− 1, Ti is a spanning tree with nodes Ni = Ei−1 and edge set Ei.

3. For i = 2, . . . , d − 1 and edges {a, b} ∈ Ei, it must hold that the two edges {a, b}
share a common node in tree Ti−1 (proximity condition)

A spanning tree is a graph that join all nodes in the tree with minimum possible edges.
So for a tree on d variables, the spanning tree will have d−1 edges. The R-vine V structure
consisting of the node set N := {N1, . . . , Nd−1} with the edge set E := {E1, . . . , Ed−1}
is the framework for building a larger statistical model. Each individual edge e ∈ Ei of tree
i ∈ 1, . . . d − 1 can be specified as e = j(e), k(e)|D(e) and joins two nodes, where j(e)
and k(e) denote the conditioned stochastic variables conditioned on the set D(e), denoted
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the conditioning set. As an example, consider the final edge x1, x4|x2, x3 in Figure 3.4.
Here j(e) = 1, k(e) = 4, which are the free variables, conditioned on D(e) = 2, 3. This
edge joins the nodes x1, x3|x2 and x2, x4|x3. The notation for the R-vine is general, but in
essence express that the variables j(e), k(e) conditioned on the set D(e) form a constraint
set that is exclusive to each edge.

Vines can be used to select a decomposition of the multivariate distribution. We build
the joint distribution by letting the nodes be associated with stochastic variables, and the
edges with bivariate copula densities. From Theorem 4.2 of Kurowicka & Cooke (2006)
there is a proof that the resulting multivariate regular vine density of a random variable X
is uniquely determined by and given by

h(x1, . . . , xd) =

 d∏
k=1

fk(xk)

×
d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e)))

 , (3.20)

where xD(e) denotes the subvector of x = (x1, . . . , xd)
> determined by the indices in

D(e). The density is the product of the marginal densities, and the product of all copula
densities in the R-vine tree.

Notice that for the trees T2, . . . , Td−1, the copulae take conditional distributions as
arguments, since for these trees, the conditioning sets D(e) are not empty. These condi-
tional distributions Fj(e)|D(e), Fk(e)|D(e) depend on the copulae in the previous trees, and
are thus defined recursively. If we let v be a vector, where vj is the element j in the vector
and v−j is the vector without element j. The conditional distributions F (xi|v) can be
derived as

F (xi|v) =
∂Cxi,vj |v−j

{
F (xi|v−j), F (vj |v−j)

}
∂F (vj |v−j)

, (3.21)

where Cij|k is a bivariate copula, see Joe (1996) for the proof. For the first tree, when v is
univariate, the conditional distributions are given by

F (xi|vj) =
∂Cxi,vj

{
F (xi), F (vj)

}
∂F (vj)

. (3.22)

We demonstrate the recursion on the copulaC13|2 shown in Figure 3.4. The copula density
is given by

c13|2

(
F1|2(x1|x2), F3|2(x3|x2)

)
=

c13|2

{
C12(F1(x1), F2(x2))

∂F2(x2)
,
C23(F2(x2), F3(x3))

∂F2(x2)

} (3.23)

Now we have written a distribution of size d as a product of univariate marginal distribu-
tions and bivariate copulae.

The example in Figure 3.4 is usually referred to as a drawable vine (D-vine), which
is a special case of the R-vine. Each node in a D-vine has two edges at max. In four
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dimensions, we can also construct the vine as in Figure 3.5. This is usually referred to as
a canonical vine (C-vine), which is also a special case of the R-vine. The first tree of a
C-vine has one canonical node with an edge to all other nodes.

x1

x2

x3

x4

x1,x3 x1,x2 x1,x4

x2,x3|x1 x2,x4|x1

x2,x4|x1x2,x3|x1

x3,x4|x1,x2

x1,x2

x1,x3

x1,x4

Figure 3.5: Example of a four dimensional vine illustrated as trees. This is commonly referred to as
a C-vine which is a special case of the R-vine.

In four dimensions, however, the possible vines are still fairly limited. Therefore we
show a possible R-vine in seven dimensions in Figure 3.6. More details regarding R-vines
can be found in Dißmann et al. (2012), and more intuition on pair-copula decomposition
of a large multivariate distribution in Aas et al. (2009).

3.4 Vine Selection and Estimation
In this section we introduce the steps of building a vine copula model using the automated
”top-down” approach of Dißmann et al. (2012). The process generally consists of two
steps iterated until all trees are built. Firstly, we construct a tree by maximizing over
a set of edge weights. Secondly, a copula is selected to each edge following the steps
for bivariate copulae, as described in Section 3.2. These steps are then iterated to the
tree is built. Commnly, tree selection is done by strength of correlation, and we start by
computing Kendall’s τ for all parameter pairs. The next steps can be described as follows:

1. Construct the first spanning tree T1 by maximizing the set of edge weights

max
∑
e

wj(e),k(e)|D(e), (3.24)

for some edge weight wj(e),k(e)|D(e). Commonly strength of dependence, w = |τ̂ |,
where τ̂ denotes the empirical Kendall’s τ . The edge weights can be maximized
according to (Cormen et al., 2009, p. 631) from Kruskal (1956).
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Figure 3.6: Example of a possible R-vine in seven dimensions (Dißmann et al., 2012, Figure 1).
From T4, the variables are shown by their index, i.e. j(e), k(e)|D(e). Each edge e corresponds to a
copula for the variables (xj(e), xk(e)|xD(e)), and the nodes correspond to stochastic variables.

2. For each edge e in the spanning tree T1, find a bivariate copula according to some
selection criterion. Commonly first by a test of independence, and then by AIC if
the pair is dependent. We estimate each copula by maximum pseudo-likelihood.

3. Find all possible edges in the next tree and compute the edge weights. For selection
by Kendall’s τ , the edge weights would be the estimated conditional correlations

wj(e),k(e)|D(e) = |τ̂ |j(e),k(e)|D(e) =

∣∣∣∣τ̂ (Fj(e)|D(e), Fk(e)|D(e)

)∣∣∣∣ . (3.25)

This evaluation is recursive, since it depends on the previous trees, see Eq. (3.21).
The first tree only requires the marginal distributions, which we estimate by pseudo-
observations.
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4. Continue with these steps until all trees constructed.

The underlying assumption in the ”top-down” approach is that by first selecting the first
level tree, followed by the second, third etc., most of the dependence is ”captured” in
the early trees, thus maximizing according to Kendall’s τ seems like a natural choice.
Depending on the application of the vine copula, other weights might be more appropriate,
for instance tail dependence in financial applications (Dißmann et al., 2012; Brechmann,
2010).

To avoid unnecessarily large and complex models, the data for each edge is tested for
independence by applying the test from Section 3.2.1. If the variables are found to be
independent, thus best described by the independence copula Π, this reduces the model
complexity and in turn the computational costs. While this test is simple, we assume that
it is sufficient for construction of larger models. Reduction of computational complexity
can also be achieved by substituting copulae in later trees with the Gaussian copula in a
process referred to as truncation, see Brechmann et al. (2012). This is most relevant for
data with large dimensionality, and is not discussed here.

Notice also that in this procedure, we only need to compute the pseudo-observations
once, which is when we find copulae to each edge in the first tree. For the sequential trees,
copulae are selected based on a nested evaluation of these data, that is in step 3. These
evaluations can also be stored, and used for sequential trees. We will refer to evaluations
of the conditional distribution as conditional data. As an example:

X1|2 = F1|2(X1|X2) =
∂C1,2

{
pobs(X1),pobs(X2)

}
∂pobs(X2)

, (3.26)

where pobs denotes computing the pseudo-observations. When we adapt interval censor-
ing to vines, step 3 requires more attention. This will be discussed in detail when interval
censoring is adapted to vines in Section 3.6.3.

Each selected copula can be tested for goodness-of-fit with the test from Section 3.2.5.
This a sequential vine copula estimation, which as fast since we only perform bivariate
estimation. Algorithms are described in more detail in Dißmann et al. (2012).

3.4.1 Joint Estimation

Up until now, the sequential estimation approach has been presented. That is, we have ob-
tained pairwise maximum-likelihood estimates, and not the maximum likelihood estimates
for the full model. A joint model estimation can be performed by maximum likelihood es-
timation of the full R-vine density (3.20). The log-likelihood can be expressed by

l(θ) =

n∑
i=1


d−1∑
i=1

∑
e∈Ei

log cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e)))

 , (3.27)

where xD(e) denotes the subvector of x = (x1, . . . , xd)
> determined by the indices in

D(e), as described in Section 3.3. We see that log-likelihood is the sum of the log-
likelihood for each bivariate copula in the tree. For a vine of dimension three, the log
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likelihood can be written as

l(θ) =

n∑
i=1

{
log c13

(
F1(Xi1), F3(Xi3)

)
+ log c23

(
F1(Xi2), F3(Xi3)

)
+ log c12|3

(
F1|3(Xi1|Xi3), F2|3(Xi2|Xi3)

)}
.

The performance of the estimation techniques were explored in Haff (2012), and the se-
quential approach is mostly sufficient. It loses some asymptotic efficiency for increasing
dependence, in particular in the later trees. The number of model parameters grows expo-
nentially with increasing data dimensionality, so for certain applications, performing the
sequential estimation may be the only viable option.

3.5 Vine Sampling
Similar to bivariate copula, we want to generate samples to assess the model fit, and for
applications such as modelling compound extreme events, as in Bevacqua et al. (2017).
Sampling schemes are also necessary to conduct the simulation study in Chapter 4.4.4.
Samples from a vine can be generated similarily to the bivariate case, from Section 3.2.4,
by ”inverse transform sampling” (Devroye, 1986). If we let w1, . . . , wd be uniform inde-
pendent random samples on [0, 1], the vine samples x1, . . . , xd can be computed as

x1 = w1

x2 = F−1
2|1 (w2|x1)

...

xn = F−1
d|1,...,d−1(wd|x1, . . . , xd−1) (3.28)

In three dimensions this results in

x1 = w1

x2 = F−1
2|1 (w2|w1)

x3 = F−1
3|1,2(w3|F−1

2|1 (w2|w1)).

A detailed algorithm for regular vines can be found in Dißmann et al. (2012).

3.6 Ties
The copulae discussed here have continuous marginal distributions, and a consequence is
that the probability of ties in the observations is equal to zero. As in Hofert et al. (2018),
we say that t a d-dimensional data set of size n X1, . . . ,Xn contains ties if at least one
component of an observation contains ties. Even though processes are continuous, how-
ever, ties may still occur as a result of in imprecisions in the measurement techniques or
rounding. We estimate copula by pseudo-observations (pobs), as described in Section
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3.2, which are essentially normalized ranks. Ranks are not unique in the presence of ties,
but there are some simple methods commonly suggested for managing tied ranks. The first
is calculating the average rank of the smaller and larger ranks, and assigning the average
value to the tied ranks. That is, for a tied random vector x = {1, 3, 3, 3, 5, 6, 8, 8, 9} the
average ranks are {1, 3, 3, 3, 5, 6, 7.5, 7.5, 9}. Pseudo-observations computed from aver-
age ranks are denoted (pobsavg). The issue with this method is, however, that the data
is still tied, thus having locally stronger dependence than in reality. We illustrate this by
collecting 500 samples from a Gaussian copula with Kendall’s τ = 0.5, and rounding both
margins to the first decimal. The original and rounded samples are shown in Figure 3.7.
The empirical Kendall’s τ (3.7) is τ̂ = 0.464 for the original data, and τ̂ = 0.495 for the
average ranks of the rounded samples. The estimated dependence from average ranks is
larger than for the original samples.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(a) Original samples, τ̂ = 0.464

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(b) Average ranks, τ̂ = 0.495

Figure 3.7: Illustration of bias introduced by ties on the Gaussian copula. In (b), both margins are
rounded to the first decimal, and this increases the estimated dependence.

Another method is to assign ranks randomly, which will always result in untied data.
That is, for a tied random vector x = {1, 3, 3, 3, 5, 6, 8, 8, 9} the random ranks can be
{1, 3, 2, 4, 5, 6, 7, 8, 9}. However, here we introduce independence to the data. For the
same rounded samples as before, this process is shown in Figure 3.8. Now the data resem-
bles the original samples more, but the estimated dependence τ̂ = 0.448 has decreased.
One can carry out estimation with randomization a number of times, and average over
the results, but for data of high dimensionality, the number of possible random outcomes
increases greatly, and cannot be considered as a reliable method (Hofert et al., 2018).

Since estimation of bivariate copula heavily relies on pseudo-observations which are
standardized ranks, the presence of ties can introduce bias in parameter estimation. An
alternative to using average or random ranks is introduced in Li et al. (2016), and will be
introduced in the next section.
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(a) Original samples, τ̂ = 0.464

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(b) Random ranks, τ̂ = 0.448

Figure 3.8: Illustration of bias introduced by randombly breaking ties on the Gaussian copula.
In (b), both margins are rounded to the first decimal, followed computing pseudo-observations by
randomly breaking ties. This decreases the estimated dependence.

3.6.1 Interval Censoring
In the cases where the observations contain ties, we can think of ranks as ”censored” by
their upper and lower limits. That is, we know which interval the rank belongs to, but
not necessarily which rank it is. The approach introduced in Li et al. (2016) is called
interval censoring, and is in essence a modification to the likelihood function such that
each observation is assigned a likelihood based on the interval of its censoring limits.
That is, the parameters are estimated by maximum pseudo-likelihood calculated from
both the upper limit (max) and the lower limit (min) of the ranks. For the random vec-
tor x = {1, 3, 3, 3, 5, 6, 8, 8, 9}, the minimum ranks are {1, 2, 2, 2, 5, 6, 7, 7, 9} and the
maximum ranks are {1, 4, 4, 4, 5, 6, 8, 8, 9}. Let (U, V ) denote the upper censoring lim-
its computed from maximum rank pseudo-observations (pobsmax), and let (U, V ) be the
lower censoring limits computed from minimum rank pseudo-observations (pobsmin).
Note that these limits are equal if the observations are not tied. Each pseudo-observation’s
(Ui, Vi) contribution to the pseudo-likelihood function can be divided into four cases:

1. If Ui < Ui and Vi < Vi, both margins are tied, then

Li(θ) = Cθ(Ui, Vi)− Cθ(Ui, Vi)− Cθ(Ui, Vi) + Cθ(Ui, Vi). (3.29)

2. If Ui < Ui and Vi = Vi = Vi, that is only tied in the first margin, then

Li(θ) =
∂Cθ(u, v)

∂v

∣∣∣
u=Ui,v=Vi

− ∂Cθ(u, v)

∂v

∣∣∣
u=Ui,v=Vi

. (3.30)

3. If Ui = Ui = Ui and Vi < Vi, that is only tied in the second margin, then

Li(θ) =
∂Cθ(u, v)

∂u

∣∣∣
u=Ui,v=Vi

− ∂Cθ(u, v)

∂u

∣∣∣
u=Ui,v=Vi

. (3.31)

26



4. If Ui = Ui = Ui and Vi = Vi = Vi, that is tied in neither margin, then

Li(θ) = cθ(Ui, Vi). (3.32)

which gives the resulting pseudo-likelihood function

L(θ) =

n∑
i=1

logLi(θ), (3.33)

which can be optimized using a standard maximum likelihood approach. In essence, the
observations are now assigned a likelihood based on an interval. Note that in the case of
no ties, i.e. the fourth case, the likelihood is the standard likelihood function.

3.6.2 Bootstrapping With Ties
The goodness-of-fit test and p-values in Section 3.2.5 are based on bootstrap replicates
from the fitted model. Informally, this scheme can be regarded as a comparison of a test
statistic from the fitted model, with test statistics from models fitted to samples from this.
When the data is untied, the estimated marginal distributions, i.e. the ordered pseudo-
observations, will always be the same. Moreover, sampled values will always be untied,
and have the same estimated marginal distribution. Note that the source of variation in
the bootstrapping scheme, comes from how the samples are paired in the joint distribu-
tion. In the presence of ties, however, the untied samples will have a different estimated
marginal distribution than in the original data, and the scheme gives a less direct compar-
ison. That is, the estimates from these samples will not be interval censored, and the test
statistic (3.15) will not be calculated with any tied samples. In Li et al. (2016), the authors
therefore suggest a procedure which preserves the empirical distribution function of the
original data. If we let F̃n and G̃n denote the empirical distributions of the original pseudo
observations, that is F̃n(u) =

∑n
i=1 1(Ui ≤ u)/n, and similar for G̃, we can introduce

ties by computing the corresponding quantile functions to the bootstrapped samples. That
is, if we let U (b)

i and V (b)
i be bootstrapped pseudo-observations generated from the fitted

copula, we transform the observations as follows:(
U

(b)
i , V

(b)
i

)
←
(
F̃−1
n (U

(b)
i ), G̃−1

n (V
(b)
i )

)
, (3.34)

for i = 1, . . . , n, where F̃−1
n (y) = inf{u : F̃n(u) ≥ y}, i.e. the inverse of the original

empirical distribution. Now the bootstrapped pseudo-observations have the same marginal
empirical distribution functions as the original data (Bücher & Kojadinovic, 2015), and
the models are estimated by interval censoring.

3.6.3 Interval Censored Vines
In this section we will attempt to apply interval censoring to vines. Interval censoring is
limited by the fact that one has to compute cross partial derivatives, which is challenging
for dimensions higher than 2. However, the advantage of vine constructions is that we may
apply theory from bivariate copuale on larger multivariate distributions. Partial derivatives
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have to be calculated to find the conditional distributions (3.21) regardless, so the excess
work is limited. For each bivariate copula in the vine, we need upper and lower limits for
the tied intervals to adjust the likelihood (3.33) in four cases. For bivariate copulae, this is
done by estimating the marginal distributions by pseudo-observations from max and min
ranks. As mentioned in Section 3.4, this step is only required once for vine copulae, which
in practice is when we construct the first tree. Later trees are, however, estimated from
nested evaluations of these pseudo-observations, by the conditional distribution formula
(3.21), which do not maintain the upper and lower limits from the first tree. As an example,
we demonstrate on the three dimensional vine in Figure 3.9. If we want to estimate an
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( ( ), ( ))�1,2 �1 �1 �2 �2 ( ( ), ( ))�2,3 �2 �2 �3 �3

,�1 �2 ,�2 �3
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Figure 3.9: Example of a three dimensional vine copula.

interval censored copula for C1,3|2, we first compute

x1|2 =
C1,2{F1(x1), F2(x2)}

∂F2(x2)

x3|2 =
C2,3{F2(x2), F3(x3)}

∂F2(x2)
, (3.35)

in which the copulae C1,2, C2,3 can be estimated using standard bivariate interval cen-
soring, as in Section 3.6.1, since these belong to the first tree. This allows us to esti-
mate C1,3|2(x1|2, x3|2). One could assume that that the upper and lower censoring limits
of C1,3|2 could simply be given by letting the marginal distributions F1, F2, F3 be es-
timated by both maximum and minimum ranks. That is, if we let C1,2(u, v) be a Joe
copula with parameter θ = 1.5, and let pobsmax(X1,2) = (0.81, 0.91), pobsmin(X1,2)
= (0.80, 0.90) be some tied data, this approach would give the following censoring limits
for x1|2:

U1|2 =
C1,2{pobsmax(X1),pobsmax(X2)}

∂pobsmax(X2)

=
∂C1,2(0.81, 0.91)

∂v
= 0.5785

U1|2 =
C1,2{pobsmin(X1),pobsmin(X2)}

∂pobsmin(X2)

=
∂C1,2(0.80, 0.90)

∂v
= 0.5867, (3.36)

and here the lower limit is larger than the upper. Note that the selection of the tied data here
is to illustrate a case where the limits are not maintained. This does not always happen,
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however, which can be seen if we let pobsmax(X1,2) = (0.61, 0.71), pobsmin(X1,2)
= (0.60, 0.70), which gives the limits

U1|2 =
C1,2{pobsmax(X1),pobsmax(X2)}

∂pobsmax(X2)

=
∂C1,2(0.61, 0.71)

∂v
= 0.5717

U1|2 =
C1,2{pobsmin(X1),pobsmin(X2)}

∂pobsmin(X2)

=
∂C1,2(0.60, 0.70)

∂v
= 0.5670. (3.37)

Here U1|2 > U1|2, which is different from the previous case, and we see that adjustments
have to be made.

Two methods are suggested for interval censoring vines, which will be illustrated on
the copula C13|2. In the first method, denoted simple censoring, we estimate the marginal
distributions by computing pseudo-observations as usual, but we also estimate the upper
and lower censoring limits of copulae in {T2, . . . , Td−1} by pseduo-observations. Now
pseudo-observations are computed twice for copulae with non-empty conditioning sets
D(e). For x1|2 this would give the censoring limits:

U1|2 = pobsmax

{
C1,2{pobs(X1),pobs(X2)}

∂pobs(X2)

}
U1|2 = pobsmin

{
C1,2{pobs(X1),pobs(X2)}

∂pobs(X2)

}
(3.38)

and for x3|2

V 3|2 = pobsmax

{
C2,3{pobs(X2),pobs(X3)}

∂pobs(X2)

}
V 3|2 = pobsmin

{
C2,3{pobs(X2),pobs(X3)}

∂pobs(X2)

}
(3.39)

where pobs is computed from some tie preserving rank method, i.e average ranks. The
idea behind this method stems from the fact that as long as ties are preserved, tie preserving
pseudo-observations will be the same. That is, pobsmax(x) = pobsmax(pobsavg(x)).
Since ties are preserved when computing conditional distributions, we are still able to cen-
sor the intervals in bivariate estimation. The censored intervals (U1|2, U1|2), (V 3|2, V 3|2)
can now be used as in the bivariate case.

In higher trees, the censoring limits are specified via the conditional distributions de-
rived from Eq. (3.21), which are essentially nested evaluations of the marginal distribu-
tions. The censoring limits of simple censoring can more generally be given by a similar
formula. Let v be a vector, where vj is the element j in the vector and v−j is the vector
without element j. The conditional interval censoring limits for simple censoring are given
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by

Uxi|v = pobsmax


∂Cxi,vj |v−j

{
F̂ (xi|v−j), F̂ (vj |v−j)

}
∂F̂ (vj |v−j)

 (3.40a)

Uxi|v = pobsmin


∂Cxi,vj |v−j

{
F̂ (xi|v−j), F̂ (vj |v−j)

}
∂F̂ (vj |v−j)

 , (3.40b)

where F̂ denotes that the marginal distributions in the first tree are estimated by pseudo
observations from average ranks

F̂ (xi|v) =
∂Cxi,v

{
pobsavg(xi),pobsavg(v)

}
∂pobsavg(v)

. (3.41)

However, estimation of the censoring limits by computing new pesudo-observations
for each tree, could cause a ”smoothing”. To emphasize this, let X1|2 = (0.01, 0.4,
0.4, 0.99) be some conditional data, which would give the maximum pseudo observation
pobsmax(X1|2) = (1, 3, 3, 4)/5 = (0.2, 0.6, 0.6, 0.8) and the minimum pobsmin(X1|2) =
(1, 2, 2, 4)/5 = (0.2, 0.4, 0.4, 0.8), which is quite far from the original conditional data.
This is mainly an issue for small sample sizes.

It should also be noted that while this method requires a tie preserving method for
computing ranks, i.e. max, min or average ranks, the methods are not equal in this regard.
That is, while pobsmax(x) = pobsmax(pobsavg(x)) holds,

U1|2 = pobsmax

{
C1,2{pobsavg(X1),pobsavg(X2)}

∂pobsavg(X2)

}

= pobsmax

{
C1,2{pobsmax(X1),pobsmax(X2)}

∂pobsmax(X2)

}
,

does not always hold. Say we want to compute x1|2, and let C1,2 be a Clayton copula with
parameter θ = 3. If we have one one untied pseudo-observation (U1, V1) = {0.2, 0.2}
and one tied (Û2, V̂2) = {0.4, 0.4} (average), (U2, V 2) = {0.4, 0.6} (max), the un-
tied conditional observation would be x1|2(U1, V1) = 0.399, and the tied observations
x1|2(Û2, V̂2) = 0.414 and x1|2(U2, V 2) = 0.150. The resulting rank of the observations
would change depending on the method used for managing ties, and this will ultimately
affect the estimation by (3.40). However, this may not occur on less severely tied data.

In the second method, denoted full censoring, we follow the same steps as in the ex-
ample (3.36). The conditional data computed from max ranks is not always larger than
the conditional data computed from min ranks, so we let the upper and lower limits be the
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maximum and minimum of the two. For x1|2 this would give

U1|2 = max

{
C1,2{pobsmax(X1),pobsmax(X2)}

∂pobsmax(X2)
,

C1,2{pobsmin(X1),pobsmin(X2)}
∂pobsmin(X2)

}

U1|2 = min

{
C1,2{pobsmax(X1),pobsmax(X2)}

∂pobsmax(X2)
,

C1,2{pobsmin(X1),pobsmin(X2)}
∂pobsmin(X2)

}
(3.42)

and for x3|2

V 3|2 = max

{
C2,3{pobsmax(X2),pobsmax(X3)}

∂pobsmax(X2)
,

C2,3{pobsmin(X2),pobsmin(X3)}
∂pobsmin(X2)

}

V 3|2 = min

{
C2,3{pobsmax(X2),pobsmax(X3)}

∂pobsmax(X2)
,

C2,3{pobsmin(X2),pobsmin(X3)}
∂pobsmin(X2)

}
(3.43)

where max and min denote the maximum and minimum of each observation. Using similar
notation as in (3.40), the conditional interval censoring limits for full censoring are given
by:

Uxi|v = max

{
∂Cxi,vj |v−j

{F (xi|v−j), F (vj |v−j)}
∂F (vj |v−j)

,

∂Cxi,vj |v−j

{
F (xi|v−j), F (vj |v−j)

}
∂F (vj |v−j)

}
(3.44a)

Uxi|v = min

{
∂Cxi,vj |v−j

{F (xi|v−j), F (vj |v−j)}
∂F (vj |v−j)

,

∂Cxi,vj |v−j

{
F (xi|v−j), F (vj |v−j)

}
∂F (vj |v−j)

}
(3.44b)

where F and F denotes that the marginal distributions in the first tree are estimated from
maximum and minimum rank pseudo-observations as in (3.41). Note that the max/min
step is only performed in the copula estimation, and the resulting U, V , U, V are not stored
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for computing conditional data in later trees. Now the implications of the upper and lower
limits are preserved in the whole tree, and the censoring is less reliant on the arbitrary
choice of a ties managing method for generating conditional data. This method may,
however, increase the estimation difficulty, since copula densities are evaluated closer to
the boundaries, and numerical approximations of the gradient and hessian are less reliable.

3.7 Time Series Analysis

In order to apply the theory of copula, the observations have to independent identically
distributed (iid) and the underlying distribution function has to be continuous. The as-
sumption of iid random variables can fail in more ways, and in this section we look at
such situation that are relevant to time series analysis. Weather events could be considered
a stretch from a multivariate time series, and in this section we will look at stationarity,
multiple serial independence and the ARIMA-model.

3.7.1 Stationarity

Informally we can say that stationarity in a time series is that consecutive observations do
not follow a trend. More formally, let the observations X1, . . . ,Xn be a stretch from a
multivariate time series (Xi)i∈Z, it is said to be stationary if for any k ∈ N and m ∈ Z,
the vector (X1, . . . ,Xk) and (X1+m, . . . ,Xk+m) have the same distribution (Hofert et
al., 2018). This is referred to as strong stationarity in the literature.

One way to assess whether the time series is stationary is by applying a test. There exist
many such tests, but in an extensive simulation study carried out in Bücher et al. (2019)
not all were found to maintain their levels. Testing whether a times series is stationary in
full generality is difficult, and as suggested in Hofert et al. (2018), an imperfect approach
is to apply tests for change point detection, which are tests constructed from the following
null hypothesis:

H0 : There exists a distribution function H such that
X1, . . . ,Xn have a distribution function H (3.45)

For an overview of the literature, see Csörgö & Horváth (1997) and Aue & Horváth (2013).
The following test has a good sensitivity to departures from the null hypothesis, which is
described as in Hofert et al. (2018). It can be derived from the empirical process

DHn (t,x) =
√
nλn(0, t)λn(t, 1)

(
H1:bntc(x)−H(bntc+1):n(x)

)
, (3.46)

(t,x) ∈ [0, 1]× Rd,

where λn(t, t′) = (bnt′c − bntc)/n and b·c denotes the floor function, and for any 1 ≤
k ≤ l ≤ n, let

Hk:l(x) =
1

l − k + 1

l∑
i=k

1(Xi ≤ x), x ∈ R, (3.47)
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be the empirical distribution function from the subsample Xk, . . . ,X l obtained from
X1, . . . ,Xn. The suggested test statistic is then

SHn = sup
t∈[0,1]d

∫
Rd

(
DHn (t,x)

)2

dH1:n(x) = max
1≤k≤n−1

1

n

n∑
i=1

(
DHn (k/n,Xi)

)2

. (3.48)

The p-value can then be approximated by a resampling procedure.
While this test has shown strength in detecting departures from the null hypothesis of

an underlying multivariate distribution, it is mostly in regards to the marginal distributions,
and not changes in the underlying copula (Holmes et al., 2013). One test particularly sen-
sitive to such changes is the one suggested in Bücher et al. (2014). From Sklar’s Theorem
(1), we have that the distribution function H can be written as a function of a unique un-
derlying copula C and the marginal distribution functions F1, . . . , Fd, and it follows that
we can decompose the null hypothesis (3.45) intoH0 : H0,m ∩H0,c, where

H0,m : There exist F1, . . . , Fd such that X1, . . . ,Xd have marginals F1, . . . , Fd,

H0,c : There exists a copula C such that X1, . . . ,Xd have a copula C. (3.49)

Now we want to construct a hypothesis test with the alternative hypothesis H1 : H0,m ∩
(¬H0,c), where ¬ denotes negation. That is a test that only checks for the existence of a
copula, when the marginals are assumed to exist. The test, as described in Hofert et al.
(2018), is similar to (3.48), and derived from the following empirical process

DCn (t,u) =
√
nλn(0, t)λn(t, 1)

(
C1:bntc(u)− C(bntc+1):n(u)

)
, (t,u) ∈ [0, 1]d+1,

(3.50)
where for any 1 ≤ k ≤ l ≤ n,

Ck:l(u) =
1

l − k + 1

l∑
i=k

1(Uk:l
i ≤ u), u ∈ [0, 1]d, (3.51)

is the empirical copula of the subsample Xk, . . . ,X l obtained from X1, . . . ,Xn. Note
that it is the convention to let Ck:l = 0 if l < k. The sample of pseudo-observations
Uk:l
k , . . . ,Uk:l

l is given by

Uk:l
i = (Fk:l,1(Xi1), . . . , Fk:l,d(Xid))

l − k + 1

l − k + 2
, i ∈ {k, . . . , l}, (3.52)

where Fk:l,j is the empirical distribution function of Xkj , . . . , Xlj . The suggested test
statistic is

SCn = sup
t∈[0,1]

∫
[0,1]d

(
DCn (t,u)

)2

dC1:n(u) = max
1≤k≤n−1

1

n

n∑
i=1

(
DCn (k/n,U1:n

i )
)2

.

(3.53)
The test is based on resampling, and more details can be found in Bücher et al. (2014).
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3.7.2 Multiple Serial Independence

If the time series is found to be stationary, the next step is to evaluate whether it is seri-
ally independent, i.e. if the observations have significant correlations at certain time lags.
Given a sequence of stationary continuous random variables X1, . . . , Xn′ , and some em-
bedding dimension p > 1, the first step consists of forming n = n′ − p+ 1 p-dimensional
vectors

Y i = (Xi, . . . , Xi+p−1), i ∈ {1, . . . , n}, (3.54)

for i ∈ {1, . . . , n}. Singular serial independence can now be measured by the following
statistic

Isn =

∫
[0,1]p

n

Csn(u)−
p∏
k=1

uk


2

du, (3.55)

where Csn is the serial empirical copula computed from Y i for i = 1, . . . , n. The embed-
ding dimension p also determines the maximum lag considered in the serial copula. This
test is based on the empirical process

√
n(Cn − Π), which converges weakly to the tight

centered Gaussian process (Kojadinovic & Yan, 2010). For details regarding the conver-
gence, see Stute (1984). In essence, this test is a comparison between the empirical copula
and the independence copula. In Genest & Rémillard (2004) the authors proposed the use
of the Möbius transform Ms

A,n, see Rota (1964), to decompose the process into 2d−d−1

sub-processes
√
nMA(Cn), for all non-empty subsets A ⊆ {1, . . . , d}, with test statistics

Ms
A,n =

∫
[0,1]d

n
(
MA,n(Csn)(u)

)2
du, (3.56)

and under the null hypothesis of independence, the test statistics are asymptotically mutu-
ally independent.

This approach can then be generalized to the multivariate case using the permutation
principle, see Kojadinovic & Yan (2011). Following the decomposition, the individual test
statistics can then be combined in to a global test statistic following combination rules such
as Tippett (1931) or Fisher (1932). Note that the test of multiple serial independence relies
on resampling to approximate p-values, so it can be quite computationally demanding.
One solution is to reduce the cardinality m of the subsets considered when deriving the
test statistics (3.56).

3.7.3 The ARIMA-Model

In cases where the data has significant non-stationarity or serial dependence, this can be
transformed into a stationary serially independent time series by applying the autoregres-
sive integrated moving average (ARIMA) model. The discussion of this model is based
on the work by Brockwell & Davis (1987) and Shumway & Stoffer (2017).

Before giving the definition of the ARIMA process, we first define the ARMA process,
for which we need to define the concepts autocovariance and white noise:
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Definition 3.7.1. (Brockwell & Davis, 1987, Definition 1.3.1)(The Autocovariance func-
tion). If (Xi)i∈T is a process such that Var(Xi) < ∞ for each i ∈ T , then the autoco-
variance function γX(·, ·) of (Xi) is defined by

γX(r, s) = Cov(Xr,Xs) = E
[
(Xr − E[Xr])(Xs − E[Xs])

]
, r, s ∈ T. (3.57)

For a stationary process, this can be written

γX(h) ≡ γX(h, 0), (3.58)

for some lag h = r − s. White noise can then be defined as

Definition 3.7.2. (Brockwell & Davis, 1987, Definition 3.1.1) The process {Zt} is said to
be white noise with mean 0 and variance σ2, written

{Zt} ∼WN(0, σ2), (3.59)

if and only if {Zt} has zero mean and covariance function given by

γ(h) =

{
σ2 if h = 0

0 if h 6= 0
(3.60)

The next step is now to define the ARMA process:

Definition 3.7.3. (Brockwell & Davis, 1987, Definition 3.1.2) The ARMA(p, q) process:
The process {Xt, t ∈ Z} is said to be an ARMA(p, q) process if {Xt} is stationary and if
for every t,

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q, (3.61)

where {Zt} ∼ WN(0, σ2). We say that {Xt} is an ARMA(p, q) process with mean µ if
{Xt − µ} is an ARMA(p, q) process.

The equations (3.61) can be written symbolically in more compact form

φ(B)Xt = θ(B)Zt, t ∈ Z, (3.62)

where φ and θ are the pth and qth degree polynomials

φ(z) = 1− φ1z − · · · − φpzp (3.63)

and
θ(z) = 1 + θ1z + · · ·+ θqz

q (3.64)

and B is the backward shift operator defined by

BjXt = Xt−j , j ∈ Z. (3.65)

We now arrive at the ARIMA-process which generalizes the ARMA-process by intro-
ducing differencing:
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Definition 3.7.4. (Shumway & Stoffer, 2017, Definition 3.11) A process (Xi)i∈Z is said
to be ARIMA(p, d, q )if

∇dXi = (1−B)dXi (3.66)

is ARMA(p, q), where∇ denotes the differencing operator, i.e. ∇Xi = Xi −Xi−1.

For more details see Shumway & Stoffer (2017).
For time series with a complex, periodic annual trend, the data can be transformed by

an ARIMA-model with fourier terms as external regression terms:

Y i = a+

K∑
k=1

[
αk sin(2πki/m) + βk cos(2πki/m)

]
+Ni, (3.67)

where Ni is the ARIMA-process and m is the length of the period. The parameter K, and
the ARIMA-model, can then be selected by minimal AIC (3.11). A similar method is used
in Livera et al. (2011), but in a state space approach.

3.7.4 The Ljung-Box Test
To assess whether the fitted model is good, that is the resiuduals are iid, one can apply
the Ljung-Box test (LJUNG & BOX, 1978), which considers the joint behaviour of the
autocorrelations for different lags. If we let ρ̂e denote the empirical autocorrelations of the
residuals (Ẑ)i∈Z, under the null hypothesis of white noise, the Ljung-Box test statistic is
given by

Q(ρ̂) = n(n+ 2)

H∑
h=1

ρ̂2
e(h)

n− h
, (3.68)

for some maximum lag H , where the empirical residual autocorrelations ρ̂e are given by

ρ̂e(h) =

∑n
t=h+1 ẐiẐi−h∑n

t=1 Ẑ
2 . (3.69)

The test statisticQ follows a χ2
H−p-distribution, where p denotes the number of parameters

in the model, typically p+ q.
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Chapter 4
Simulation Study

In this chapter, we conduct a simulation study on interval censored estimation. In Section
4.3 the performance is shown for bivariate estimation, in a study similar to Li et al. (2016),
where the authors generated ties in copula samples by rounding the first margin to the first
decimal place. In the hydrological data introduced in Chapter 2, ties are not only present
in the first margin. Therefore we conduct these experiments with ties in both margins and
different levels of severity. Furthermore, we use the sample sizes n ∈ {500, 1000, 5000},
as opposed to n ∈ {100, 200, 400}, to get a better representation of the samples sizes in
our data. As in Li et al. (2016), we also conduct experiments were only the lower tails
are rounded. In hydrological data, rounded lower tails are commonly present, hence, these
experiments will be of specific interest. In Section 4.4 the performance is shown when
the method is extended to vines. We proposed two methods for constructing censored
vines, in Section 3.6.3, so the goal is to evaluate the performance of each method. The
experiment is restricted to vine estimation for a given structure, and not the steps involved
in vine selection. It is more difficult to construct simulations on selection and estimation of
vines, so similar to Brechmann (2010), we perform a simulation study for bivariate copula
selection under interval censoring. Selection by AIC was found to be simple and effective
strategy, and the study verifies this result. Details can be found in Appendix A.1. For the
estimation studies, we only show the main results in this section, the remaining are left in
Appendix A.

4.1 A Note on the Implementation
The implementation was done in R (R Core Team, 2018), and while there are existing
libraries for copula modelling, these do not support interval censoring. Ties are gener-
ally handled before applying any of the included functions, and since interval censoring
requires adjustment of the likelihood function, most functions were implemented from
scratch. Some parts are borrowed from the R-packages copula (Hofert et al., 2017; Yan,
2007; Kojadinovic & Yan, 2010; Hofert & Mächler, 2011) and VineCopula (Schep-
smeier et al., 2018), specifically some function expression, such as copula densities, cop-
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ula expressions and the partial derivatives, sampling procedures and some plotting and
presentation functions. The package igraph (Csardi & Nepusz, 2006) was used to man-
age spanning trees, and the following are some packages used for purposes related to
the implementation and presentation: tidyverse (Wickham, 2017) with magrittr
(Bache & Wickham, 2014) and lubridate (Grolemund & Wickham, 2011) attached,
ggthemes (Arnold, 2018).

The implementation includes methods for estimation, selection, R-vine construction
and goodness-of-fit testing under interval censoring. All are implemented using maximum
pseudo-likelihood for estimation by applying the base functions optim and optimize
directly, that is by numerical approximations of the gradient and hessian. The copulae
implemented were the AMH, Clayton, Frank, Gumbel, Joe, BB1, BB6, BB7, BB8, Tawn
Type I and II, the Gaussian and Student-t copulae, see Nelsen (2006); Joe (1997). It should
be noted that the family of Elliptical copulae, the Gaussian and Student t-copulae were
time-consuming to estimate under interval censoring. In particular the student-t copula,
as estimation times were typically around 60 − 70 seconds per thousand observations in
data with a considerable amount of ties. The difficulties were more apparent for strong
correlations. Goodness-of-fit testing by parametric bootstrapping is most reliable when
calculating ten times more bootstraps than observations (Genest et al., 2006), which can
typically amount to around 13000 bootstraps, so for this reason the student-t copula is
typically not included in the analysis. The Tawn type I and II copulae are also typically
not included, since from testing, the global maximum likelihood was typically not always
achieved. The AMH copula is not implemented in the package VineCopula, and thus
typically not included in the analysis.

It should also be noted that the optimization difficulty increases for interval censored
estimation, and is more prone to failure. Results that are clearly a consequence of op-
timization issues have been removed in this section. The code used in this chapter is a
modified version of the full implementation. The full implementation is demonstrated in
Chapter 5.3.

4.2 Experiment Design
In this section we describe the general structure of the experiments, starting by showing
the two methods we use to induce ties into sampled data. The first method will be referred
to as binning, in which the interval [0, 1] is divided into b equally sized bins, and the
values within each bin are assigned a common value, i.e. the the middle of the bin. Note
that pseudo-observations are computed before estimation, such that the resulting values
are given by the rank of each bin. Figure 4.1 illustrates this process for a Gaussian copula,
where both margins are binned into b = 15 bins.

The second method consists of rounding a given percentage of the lower tails. Here,
we round the percent λ of smallest samples to either the first or second decimal. This is to
emulate rounding error in lower tails for different levels of severity. Figure 4.2 shows ties
generated from this procedure for λ ∈ {0.25, 0.5}.

While the data at hand is typically tied in both margins, the amounts of ties might be
different. We therefore conduct each experiment both symmetrically and asymmetrically.
For the binning experiments, each margin is equally binned in the symmetrical case, while
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Figure 4.1: An illustration of binned ties generated in the Gaussian copula. In (b), both margins are
binned with b = 15.
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(a) λ = 0.25
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(b) λ = 0.5

Figure 4.2: An illustration of lower tail ties generated in the Gaussian copula.

the second margin is typically binned into twice as many bins in the asymmetrical exper-
iments. This is illustrated in Figure 4.3, and note that the second margin of Figure 4.3b
is binned with b = 30, as opposed to b = 15. In the lower tail rounding experiments, the
lower tails are rounded to one decimal in the symmetrical case, while in the asymmetric
experiments, the lower tails of the first margin are typically rounded to one decimal, and
the second to two decimals.

In each experiment, interval censored estimation is compared with estimation by aver-
age and random ranks. Each estimation by random ranks is computed as the mean estimate
over 100 randomizations. All estimation methods are executed by maximum pseudo-
likelihood (3.10). For the binning experiments, we measure performance for increasing
sample size n ∈ {500, 1000, 5000} and let the strength of correlation be specified by
Kendall’s τ indexed by τ ∈ {0.1, 0.2, . . . , 0.9}. In the tail rounding experiments, we use
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Figure 4.3: An illustration of binned symmetrical and asymmetrical ties generated in the Gaussian
copula.

the same sample sizes n ∈ {500, 1000, 5000}, strength of correlation τ ∈ {0.25, 0.75}
and severity of tail ties λ ∈ {0.1, 0.2, . . . , 0.5}. For these simulations, we restrict the
copulae to the one parameter families introduced in Section 3.1, and compute the copula
parameters θ from the given correlations by applying the links in Table 3.2. All experi-
ments are conducted over R = 1200 repetitions. In some cases, estimation fails, so by
computing 1200 repetitions, we are likely to get at least 1000 valid results for all methods.
The results are shown as in Li et al. (2016) by boxplots for the error

Error = θ − θ̂,

which shows the estimation bias, and in some cases by the root mean square error

RMSE =

√√√√ 1

R

R∑
i=1

(
θ − θ̂i

)2

,

which summarizes the estimation consistency. Here θ and θ̂ denote the true and estimated
copula parameter, respectively. As mentioned, some of the results are left in Appendix A.

4.3 Bivariate Models
In this section we conduct two sets of experiments. The first involves inducing ties in the
Gaussian copula by binning, whereas the second induces ties in the lower tails of the Joe
and Clayton copulae. The dependence in Joe’s copula grows stronger towards the upper
tails, while dependence is stronger in the lower tails for Clayton. By rounding the lower
tails, we censor the key features of the Clayton copula, but not the Joe copula.

Figure 4.4 and Figure 4.5 show the distribution of the estimation error θ− θ̂ as a func-
tion of the correlation strength τ . The three panels refer to the three different sample sizes.
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As mentioned in Section 3.1, the strength of dependence τ and the copula parameter θ have
a monotonically increasing relationship, thus, an increase in θ would indicate stronger de-
pendence. Figure 4.4 refers to the experiments where ties are generated by symmetric
binning of a Gaussian copula. Here we see that with increasing strength of correlation
average and random ranks tend to introduce bias in the estimation. In particular random
ranks tend underestimate the correlation. Censoring appears to be unbiased for all τ , and
this is most apparent when correlations are strong. Figure 4.5 refers to asymmetrically
binned Gaussian copula and shows similar results.
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Figure 4.4: Boxplot of the estimation error θ − θ̂ in the symmetrically binned Gaussian copula.
Each margin is tied in b = 15 bins, for a given Kendall’s τ and different sample sizes n.
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Figure 4.5: Boxplot of the estimation error θ − θ̂ in the asymmetrically binned Gaussian copula.
The first margin is tied in b1 = 15 bins and the second in b2 = 30 bins, for a given Kendall’s τ and
different sample sizes n.

Tail dependence is an important feature of certain copulae which distinguish these
from other, and this is the emphasis of the second experiment. By rounding the lower tails,
the key features of Joe’s copula will not be censored, whereas the features for Clayton’s
copula will be. The error distribution and RMSE for these experiments on the Joe copula
are shown in Figures 4.6 and 4.7. Note that now the first axis indicates severity of ties in the
lower tails, and not strength of dependence. Both random and average ranks underestimate
the correlation when the severity of ties λ increases, but not by much. For larger sample
size (n = 5000) the RMSE stay fairly constant with respect to the increased severity of
ties for the interval censored estimation. The differences are more clear as the sample size
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increases, which is an indication of the inherent bias of the methods.
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Figure 4.6: Boxplot of the estimation error θ− θ̂ in the Joe copula with a percentage λ of ties in the
lower tails generated symmetrically. In each margin, the percentage λ of the smallest samples are
rounded to the first decimal, for Kendall’s τ = 0.75 with increasing severity.
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Figure 4.7: RMSE in the Joe copula with a percentage λ of ties in the lower tails generated sym-
metrically. In each margin, the percentage λ of the smallest samples are rounded to the first decimal,
for Kendall’s τ = 0.75 with increasing severity.

Differences are more apparent for the Clayton copula. The error distribution and
RMSE for the symmetric lower tail rounding experiment with τ = 0.25 are shown in
Figures 4.8 and 4.9. Here estimation by average ranks overestimate the correlation, while
random ranks underestimate, whereas the interval censored estimation appears unbiased.
For τ = 0.75, plots of the RMSE and error distribution for the asymmetric lower tail
rounding experiment are shown in Figures 4.10 and 4.11. Similar to the binning experi-
ment, when correlations are strong, average and random ranks consistently underestimate
the correlation, whereas interval censoring is accurate. Furthermore, the RMSE is stable
regardless of the severity in ties. It is expected that the differences are greater in for the
Clayton copula compared to the Joe copula, since the key feature of the copula, the lower
tail, is censored.

In summary, interval censoring of bivariate copulae has better performance than esti-
mation by random and average ranks, and the effect increases with both correlation and
sample size. The method also seems to be unbiased, whereas random and average ranks
are not. There are cases where the performance of the methods is comparable, however,
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Figure 4.8: Boxplot of the estimation error θ − θ̂ in the Clayton copula with a percentage λ of ties
in the lower tails generated symmetrically. In each margin, the percentage λ of the smallest samples
are rounded to the first decimal, for Kendall’s τ = 0.25 with increasing severity.
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Figure 4.9: RMSE in the Clayton copula with a percentage λ of ties in the lower tails generated
symmetrically. In each margin, the percentage λ of the smallest samples are rounded to the first
decimal, for Kendall’s τ = 0.25 with increasing severity.

interval censoring is more robust against all occurrences of ties. In particular in censoring
of key features of the copula, such as the tail dependence. Now we want to see if interval
censored vine copulae can account for bias in larger multivariate models.

4.4 Vine Models
Now that interval censoring has shown evidence of unbiasedness for the smaller bivariate
case, we wish to test if the methods proposed in Section 3.6.3 for constructing interval cen-
sored vines are equally effective. Two methods were proposed and both will be tested here.
The simple extension (3.40) will be denoted ”Censor”, or simple censoring, and the other
method (3.44) ”CensorFull” or full censoring. Here we conduct similar experiments as in
the previous section, that is, with both binned and lower tail rounded ties generated sym-
metrically and asymmetrically. The effectiveness of estimation is measured by introducing
ties to samples collected from a given vine copula, and then estimating all parameters for
this given vine, using different methods. This experiment has emphasis on whether the
estimation methods are unbiased, so the structure of the vine is always given. As men-
tioned in the start of this chapter, such experiments are hard to manage when selection of
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Figure 4.10: Boxplot of the estimation error θ− θ̂ in the Clayton copula with a percentage λ of ties
in the lower tails generated asymmetrically. The percentage λ of the smallest samples are rounded
to the first decimal in the first margin, and to the second decimal in the second margin, for Kendall’s
τ = 0.75 with increasing severity.
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Figure 4.11: RMSE in the Clayton copula with a percentage of ties λ in the lower tails generated
asymmetrically. The percentage λ of the smallest samples are rounded to the first decimal in the first
margin, and to the second decimal in the second margin, for Kendall’s τ = 0.75 with increasing
severity.

vine structure and copulae are also included. See Appendix A.1 for small experiment on
bivariate copula selection.

For a vine copula, it is less meaningful to have all the copula parameters computed
from the same correlation τ . By construction, vines typically have stronger correlations in
the first tree. Therefore, we construct the vine with strongest correlations in the first tree,
and weaker in the sequential trees. Interval censoring was highly effective against ties in
the tails, and since modelling of asymmetric tail dependence is a key use case for vines, we
include some copulae with tail dependence in the study. The structure is shown in Figure
4.12. Here τ ∈ {0.3, 0.4, . . . , 0.9} denotes a base level that maintains the dependence of
each bivariate copula, which is used to compute each copula parameter θ. The method
used to apply ties to each margin is displayed in Table 4.1.

The vine construction appears to reduce the asymptotic efficiency of the estimation, in
particular for strong correlations, which was also found in Haff (2012). Hence, reference
solutions are also shown. That is, the model parameters are also estimated before intro-
ducing ties in the data, to separate the model impreciseness and the tie induced bias. In
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Figure 4.12: Overview of the vine copula used to generate samples. The correlations, τ , are used to
compute the copula parameter θ for each bivariate copula. For all vine experiments, the structure is
given, only parameter estimates are computed.

Symmetry Experiment x1 x2 x3 x4

Symmetric Binning b = 15 b = 15 b = 15 b = 15
Tail rounding 1 DP 1 DP 1 DP 1 DP

Asymmetric Binning - b = 15 b = 15 b = 30
Tail rounding - 1 DP 1 DP 2 DP

Table 4.1: Overview of the tie generating actions in each margin for the vine experiments. b shows
the number of bins, DP (Decimal Place) denotes rounding to a decimal place, and - denotes no
action.

this section, we discuss the results for the sample size n = 5000, the remaining results can
be found in Appendix A. The differences are most apparent for large sample sizes, and the
model error is smallest. In Section 4.4.1 we show the binning experiments, and in Sec-
tion 4.4.2 the lower tail rounding experiments. For these sections, the estimation is only
performed sequentially, as described in Section 3.4. In Section 4.4.3, we also conduct an
experiment with joint estimation of all parameters, as introduced in Section 3.4.1, which
in Haff (2012) was found to improve the asymptotic efficiency for strong correlations.

As mentioned in Section 4.1, the interval censored log-likelihood is harder to opti-
mize than the average and random rank alternatives. This can occasionally cause the op-
timization to fail, in particular in the trees T2 and T3 when the data is severely tied and
correlations are strong. For the error plots in this section, we have removed outliers that
are caused by optimization issues. In some cases, there may also be general optimization
issues, which is highlighted by the reference solution. This is likely due to the numerical
approximations of the Hessian and gradient.

4.4.1 Binned Experiments
In this section we discuss the binning experiments defined in Table 4.1. Figure 4.13 shows
the distributions of the estimation error for the symmetric experiment, while Figure 4.14
shows these distributions for the asymmetric experiment. For the first tree, the average
and random ranks underestimate the correlation when it is strong, while interval censor-
ing is unbiased, which are similar results to the bivariate case. For the second and third
trees, however, all methods underestimate the correlation. The full censoring appears to
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perform better in most cases, but it is not clearly unbiased, and generally underestimates
the strength of correlation in comparison with the reference solution. The greatest im-
provement from interval censoring can be seen for T2 in Figure 4.14, where full censoring
performs significantly better than other methods. In T3, however, the results are varying.
The average rank error is comparable to full censoring for weak correlations, and smaller
when the correlations is strongest. The latter may be due to optimization issues, however.
In T3 simple censoring has the smallest errors when τ = 0.6, but will in the T2 Clayton
copula always fail with τ = 0.8, thus always failing when τ = 0.7 in T3 also.
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Figure 4.13: Boxplot of the estimation error θ− θ̂ in the symmetrically binned vine copula of Figure
4.12. All four margins are binned with b = 15. The estimations are based on n = 5000 samples,
and the vine parameters θ are computed from an increasing dependence τ .
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Figure 4.14: Boxplot of the estimation error θ−θ̂ in the asymmetrically binned vine copula of Figure
4.12. The first margin is not tied, the second and third margins are binned with b2,3 = 15, and the
fourth with b4 = 30. The estimations are based on n = 5000 samples, and the vine parameters θ
are computed from an increasing dependence τ . Notice that simple censored estimation always fails
in the T2 Clayton copula when τ = 0.8.

4.4.2 Lower Tail Rounding

In this section we discuss the lower tail rounding experiments shown in Table 4.1. Firstly,
when the base correlation is τ = 0.25. Note that the first axis now reflects the severity of
ties. The symmetric experiment is shown in Figure 4.15 and the asymmetric experiment in
Figure 4.16. Similar to the binning experiments, the interval censored parameter estimates
are accurate for the first tree, but generally underestimated in the second an third tree.
However, full censoring gives accurate estimates for the T2 copulae in both the symmet-
ric and asymmetric experiment. Moreover, the simple censoring slightly underestimates
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the correlation, whereas average and random ranks generally under and overestimate the
strength of correlation. For the T3 Gaussian copula, the censoring methods differ. The
full censoring overestimates the correlation, while the simple censoring underestimates
the correlation. Here, estimation by average ranks is closest, but not by much.
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Figure 4.15: Boxplot of the estimation error θ − θ̂ in the vine copula 4.12 with ties generated
symmetrically in the lower tails. In each margin, the percentage λ of the smallest samples are
rounded to the first decimal with increasing severity. The estimations are based on n = 5000
samples, and the vine parameters θ are computed from a base dependence τ = 0.25.

Figures 4.17 and 4.18 show the errors when the strength of correlation increases to
τ = 0.75, and the first tree estimation is still unbiased when interval censoring. In T2 for
both the symmetric and asymmetric experiments, the strength of correlation is generally
underestimated by all methods, but a little less for full censoring. The performance of
the censoring and average methods are comparable, whereas random ranks underestimate
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Figure 4.16: Boxplot of the estimation error θ − θ̂ in the vine copula 4.12 with ties generated
asymmetrically in the lower tails. The percentage λ of the smallest samples are rounded to the
first decimal place in the second and third margin, and to the second decimal place in the fourth
margin. The first margin is not rounded. Estimations are based on n = 5000 samples, and the vine
parameters θ are computed from a base dependence τ = 0.25.

even more. In the asymmetric experiment, full censoring almost achieves an accurate
estimate for both copulae in T2. The correlation in the T3 Gaussian is underestimated in the
symmetrical case, but in the asymmetrical experiment both censoring methods are closer
than the reference solution. In the previous experiment, when τ = 0.25, full censoring
underestimated the correlation in the T3 Gaussian copula, hence, it is possible that some
estimation error accounts for the model induced error.

49



-0.5

0.0

0.5

1.0

0.1 0.2 0.3 0.4 0.5

l

E
rr

o
r

T1 Frank

-0.2

-0.1

0.0

0.1

0.2

0.1 0.2 0.3 0.4 0.5

l

E
rr

o
r

T1 Gumbel

0

1

2

0.1 0.2 0.3 0.4 0.5

l

E
rr

o
r

T1 Clayton

0.0

0.5

1.0

1.5

0.1 0.2 0.3 0.4 0.5

l

E
rr

o
r

T2 Clayton

0.0

0.5

1.0

1.5

2.0

0.1 0.2 0.3 0.4 0.5

l

E
rr

o
r

T2 Joe

0.0

0.1

0.2

0.3

0.1 0.2 0.3 0.4 0.5

l

E
rr

o
r

T3 Gaussian

Method: Reference Average Random Censor CensorFull

Figure 4.17: Boxplot of the estimation error θ − θ̂ in the vine copula 4.12 with ties generated
symmetrically in the lower tails. In each margin, the percentage λ of the smallest samples are
rounded to the first decimal with increasing severity. The estimations are based on n = 5000
samples, and the vine parameters θ are computed from a base dependence τ = 0.75.

4.4.3 Joint Estimation

In Haff (2012), a sequential estimation followed by a joint was found to improve the ef-
ficiency. Joint interval censored estimation is very time consuming, so we only perform
one of the previous experiments, which is the symmetric binning experiment described in
Table 4.1. To speed up computations even more, the T3 Gaussian copula in Figure 4.12 is
exchanged for a Frank Copula, since estimation of the one parameter Archimedean copu-
lae is generally faster than the Gaussian. The new vine is shown in Figure 4.19, and the
estimation errors are shown in Figure 4.20. It is apparent that the full censored estimation
is unstable, by the increased estimation variance. As before, interval censored estimation
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Figure 4.18: Boxplot of the estimation error θ − θ̂ in the vine copula 4.12 with ties generated
asymmetrically in the lower tails. The percentage λ of the smallest samples are rounded to the
first decimal place in the second and third margin, and to the second decimal place in the fourth
margin. The first margin is not rounded. Estimations are based on n = 5000 samples, and the vine
parameters θ are computed from a base dependence τ = 0.75.

is unbiased in tree one. Estimation by average ranks, however, will generally achieve a
closer estimate than the censoring methods in the second and third tree, though, not by
much. This is likely due to optimization issues, as indicated by the inconsistent estimates
of the full censoring scheme. In fact, the full censoring scheme has an approximate fail rate
of 60% and the simple censoring a rate of 47%. It appears that numerical approximations
of the gradient and hessian are not sufficient for joint optimization. The joint optimization
is also very time consuming, and can take up to one hour when n = 5000.
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Figure 4.19: Overview of the vine copula used to generate samples for the joint estimation exper-
iment. The correlations, τ , are used to compute the copula parameter θ for each bivariate copula.
Only parameter estimates are computed for the given structure.

4.4.4 Summary
In summary, interval censored estimation is unbiased in the bivariate case, but not gen-
erally for vine copulae. Despite the poor result in comparison with bivariate censoring,
we still advocate the use of interval censored vines, and specifically by the full censoring
method. The estimation of the first tree is generally unbiased, and compared with other
methods, the performance is better for sequential trees. Furthermore, tied lower tails are
commonly found in precipitation event data, which, as demonstrated, is a good use case
for interval censoring. It should also be noted that the issues are most severe when corre-
lations in later trees are high. This is not typically the case for real data. It was suspected
that the results for T2 and T3 would improve significantly if correlations were weaker in
these trees. That is, by using the same correlations in T1, and even weaker in T2 and T3.
This appears not to be the case, and a small example can be seen in Appendix A.2.

There are a few other remarks to be noted. Firstly, the estimation will sometimes
return unreasonable results, which have been removed in the plots. We computed over
1200 repeated experiments, so the results should sill give an indication of the validity of
the methods. Secondly, the interval censored maximum likelihood optimization is more
difficult in comparison with other methods. The optimization is based on numerical ap-
proximations of the gradient and hessian, which is slow. A joint optimization of all vine
parameters might be more accurate and feasible following optimization improvements.

52



-2

-1

0

1

2

3

0.3 0.4 0.5 0.6 0.7 0.8

t

E
rr

o
r

T1 Frank

-0.5

0.0

0.5

1.0

0.2 0.3 0.4 0.5 0.6 0.7

t

E
rr

o
r

T1 Gumbel

0

2

4

0.3 0.4 0.5 0.6 0.7 0.8

t

E
rr

o
r

T1 Clayton

-1

0

1

2

3

0.2 0.3 0.4 0.5 0.6 0.7

t

E
rr

o
r

T2 Clayton

-1

0

1

2

3

0.2 0.3 0.4 0.5 0.6 0.7

t

E
rr

o
r

T2 Joe

-2.5

0.0

2.5

5.0

0.1 0.2 0.3 0.4 0.5 0.6

t

E
rr

o
r

T3 Frank

Method: Reference Average Random Censor CensorFull

Figure 4.20: Boxplot of the estimation error θ− θ̂ in the symmetrically binned vine copula of Figure
4.19. All four margins are binned with b = 15. The estimations are based on n = 5000 samples,
and the vine parameters θ are computed from an increasing dependence τ . The estimation is first
performed sequentially, and then jointly over all vine parameters.
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Chapter 5
Copula Modelling for Precipitation
and Temperature Data

In this chapter, we first give a short summary of the data quality in regards to copula
modelling, in Section 5.1. In order to use vine copulae to construct a joint distribution for
the event parameters, however, the data has to satisfy model assumptions. This is done in
Section 5.2 by applying more formal hypothesis tests, followed by an application of the
theory of time series to find a suitable model for temperature. The chosen model is then
tested for underlying assumptions. Finally, in section 5.3 we conclude by building two
interval censored regular vine models from the characteristic parameters of an event and
the selected temperature model. The models are validated by goodness-of-fit testing of
each bivariate copula in the vines. The modelling of temperature and precipitation events
is intended to show the steps that were taken before ultimately deciding that the results
are of minor interest, due to the poor data quality and general challenges with the event
model. Furthermore, the main topic for this study is in copula modelling, and not the
marginal distributions. This was done in Birketvedt (2019), where we also gave a more
elaborate discussion of data characteristics for precipitation events.

5.1 Data Summary

The essence of copula modelling is that we can divide the modelling of a large multivariate
distribution into two separate cases: the joint behaviour and marginal behaviour. The joint
behaviour is modelled by the copula, which is unique for continuous marginal distribu-
tions. The pseudo-observations are estimations of the marginal distributions, and jointly
they give an indication of the shape of the underlying copula. Ideally these should look
similar to the samples in Figure 5.1. However, before we apply a threshold for rain volume
V for the data at Særheim the pseudo-observations are presented in Figure 5.2. For low
values both W and W show large gaps in the estimated marginals. This is a consequence
of ties, which clearly distort the underlying copula, and the process does not look continu-
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ous. As mentioned, this can partly be resolved by filtering with some threshold (Salvadori
& Michele, 2006). We used V > 1 mm. The resulting pseudo-observations are shown
in Figure 5.3. The data now resemble the desired observations in 5.1, but is still clearly
distorted by ties. In particular for the duration W , which appears in ”layers”.
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Figure 5.1: An illustration of ideal pseudo-observations.
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Figure 5.2: Unfiltered pseudo-observations for (I,W ) and (W,V ) from Særheim in summer.

5.2 Selection of Temperature Model
The goal of this section is to include a measure for temperature in the precipitation event
model. Ideally, this measure should be strongly correlated with the other event parameters,
in particular intensity, and also form i.i.d. events. In section 5.2.1, the i.i.d. assumption
of the current event model (or standard event model), is evaluated by hypothesis testing
of stationarity and multiple serial independence. Temperature appears to have a seasonal
trend, which is accounted for in Section 5.2.2 with a time series modelling of candidate
temperature parameters. Each candidate parameter is then included in the event model,
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Figure 5.3: Filtered pseudo-observations for (I,W ) and (W,V ) from Særheim in summer. V > 1
mm.

and tested for stationarity and serial independence, to check whether the full model is i.i.d.
In this section we will refer to the event model for the parameters I , W , V and D as the
standard event model, and temperature-event model when temperature is included.

5.2.1 Stationarity of the Events Model
In this section, we apply the tests from Section 3.7 to test the current event model for
stationarity and multiple serial independence. In order to verify that the full temperature
model is sufficiently i.i.d, the underlying model based on volume V , durationW , intensity
I = V/W and the dry period D must also satisfy these requirements. First we test for
stationarity in the multivariate distribution by applying the method of change point detec-
tion (3.48). This test is implemented in R-package npcp (Kojadinovic, 2017) and was
executed with the automation procedure described in Bücher & Kojadinovic (2016), and
the fast resampling scheme in Bücher et al. (2014). The resulting p-values are shown in
Table 5.1. At a significance level of α = 0.05, only the seasons winter and spring can
be considered stationary. Since the seasonal separation is done by dividing based on the
calendar year, and not weather specifically, a more hydrologically motivated separation
could potentially give a better separation of the different distributions.

Season p-Value
Winter 0.1843
Spring 0.0714
Summer 0.0065
Fall 0.0045

Table 5.1: Resulting p-values from a test of change point detection in multivariate stationarity of the
standard event model for all seasons.

The aim of this study is to model the underlying copula, so while the events are not
found to have stationarity in the multivariate distribution, we still apply the test (3.53),
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which emphasizes changes in the underlying copula given stationarity in the marginal
distribution. An implementation for this test is also available in npcp, and was conducted
similar to the previous test. Table 5.2 shows the resulting p-values. Here all the underlying
copulae are found to be stationary for all seasons at a significance level α = 0.05.

Season p-Value
Winter 0.3012
Spring 0.7697
Summer 0.1813
Fall 0.1234

Table 5.2: Resulting p-values from a test of change point detection multivariate stationarity in the
underlying copula of the standard event model for all seasons.

Finally, we apply the test of multiple serial independence, both globally (3.55) and
by the Möbius-decomposition (3.56). In Kojadinovic & Yan (2011), the authors found
that for a given dimension, the power of the test decreases as the embedding dimension
p increases, however, finding a good choice for p is still difficult. Computing the test
for large values of p is also costly, due to the many subsets generated from the Möbius
decomposition. Therefore, we compute the test for p = 14 and a maximum subset size
m = 3, and for p = 4 with no subset restrictions, and check whether the tests are in
accordance. The results are presented in Table 5.3, and the events are generally found
to be serially independent, with the exception of p-values from Fisher’s rule in summer.
At a significance level of α = 0.05, both test specifications give similar results, with the
exception of Tippett’s rule in summer, which indicates serial independence for p = 4, and
dependence for p = 14. The global test indicates independence, however.

Season p Global Fisher Tippett p Global Fisher Tippett
Winter 14 0.3781 0.5809 0.8487 4 0.5300 0.7298 0.8636
Spring 0.2223 0.4221 0.5829 0.4231 0.6289 0.6958
Summer 0.3102 0.0165 0.0005 0.0644 0.0315 0.2373
Fall 0.2023 0.2203 0.6269 0.5739 0.4740 0.6868

Table 5.3: Resulting p-values from a test of multiple serial independence in of the standard event
model for all seasons.

In summary, all tests are not passed for all seasons, only for winter and spring. These
tests are, however, more rigorous than the tests or discussions used in similar event mod-
elling attempts, such as Vandenberghe et al. (2010); De Michele & Salvadori (2003); Sal-
vadori & Michele (2007), which can be regarded as successful. For this study, regardless,
an important purpose of these tests is to judge whether the inclusion of the candidate
temperature parameters affect the stationarity and serial independence, and not the other
parameters.
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5.2.2 Time Series Modelling of Temperature
In this section, we find a time series model for the candidate temperature parameters mean
temperature T , mean dry temperature TD, maximum temperature TM , minimum temper-
ature Tm, maximum dry temperature TDM , minimum dry temperature TDM , temperature
difference T∆ and dry temperature difference TD∆, as introduced in chapter 2. Figure 5.4
shows the mean temperature of the events for each day of the year, and there is a clear
seasonal trend which has to be removed. This is done by applying the time series analysis
described in section 3.7.
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Figure 5.4: Mean temperature T of the events at Særheim for each day of the year.

The emphasis of this study is not primarily time series modelling, but precipitation
modelling by copula. Therefore, we attempt a set of methods, and choose the one that
removes trend and serial correlations best. A more advanced model is not straight forward,
since the events form an irregular time series. That is, the observations are not equally
spaced, but separated by varying time gaps. Keeping this in mind, the following model is
fitted to all temperature parameters

Y i =a+

K∑
k=1

[
αK,k sin(2πki/365) + βK,k cos(2πki/365)

]
+

M∑
m=1

[
αM,m sin(2πmi/24) + βM,m cos(2πmi/24)

]
+Ni,

where Ni is the ARIMA-model (3.66). The best fit is selected from minimal AIC in a
search with ARIMA parameter restriction (p ≤ 10, d ≤ 2, q ≤ 10) andK,M ≤ 5. Notice
that we have fitted a model with Fourier terms as external regressors, which possibly avoids
some issues that arise from the irregular time series. The ARIMA-model is intended to
primarily correct possible serial correlations. Since trend is described as a function of
day and hour, we avoid interpolation of an ARIMA-model. Furthermore, Fourier terms
are able to model complex seasonal pattern, which in this context is that temperature is a
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combination of both season and time of day. Note that the standard ARIMA-model Ni is
also included in the search, that is, without the Fourier-terms as external regressors. For
T, TD, TM , Tm, TDM and TDm the typical models are ARIMA( 2 ≤ p ≤ 4, d = 0, 1 ≤
q ≤ 2) and 0 ≤ K ≤ 5, 1 ≤ M ≤ 2, whereas the parameter T∆ results in the model
ARIMA(p = 5, d = 1, q = 0), and TD∆ gives ARIMA(p = 0, d = 1, q = 1). Note that
K = 0 denotes removal of the terms αK,k and βK,k. Figure 5.5 shows the residuals from
the ARIMA-model for mean temperature T . The residuals show no clear signs of trend,
but there are some outliers.
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Figure 5.5: Mean temperature T residuals from the ARIMA-model.

A quick test for goodness-of-fit of an ARIMA-model, is the Ljung-Box test described
in Section 3.7.4. We test the residuals for different maximum lags. T∆ is not found sig-
nificant for any maximum lag, Tm is significant up to a maximum lag of 10, whereas the
remaining parameters are significant up to a maximum lag of 14. Such Box tests are gen-
erally weaker than the test based on the sequential empirical copula process (Bücher et al.,
2014), and it is of greater interest to test for sufficient stationarity and serial independence
in the multivariate event model. Hence, we conduct all the tests in Section 5.2.1 with the
inclusion of each individual temperature parameter.

The p-values for the test of change point detection in multivariate stationarity are pre-
sented in Table 5.4. The seasons winter and spring are generally found to be stationary for
all parameters at a significance level of α = 0.05, whereas the events in summer and fall
are not.

The p-values from test for multivariate stationarity in the underlying copula are shown
in Table 5.5, and here all models are found significant at a level α = 0.05.

Table 5.6 shows p-values from the test of multiple serial independence following
Fisher’s combination rule. The parameters generally show serial independence for all
seasons, with the exception of summer where fewer models are found to be serially in-
dependent. Mean temperature T , max temperature TM and min temperature Tm are not
serially independent in summer.

The tests show similar results as before temperature was introduced. The minimum
dry temperature TDm is an exception, though. After inclusion in summer, the model is
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Season T TD TM Tm TDM TDm T∆ TD∆

Winter 0.380 0.090 0.330 0.449 0.239 0.087 0.268 0.334
Spring 0.091 0.063 0.083 0.164 0.220 0.051 0.074 0.317
Summer 0.004 0.003 0.010 0.016 0.003 0.002 0.009 0.026
Fall 0.006 0.001 0.009 0.014 0.010 0.002 0.001 0.011

Table 5.4: Resulting p-values from a test of multivariate stationarity for all seasons with the inclu-
sion of individual temperature parameters.

Season T TD TM Tm TDM TDm T∆ TD∆

Winter 0.204 0.377 0.367 0.221 0.383 0.401 0.426 0.073
Spring 0.942 0.656 0.746 0.960 0.489 0.628 0.755 0.534
Summer 0.615 0.174 0.582 0.075 0.123 0.039 0.521 0.337
Fall 0.305 0.251 0.367 0.425 0.361 0.158 0.175 0.215

Table 5.5: Resulting p-values from a test of multivariate stationarity in the underlying copula for all
seasons with the inclusion of individual temperature parameters.

no longer stationary in the underlying copula and serially independent. For the remaining
temperature parameters, the results are generally the same, so the suggested time series
model seems successful. The serial dependence and multiple serial dependence seem to
be more dependent on the seasonal separation of events, and not the ARIMA-model and
temperature parameter choice. As mentioned, a better seasonal separation may give a
better model. In Norway, for instance, the seasons may be separated based on thresholds
for mean daily temperature Dannevig (2019).

5.3 Regular Vine Construction
In this section we construct two vine copula models for the precipitation events with the
inclusion of temperature parameters. The choice of temperature parameters is based on
the strongest correlation with the standard event parameters. We build one larger 6 param-
eter model to demonstrate the versatility, and one intensity-duration-temperature model
which was the intended relationship for investigation in this study. Since the full censor-
ing method (3.44) showed the best results in the simulation study in Chapter 4.4.4, we
emphasize the results from this method here. The simple censoring method was also used
(3.40), and the results are given in Appendix B, along with some of the full censoring
results not presented here. In the full weather models, we emphasize different seasonal
structures for the vines, while in the smaller models, we look at seasonal differences in
dependence.

Table 5.7 shows the strongest correlations between the the event parameters, and the
candidate temperature parameters. The most strongly correlated overall are the temper-
ature difference parameters T∆ and TD∆. The intensity I is an exception, and has the
strongest correlation with a different temperature parameter for all seasons. The corre-
lation is weak, though, so this may be random. Intensity is most highly correlated with

61



Season p T TD TM Tm TDM TDm T∆ TD∆

Winter 14 0.061 0.050 0.124 0.197 0.473 0.019 0.468 0.619
Spring 0.694 0.455 0.871 0.612 0.972 0.282 0.947 0.773
Summer 0.020 0.058 0.032 0.023 0.146 0.050 0.113 0.220
Fall 0.415 0.093 0.509 0.080 0.196 0.024 0.733 0.832
Winter 4 0.143 0.047 0.148 0.544 0.443 0.018 0.602 0.468
Spring 0.234 0.326 0.494 0.304 0.698 0.235 0.971 0.963
Summer 0.029 0.144 0.042 0.034 0.201 0.070 0.217 0.115
Fall 0.724 0.556 0.641 0.522 0.534 0.509 0.865 0.650

Table 5.6: Resulting p-values from Fisher’s combination rule in a test of multiple serial indepen-
dence in the events for all seasons with the inclusion of individual temperature parameters.

temperature during winter, and the least during summer. Both temperature difference pa-
rameters are serially independent, and pass the test for serial independence in the under-
lying copula, thus, we choose these for the full weather model. For the smaller intensity-
duration-temperature models, we choose the most strongly correlated temperature param-
eter for each season.

Season Parameter Temperature Kendall’s τ
Winter V T∆ 0.337

W T∆ 0.433
I T 0.180
D TD∆ 0.373

Spring V T∆ 0.230
W T∆ 0.402
I Tm 0.101
D TD∆ 0.446

Summer V T∆ 0.278
W T∆ 0.427
I TD 0.058
D TD∆ 0.457

Fall V T∆ 0.341
W T∆ 0.474
I TM 0.139
D TD∆ 0.413

Table 5.7: Candidate temperature parameters that are most strongly correlated with the event pa-
rameters for each season.

Before constructing the vine models, we perform the tests in Section 5.2.1 on the
smaller event models. The larger models were too computationally demanding for these
tests. Note that, the smaller model has a different temperature parameter for each season,
which gives greater variability in the tests of stationarity and serial independence. At a
significance level of α = 0.05, the models fail stationarity in the multivariate distribution
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for summer, (I,W, TD), and multiple serial independence in winter, (I,W, T ). The vines
are selected following the sequential estimation procedure, described in Section 3.4, and
each bivariate copula is tested for goodness-of-fit, by the test described in Section 3.6.2.
The number of bootstraps are set to ten times the number of observations, as suggested in
Genest et al. (2006).

Some of the optimization issues described in Chapter 4.4.4 are still present here. In
particular, large upper optimization limits cause issues, even if the true value is small. As
an example, the estimation of a Clayton copula with θ = 2 could fail if θ = 25 was set as
upper limit, and converge with θ = 20 as upper limit. Therefore, the optimization limits
were determined such that computations ran smoothly. Note that even after the adjust-
ments, all parameter estimates are significantly smaller than the upper limits. Furthermore,
parametric bootstrapping requires some stability to obtain accurate p-values, and may still
fail after the adjustments. Hence, we monitored the stability of the computations.

For the full weather model, the seasons winter, spring and summer have the same vine
construction, while fall has a different one. Here we present the models for spring and
fall. Figure 5.6 shows the first vine tree for spring and Figure 5.7 for fall. In the vine for
spring, each node has two edges at max, and this is referred to as a D-vine. In fall the
correlation between T∆ and TD∆ is weaker, and not joined by an edge, which gives the
vine a different structure. However, the parameters are in general more strongly correlated
in fall.

Tables 5.8 and 5.9 show the corresponding copulae with their p-values from the goodness-
of-fit test. In fall all copulae in the trees T3, . . . , T5 are the independence copula. For
spring, there are a few significant copulae in these trees, but their correlations are weak.
Both seasons have similar copulae for the same parameter pairs, with the exception of
(W,T∆) and (D,TD∆). In spring, (W,T∆) is modelled by a Gaussian copula, while it is
modelled by a Frank copula in fall. Both are found significant. Furthermore, (D,TD∆) is
modelled by a Gaussian copula in spring, and a Gumbel copula in fall. The Gumbel copula
is found to be significant, whereas the Gaussian is not. Notice also that only one-parameter
copulae were selected here.

� � � �Δ ��Δ �

0.11 0.430.43 0.39 0.38

Figure 5.6: First tree in the vine for the full weather model in spring. Edges for significant copulae
show Kendall’s τ .

For the smaller models, summer and winter are presented. The vines are shown in Fig-
ures 5.8 and 5.9, and the corresponding copulae in Tables 5.10 and 5.11. Both vines have
same structure, and same copula families in the first tree. Intensity-duration is modelled
by a rotated Clayton copula, and intensity-temperature is modelled by Frank’s family. The
T2 copula is different, however. In winter, the copula CW,T |I is modelled by a rotated
Joe copula, whereas in summer, this pair is independent. It should be noted that the tem-
perature parameters are different, which makes a direct comparison less interesting. All
copulae in these models are found significant in goodness-of-fit testing.

Even if these seasons are modelled by the same families of copula, the structure is still
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Tree Copula Family θ δ p-value
T1 CV,I Frank 4.53 − 0.00

CW,V Gaussian 0.57 − 0.11
CT∆,W Gaussian 0.57 − 0.06
CTD∆,D Gaussian 0.62 − 0.02
CT∆,TD∆

Gumbel 1.12 − 0.92
T2 CT∆,D|TD∆

Gumbel 90° 1.06 − 0.90
CW,I|V Frank −32.51 − 0.00
CT∆,V |W Independence − − −
CTD∆,W |T∆

Independence − − −
T4 CV,D|W,TD∆,T∆

Frank −0.51 − 0.68
CTD∆,I|T∆,V,W Independence − − −

Table 5.8: Full censoring of the full weather model for spring. Rotated copulae are shown by the
following degree. θ denotes the first copula parameter, and δ the second. The remaining pairs are
modelled by the independence copula.
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Figure 5.7: First tree in the vine for the full weather model in fall. Edges for significant copulae
show Kendall’s τ .

different. Figures 5.10 and 5.11 show density plots of the fitted copulae for each season.
The relationship between intensity and duration is more strongly correlated in summer
than winter. In contrast, the relationship between temperature and intensity is stronger in
winter. Something to note is that in the current rotation, the 90° Clayton copula models
lower right tail dependence. The implication of this is that high intensity precipitation will
generally have short duration, and this effect increases with higher intensities. This finding
is similar to Birketvedt (2019). The Frank copula for intensity-temperature, however, is
not able to model tail dependence.

We also give a few general remarks. The pair (I, V ) is modelled by a Frank copula
for all seasons, see Appendix B.1 for details. In all seasons, it fails the goodness-of-
fit test. However, the pair (I,W ) is successfully modelled by a 90° Clayton copula for
all seasons. In Birketvedt (2019), the Clayton copula was selected for this relationship
in winter, but not found significant in goodness-of-fit testing. It seems that estimation and
inference procedures are improved by interval censored estimation and bootstrapping. The
pair (W,V ) is modelled by a Gaussian copula in spring and fall, and by a Gubmbel copula
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Tree Copula Family θ δ p-value
T1 CI,V Frank 4.34 − 0.00

CW,V Gaussian 0.69 − 0.01
CW,T∆ Frank 5.18 − 0.27
CD,TD∆

Gumbel 1.66 − 0.96
CD,W Independence − − −

T2 CI,W |V Gumbel 90° 12.08 − 0.01

Table 5.9: Full censoring of the full weather model for fall. Rotated copulae are shown by the
following degree. θ denotes the first copula parameter, and δ the second. The remaining pairs are
modelled by the independence copula.
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Figure 5.8: Vine for the intensity-duration-temperature model in winter. Edges for significant cop-
ulae show Kendall’s τ .

in winter and summer. The p-values for the Gumbel copula are, however, significantly
larger than for the Gaussian. There is also only one two-parameter copula selected, which
is the 180° BB8 copula for CW,I|V in winter.
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Tree Copula Family θ δ p-value
T1 CI,W Clayton 90° 0.26 − 0.99

CI,T Frank 1.67 − 0.11
T2 CW,T |I Joe 180° 1.12 − 0.90

Table 5.10: Full censoring of the small weather model for winter. Rotated copulae are shown by the
following degree. θ denotes the first copula parameter, and δ the second.
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Figure 5.9: Vine for the intensity-duration-temperature model in summer. Edges for significant
copulae show Kendall’s τ .

Tree Copula Family θ δ p-value
T1 CI,W Clayton 90° 0.42 − 0.82

CI,TD
Frank 0.52 − 0.1

T2 CW,TD|I Independence − − −

Table 5.11: Full censoring of the small weather model for summer. Rotated copulae are shown by
the following degree. θ denotes the first copula parameter, and δ the second.
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Figure 5.10: Density plots of the copulae in the intensity-duration-temperature model for winter.
Copula parameters are Clayton(θ = 0.26), Frank(θ = 1.67) and Joe(θ = 1.12). The margins are
standard normal.
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Figure 5.11: Density plots of the copulae in the intensity-duration-temperature model for summer.
Copula parameters are Clayton(θ = 0.42) and Frank(θ = 0.52). The margins are standard normal.
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Chapter 6
Conclusion

6.1 Concluding Remarks

In this thesis, we have presented a multivariate model for the joint behaviour of precipita-
tion and temperature. Existing models are mainly restricted to the bivariate case, and do
not account for temperature. Furthermore, ties are also commonly present in hydrological
data, but are often disregarded and rarely mentioned in the literature. In the model pre-
sented here we adapt interval censoring to common estimation and selection procedures of
regular vine copulae, to account for the estimation bias induced by ties. Such construction
are general in nature, and allow for joint modelling of multiple non-Gaussian stochastic
variables, such as precipitation event parameters. Commonly, these do not include tem-
perature. The events can, however, be considered a stretch from an irregular time series,
which makes adding another term non-trivial. Temperature has a clear trend, which we
have showed that can effectively be modelled by Fourier terms with ARIMA correction.
These advancements lead to a full precipitation-temperature model that accounts for esti-
mation biases commonly disregarded in the literature.

Two methods for estimating interval censored regular vines were proposed and tested
in a large scale simulation study. The first tree is estimated equally between the methods,
but they differ in the nested estimation of the marginal distributions, which is relevant
for sequential trees. The first method, denoted simple censoring, estimates the marginal
distributions by average ranks, and first considers ties when each bivariate copula is es-
timated. The limits for interval censoring are estimated from maximum and minimum
pseudo-observations of the average rank marginal estimates. In the second method, de-
noted full censoring, the marginal distributions are approximated by both maximum and
minimum ranks. In the first tree, the maximum rank observations will always be larger
than the minimum rank observations, but the nested evaluation applied in higher trees will
not always maintain these bounds. Hence, the censoring limits are selected as the maxi-
mum and minimum of the marginal estimates.

In the first tree, the methods show strong evidence of unbiasedness, but this does not
generally hold in sequential trees, in particular for strong correlations. Still, there was an
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improvement over other approaches, such as randomization and averaging. Ultimately,
the method denoted full censoring showed the best results, which was most apparent when
the key feature of the Clayton copula, the tail dependence, was censored. Some error
may, however, be attributed to the vine copulae modelling approach estimated sequentially,
which loses some asymptotic efficiency. Even for a sample size n = 5000, the untied vine
estimates do not consistently reproduce the true model. In combination with severely tied
data, the information loss is difficult to account for. In Haff (2012), a joint optimization
of all vine parameters showed improvements to the asymptotic performance, but in this
study, the optimization issues were too severe to draw the same conclusion.

The temperature and precipitation models of this study were, in part, limited by the
poor data quality. Furthermore, it was apparent that the dependence between temperature
and precipitation was weaker than expected in the selected region. Despite this, we have
demonstrated two conceptual interval censored weather models. The first is larger and con-
siders 6 weather parameters. Winter, spring and summer were modelled by the same vine
structure, while this was different for fall. The second model investigated the relationship
between intensity, duration and temperature for each season. Intensity and temperature
show stronger dependence in winter, whereas intensity and duration is stronger in sum-
mer. The model is conceptual and generally applicable, so similar steps can be taken to
model the dependence between temperature and precipitation in other regions.

6.2 Future Work
In regards to the precipitation events, a good start will be building on the model presented
here with data of higher quality, or in a region with stronger temperature dependence. The
model could then be applied to look for regional differences in dependence. Extreme com-
pound events are in short, events where each contributing factor in it self is not extreme,
but the jointly, they produce an extreme compound event. Copulae can be used to model
the contributing factors, and similar to Bevacqua et al. (2017), be used to quantify risk of
such events.

From a theoretical point of view, future work may include an investigation of the cen-
sored likelihood function. In particular the implications of ties in conditional distributions,
and whether these can be addressed with further modifications. Under interval censoring,
conditional ties are currently not explicitly expressed in the adjusted pseudo-likelihood
function. The weak result of the interval censored vines in later trees is in part suspected
to be a consequence of this. We showed, in Section 3.6.3, that ties in the conditional
distribution can affect the subsequent ranks. Hence, this might be an interesting starting
point.

From a more practical point of view, improvements to the optimization scheme could
yield better results. The interval censored vines are currently only implemented with nu-
merical approximations of the gradient and Hessian. This will make the joint optimization
of all vine parameters a more accurate and feasible option. At this time, the joint op-
timization of a four dimensional vine can take up to an hour, when the data is severely
tied.
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Bücher, A., Fermanian, J.-D., & Kojadinovic, I. (2019). Combining Cumulative Sum
Change-Point Detection Tests for Assessing the Stationarity of Univariate Time Se-
ries. Journal of Time Series Analysis, 40(1), 124-150. Retrieved from https://
onlinelibrary.wiley.com/doi/abs/10.1111/jtsa.12431 doi: 10
.1111/jtsa.12431
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Appendix A
Additional Simulations

A.1 Copula Selection
In order to verify that selection by AIC (3.11) is also efficient under interval censoring,
we conduct a similar experiment to Brechmann (2010). As noted in Brechmann (2010),
simulation studies for accuracy of full vine selection is difficult to construct. The vine
structure is typically selected based on strength of correlation, and not data characteristics,
hence, we may select a different vine than the one used for sampling. The selected copulae
to each edge may also be different for the different vine structures.

In this study, we also include the AICs for average and random estimation, to see if
interval censoring gives any significant benefits for selection. Here samples are collected
from the Clayton, Gumbel, Frank and Joe copulae, for different levels of dependence
τ ∈ {0.25, 0.5, 0.75} and sample size n ∈ {500, 1000}. We conduct two experiments,
one where ties are symmetrically binned with b = 15, and one where the tails are symmet-
rically rounded with the severity λ = 0.5. Each experiment is conducted over R = 1000
trials. We also include the p-value calculated from the goodness-of-fit test in Section 3.6.2.
Bootstraps are computationally costly, so p-values are calculated from only 100 bootstraps.
As a selection rule, computing more bootstraps would be quite demanding for large vines.
In Birketvedt (2019), inspired by Vandenberghe et al. (2010), we selected copulae by their
RMSE, given by

RMSEC =

√√√√ 1

n

n∑
i=1

(
Cθ(ui, vi)− Cn(ui, vi)

)2
, (A.1)

where Cθ is the fitted copula, so for comparison, the RMSEC is also included in the study.
For simplicity, the RMSEC was computed from average rank pseudo-observations, and
the estimated copula in each method. The selection accuracy is shown in Figures A.1,
A.2, A.3 and A.4. Selection by interval censored AIC is shown to be effective in this case
also, but only slightly better than the AIC estimated from average ranks. The improvement
occurs for τ = 0.25. It should be noted that differences may become more apparent if more
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copulae were considered. The RMSEC , however, shows to be a remarkably poor selection
rule for copulae with ties.
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Figure A.1: Overview the amount of correct selection for each selection rule in the presence of ties.
The ties are generated by symmetric binning with b = 15.
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Figure A.2: Overview the amount of correct selection for each selection rule in the presence of ties.
The ties are generated by symmetric binning with b = 15.
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Figure A.3: Overview the amount of correct selection for each selection rule in the presence of ties.
The ties are generated by symmetric tail rounding with severity λ = 0.5.
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Figure A.4: Overview the amount of correct selection for each selection rule in the presence of ties.
The ties are generated by symmetric tail rounding with severity λ = 0.5.
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A.2 Weaker Correlation Vine
In this section we conduct a simulation study on the same vine as in Section 4.4.3, but with
weaker correlations in T2 and T3, shown in Figure A.5. The estimation error is greatest
when strong correlations are censored, so this experiment is intended to check whether the
source of error in T2, T3 is a consequence of censored strong correlations in T1 or strong
correlations in T2 and T3. That is, will the estimations perform better when correlations are
weaker in T2 and T3? We let the correlation be specified by Kendall’s τ indexed by τ1 ∈
{0.3, 0.4, . . . 0.9} for T1, τ2 ∈ {0.3, 0.34, . . . , 0.56} for T2 and τ3 ∈ {0.2, 0.23, . . . , 37}
for T3. The experiments were conducted with symmetric binning of all margins with
b = 15 bins, see Section 4.2 for the binning procedure. Figures A.6, A.7 and A.8 show
the distributions of the estimation error θ − θ̂. Note that as before, the correlations in T2

and T3 are computed from the base correlation in T1. They increase jointly, i.e. τ1 = 0.3
in T1 corresponds to τ2 = 0.3 in T2 and τ3 = 0.2 in T3, and τ1 = 0.4 in T1 would give
τ2 = 0.34 in T2 and τ3 = 0.23 in T3. The correlations are still underestimated, and it
appears that ties in T1 are the primary driver for the errors.
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Figure A.5: Overview of the vine copula used to generate samples for the additional estimation
experiment on symmetric binning. The correlations, τi, are used to compute the copula parameter θ
for each bivariate copula. Only parameter estimates are computed for the given structure. Here the
correlations are weaker in T2 and T3.
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Figure A.6: Boxplot of the estimation error θ− θ̂ in the symmetrically binned vine copula of Figure
A.5. All four margins are binned with b = 15. The estimations are based on n = 5000 samples, and
the vine parameters θ are computed from an increasing dependence τ . The correlations in T2 and
T3 are weaker than in the experiments from Section 4.4.
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Figure A.7: Boxplot of the estimation error θ− θ̂ in the symmetrically binned vine copula of Figure
A.5. All four margins are binned with b = 15. The estimations are based on n = 1000 samples, and
the vine parameters θ are computed from an increasing dependence τ . The correlations in T2 and
T3 are weaker than in the experiments from Section 4.4.
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Figure A.8: Boxplot of the estimation error θ− θ̂ in the symmetrically binned vine copula of Figure
A.5. All four margins are binned with b = 15. The estimations are based on n = 500 samples, and
the vine parameters θ are computed from an increasing dependence τ . The correlations in T2 and
T3 are weaker than in the experiments from Section 4.4.
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A.3 Additional Simulation Results
Here the remaining results from Chapter 4.4.4 are presented

A.4 Bivariate Models
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Figure A.9: RMSE in the symmetrically binned Gaussian copula. Each margin is tied in b = 15
bins, for a given Kendall’s τ and different sample sizes n.
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Figure A.10: RMSE in the asymmetrically binned Gaussian copula. The first margin is tied in
b1 = 15 bins and the second in b2 = 30 bins, for a given Kendall’s τ and different sample sizes n.
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Figure A.11: Boxplot of the estimation error θ − θ̂ in the Joe copula with a percentage λ of ties in
the lower tails generated symmetrically. In each margin, the percentage λ of the smallest samples
are rounded to the first decimal, for Kendall’s τ = 0.25 with increasing severity.

Joe Copula

0.0930

0.0931

0.0932

0.0933

0.0934

0.0935

0.1 0.2 0.3 0.4 0.5

l

R
M

S
E

n = 500

0.0664

0.0665

0.0666

0.1 0.2 0.3 0.4 0.5

l

R
M

S
E

n = 1000

0.02758

0.02760

0.02762

0.02764

0.02766

0.1 0.2 0.3 0.4 0.5

l

R
M

S
E

n = 5000

Method

Average

Random

Censor

Figure A.12: RMSE in the Joe copula with a percentage λ of ties in the lower tails generated
symmetrically. In each margin, the percentage λ of the smallest samples are rounded to the first
decimal, for Kendall’s τ = 0.25 with increasing severity.
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Figure A.13: Boxplot of the estimation error θ − θ̂ in the Joe copula with a percentage λ of ties in
the lower tails generated asymmetrically. The percentage λ of the smallest samples are rounded to
the first decimal in the first margin, and to the second decimal in the second margin, for Kendall’s
τ = 0.25 with increasing severity.
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Figure A.14: RMSE in the Joe copula with a percentage λ of ties in the lower tails generated
asymmetrically. The percentage λ of the smallest samples are rounded to the first decimal in the first
margin, and to the second decimal in the second margin, for Kendall’s τ = 0.25 with increasing
severity.
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Figure A.15: Boxplot of the estimation error θ − θ̂ in the Joe copula with a percentage λ of ties in
the lower tails generated asymmetrically. The percentage λ of the smallest samples are rounded to
the first decimal in the first margin, and to the second decimal in the second margin, for Kendall’s
τ = 0.75 with increasing severity.
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Figure A.16: RMSE in the Joe copula with a percentage λ of ties in the lower tails generated
asymmetrically. The percentage λ of the smallest samples are rounded to the first decimal in the first
margin, and to the second decimal in the second margin, for Kendall’s τ = 0.75 with increasing
severity.
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Figure A.17: Boxplot of the estimation error θ− θ̂ in the Clayton copula with a percentage λ of ties
in the lower tails generated asymmetrically. The percentage λ of the smallest samples are rounded
to the first decimal in the first margin, and to the second decimal in the second margin, for Kendall’s
τ = 0.25 with increasing severity.
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Figure A.18: RMSE in the Clayton copula with a percentage λ of ties in the lower tails generated
asymmetrically. The percentage λ of the smallest samples are rounded to the first decimal in the first
margin, and to the second decimal in the second margin, for Kendall’s τ = 0.25 with increasing
severity.
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Figure A.19: Boxplot of the estimation error θ− θ̂ in the Clayton copula with a percentage λ of ties
in the lower tails generated symmetrically. In each margin, the percentage λ of the smallest samples
are rounded to the first decimal, for Kendall’s τ = 0.75 with increasing severity.
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Figure A.20: RMSE in the Clayton copula with a percentage λ of ties in the lower tails generated
asymmetrically. The percentage λ of the smallest samples are rounded to the first decimal in the first
margin, and to the second decimal in the second margin, for Kendall’s τ = 0.75 with increasing
severity.
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A.5 Vine Models
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Figure A.21: Boxplot of the estimation error θ − θ̂ in the symmetrically binned vine copula of
Figure 4.12. All four margins are binned with b = 15. The estimations are based on n = 1000
samples, and the vine parameters θ are computed from an increasing dependence τ .
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Figure A.22: Boxplot of the estimation error θ−θ̂ in the symmetrically binned vine copula of Figure
4.12. All four margins are binned with b = 15. The estimations are based on n = 500 samples, and
the vine parameters θ are computed from an increasing dependence τ .
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Figure A.23: Boxplot of the estimation error θ − θ̂ in the asymmetrically binned vine copula of
Figure 4.12. The first margin is not tied, the second and third margins are binned with b2,3 = 15,
and the fourth with b4 = 30. The estimations are based on n = 1000 samples, and the vine
parameters θ are computed from an increasing dependence τ .
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Figure A.24: Boxplot of the estimation error θ − θ̂ in the asymmetrically binned vine copula of
Figure 4.12. The first margin is not tied, the second and third margins are binned with b2,3 = 15,
and the fourth with b4 = 30. The estimations are based on n = 500 samples, and the vine parameters
θ are computed from an increasing dependence τ .
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Figure A.25: Boxplot of the estimation error θ − θ̂ in the vine copula 4.12 with ties generated
symmetrically in the lower tails. In each margin, the percentage λ of the smallest samples are
rounded to the first decimal with increasing severity. The estimations are based on n = 1000
samples, and the vine parameters θ are computed from a base dependence τ = 0.25.
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Figure A.26: Boxplot of the estimation error θ − θ̂ in the vine copula 4.12 with ties generated
symmetrically in the lower tails. In each margin, the percentage λ of the smallest samples are
rounded to the first decimal with increasing severity. The estimations are based on n = 500 samples,
and the vine parameters θ are computed from a base dependence τ = 0.25.

96



-0.4

0.0

0.4

0.1 0.2 0.3 0.4 0.5

l

E
rr

o
r

T1 Frank

-0.10

-0.05

0.00

0.05

0.1 0.2 0.3 0.4 0.5

l

E
rr

o
r

T1 Gumbel

-0.2

-0.1

0.0

0.1

0.2

0.1 0.2 0.3 0.4 0.5

l

E
rr

o
r

T1 Clayton

-0.2

-0.1

0.0

0.1

0.1 0.2 0.3 0.4 0.5

l

E
rr

o
r

T2 Clayton

-0.2

-0.1

0.0

0.1

0.2

0.1 0.2 0.3 0.4 0.5

l

E
rr

o
r

T2 Joe

-0.10

-0.05

0.00

0.05

0.10

0.1 0.2 0.3 0.4 0.5

l

E
rr

o
r

T3 Gaussian

Method: Reference Average Random Censor CensorFull

Figure A.27: Boxplot of the estimation error θ − θ̂ in the vine copula 4.12 with ties generated
asymmetrically in the lower tails. The percentage λ of the smallest samples are rounded to the
first decimal place in the second and third margin, and to the second decimal place in the fourth
margin. The first margin is not rounded. Estimations are based on n = 1000 samples, and the vine
parameters θ are computed from a base dependence τ = 0.25.
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Figure A.28: Boxplot of the estimation error θ − θ̂ in the vine copula 4.12 with ties generated
asymmetrically in the lower tails. The percentage λ of the smallest samples are rounded to the first
decimal place in the second and third margin, and to the second decimal place in the fourth margin.
The first margin is not rounded. Estimations are based on n = 500 samples, and the vine parameters
θ are computed from a base dependence τ = 0.25.
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Figure A.29: Boxplot of the estimation error θ − θ̂ in the vine copula 4.12 with ties generated
symmetrically in the lower tails. In each margin, the percentage λ of the smallest samples are
rounded to the first decimal with increasing severity. The estimations are based on n = 1000
samples, and the vine parameters θ are computed from a base dependence τ = 0.75.
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Figure A.30: Boxplot of the estimation error θ − θ̂ in the vine copula 4.12 with ties generated
symmetrically in the lower tails. In each margin, the percentage λ of the smallest samples are
rounded to the first decimal with increasing severity. The estimations are based on n = 500 samples,
and the vine parameters θ are computed from a base dependence τ = 0.75.
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Figure A.31: Boxplot of the estimation error θ − θ̂ in the vine copula 4.12 with ties generated
asymmetrically in the lower tails. The percentage λ of the smallest samples are rounded to the
first decimal place in the second and third margin, and to the second decimal place in the fourth
margin. The first margin is not rounded. Estimations are based on n = 1000 samples, and the vine
parameters θ are computed from a base dependence τ = 0.75.
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Figure A.32: Boxplot of the estimation error θ − θ̂ in the vine copula 4.12 with ties generated
asymmetrically in the lower tails. The percentage λ of the smallest samples are rounded to the first
decimal place in the second and third margin, and to the second decimal place in the fourth margin.
The first margin is not rounded. Estimations are based on n = 500 samples, and the vine parameters
θ are computed from a base dependence τ = 0.75.
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Figure A.33: Boxplot of the estimation error θ − θ̂ in the symmetrically binned vine copula of
Figure 4.19. All four margins are binned with b = 15. The estimations are based on n = 1000
samples, and the vine parameters θ are computed from an increasing dependence τ . The estimation
is first performed sequentially, and then jointly over all vine parameters.
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Figure A.34: Boxplot of the estimation error θ−θ̂ in the symmetrically binned vine copula of Figure
4.19. All four margins are binned with b = 15. The estimations are based on n = 500 samples,
and the vine parameters θ are computed from an increasing dependence τ . The estimation is first
performed sequentially, and then jointly over all vine parameters.
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Appendix B
Additional Copula Models for
Precipitation and Temperature Data

Here we present the remaining models from Chapter 4.4.4. These are the full weather
model (I,W, V,D, T∆, TD∆) and the smaller intensity-duration-temperature model. Also
provided is the selected copula for (I,W ) in fall, since this relationship was not explicitly
modelled in the vine, see Table B.1.

Copula Family θ δ p-value
CI,W Clayton 90° 0.273 − 0.98

Table B.1: Selected copula for (I,W ) in fall. Provided as an addition, since this relationship was
not explicitly modelled in the vine.
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B.1 Full Censoring

Tree Copula Family θ δ p-value
T1 CV,I Frank 4.44 − 0.00

CW,V Gumbel 1.91 − 0.62
CT∆,W Gaussian 0.61 − 0.05
CTD∆,D Gumbel 1.54 − 1.00
CTD∆,T∆ Gaussian 0.1 − 0.71

T2 CW,I|V Frank −36.86 − 0.00
CT∆,V |W BB8 180° 1.20 0.89 0.58
CTD∆,W |T∆

Independence − − −
CT∆,D|TD∆

Independence − − −
T3 CT∆,I|W,V Clayton 180° 0.1 − 0.53

CTD∆,V |T∆,W Independence − − −
CD,W |TD∆,T∆

Frank −0.47 − 0.10

Table B.2: Full censoring of the full weather model for winter. Rotated copulae are shown by the
following degree. θ denotes the first copula parameter, and δ the second. The remaining pairs are
modelled by the independence copula.

Tree Copula Family θ δ p-value
T1 CV,I Frank 4.53 − 0.00

CW,V Gaussian 0.57 − 0.11
CT∆,W Gaussian 0.57 − 0.06
CTD∆,D Gaussian 0.62 − 0.02
CT∆,TD∆

Gumbel 1.12 − 0.92
T2 CT∆,D|TD∆

Gumbel 90° 1.06 − 0.90
CW,I|V Frank −32.93 − 0.00
CT∆,V |W Independence − − −
CTD∆,W |T∆

Independence − − −
T4 CV,D|W,TD∆,T∆

Frank −0.51 − 0.68
CTD∆,I|T∆,V,W Independence − − −

Table B.3: Full censoring of the full weather model for spring. Rotated copulae are shown by the
following degree. θ denotes the first copula parameter, and δ the second. The remaining pairs are
modelled by the independence copula.
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Tree Copula Family θ δ p-value
T1 CTD∆,D Gaussian 0.64 − 0.00

CV,I Frank 4.81 − 0.00
CW,V Gumbel 1.63 − 0.99
CT∆,W Gaussian 0.6 − 0.08
CT∆,TD∆

Clayton 180° 0.24 − 0.71
T2 CT∆,D|TD∆

Gaussian −0.10 − 0.38
CW,I|V Frank −39.60 − 0.00
CT∆,V |W Gaussian 0.10 − 0.64
CTD∆,W |T∆

Frank −1.09 − 0.34
T4 CV,D|W,TD∆,T∆

Clayton 0.1 − 0.94
CTD∆,I|T∆,V,W Independence − − −

Table B.4: Full censoring of the full weather model for summer. Rotated copulae are shown by the
following degree. θ denotes the first copula parameter, and δ the second. The remaining pairs are
modelled by the independence copula.

Tree Copula Family θ δ p-value
T1 CI,V Frank 4.34 − 0.00

CW,V Gaussian 0.69 − 0.01
CW,T∆

Frank 5.18 − 0.27
CD,TD∆

Gumbel 1.66 − 0.96
CD,W Independence − − −

T2 CI,W |V Gumbel 90° 12.08 − 0.01

Table B.5: Full censoring of the full weather model for fall. Rotated copulae are shown by the
following degree. θ denotes the first copula parameter, and δ the second. The remaining pairs are
modelled by the independence copula.

Tree Copula Family θ δ p-value
T1 CI,W Clayton 90° 0.26 − 0.99

CI,T Frank 1.67 − 0.11
T2 CW,T |I Joe 180° 1.12 − 0.90

Table B.6: Full censoring of the small weather model for winter. Rotated copulae are shown by the
following degree. θ denotes the first copula parameter, and δ the second.

Tree Copula Family θ δ p-value
T1 CW,Tm

Gaussian −0.29 − 0.29
CI,W Clayton 90° 0.45 − 0.67

T2 CI,Tm|W Gumbel 180° 1.08 − 1.00

Table B.7: Full censoring of the small weather model for spring. Rotated copulae are shown by the
following degree. θ denotes the first copula parameter, and δ the second.
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Tree Copula Family θ δ p-value
T1 CI,W Clayton 90° 0.42 − 0.82

CI,TD
Frank 0.52 − 0.1

T2 CW,TD|I Independence − − −

Table B.8: Full censoring of the small weather model for summer. Rotated copulae are shown by
the following degree. θ denotes the first copula parameter, and δ the second.

Tree Copula Family θ δ p-value
T1 CTM ,W Frank 1.47 − 0.02

CTM ,I Gumbel 1.15 − 0.98
T2 CI,W |TM

Clayton 270° 0.36 − 0.00

Table B.9: Full censoring of the small weather model for fall. Rotated copulae are shown by the
following degree. θ denotes the first copula parameter, and δ the second.
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B.2 Simple Censoring

Tree Copula Family θ δ p-value
T1 CI,V Frank 4.44 − 0.00

CW,V Gumbel 1.91 − 0.29
CT∆,W Gaussian 0.61 − 0.06
CTD∆,D Gumbel 1.54 − 0.02
CT∆,TD∆

Gaussian 0.1 − 0.71
T2 CI,W |V Frank −40 − 0.00

CT∆,V |W Clayton 0.10 − 0.50
CTD∆,W |T∆

Independence − − −
CT∆,D|TD∆

Independence − − −
T3 CT∆,I|W,V Frank 0.41 − 0.78

CTD∆,V |T∆,W Independence − − −
CD,W |TD∆,T∆

Frank −0.47 − 0.15

Table B.10: Simple censoring of the full weather model for winter. Rotated copulae are shown by
the following degree. θ denotes the first copula parameter, and δ the second. The remaining pairs
are modelled by the independence copula.

Tree Copula Family θ δ p-value
T1 CI,V Frank 4.53 − 0.00

CW,V Gaussian 0.57 − 0.10
CT∆,W Gaussian 0.57 − 0.06
CTD∆,D Gaussian 0.62 − 0.01
CT∆,TD∆

Gumbel 1.12 − 0.92
T2 CI,W |V Frank −35.61 − 0.00

CT∆,V |W Independence − − −
CTD∆,W |T∆

Independence − − −
CT∆,D|TD∆

Joe 90° 1.09 − 0.96
T4 CV,D|W,TD∆,T∆

Gumbel 1.05 − 0.49
CTD∆,I|T∆,V,W Independence − − −

Table B.11: Simple censoring of the full weather model for spring. Rotated copulae are shown by
the following degree. θ denotes the first copula parameter, and δ the second. The remaining pairs
are modelled by the independence copula.
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Tree Copula Family θ δ p-value
T1 CI,V Frank 4.81 − 0.00

CW,V Gumbel 1.63 − 0.06
CT∆,W Gaussian 0.6 − 0.08
CTD∆,D Gaussian 0.64 − 0.00
CT∆,TD∆

Clayton 180° 0.24 − 0.72
T2 CI,W |V Frank −40 − 0.00

CT∆,V |W Gaussian 0.10 − 0.61
CTD∆,W |T∆

Frank −1.09 − 0.30
CT∆,D|TD∆

Gaussian −0.10 − 0.62
T4 CV,D|W,TD∆,T∆

Clayton 0.09 − 0.70
CTD∆,I|T∆,V,W Independence − − −

Table B.12: Simple censoring of the full weather model for summer. Rotated copulae are shown by
the following degree. θ denotes the first copula parameter, and δ the second. The remaining pairs
are modelled by the independence copula.

Tree Copula Family θ δ p-value
T1 CI,V Frank 4.34 − 0.00

CW,V Gaussian 0.69 − 0.01
CW,T∆

Frank 5.18 − 0.27
CD,TD∆

Gumbel 1.66 − 0.03
CD,W Independence − − −

T2 CI,W |V Gumbel 90° 11.84 − 0.01

Table B.13: Simple censoring of the full weather model for fall. Rotated copulae are shown by the
following degree. θ denotes the first copula parameter, and δ the second. The remaining pairs are
modelled by the independence copula.

Tree Copula Family θ δ p-value
T1 CI,T Frank 1.67 − 0.116

CI,W Clayton 90° 0.26 − 0.99
T2 CW,T |I Joe 180° 1.10 − 0.28

Table B.14: Simple censoring of the small weather model for winter. Rotated copulae are shown by
the following degree. θ denotes the first copula parameter, and δ the second.

Tree Copula Family θ δ p-value
T1 CW,Tm

Gaussian −0.29 − 0.29
CI,W Clayton 90° 0.45 − 0.67

T2 CI,Tm|W Gumbel 180° 1.07 − 0.88

Table B.15: Simple censoring of the small weather model for spring. Rotated copulae are shown by
the following degree. θ denotes the first copula parameter, and δ the second.
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Tree Copula Family θ δ p-value
T1 CI,W Clayton 90° 0.42 − 0.82

CI,TD
Frank 0.52 − 0.1

T2 CW,TD|I Independence − − −

Table B.16: Simple censoring of the small weather model for summer. Rotated copulae are shown
by the following degree. θ denotes the first copula parameter, and δ the second.

Tree Copula Family θ δ p-value
T1 CW,TM

Frank 1.47 − 0.04
CI,TM

Gumbel 1.15 − 0.98
T2 CW,I|TM

Clayton 270° 0.35 − 0.00

Table B.17: Simple censoring of the small weather model for fall. Rotated copulae are shown by
the following degree. θ denotes the first copula parameter, and δ the second.
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Appendix C
Code

In this section we present some of the R-code used for the analysis. The implementa-
tion follows a similar structure to VineCopula Schepsmeier et al. (2018). The code
is written with the intention to be used for this analysis, not to be generally applicable
to a wider audience. If the regular vine construction were to be implemented again, the
spanning trees would likely be implemented from scratch, since the igraph library was
a bit hard to use for this purpose. Note that the code provided is mainly the fully censored
regular vine construction, which is an excerpt of the full implementation. Code for the
simulation study, copula expression etc. can be found in a repository on GitHub under
JohanBirk/interval censored regular vines.

C.1 Fully Interval Censored Regular Vine Construction

1 library(tidyverse)
2 library(magrittr)
3 library(rlist)
4 library(igraph)
5 library(VineCopula)
6 library(copula)
7 library(doParallel)
8 library(foreach)
9 source(file = ’censor_est.R’, local = TRUE)

10 source(file = ’copula_cdfs.R’, local = TRUE)
11 source(file = "censor_gof_parallel.R")
12

13 log_lik_censor.intern <- function(u_upper, u_lower, v_upper, v_lower, cop, check.pars
){

14 cop_fun <- cop$cop_fun
15 cop_dens <- cop$cop_dens
16 cop_du <- cop$cop_du
17 cop_dv <- cop$cop_dv
18 theta <- cop$theta
19 delta <- cop$delta
20 loglik <- 0
21

22 # Observation not tied in either margin
23 places1 <- ((u_lower == u_upper) & (v_lower == v_upper))
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24 loglik <- sum(log(
25 cop_dens(u = u_upper[places1],v = v_upper[places1], theta, delta, check.pars =

check.pars)
26 ))
27

28 # l smaller in both
29 places2 <- ((u_lower < u_upper) & (v_lower < v_upper))
30 loglik <- loglik + sum(log(
31 cop_fun(u = u_upper[places2], v = v_upper[places2], theta, delta, check.pars =

check.pars) -
32 cop_fun(u = u_upper[places2], v = v_lower[places2], theta, delta, check.pars =

check.pars) -
33 cop_fun(u = u_lower[places2], v = v_upper[places2], theta, delta, check.pars =

check.pars) +
34 cop_fun(u = u_lower[places2], v = v_lower[places2], theta, delta, check.pars =

check.pars)
35 ))
36

37 # u_lower smaller, v not tied
38 places3 <- ((u_lower < u_upper) & (v_lower == v_upper))
39 loglik <- loglik + sum(log(
40 cop_dv(u = u_upper[places3], v = v_upper[places3], theta, delta, check.pars =

check.pars) -
41 cop_dv(u = u_lower[places3],v = v_upper[places3], theta, delta, check.pars =

check.pars)
42 ))
43

44 # v_lower smaller, u not tied
45 places4 <- ((u_lower == u_upper) & (v_lower < v_upper))
46 loglik <- loglik + sum(log(
47 cop_du(u = u_upper[places4], v = v_upper[places4], theta, delta, check.pars =

check.pars) -
48 cop_du(u = u_upper[places4], v = v_lower[places4], theta, delta, check.pars =

check.pars)
49 ))
50 return(loglik)
51 }
52

53

54 censor_est.full <- function(u_upper, u_lower, v_upper, v_lower, cop_name, check.pars
= FALSE){

55 ## This function receives rotated data, and estimates the copula. Intended for use
with fully censored R-vine.

56 cop <- get_cop(cop_name)
57 ## When conditional data are computed, the data computed from max rank estimated

marginals are not always
58 ## larger than when computed by min rank estimated marginals.
59 u_up <- pmax(u_upper, u_lower)
60 u_lo <- pmin(u_upper, u_lower)
61 v_up <- pmax(v_upper, v_lower)
62 v_lo <- pmin(v_upper, v_lower)
63

64 if(cop$n.param == 1){
65 ll <- function(theta){
66 cop$theta <- theta
67 return(log_lik_censor.intern(u_upper = u_up,u_lower = u_lo,
68 v_upper = v_up, v_lower = v_lo, cop = cop, check.

pars = check.pars))
69 }
70 optimlist <- list()
71 objectives <- c()
72 for(i in 1:length(cop$optim.limits)){
73 cop$theta <- cop$optim.limits[[i]]$start
74 optimlist %<>% rlist::list.append(optimize(f = ll, maximum = TRUE,
75 interval = c(cop$optim.limits[[i]]$

low,
76 cop$optim.limits[[i]]$

up)))
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77 objectives %<>% c(optimlist[[i]]$objective)
78 }
79 if(sum(is.na(objectives)) == length(objectives)){
80 warning("All NA produced by optimize. Narrowing the parameter search.")
81 ## Using inverse kendall to find better parameters
82

83 optimlist <- list()
84 objectives <- c()
85 lim_adjust <- 3
86 inv_tau <- VineCopula::BiCopTau2Par(family = cop$fam, cor(u_lower, v_lower,

method = "kendall"))
87 if(cop$fam %in% c(3,4,6)){
88 inv_tau <- abs(inv_tau)
89 }
90 for(i in 1:length(cop$optim.limits)){
91 cop$theta <- cop$optim.limits[[i]]$start
92 optimlist %<>% rlist::list.append(optimize(f = ll, maximum = TRUE,
93 interval = c(max(cop$optim.limits

[[i]]$low, inv_tau - lim_
adjust),

94 min(cop$optim.limits
[[i]]$up, inv_
tau + lim_adjust
))))

95 objectives %<>% c(optimlist[[i]]$objective)
96 }
97 if(sum(is.na(objectives)) == length(objectives)){
98 stop("All NA produced by optimize after narrowed search.")
99 }else{

100 cop$theta <- optimlist[[which.max(objectives)]]$maximum
101 cop$log.lik <- optimlist[[which.max(objectives)]]$objective
102 cop$AIC <- 2*cop$n.param - 2*optimlist[[which.max(objectives)]]$objective
103 }
104 }else{
105 cop$theta <- optimlist[[which.max(objectives)]]$maximum
106 cop$log.lik <- optimlist[[which.max(objectives)]]$objective
107 cop$AIC <- 2*cop$n.param - 2*optimlist[[which.max(objectives)]]$objective
108 }
109 return(cop)
110 }else{
111 cop$theta <- cop$start.value[1]
112 cop$delta <- cop$start.value[2]
113 parlower <- cop$optim.lower
114 parupper <- cop$optim.upper
115

116 ll <- function(par){
117 cop$theta <- par[1]
118 cop$delta <- par[2]
119 return(log_lik_censor.intern(u_upper = u_up,u_lower = u_lo,
120 v_upper = v_up, v_lower = v_lo,cop = cop, check.

pars = check.pars))
121 }
122 optimout <- optim(par = c(cop$theta, cop$delta), fn = ll,
123 method = "L-BFGS-B",
124 lower = parlower, upper = parupper,
125 control = list(fnscale = -1, maxit = 500))
126 cop$theta <- optimout$par[1]
127 cop$delta <- optimout$par[2]
128 cop$log.lik <- optimout$value
129 cop$AIC <- 2*cop$n.param - 2*optimout$value
130 return(cop)
131 }
132 }
133

134

135 censor_copula_select.full <- function(u_upper, u_lower, v_upper, v_lower, indeptest =
FALSE, level = 0.05,
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136 include_tawn = TRUE, include_amh = TRUE,
include_t = TRUE){

137 tau <- cor(u_upper, v_upper, method = "kendall")
138 N <- length(u_upper)
139 if(indeptest){
140 f <- sqrt((9 * N * (N - 1))/(2 * (2 * N + 5))) * abs(tau)
141 p.value = 2 * (1 - pnorm(f))
142 if(p.value>level){
143 return(get_cop("Independence"))
144 }
145 }
146

147 copula_estimates <- list()
148 copula_aics <- c()
149 ## Radially symmetric copulas
150 copulas <- c("Frank", "normal", "t")
151 if(!include_t){
152 copulas <- copulas[-3]
153 }
154 for(cop_name in copulas){
155 fitted_copula <- try(censor_est.full(u_upper, u_lower, v_upper, v_lower, cop_name

))
156 if(class(fitted_copula) == "try-error"){
157 print(cop_name)
158 copula_estimates %<>% rlist::list.append(get_cop(cop_name))
159 copula_aics %<>% c(Inf)
160 }else{
161 fitted_copula$rotation <- 1
162 copula_estimates %<>% rlist::list.append(fitted_copula)
163 copula_aics %<>% c(fitted_copula$AIC)
164 }
165 }
166 ## 0 and 180 degree rotations
167 if(tau>0){
168 copulas <- c("AMH", "Clayton", "Gumbel", "Joe",
169 "BB1", "BB6", "BB7", "BB8", "Tawn", "Tawn2")
170 if((tau>=1/3)| (!include_amh)){
171 copulas <- copulas[-1]
172 }
173 if(!include_tawn){
174 copulas <- copulas[!copulas %in% c("Tawn", "Tawn2")]
175 }
176 }else{
177 copulas <- c("AMH", "Clayton")
178 if((tau<=(5 - 8/log(2)) / 3)| (!include_amh)){
179 copulas <- copulas[-1]
180 }
181 }
182

183 for(cop_name in copulas){
184 for(rot in c(1,3)){
185 if(rot == 1){
186 ## no rotation
187 fitted_copula <- try(censor_est.full(u_upper = u_upper, u_lower = u_lower, v_

upper = v_upper, v_lower = v_lower, cop_name))
188 }else if(rot == 3){
189 ## 180 degrees 1 - v, 1 - u
190 fitted_copula <- try(censor_est.full(u_upper = 1 - u_lower, u_lower = 1 - u_

upper, v_upper = 1 - v_lower, v_lower = 1 - v_upper, cop_name))
191 }
192 if(class(fitted_copula) == "try-error"){
193 copula_estimates %<>% rlist::list.append(get_cop(cop_name))
194 copula_aics %<>% c(Inf)
195 }else{
196 fitted_copula$rotation <- rot
197 copula_estimates %<>% rlist::list.append(fitted_copula)
198 copula_aics %<>% c(fitted_copula$AIC)
199 }
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200 }
201 }
202 ## 90 and 270 degree rotations
203 if(tau<0){
204 copulas <- c("AMH", "Clayton", "Gumbel", "Joe",
205 "BB1", "BB6", "BB7", "BB8", "Tawn", "Tawn2")
206 if((tau<=-1/3)| (!include_amh)){
207 copulas <- copulas[-1]
208 }
209 if(!include_tawn){
210 copulas <- copulas[!copulas %in% c("Tawn", "Tawn2")]
211 }
212 }else{
213 copulas <- c("AMH", "Clayton")
214 if((tau>=-(5 - 8/log(2)) / 3) | (!include_amh)){
215 copulas <- copulas[-1]
216 }
217 }
218 for(cop_name in copulas){
219 for(rot in c(2,4)){
220 if(rot == 2){
221 ## 90 degrees 1 - u
222 fitted_copula <- try(censor_est.full(u_upper = 1 - u_lower, u_lower = 1 - u_

upper, v_upper = v_upper, v_lower = v_lower, cop_name))
223 }else if(rot == 4){
224 ## 270 degrees 1 - v
225 fitted_copula <- try(censor_est.full(u_upper = u_upper, u_lower = u_lower, v_

upper = 1 - v_lower, v_lower = 1 - v_upper, cop_name))
226 }
227 if(class(fitted_copula) == "try-error"){
228 copula_estimates %<>% rlist::list.append(get_cop(cop_name))
229 copula_aics %<>% c(Inf)
230 }else{
231 fitted_copula$rotation <- rot
232 copula_estimates %<>% rlist::list.append(fitted_copula)
233 copula_aics %<>% c(fitted_copula$AIC)
234 }
235 }
236 }
237 cop <- copula_estimates[[which.min(copula_aics)]]
238 cop$tau <- tau
239 return(cop)
240 }
241

242 rvine_translation_pval <- function(tree, names){
243 tree_0 <- tree
244 d <- length(tree) + 1
245 R_matrix <- matrix(0, nrow = d, ncol = d)
246 cop_matrix <- matrix(0, nrow = d, ncol = d)
247 theta_matrix <- matrix(0, nrow = d, ncol = d)
248 delta_matrix <- matrix(0, nrow = d, ncol = d)
249 aic_matrix <- matrix(0, nrow = d, ncol = d)
250 cvm_matrix <- matrix(0, nrow = d, ncol = d)
251 ks_matrix <- matrix(0, nrow = d, ncol = d)
252

253 # starting from top level of the tree
254 for(i in (d-1):2){
255 var <- tree[[i]]$t.cond[i,1]
256 var %<>% c(tree[[i]]$t.cond[i,2])
257 biCop <- cop_name2BiCop(tree[[i]]$Copulas[[1]])
258 copulas <- c(biCop$Family)
259 thetas <- c(biCop$Par)
260 deltas <- c(biCop$Par2)
261 aics <- c(tree[[i]]$Copulas[[1]]$AIC)
262 cvms <- c(tree[[i]]$Copulas[[1]]$p.value.CvM)
263 kss <- c(tree[[i]]$Copulas[[1]]$p.value.KS)
264 for(j in (i-1):1){
265 edge <- ceiling(which(tree[[j]]$t.cond[j,] == var[1])/2)
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266 ind <- which(tree[[j]]$t.cond[j,(edge*2 - 1):(2*edge)] != var[1]) - 1
267

268 var %<>% c(tree[[j]]$t.cond[j,2*edge - 1 + ind])
269 biCop <- cop_name2BiCop(tree[[j]]$Copulas[[edge]])
270 copulas %<>% c(biCop$Family)
271 thetas %<>% c(biCop$Par)
272 deltas %<>% c(biCop$Par2)
273 aics %<>% c(tree[[j]]$Copulas[[edge]]$AIC)
274 cvms %<>% c(tree[[j]]$Copulas[[edge]]$p.value.CvM)
275 kss %<>% c(tree[[j]]$Copulas[[edge]]$p.value.KS)
276

277 # Removing used entries
278 tree[[j]]$t.cond <- matrix(tree[[j]]$t.cond[,-c(edge*2 - 1, edge*2)], nrow=j)
279 tree[[j]]$Copulas[[edge]] <- NULL
280 }
281 R_matrix[(d+1-length(var)):d,d - i] <- var
282 cop_matrix[(d + 2 -length(var)):d,d - i] <- copulas
283 theta_matrix[(d + 2 -length(var)):d,d - i] <- thetas
284 delta_matrix[(d + 2 -length(var)):d,d - i] <- deltas
285 aic_matrix[(d + 2 -length(var)):d,d - i] <- aics
286 cvm_matrix[(d + 2 -length(var)):d,d - i] <- cvms
287 ks_matrix[(d + 2 -length(var)):d,d - i] <- kss
288 }
289 ind <- !(tree[[2]]$t.cond[2,] %in% diag(R_matrix))
290 var <- rev(tree[[2]]$t.cond[,ind])
291 R_matrix[(d+1-length(var)):d,d - 1] <- var
292 R_matrix[d,d] <- var[2]
293

294 biCop <- cop_name2BiCop(tree[[1]]$Copulas[[1]])
295 cop_matrix[d,d-1] <- biCop$Family
296 theta_matrix[d,d-1] <- biCop$Par
297 delta_matrix[d,d-1] <- biCop$Par2
298 aic_matrix[d,d-1] <- tree[[1]]$Copulas[[1]]$AIC
299 cvm_matrix[d,d-1] <- tree[[1]]$Copulas[[1]]$p.value.CvM
300 ks_matrix[d,d-1] <- tree[[1]]$Copulas[[1]]$p.value.KS
301

302 return(list(RVine = RVineMatrix(Matrix = R_matrix,
303 family = cop_matrix,
304 par = theta_matrix,
305 par2 = delta_matrix,
306 names = names),
307 AICs = aic_matrix,
308 p.value.CvM = cvm_matrix,
309 p.value.KS = ks_matrix,
310 Tree = tree_0))
311 }
312

313 ## These are modified since the upper limit becomes the lower under rotation.
314 transform_u.full <- function(u_upper, u_lower, v_upper, v_lower, cop, method){
315 rot <- cop$rotation
316 if(method == "upper"){
317 # rot == 1 is 0 degrees, and no rotation
318 if(rot == 2){
319 # 90 degree
320 return(cop$cop_du(u = 1 - u_lower, v = v_upper, theta = cop$theta, delta = cop$

delta))
321 }else if(rot == 3){
322 # 180 degree
323 return(1 - cop$cop_du(u = 1 - u_lower, v = 1 - v_lower, theta = cop$theta,

delta = cop$delta))
324 }else if(rot == 4){
325 # 270 degree
326 return(1 - cop$cop_du(u = u_upper, v = 1 - v_lower, theta = cop$theta, delta =

cop$delta))
327 }
328 return(cop$cop_du(u = u_upper, v = v_upper, theta = cop$theta, delta = cop$delta)

)
329 }else{
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330 # rot == 1 is 0 degrees, and no rotation
331 if(rot == 2){
332 # 90 degree
333 return(cop$cop_du(u = 1 - u_upper, v = v_lower, theta = cop$theta, delta = cop$

delta))
334 }else if(rot == 3){
335 # 180 degree
336 return(1 - cop$cop_du(u = 1 - u_upper, v = 1 - v_upper, theta = cop$theta,

delta = cop$delta))
337 }else if(rot == 4){
338 # 270 degree
339 return(1 - cop$cop_du(u = u_lower, v = 1 - v_upper, theta = cop$theta, delta =

cop$delta))
340 }
341 return(cop$cop_du(u = u_lower, v = v_lower, theta = cop$theta, delta = cop$delta)

)
342 }
343 }
344

345 transform_v.full <- function(u_upper, u_lower, v_upper, v_lower, cop, method){
346 rot <- cop$rotation
347 if(method == "upper"){
348 # rot == 1 is 0 degrees, and no rotation
349 if(rot == 2){
350 # 90 degree
351 return(cop$cop_dv(u = 1 - u_lower, v = v_upper, theta = cop$theta, delta = cop$

delta))
352 }else if(rot == 3){
353 # 180 degree
354 return(1 - cop$cop_dv(u = 1 - u_lower, v = 1 - v_lower, theta = cop$theta,

delta = cop$delta))
355 }else if(rot == 4){
356 # 270 degree
357 return(1 - cop$cop_dv(u = u_upper, v = 1 - v_lower, theta = cop$theta, delta =

cop$delta))
358 }
359 return(cop$cop_dv(u = u_upper, v = v_upper, theta = cop$theta, delta = cop$delta)

)
360 }else{
361 # rot == 1 is 0 degrees, and no rotation
362 if(rot == 2){
363 # 90 degree
364 return(cop$cop_dv(u = 1 - u_upper, v = v_lower, theta = cop$theta, delta = cop$

delta))
365 }else if(rot == 3){
366 # 180 degree
367 return(1 - cop$cop_dv(u = 1 - u_upper, v = 1 - v_upper, theta = cop$theta,

delta = cop$delta))
368 }else if(rot == 4){
369 # 270 degree
370 return(1 - cop$cop_dv(u = u_lower, v = 1 - v_upper, theta = cop$theta, delta =

cop$delta))
371 }
372 return(cop$cop_dv(u = u_lower, v = v_lower, theta = cop$theta, delta = cop$delta)

)
373 }
374 }
375

376 censor_RVine_select_full <- function(data, indeptest = TRUE, level = 0.05,
377 include_tawn = TRUE, include_amh =

FALSE, include_t = TRUE, core_lim
=20,

378 calc_pVal = FALSE, N_bootstrap = NA){
379 data_upper <- pobs(data, ties.method = "max")
380 data_lower <- pobs(data, ties.method = "min")
381 d <- ncol(data)
382 n <- nrow(data)
383 if(is.na(N_bootstrap)){
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384 N_bootstrap <- 10*n
385 }
386 tree <- list()
387 copulas <- list()
388

389 ## Constructing a matrix of sources, destinations and weights of each edge
390 ## that can be converted to an igraph like graph
391 tau <- cor(data_upper, method = "kendall")
392 weights <- tau[upper.tri(tau)]
393 sources <- matrix(rep(1:d, d), ncol = d)
394 sources <- sources[upper.tri(sources)]
395 destinations <- matrix(rep(1:d, d), ncol = d, byrow = TRUE)
396 destinations <- destinations[upper.tri(destinations)]
397 totals <- cbind(abs(weights), sources, destinations) ## Total of weights, sources

and destinations
398 totals <- totals[order(totals[,1], decreasing = TRUE),]
399 graph <- graph_from_edgelist(cbind(as.character(totals[,2]), as.character(totals

[,3])), directed = FALSE)
400 E(graph)$weight <- -as.numeric(totals[,1])
401 graph <- minimum.spanning.tree(graph)
402

403 ################### transforming ########################
404 transformed_upper <- matrix(0, nrow=n, ncol = 2*length(E(graph)))
405 transformed_lower <- matrix(0, nrow=n, ncol = 2*length(E(graph)))
406 transformed_cond <- matrix(0, nrow=1, ncol = 2*(d-1))
407 for(j in 1:length(E(graph))){
408 ind1 <- as.numeric(tail_of(graph, j)$name)
409 ind2 <- as.numeric(head_of(graph, j)$name)
410 ui_upper <- data_upper[,ind1]
411 ui_lower <- data_lower[,ind1]
412 vi_upper <- data_upper[,ind2]
413 vi_lower <- data_lower[,ind2]
414 cop <- censor_copula_select.full(ui_upper, ui_lower, vi_upper, vi_lower,
415 indeptest = indeptest, level = level,
416 include_tawn = include_tawn, include_amh =

include_amh, include_t = include_t)
417 if(calc_pVal){
418 test <- censor_gof_test_parallel(ui_upper, vi_upper, cop = cop, N = N_bootstrap

, core_lim = core_lim)
419 cop$p.value.CvM <- test$p.value.CvM
420 cop$p.value.KS <- test$p.value.KS
421 }
422

423 transformed_upper[,(j*2-1)] <- transform_u.full(u_upper = ui_upper, u_lower = ui
_lower, v_upper = vi_upper, v_lower = vi_upper,

424 cop = cop, method = "upper")
425 transformed_lower[,(j*2-1)] <- transform_u.full(u_upper = ui_upper, u_lower = ui

_lower, v_upper = vi_upper, v_lower = vi_upper,
426 cop = cop, method = "lower")
427 transformed_upper[,(j*2)] <- transform_v.full(u_upper = ui_upper, u_lower = ui_

lower, v_upper = vi_upper, v_lower = vi_upper,
428 cop = cop, method = "upper")
429 transformed_lower[,(j*2)] <- transform_v.full(u_upper = ui_upper, u_lower = ui_

lower, v_upper = vi_upper, v_lower = vi_upper,
430 cop = cop, method = "lower")
431 transformed_cond[1,(j*2-1)] <- ind1
432 transformed_cond[1,(j*2)] <- ind2
433 copulas %<>% rlist::list.append(Copula = cop)
434 }
435 tree %<>% rlist::list.append(list(Copulas = copulas, Graph = graph,
436 t.data_upper = transformed_upper, t.data_lower =

transformed_lower, t.cond = transformed_cond
))

437

438 ############## Transformation on higher levels
439 for(i in 2:(d-1)){
440 # Building structure for the next full tree
441 tau <- cor(transformed_upper, method = "kendall")
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442 sources <- c()
443 destinations <- c()
444 weights <- c()
445 vertex_data_upper <- matrix(nrow=n)
446 vertex_data_lower <- matrix(nrow=n)
447 vertex_cond <- matrix(nrow=i-1)
448 vertex_var <- c()
449 ## Looping over all edges in the previous tree to find all possible options for

the next tree given this
450 for(j in 1:(length(E(graph))-1)){
451 for(k in (j+1):length(E(graph))){
452 first_ends <- ends(graph, j, names = FALSE)
453 sec_ends <- ends(graph, k, names = FALSE)
454 if(any(first_ends %in% sec_ends)){
455 sources %<>% c(paste(ends(graph, j, names = TRUE), collapse = ","))
456 destinations %<>% c(paste(ends(graph, k, names = TRUE), collapse = ","))
457

458 if(i>=3){
459 ## This if/else is simply due to compatibility issues with the graph from

the first tree
460 ## For T_3 and so on, I have better control over the conditioned

variables and the conditioning sets
461 ## and which edges go where. This is a more tedious process for finding

this.
462 first_involved <- unique(c(transformed_cond[1:i-1,(j*2-1):(j*2)]))
463 second_involved <- unique(c(transformed_cond[1:i-1,(k*2-1):(k*2)]))
464 conditioned <- unique(first_involved[first_involved %in% second_involved

])
465 cond1 <- which((transformed_cond[i-1,(j*2-1):(j*2)] %in% conditioned)) +j

*2-2
466 cond2 <- which((transformed_cond[i-1,(k*2-1):(k*2)] %in% conditioned)) +k

*2-2
467 weights %<>% c(tau[cond1, cond2])
468

469 vertex_data_upper %<>% cbind(transformed_upper[,cond1], transformed_upper
[,cond2])

470 vertex_data_lower %<>% cbind(transformed_lower[,cond1], transformed_lower
[,cond2])

471 vertex_cond %<>% cbind(conditioned, conditioned)
472 ind1 <- which(!(transformed_cond[i-1,(j*2-1):(j*2)] %in% conditioned)) +j

*2-2
473 ind2 <- which(!(transformed_cond[i-1,(k*2-1):(k*2)] %in% conditioned)) +k

*2-2
474 vertex_var %<>% c(transformed_cond[i-1,ind1] , transformed_cond[i-1,ind2

])
475 }else{
476 ind1 <- which(first_ends %in% sec_ends) + j*2 - 2
477 ind2 <- which(sec_ends %in% first_ends) + k*2 - 2
478 cond1 <- which(!(first_ends %in% sec_ends)) + j*2 - 2
479 cond2 <- which(!(sec_ends %in% first_ends)) + k*2 - 2
480

481 weights %<>% c(tau[ind1, ind2])
482 vertex_data_upper %<>% cbind(transformed_upper[,ind1], transformed_upper

[,ind2])
483 vertex_data_lower %<>% cbind(transformed_lower[,ind1], transformed_lower

[,ind2])
484

485

486 vertex_cond %<>% cbind(transformed_cond[,ind1], transformed_cond[,ind2])
487 vertex_var %<>% c(transformed_cond[i-1,cond1], transformed_cond[i-1,cond2

])
488 }
489 }
490 }
491 }
492 vertex_data_upper <- vertex_data_upper[,-1]
493 vertex_data_lower <- vertex_data_lower[,-1]
494 vertex_cond <- matrix(vertex_cond[,-1], nrow=i-1)
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495 graph <- graph_from_edgelist(cbind(sources, destinations), directed = FALSE)
496 E(graph)$weight <- -abs(weights)
497 new_graph <- minimum.spanning.tree(graph)
498

499 ########################################################
500 ## In this step, we find the index to which edges have been removed to construct

the spanning tree
501 ## I did not find a "natural" way of doing this with the igraph library, but this

tedious solution works
502 if(length(E(graph)) != length(E(new_graph))){
503 graph_names <- vector("character", length = length(E(graph)))
504 for(j in 1:length(E(graph))){
505 graph_names[j] <- paste(ends(graph,j), collapse = " ")
506 }
507 new_graph_names <- vector("character", length = length(E(new_graph)))
508 for(j in 1:length(E(new_graph))){
509 new_graph_names[j] <- paste(ends(new_graph,j), collapse = " ")
510 }
511 data_removal <- which(!(graph_names %in% new_graph_names))
512 vertex_data_upper <- vertex_data_upper[,-c(data_removal*2 - 1, data_removal*2)]
513 vertex_data_lower <- vertex_data_lower[,-c(data_removal*2 - 1, data_removal*2)]
514 vertex_cond <- vertex_cond[,-c(data_removal*2 - 1, data_removal*2)]
515 vertex_var <- vertex_var[-c(data_removal*2 - 1, data_removal*2)]
516 }
517 #########################################################
518 #########################################################
519

520 graph <- new_graph
521 copulas <- list()
522 transformed_upper <- matrix(0, nrow = n, ncol = 2*length(E(graph)))
523 transformed_lower <- matrix(0, nrow = n, ncol = 2*length(E(graph)))
524 for(j in 1:length(E(graph))){
525 ind1 <- j*2 - 1
526 ind2 <- j*2
527 ui_upper <- vertex_data_upper[,ind1]
528 ui_lower <- vertex_data_lower[,ind1]
529 vi_upper <- vertex_data_upper[,ind2]
530 vi_lower <- vertex_data_lower[,ind2]
531 cop <- censor_copula_select.full(ui_upper, ui_lower, vi_upper, vi_lower,
532 indeptest = indeptest, level = level,
533 include_tawn = include_tawn,
534 include_amh = include_amh,
535 include_t = include_t)
536 if(calc_pVal){
537 test <- censor_gof_test_parallel(ui_upper, vi_upper, cop = cop, N = N_

bootstrap, core_lim = core_lim)
538 cop$p.value.CvM <- test$p.value.CvM
539 cop$p.value.KS <- test$p.value.KS
540 }
541 transformed_upper[,ind1] <- transform_u.full(u_upper = ui_upper, u_lower = ui_

lower, v_upper = vi_upper, v_lower = vi_lower, cop = cop, method = "upper"
)

542 transformed_lower[,ind1] <- transform_u.full(u_upper = ui_upper, u_lower = ui_
lower, v_upper = vi_upper, v_lower = vi_lower, cop = cop, method = "lower"
)

543 transformed_upper[,ind2] <- transform_v.full(u_upper = ui_upper, u_lower = ui_
lower, v_upper = vi_upper, v_lower = vi_lower, cop = cop, method = "upper"
)

544 transformed_lower[,ind2] <- transform_v.full(u_upper = ui_upper, u_lower = ui_
lower, v_upper = vi_upper, v_lower = vi_lower, cop = cop, method = "lower"
)

545 copulas %<>% rlist::list.append(Copula = cop)
546 }
547 transformed_cond <- rbind(vertex_cond, vertex_var)
548 tree %<>% rlist::list.append(list(Copulas = copulas, Graph = graph,
549 t.data_upper = transformed_upper, t.data_lower

= transformed_lower, t.cond = transformed_
cond))

122



550 }
551 return(rvine_translation_pval(tree = tree, names = colnames(data)))
552 }
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