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Abstract

We model the distribution of diurnal temperature range with the Five-
Parameter Lambda Distribution (FPLD). Both local and spatial modelling
with the FPLD is performed. For local parameter estimation of the FPLD
we apply the method of quantiles, which estimates parameters by minimis-
ing the distance between two quantile functions. Quantile regression with
explanatory variables is performed to model diurnal temperature range at
locations without temperature observations. We introduce a new method
for spatial interpolation of parametric distributions in order to perform
spatial modelling of the FPLD. The new interpolation method combines
quantile regression with the method of quantiles. Asymptotic conditions
for consistency of the parameter estimators for the FPLD are presented.
Additionally, simulation studies are performed for numerical evaluation of
the proposed methods. The FPLD is fitted to 30 years of daily observa-
tions of diurnal temperature range from 55 weather stations in the southern
parts of Norway. Modelling is performed independently for each season of
the year. The FPLD shows much promise as a model for diurnal temper-
ature range. The local parameter estimation, which uses the method of
quantiles, is quite successful and a good model fit is observed for almost
all the available data. The new interpolation method for spatial parameter
estimation of the FPLD also shows much promise. Using this method, we
are able to model the FPLD with a good fit to diurnal temperature range
for winter, spring and autumn. During summer, the model fit is mediocre.





Sammendrag

Vi modellerer fordelingen av den døgnlige variasjonsbredden til temper-
atur med femparameter-lambdafordelingen (FPLF). B̊ade lokal og regional
modelltilpasning av en FPLF utføres. Lokal modelltilpasning blir utført
ved hjelp av kvantiltilpasningsmetoden, som estimerer parametere ved å
minimere avstanden mellom to kvantilfunksjoner. For å modellere vari-
asjonsbredden til temperatur for beliggenheter uten tilgjengelig temper-
aturdata utfører vi kvantilregresjon med forklaringsvariable. Vi utvikler en
ny metode for romlig interpolering av parametriske fordelinger, som anven-
des for å utføre romlig modellering av en FPLF. Den nye metoden kom-
binerer kvantilregresjon med metoden for kvantiltilpasning. Asymptotiske
betingelser for konsistente parameterestimatorer presenteres for metodene
v̊are. I tillegg utføres flere simuleringsstudier for å numerisk evaluere de
foresl̊atte metodene. En FPLF tilpasses til 30 år med observasjoner av den
døgnlige variasjonsbredden til temperatur. Observasjoner hentes fra 55
værstasjoner p̊a Sør-, Øst- og Vestlandet, og modellering utføres uavhengig
for vinter, v̊ar, sommer og høst. Resultatene viser at FPLF-en er en svært
lovende modell for variasjonsbredden til temperatur. Den lokale modelltil-
pasningen, som bruker metoden for kvantiltilpasning, viser gode resultater.
Den nye interpoleringsmetoden viser ogs̊a svært lovende resultater. Romlig
modellering av variasjonsbredden til temperatur er suksessfull for vinter,
v̊ar og høst. Modellresultatene er ikke like gode for sommeren.
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Notation

Table 1 displays notation used in this thesis.

Table 1: Variables and notation used in this thesis.

Symbols and
abbrevia-
tions

Meaning

y An n-dimensional vector of observations.
β A k-dimensional regression coefficient vector.
x A k-dimensional vector of explanatory variables.
X Design matrix of dimension n× k.
f , PDF Probability density function.
F , CDF Cumulative distribution function.
Q Quantile function.
FPLD Five-Parameter Lambda Distribution (3.6).
λ Parameters of the FPLD.
α, β, θ, etc. Parameters.

α̂, β̂, θ̂, etc. Estimators of parameters.
Any bold
symbol

A vector or a matrix.

Any non-
bold symbol

A scalar.

For any vector v ∈ Rn the elements are indexed so that

v = (v1, v2, . . . , vn)T .

For any matrix A ∈ Rn×k the elements are indexed so that

A = (a1,a2, . . . ,an)T =


a11 a12 · · · a1k

a21 a22 · · · a2k

...
...

. . .
...

an1 an2 · · · ank

 ,

where ai is a k-dimensional vector, i = 1, . . . , n.





Chapter 1

Introduction

Our climate is constantly changing. In the last century, we have seen
extraordinarily large and abrupt changes in global climate patterns. This
may result in longer droughts, an increase in flooding and several other
societal challenges (IPCC, 2014). Possible consequences of climate change
are assessed in different impact studies, e.g. using hydrologic models for fu-
ture flood assessment (Hanssen-Bauer et al., 2009). The hydrologic models
are physically based numerical models, and deterministic given a certain
input. They are driven by input variables describing local climatic condi-
tions. These consist, among others, of daily precipitation, daily wind speed
and intensity, daily minimum, maximum and mean temperature. For a fu-
ture climate, these input variables are obtained from climate simulations,
describing different possible scenarios of the future. In this way, we are
able to describe possible consequences of a changing climate.

The climate is a global system. Consequently, in order to create mod-
els that can explain the climate to a satisfactory degree, one must start
with a global model. Several global climate models, called global circu-
lation models, have been established, which are based on physical models
and numerical schemes. These are good at capturing large-scale climate
features, but they typically have a grid cell resolution of 100–200 km due
to computational limitations (Rummukainen, 2010). A scale of 100–200
km is too large when one aims to capture regional climate events, thus
requiring dynamical or statistical downscaling of the global model output
(Maraun and Widmann, 2018). Dynamical downscaling nests a regional
climate model of higher resolution inside a global circulation model simula-
tion, using simulations from a given global model as boundary conditions.
Here, simulations are once again created using numerical solutions of phys-
ical laws. The grid cell resolution of a regional climate model can typically
be found in the range of 10–50 km per grid cell. However, hydrologic cli-
mate models often require an input with resolution ∼1 km per grid cell.
Additionally, it has been found that the regional climate model outputs
contain several biases that should be corrected before the simulations can
be applied in impact studies of climate change. Therefore, it is a common
procedure to apply some kind of bias correction scheme to the output of
a regional climate model (Vandeskog, Haugen, and Thorarinsdottir, 2018;
Maraun and Widmann, 2018).
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Statistical downscaling methods are data-driven methods that deter-
mine empirical links between large-scale and fine-scale climate model simu-
lations. An advantage of statistical downscaling is computational efficiency,
i.e. it is possible to downscale simulations onto a much finer grid than a
dynamical approach is able to. Physically driven models are, however, able
to describe interactions between climate variables much better than the
purely data-driven statistical downscaling methods. Therefore, when one
performs downscaling to high resolutions, it is common to first perform
dynamical downscaling from a global circulation model simulation onto a
regional scale model. Statistical bias correction can then be applied to the
regional climate model output, followed by downscaling to the wanted res-
olution using statistical downscaling. The combination of statistical bias
correction and downscaling is commonly referred to as post-processing (Ma-
raun and Widmann, 2018).

Hydrologic models require minimum, maximum and mean daily tem-
perature as input. These climate variables are clearly dependent. Conse-
quently, multivariate post-processing of the variables should be performed,
in order to correctly capture the dependencies. Multivariate post-processing
is, however, difficult and highly computationally demanding, as the depen-
dencies must be modelled in both time and space for large amounts of
data. New results like those of Cannon (2018) have shown promise, but
the common approach today is to perform univariate post-processing of
each climate variable separately.

A major problem with the standard univariate approach is that sep-
arate post-processing can give inconsistencies in the constraint that daily
minimum temperature must be lower than daily mean temperature, which
again must be lower than daily maximum temperature. Inconsistent input
in an impact study for climate change will subsequently result in incon-
sistent output for the given study. The Nordic Gridded Climate Data Set
version 2 (Lussana, Saloranta, et al., 2018; Lussana, Tveito, and Uboldi,
2018) contains gridded historical climate data from 1950 to the present, for
all of Finland, Sweden and Norway. The gridded data set is generated by
applying a spatial interpolation approach to data from surface observation
stations. Minimum, maximum and mean temperature were considered in-
dependently in the creation of this data set. During winter, 0.02% of all
data contains daily maximum temperatures that are smaller than the daily
minimum. Approximately 11% of all winter data contain daily mean tem-
peratures outside the range of minimum and maximum temperature. This
is a substantial problem that must be corrected before we can apply the
data set in climate change assessment studies.

We have previously proposed that daily minimum, mean and maximum
temperature can be modelled more consistently by transforming the vari-
ables into daily mean temperature, daily temperature skewness and diurnal
temperature range (Vandeskog, Thorarinsdottir, and Steinsland, 2019). Di-



Chapter 1. Introduction 3

urnal temperature range is the difference between the daily minimum and
maximum temperature. It is always bounded from below by zero. Temper-
ature skewness is a number between 0 and 1, explaining the relative position
of mean temperature between minimum and maximum temperature. We
have shown that this transformation considerably reduces the correlation
between the three climate variables. By enforcing the diurnal temperature
range to stay positive, we can also ensure that minimum and maximum
daily temperatures never cross each other. It is therefore of great interest
to be able to model diurnal temperature range and temperature skewness,
as these models might be used in improving post-processing schemes for
temperature.

In this thesis, the Five-Parameter Lambda Distribution (FPLD) is pre-
sented as a model for diurnal temperature range. The distribution has pre-
viously been used to model diurnal temperature range in the EUSTACE
research project (Lindgren, 2016). However, to our knowledge, the re-
sults have yet to be published. The FPLD was introduced by Gilchrist
(2000), but has not obtained much attention in the statistical literature.
We present some theoretical justification for the choice of model and explore
some properties of the distribution. Methods for performing both local and
spatial parameter estimation for the FPLD are developed. The local esti-
mation method makes it possible to estimate parameters of the FPLD in
areas where observations have been made available, while the spatial esti-
mation method performs spatial interpolation for parameter estimation at
locations without any temperature observations.

The FPLD is applied for modelling of diurnal temperature range in the
southern parts of Norway. The chosen data consist of daily temperature
measurements for the years 1989 to 2018, for 55 different weather stations in
Norway (Norwegian Meteorological Institute, 2019). Diurnal temperature
range is clearly a phenomenon that varies both in space and time. However,
in this thesis, we focus on modelling the spatial characteristics of diurnal
temperature range. Consequently, when applying our method on real data,
the temperature range is considered stationary in time within each of the
four seasons of the year.

For local parameter estimation of the FPLD, the method of quantiles is
presented as an alternative to the more standard methods like maximum
likelihood estimation and the method of moments. This method attempts
to minimise the difference between the quantile function of a parametric
distribution and a set of estimated quantile from observed data. It is thus
quite similar to the method of moments. Both methods perform pairing
of statistics from a parametric distribution and sample statistics from ob-
served data. They merely focus on different types of statistics. The method
of quantiles also goes by the name percentile matching.

We fit the FPLD to diurnal temperature range observations, using the
method of quantiles. The results are promising. The method is able to
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find a good fit of the FPLD for almost all the available weather stations,
although small errors do occur for some of the data.

A spatial regression framework with explanatory variables is developed
in order to model the spatially varying distribution of diurnal temperature
range. Standard linear regression only attempts to estimate the mean value
of its response variable. However, we find that the higher order moments of
the distribution of diurnal temperature range vary heavily in space. Stan-
dard linear regression is not able to model such behaviour. Accordingly, a
Bayesian quantile regression framework is implemented for modelling the
temperature range. In a quantile regression, a set of specific quantiles of a
distribution is modelled, instead of the mean of the distribution. This leads
to higher flexibility and the ability to model more complex distributions.
A spatial random effect is not incorporated into the regression model.

Having developed a quantile regression model for diurnal temperature
range, we perform interpolation on the parameters of the FPLD. Using the
quantile regression model, we are able to estimate a set of quantiles in the
distribution of diurnal temperature range at a given location. The method
of quantiles is then performed on the available quantiles, for estimating the
parameters of the FPLD at the given location. This approach is performed
on the available data, and is able to successfully model diurnal temperature
range, albeit not always with high performance.

The main contributions of this thesis can be divided into three parts. We
perform modelling of diurnal temperature range with explanatory variables.
Modelling of diurnal temperature range in time has been performed previ-
ously (e.g. Makowski, Wild, and Ohmura, 2008), and the annual trends of
diurnal temperature range have also been modelled spatially (Zhou et al.,
2009). However, to our knowledge, except from analyses of the effects of a
single explanatory variable on mean diurnal temperature range (e.g. Gallo,
Easterling, and Peterson, 1996; Waqas and Athar, 2018), no attempts at
spatial modelling of diurnal temperature range have been published. Addi-
tionally, apart from the EUSTACE project, we are not aware of any usage
of the FPLD within the climate sciences. Consequently, this thesis intro-
duces the distribution into the field of climate science. In order to model
the distribution of temperature range, we also develop a new method for
interpolation of parametric distributions, which combines quantile regres-
sion and the method of quantiles. To our knowledge, this method has never
before been published.

The remainder of the thesis is organised as follows: In Chapter 2, data
are presented as a motivation and for understanding the problem of mod-
elling diurnal temperature range. Following this, the FPLD is presented
as a model for diurnal temperature range in Chapter 3. Some additional
properties of the distribution are also presented. Inference for the FPLD
is presented in Chapter 4. First, methods for local parameter estimation
of the FPLD, including the method of quantiles, are discussed. Then, the
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method of quantile regression is presented, and a method for spatial inter-
polation of the parameters of the FPLD is developed by combining quantile
regression and the method of quantiles. Finally, we examine some asymp-
totic properties for our chosen methods and conditions for consistency of
the developed estimators are presented and discussed. In Chapter 5, we
evaluate the method of quantiles and the quantiles regression numerically
in several different simulation studies. At last, in Chapter 6, we perform
modelling of diurnal temperature range in Norway, with the FPLD. The
results of this thesis are discussed in Chapter 7.





Chapter 2

Data

In this thesis, a methodology for local and regional modelling of the
FPLD is developed and applied for modelling diurnal temperature range
in the southern parts of Norway. The motivation behind modelling of
the FPLD originates in the need for better models of diurnal temperature
range. The distribution of diurnal temperature range is highly skewed and
can take many forms, making it difficult to model with standard parametric
distributions. We therefore first present our data, to motivate for the usage
of the FPLD.

2.1 Data description

All the data applied in this thesis are freely available on the internet (Nor-
wegian Meteorological Institute, 2019). The data consist of daily time series
of temperature observations from 55 different weather stations in the south-
ern parts of Norway. At all weather stations, daily minimum and maximum
temperatures from the time interval 18–18 UTC are observed. We calculate
diurnal temperature range as the difference between daily maximum and
minimum temperature. Daily mean temperature is also made available at
all weather stations. The mean temperature is extracted from the time
interval 06–06 UTC, meaning that it does not coincide perfectly with the
diurnal temperature range.

We are interested in the last 30 years of data. Consequently, all our data
are collected from the time period 01/01/1989 – 31/12/2018. The available
time series from the Norwegian Meteorological Institute, suffer from several
occurrences of missing data. The 55 weather stations are selected because
they contain less than 50% missing data. Longitude, latitude and altitude
of each station are also available from the internet. The locations of all
weather stations are found in Figure 2.1. The weather stations are not
only located on the mainland, but also at lighthouses into the sea. We have
been provided a map containing the shortest distance to the sea from any
given location, created by the Norwegian Meteorological Institute (Dyrrdal
et al., 2015). This is applied in obtaining the distance from the sea for
all weather stations, which is used as an explanatory variable for spatial
modelling of diurnal temperature range.
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Figure 2.1: Locations of the 55 chosen weather stations in
this thesis.

2.2 Data exploration

The distribution of diurnal temperature range is examined at all of the
available weather stations. Some obvious errors are found in the avail-
able data, with selected days having higher minimum temperature than
maximum temperature, i.e. negative diurnal temperature range. These
observations are removed from the data. We assume that some positive
temperature range values are faulty as well. However, these are difficult to
detect without further knowledge of the data, so we are not able to remove
or correct them. In total, the data set contains more than 450000 observa-
tions of diurnal temperature range. We must simply hope that the immense
amount of data allows for some errors without significantly affecting our
analysis.

It has been found that the distribution of diurnal temperature range in
Norway is dependent upon the season of the year (Vandeskog, Thorarins-
dottir, and Steinsland, 2019). In order to investigate whether this also
holds for this data set, box-plots are created, containing 365 boxes, i.e. one
for each day of the year. One such box-plot is created for each weather
station and the results are examined. Examples of such plots are seen in
Figure 2.2. It is clear from these plots that both the median and the range
of diurnal temperature range differs greatly throughout the year. Conse-
quently, all further data analysis is performed separately for each season of
the year.

The observed densities of diurnal temperature range are examined. Fig-
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Figure 2.2: Representative box-plots displaying the daily
median and variability of temperature range at given weather
stations. Seasons are displayed using different background-
colours.

ure 2.3 displays the observed densities of temperature range at all available
weather stations for each season. It can be seen that most distributions
are heavily skewed to the right. However, there are also large differences
in the shape of the different distributions. The colour of each distribution
represents the shortest distance to the sea. It seems that the distributions
with modes to the left, i.e. mostly low values of diurnal temperature range,
stem from weather stations close to the sea, and vice versa. Patterns like
these can also be found if the distributions are coloured after their val-
ues of longitude, latitude or altitude. This is a strong indicator that the
distribution of diurnal temperature range is somehow dependent upon its
geographical location.

A more detailed display of different distributions of diurnal temperature
range are found in Figure 2.4. Four histograms, containing diurnal temper-
ature range data from different locations and seasons, are displayed. The
shape and spread of these histograms vary heavily, and there does not seem
to be any clear patterns or similarities between all four distributions. It is
not obvious from these plots that any single parametric distribution is able
to model all four distributions with a high level of success.

To investigate the spatial structure, we display key quantiles of diurnal
temperature range at different weather station locations. For truncated and
skewed distributions like those in Figure 2.3, there is not much information
to be gained by examining the more standard statistics as sample mean and
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Figure 2.3: Observed densities of diurnal temperature range
at all available weather stations. The shortest distance to the
sea is represented in the colouring of each distribution.

variance. quantiles. Figure 2.5 displays the median of diurnal temperature
range at all available weather stations for different seasons of the year. In
all of the plots, one can see some kind of spatial pattern in the median.
Weather stations close to the sea seem to obtain a lower value than that of
stations further inland. One can also find some kind of drift in values as
the longitude increases. The pattern seems to be quite similar for all four
seasons. Interestingly, we find similar patterns as those in Figure 2.5 for
all other tested quantiles. The interquartile range of diurnal range is also
examined. The calculated values can be seen in Figure 2.6. Once again one
can find similar patterns as those in Figure 2.5. This seems to indicate that
geographical information should be included for modelling the quantiles of
diurnal temperature range, spatially.

For spatial modelling of the diurnal temperature range, several explana-
tory variables are available. These consist of geographical information, in
the form of longitude, latitude, altitude, and the distance to the sea for each
station. In addition, information concerning the daily mean temperature
is available from all weather stations. The historical mean and variance of
daily mean temperature are added as explanatory variables for diurnal tem-
perature range. We examine the dependencies between these variables and
the quantiles of diurnal temperature range. The median of diurnal tem-



Chapter 2. Data 11

Figure 2.4: Histograms displaying observed diurnal temper-
ature range. Data are collected from the period 01/01/1989
- 31/12/2018. Selected seasons and locations are indicated
above each plot.

perature range is found for each weather station and each season. These
values are plotted against the values of the different explanatory variables.
The results are displayed in Figure 2.7. There seems to be some clear de-
pendencies between the median of diurnal temperature range and all the
possible explanatory variables. The dependencies are especially clear for
the daily mean temperature observations. Other quantiles than the median
of diurnal temperature range are plotted against the explanatory variables,
and similar patterns are found for all of them.
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Figure 2.5: Empirical median of diurnal temperature range
in Norway for all weather stations and seasons.
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Figure 2.6: Interquartile range (IQR) of diurnal temperature
range in Norway for all weather stations and seasons.
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Figure 2.7: The median of diurnal temperature range is
plotted against different explanatory variables at each of the
55 weather stations, for each season. Trends are estimated
using Gaussian standard linear regression.







Chapter 3

Modelling diurnal
temperature range

We wish to model the diurnal range of temperature using some para-
metric distribution. Parametric distributions for diurnal temperature range
have not seen much interest within the fields of statistics and environmen-
tal sciences. However, one model for diurnal temperature range has been
proposed by Lindgren (2016). Consider maximum and minimum daily
temperature as two extreme quantiles in the distribution of temperature
at a given day. Diurnal temperature range can then be modelled as the
difference between these two quantiles. Some derivations and modelling
techniques for the FPLD are developed by Vandeskog, Thorarinsdottir,
and Steinsland (2019). The following chapter is inspired by that analysis.

3.1 Quantile functions

Quantile functions are frequently used in this thesis. Since these are used
quite infrequently in modern statistics, a short introduction follows.

A quantile function Q(p), associated with some CDF F (y) specifies
the value of the random variable y such that F (y) = p, i.e. Q(p) =
inf {y ∈ R : p 6 F (y)} , p ∈ [0, 1]. If F is a strictly increasing function,
then it is also both injective and surjective, and thus invertible. The quan-
tile function Q is then equal to the inverse of F . A quantile function
is always increasing in p, albeit not always strictly increasing. It is not
necessary for the CDF to be analytically defined in order for the quan-
tile function to exist, and vice versa. Consequently, the set of all possible
quantile functions coincides with the set of all weakly increasing functions
Q(p), p ∈ [0, 1]. The set of all quantile functions is closed under addition,
i.e. for any quantile functions Q1 and Q2, the sum Q3 = Q1 + Q2 is a
quantile function. This is a trivial result, as the sum of two increasing
functions will be an increasing function. The set of all quantile functions
with positive support is also closed under multiplication. These properties
make the quantile function extremely flexible for statistical modelling. One
can simply create new quantile functions by adding or multiplying known
quantile functions with different preferable properties (Gilchrist, 2000).
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3.2 Appearance of the FPLD

The generalised Pareto distribution (GPD) is commonly used to model the
tails of other statistical distributions (e.g. Coles, 2001). The GPD has the
cumulative distribution function

F (z, ξ) =

{
1− (1 + ξz)−1/ξ, ξ 6= 0

1− e−z, ξ = 0
(3.1)

and quantile function

Q(p; ξ) =

{(
1− (1− p)ξ

)
/ξ, ξ 6= 0

− log(1− p), ξ = 0,
(3.2)

(e.g. Hosking and Wallis, 1987). More generally, one can add location and
scale parameters

Q(p;µ, η, ξ) = µ + η Q(p; 0, 1, ξ), η > 0,µ ∈ R. (3.3)

We model maximum daily temperature as some quantile of a GPD,
while minimum daily temperature is modelled as some quantile of a re-
flected GPD. The original GPD has a range of [0,∞), giving a reflected
GPD a range of (−∞, 0]. Gilchrist (2000) has shown that the distribution
−Q(1 − p) is the reflection of the distribution Q(p) across the line y = 0.
The quantile function of a reflected GPD is

Q∗(p;µ, η, ξ) = µ + η

{(
pξ − 1

)
/ξ ξ 6= 0

log p, ξ = 0.
(3.4)

Diurnal temperature range is the difference between daily maximum and
minimum temperature, i.e. the difference between two quantiles of a GPD.
Since diurnal temperature range is the difference between two quantile func-
tions, it is also a quantile of some quantile function, given that the resulting
difference is an increasing function of p. We allow different behaviour in
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each tail and calculate

yrange =ymax − ymin

=Q(p;µ1, η1, ξ1)−Q∗(p;µ2, η2, ξ2)

=µ1 + η1
1− (1− p)ξ1

ξ1
− µ2 − η2

pξ2 − 1

ξ2

=(µ1 − µ2) +
η1 − η2

2

{(
1− η1 + η2

η1 − η2

)
pξ2 − 1

ξ2
−(

1 +
η1 + η2

η1 − η2

)
(1− p)ξ1 − 1

ξ1

}
.

(3.5)

This is the quantile function of a Five-Parameter Lambda Distribution
(FPLD) (Gilchrist, 2000),

Q(p;λ) = λ1 +
λ2

2

{
(1− λ3)

pλ4 − 1

λ4
− (1 + λ3)

(1− p)λ5 − 1

λ5

}
. (3.6)

The FPLD is not popular within the statistical literature. However,
some areas of usage has been found for the distribution. Inference for
the FPLD is presented by e.g. Tarsitano (2010) and Nair, Sankaran, and
Balakrishnan (2013). Applications of the distribution have been found by
Ahmadabadi, Farjami, and Moghadam (2012) and Noorian and Ahmad-
abadi (2018). They have applied the FPLD in statistical process control
methods. Additionally, Movahedi et al. (2017) apply the FPLD in estimat-
ing industry component tolerances. To our knowledge, no publications have
been made within the climate sciences that use the FPLD for statistical
modelling.

The FPLD is an extension of the Generalised Lambda distribution
(GLD) (Ramberg and Schmeiser, 1974)

Q(p;λ) = λ1 +
pλ3 − (1− p)λ4

λ2
, (3.7)

which again is an extension of Tukeys Lambda distribution (Tukey, 1962)

Q(p;λ) =


pλ − (1− p)λ

λ
, λ 6= 0

log p

1− p
, λ = 0

. (3.8)

While the FPLD is not commonly applied, the GLD has been used in several
different studies, as it is deemed a highly flexible distribution for modelling
data of many shapes. The GLD is applied within the field of meteorology,
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where it is proposed as a model for solar radiation data (Öztürk and R.
Dale, 1982). The GLD is also applied within finance (Marcondes, Peixoto,
and Maia, 2018; Tarsitano, 2004), engineering (Upadhyay and Ezekoye,
2008), psychology (Delaney and Vargha, 2000), health and nutrition (Ejima
et al., 2018) and many other fields.

3.3 Shape of the FPLD

The quantile function, and therefore also the CDF of the FPLD, is strictly
increasing in p as long as λ2 > 0 and λ3 ∈ (−1, 1). This can easily be seen as

both pλ4 and −(1− p)λ5 are strictly increasing functions of p for p ∈ [0, 1].
Thus, under some constraints on λ2 and λ3, the quantile function (3.6)
of the FPLD is a valid quantile function. An examination of the Taylor
expansion of Q(p;λ) around λ4, λ5 = 0 show that the quantile function is
continuous for all p and bounded away from infinity for p /∈ {0, 1}. We get

lim
λ→0

pλ − 1

λ
= ln p. (3.9)

The quantile function of the FPLD (3.6) can be expressed as

Q(p;λ1, λ2, λ3, λ4, λ5) = λ1 + λ2Q(p; 0, 1, λ3, λ4, λ5). (3.10)

From (3.10) it is clear that λ1 and λ2 act as location and scaling parameters
for the distribution. It is harder to get an intuitive grasp of the influence of
the remaining parameters at a first look. However, we find that the value of
λ4 is more important when p is close to zero, as (pλ4 − 1) is approximately
equal to zero for all large values of p. The same can be said for λ5 when
p is close to one. This means that λ4 mainly controls the left tail of the
distribution and λ5 mainly controls the right tail, while λ3 acts as a weight
between the two tails.

Plots displaying the effect of λ3 can be seen in Figure 3.1. The upper
right plot displays an FPLD with λ3 = 0. As λ3 increases towards 1, the
left tail decreases while the right tail increases. A similar pattern can be
seen when λ3 decreases. Figure A.3 displays this behaviour in more details.
The influence of λ4 and λ5 on the shape of an FPLD is also displayed in
Figure A.4.

The support of an FPLD, given by [Q(0,λ), Q(1,λ)], can be both finite
and infinite. If λ4 is negative when p approaches 0, the quantile function
will approach negative infinity. If, however, λ4 is positive, the left tail is
finite. Once again, similar properties hold for λ5 when p approaches 1. The
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Figure 3.1: Probability density functions of the FPLD with
different values of λ. λ1 = 0, λ2 = 1 in all plots.

support of an FPLD is

[Q(0,λ), Q(1,λ)] =


[λ1 − λ2(1−λ3)

2λ4
, λ1 + λ2(1+λ3)

2λ5
], λ4, λ5 > 0

[λ1 − λ2(1−λ3)
2λ4

,∞), λ4 > 0, λ5 6 0

(−∞, λ1 + λ2(1+λ3)
2λ5

], λ4 6 0, λ5 > 0

.

(3.11)
The distribution is therefore capable of modelling data with several types of
support. Diurnal temperature range is always bounded below by 0, making
distributions with negative support a poor choice for modelling. This can
be avoided using an FPLD with the inequality constraints

λ1 −
λ2(1− λ3)

2λ4
> 0, λ4 > 0. (3.12)

Examples of possible shapes of the FPLD, both with finite and infinite
support, can be seen in Figures A.1 and A.2.
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3.4 Probability density function of the FPLD

The dependence between the probability density function f and quantile
function Q of a random variable with a strictly increasing CDF F is given
by

f(y)q(p) = 1, with p = F (y), (3.13)

where q(p) = dQ(p)
dp is called the quantile density function (Gilchrist, 2000).

We can prove this using the fact that

Q(F (y)) = inf{x ∈ R : F (y) 6 F (x)} = y,∀ y ∈ (Q(0), Q(1)), (3.14)

if and only if F is a strictly increasing function. This leads to the equation

dF (y)

dy

dQ(p)

dp
=

dF (y)

dy

dQ(F (y))

dF (y)
=

dF (y)

dy

dy

dF (y)
= 1. (3.15)

As discussed in Section 3.3, the CDF of the FPLD is strictly increasing in
p as long as λ2 > 0 and λ3 ∈ (−1, 1). Consequently, the result in (3.13)
holds for the FPLD, for all legal values of λ. The quantile density function
of the FPLD equals

q(p;λ) =
λ2

2

{
(1− λ3)pλ4−1 + (1 + λ3)(1− p)λ5−1

}
, (3.16)

and the corresponding probability density function equals

f(y;λ) =
2

λ2

{
(1− λ3)pλ4−1 + (1 + λ3)(1− p)λ5−1

}−1

, (3.17)

with p = F (y;λ).

The quantile density function q(p;λ) is strictly positive, as both terms
in (3.16) are strictly positive for λ2 > 0, λ3 ∈ (−1, 1). This ensures that
the probability density function is positive and bound away from infinity.

3.5 Moments of the FPLD

The rth moment of a distribution with density function f(y) is equal to

E[yr] =

∫ ∞
−∞

yrf(y)dy. (3.18)

For strictly increasing CDFs, one can substitute y with p = F (y) to get
the equation

E[yr] =

∫ 1

0

Q(p)
r
dp, (3.19)
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where y = Q(p). Using 3.6 we reparameterise the quantile function of an
FPLD to the compact form

Q(p;λ) = a+ bpλ4 − c(1− p)λ5 , (3.20)

with
b = λ2(1−λ3)

2λ4
, c = λ2(1+λ3)

2λ5
, a = λ1 − b+ c. (3.21)

Consequently, the rth power yr = Q(p;λ)
r

equals

yr =
(
a+ bpλ4 − c(1− p)λ5

)r
=

r∑
j=0

(
r

j

)
ar−j ·

(
bpλ4 − c(1− p)λ5

)j
=

r∑
j=0

j∑
k=0

(−1)
k

(
r

j

)
ar−j

(
j

k

)
bj−kckp(j−k)λ4(1− p)kλ5 ,

(3.22)

and the rth moment of the FPLD is equal to

E[yr] =

r∑
j=0

j∑
k=0

(−1)
k

(
r

j

)(
j

k

)
ar−jbj−kck

∫ 1

0

p(j−k)λ4(1− p)kλ5dp

=

r∑
j=0

j∑
k=0

(−1)
k

(
r

j

)(
j

k

)
ar−jbj−kck ·B [1 + (j − k)λ4, 1 + kλ5] ,

(3.23)

where B[x, y] = Γ(x)Γ(y)
Γ(x+y) , x, y > 0 denotes the beta function. The rth mo-

ment of an FPLD therefore exists for all parameter values λ with λ4, λ5 >
−r−1, λ2 > 0 and λ3 ∈ (0, 1). From (3.23) and (3.20) it follows that the
mean and variance of the FPLD equal

E[y] = λ1 +
λ2

2

{
−1− λ3

1 + λ4
+

1 + λ3

1 + λ5

}
, (3.24)

and

Var[y] =
λ2

2

4

{
(1− λ3)2

λ2
4

(
1

1 + 2λ4
− 1

(1 + λ4)2

)
+

(1 + λ3)2

λ2
5

(
1

1 + 2λ5
− 1

(1 + λ5)2

)
+

2
1− λ2

3

λ4λ5

(
1

(1 + λ4)(1 + λ5)
−B[1 + λ4, 1 + λ5]

)}
.

(3.25)
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3.6 Parameter transformations

Many possible parameterisations of the quantile function of the FPLD are
available. The advantage of the parameterisation in (3.6) is that it allows
for an intuitive understanding of the FPLD and its shape. However, the
parameter representation in (3.6) is not great for numerical applications.
In order to ease estimation procedures for the parameters of an FPLD, we
perform a transformation of variables. First, λ1 is replaced by the median
of an FPLD, λ∗1 = Q

(
1
2 ;λ

)
. This is inspired by the reparameterisation of a

general Pareto distribution, performed by Li, Reitan, and Stenius (2017).
The median is a highly robust statistic. Consequently, the stand-alone
estimation of λ∗1 can be performed easily. This also facilitates for easy
evaluation of any estimator for λ∗1, as the sample median can be observed
and is close to the true median of the distribution. Furthermore, we replace
λ2, . . . , λ5 with the parameters λ∗2, . . . , λ

∗
5. These new parameters can take

any values on the real line, whereas λ2 and λ3 are bounded to a finite
interval. This removes the need for some inequality constraints on the
parameters for all optimisation procedures. We get the reparameterisation
scheme

λ1 = λ∗1 −
λ2

2

{
(1− λ3)

( 1
2 )λ4 − 1

λ4
− (1 + λ3)

( 1
2 )λ5 − 1

λ5

}
,

λ2 = log(1 + eλ
∗
2 ),

λ3 =
1− eλ∗

3

1 + eλ
∗
3
,

λ4 = log(1 + eλ
∗
4 ),

λ5 = log(1 + eλ
∗
5 )− 1

2
.

(3.26)

The quantile function of an FPLD can now be rewritten as

Q(p;λ∗) = λ∗1+
g(λ∗2)

1 + eλ
∗
3

{
eλ

∗
3
pg(λ

∗
4) − ( 1

2 )g(λ
∗
4)

g(λ∗4)
−

(1− p)h(λ∗
5) − ( 1

2 )h(λ∗
5)

h(λ∗5)

}
,

(3.27)
where g(λ) = log(1 + exp(λ)) and h(·) = g(·) − 1/2. The vector of trans-
formed parameters λ∗ = (λ∗1, . . . , λ

∗
5)T is annotated with a star. This repa-

rameterisation of the FPLD limits the parameter space of λ4 and λ5 from
the real line to the intervals (0,∞) and (−1/2,∞), respectively. For an
all-purpose parameterisation of the FPLD, this is obviously a poor choice.
However, the motivation behind this parameterisation is to model diurnal
temperature range. Negative values of λ4 lead to a negative support of the
FPLD, which is not allowed. Additionally, as is discussed in Section 4.3,
our chosen estimator for the parameters of the FPLD is only consistent
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when λ4, λ5 > −1/2.
In this parameterisation, both λ2, λ4 and λ5 are transformed using the

same function, g. Using Taylor expansion, we can show that

g(x) = log(1 + ex) ≈
{
ex, x� 1
x, x� 1

. (3.28)

The exponential behaviour of g(x) for negative values of x makes it so that
large shifts in λ∗ results in small changes in λ. It is therefore harder for the
parameters λ to approach very small values. This is a desirable property
when modelling diurnal temperature range in Norway. As λ4 and λ5 grow
small and/or negative, a tiny change in the parameters can lead to much
heavier tails. Diurnal temperature range in Norway will seldom take values
much larger than ∼ 30K. Consequently, too heavy tails in the FPLD are not
desirable. The purpose of the parameterisation on λ2 is simply to ensure
that the parameter is strictly positive. However, the linear growth of λ2 for
large values of λ∗2 is advantageous, as we do not wish for the distributional
range of the FPLD to become too large. If the reparameterisation of λ2

to λ∗2 had an exponential growth for all values of λ∗2 this would severely
complicate any numerical procedures.

In all numerical implementations, the parameters λ∗ are used. However,
in the remainder of the thesis, we will mainly reference the parameters λ
from (3.6), as their interpretation is more intuitive.





Chapter 4

Inference for the FPLD

In Chapter 3, the FPLD is proposed as a model for diurnal tempera-
ture range. However, in order to perform modelling with this distribution,
we must first establish some parameter estimation methods. We present
different methods for local parameter estimation, and a method for spatial
interpolation of the FPLD. Lastly, we provide the necessary conditions for
consistency of the presented estimators.

4.1 Local parameter estimation

We present three alternatives for local parameter estimation of the FPLD.
These are maximum likelihood estimation, the method of moments and the
method of quantiles.

4.1.1 Maximum likelihood estimation

Even though there is no analytical expression for the probability density
function of an FPLD, we can estimate it numerically, using the expression
in (3.17). The log-likelihood of λ for observations y = (y1, . . . , yn)T equals

l(λ;y) =

n∑
i=1

log f(yi;λ)

= −n log
λ2

2
−

n∑
i=1

log
{

(1− λ3)pλ4−1
(i) + (1 + λ3)(1− p(i))

λ5−1
}
,

(4.1)
where p(i) = p(yi,λ) is found by solving the equation

yi = Q(p;λ), (4.2)

for p.
The maximum likelihood estimator for λ is found by maximising (4.1).

Note that, in the log-likelihood all p(i), i = 1, . . . , n depend on λ as
well as yi. The problem of maximising the likelihood is therefore much
more complex than it seems at a first glance. Additionally, since the sup-
port is constantly updated along with the parameter values (see (3.11)),



28 4.1. Local parameter estimation

the log-likelihood function takes the value of negative infinity each time
min{y1, . . . , yn} or max{y1, . . . , yn} is sent outside of the function support.
The difference between a terrible fit and the best possible fit of the data
might therefore be quite minuscule.

In practice, the maximum likelihood estimation becomes highly compu-
tationally costly. For a set of n observations, the equation p = Q−1(y;λ)
must be solved numerically n times per iteration of the chosen optimisation
scheme. This significantly slows down the algorithm for a large number of
observations. Due to the non-linearity of the log-likelihood, a large number
of iterations are also required in order to locate the maximum likelihood
estimator with sufficient precision.

4.1.2 The method of moments

Another popular approach for parameter estimation is the method of mo-
ments (e.g. Casella and Berger, 2002). This method attempts to match
empirical moments from available data with the theoretical moments of a
given distribution. As seen in Section 3.5, the rth moment of an FPLD is
an analytical expression of λ. In order to estimate λ using the method of
moments, one needs five or more empirical moments of the data. Denote
the rth moment of an FPLD as mr. The method of moments estimator for
λ is found by

λ̂ = arg min
λ

R∑
r=1

(
1

n

n∑
i=1

yri −mr

)2

, (4.3)

with R the number of moments and n the number of data. The common
approach for the method of moments is to set R equal to the number of
parameters one is estimating. Often, the parameter estimators can then
be solved analytically for m1 to mR. However, it is not possible to find
an analytical solution for the FPLD. Additionally, we find that the first
five moments are not enough to obtain estimates with high performance
for diurnal temperature range, meaning that we need to compute the first
10-20 moments of the distribution. This is problematic, as the moments of
diurnal temperature range grow exponentially with r.

4.1.3 The method of quantiles

We can apply least squares estimation to estimate the parameters of the
FPLD. For a given independent random sample y(1) 6 y(2) 6 . . . 6 y(n),
the ith order statistic can be expressed as

y(i) = E[y(i)] + εi, i = 1, . . . , n. (4.4)

The error terms have an expected value of zero. However, they are het-
eroscedastic, meaning that the variance can differ for each εi, i = 1, . . . , n.
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The error terms are not independent and do not come from a symmetri-
cal distribution. Tarsitano (2010) perform least squares estimation for the
FPLD, based on the work of Öztürk and R. F. Dale (1985). He ignores the
problems of heteroscedasticity and dependency of the error terms, as his
goal is only an approximate estimation of λ. We continue this tradition in
good conscience. The expected value of the ith order statistic is available in
closed form and can be analytically expressed for an FPLD as (Tarsitano,
2010)

E[y(i)] =λ1 +
λ2

2

{
1− λ3

λ4

[
Γ(n+ 1)Γ(i+ λ4)

Γ(i)Γ(n+ 1 + λ4)
− 1

]
+

1 + λ3

λ5

[
1− Γ(n+ 1)Γ(n+ 1− i+ λ5)

Γ(n+ 1− i)Γ(n+ 1 + λ5)

]}
.

(4.5)

One can estimate λ̂ by minimising the least squares expression

S(λ) =

n∑
i=1

(
y(i) − E[y(i);λ]

)2
, (4.6)

i.e.
λ̂ = arg min

λ
S(λ). (4.7)

The minimisation (4.7) is non-linear and difficult to perform. However, as
pointed out by Tarsitano (2005), for large samples the expected value of
an order statistic can be simplified.

E[y(i)]→ Q(pi) as n→∞, (4.8)

where pi = i/n. The quantile function of an FPLD is much easier to
minimise than the expected value of an order statistic. When one is mod-
elling diurnal temperature range with an FPLD, several years of data are
available at each weather station, meaning that we have thousands of mea-
surements. We therefore assume that the asymptotic result in (4.8) always
holds for our data. The minimisation problem (4.7) can now be simplified.
The new minimisation problem becomes

λ̂ = arg min
λ

n∑
i=1

(
y(i) −Q

(
i

n
;λ

))2

. (4.9)

A weakness of the method of quantiles is that it mainly focuses on
the bulk of the observations y. The method might return a parameter
estimator λ̂ such that Q(0; λ̂) ≮ y(1) and y(n) ≮ Q(1; λ̂), because the
fit of the model is good for the bulk of the data. This problem can be
addressed by introducing inequality constraints to (4.9), demanding that
Q(0;λ) < y(1) and y(n) < Q(1;λ).
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For minimisation of the quantile distance (4.9), we implement an op-
timisation algorithm that is a combination of the global minimisation al-
gorithm CRS (Kaelo and Ali, 2006) and the local minimisation algorithm
COBYLA (Powell, 1994), implemented in the R-package nloptr (Johnson,
2011).

The method of parameter estimation where one attempts to minimise
the distance between a set of quantiles from the data and the corresponding
quantiles from a statistical model, hereby referred to as the method of
quantiles, is not that common in applied statistics. The first mentions of the
method we have found are by Aitchison and Brown (1957). They apply the
method of quantiles for parameter estimation of the three-parameter log-
normal distribution. The method of quantiles is also known as percentile
matching. Some applications of the method are found within the financial
literature (e.g. Bignozzi, Macci, and Petrella, 2018; Sgouropoulos, Yao, and
Yastremiz, 2015). Extensive theory for the method is presented by Koenker
(2005).

Bignozzi, Macci, and Petrella (2018) state that parameter estimation
methods based on quantile matching can be preferable when distributions
are heavy-tailed or their support varies with the parameters. The support
of an FPLD varies with its parameters and becomes heavy-tailed when
λ4 or λ5 decreases. Additionally, Tarsitano (2005) performs the method
of quantiles for estimating the parameters of an FPLD, using only five
quantiles. He concludes that the method has several advantages, however,
there is no available theoretical justification for the choice of quantiles.
Our method applies n empirical quantiles, where n is the length of y.
Consequently, the problem of choosing the five best quantiles does not occur
for us. Additionally, Bhatti et al. (2018) perform the method of quantiles
on a Pareto distribution. They conclude that the method outperforms both
the method of moments and the method of maximum likelihood estimation
for the given distribution. Given that the FPLD is a combination of two
Pareto distributions, this is a promising result.

It is clear from these findings that the method of quantiles might be a
preferable choice when estimating the parameters of the FPLD. Addition-
ally, the method of quantiles can easily be combined with the method of
quantile regression, which is described in Section 4.2. For the remainder of
this thesis, we choose to focus on the method of quantiles for performing
local parameter estimation of the FPLD.

4.2 Spatial parameter estimation

The methods presented in Section 4.1 can only be applied at locations
where observations of data are already available. In order to model data
at locations without any observations, some spatial technique must be ap-
plied. We wish to express the parameters of the FPLD as functions of some
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explanatory variables. A standard approach for this kind of modelling is
to model each parameter as functions of a linear combination of some ex-
planatory variables, λji = g(xTi β

j), i = 1, . . . , n, j = 1, . . . , 5. Under such
a model, all of the local estimation methods can be applied for estimating
the regression coefficients βj . However, the resulting loss function is quite
difficult to minimise. For k available explanatory variables, the parameter
vector takes a length of 5k. The problem becomes highly computationally
costly, and optimisation procedures often gets stuck in local minima. We
have not been able to get any acceptable results using this method of pa-
rameter estimation. The method of quantiles seems to always end up in
local minima with extremely heavy tails of the FPLD, and the method of
maximum likelihood estimation is too computationally demanding.

We choose to perform spatial modelling of diurnal temperature range
in a regression framework. One possible approach consists of performing
regression separately on each of the five parameters of the FPLD. For a set
of locations, one can estimate λ locally at each location. It is then pos-
sible to perform some regression technique, independently for each of the
five parameters. However, due to the complex interactions between all of
the parameters, we have little confidence in such an approach. Figure 4.1
displays how the square distance, applied in the method of quantiles (4.9),
behaves when parameter values are slightly changed. In the left plots, a
negative change in both λ1 and λ3 of approximately 0.1 cause a change
in square distance from ∼ 0 to approximately e8. However, if the change
in λ3 is positive instead of negative, the square distance changes with ap-
proximately e4. Not only is the change in the quantile distance extremely
reactive to small changes in λ, it also depends heavily on the direction of
any changes. After having transformed the parameters from λ to λ∗, the
changes are not quite as bad. However, small changes in parameter still
lead to large changes in our loss function. Consequently, estimating each of
the parameters separately might lead to a poor model fit, as five small and
independent parameter errors added together might result in large errors
when combined.

Consequently, we perform regression on the distribution of diurnal tem-
perature range itself. Standard linear regression models assume that all re-
sponses are distributed with identical variance σ2, and attempts to model
the mean value of the response. As seen in the data exploration in Sec-
tion 2.2, the distribution of diurnal temperature range can take many differ-
ent shapes, and is highly skewed. The standard linear regression framework
cannot model such behaviour and is not an adequate solution. Another op-
tion is the method of quantile regression. This method does not place as
many assumptions on the distribution of our observations as that of stan-
dard linear regression and might, therefore, achieve a better model fit to
diurnal temperature range observations.
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Figure 4.1: For the parameter values
λ̂ = (3, 2, 0.4, 0.2, 0.1)T , 20000 data samples are simulated.
The squared quantile distance (4.9) between the simulated

data and an FPLD(λ) is calculated and displayed, for λ ∈ [λ̂−
0.5, λ̂ + 0.5]. The plots display the logarithm of the squared
quantile distance as parameters are changed pairwise. In the
plot with label λi vs λj , the difference λi−λ̂i is displayed along

the x-axis. The y-axis measures the difference λj − λ̂j . In the
right plots, labelled “Transformed parameters”, we start by
transforming λ̂ to λ̂∗, using the transformations in (3.26).
The transformed parameters are then changed pairwise in the
same fashion.

4.2.1 Quantile regression

Regression can be considered one of the great pillars of modern statistics.
In a classical regression setting, an n-dimensional vector of observations, or
responses, y = (y1, y2, . . . , yn)T are made available. For each observation, k
different numerical or categorical explanatory variables are provided. These
provide important information concerning each of the observations and are
collected in a design matrix X = (x1,x2, . . . ,xn)T , with dimension n× k.
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The response vector is modelled as a linear combination of the explanatory
variables, plus an error term. The importance of each explanatory vari-
able is decided by a regression coefficient vector, β. The classical linear
regression model can be written

y = Xβ + ε, (4.10)

where all error terms ε = (ε1, . . . , εn)T are independent and identically
distributed with E[εi] = 0 and Var(εi) = σ2, i = 1, . . . , n. The motiva-
tion behind any regression model is to gain information about data that
have not yet been observed, or possibly to examine the effects of given ex-
planatory variables on the available response. Gaining information about
unobserved data is made possible by the model assumptions, that all obser-
vations depend on the same explanatory variables with the same regression
coefficients. Already observed data are used to estimate the regression co-
efficient vector β̂, which can be used for modelling the behaviour of new
observations. In a classical linear regression model, the estimated condi-
tional mean of new observations equals Ê[ynew] = xTnewβ̂.

Sometimes, it is not enough to be able to predict the conditional mean
of new observations. In a quantile regression setting, specific quantiles in
the distribution of y is modelled, instead of the mean value. For a given
p-quantile, 0 6 p 6 1, the response is modelled as

y = Xβp + εp. (4.11)

However, the mean values of the error terms are not necessarily equal to
zero. The errors must not even be identically distributed. Instead it is
demanded that all error terms are independent, and that P (εip 6 0) = p
for all error terms in εp = (ε1p, . . . , εnp)

T . This implies

p = P (εip 6 0) = P (xTi βp + εip 6 xTi βp) = P (yi 6 xTi βp), (4.12)

meaning that
Qyi(p|β) = xTi βp (4.13)

for all i = 1, . . . , n. The estimator of βp is found from the minimisation
problem

β̂p = arg min
βp

n∑
i=1

ρp(yi − xTi βp), (4.14)

where ρp(·) is the loss function

ρp(ε) = ε ·
(
p− I(−∞,0)(ε)

)
, (4.15)
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and IA(·) is the indicator function

IA(x) =

{
1, x ∈ A,
0, x /∈ A.

(4.16)

This stems from the fact that for any random variable y, its theoretical
p-quantile, qp, is defined as

qp = arg min
q
E[ρp(y − p)]. (4.17)

The estimation procedure for β (4.14) can be considered as the empirical
equivalent to this definition of a quantile (Fahrmeir et al., 2013). Quan-
tile regression has been applied multiple times within the field of climate
science due to its absence of assumptions compared to the standard linear
regression model, and its ability to model any quantile of a distribution
(e.g. Tareghian and Rasmussen, 2013; Cannon, 2011).

The quantile function of the FPLD is a non-linear function of the param-
eters λ. One might therefore assume that the quantile regression model,
which assumes that the quantiles of the response is a linear function, is a
bad fit for modelling data that is distributed as the FPLD. However, the
quantile regression model does not assume that the entire quantile func-
tion of the response is a linear function. It merely assumes that a given
p-quantile can be modelled as a linear combination of the available ex-
planatory variables. Given the correct choice of explanatory variables, the
quantile regression therefore might be a good fit for diurnal temperature
range data, even though we assume its distribution to be that of the FPLD.

Quantile regression can also be performed using a Bayesian formulation.
Assume that all error terms εip = yi−xTi βp are independently distributed
and follows the asymmetric Laplace distribution with density

fp(ε) = p(1− p)e−ρp(ε), (4.18)

where ρp(·) is the loss function (4.15) from the standard quantile regression
procedure (Yu and Moyeed, 2001). The likelihood function of y equals

L(y|βp) = pn(1− p)n exp

{
−

n∑
i=1

ρp(yi − xTi βp)

}
, (4.19)

and we see that the value of βp that minimises (4.14) also maximises the
likelihood (4.19). The posterior distribution of βp equals

π(βp|y) ∝ L(y|βp)p(βp), (4.20)

for some appropriate prior distribution p(βp). The estimator β̂p is found
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using the expected value of the posterior distribution of βp. Calculating
the expected value of the posterior distribution (4.20) is incredibly costly.
However, this value can be estimated, using a Markov Chain Monte Carlo
method.

Methods for Bayesian statistics are often more computationally inten-
sive. However, they come with the property that one can estimate the
entire posterior distribution of some parameter, not only the mean value
or some other given statistic of the distribution. We choose to focus on the
Bayesian implementation of quantile regression.

4.2.2 Sampling from the posterior of βp

Kozumi and Kobayashi (2011) demonstrate that it is possible to simulate
from the posterior distribution of βp (4.20) using a Gibbs sampler, which
often is preferred due to its high rate of convergence. This is performed by
utilising a mixture representation of the asymmetric Laplace distribution.

Proposition (Kozumi and Kobayashi, 2011). Let z be a standard expo-
nential variable and u a standard normal variable. The random variable

ε = θpz + γp
√
zu, (4.21)

with

θp =
1− 2p

p(1− p)
, and γ2

p =
2

p(1− p)
, (4.22)

follows the asymmetric Laplace distribution with parameter p (4.18).

This can be proved by comparing the characteristic function of ε with
that of a random variable distributed according to the asymmetric Laplace
distribution (4.18). First, the characteristic function of ε is found:

φε = E
[
eit(θpz+γp

√
zu)
]

= E
[
E
[
eit(θpz+γp

√
zu) | z

]]
= E

[
ez(itθp−

1
2 t

2γ2
p)
]

=

(
1 +

1

2
t2γ2

p − itθp
)−1

.

(4.23)

Then, the characteristic function of a random variable v following the asym-



36 4.2. Spatial parameter estimation

metric Laplace distribution is calculated:

φv = E
[
eitv
]

=

∫ ∞
−∞

p(1− p) exp
{
v
(
it−

(
p− I(−∞,0)(v)

))}
dv

= p(1− p)
(∫ 0

−∞
exp {v (it− (1− p))}dv +

∫ ∞
0

exp {v (it− p)} dv

)
= p(1− p)

(
1

(1− p) + it
+

1

p− it

)
=

(
1 + t2

1

p(1− p)
− it 1− 2p

p(1− p)

)−1

=

(
1 +

1

2
t2γ2

p − itθp
)−1

.

(4.24)
The two characteristic functions are identical, meaning that the distribu-
tions of v and ε are identical.

One can now rewrite the quantile regression response y as

y = Xβp + εp = Xβp + θpz + γp
√
zu, (4.25)

where all zi and ui are mutually independent, i = 1, 2, . . . , n. Following
Kozumi and Kobayashi (2011), we assume a multivariate normal prior for
βp on the form

βp ∼ N(βp0,Bp0), (4.26)

with hyperparameters βp0 and Bp0. Yu and Moyeed (2001) show that
all posterior moments of βp exist under a normal prior. The full joint
probability density function of y, βp, and z can be expressed as

f(y,βp, z) =f(y|βp, z)f(βp)f(z)

∝

(
n∏
i=1

z
1/2
i

)
exp

{
−

n∑
i=1

(yi − xTi βp − θpzi)2

2γ2
pzi

}
×

exp

{
−1

2
(βp − βp0)TB−1

p0 (βp − βp0)

}
× exp

{
−

n∑
i=1

zi

}
.

(4.27)
The kernels of the full conditional distributions of βp and z can be ex-
tracted from (4.27). One can find that the full conditional distributions
are proportional to known distributions. The posterior distribution of βp
follows a Gaussian multivariate distribution,

[βp|y, z] ∼ N(β̂p, B̂p), (4.28)
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with

B̂−1
p =

∑n
i=1

xix
T
i

γ2
pzi

+B−1
p0 and β̂p = B̂p

{∑n
i=1

xi(yiθpzi)
γ2
pzi

+B−1
p0 βp0

}
.

(4.29)
The full conditional distribution of zi is proportional to a generalised inverse
Gaussian distribution,

[zi|y,βp, z−i] ∼ GIG
(

1

2
, aip, bp

)
, i = 1, . . . , n, (4.30)

where aip = (yi − xTi βp)
2/γ2

p , bp = 2 + θ2
p/γ

2
p . The notation z−i is used

for the vector z−i = (z1, . . . , zi−1, zi+1, . . . , zn)T . The probability density
function of a generalised inverse Gaussian variable is given by

f(z; ν, a, b) =
(b/a)ν/2

2Kν(
√
ab)

zν−1 exp

{
−1

2

(a
z

+ bz
)}

, (4.31)

where Kν(·) is a modified Bessel function of the third kind (Kozumi and
Kobayashi, 2011).

The full conditional distributions of both β and z are known parametric
distributions from which we can sample directly. It is therefore possible to
create a Gibbs sampler for estimating the posterior distributions of these
parameters. Our implemented Gibbs sampler is described in Algorithm 1.
We choose the hyperparameters βp0 = 0, and Bp0 = 10 · I, where I
is the identity matrix. No testing is performed for finding the optimal
hyperparameters.

One can generate samples from a multivariate Gaussian distribution
with mean µ and covariance matrix Σ using the Cholesky composition of
Σ (e.g. Gentle, 2009). First, generate the samples xi, i = 1, . . . , n, from the
standard Gaussian distribution N(0, 1). The number n is the length of µ.
The random vector x∗ = µ +Ax, with AAT = Σ and x = (x1, . . . , xn)T ,
is then multivariate Gaussian with mean µ and covariance Σ.

Generating data from a generalised inverse Gaussian is not as easy as
generating data from a multivariate Gaussian distribution. Several algo-
rithms are available, the most popular being that of Dagpunar (1989).
However, these methods can be quite time-consuming. We implement a
generalised inverse Gaussian sampler proposed by Hörmann and Leydold
(2014) that attempts to tackle some of the inefficiency problems of previ-
ously proposed algorithms. The sampling algorithm divides the parame-
ter space into three separate domains and performs the ratio-of-uniforms
method (e.g Gamerman and Lopes (2006)), using different upper and lower
bounds in each domain. The ratio-of-uniforms method only depends on the
algebraic kernel of a distribution, i.e. the computationally intensive calcu-
lations of the Bessel function need not be performed. The division into
three separate subdomains guarantees a low rejection constant for the entire
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Algorithm 1 Gibbs sampler

Input:

y, p, X, βp0, Bp0, β
(0)
p , z(0), max iter

Initialise:
n← length(y)
θp ← 1−2p

p(1−p)
γ2
p ← 2

p(1−p)
bp ← 2 + θ2

p/γ
2
p

Execute:
for i = 1, 2, . . . ,max iter do

B̂
(i)
p ←

{∑n
j=1

xjx
T
j

γ2
pz

(i−1)
j

+B−1
p0

}−1

β̂
(i)
p ← B̂

(i)
p

{∑n
j=1

xj(yj−θpz(i−1)
j )

γ2
pz

(i−1)
j

+B−1
p0 βp0

}
β

(i)
p ∼ N(β̂

(i)
p , B̂

(i)
p )

for j = 1, 2, . . . , n do

a
(i)
jp ← (yj − xTj β

(i)
p )2/γ2

p

z
(i)
j ∼ GIG( 1

2 , a
(i)
jp , bp)

end for
end for

Return:
β

(1)
p , . . . ,β

(max iter)
p
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parameter domain. Dagpunar (1989) also performs the ratio-of-uniforms
method. However, by not dividing the parameter space into smaller subdo-
mains, his method is not able to guarantee a uniformly bounded rejection
constant (Hörmann and Leydold, 2014).

After running the Gibbs sampler for some time, it will converge. Con-

vergence implies that all values of β
(i)
p follow the posterior distribution of

βp, for i > k. k is the iteration where the Gibbs sampler has reached con-
vergence (e.g. Gamerman and Lopes, 2006). In order to sample from the
posterior distribution of βp, one must therefore run the Gibbs sampler for
a large number of iterations. Having done so, one must create plots, similar

to those in Figure 5.5, of β
(i)
p for i = 1, 2, . . . , N . We can examine the plots

for a visual inspection of the convergence properties of the Gibbs sampler.
A cutoff-value k should be chosen, so that we believe the Gibbs sampler
has reached convergence before iteration number k. An estimator for βp is
the expected mean of the posterior distribution. This is estimated, using
the Gibbs sampler, as

β̂p =
1

N − k

N∑
i=k+1

β(i)
p , (4.32)

where N is the number of iterations of the Gibbs sampler, ans k is the
cutoff-value.

4.2.3 Interpolation of the parameters of the FPLD

Having developed regression models for different quantiles in the distribu-
tion of diurnal temperature range, we wish to further apply these in the

(yi,xi)
i = 1, . . . , n

β̂p1
...

β̂pm

λ̂0

x0

↓

Figure 4.2: Diagram of our two-step scheme for spatial in-
terpolation of the parameters of the FPLD.

estimation of the parameters of the FPLD. Advantageously, quantile re-
gression pairs well with the method of quantiles. These two methods can
be combined into a two-step procedure for interpolation of the parameters
of the FPLD. The first step of our interpolation procedure performs quan-
tile regression on observed data in order to estimate a set of regression
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coefficients

β̂p = arg min
β

n∑
i=1

ρp
(
yi − xTi β

)
, p ∈ {p1, . . . , pm}. (4.33)

A set of explanatory variables are necessary in order to perform the re-
gression with any success. Having performed the quantile regression, we
now choose any location of interest, with the explanatory variables x0. For
the second step of our interpolation scheme, the quantiles q̂pj = xT0 β̂pj are
estimated, and then applied in estimating the FPLD parameters

λ̂0 = arg min
λ

m∑
j=1

(
q̂pj −Q(pj ;λ)

)2
. (4.34)

A diagram summarising the method is displayed in Figure 4.2.

4.3 Consistency

Neither quantile regression, nor the method of quantiles are excessively
applied in the statistical literature. We therefore present some theoretical
properties of the two methods. More exactly, we present the necessary
conditions for the consistency of the resulting parameter estimators. Con-
sistency of an estimator is an asymptotic requirement on the distribution of
the estimator. As the sample size grows, a consistent estimator θ̂ converges
in probability to the true parameter θ, i.e. ||θ̂ − θ|| → 0 as n → ∞. This
should be a minimal requirement for any statistical estimator. If the esti-
mator is not consistent it cannot be trusted and other estimators should be
applied instead. After the conditions for consistent estimators have been
presented, the rate of convergence fir the consistent estimators are also
examined.

4.3.1 The method of quantiles

The method of quantiles proceeds to find the FPLD quantile function
Q(p; λ̂) that is most similar in L2 to some empirical quantile function (see
Section 4.1.3). Assume y are identically and independently distributed as
an FPLD with unknown parameters λ, i.e. yi ∼ FPLD(λ) for i = 1, . . . , n.
From y, a set of sample p-quantiles, q̂p, p ∈ {p1, . . . . , pm}, are constructed.
The method of quantiles estimator for λ is

λ̂ = arg min
λ

m∑
j=1

(
q̂pj −Q(pj ;λ)

)2
. (4.35)
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Before applying this methodology, we must first establish that the parame-
ter estimator λ̂ converges in probability to the true parameter λ. As stated
by Sgouropoulos, Yao, and Yastremiz (2015), the estimator (4.35) is the
empirical counterpart to the minimiser of∫ 1

0

{
Q̂(p)−Q(p;λ)

}2

dp, (4.36)

where Q̂(p) is the empirical quantile function of y. That is to say, if m
approaches infinity, then the sum in (4.35) will approach the integral in
(4.36). If we can show that (4.36) converges to zero as n→∞, then so will
(4.35) converge to zero as n,m→∞. The following theorem is stated:

Theorem 1 (Shorack and Wellner, 2009). Assume that the observations
y = (y1, . . . , yn)T are i.i.d. according to some distribution F . The empirical
distribution function of y is Fn(y) =

∑n
i=1 I[yi,∞)(y). Denote

d(Fn, F ) =

[∫ 1

0

(
F−1
n (t)− F−1(t)

)2
dt

]1/2

. (4.37)

Then, d(Fn, F )→ 0 as n→∞ if and only if both

Fn
d−→ F and

∫ 1

0

[
F−1
n (t)

]2
dt→

∫ 1

0

[
F−1(t)

]2
dt. (4.38)

These conditions hold for i.i.d. random variables from an FPLD. The
first condition, that Fn

d−→ F , holds directly from the Glivenko-Cantelli

theorem (Shorack and Wellner, 2009). The integral
∫ 1

0

[
F−1(t)

]2
dt is, by

definition, equal to the second moment of y, E[y2]. As previously demon-
strated in Section 3.5, the second moment of an FPLD with parameters
λ exists if λ4, λ5 > −1/2. As long as the second moment of y exists,∫ 1

0

[
F−1
n (t)

]2
dt →

∫ 1

0

[
F−1(t)

]2
dt is a direct consequence of the fact that

Fn
d−→ F . Thus, for λ4, λ5 > −1/2 the sum in (4.35) converges to zero for

the true value of λ.

In some situations, direct observations might not be available, but a
finite set of quantiles is. The question arises then, whether the estimator
from the method of moments still consistent as only n→∞, while m is con-
stant. Koenker (2005) claims that this is true, provided that all estimated
quantiles are consistent. Given m quantiles Q(p;λ), p = (p1, . . . , pm)T

and their estimators q̂p, assume that the estimated quantiles converges in
distribution to the true quantiles,

√
n(q̂p − Q(p;λ))  N (0,Ω(λ)) and

the functions Q(·;λ) and Ω(λ) satisfy some natural continuity and rank
conditions. Under these assumptions, Koenker (2005) claims that

√
n(λ̂− λ) N (0,Σ), (4.39)
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with
Σ = (JTJ)−1JTΩJ(JTJ)−1, (4.40)

and

J = ∇λQ(p;λ) =


∂Q
∂λ1

(p1) · · · ∂Q
∂λ5

(p1)
...

. . .
...

∂Q
∂λ1

(pn) · · · ∂Q
∂λ5

(pn)

 . (4.41)

The gradient of the quantile function of the FPLD, for a single value of p,
equals

∇λQ(p;λ) =



1
1
2

{
(1− λ3)p

λ4−1
λ4
− (1 + λ3) (1−p)λ5−1

λ5

}
−λ2

2

{
pλ4−1
λ4

+ (1−p)λ5−1
λ5

}
λ2

2 (1− λ3)p
λ4 (λ4 log p−1)+1

λ2
4

−λ2

2 (1 + λ3) (1−p)λ5 (λ5 log(1−p)−1)+1
λ2
5


. (4.42)

From (4.41) and (4.42) it is clear that the matrix J has full rank if five or
more unique p-quantiles are provided. Consequently, JTJ is non-singular.
As λ4 and λ5 converges to zero, the gradient converges to

lim
λ4,λ5→0

∇λQ(p;λ) =


1

1
2 {(1− λ3) log p− (1 + λ3) log(1− p)}

−λ2

2 {log p+ log(1− p)}
3λ2

4 (1− λ3)(log p)2

− 3λ2

4 (1 + λ3)(log(1− p))2

 ,

(4.43)
i.e. the determinant of J is bounded away from infinity for all values of λ
and p /∈ {0, 1}. Consequently, the determinant |Σ| is also bounded away
from infinity. Thus, as the estimated quantiles converge to the true quantile
values, so does λ̂ converge to λ.

4.3.2 Quantile regression

Assume that the vector y takes the form

yi = xTi βp + εip, i = 1, . . . , n, (4.44)

with independent, but not necessarily identically distributed, errors εip
such that P (εip 6 0) = p. The pth conditional quantile of yi then equals

Qyi(p) = xTi βp. (4.45)
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We want to find the conditions so that the quantile regression estimator β̂p
from (4.14) converges in probability to the true value, βp, i.e. ||β̂p−βp|| → 0
as n → ∞. Koenker (2005) performs an extensive analysis of quantile
regression, and presents three conditions that together are necessary and
sufficient for consistency of β̂p.

Condition 1 (Koenker, 2005). Given that the pth quantile function of
y|X takes the form (4.45) with the conditional distribution functions Fi of
yi, i = 1, . . . , n, the conditional distribution functions satisfy

√
n(an(δ)− p)→∞ and

√
n(p− bn(δ))→∞,

for all δ > 0 as n→∞, with

an(δ) = n−1
n∑
i=1

Fi(x
T
i βp − δ)

bn(δ) = n−1
n∑
i=1

Fi(x
T
i βp + δ).

Condition 2 (Koenker, 2005). There exists d > 0 such that

lim inf
n→∞

inf
‖u‖=1

n−1
n∑
i=1

I[0,d)

(
|xTi u|

)
= 0.

Condition 3 (Koenker, 2005). There exists D > 0 such that

lim sup
n→∞

sup
‖u‖=1

n−1
n∑
i=1

(xTi u)2 6 D.

Under Conditions 1, 2 and 3, the estimator β̂p converges in probability
to βp. Condition 1 is the only condition on the distribution of y. It holds
for any random vector y such that the cumulative distribution functions
are strictly increasing functions. As seen in Section 3.4, the cumulative dis-
tribution function of an FPLD is strictly increasing if we put constrictions
on λ2 and λ3, meaning that Condition 1 holds for the FPLD. Conditions 2
and 3 are discussed further in Section 4.3.3, as these depend on the specific
choice of the design matrix.

The rate of convergence of β̂p is also examined by Koenker (2005). In
the setting of linear quantile regression with i.i.d. sampling, he proposes
two conditions for establishing the rate of convergence.

Condition 4 (Koenker, 2005). The distribution functions Fi of yi, i =
1, . . . , n, are absolutely continuous, with continuous densities fi uniformly
bounded away from 0 and ∞ at the points fi(Qi(p)).
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Condition 5 (Koenker, 2005). There exist positive definite matrices D0

and D1p such that

(i) limn→∞ n−1
∑n
i=1 xix

T
i = D0,

(ii) limn→∞ n−1
∑n
i=1 fi(Qi(p))xix

T
i = D1p,

(iii) maxi=1,...,n ‖xi‖ /
√
n→ 0.

Under Conditions 4 and 5, the estimator of β converges with the fol-
lowing rate:

√
n(β̂p − βp) N

(
0, p(1− p)D−1

1p D0D
−1
1p

)
. (4.46)

In Section 3.4, we find that the probability density function of the FPLD
is bounded away from infinity. Additionally, the probability density func-
tion can only equal zero when p ∈ {0, 1}. Consequently, Condition 4 holds
for data that are distributed according to the FPLD, when neither the
minimum-quantile nor the maximum-quantile are included in the quantile
regression. Condition 5 is mostly a reformulation of Conditions 2 and 4. If
a matrix A ∈ Rk×k is positive definite, then yTAy > 0 ∀ y ∈ Rk. We get

yT

(
1

n

n∑
i=1

xix
T
i

)
y =

1

n

n∑
i=1

(
yTxi

)2
> 0, (4.47)

and

yT

(
1

n

n∑
i=1

fi(Qi(p))xix
T
i

)
=

1

n

n∑
i=1

fi(Qi(p))
(
yTxi

)2
> 0. (4.48)

Strictness of the inequalities in (4.47) and (4.48) is guaranteed if Condi-
tions 2 and 4 holds. Condition 2 ensures that

∑n
i=1(yTxi)

2 > 0, while
Condition 4 ensures that fi(Qi(p)) > 0 ∀ i = 1, . . . , n. Part (iii) of Con-
dition 5 holds whenever the maximum row of the design matrix does not
converge to infinity.

Having established the rate of convergence for β̂p, and using the fact

that q̂p = xT β̂p, we are able to identify the matrix Ω in the rate of conver-

gence of λ̂ in (4.40) as

Ω =


Ω1 0 · · · 0
0 Ω2 · · · 0
...

...
. . .

...
0 0 · · · Ωm

 , (4.49)

where
Ωi = pi(1− pi)xTD−1

1pi
D0D

−1
1pi

x. (4.50)
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Consequently, the rates of convergence of β̂p and λ̂ change with the values

of p and x (and λ, in the case of λ̂), but both schemes are consistent given
that the conditions on the design matrix and data observations hold.

4.3.3 Discussion of assumptions

Several of the conditions necessary for consistency of the estimators from
the method of quantiles and the quantile regression put constraints on the
choice of design matrix and responses. These constraints are not unreason-
able and will hold for most standard applications. However, it is important
to justify whether the conditions hold in the case of modelling diurnal tem-
perature range using the FPLD.

In order to guarantee consistency of the quantile regression estimators,
we assume that all observations can be written on the form yi = xTi βp+εip,
from (4.45). This is the standard assumption in a quantile regression frame-
work. We feel safe in assuming that the data takes this form, for some choice
of explanatory variables X. We cannot, however, claim that all observa-
tions at a given location are i.i.d. Climate is usually correlated in time. It
is therefore likely that observations that are close in time will display some
clear dependencies. Since we have chosen not to focus on modelling diur-
nal temperature range in time, we have to accept some inaccuracies. It is
our belief that the temporal dependencies within each season are unable to
considerably affect the general spatial trends of diurnal temperature range.
We therefore choose to ignore the possible dependencies between the error
terms. Conditions 1, 2 and 3 must hold in order to guarantee consistency.
As discussed in Section 4.3.2, Condition 1 holds for data that is distributed
following the FPLD. Condition 2 holds whenever the rows of the design
matrix X consist of a finite set of vectors that are equal under scaling, i.e.
xi = bxj , b ∈ R. We interpret n → ∞ so that not only the number of
observations per location goes to infinity, but the number of locations in
itself also goes to infinity. In this situation, Condition 2 holds. Condition
3 ensures that the growth of the design matrix is controlled as n → ∞.
This holds for a design matrix consisting of real-world location and climate
data. The same can be said for Condition 5.

We have chosen to implement a Bayesian quantile regression framework
based on the work of Yu and Moyeed (2001) and Kozumi and Kobayashi
(2011). The formulation in (4.18) places some additional assumptions on
εip, namely that all errors are i.i.d. as an asymmetric Laplace distribu-
tion. This is not true for our data, which we assume to be distributed as
the FPLD. Furthermore, we assume that the distribution of diurnal tem-
perature range differs in space, meaning all our data are not identically
distributed. Yu and Moyeed (2001) claim, based on empirical findings,
that one can apply this framework no matter the original distribution of
the data. Since then, this framework has been applied extensively and with
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much success for data with a variety of underlying distributions (e.g. Lum,
Gelfand, et al., 2012; Rodrigues and Fan, 2017). The posterior consistency
of a Bayesian quantile regression under a misspecified asymmetric Laplace
distribution is examined by Sriram, Ramamoorthi, Ghosh, et al. (2013).
They find that consistency of the regression estimator holds under some
quite mild conditions on the design matrix, for a large group of true distri-
butions of the response, including location- and scale-models. We therefore
assume that the use of an asymmetric Laplace distribution as a prior on the
error terms is unable to substantially influence the results of our quantile
regression.







Chapter 5

Simulation studies

In Section 4.3, we find that our chosen methods obtain consistent esti-
mators for a reasonable choice of the design matrix and data. Additionally,
the rate of convergence for the methods are found. Unfortunately, we are
not able to find the matrices D0 or D1p in practice. In order to test the
performance of our proposed methods we perform some simulation studies.
For several different scenarios, we simulate data from distributions with
known parameters. The already known parameters are then estimated us-
ing simulated data and the method of quantiles or quantile regression. The
correctness and rate of convergence of the estimators are evaluated.

5.1 The method of quantiles

Different values of the parameter vector λ are chosen. For each vector, we

simulate 100 different realisations of y
(j)
ni = (y

(j)
1 , . . . , y

(j)
ni )T , j = 1, . . . , 100.

This is performed for a set of different lengths ni, i = 1, . . . ,m. The

estimators λ̂
(j)
ni are found using the method of quantiles, from Section 4.1.3,

for each realisation y
(j)
ni , i = 1, . . . ,m, j = 1, . . . , 100. Credible intervals

for λ̂ are then created and displayed for each of the realisation lengths, ni.
Figure 5.1 displays the results of the simulation study for the parameter
value λ = (6, 3, 0.5, 0.2, 0.4)T . It is clear that the estimated parameters
converge to the true parameters as ni → ∞. The rate of convergence for
the estimator is quite low. This is due to the fact that the approximation
F (y(i)) = i/n converges slowly. If we replace y(i) with the quantile function

for the true parameter, Q( in ;λ), the method of quantiles returns the exact
true parameter λ almost all of the time and for all values of n > 5.

Results from the simulation study do not always look as good as those
in Figure 5.1. An example can be seen in Figure 5.2. Further testing
finds that the applied optimisation algorithm sometimes gets stuck in local
minima, which can cause sudden spikes in the size of the credible intervals,
like those seen in Figure 5.2. In Figure 5.3, all 100 estimated parameters
from Figure 5.2 are plotted for each of the realisation lengths. We see that
as n grows, estimated values are not spread out evenly but clearly focused
in separate areas. For λ3, e.g., there are no estimated parameters between
λ3 = 0 and λ3 = −0.5, but at λ3 = −0.5, several estimated values are



50 5.1. The method of quantiles

Figure 5.1: Convergence plots for λ̂, found using the method
of quantiles. For a given sample size, 100 realisations of
data are simulated from an FPLD with parameters λ =
(6, 3, 0.5, 0.2, 0.4)T . The parameters are estimated for each
data sample. The medians of all estimated parameters are
plotted with solid black lines. The true values of the parame-
ters are displayed using red lines. The 0.05- and 0.95-quantiles
of the estimated parameters are displayed using dashed lines.

found. This implies that there exist local minima where the optimisation
algorithm gets stuck. We find that, when one of the estimated parameters
have a large error, the other four are likely to have large errors as well.
The red dots in Figure 5.3 display some examples of erroneous parameters
that have been estimated together. Even though some of the red dots are
close to their true parameter values, most of them are far away from their
corresponding correct values. This implies that the problem might lie in
our chosen optimisation algorithm, described in Section 4.1.3, and not in
the estimation procedure in itself. The problem therefore might be fixed
using some other optimisation tools. However, it is difficult to say for sure
what may cause these problems. Estimating a credible interval using only
100 simulations is not optimal either. However, computations grow time-
consuming as n increases. It is possible that the credible intervals would
behave better if more simulations were performed.

The method of quantiles is also tested when only a small set of quantiles
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Figure 5.2: Convergence plots for λ̂, found using the method
of quantiles. For a given sample size, 100 realisations of
data are simulated from an FPLD with parameters λ =
(4, 2,−0.1, 2, 0.6)T . The parameters are estimated for each
data sample. The medians of all estimated parameters are
plotted with solid black lines. The true values of the parame-
ters are displayed using red lines. The 0.05- and 0.95-quantiles
of the estimated parameters are displayed using dashed lines.

are available. We simulate nsample samples from the FPLD with parameters
λ = (4, 3, 0.1, 0.7, 0.2)T . A set of nq evenly spaced sample quantiles qpi are
calculated, for pi = i/(nq + 1), i = 1, . . . , nq. The method of quantiles
is applied, using the nq sample quantiles, in order to estimate λ. This
procedure is repeated 100 times, and for several combinations of nsample and
nq. For each value of nsample and nq, 95%-credible intervals are estimated

for λ̂. Figure 5.4 displays the width of these intervals. The true parameter
value is contained within all of the displayed credible intervals. We interpret
nsample as a measure for the accuracy of the sample quantiles. It is clear
from all figures that the performance of the method of quantiles increases
with the number of sample quantiles, and the correctness of these. However,
the contours in the plots do not take the shape of ellipses. The shapes are
more those of rounded rectangles. This indicates that, if nsample is small,
i.e. the errors of the estimated quantiles are large, the performance of the
method of quantiles cannot be improved much by simply increasing nq, and
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Figure 5.3: Different values of λ̂, found using the method
of quantiles. For a given sample size, 100 realisations of
data are simulated from an FPLD with parameters λ =
(4, 2,−0.1, 2, 0.6)T . The parameters are estimated for each
data sample. The true values of the parameters are displayed
using red lines. Red dots display parameter values that have
been estimated together for different sample sizes.

vice versa.

5.2 Quantile regression

In order to test the performance of our quantile regression on data that
is distributed according to an FPLD, we make use of the compact form
FPLD from (3.20). If we fixate the values of λ4 and λ5, the FPLD can be
written on the linear form

Q(p) = β1p · a+ β2p · b+ β3p · c, (5.1)

with
β1p = 1, β2p = pλ4 , β3p = −(1− p)λ5 , (5.2)

and
b = λ2(1−λ3)

2λ4
, c = λ2(1+λ3)

2λ5
, a = λ1 − b+ c. (5.3)
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Figure 5.4: Convergence plots for λ̂, found using the method
of quantiles. For a given sample size, and a given number of
quantiles, 100 realisations of data are simulated from an FPLD
with parameters λ = (4, 3, 0.1, 0.7, 0.2)T . Credibility intervals

for λ̂ are constructed for each value of nq and nsample. The
width of each credible interval is displayed in a raster plot for
each of the parameters λ1, . . . , λ5. Contours are added on top
of each plot. The true parameter value λ is found inside all
the credibility intervals for λ̂.

We can now simulate data yi from the quantile functions
Q(p) = aiβ1p + biβ2p − ciβ3p, for i = 1, . . . , n, where ai, bi and ci can take
any arbitrary values. We perform quantile regression on simulated data for
varying sample sizes, and test whether the estimated regression coefficients
β̂p are equal to the true parameters in (5.2). Figure 5.5 displays credible
intervals for all three regression coefficients for different values of p. As the
sample size increases, the credible intervals quickly become very small. It
is clear that this result does not mean that a quantile regression is perfect
for modelling the FPLD, as any non-linear effects are removed by fixating
λ4 and λ5. This is, however, a clear indication that the method is able to
model changes in different quantiles with high performance.
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Figure 5.5: For a set of p-quantiles, the values ai, bi and ci,
i = 1, . . . , n, are drawn uniformly from the intervals [−10, 10],
[0.1, 12] and [0.1, 13], respectively. Data yi are then simulated
using (5.1). A Bayesian quantile regression is performed on
the data in order to estimate β1, β2 and β3. The Gibbs sam-
pler, described in Section 4.2.2, is run for 600 iterations, and
the first 200 iterations are removed. This entire procedure is
repeated 100 times. From the resulting 100 · 400 samples of
each β, credible intervals are created and displayed for each
value of n and p. The mean of the β-samples are plotted using
black solid lines. The true values of the βs are plotted using
coloured solid lines. λ4 and λ5 are fixated to the values 0.4
and 1.5, respectively.







Chapter 6

Case study: Diurnal
temperature range in Norway

Having established methods for parameter estimation of the FPLD, we
apply these to the data described in Chapter 2. The modelling of diurnal
temperature range is divided into three parts. In Section 6.2, the method
of quantiles is applied for local parameter estimation of the FPLD at all
55 weather stations, separately. In Section 6.3, we perform quantile regres-
sion of diurnal temperature range, without any parameter estimation of
the FPLD. Two quantile regression models with different explanatory vari-
ables are fitted to the observations of diurnal temperature range, and the
results are evaluated. In Section 6.4, quantile regression and the method
of quantiles are combined for spatial interpolation of the parameters of
the FPLD at all weather stations. The quantile regression is performed
for locations with and without available observations of diurnal temper-
ature. Eventually, all our different estimation methods are compared in
Section 6.5. Evaluation of the developed models are performed using tech-
niques described in Section 6.1. Modelling of diurnal temperature range is
always performed separately for each of the four seasons of the year.

6.1 Evaluation

In order to model diurnal temperature range we must first define some
methods for evaluating our results. For a first evaluation we examine dif-
ferent quantiles of the model fit. The spatial models are also evaluated
using cross-validation, in order to test their properties for parameter esti-
mation at locations without available temperature observations. Finally, a
competing model for the median of diurnal temperature range, with spatial
random effects, is created and compared with our chosen models.

6.1.1 Evaluation of quantiles

As both the method of quantiles and the quantile regression are performed
by describing key quantiles of a statistical distribution, quantile-quantile
plots appear as an obvious approach for qualitative evaluation. Quantile-
quantile plots are created by pairwise plotting of estimated quantiles against
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the quantiles of the true distribution. In this case, the true quantiles are
represented by sample quantiles from the available observations of diur-
nal temperature range. If the quantiles are estimated correctly, they will
obtain the same values as those of the available observations. The quantile-
quantile plot then simply displays several dots that follow a straight line
with slope 1. If, however, the estimation procedure is not correct, points
in the quantile-quantile plot will not coincide with the straight line.

We examine the estimated median of diurnal temperature range, and
find the discrepancies between the estimated medians and the sample me-
dians at all weather stations,

di = m̂i −mi, (6.1)

where mi is the median at weather station number i for a given season,
and m̂i is its estimator. The sample median is a highly robust statistic,
meaning that the value is close to the true median of the distribution of
diurnal temperature range. As discussed in Section 3.6, the parameter λ∗1 is
identical to the median of the FPLD. Consequently, we are able to partially
evaluate the estimator λ̂ by comparing the estimated value of the median
with the sample median of the available data. Obviously, an evaluation of
the median exclusively, is not able to provide us with a complete evaluation
of our estimation procedures. In general, we are interested in estimating
quantiles for all possible quantiles and not only the median. However, from
the data exploration in Section 2.2, we have found the spatial patterns of
all quantiles of diurnal temperature range to be quite similar. Additionally,
errors in the tails of the distribution of diurnal temperature range might be
affected by a lack of data or other extreme events that are not accounted
for. The median is not affected by such problems and is a better choice for
an early examination of modelling errors. The estimator is therefore perfect
for comparisons of different estimation methods, and for easy detection of
flaws in our models.

6.1.2 Cross-validation

The aim of the quantile regression is to model diurnal temperature range in
locations where no temperature observations are available. It is therefore
of great importance to test the method using out-of-sample estimation.
out-of-sample estimation means that we estimate λ̂ for a given location
without including any data from that location in the estimation procedure.
The opposite of out-of-sample estimation is in-sample estimation, meaning
that data from the given location is included in the estimation procedure.
Cross-validation is performed for evaluation of the out-of-sample estimation
properties of our chosen methods.

Cross-validation is a commonly used method for evaluating the perfor-
mance of statistical learning methods (e.g. James et al., 2013). In order



Chapter 6. Case study: Diurnal temperature range in Norway 59

to perform cross-validation, a small number of weather stations are re-
moved from the available data. Data from the remaining stations are used
to estimate all regression coefficients β̂p. Due to the model assumptions,
the estimated regression coefficients should fit the data from the removed
weather stations as well. Consequently, quantiles are estimated at all left-
out weather stations, and we estimate λ̂ for each of these. We can now
compare the fit of the quantile regression model and the FPLD at both the
left-out stations and at those that were included in the estimation proce-
dure for β̂p. This is repeated multiple times, for ensuring that the model
fit are evaluated both in-sample and out-of-sample at all weather stations.
We remove five randomly selected weather stations each time.

6.1.3 Comparison of competing models

Several methods have been developed. The method of quantiles can be ap-
plied for local parameter estimation of the FPLD, while a combination of
quantile regression and the method of quantiles can be applied for spatial
parameter estimation of the FPLD. The spatial parameter estimation can
be performed both in-sample and out-of-sample. Weaknesses in these meth-
ods can be evaluated by comparing the results from the different methods
against each other.

Another potential weakness in our proposed spatial estimation scheme
is that no spatial random effect is included for modelling diurnal tempera-
ture range. It is an obvious fact that observations of diurnal temperature
range that are close in space are stronger correlated than observations that
are far away from each other. Incorporation of such features of spatially
correlated data when modelling climate data is important and can improve
the performance of our estimation techniques. Consequently, we wish to
evaluate how much our estimation procedure might gain from incorporating
a spatial random effect, in addition to the spatial fixed effects already in-
cluded in the quantile regression model. A competing model for estimation
of the median of diurnal temperature range is constructed. Denote the me-
dian of diurnal temperature range as m. We wish to model the median with
a spatial random field, at the geographical coordinates s = (sT1 , . . . , s

T
n )T .

The spatial random field model for m = (m1, . . . ,mn)T is similar to that
of a standard regression model. The expected value of mi is equal to
µ(si,β) = xTi β, where xi are the explanatory variables from the location
si and β is a regression coefficient vector. However, in a spatial random
field model, there are two different error terms. The median values equal

m(s;β,Σ(s), σ2) = µ(s;β) + εs(s; Σ(s)) + ε0(σ2). (6.2)

The error term εs is a multivariately distributed Gaussian random vari-
able, with mean zero and covariance matrix Σ(s), representing the spatial
random component of the model. The standard error terms ε0 are also
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included. ε0i is a univariately distributed Gaussian random variable with
mean zero and variance σ2 for i = 1, . . . , n. The covariance matrix Σ(s)
ensures that observations which are close in space are more correlated than
those far away from each other (Omre, 2018). We model the median of di-
urnal range with a Gaussian random field with a Matern covariance matrix.
All model parameters are estimated using maximum likelihood estimation.
The optimisation is performed using the R-package geoR (Ribeiro Jr and
Diggle, 2018; R Core Team, 2018).

Five different methods, with different strengths and weaknesses, are now
available for estimating the median of diurnal temperature range at a given
weather station. These are described in Table 6.1. We can compare the
results from all models to evaluate how different model deficiencies might
effect our results.

6.2 The method of quantiles

The parameters of the FPLD are estimated locally at all weather stations,
for all seasons, using the method of quantiles from in Section 4.1.3.

In Figure 6.1, the fitted FPLD is plotted with observations of diurnal
temperature range for different locations and seasons. The observations
are the same as those found in Figure 2.4. It is clear from these plots that
the FPLD can take many shapes. For almost all weather stations, the fit
of the distribution to observed data is quite satisfactory. For a few weather
stations and some seasons, the fitted FPLD does not agree well with the
observed temperature range. One example of this is the model fit at Hov-
den for winter (lower right plot in Figure 6.1). This is also an example of
a case where the support of the fitted FPLD is unable to cover all observa-
tions of diurnal temperature range, as discussed in Section 4.1.3. Inequality
constraints demanding that Q(0;λ) < y(1) and y(n) < Q(1;λ) have been
added in the optimisation scheme for the method of quantiles. However,
our chosen optimisation algorithm only considers these constraints as soft
constraints, i.e. failures to upheld the constraints are justified if the corre-
sponding loss in the quantile distance is large enough. Another choice of
optimisation algorithm might lead to other results where the constraints on
the support hold, but the overall fit to data is worse. Still, these constraints
hold for most locations and seasons.

For each weather station and season, quantile-quantile plots are made
for the fitted FPLDs against observations of diurnal temperature range.
Figure 6.2 displays the corresponding plots for the estimated distributions
from Figure 6.1. Even for the challenging shape of diurnal temperature
range seen at Hovden, most of the quantiles are fitted well to the data
and problems only occur in the tails. This seems to hold for all available
weather stations.
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Method Description
Spatial interpolation, in-
sample (SI)

Spatial interpolation of λ, and thus λ∗1,
using quantile regression and the method
of moments. Estimation is performed in-
sample.

Spatial interpolation, out-
of-sample (SO)

Spatial interpolation of λ, and thus λ∗1, us-
ing quantile regression and the method of
moments. Parameters are estimated out-
of-sample. Of the 55 weather stations, 5
stations are left out in training the method.
Parameters are then estimated for the five
left-out stations only.

Median-field (MF) A Gaussian spatial random field with a
Matern correlation matrix is created for
the median. The median is estimated out-
of-sample, in the same way as the spatial
interpolation method (SO).

Quantile regression (QR) Median regression, i.e. quantile regression
with p = 0.5, is performed. All explana-
tory variables from Table 6.2 are applied
for the modelling. The median is estimated
out-of-sample, in the same way as the spa-
tial interpolation method (SO).

Local parameter estima-
tion (L)

Local estimation of λ is performed at each
weather station, separately. Estimation is
performed using the method of quantiles.
Estimation is performed in-sample.

Table 6.1: Five different methods for estimation of the me-
dian of diurnal temperature range at a given weather station,
for a given season.

6.3 Quantile regression

Bayesian quantile regression, as described in Section 4.2, is performed on all
observations of diurnal temperature range data. Explanatory variables are
chosen such that they are available from geographical information systems.
In addition, information concerning daily mean temperature is included, as
this is available at all weather stations where the diurnal temperature range
has been observed. All of the explanatory variables from Figure 2.7 are cho-
sen for modelling of diurnal temperature range, as there are clear signs of
dependencies between these variables and the quantiles of our tempera-
ture range observations. These are described in Table 6.2. Two different
quantile regressions are fitted to the diurnal temperature range data. We
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Figure 6.1: Histograms displaying observed diurnal tem-
perature range are plotted along with the probability den-
sity functions of FPLDs with parameters estimated using the
method of quantiles. All data are collected from the period
01/01/1989 - 31/12/2018. Selected seasons and locations are
indicated above each plot.

first develop a purely geographical model, using β0, . . . , β4 only. Then, the
temperature information is included for a second regression model. Thus,
for any p ∈ (0, 1), we develop the following quantile regression models:

yi = xTi βp+εip, xi = (1, x1, x2, . . . , xk)T , βp = (β0p, β1p, . . . , βkp)
T , (6.3)

where yi, i = 1, . . . , n, is an observation of diurnal temperature range, and
k ∈ {4, 6}. βp and xi are the corresponding regression coefficients and
explanatory variables, described in Table 6.2 and εip is an error term, de-
scribed in (4.11). Geographical information like longitude and the distance
to the sea can easily be found for any location of interest, using map-data
available online. One might argue that observations of daily mean tem-
perature are unavailable at most locations in general. However, while the
statistical literature on modelling diurnal temperature range is lacking, a lot
of effort and success has been put into the modelling of mean temperature
(e.g. Maraun and Widmann, 2018; Haylock et al., 2008). We assume that
there already exists satisfactory spatial and temporal models for Norway,
which are able to describe the historical mean and variance of daily mean
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Figure 6.2: Quantile-quantile plots displaying observed di-
urnal temperature range against FPLDs with parameters es-
timated using the method of quantiles. Quantiles are plotted
for p ∈ {0.001, 0.002, . . . , 0.999}. All data are collected from
the period 01/01/1989 - 31/12/2018. Selected seasons and
locations are indicated above each plot.

temperature between 1989 and 2018 with a high performance. The Nordic
Gridded Climate Data Set version 2 (Lussana, Tveito, and Uboldi, 2018),
e.g., is able to model mean temperature quite successfully, even though
its modelling of daily minimum and maximum temperature suffers from
several inconsistencies. Accordingly, all explanatory variables can easily be
provided at any location in Norway.

In order to perform quantile regression, we must first test the Gibbs
sampler for convergence, as described in Section 4.2.2. For several different
quantiles, output of βp from each iteration is examined. We find that the
Gibbs sampler has reached convergence within approximately 100 iterations
for all seasons. This holds for both the purely geographical model and
the model with added temperature information. Output from the Gibbs
sampler is displayed in Figure 6.3. Based on these findings, we choose to
run the algorithm for 600 iterations, and remove the first 150 iterations
each time, when modelling diurnal temperature range. From the plots we
find that the most important explanatory variables for winter seem to be
the information concerning the mean daily temperature, and the intercept.

We apply the purely geographical quantile regression model to diurnal
temperature range data. The model is fitted to data from all weather
stations, for each season. The estimation of β̂p is performed in-sample,

meaning that no data is left out during the estimation procedure for β̂p.
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Explanatory variable Corresponding re-
gression coefficient

Intercept β0

Longitude β1

Latitude β2

Altitude β3

Distance to the sea β4

Historical mean of daily mean temperature β5

Historical variance of daily mean temperature β6

Table 6.2: The explanatory variables applied in our quantile
regression model, and their corresponding regression coeffi-
cients.

Results of the median regression model, i.e. quantile regression with p = 0.5,
are displayed in Figure 6.4. It is clear that the model is able to capture
many of the spatial patterns of diurnal temperature range. However, the
model fit is not perfect. The model seems unable to capture large differences
in temperature range over small distances. Observe, e.g., that there is a
considerable jump in the median of diurnal temperature range as we move
from weather stations along the coast to those further inland. This jump
is not found in the fitted model.

Relative discrepancies are calculated as the difference between the es-
timated medians and the sample medians of diurnal temperature range,
divided by the sample medians, i.e.

drel,i =
m̂i −mi

mi
=

di
mi

. (6.4)

The absolute values of the relative discrepancies between the estimated
medians and sample medians from Figure 6.4 are displayed in Figure 6.5.
We find that most relative median discrepancies for the winter model take
values of approximately 10 − 15%, with some values reaching as high as
40%. For the summer model, the results are worse. Along the southern
coast of Norway, most relative median discrepancies take values of 25−30%
or more, with some reaching values of more than 50%. The densities of all
median discrepancies from all seasons are displayed in Figure 6.6. Both
relative and actual discrepancies are displayed.

The model performance is lower for the spring and summer months. It
is not immediately evident what cause these differences in performance. In
Section 2.2 we find that diurnal temperature range often take higher values
during spring and summer, as demonstrated for four different stations in
Figure 2.2. This is also clear from Figure 6.6, where the distributions of
relative median discrepancies are much more similar between all seasons
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Figure 6.3: Output from the Gibbs sampler of our quan-
tile regression model with all the explanatory variables from
Table 6.2. The model is fitted to data from all 55 weather
stations for nine different p-quantiles. All data are collected
from the winter months each year between 1989 and 2018. All
coefficients are standardised, i.e. each row of the design ma-
trix are subtracted by their mean and divided by their sample
standard deviation.

than those of the standard median discrepancies. Thus, larger values of
diurnal temperature range seems to lead to larger errors. The variability in
diurnal temperature range is also higher during summer and spring. This
is clearly seen in Figure 2.3. During autumn and winter, the modes are
more concentrated, and there is less variability in the skewness of diurnal
temperature range than during spring and summer. This can make it more
difficult to correctly model the quantiles of diurnal temperature range at
all weather stations. Studying the median of diurnal temperature range in
Figure 2.5, we also see that the variability in space is higher during summer
and spring than for the other two seasons.

We calculate the mean of the medians of diurnal temperature range
over all weather stations. The mean is then subtracted from all locations,
and new median values are calculated. We denote these as standardised
medians. The standardised medians are displayed in Figure 6.7. A blue
dot represents a negative value, while red dots represent positive values.
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Figure 6.4: Median regression is performed in-sample for di-
urnal temperature range, using the data from all 55 weather
stations. The data consist of diurnal temperature range for
the years 1989 - 2018. The left plots consist of summer
data, and the right plots consist of winter data. Lower plots
display sample medians of diurnal temperature range. The
upper plots display estimated medians from the purely geo-
graphical quantile regression model with regression coefficients
β0, . . . , β4 from Table 6.2.

The absolute values of the standardised median is represented by the ra-
dius of each dot. Below the standardised medians, we have displayed the
corresponding median discrepancies from our purely geographical median
regression model. The same colour codes apply, i.e. red colouring means
that the estimated median is larger than the sample median, and blue
colouring means that the estimated median is smaller than the sample me-
dian. The absolute value of each discrepancy is represented by the radius
of each dot. During all seasons, the change in the median of diurnal tem-
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Figure 6.5: Absolute values of the relative discrepancies be-
tween estimated medians and sample medians are displayed
for summer and winter, for the median regression procedure
from Figure 6.4.

perature range is very abrupt as the distance from the sea is increased. The
same pattern is found in all the median discrepancies. Dots along the coast
are almost solely red, while those a bit further inland are blue. We find
that the negative standardised medians often correspond to positive me-
dian discrepancies, and vice versa. That is to say, for low median values,
the estimated median is too high, and for high median values, the esti-
mated median is too low. This implies that the quantile regression model
is unable to model the abrupt changes in the data, and instead takes values
somewhere in the middle of the two extremes. A similar pattern is found
for other quantiles than the median, as well.

Having examined the fit of the purely geographical quantile regression
model, we now add information concerning daily mean temperature. This
time all the explanatory variables in Table 6.2 are applied for modelling the
quantiles of diurnal temperature range. Some of the results of the median
regression model are displayed in Figure 6.8. The difference for the winter
model after adding temperature is substantial. Almost all of the spatial
patterns in the median of diurnal temperature range seems to have been
captured, and it is hard to find any substantial differences between the
estimated medians and the sample medians of diurnal temperature range.
A similar result does not emerge for the summer model. The new regression
model, with all explanatory variables from Table 6.2, is able to add more
variability to the estimated medians of diurnal temperature range than the
purely geographical model. However, clear differences can still be observed
between the sample medians and the estimated medians.
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Figure 6.6: Densities for the discrepancies between sample
medians and estimated medians from our purely geographical
quantile regression models are displayed in the left plot. Rela-
tive discrepancies, found with (6.4), are displayed in the right
plot.

The relative median discrepancies, defined in (6.4), are displayed for the
quantile regression model with added temperature information. The results
are found in Figure 6.9. We find that most of the relative discrepancies
for the winter model have been reduced to less than 5%. The differences
between estimated and sample medians have been reduced for summer, but
not with nearly as much as in the winter mode. We display the densities
of all median discrepancies for all seasons. These are found in Figure 6.10.
This time, there is a clear difference between summer and all other seasons.
The inclusion of daily mean temperature into our quantile regression model
has substantially improved the performance of both winter, spring and
autumn.

Similar plots to those in Figure 6.7 are created for the new median
regression model. The plots are seen in Figure 6.11. The abrupt change
from red to blue has disappeared along the coast for the median discrepan-
cies for winter, spring and autumn. However, during summer, the patterns
are mainly unchanged from Figure 6.5. The addition of temperature in-
formation has considerably reduced the size of most discrepancy dots from
winter, spring and autumn. The lack in improvement for the summer model
might be explained from Figure 2.7, where trends in the median of diurnal
temperature range are plotted as functions of all explanatory variables in
Table 6.2. One can find that there are strong correlations between the me-
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Figure 6.7: Standardised median values are found at all
weather stations and displayed in the upper plots. The lower
plots display the differences between estimated medians from
the purely geographical quantile regression model, and the
sample medians. Absolute values are represented by the ra-
dius of each dot. Negative and positive data are represented
using blue and red colours.

dian of diurnal temperature range and the mean and variance of daily mean
temperature for winter, spring and autumn. During summer, however, the
correlation is almost completely gone and the slope between the median of
diurnal temperature range and the daily mean temperature variables are
close to zero. Consequently, it is not possible to gain much improvement
from adding these explanatory variables for the summer model.

The quantile regression model with added temperature information ob-
tains a good model fit for most seasons. For further evaluation of the
quantile regression performance we examine the model residuals for dif-
ferent quantiles. Residuals are the estimated error terms in a regression
model, i.e.

ε̂ip = yip − xTi β̂p. (6.5)

The model assumption from Section 4.2.1, is that P (εip 6 0) = p, meaning
that we expect a fraction of p of the residuals to be negative. For each
weather station we count the fraction of negative residuals. A summary of
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Figure 6.8: Median regression is performed in-sample for di-
urnal temperature range, using the data from all 55 weather
stations. The data consists of diurnal temperature range for
the years 1989 - 2018. The left plots consist of summer data,
and the right plots consist of winter data. Lower plots dis-
play sample medians of diurnal temperature range. The upper
plots display estimated medians from the quantile regression
model with all regression coefficients from Table 6.2.

all fractions can be seen in Figure 6.12. The fractions of negative residuals
seem to be approximately symmetrical around the value of p. However,
the spread of the fraction values, especially for summer, is quite large.
Consequently, the regression model seems to be well calibrated, albeit with
high levels of uncertainty.

When we apply quantile regression for predicting the distribution of
unobserved data, we are clearly not able to train our methods on the ex-
act data we are trying to predict, as is done when we perform in-sample
estimation. To test the performance when predictions are out-of-sample,
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Figure 6.9: Absolute values of the relative discrepancies be-
tween estimated medians and sample medians are displayed
for summer and winter, for the median regression procedure
from Figure 6.8.

we perform cross-validation, as described in Section 6.1.2. The regression
model with all explanatory variables from Table 6.2 is fitted to diurnal
temperature range observations several times, but each time five random
weather stations are removed before the training. The performance of the
quantile regression is then tested on the five left-out stations. Figure 6.13
displays the distribution of the resulting discrepancies for three different
quantile values. Both out-of-sample discrepancies for the 5 removed sta-
tions and in-sample discrepancies for the 50 remaining stations are pre-
sented. We find that the performance of our quantile regression scheme is
slightly better in-sample than out-of-sample. Compared to the general er-
ror of the quantile regression, the additional quantile differences that stem
from out-of-sample estimation are quite negligible.

6.4 Interpolation of the parameters of the FPLD

Having estimated a sufficiently large set of the quantiles of diurnal tem-
perature range using Bayesian quantile regression, we now estimate the
FPLD parameters using the method of quantiles, as described in Sec-
tion 4.2.3. Quantile regression is performed for 100 equally spaced pi-
quantiles, pi = i/101, i = 1, . . . , 100, with all the explanatory variables
from Table 6.2. The method of quantiles is applied for interpolation of the
parameters of the FPLD, using the 100 estimated quantile values. This
is performed out-of-sample at all weather station locations. 5 of the 55
weather stations are removed each time. Quantile regression coefficients



72 6.5. Model comparisons

Figure 6.10: Densities for the discrepancies between sample
medians and estimated medians from our quantile regression
models with added temperature information are displayed in
the left plot. Relative discrepancies, found with (6.4), are
displayed in the right plot.

are estimated using the remaining 50 stations, and parameters of the FPLD
are estimated at the 5 left-out stations. Figure 6.14 displays the estimated
distributions at the same locations as those examined in Figures 2.4 and
6.1. The fit of the estimated FPLD is clearly not as good as the fit from the
local parameter estimation in Figure 6.1. However, especially for winter,
the results show promise. In Figure 6.15, we examine the quantile-quantile
plots of the distributions from Figure 6.14. It is clear that the method is
struggling with modelling of diurnal temperature range. Even for winter,
the right tail of the distribution of the estimated FPLD is quite bad.

6.5 Model comparisons

We compare our different methods for modelling of diurnal temperature
range, in order to evaluate their performance. Errors can be introduced
in our estimation procedures in many ways, and we wish to test the main
source of these. Errors are introduced both in the quantile regression model
and through the method of quantiles. Errors also arise from the fact that
modelling is performed out-of-sample, and possibly because a spatial ran-
dom effect has not been included in our models. The question now arises,
which of these are the most impactful. We perform estimation of the median



Chapter 6. Case study: Diurnal temperature range in Norway 73

Figure 6.11: Standardised median values are found at all
55 weather stations, and displayed in the upper plots. The
lower plots display the differences between the sample medi-
ans and the estimated medians from the quantile regression
with added temperature information. Absolute values are rep-
resented by the radius of each dot. Negative and positive data
are represented using blue and red colours.

of diurnal temperature range, for all methods described in Table 6.1, includ-
ing the Gaussian random spatial field for the median, which we have not
yet evaluated. For all methods, the median of diurnal temperature range
is estimated at all weather stations, and the resulting median discrepan-
cies are calculated. Densities for all the median discrepancies are displayed
in Figure 6.16. It is clear that the local estimation, using the method of
quantiles, performs much better than all other methods. Somewhat more
surprising, we find that the differences between all other methods are close
to negligible. All other methods perform spatial modelling with the same
explanatory variables. The Gaussian random field for the median of diurnal
temperature range applies a spatial random effect, which is lacking in the
other models. This indicates that the most important shortcomings of the
interpolation scheme does not stem from the lack of a spatial random ef-
fect. Errors that stem from the median regression are very similar to those
from the combination of quantile regression and the method of quantiles.
This implies that the method of quantiles succeeds in modelling the data
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Figure 6.12: Fractions of negative quantile regression resid-
uals, from the model with added temperature information, are
calculated and plotted for each weather station and season. A
horizontal line is added at the value P̂ (ε̂p 6 0) = p.

it is given from the quantile regression. The difference between in-sample
estimation and out-of-sample estimation seems close to negligible as well.
Consequently, the plots indicate that the main shortcoming of our interpo-
lation scheme stems from the errors introduced in the quantile regression
model.
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Figure 6.13: Densities of the quantile discrepancies of
our quantile regression models with added temperature in-
formation are displayed for three different quantiles (p ∈
{0.1, 0.5, 0.95}) and all seasons. 5 stations are randomly re-
moved, and the regression coefficients are estimated using data
from the remaining 50 stations. Quantiles are estimated and
discrepancies are found for the 50 stations (in-sample) and the
5 removed stations (out-of-sample). All the data are taken
from the winter months for the years 1989 to 2018. A vertical
line is added at x = 0.
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Figure 6.14: Histograms displaying observed diurnal tem-
perature range are plotted with the probability density func-
tions of FPLDs with parameters estimated using a combina-
tion of quantile regression and the method of quantiles. The
parameters are estimated out-of-sample. All data are collected
from the period 01/01/1989 - 31/12/2018. Selected seasons
and locations are indicated above each plot.
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Figure 6.15: Quantile-quantile plots displaying observed
diurnal temperature range against FPLDs with parame-
ters estimated using a combination of quantile regression
and the method of quantiles. The parameters are es-
timated out-of-sample. Quantiles are plotted for p ∈
{0.001, 0.002, . . . , 0.999}. All data are collected from the pe-
riod 01/01/1989 - 31/12/2018. Selected seasons and locations
are indicated above each plot.
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Figure 6.16: Empirical densities of the difference between
the sample median of diurnal temperature range and the cor-
responding estimated median from different estimation proce-
dures, for each season. The different estimation methods are
described in Table 6.1. All data are taken from the years 1989
to 2018. Selected seasons are indicated above each plot. A
vertical line is added at x = 0.







Chapter 7

Discussion

We present the Five-Parameter Lambda Distribution (FPLD) as a model
for diurnal temperature range. Different techniques for local and spatial
parameter estimation for the FPLD are presented. For local parameter es-
timation, we choose to focus on the method of quantiles, as we find it less
computationally demanding than maximum likelihood estimation and bet-
ter performing than the method of moments. A method for spatial interpo-
lation of the parameters of the FPLD is developed, which combines quantile
regression and the method of quantiles. We provide asymptotic results for
the method of quantiles and the quantile regression, thus also providing
asymptotic results for the combined interpolation method. The methods
are evaluated via a simulation study. Finally, we apply our methods for
modelling of diurnal temperature range observations from the southern
parts of Norway.

The method of quantiles successfully estimates the correct parameters of
the FPLD for all simulation studies in Section 5.1. However, convergence
occurs quite slowly. This is likely due to the estimation of the sample
quantiles, F (y(i)) = i/n in (4.9), and due to the fact that our optimisation
algorithm, described in Section 4.1.3, gets stuck in local minima of the loss
function. After performing local parameter estimation of the FPLD for di-
urnal temperature range, we find that the distribution has a good fit for the
majority of the weather stations, with most quantile-quantile plots looking
very good. Consequently, the FPLD appears to be a capable choice for
modelling diurnal temperature range at any single location. The method
of quantiles is able to estimate parameters of the FPLD with reasonably
high performance when modelling diurnal temperature range. However,
the implemented optimisation algorithm is unable to guarantee that the
support of the FPLD is wider than the observed range of diurnal tempera-
ture range. These problems mostly occur in the left tail of the FPLD. This
might be problematic when the daily mean temperature is close to zero and
a small change in diurnal temperature range results in the freezing or melt-
ing of water. However, most of the time the support of the FPLD is wider
than that of the available observations. Additional optimisation algorithms
should be tested, with implemented hard constraints on the support of the
fitted FPLD. We have only provided guarantees for a consistent parameter
estimator from the method of quantiles when λ4, λ5 > −1/2. However, this
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does not seem to be a problem in Norway. The right tail in the distribution
of diurnal temperature range does not appear too heavy for our estimation
procedure, and the maximum values of diurnal temperature range seldom
reaches values of more than 30K.

The simulation study for our quantile regression model, in Section 5.2,
is unable to evaluate the performance of the regression model when the re-
sponse is non-linearly distributed. However, we find that the performance
of the model is high when modelling data from a linear model. Since this
method performs regression for all weather stations simultaneously, the
number of available observations is quite sizeable. Accordingly, we expect
the method to perform well if the quantiles of diurnal temperature data
can truly be represented as linear combinations of the available explana-
tory variables. Our quantile regression model is not able to fully replicate
the spatial patterns in diurnal temperature range when being given geo-
graphical explanatory variables only. However, after adding information
concerning daily mean temperature, the performance is considerably bet-
ter for winter, spring and autumn. For the summer model, substantial
model errors are still present after the inclusion of information concerning
daily mean temperature. We find that the errors most likely stem from two
main factors. Information concerning daily mean temperature seems to be
among the most important explanatory variables of our quantile regression
models. However, during summer, the empirical correlation between daily
mean temperature and the quantiles of diurnal temperature range are close
to zero, as seen in Figure 2.7. This is not the case for the other three sea-
sons. Additionally, the distribution of diurnal temperature range is has a
high variability in space during summer, while there is less variability for
other seasons.

All in all, we find the quantile regression model for diurnal temperature
range to be very promising. It is our belief that one can achieve better re-
sults than what is found in Section 6.3. New explanatory variables can be
constructed to include variable interactions, by multiplying two or more of
the already available explanatory variables. The performance of our model
might also increase by adding other explanatory variables. As an example,
the weather station with the largest median discrepancy in the summer
model is located at a lighthouse that is far away from the mainland (see
Figure 6.9). Consequently, it might be reasonable to distinguish between
observations from the mainland, and those out in the sea, through the in-
troduction of a binary explanatory variable. A transformation of variables
could also improve our models. The patterns between the median of diurnal
temperature range and the available explanatory variables in Figure 2.7 do
not seem linear for the geographical information. One might find possible
transformations of the explanatory variables which are able to improve the
linear trends between the quantiles of diurnal temperature range and the
available explanatory variables. Additionally, we might find important de-
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pendencies between diurnal temperature range and other climate variables,
such as daily precipitation, wind speed and the degree of cloud cover. Espe-
cially precipitation and cloud cover have been found to be highly negatively
correlated with diurnal temperature range (Zhou et al., 2009; Waqas and
Athar, 2018). It is not obvious how such explanatory variables should be
incorporated in our model, though. Spatial interpolation of precipitation is
much more difficult than interpolation of mean temperature. Daily precip-
itation is also often equal to zero. For modelling the distribution of diurnal
temperature range over thirty years of data, the historical mean of precipi-
tation might therefore be misleading and should perhaps be combined with
some other measure, e.g. the frequency of precipitation. It is also difficult
to find representative statistics for the degree of cloud cover at a location
over the last thirty years.

Examination of the differences between out-of-sample estimation and
in-sample estimation, in Figures 6.13 and 6.16, find that the differences are
close to negligible. This might not hold if we are able to improve the per-
formance of the quantile regression models. However, it is a promising sign,
meaning that our model might be able to generalise the spatial distribution
of diurnal temperature range well. The possible errors that stem from not
including a spatial random effect in the quantile regression also seems to
be close to negligible. Should the performance of our quantile regression
model increase, it might be necessary to include such spatial features for
further improvement of the model (Lum, Gelfand, et al., 2012). However,
at the time of writing, this does not seem to be the most pressing concern.

Having performed quantile regression and the method of quantiles for
modelling of diurnal temperature range data, we combine these methods
in order to perform spatial interpolation on the parameters of the FPLD.
As the interpolation method is based on our quantile regression model,
the results for summer are mediocre. However, for the other seasons, the
interpolation method is repeatedly able to model diurnal temperature range
with a good fit to observed data, even though the method often struggles
in the tails of the distribution. We find that the method of quantiles is able
to closely reproduce the patterns of the quantile regression. This leads us
to the conclusion that, under a functioning quantile regression, our spatial
interpolation method for the parameters of the FPLD seems able to model
diurnal temperature range in Norway quite well. The interpolation method
should be tested further on diurnal temperature range after an improved
quantile regression has been developed.
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Öztürk, A. & Dale, R. F. (1985). Least squares estimation of the parameters
of the generalized lambda distribution. Technometrics, 27 (1), 81–84.

Powell, M. J. (1994). A direct search optimization method that models
the objective and constraint functions by linear interpolation. In Ad-
vances in optimization and numerical analysis (pp. 51–67). Springer.

http://sharki.oslo.dnmi.no/portal/page?_pageid=73,39035,73_39049&_dad=portal&_schema=PORTAL
http://sharki.oslo.dnmi.no/portal/page?_pageid=73,39035,73_39049&_dad=portal&_schema=PORTAL
http://sharki.oslo.dnmi.no/portal/page?_pageid=73,39035,73_39049&_dad=portal&_schema=PORTAL


88 BIBLIOGRAPHY

R Core Team. (2018). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing. Vienna, Austria. Re-
trieved from http://www.R-project.org/

Ramberg, J. S. & Schmeiser, B. W. (1974). An approximate method for gen-
erating asymmetric random variables. Communications of the ACM,
17 (2), 78–82.

Ribeiro Jr, P. J. & Diggle, P. J. (2018). Geor: Analysis of geostatistical
data. R package version 1.7-5.2.1. Retrieved from https://CRAN.R-
project.org/package=geoR

Rodrigues, T. & Fan, Y. (2017). Regression Adjustment for Noncrossing
Bayesian Quantile Regression. Journal of Computational and Graph-
ical Statistics, 26 (2), 275–284. doi:10.1080/10618600.2016.1172016

Rummukainen, M. (2010). State-of-the-art with regional climate models.
Wiley Interdisciplinary Reviews: Climate Change, 1 (1), 82–96.

Sgouropoulos, N., Yao, Q., & Yastremiz, C. (2015). Matching a distribution
by matching quantiles estimation. Journal of the American Statistical
Association, 110 (510), 742–759.

Shorack, G. R. & Wellner, J. A. (2009). Empirical processes with applica-
tions to statistics. SIAM.

Sriram, K., Ramamoorthi, R., Ghosh, P. et al. (2013). Posterior consistency
of Bayesian quantile regression based on the misspecified asymmetric
Laplace density. Bayesian Analysis, 8 (2), 479–504.

Tareghian, R. & Rasmussen, P. F. (2013). Statistical downscaling of pre-
cipitation using quantile regression. Journal of hydrology, 487, 122–
135.

Tarsitano, A. (2004). Fitting the generalized lambda distribution to income
data. In COMPSTAT’2004 Symposium (pp. 1861–1867). Physica-
Verlag/Springer.

Tarsitano, A. (2005). Estimation of the generalized lambda distribution
parameters for grouped data. Communications in Statistics - Theory
and Methods, 34 (8), 1689–1709. doi:10.1081/STA-200066334

Tarsitano, A. (2010). Comparing estimation methods for the FPLD. Jour-
nal of Probability and Statistics, 2010.

Tukey, J. W. (1962). The future of data analysis. The annals of mathemat-
ical statistics, 33 (1), 1–67.

Upadhyay, R. R. & Ezekoye, O. A. (2008). Treatment of design fire uncer-
tainty using Quadrature Method of Moments. Fire Safety Journal,
43 (2), 127–139.

Vandeskog, S. M., Haugen, M., & Thorarinsdottir, T. L. (2018). Evalua-
tion of bias corrected precipitation output from the EURO-CORDEX
climate ensemble. NR-notat SAMBA/21/2018, pp. 20.

Vandeskog, S. M., Thorarinsdottir, T. L., & Steinsland, I. (2019). Post-
proseccing daily minimum and maximum temperature using temper-
ature range. unpublished.

http://www.R-project.org/
https://CRAN.R-project.org/package=geoR
https://CRAN.R-project.org/package=geoR
https://dx.doi.org/10.1080/10618600.2016.1172016
https://dx.doi.org/10.1081/STA-200066334


BIBLIOGRAPHY 89

Waqas, A. & Athar, H. (2018). Observed diurnal temperature range varia-
tions and its association with observed cloud cover in northern Pak-
istan. International Journal of Climatology, 38 (8), 3323–3336.

Yu, K. & Moyeed, R. A. (2001). Bayesian quantile regression. Statistics &
Probability Letters, 54 (4), 437–447.

Zhou, L., Dai, A., Dai, Y., Vose, R. S., Zou, C.-Z., Tian, Y., & Chen, H.
(2009). Spatial dependence of diurnal temperature range trends on
precipitation from 1950 to 2004. Climate Dynamics, 32 (2-3), 429–
440.





Appendix A

Shape of the FPLD

Figure A.1: Probability density function of the FPLD with
different values of λ. λ1 = 0, λ2 = 1 in all plots.
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Figure A.2: Probability density function of the FPLD with
different values of λ. λ1 = 0, λ2 = 1 in all plots.
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Figure A.3: Probability density function of the FPLD with
different values of λ3.



94

Figure A.4: probability density function of two FPLDs with
different values of λ4 and λ5 respectively.


