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Abstract

A quantitive approach to how variations in input affects the output in calculation of propul-

sive power in the power balance model in cross-country skiing is provided in the cur-

rent study. Three sprint races and two long distance races, including both classical and

skate technique, was investigated by analysis of data collected by GPS sensors at the

Beitosprinten skiing competition in 2017 and 2018. The friction coefficients for these

races were estimated in a separate field test, and acceleration and the inclination in the

track was calculated by an amended version of the central differences scheme. The results

showed that power calculations are the most sensitive to changes in the drag area, and the

least sensitive to changes in body mass, when varying model parameters separately in an

investigated uphill segment of a race. Varying the body mass m within a range of ±2 kgs

in this segment, the absolute relative difference in propulsive power was at most 3%. Vary-

ing the drag area within a range of ±0.2, the equivalent measure was at most 57.4%. The

combined effect of parameter changes in Monte Carlo simulations for each race showed

that the maximum relative deviation in absolute value of all races was 11%, also looking at

uphill segments. As a result of the analysis in this thesis, it would be desirable with more

precise classification of subtechniques to decide correct drag area for use in calculations

of propulsive power.
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Sammendrag

En kvantitativ tilnærming til hvordan variasjoner i input påvirker output ved beregninger

av krefter i kraftbalansemodellen i langrenn er presentert i dette studiet. Tre sprintløp og

to langdistanseløp, inkludert både klassisk teknikk og fristil, ble undersøkt ved analyse

av data innsamlet med GPS-sensorer under Beitosprinten 2017 og 2018. Friksjonskoeff-

isienten for disse løpene ble estimert i en separat test i felt, og akselerasjon og stigning

i løypen ble regnet ut ved hjelp av en tilpasset versjon av ’central differences’-metoden,

en metode for approksimasjon av den deriverte. Resultatene viste at kraftutregninger er

mest sensitive for endringer i ’drag’-areal, og minst sensitiv for endringer i kroppsmasse

når modellparametre varieres hver for seg i analyse av et segment i en oppoverbakke i et

løp. Ved å variere kroppsmassen m innenfor et område på±2 kg i dette segmentet, var det

absolutte relative avviket i kraftutregningen på det meste 3%. Ved å variere ’drag’-arealet

innenfor et område på ±0.2, ble det tilsvarende resultatet 57.4% på det meste. Den kom-

binerte effekten av endringer i parametere i Monte Carlo-simuleringene for hvert løp viste

at det maksimale relative avviket i absoluttverdi for alle løp var 11%, også her ved analyse

av segmenter i oppoverbakke. Som resultat av analysene i dette studiet, er det ønskelig

med mer presis klassifisering av delteknikk for å bestemme rett verdi for ’drag’-areal som

skal brukes i kraftutregningene.
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Chapter 1
Introduction

In order to improve the performance of cross-country skiers, we need to better understand

their use of propulsive power in the cross-country skiing track. One way of improving

our understanding is to investigate a model for power balance. Already in 1990, van In-

gen Schenau and Cavanagh (1990) proposed a power balance model describing power use

and power dissipation in endurance sports. From this model the propulsive power Pprop
can be calculated directly given sufficient data, and it is used as an alternative measure for

estimation of metabolic power of the athletes.

The model has by earlier research been confirmed to be a valid tool for gaining better

understanding of the performance of cross-country skiers. For instance, recent research

by (Gløersen et al. (2018b)) used the power balance model to estimate and determine

the propulsive power of high-level skiers based on data generated from a simulated dis-

tance race on roller skis. This study also evaluated the accuracy of the results when the

power balance principle is applied to cross-country skiing. (Gløersen et al. (2018a)) also

published an article on the accuracy provided by tracking devices used for sports applica-

tions. Both articles are presented in Gløersen’s newly published doctoral thesis (Gløersen

(2019)).

Previous work with simulations using the power balance model has aimed to model power

as a function of a single variable or to simulate to estimate finishing times given different

parameters. (Swarén and Eriksson (2017)) estimated continuous propulsive power to en-

able in-depth analyses of power output in cross-country sprint skiing by using real-time

1



Chapter 1. Introduction

positioning, however only for a limited number of skiers. (Hausken et al. (2014)) was able

to quite accurately predict a skier’s performance using the power balance model and to es-

timate the influence of on performance due to changes in various model factors. This was

however done by modeling locomotive power as a function of speed. Furthermore, though

(Gløersen et al. (2018b)) was one of the first to quantify measurement error in propulsive

power using the power balance principle on distance races on roller skis, the case of inves-

tigating real-life xc-skiing race data to quantify uncertainty in output propulsive power and

assessing the sensitivity given changes in the input parameters, has rarely been adressed.

This project aims to enhance the understanding of how the power balance model can be

used as a tool for improving the performance of cross-country skiers by mainly investi-

gating the sensitivity of changes in the input and variety in output given uncertainty in the

input. The current study uses GPS data collected at classical and skate, sprint and long dis-

tance races, and processes the input to remove noise before calculating propulsive power.

A sensitivity analysis for model parameters is conducted and variations in parameters are

combinined in a Monte Carlo simulation. The friction coefficient µ was also estimated in

a separate field test.

The results in this research gives insight into how variations in input parameters influence

the output of propulsive power as well as what the combined effect in calculated power

is when several parameters vary simultaneously. The aim of this is to give a quantitive

approach to better understand how large the error of calculation of propulsive power can

be when there is uncertainty related to our knowledge of the model parameters and input.

In other words, how accurate should our input be in order to compute valid results that

are useful for coaches and athletes in the work of achieving better performance in the

cross-country skiing track.

In this thesis, chapter two presents the model and relevant related theory. Chapter three de-

scribes the setting for collecting data, how the data was collected, experiments conducted

and what assumptions were made when approaching the model and doing calculations.

Chapter four introduces in further detail the analysis and processing of data. Results are

presented in chapter five, and discussion and conclusion is given in chapter six and seven,

respectively.
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Chapter 2
Theory

2.1 Power balance model

The propulsive power of a cross-country skier can be calculated from a power balance

model, as stated by van Ingen Schenau and Cavanagh in 1990 (van Ingen Schenau and

Cavanagh (1990)):

dEk
dt

= mv
dv

dt

= Pprop − µmg cos(α)v −mg sin(α)v − 0.5ρCdAv
3

(2.1)

On the left hand side of the equation is dEk

dt , which is the rate of change in translational

kinetic energy of the skier. Simply put, kinetic energy is the energy of an object with mass

in motion. The object has this energy because of motion from one location to another

location. Translational kinetic energy is thus energy an object with mass has due to its

motion from one position to another. The derivative of this quantity is a measure of how

much this energy changes per time unit. Next is Pprop the propulsive power of the skier,

a measure of how much power the skier produces, or how much energy the skier uses, to

move in the direction of motion. Further is m the body mass of the skier, v is the speed

along the track and dv
dt = v̇ is the acceleration along the same course.

In the next term is µ the friction coefficient (COF), a measure of the friction between skis

and snow. The coefficient is influenced by environmental conditions and skiing equipment

3



Chapter 2. Theory

as well as the skiing technique. Combined, this affects the gliding and thus the speed of

the skier. g is the gravitational acceleration and α is the angle of inclination of the skiing

track measured in radians. In the two last terms ρ is the air density and Cd is the drag

coefficient. The drag coefficient is a coefficient related to fluid dynamics, measuring the

how much drag is induced by an object. Lastly, A is the projected frontal area of the

skier. Multiplied with the drag coefficient, this becomes the drag area CdA. The drag

area changes with technique of the skier and if the skier is in the upright or in a tucked

position. For instance will the drag area when double poling be larger than the drag area

when skiing in the tucked position, and by that change how much the drag affects the

skier. All terms described above are gathered in Table 2.1 in order to achieve an overview

of the model and its terms. Additionally, Equation (2.2) shows a simplified version of the

power balance model and in which direction the terms are acting relative to the direction

of motion.

dEk

dt = mv dvdt
= power − friction − gravity − drag

= =⇒ − ⇐= − ⇐⇒ − ⇐=

(2.2)

The model itself is based on energy balance and is often used as a tool to investigate

performance in endurance sports like for instance cross-country skiing. Because it takes

power production and power dissipation of the athlete into consideration, it is commonly

used to look into how skiers use their energy in a race track. From a physical perspective,

the model is simply derived from Newton’s second law. This famous physical law states

that the sum of the forces in a system is equal to the mass times the acceleration of that

same system. For simplicity, the athlete and the equipment is usually modeled as a point

mass, and the mechanical energy of the skier is thus equal to translational kinetic energy

and potential energy due to gravity. The gravitational potential energy is the stored energy

of an object due its vertical position or height and is dependent on the mass of the object

and the height. The sum of potential energy and kinetic energy of an object is known as

the object’s mechanical energy. Considering the skier and its equipment as the system,

the propulsive power Pprop is then equal to the system’s rate of change in mechanical

energy and the work done by the environment. In other words, the propulsive power is

equal to the sum of the change in kinetic energy of the skier and the forces acting on the

skier from the surrounding environment. The latter is mainly due to the air drag force and

the frictional forces between skis and the snow, but gravity also plays an important role.

4



2.1 Power balance model

While both air drag and forces of friction act in the direction opposite to the direction of

motion, the gravitational force can act both ways depending on the inclination of the track.

When skiing uphill the gravity term will decrease the kinetic energy of the skier if all other

terms are constant. Thus, in order to maintain the same amount of kinetic energy, a skier

will have to use more power to keep up the speed. Opposite can the kinetic energy and

the speed increase when the skier is skiing downhill due to the gravitational force, even

without using any more power. In practice this means that a skier needs to use more energy

when skiing uphill, and that less energy is needed downhill, to maintain the same speed.

Setting up the equation for the forces and multiplying by the velocity v, eq. (2.1) for

calculation of propulsive power is obtained.

Table 2.1: Power balance model terms with description

Term Explanation/Description Unit
dEk

dt = Rate of change in kinetic energy
[
J
s

]
m = Body mass of the skier [kg]

v = Speed along the track
[
m
s

]
dv
dt = Acceleration along the track

[
m
s2

]
Pprop = Propulsive power

[
J
s

]
µ = Friction coefficient [−]

g = Gravitational acceleration
[
m
s2

]
α = Angle of inclination of the track measured in radians [−]

ρ = Air density [ kgm3 ]

Cd = Drag coefficient [−]

A = Projected frontal area of the skier [m2]

CdA = Drag area [m2]

5



Chapter 2. Theory

2.2 Friction

Friction is a force that prevents relative motion of systems in contact. This force is dvided

into kinetic friction, where systems in contact are moving relative to one another, and static

friction, where systems in contact are stationary. Friction is highly complicated depending

on for instance speed, surface of materials in contact and temperature. In a cross-country

skiing race track, the quality and state of snow, and skis influence the magnitude of the

friction present.

The coefficient of friction describes the ratio of the frictional force between two objects

and the force pressing them together, usually the normal force. Highly polished surfaces

typically have lower coefficients of friction than unpolished surfaces (Colbeck (1994)).

Waxing of skis and ski base texturing treatments also influence the coefficient of friction,

though temperature and snow quality, e.g., if the now is new or transformed, hardness

and texture, has a larger effect on friction (Budde and Himes (2017)). Friction is also

shown to increase with speed (Hasler et al. (2016); Braghin (2016)). These relationships

are however hard to model in practice.

Calculation of the friction coefficient

For better calculation of power in the power balance model, one can try to find the best

estimates possible for the parameters in the model, for instance the friction coefficient.

The best friction coefficient is the number that reflects the weather and the environmental

conditions of the skiing track on the specific race day. One way of estimating the friction

coefficient is based on a classical kinematic equation from physics (Young and Freedman

(2012)). This equation states that the velocity v at a given point is equal to the initial veloc-

ity v0 plus the acceleration a times the time difference ∆t, assuming that the acceleration

is constant. When calculating friction, the acceleration is equal to the friction coefficient µ

times the gravitational acceleration g. The equation is easily solved for µ and one obtains

Equation (2.3) for the friction coefficient:

µ =
v − v0
g∆t

(2.3)

Under optimal conditions, i.e. meaning no impact from air drag or change in speed due to

gravity or use of energy of the skier, the loss of speed is only due to the friction between

skis and the snow. The friction coefficient can therefore be calculated by measuring the

6



2.3 Drag and drag area

speed at two points and measuring the time difference between the same points, given that

the conditions are as close to optimal as possible.

There are many ways to calculate the friction coefficient in practice. However, most setups

include sensor equipment along a straight line and observing how a test object loses speed

as it is passing the sensors under the best conditions possible. The initial velocity v0, the

velocity v when the test object has lost some speed and the corresponding time difference

∆t between the measurements is measured to calculate the coefficient of friction. The

actual setup used for calculation of the COF in this thesis is described in Chapter 3.

2.3 Drag and drag area

Drag is a frictional force acting on an object opposite to the relative direction of a moving

object, but with respect to a fluid surrounding the object. The size of this force generally

depends on the shape and area of the object investigated, the velocity, as well as the ma-

terial of the surface of the object, around which the fluid is flowing. This last dependency

is accounted for in the drag coefficient Cd, which is a dimensionless quality. In the cross-

country skiing context, this constant varies depending on the shape of the skier and the

material of the clothing and equipment of the skier.

Since the drag force depends on area, a larger area means larger drag force and vice versa.

So if a skier is skiing upright, the drag force would be larger than if the skier skied in a

tucked position at the same speed. If the variations of drag area CdA of a skier could be

implemented into the the power balance model, this would lead to more precise calcula-

tions. Drag area will in this thesis be implemented as a function of subtechnique, further

described in Chapter 3.

7



Chapter 2. Theory

2.4 Data processing: Removing noise in data

All measurements include noise. In practice this means that every measured signal or data

point consists of an underlying true signal or observation and some random measurement

error. Before doing calculations and drawing conclusions based on collected data, this

noise or random error should be removed. If this is not done, the errors can be magnified

and contribute to substantial errors in future calculations and conclusions. Removal of

noise is important in any field, also in human movement in sports.

2.4.1 Importance of noise removal

Data is often sampled discretely with a given samling frequency. In particular does human

movement generally consist of low frequencies whereas the measurement noise and ran-

dom error usually consist of higher frequencies (Bartlett (2007),

Skaloud and Limpach (2003), Skaloud et al. (2004)). When looking into human movement

and analyzing data it is therefore a key interest for the researcher to attempt to remove the

high frequency noise. To do this, the limit between the true low-frequency signal and the

high frequency noise must be found. This frequency limit is different depending on the

sport and is decided based on whether it is a sport with relatively slow movement or a

sport with high energy transfers. Either way, it is important to find this limit to keep all

important information for further analysis and to avoid working with errors in the data.

Removal of noise in sports biomechanics and human movement is important, but it is

not always that easy to remove all of the noise while at the same time keeping all of

the true information. This is especially the case when dealing with data where transient

signals are present, signals caused by sudden changes in energy over a short period of

time. The process of removing noise should be conducted before using the data for further

calculations. This is because the calculations usually are highly non-linear and will result

in non-linear combinations of random noise. In turn this can affect the noise removal

process in a negative way later.

It is also worth noting that even though the noise in the measured data has an amplitude of

only 1% of the true signal, this noise can become of intolerable size if further calculations

are done based on this noisy data. The noise leads to considerable inaccuracies in the

derived data if the noise is not removed. Consider for instance that the position of an

athlete is recorded. Then the calculated velocity and acceleration can possibly contain

large errors if the noise is not removed from the positioin data before doing calculations.
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This also means that this type of error can be even more significant if the random error

in the recorded position data is even larger to begin with. To illustrate the importance of

noise removal, consider the following example from Bartlett (2007).

Imagine an extremely simplified example where the position of some object is recorded,

and in addition the true analytical expression including the noise is known. The position r

of an object including noise is

r = 2 sin(4πt) + 0.02 sin(40πt)

Here the first term on the right hand side of the equation is the true signal. This part of the

recorded signal has a frequency of 4π and an amplitude of 2. The second term is the noise.

This term has a ten times higher frequency than the true signal, but has an amplitude that is

a hundred times smaller− the noise has an amplitude of only 1% of the true measurement.

However, things change when calculating the derivative to find the velocity v:

v = 8π cos(4πt) + 0.8π cos(40πt)

Now the amplitude of the noise is ten times larger than in the noise term in the position

data and is as high as 10%. When then again differentiating to fint the acceleration a, the

effect is very much significant.

a = −32π2 sin(4πt)− 32π2 sin(40πt)

The ratio between the frequencies is still the same due to the expression of the original

position, but the amplitude is significantly changed. The random error in the acceleration

data now has the same amplitude as the true signal, which is an error that is not tolerable.

Table 2.2: Example of functions for position, velocity and acceleration, with and without error,
plotted to highlight the importance of filtering.

Importance of filtering

With noise Without noise

Position r = 2 sin(4πt) + 0.02 sin(40πt) r = 2 sin(4πt)

Velocity v = 8π cos(4πt) + 0.8π cos(40πt) v = 8π cos(4πt)

Acceleration a = −32π2 sin(4πt)− 32π2 sin(40πt) a = −32π2 sin(4πt)

9



Chapter 2. Theory

Based on the example above, the noise is clearly magnified by differentiating and disturbs

the original true signal. Curves of the true position, velocity and acceleration and their

respective errors are shown in Figure 2.1. Table 2.2 shows the expressions in the plot, with

and without the noise. The noise is visible in all three subplots of Figure 2.1, but becomes

increasingly visible in the velocity and the acceleration. Unless an attempt to remove the

noise is made, it can lead to significant inaccuraries and possibly false conclusions can be

drawn. This example therefore illustrates the importance of removing random errors from

a measurement or signal.

Two commonly used techniques to reduce measurement error and remove high-frequency

noise from low-frequency movement data are Butterworth filtering and spline smoothing

(Bartlett (2007), p. 134). Only spline smoothing is considered in this thesis.
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Figure 2.1: Curves (from top to bottom) for position and its first (velocity) and second (acceleration)
derivative, with and without noise. Illustration of the imprtance of filtering. Example inspired by
Bartlett (2007).
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2.4.2 Smoothing splines

The aim of smoothing splines is to fit a curve that fits well to a set of observed data

while also being somewhat smooth. As for other regression methods, we want to fit a

function f(x) to the data such that the error between the true value at xi and the estimated

function value f(xi) is as small as possible. The measure of error frequently used is RSS

- Residual Sum of Squares - which measures the squared deviation of xi from f(xi) for

all observations i = 1, ..., n. In mathematical terms this means
∑n
i=n(yi − f(xi))

2. With

only this restriction it is possible to make RSS zero by interpolating all points. This will

however greatly overfit the data. Since we also want a smooth curve, a way to ensure this

is to add a term to the RSS ex ssion that controls smoothness of the fitted curve. When this

term is added, the expression to be minimized becomes

n∑
i=n

(yi − f(xi))
2 + λ

∫
f ′′(t)2dt (2.4)

The term
∑n
i=n(yi− f(xi))

2 is called the loss function that makes sure that f fits the data

well. If this term is small, the fitted curve is close to the observed data for all data points

and the error is small. The term λ
∫
f ′′(t)2dt is called the penalty term and penalizes the

variability of f . Since the derivative of a quantity is a measure of how much this quantity

changes, the first derivative f ′(xi) measures the slope of f at data point xi. Analogously,

the second derivative measures how much the first derivative changes. Broadly speaking,

the second derivative of a function is a measure of how rough the function is. If f(t) is

wiggly around t, the second derivative is large in absolute value, otherwise it is close to

zero. Since the integral notation can be thought of as a summation over the range of t,∫
f ′′(t)2dt and is a measure of the total change of f ′(t) over its entire range. If f(t) is

smooth, f ′(t) is close to constant, and
∫
f ′′(t)2dt will have a small value. Conversely, if

f(t) is jumpy and wiggly, then f ′(t) will vary a lot, and the sum
∫
f ′′(t)2dt will take on

a much larger value. Hence, since we want to make RSS as small as possible, the penalty

term λ
∫
f ′′(t)2dt encourages the function f(·) to be smooth.

In the penalty term, the smoothing parameter λ decides how smooth f(·) will be. If λ = 0,

the penalty term has no effect and f(·) will exactly interpolate our data points and possibly

be very jumpy. A low lambda will therefore give a flexible fit and mean that the bias of the

fitted function is low, but that the variance can be high, and the data is overfitted. The larger

λ is, the more weight is put on the smoothing penalty, and the smoother the function f(·)
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2.4 Data processing: Removing noise in data

will be. In this case, the variance is lower, but the bias is higher, and one risks underfitting

the data. The parameter λ therefore controls the flexibility and the bias-variance trade-off

of the smoothing spline. The smoothing parameter λ is connected to the effective degrees

of freedom, which also controls the flexibility of the smoothed curve. The larger λ is,

the more emphasis is put on smoothing, and the effective degrees of freedom is smaller.

(James et al. (2017))

For fitting a function to the data, a set of knots is defined, dividing the range of data into

K regions. For the smoothing splines method, the number of knots is equal to n, giving a

knot at each data point xi, i = 1, ...n. The number of knotsK = n leads to a more flexible

fit.

Between each pair of knots, we want to fit a polynomial. Additionally, we require that

the function f(·) is continuous at each knot, and also that its first and second derivative is

continuous at each knot. It can be shown that the function that minimizes RSS and that

also meets the requirements mentioned above, is a natural cubic spline with knots at each

data point (Hastie et al. (2017)). A natural cubic spline fits a cubic polynomial between

each pair of knots, but is linear beyond the boundary knots. This leads to more stable

predictions for extreme valued data points.

Smoothing splines is chosen as the method to filter the input data of the power balance

model as it leaves the data better suited for analysis later, for instance in the derivation

of acceleration. Especially is this method suited for trajectory smoothing, as it requires

continuous speed (first derivative) and acceleration (second derivative). Furthermore, the

interpolating properties of this method provides a kind of spatial filtering which effec-

tively reduces high-frequency noise and gives smooth transitions where jumps in collected

GPS data may occur due to satellite constellation. Fitting separate polynomials at differ-

ent intervals, the method accounts for different behavioural patterns of the data, while at

the same time, the smoothness and continuity restrictions will bridge over data outliers

(Skaloud and Limpach (2003); Skaloud et al. (2004)).
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2.5 Central differences

After the noise is removed, the next step is to find the velocity and the acceleration based

on the original position data. For this purpose, the central difference method is used.

This is a finite difference approximation to the derivative, a commonly used technique in

numerical mathematics.

The derivative of a function f(x) with respect to x, f ′(x), is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x− h)

2h

where is h is a small number approaching zero. Letting h have a finite value instead, the

expression becomes

f ′(x) ≈ f(x+ h)− f(x− h)

2h
(2.5)

When h is small, this is an approximation to the derivative. This way of approximating the

derivative utilizes function values close to a data point x to find an estimate of the unknown

value for the derivative of f(x) in point x. This method is called the central differences

method.

Given a function f(x) with n data points xi, i = 1, ..., n the approximated derivative

becomes

f ′(xi) ≈
f(xi+h)− f(xi−h)

xi+h − xi−h
(2.6)

2.5.1 Acceleration

The central differences method is used for calculation of the acceleration. With velocity v

and time t in the track, the acceleration a in data point i is found by

ai ≈
vi+h − vi−h
ti+h − ti−h

=

(
dv

dt

)
i

(2.7)

2.5.2 Slope angle in the race track

The slope angle α in data point i is found by combination of the central differences method

and simple geometry.
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2.5 Central differences

α = arctan

(
dy

dx

)
(2.8)

where dy is the change in the data values for elevation, elev, and dx is the change in the

data values for distance traveled, x, in the track. The slope angle is thus

αi = arctan

(
elevi+h − elevi−h
xi+h − xi−h

)
(2.9)
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2.6 Sensitivity analysis

Imagine that you have some mathematical model, and that you are interested in knowing

the properties of that model. Given some input you feed the model, it gives you an output.

But if you change the input slightly, what will happen to the output? Will it change at all,

and if it changes, how and how much does the output change? Furthermore, how large

is the uncertainty in the resulting output? This is the core of sensitivity analysis, a tool

for investigating and evaluating how much and in what way variations in input affects the

output. (Saltelli et al. (2004)) defines sensitivity analysis as

‘The study of how the uncertainty in the output of a model (numerical or

otherwise) can be apportioned to different sources of uncertainty in the model

input’

The situation above, where one is interested in understanding how a model is influenced

by its input, is quite common within many fields. For researchers in this situation, there

are many questions of interest to answer. For instance, in which parameters is the model

most sensitive to changes? I.e., which parameters gives the largest change or uncertainty

in the output given changes in the input?

Continue to think of a real-life example where the model describes a natural phenomenon

or a relationship between physical forces. In this case, there might be data collected by

some measuring device. Additionally, other parameters may be estimated by an experi-

mental test. Interesting questions can then be: How much does noisy input data influence

the resulting output from the model? Should input data be filtered before input, and how

much in that case does filtering affect the result? How important is it that the estimated

values are estimated with precision down to the third decimal place? Is it important at all

to estimate it exactly? Or if it is not possible to estimate it under certain circumstances - is

it suffient to estimate the value based on other relevant data? These are all questions which

sensitivity analysis seek to answer.

2.6.1 The cross-country skiing case

The questions above are the reason for choosing this method to evaluate how much the

output of the power balance model is influenced by changes in its input. If the input speed

is filtered, how much does this change the output propulsive power? And is the model

more sensitive to changes in the speed, the friction coefficient or the drag area?
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How accurately should the friction coefficient be estimated? Or if it in a specific case is

not possible to test the skiing conditions and conduct a friction test, will the model provide

trustworthy enough results if µ is approximated from other available weather data and

previous knowledge from similar races and conditions? What happens if the track profile

is not exact? Will collected GPS data give good enough results anyway? If a friction test

is not possible to conduct, or if exact body mass of the skiers is not available, how large

is the resulting error in Pprop? These are a few of many interesting questions to answer

when developing the power balance model as a tool for investigating cross-country skiing.

Though these questions have a highly practical application, some mathematical ground

should be established before investigating the situation further. Note that the notation

used in this context and that the approach of analysis presented here is chosen based on

applicability to the cross-country skiing case and the research questions sought to answer.

For notational purposes, assume that a general mathematical model is given by the follow-

ing equation:

Y = g (X,θ) (2.10)

where Y is the calculated response from the function g(·), with parameters X and θ. In

this case, X is a matrix with relevant and collected data and θ = [θ1, θ2, ..., θm] is a vector

of model parameters.

For the case investigated in this thesis, the response Y is the propulsive power Pprop and

the matrix X is a collection column vectors where each vector j represents one variable

of data x(j) = [x
(j)
i=1, ..., x

(j)
i=n], for instance speed, position, elevation, time from the

collected data. Additional data and labels, such as name and body mass of the skier, are

added in separate columns.

The parameter vector θ consists of the friction coefficient, the drag area of the skier, the

air density and the body mass of the skier, giving the parameter vector θ = [µ,CdA, ρ,m].

There are two interesting cases when investigating the the power balance model by a sensi-

tivity analysis. One case is changing a variable one by one, the other is to change variables

at the same time. Both cases aim to give the researcher and idea of what happens to the

output when the input is varied.
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2.6.2 Varying parameters one by one

Case number one is the case where one variable is changed at a time. In this case, each

parameter of interest is varied based on a predefined set of values before calculating the

response Y . The values are chosen or determined based on relevant literature or previous

research, and should cover all reasonable values for the parameter. Additionally is it of

interest to choose a lower and upper bound for this interval covering values bordering

to the extreme or more unlikely cases, to make sure that all possibilites are covered and

tested. What values that are likely and not must be determined in each case. However,

the important part in this first case is to vary only one parameter at a time, and keeping

all other parameters constant when testing. The reason for this is to shed light on how the

model behaves with changes in each variable separate from the others.

2.6.3 The Monte Carlo approach

Whereas case number one considers variations of the parametes isolated from each other,

case number two looks deeper into what happens when all variables are varied simulta-

neously. This method is particularly of interest to discover the range of possible outputs

for instance when several input variables contain noise or inaccuracies. However, in con-

trast to case number one, each variable is not varied based on a set of predefined values,

but rather assigned a probability distribution with mean and standard deviation. The cho-

sen distribution for a parameter θ is in our case, for simplicity, the normal distribution

N(µθ, σ
2). Further is the mean µθ set to be the most likely, or what we believe to be the

most likely, value based on literature, experiments or previous experience. The standard

deviation σ is chosen accordingly, but based on the corresponding uncertainty connected

to the chosen mean value. For each calculation of propulsive power for a skier, a single

value is drawn from each of the distributions. Repeating this procedure several times, sim-

ulated responses for Pprop are produced and will presented in a plot give an idea of how

much the the response can vary. If the chosen values for mean and standard deviation are

good enough and large enough, respectively, the result should represent the entire range

of possible outcomes for the model. One can then judge whether the model still outputs

useful information from which it makes sense to draw conclusions, or if the variables must

lie within stricter bounds for that to happen. Asigning a distribution to each variable and

simulating based on these to model risk and the probability of all outcomes is known as a

Monte Carlo approach.
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3.1 Setting

The data analyzed in this thesis were collected at the cross-country skiing competition

Beitosprinten at Beitostølen, Norway. Beitosprinten is the national opening race of the

cross-country skiing season in Norway. Here the top cross-country skiers in Norway com-

pete as well as a few international skiers. There is a range of different races and disciplines

possible to take part in at Beitosprinten, such as sprint distances and longer distance races.

Out of these, data from 2017 and 2018 for several disciplines have been considered. More

specifically are the races in Table 3.1 analyzed further.

Table 3.1: Data sets analyzed specified with type of race, technique used, gender and year the data
were collected.

Race Technique Gender Year

Sprint (prologue) Classic Men 2017

Sprint (prologue) Free/Skate Men 2018

Sprint (prologue) Free/Skate Women 2018

10 km Classic Women 2018

15 km Classic Men 2018

The data analysis in this thesis will however focus less on the specifics of each atlete and
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rather more on the general use of data in the power balance model and the uncertainty

related to this.

Race tracks, discipline and skiing technique

The race tracks used during Beitosprinten 2017 and 2018 were two similar tracks for the

sprint (slight variation in length from 2017 to 2018) and a 5 kilometer race track used in

the long distance races in 2018. In the 10 km race for the women the athletes skied this

lap twice, and the men completed this lap three times in their 15 km race. All athletes in

each race started separately with 30 seconds between each starting skier. As for the sprint

races, the skiers also started separately but with 15 seconds between each athlete. The

sprint race is significantly shorter and is divided into rounds starting with the qalification

round. The skiers ski a short lap, and a certain number of with skiers with the best finishing

times qualify to the next round. The skiers then race against each other in heats, and the

top skiers from each heat qualify to the proceeding rounds. This knock-out procedure

continues until a winner is crowned after the final round. Sprint data analyzed here only

contains data from the qualification round, also called the prologue.

In classic technique races, skiers are restricted to using certain subtechniques, such as

diagonal stride and double poling with kick, and skating is not allowed. If the race is a free

technique race, the athletes use ski skating techniques, further visualized an described in

(Andersson et al. (2010), p. 588). The 10 km and 15 km race, as well as the 2017 sprint

race, were classical races, whereas the 2018 sprint was a free technique race where skating

was used.

Variations in conditions

Skiing conditions vary of many reasons. For one, the races start at different times of the

day. This means that the weather conditions could have changed and that the skiing con-

ditions later in the day are different from the skiing conditions earlier on that same day.

Furthermore, the snow conditions, and therefore the skiing conditions, can be different at

different locations in the race track. There is also a possible effect depending on which

starting number you have, as the skiing conditions and the condition of the snow can

change considerably if many skiers have skied before you. This is particularly visible, at

least visually, in medium to sharp turns of the track. Here the snow can be a lot "looser"

than the snow in a newly prepped race track and can be harder to navigate in. The weather

conditions also change over days, since all races analyzed are not completed on the same
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day, some parts of the data is also collected from competitions a year apart. These dif-

ferences will from the power balance model perspective affect the friction coefficient the

most, which is of interest for modelling, and which is also experimentally estimated and

investigated in this thesis. However, the effect of the differences mentioned is hard to

estimate, especially since there are also other variables contributing to variability and the

combination of these is hard to quantify.

3.2 Fixing parameter values

Given the setting, there are a few variables in the power balance model that need to be set

before calculations can be made. This in particular means the coefficient of friction in the

friction term and the air density and the drag area in the drag term. The choice of variables

are based mainly on what conditions affect the variables. The coefficient of friction and

the air density is affected by and thus determined by environmental conditions whereas

drag area is determined by the subtechnique used by the skiers in each race.

Environmental conditions means current weather and the resulting conditions based on

weather in the past. To be more clear, it means air temperature, possibly precipitation in

the form of rain and or snow, snow temperature and especially the quality of the snow.

Snow quality means how hard or soft the snow is, is it floury or crystalized or how old

or fresh is it. Despite the fact that the environental conditions can change, the friction

coefficient is assumed to be constant for all data from a given race. In contrast is the

drag area modelled as a piecewice constant function of subtechnique. A more detailed

description of the choice of variables follows.

Friction

The friction coefficient in the power balance model and in the analyses is assumed to be a

constant. This is of course a simplification of the truth. The friction coefficient is greatly

influenced by the varying conditions mentioned in the previous paragraph, but also by

choice of skiing technique and speed. These reasons will however not be considered when

finding an appropriate friction coefficient for the races analyzed in this thesis. By choosing

to do it this way the model will be unable to express the complex ski-snow interactions and

the relationship with varying speed. However, it is still done this way due to simplifying

modelling reasons.

In order to use the best friction coefficient possible in the analyses, the friction coefficient
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was estimated from an experimental test. The test was conducted in the field close to the

race tracks on the particular race day to achieve a measure as accurate as possible for the

races held that day. By this test, the weather and snow conditions are taken into account

and gives an impression of how much friction will affect the skiing and use of power given

the environmental conditions. The exception is the data sets from 2017, where no estimate

of the friction coefficient was available at the time this thesis was written.

The friction test was conducted in the following way: On a flat area of snow close to the

racing track, with as good and as similar conditions to the race tracks as possible, pairs of

photo cells were set up 1m, 19m and 1m apart, respectively, along two parallell straight

lines. This adds up to a total of four pairs of photo cells making up the test track, see

Figure 3.1. A test skier, using a pair of skis similar to the athletes’, was the test object.

Tracking units were placed by sensor pair one, pair three and on the test skier in a racing

vest, or bib, on the back between the shoulders similar to the competing athletes. The test

skier first started a sufficient distance away from sensor pair one, then double poled to gain

enough speed, and then tucked into the hockey position before reaching sensor pair one.

Holding this position, without moving the skis, passing times were registered between

all sensors. From these times, the average speed between sensors one and two and then

between sensors three and four was found and used together with the time difference to

compute the friction coefficient by Equation (2.3).

The experimental set up for estimation of the friction coefficient is shown in Figure 3.1.

Here is the initial speed v0 from Equation (2.3) set to be the calculated mean speed between

sensor pair one and two. Correspondingly is the ending speed v of the test set to be the

calculated mean speed between sensor pair three and four. The time difference ∆t is found

by adding together the time used to travel between photo cell pair two and three, half of

the time spent to travel from photo cell pair one to two, and three to four, respectively. If

the test is carried out perfectly, it is assumed that the loss of speed is only due to friction

between the skis and the snow, i.e., no speed is lost due to air drag, moving skis or gravity

reasons. A photograph of the actual setup is shown in Figure 3.2.

Assumptions in the friction test are that the air drag is negligible since the skier is in the

tucked position and that the test is conducted on flat ground such that gravity has little or

no impact on the friction coefficient. Moreover, it is assumed that the skier is otherwise

stable such that the loss of speed of the test skier in this setup is only due to the friction

between skis and the snow. Five runs were done from one side, then five test runs from

the other side. The reason for this was to even out possible impact from gravity in the test
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Figure 3.1: Schematic view of field test for estimation of the friction coefficient as seen from above.

and thus also in the computed result. One friction coefficient value was computed from

each run, ten in total, five from each side. A mean was calculated for each run, and from

these one overall mean was calculated representing the condition on the day of the skiing

competition.

The calculated value might not be precisely accurate for the conditions and especially not

correct for all times and positions in the track, but this estimate should be closer to the true

value than another value taken from the literature. Estimated values are listed in Chapter 5.

Adjustments based on subtechnique

To make model calculations more accurate, there were made certain adjustments based on

subtechnique. Certainly, the power used when skiing is different depending on whether

the skier uses a skating technique, the diagonal stride tehcnique or is in the tucked posi-

tion. The drag area CdA is then different and thus also the drag force in the power balance

model. Drag area was therefore implemented as a function of subtechniqe. Different val-

ues for drag area were used in calculations depending on whether the race was a classical

race or whether the free skating technique was used.
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Figure 3.2: Photograph of the setup for estimating the friction coefficient. To the right are the four
photo cells in one end of the setup, used to estimate the velocity in one end of the test track.

For the classical races, the subtechnique used at each data point was determined by a

classification algorithm. There were four subtechnique categories of the classification:

• Double poling (’DP’) (1)

• Diagonal stride (’DIA’) (2)

• Double poling with kick (’DPK’) (3)

• Other (= tuck and turn) (0)

The classification was performed before the analysis of data in this thesis started, and was

added as an additional feature to the data with labels 0, 1, 2, 3, determining what drag area

value to use. For the free skate sprint races no such classification was available at the time

this thesis was written. Nevertheless, a simplified classification based on speed was used

instead. If the speed was higher than 10 meters per second, the skier was assumed to be in

the tucked position, and then a certain value for the drag area was assigned. If the speed

was lower than 10 meters per second, the skier was assumed to be using any other more

or less upright skate skiing technique. The value assigned at this lower part of the speed

scale is higher than the one for high speeds, since the projected frontal area of the skier is

larger in the upright position than in the tucked position. All drag area values connected

to each subtechnique were found in relevant literature.
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Drag area values assigned to each subtechnique classified in the classical races were found

in the article by (Ainegren and Jonsson (2018)). This paper describes a study investigating

air drag, frontal area and coefficient of drag by letting a highly skilled skier simulating

skiing like techniques on a force plate in a wind tunnel. The resulting calculated values

for the drag area were used in the implementation of the power balance model.

3.3 Collecting data

Only a limited number of skiers were collected data from. These skiers were mainly elite

skiers from the Norwegian national team who all gave their consent to participation in

the data collection. All skiers were equipped with an GPS unit (Catapult OptimEye S5

(2019)) placed in an attached pocket in the back of the race bib. When wearing the bib, the

GPS unit was then positioned approximately at shoulder height, right between the shoulder

blades. The GPS were placed in the pocket right before the starting point in the interval

start and collected by the finish line right after the race when data had been collected. Data

was then extracted from the units and processed for further analysis later. In particular

was three-dimensional data for position projected into the race track, giving data where

position is measured as distance traveled in the track. The processed data is the base for

the calculations and analyses in this thesis.

3.4 Other assumptions and considerations

The skiing equipment used and grooming of skis is assumed to be of same quality for all

the competing athletes, as they all try to choose the best skis and prep for the conditions on

the race day. Skis used in the friction test were also of same quality level as the athlete’s

skis trying to eliminate any possible error due to use of differing equipment. There is

assumed to be no difference in the equipment of the competing athletes that will cause

differences in power calculations.

The mass m in the model is the mass of skier and equipment combined. Since the mass of

additional equipment affects the power usage when skiing, 3 kg is added to the body mass

of the skier before further analysis. The power balance model also assumes that the skier

and the equipment is a point mass and that one observes the movement from the center of

mass (COM) of the object in motion. The COM of the skier is located closer to the hip than

the shoulders in the vertical direction if seen in the sagittal plane, the plane that divides
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Chapter 3. Method

the human body into left and right sections. The exact position of the center of mass, can

bee seen in the master thesis of Øyvind Nøstdal Gløersen (Gløersen (2014), p. 40). The

data collecting unit is however positioned away from the COM and closer to the neck and

is therefore causing slight measurement error. The combination of this systematic error in

addition to any other noise registered by the unit, is attempted filtered away by smoothing

techniques. These techniques remove the high-frequent noise and keep the underlying

trend of the data, which is crucial in order to obtain as true results for power as possible.

Also the distance between the COM and the unit changes as the skiers move. The quality of

the GPS is good and can detect typical instantaneous speed differences in cross-country ski

racing (Gløersen et al. (2018a)), but the sensitivity opens up for possible unwanted high-

frequency noise, especially in the case of speed. Speed changes rapidly as the skiers move.

Natural considering the placement of the GPS and for instance skiing using double poling.

Detected speed of the GPS increases when using the poles to push back, and decreases

after the push until the movement is repeated. This causes a zig-zag pattern when plotting

speed as a function of distance traveled in the track. Since the GPS is located on the upper

back, the GPS detects mainly the movement and speed of the upper back up the skier

rather than the speed and movement of the center of mass. This highlights the importance

of noise removal or filtering of the data before calculations, described further in the chapter

on data processing. Further preprocessing of the data before the sensitivity analysis, such

as calculating the slope angle of the track and calculating the acceleration, will also be

described in more detail in the next chapter. The systematic error due to location of the

GPS as well as other present high-frequency noise from the measurements motivated use

of filtering techniques.

After collecting the data, further processing of the data was needed before calculating

propulsive power. This work will be presented in further detail in Chapter 4, though some

reasoning for the chosen methods and their values in the analyses will be given here.

3.5 Statistical methods

In the smoothing splines method, the number of degrees of freedom was chosen, by visual

inspection, such that the smoothed curves looked reasonably smooth.

For the sensitivity analysis, the following variables were chosen for testing: The friction

coefficient µ, drag areaCdA, body massm and air density ρ. The effect of each variable in

the model was tested by calculating propulsive power by varying the variables one by one,
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3.5 Statistical methods

taking values from a vector of predetermined values. The values chosen for each variable

covered what is found or known to be the best value for the variable and for the race

conditions, found either by estimation or in literature. Additionally, some possible low

and high values in the ends of this interval were added, to cover all possible conditions

and to investigate what happens when values vary between values that are true and the

values that are assumed to be true, even if some slight error is made in the calculation of

parameters.

Testing values for µ covered the estimated values from the friction tests. Drag area testing

values ranged from the low drag area values representing the tucked position, to the drag

area values of a skier in an upright position where the drag area is considerably larger.

Experimental values for the drag area for these positions were found in the article by

Ainegren and Jonsson (2018). Body masses tested were the measured body mass including

equipment and a slightly lower and slightly higher mass (±2kg). Air density was set to

1.1kg/m3 and also here a slightly smaller and a slightly larger value was tested. Lists of

values and variations in analysis are found in Chapter 4.

For the power simulation, the same variables were tested, but following a Monte Carlo

approach. Each variable was assigned a distribution, as follows

θpar ∼ N(µpar, σ
2
par)

The normal distribution was chosen because it is easy to work with mathematically and

in many cases models natural phenomena well. It also a reasonable first choice if it is not

clearly known that the distributions follow another distribution.

Means µpar were chosen to be the estimated values from experiments or from the lit-

erature, similar to what was done in the analysis for each variable separately. Standard

deviations σpar were chosen to cover all reasonable values in the test setting, as well as

some values bordering to the more unlikely, so that any uncertainty in the model input is

accounted for.

The aim of the sensitivity analysis was to get a clearer view and a better understanding

of how each variable and how each term affects the total response Y = Pprop of the

model. Then, the simulation approach will then give insights into how much variation in

the variables will result in varying results for propulsive power curves.
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Chapter 4
Data processing and analysis

Data from the data collection were preprocessed in MATLAB and then further processed

and analyzed in R. Only processing and analysis in R is included in this thesis. Since

a large proportion of the work with this thesis was spent processing the data further and

setting up a framework for analysis, this will de described in more detail in the following.

Further processing of input data

Preprocessed data were loaded into R and relevant initial variable vectors were chosen and

set up in data frame. Initial variables for each skier were time t, distance travelled in the

track x, velocity v, elevation elev and body mass m of skiers. An additional 3 kgs were

added to the skiers body mass to account for the mass of equipment, such as skis, boots

and poles. Note that exact body mass was not known for every single male skier at the

time this thesis was written. In those cases, an average mass of 77 kg was assumed, which

is an approximate average of the body mass of the male skiers. In addition to mass, the

initial data included a vector of subtechnique classification, however only for the classical

races. Additional labels such as gender, year and race discipline were added to the data

frames for a better overview. In the cases where DGPS (differential GPS, accuracy down

to 10− 15 cm) data was available for the track profile, this was used.
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Smoothing of velocity and track profile

Since in particular the velocity detected by the GPS units includes noise and measurement

error, the velocity is filtered to remove this noise. Plotting the velocity as function of

distance traveled in the track confirms that the velocity data includes noise, the curve

draws a zig-zag pattern where the data points alternate in being smaller and larger than the

previous data point. There is however a general trend in the speed. The smoothing spline

filtering aims to keep this trend, but to remove the noise and the corresponding zig-zag

pattern. For the cases where DGPS data was not available (all 2018 data), the track profile

was smoothed by smoothing splines.

The degrees of freedom were chosen such that the curves looked reasonably smooth, by

visual inspection. Calculating acceleration based on a smoothed velocity also gives a much

smoother acceleration, as well as a more correct calculation of the propulsive power. For

velocity data, only the smoothed velocity is considered in calculations and analyses as this

curve best represents the truth which we are interested in investigating.

Adjusted central differences: Acceleration and slope angle

From the inital loaded data, acceleration awas calculated by central differences. However,

since the regular central differences method requires h data points on each side when

approximating the derivative for a data point i, adjustments were needed in both vector

ends. For the first h data points, the derivative was approximated by

f ′(x) ≈ f(xi+h)− f(x1)

xi+h − x1
, i = 1, ..., h (4.1)

an amended version of central differences. The number of data available data points on the

right side of index i will always be h while the number of available data points on the left

hand side will increase from 0 to h. The total index difference between data points will

therefore range from h to 2h. A mirrored procedure is used in the end of the vector:

f ′(x) ≈ f(xn)− f(xi−h)

xn − xi−h
, i = n− h+ 1, ..., n (4.2)

Here, the number of available data points on the left side of index i will always be h, while

the number of available data points on the right hand side will decrease from h to 0. In

the middle of the vector, the acceleration is calculated by the regular central differences
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method as stated in the theory chapter. Combined, these three procedures approximates

the derivative of the velocity.

The track slope was calculated by the same central differences procedure as the accelera-

tion. The angle at each point of the race track was calculated by the inverse trigonometry

formula described in the theory section.

The step size h was chosen such that a satisfactory smoothness of the data was obtained,

while at the same time calculating the derivative using data points not too far apart. The

minimum and maximum length between data points in the track was approximately 15 and

30 meters, respectively, for each race, and h was found correspondingly. h was chosen to

be race specific and the same value was used for both angle and acceleration calculation

within each race.

Subtechnique classification and drag area

Preprocessed data contained classification of subtechnique. From a vector containing val-

ues 0, 1, 2 and 3 for the classical techniques, a script assigned the suitable drag area value

(Ainegren and Jonsson (2018)) in a separate vector given as input to the power balance

model. Category 0 includes that skiers are both tucking and turning. However, since the

data shows that the speed in general is high when the subtechnique is classified into this

category, we assume that the skiers are mostly in the tucked position, and hence a low

value for the drag area is reasonable. The value is however not set too low, as the this

classification category is not precise and skiers also use more upright skiing techniques

within this category.

In the skating technique races, drag area values were assigned based on a speed determined

classification, above or below 10m/s, for tuck and the upright position, respectively. This

classification is even more uncertain than category 0 in the classic races. Since speeds

above 10ms generally means skiing in the tucked position, parameter choices are based

on this assumption. There is more uncertainty related to the upright cateogory, as this

category includes a wider range of techniques with varying drag area, but an intermediate

drag area value in the range of drag area values for skating techniques were chosen based

on experimental values from Ainegren and Jonsson (2018).
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Table 4.1: Example of data frame in R after preprocessing, ready for power calculations.

1 skier time distance speed elevation subtechnique technique
2 1 HSprintP_40 0.00 0.00000000 8.109429 -0.02183887 1 classic
3 2 HSprintP_40 0.01 0.07708371 8.076857 -0.02176748 1 classic
4 3 HSprintP_40 0.02 0.15416741 8.044286 -0.02175719 1 classic
5 4 HSprintP_40 0.03 0.23125112 8.011714 -0.02180455 1 classic
6 5 HSprintP_40 0.04 0.30833482 7.979143 -0.02190637 1 classic
7 6 HSprintP_40 0.05 0.38541853 7.946571 -0.02205966 1 classic
8
9 ...
10
11 year gender lap mass angle speedSmoothed accSpeedSmoothed mu
12 2017 male 1 82 -0.0005728568 7.759799 -0.9422636 0.025
13 2017 male 1 82 -0.0009141676 7.749632 -0.9240387 0.025
14 2017 male 1 82 -0.0012435023 7.739842 -0.9059670 0.025
15 2017 male 1 82 -0.0015614803 7.730424 -0.8880486 0.025
16 2017 male 1 82 -0.0018686792 7.721374 -0.9790688 0.025
17 2017 male 1 82 -0.0021656378 7.712686 -0.9474127 0.025

Friction

The friction coefficient µwas added in a separate column, where each race had their unique

value for µ as estimated in the friction tests in 2018. The exception was 2017, where µ

was set to 0.025.

An example of the first six rows of a data frame for the classic sprint in 2017 is presented

in Table 4.1.

4.1 Power calculation and sensitivity analysis

After acceleration and slope angle had been calculated, drag area values had been assigned,

the friction coefficient for each specific race and the air density had been summoned,

all input was ready for power calculation. A model function took the data frame and

the parameter vector as input and calculated the propulsive power, while it at the same

time calculated the separate terms in the power balance model. Note that where negative

propulsive power was calculated, the calculations set Pprop to 0 since it in practice does

not make sense to use a negative amount of power. Additionally was the calculated power

divided by the skiers mass, in order to look into the relative power - how much power

is used relative to body mass. This is a more universal measure of power, as skiers with

higher body mass would need to use more power to obtain the same speed as skiers with

lower body mass would.
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4.1 Power calculation and sensitivity analysis

4.1.1 Each variable separately

Each parameter is tested by varying between the chosen parameter values and calculating

the propulsive power. These values were chosen in the range that could reasonably repre-

sent changes in the parameter in a race. Three tests on the 2017 sprint data were conducted

with different vectors of predetermined values with varying range, and relative power Prel
is calculated with varying parameter values, one parameter at a time. Test values for all

tests are presented in Table 4.2. Note that only test 3 is presented in the results, the other

two are found in the Appendix A.
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Table 4.2: Vectors with predetermined values for sensitivity analysis for each variable on an uphill
segment from the 2017 sprint data.

Values for sensitivity analysis

Test 1

Variable Vector of values

Drag area CdA = [0.20, 0.40, 0.60]

Friction µ = [0.020, 0.025, 0.030, 0.035]

Body mass m = [m− 2,m,m+ 2]

Air density ρ = [0.9, 1.1, 1.3]

Test 2

Variable Vector of values

Drag area CdA = [0.30, 0.40, 0.50]

Friction µ = [0.0225, 0.025, 0.0275, 0.030]

Body mass m = [m− 1,m,m+ 1]

Air density ρ = [1.0, 1.1, 1.2]

Test 3

Variable Vector of values

Drag area CdA = [0.40, 0.45, 0.50]

Friction µ = [0.0225, 0.025, 0.0275]

Body mass m = [m− 1/2,m,m+ 1/2]

Air density ρ = [1.05, 1.1, 1.15]
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4.1 Power calculation and sensitivity analysis

The tests calculated minimum and maximum difference between the calculated curves of

calculated relative power for different parameter values, i.e.,

max ∆Prel and min ∆Prel

Then the maximum and minimum difference relative to a chosen reference was calculated

in percent, as

max ∆Prel
Prel,θ=θchosen

and
min ∆Prel
Prel,θ=θchosen

Maximum and minimum difference in power and maximum and minimum difference in

power relative to a reference was then found for anuphill segment, for chosen parameters,

see the result chapter.

4.1.2 Monte Carlo simulation approach

The effect of changes in all variables simultaneously was modeled by simulation. A dis-

tribution was assigned to each variable with mean and standard deviation, and power cal-

culated by drawing parameter values from these distributions.

Suitable estimates of the standard deviations were chosen based on the empirical rule of

statistics, which states that asymptotically 95% of the samples drawn from a normal dis-

tribution will lie within two standard deviations of its mean, i.e. the interval

[µθ − 2σθ, µθ + 2σθ] covers 95% of samples drawn from θ ∼ N(µθ, σθ). As an example,

the standard deviation of the friction coefficient was set to σµ = 0.0025 as then 95% of

drawn samples will be in the interval [0.020, 0.030] if µestimated = 0.025, which covers

most estimated COFs and a reasonable uncertainty in this parameter given the environ-

mental conditions.

Special care was given when setting the standard deviations for the drag area for categroy 0

(classical) and for skate. As previously mentioned, since category 0 is assumed to mostly

contain tuck, a low standard deviation would be reasonable as the uncertainty in drag

area is low (experimentally tested) given that this is the position (confirmed in Ainegren

Johnson). However, since we do not know for sure how much other more upright positions

are used in this categroy, this was a reason for increasing this chosen standard deviation.

35



Chapter 4. Data processing and analysis

A similar argument was used for drag area for skate, though this is a more uncertain

classification than for the classic races since it is only based on speed. Furthermore, the

upright category for skate contains a range of different skating techniques. The standard

deviation was therefore chosen such that 95% of sampled values fell within the range

of experimental drag area values for skating techniques tested in Ainegren and Jonsson

(2018). Chosen means and standard deviations are presented in Table 4.3.

For simulation of propulsive power, N simulations were run for each race and compared

to the calculated power vector with ’true’ parameters Prel,true. The true propulsive power

Prel,true was subtracted from the power vector Prel of simulation j, and this difference

was divided by the true propulsive power, for each simulation j = 1, ..., N to find the

elementwise deviation of simulations relative to what is assumed to be the true calculation.

Prel,j −Prel,true
Prel,true

(4.3)

This calculation was done for one uphill segment in each race, the lengths of the segments

varying from 150 to 200 meters. Additionally, 95% confidence intervals were found by

sorting all absolute relative differences for all data points for all skiers within each race,

and disregarding the lowest 2.5% and highest 2.5% values.
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4.1 Power calculation and sensitivity analysis

Distributions for Monte Carlo simulation

CdA Classical
Subtechnique Distribution 95% intervals
0: Other (= tuck/turn) ∼ N(0.23, 0.0252) [0.18, 0.28]
1: Double poling ∼ N(0.44, 0.0252) [0.34, 0.54]
2: Diagonal stride ∼ N(0.54, 0.0252) [0.44, 0.64]
3: Double poling with kick ∼ N(0.46, 0.0252) [0.36, 0.56]

(a) Drag area value distributions, classical.

CdA Skate
Subtechnique Distribution 95% intervals
Upright ∼ N(0.50, 0.0752) [0.35, 0.65]
Tuck ∼ N(0.23, 0.0252) [0.18, 0.28]

(b) Drag area value distributions, skate.

Other
Variable Distribution 95% intervals
Mass m ∼ N(mskier, 1

2) [80, 84] (if mskier = 82)
Air density ρ ∼ N(1.1, 0.12) [0.9, 1.3]
Friction coefficient µ ∼ N(µestimated, 0.00252) [0.020, 0.030] (if µ = 0.025)

(c) Distributions for other parameters.

Table 4.3: Overview of distributions with chosen means and standard deviations for all paramters
when sampling in the Monte Carlo simulation.
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Chapter 5
Results

In this section, results from power calculations, sensitivity analysis and Monte Carlo sim-

ulation will be presented as well as results from friction coefficient estimation. Note

that relative propulsive power Prel, propulsive power relative to body mass with unit
J/s·kg = W/kg, is used in the subsequent analyses to make the results as general and com-

parable as possible. Unless otherwise stated, we always mean power relative to body mass

when talking about propulsive power in the following.

5.1 Friction coefficient estimation

Example of raw data from the field test for estimation of coefficient of friction.

Table 5.1: Raw data from field test for estimation of the friction coefficient µ.

Test X Time (s) ∆t Distance m Friction µ
1st passing time 0.264 1
Time between points 6.176 6.542 20
Last passing time 0.467 1 0.0257
Total time 6.902
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Table 5.2: Estimated friction coefficients, results.

Friction coefficient estimation

Date 16.11.18 16.11.18 17.11.18 18.11.17

Time 09:05 14:49 10:15 No data
Air temperature
Snow temperature, ◦C (time) -0.6 (08:35) -0.6 (14:51) -3.4 (10:50) No data

Race
10/15 km 10/15 km Free/skate Sprint
classic classic sprint prologue prologue classic

µ one way average 0.0242 0.03097 0.0225 No data
Other way average 0.0267 0.0319 0.02743 No data
Total average 0.0255 0.0314 0.02499 Set to 0.025 in calculations (No data)
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5.2 Sensitivity analysis

The change in calculated propulsive power given changes given the input parameters de-

pends on the size of each model term. If a parameter in a term is changed in the model

with a large absolute value relative to the other terms, this parameter change will increase

or decrease Pprop more than if a parameter is changed in a model term with smaller ab-

solute value. The impact of change is larger, the larger the absolute value of the term is.

The value of each model term for a selected skier from 2017 is presented in Figure 5.1 and

gives an idea of how which terms that can lead to the most substantial changes in Pprop as

parameter values are varied.
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Figure 5.1: Model terms of the power balance model. Red curve: Drag, blue curve: Friction,
orange curve: Gravity and green curve: Term with acceleration.

Figure 5.1 shows that the two terms with largest values in absolute value is the gravity

term and the acceleration term. Note that both these terms include variables that require

calculation by the central differences method, the incline angle in the gravity term and

the acceleration a in the acceleration term. However, the friction term also requires use

of central differences for the incline angle, though the size of the acceleration term in

particular is highly dependent on the smoothness and size of the speed.

Investigating an uphill segment

An uphill segment from the 2017 classical sprint was investigated and propulsive power

was calculated with varying parameters. Maximum and minimum absolute difference

41



Chapter 5. Results

in relative power Prel (max.diff and min.diff) and maximum and minimum abso-

lute difference (rel.max and rel.min, respectively) relative to a chosen reference was

computed in three different tests. Only test 3, with the smallest variation in parameters, is

shown here. Tests 2 and 3 are found in Appendix A.
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Drag area CdA

Testing relative difference in drag area CdA with test values CdA = [0.40, 0.45, 0.50].

The reference is CdA = 0.45.

Test 3

Table 5.3: Table with absolute maximum and minimum and absolute relative difference in % of
propulsive power with varying CdA for an uphill segment. CdA = [0.40, 0.45, 0.50], reference
CdA = 0.45

1 > tab.drag
2 skier max.diff min.diff rel.max rel.min
3 1 HSprintP_40 0.620 0.0618 18.6 0.764
4 2 HSprintP_47 0.519 0.0460 20.1 0.616
5 3 HSprintP_46 0.659 0.0239 18.4 0.383
6 4 HSprintP_4 0.515 0.0342 18.5 0.476
7 5 HSprintP_30 0.551 0.0379 19.5 0.542
8 6 HSprintP_23 0.555 0.0375 16.1 0.541
9 7 HSprintP_20 0.613 0.0408 19.5 0.565
10 8 HSprintP_19 0.571 0.0344 19.2 0.480
11 9 HSprintP_10 0.478 0.0428 18.7 0.551

The relative difference ranges from 0.4% to 20%, a quite wide range with a high maximum

relative difference. This difference is however related to uncertainty in classification of

subtechnique. Additionally, variation can be explained by that the difference betweem

minimum and maximum tested value for CdA is 0.10, which is a 22, 2% change relative

to the reference value. Since also the model is linear in all its terms and parameters except

for the cubed velocity in the drag term, potential inaccuracies and changes in velocity has

greater impact in this term of the power balance model.
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Friction coefficient

Test for relative difference of the friction coefficient with test values µ = [0.0225, 0.025, 0.0275].

The reference is the estimated value, µ = 0.025].

Test 3

Table 5.4: Table with absolute maximum and minimum and absolute relative difference in % of
propulsive power with varying µ for an uphill segment. µ = [0.0225, 0.025, 0.0275], reference
µ = 0.025].

1 > tab.mu
2 skier max.diff min.diff rel.max rel.min
3 1 HSprintP_40 0.417 0.189 12.7 2.33
4 2 HSprintP_47 0.398 0.174 15.6 2.32
5 3 HSprintP_46 0.424 0.137 12.0 2.20
6 4 HSprintP_4 0.397 0.157 14.4 2.19
7 5 HSprintP_30 0.396 0.159 14.2 2.26
8 6 HSprintP_23 0.394 0.157 11.5 2.26
9 7 HSprintP_20 0.409 0.162 13.2 2.23
10 8 HSprintP_19 0.412 0.158 14.1 2.20
11 9 HSprintP_10 0.384 0.168 15.2 2.16

The relative difference ranges from 2.2% to 16%, also a quite wide range. In this test

the difference between minimum and maximum tested value for µ is as low as 0.0050,

though this is a change of 20% relative to the reference value µ = 0.025. Additionally,

the power calculations can be affected by the calculation of the incline angle in the same

term, even though the absolute size of this model term is not large compared to the others

(See Figure 5.1) and changes in parameters in the friction term therefore do not have as

high impact on the propulsive power calculations.
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Body mass

Test for relative difference of body mass m with test values [m − 1/2,m,m + 1/2]. The

reference is the measured body mass m.

Test 3

Table 5.5: Table with absolute maximum and minimum and absolute relative difference in % of
propulsive power with varying body mass of the skiers, m (±0.5 kgs), for an uphill segment of the
2017 sprint race. Test values: [m− 1/2,m,m+ 1/2], reference is each skier’s body mass m.

1 > tab.mass
2 skier max.diff min.diff rel.max rel.min
3 1 HSprintP_40 0.0222 0.00271 0.673 0.0334
4 2 HSprintP_47 0.0179 0.00195 0.703 0.0260
5 3 HSprintP_46 0.0239 0.00106 0.674 0.0170
6 4 HSprintP_4 0.0178 0.00145 0.645 0.0201
7 5 HSprintP_30 0.0205 0.00173 0.735 0.0246
8 6 HSprintP_23 0.0212 0.00175 0.620 0.0252
9 7 HSprintP_20 0.0231 0.00189 0.744 0.0260
10 8 HSprintP_19 0.0195 0.00144 0.665 0.0200
11 9 HSprintP_10 0.0169 0.00186 0.670 0.0238

The relative difference ranges from 0.02% to 0.74%, a quite small range. The difference

between minimum and maximum tested value for m is only 1 kg, only being about 1.2%

of the reference mass of 82 kgs. This means that if the measured mass of a skier and

the equipment is within an uncertainty range of ±1/2 kg, the maximum absolute relative

difference is less than 1%. Even for the test where the body mass was varied within an

uncertainty range of ±2 kgs, the maximum absolute relative difference was about 3% at

most.
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Air density

Test for relative difference of ρ with test values ρ = [1.05, 1.1, 1.15]. The reference is

ρ = 1.1.

Test 3

Table 5.6: Table with absolute maximum and minimum and absolute relative difference in % of
propulsive power with varying ρ for an uphill segment for the 2017 sprint race. Test values ρ =
[1.05, 1.1, 1.15], reference ρ = 1.1.

1 > tab.air
2 skier max.diff min.diff rel.max rel.min
3 1 HSprintP_40 0.165 0.02022 6.56 0.259
4 2 HSprintP_47 0.138 0.01504 5.49 0.193
5 3 HSprintP_46 0.176 0.00782 6.98 0.100
6 4 HSprintP_4 0.137 0.01118 5.45 0.143
7 5 HSprintP_30 0.147 0.01240 5.83 0.159
8 6 HSprintP_23 0.148 0.01227 5.88 0.157
9 7 HSprintP_20 0.163 0.01337 6.49 0.171
10 8 HSprintP_19 0.152 0.01127 6.05 0.145
11 9 HSprintP_10 0.127 0.01400 5.05 0.180

The relative difference of ranges from 0.1% to 7%. The difference between minimum and

maximum tested value for ρ is 0.1, about 9% change relative to the reference.
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5.3 Monte Carlo approach

Calculated power with estimated and set values is considered the ’true’ power curve. The

difference between simulated power and true power relative to true power, in percent,

for one uphill segment in each race, as well as 95% confidence intervals (CIs) for these

deviations are presented in Table 5.7.

Table 5.7: 95% confidence intervals for absolute relative deviation from Pprop with true parameters,
from N Monte Carlo simulations of a selected uphill segment in each race.

Race CI: Deviation in % Simulations

Sprint (M), 2017 [0.0675, 7.723] N = 100

Sprint (W), 2018 [0.0821, 10.984] N = 200

Sprint (M), 2018 [0.0825, 6.863] N = 200

10 km (W), 2018 [0.0572, 10.495] N = 50

15 km (M), 2018 [0.0382, 3.973] N = 10

The Monte Carlo simulations show that after having sorted the absolute values of the rela-

tive deviations in an uphill segment in each race (in %), and removed the largest 2.5% val-

ues, simulated races varies at most 11% from the race with ’true’ parameters. Deviations

for all data points and all skiers are considered together, giving a total of n ·No. of laps ·N
deviations in the results for each race. (Number of laps for sprint races is equal to one.)

Figure 5.2 illustrates the relative deviations from the propulsive power calculation with

’true’ parameters for an uphill segment in the 10 km classic race for women in 2018. The

deviations from Pprop with ’true’ parameters within a 95% confidence interval are not

larger than 8% in absolute value and are centered around zero.
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Figure 5.2: Relative difference (in %) of propulsive power within a 95% confidence interval for the
simulations of an uphill segment from the 10 km classic race (W) 2018.
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Chapter 6
Discussion

The accuracy in measurements, choice of methods and parameters as well as their cor-

responding errors are important factors when investigating the power balance model for

better understanding of cross-country skiing in a race setting. There are numerous sources

of uncertainty already starting in the preprocessing of the data. The measurement units

used for collecting data in this thesis is highly accurate (Gløersen et al. (2018a)), though

also sensitive and register the movements of the upper back where the GPS is located

rather than the movement of the COM of the skier. Though improvements with regards to

positioning of this GPS, so that it can measure the movement of the COM, is tractable, it is

not done for the data analyzed at this point. As therefore filtering techniques must be used

to provide data to the model that more accurately represents the truth, a new issue presents

itself when having to choose both method and the method parameters that follow.

Filtering method

Though the choice of smoothing splines as a method for removing high-frequency noise

is justified (see theory sectiob er add references again), the smoothing parameter must still

be chosen such that noise is removed yet does not remove any of the underlying truth in

the data. The effective degrees of freedom - a function of the flexibility of the fitted curve -

was here chosen mainly by visual inspection of the resulting curve for the smoothed speed,

and what curve was deemed to reasonably represent the speed of the COM of the skier in

motion. However, a more quantitative approach would be to use cross-validation to find
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the best smoothing parameter minimizing Equation (2.4).

Choice of number of knots and their positioning is not an issue in smoothing splines, as

the number of knots is equal to n, positioned at the n data points. However, other similar

smoothing and regression techniques allow for this, and can be evaluated for instance

in sections of the data where a higher (or lower for that matter) accuracy is wanted, for

instance in an uphill segment, a downhill segment of a segment over a hill top. An example

is regression splines, upon which the smoothing splines technique is based. A higher

number of knots and small spacing will give a more flexible fit, whereas fewer knots with

larger spacing will result in a smoother curve. The number of knots for a specific data set

can also be found by cross-validation.

Note also that the definition of smoothing splines in this thesis is slightly different from

the one used by Gløersen (2019) and that the weights wi in the loss function were all set

to one instead of using weighting for adjusting for measurement accuracy.

Central differences and choice of h

In the central differences method used in this thesis for calculation of the derivative of

speed, a key issue is finding a suitable step size h. One wants to find an h that leaves the

acceleration sufficiently smooth while at the same time representing the actual accelera-

tion. Choosing h too small will include the sensitivity of the velocity data in the calculated

acceleration, i.e. if the function for speed is jumpy, so can the acceleration be with a small

choice of h. A small step size, means that the difference in value between two data points

is small, especially if the data are collected with a high sampling frequency. Consequently,

the denominator in the central differences scheme will be small, and dividing by a num-

ber much smaller than the numerator can give a unaccurately high acceleration and vice

versa, resulting in a acceleration that also has a zig-zag pattern. This again highlights the

importance of sufficient smoothing of the velocity, though a thought is also to consider

smoothing the acceleration. The same arguments above are applicable for calculating the

incline angle in the track by the same method.

An example of step size choice is h = 200, which for the 2017 classic sprint race meant

using points for calculation that were 30 meters apart (from 15 to 30 meters apart in the

beginning and the end of the race). The chosen step size was 1 − 2% of the total race

track length. By visual inspection, this step size seemed to give a descent result for the

acceleration and the angle. A too large step size would mean comparing data points that

are too far apart from each other in the race track to make sense.
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Classification of subtechnique

Implementing the drag area as a function of subtechnique is definitely a step in the direc-

tion of more accurate calculations of propulsive power. The classification of subtechniques

by accelerometer data and gyroscope data (collected by IMUs) in the classical races is

quite accurate, whereas the the skating classification is only based on a speed assumption

and category 0 in the classical races includes both tucking ang turning.

Firstly, by only using the speed assummption for skate, one is not able to use the true

drag area for a data point since the exact subtechnique is not known. Furthermore, one is

not sure if the skier is only tucking for speeds larger than 10m/s and using upright skiing

techniques for speeds lower than that, and if so, which ones. An improvement for skate

would therefore be to have classification data available.

As for the classical races, the uncertainty mostly lies within category 0. Since the speed

is high within this category as a whole, it makes sense to choose a low drag area value,

but this could be investigated in more detail by possibly filtering over the speed for each

data point, choosing one drag area value for the highest speeds (where the skiers are the

most likely to be in the tucked position) and another value for CdA for the lower speeds.

The main uncertainty is not knowing exactly what subtechniques are used by the skiers in

which category, thus complicating the choice of values for CdA, both the mean and the

standard deviation for distributions in the Monte Carlo simulation.

Size of model terms

The model terms, as shown in Figure 5.1, vary greatly in size and value. Expecially the

acceleration term and the gravity term which require calculation by central differences,

which again is highly influenced by the choice of h. It is however interesting to note

that also the friction term requires central differences for calculation of angle, but that the

variation in this term is low compared to the gravity and acceleretaion term. The reason

for this can be that the friction term is multiplied by µ, a factor of size ∼ 10−2, which

makes this term about fourty times smaller than the very similar gravity term in the model

(the only change between them is the friction coefficient). The effect of central differences

is thus downsized.

As one is not certain to have removed all noise from the speed, this could also be a reason

for change in the model terms. However, as all model terms include the speed, one can

argue that this is of less importance. The exception is the drag term, where the speed is
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cubed. Thus, local variations can be magnified and contribute to even more to changes.

Relative differences in sensitivity analysis

The relative difference results in the analysis quantifies how much a change in a single

parameter changes the calculated propulsive power. By the results, one is able to see

which parameter contributes to the least and the most change, in this case the body mass

m and the drag area CdA, respecitvely. It is however worth mentioning that this change

in propulsive power is dependent on the size of the change of the parameter relative to the

size of the parameter itself. As stated in the Chapter 5, a change of ±2 kgs in mass from

the body mass gives maximum a relative change of 3% in propulsive power, but note that

this relative parameter variation is low, since 4 kgs out of 82 kgs (body mass of skier in the

tests presented) is only 4.9%. In comparison, a change of ±0.2 in drag area value gives a

maximum relative change of 57.4%. Note however in this case that this relative parameter

variation is a lot higher, as 0.2 out of 0.4 is 50%, ten times higher than for the body mass.

Monte Carlo approach

The idea behind the analysis of the Monte Carlo simulations was to attempt quantify how

much error one can possibly make when there is uncertainty in the estimation or choice of

model parameters. The lower the absolute difference between between the ’true’ and the

simulated power curve relative to the power curve is for each skier, the more precise and

trustworthy is the calculated propulsive power. If the calculations for power are precise,

it means that the data we have to calculate propulsive power by the power balance model

are precise enough to investigate differences between athletes and differences between

races. To be more sure of the of the variations in the simulated races, a larger number of

simulations should be considered.

Viewing the simulated values differently, one could have found the difference of all skiers

relative to a reference skier, in each race. If this difference does not vary much in the simu-

lations, this suggests that the parameters we have used, and within the chosen uncertainty,

are precise enough to detect differences between athletes.

Additional comments

Only uphill segments have been investigated in this thesis, but it would also be interesting

to look at other track segments such as downhill segments, segments with little or no

incline angle or segments covering hill tops. Examples of this as well as a scientific view
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on cross-country skiing can be seen in the article and the TV episode about Didrik Tønseth

in the series ’Vitenskapen bak medaljen’ (NRK (2019)) on NRK.

Additionally would it be interesting to investigate the differences of calculated propulsive

power with and without DPGS data. Also, a completely different interesting approach

would be to analyze the data as a time series.
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Chapter 7
Conclusion and further work

Propulsive power has been calculated, a sensitivity analysis has been performed and Monte

Carlo simulations produced in an uphill segment of all five races investigated in this thesis.

The sensitivity analysis showed that the body mass was the parameter that percentwise

gave the smallest change in propulsive power when varying the parameters separately

within reasonable ranges for which each parameter can vary in race conditions. The drag

area gave the largest percentwise change in propulsive power. In total, and in decreasing

order; Drag area, the friction coefficient, air density, the body mass are the most sensitive

for changes in calculation of power using the power balance model. The sensitivity is

highly dependent on how much the parameter varies relative to its estimated value.

The Monte Carlo simulations showed that the maximum relative deviation in absolute

value of all races was 11% in the investigated uphill segments. More simulations should

be run in order to quantify this deviation more accurately and support the findings in this

thesis.

Since the sensitivity analysis showed that the power balance model is most sensitive for

changes in the drag area, it is important for future research to improve classification of

subtechniques in order to use the correct drag area value for each data point. This is

especially important for skate, where the techniques are divided into only two categories,

which are divided by an assumption of speed rather. It would be desirable to also classify

the skating subtechniques by gyroscope and accelerometer data as is done for the classical

races investigated in this thesis.
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Appendices

Appendix A provides an overview of scripts made and used in this thesis as well as the

actual code. Appendix B includes tables for calculations not presented in the result chapter.
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Appendix A
Sensitivity analysis: Additional

tables

Men’s sprint 2017 (classic)

Drag area: Test 1

Table A.1: Minimum and maximum absolute difference and maximum and minimum absolute rel-
ative difference in percent of propulsive power with varying CdA for an uphill segment of the 2017
sprint. Test values CdA = [0.2, 0.4, 0.6], reference CdA = 0.4.

1 > tab.drag
2 skier max.diff min.diff rel.max rel.min
3 1 HSprintP_40 1.65 0.1647 52.8 2.04
4 2 HSprintP_47 1.38 0.1226 57.4 1.65
5 3 HSprintP_46 1.76 0.0637 52.2 1.02
6 4 HSprintP_4 1.37 0.0911 52.5 1.27
7 5 HSprintP_30 1.47 0.1010 55.7 1.45
8 6 HSprintP_23 1.48 0.1000 45.4 1.45
9 7 HSprintP_20 1.63 0.1089 55.7 1.51
10 8 HSprintP_19 1.52 0.0919 54.8 1.28
11 9 HSprintP_10 1.27 0.1141 53.2 1.47
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Drag area: Test 2

Table A.2: Minimum and maximum absolute difference and maximum and minimum absolute rel-
ative difference in percent of propulsive power with varying CdA for an uphill segment of the 2017
sprint. Test values CdA = [0.3, 0.4, 0.5], reference CdA = 0.4.

1 > tab.drag
2 skier max.diff min.diff rel.max rel.min
3 1 HSprintP_40 0.827 0.0824 26.4 1.021
4 2 HSprintP_47 0.692 0.0613 28.7 0.823
5 3 HSprintP_46 0.879 0.0318 26.1 0.511
6 4 HSprintP_4 0.687 0.0455 26.2 0.636
7 5 HSprintP_30 0.735 0.0505 27.9 0.724
8 6 HSprintP_23 0.741 0.0500 22.7 0.723
9 7 HSprintP_20 0.817 0.0545 27.8 0.754
10 8 HSprintP_19 0.762 0.0459 27.4 0.640
11 9 HSprintP_10 0.637 0.0570 26.6 0.735
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Friction: Test 1

Table A.3: Table with absolute maximum and minimum difference and minimum and maximum
absolute relative difference in % of propulsive power with varying µ for an uphill segment of the
2017 sprint. µ = [0.020, 0.025, 0.030, 0.035], reference µ = 0.025].

1 > tab.mu
2 skier max.diff min.diff rel.max rel.min
3 1 HSprintP_40 1.25 0.568 38.0 6.99
4 2 HSprintP_47 1.19 0.521 46.8 6.95
5 3 HSprintP_46 1.27 0.412 35.9 6.59
6 4 HSprintP_4 1.19 0.471 43.2 6.56
7 5 HSprintP_30 1.19 0.476 42.7 6.79
8 6 HSprintP_23 1.18 0.471 34.6 6.77
9 7 HSprintP_20 1.23 0.486 39.5 6.70
10 8 HSprintP_19 1.24 0.475 42.2 6.59
11 9 HSprintP_10 1.15 0.504 45.7 6.47

Friction: Test 2

Table A.4: Table with maximum and minimum absolute and relative difference in % of propulsive
power with varying µ for an uphill segment of the 2017 sprint. µ = [0.0225, 0.025, 0.0275, 0.030],
reference µ = 0.025]

1 > tab.mu
2 skier max.diff min.diff rel.max rel.min
3 1 HSprintP_40 0.625 0.284 19.0 3.49
4 2 HSprintP_47 0.596 0.260 23.4 3.48
5 3 HSprintP_46 0.636 0.206 18.0 3.29
6 4 HSprintP_4 0.595 0.236 21.6 3.28
7 5 HSprintP_30 0.594 0.238 21.3 3.39
8 6 HSprintP_23 0.590 0.235 17.3 3.39
9 7 HSprintP_20 0.613 0.243 19.8 3.35
10 8 HSprintP_19 0.618 0.237 21.1 3.29
11 9 HSprintP_10 0.576 0.252 22.8 3.23
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Mass: Test 1

Table A.5: Table with maximum and minimum absolute and absolute relative difference in % of
propulsive power with varying body mass m (±2 kgs) for an uphill segment of the 2017 sprint.

1 > tab.mass
2 skier max.diff min.diff rel.max rel.min
3 1 HSprintP_40 0.0888 0.01086 2.69 0.1336
4 2 HSprintP_47 0.0716 0.00779 2.81 0.1041
5 3 HSprintP_46 0.0956 0.00425 2.70 0.0680
6 4 HSprintP_4 0.0711 0.00579 2.58 0.0805
7 5 HSprintP_30 0.0819 0.00691 2.94 0.0985
8 6 HSprintP_23 0.0847 0.00702 2.48 0.1010
9 7 HSprintP_20 0.0923 0.00755 2.98 0.1040
10 8 HSprintP_19 0.0780 0.00577 2.66 0.0801
11 9 HSprintP_10 0.0676 0.00743 2.68 0.0953

Mass: Test 2

Table A.6: Table with maximum and minimum absolute and relative difference in % of propulsive
power with varying body mass m (±1 kgs) for an uphill segment of the 2017 sprint.

1 > tab.mass
2 skier max.diff min.diff rel.max rel.min
3 1 HSprintP_40 0.0444 0.00543 1.35 0.0668
4 2 HSprintP_47 0.0358 0.00389 1.41 0.0520
5 3 HSprintP_46 0.0478 0.00212 1.35 0.0340
6 4 HSprintP_4 0.0355 0.00289 1.29 0.0402
7 5 HSprintP_30 0.0409 0.00345 1.47 0.0492
8 6 HSprintP_23 0.0423 0.00351 1.24 0.0505
9 7 HSprintP_20 0.0461 0.00377 1.49 0.0520
10 8 HSprintP_19 0.0390 0.00288 1.33 0.0400
11 9 HSprintP_10 0.0338 0.00371 1.34 0.0476
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Air density: Test 1

Table A.7: Table with maximum and minimum absolute and absolute relative difference in % of
propulsive power with varying ρ for an uphill segment of the 2017 sprint. ρ = [0.9, 1.1, 1.3],
reference ρ = 1.1

1 > tab.air
2 skier max.diff min.diff rel.max rel.min
3 1 HSprintP_40 0.661 0.0809 20.1 0.995
4 2 HSprintP_47 0.553 0.0602 21.7 0.804
5 3 HSprintP_46 0.703 0.0313 19.9 0.500
6 4 HSprintP_4 0.549 0.0447 19.9 0.622
7 5 HSprintP_30 0.588 0.0496 21.1 0.707
8 6 HSprintP_23 0.592 0.0491 17.4 0.707
9 7 HSprintP_20 0.654 0.0535 21.1 0.737
10 8 HSprintP_19 0.609 0.0451 20.8 0.626
11 9 HSprintP_10 0.509 0.0560 20.2 0.718

Air density: Test 2

Table A.8: Table with maximum and minimum absolute and absolute relative difference in % of
propulsive power with varying ρ for an uphill segment of the 2017 sprint. ρ = [1.0, 1.1, 1.2],
reference ρ = 1.1

1 > tab.air
2 skier max.diff min.diff rel.max rel.min
3 1 HSprintP_40 0.331 0.0404 13.1 0.519
4 2 HSprintP_47 0.277 0.0301 11.0 0.386
5 3 HSprintP_46 0.352 0.0156 14.0 0.201
6 4 HSprintP_4 0.275 0.0224 10.9 0.287
7 5 HSprintP_30 0.294 0.0248 11.7 0.318
8 6 HSprintP_23 0.296 0.0245 11.8 0.315
9 7 HSprintP_20 0.327 0.0267 13.0 0.343
10 8 HSprintP_19 0.305 0.0225 12.1 0.289
11 9 HSprintP_10 0.255 0.0280 10.1 0.359
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Appendix B
Code and short description

The following section includes all R code written to produce the results in this project and

an order of how the scripts should be run if tested.

Order of scripts

• data_import.R (Loads processed MATLAB data and puts it in an R data frame)

– SortClassicalData.R (Sorts long distance classical race data into R data frames)

– SortSprintData.R (Sorts sprint race data into R data frames)

– SetMassGenderYear.R (Race and skier specific features are set for the data.)

• calculate_acc_and_slope_angle.R (Acceleration and slope angle is calculated, smooth-

ing is done.)

– smoothing_splines.R (SmoothingSplines()-function)

– angle_and_slope_calc_functions.R (AngleCalculation() calculates slope angle)

– central_difference.R (General central differences function CentralDifferences())

• model_calc.R (Calculates power and other terms in the power balance model)

• ParameterSensitivity.R (Script for testing sensitivity of parameters)

• MonteCarloSimulation.R (Monte Carlo simulation)
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• drag_area_values.R (Functions setting drag area values based on technique and sub-

technique)

– GetDragAreaValueClassical() (Setting drag area based on subtechnique for

classical races)

– GetDragAreaValueSkate() (Setting drag area based on speed in the skate races)

• 2017_classic_sprint_men.R (Testing script for the classic sprint for men, 2017)

• 2018_skate_sprint.R (Testing script for the skate sprint 2018, men and women)

• 2018_classic_long_distance.R (Testing script for the long distance classical races

2018, 10 km women, 15 km men)

Framework

./../data/data_import.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5 # THIS SCRIPT LOADS MATLAB DATA INTO R DATA FRAMES AND PRODUCES:

6 # data_c2018m: Men 2018 classic 15 km (68951 observations per variable)

7 # data_c2018f: Women 2018 classic 10 km (76031 obs pr var)

8 # data_2017m: Men 2017 sprint (classic) (21341 obs pr var)

9 # data_2018m: Men 2018 sprint (skate) (1000 obs pr var)

10 # data_2018f: Women 2018 sprint (skate) (1000 obs pr var)

11
12 # This script is only needed once, in the beginning of the project to get data on the

right form

13 # Slope and acceleration is added later and saved, see other files.

14
15 rm(list = ls())

16 library("R.matlab")

17 source("./utils/SortClassicalData.R")

18 source("./utils/SortSprintData.R")

19 source("./utils/set_mass_gender_year.R")

20
21
22
23 ### CLASSICAL SKIING DATA ---------------------------------------------------

24 # Read MATLAB files (Run once)

25 # data_c2018m_unprocessed <- readMat("./SenTIF_material/beito2018_classic_men_

classification.mat") # Men

26 # data_c2018f_unprocessed <- readMat("./SenTIF_material/beito2018_classic_women_

classification.mat") # Women

27 # save(data_c2018m_unprocessed, file = "./data/data_c2018m_unprocessed.RData")

28 # save(data_c2018f_unprocessed, file = "./data/data_c2018f_unprocessed.RData")
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29 # rm(data_c2018m_unprocessed, data_c2018f_unprocessed)

30
31 # Sort into a data frame

32 load("./data/data_c2018m_unprocessed.RData")

33 load("./data/data_c2018f_unprocessed.RData")

34 data_c2018m <- SortClassicalData(data_c2018m_unprocessed) # 21 skiers

35 data_c2018f <- SortClassicalData(data_c2018f_unprocessed) # 7 skiers

36
37 data_c2018f <- SetMassGenderYear("data_c2018f")

38 data_c2018m <- SetMassGenderYear("data_c2018m")

39
40
41
42 # DGPS data

43 # dgps_c2018m <- readMat("./SenTIF_material/DPGS_elevation_beito_distance2018_men.mat

")

44 # dgps_c2018f <- readMat("./SenTIF_material/DPGS_elevation_beito_distance2018_women.

mat")

45 # dgps_raw <- readMat("./SenTIF_material/DGPS_raw.mat")

46 # dgps_nofix <- readMat("./SenTIF_material/DPGS_elevation_beito_distance2018_zero_

where_nofix.mat")

47 #

48 # dgps_men <- data.frame(distance = dgps_c2018m$DGPS.elevation[[4]], elevation = dgps

_c2018m$DGPS.elevation[[1]])

49 # dgps_women <- data.frame(distance = dgps_c2018f$DGPS.elevation[[4]], elevation =

dgps_c2018f$DGPS.elevation[[1]])

50 # dgps_raww <- data.frame(distance = t(dgps_raw$DGPS.raw[[1]]), elevation = dgps_raw$

DGPS.raw[[2]])

51 # dgps_no_fix <- data.frame(distance = dgps_nofix$DGPS.elevation[[4]], elevation =

dgps_nofix$DGPS.elevation[[1]])

52 #

53 # # Check by plots

54 # ggplot(dgps_men) + geom_line(aes(distance, elevation))

55 # ggplot(dgps_women) + geom_line(aes(distance, elevation))

56 # ggplot(dgps_raww) + geom_line(aes(distance, elevation))

57 # ggplot(dgps_no_fix) + geom_line(aes(distance, elevation))

58 #

59 # ggplot(data_c2018m) + geom_line(aes(distance, elevation, color = skier)) + facet_

wrap(~skier)

60
61
62 ### SPRINT DATA -------------------------------------------------------------

63
64 ### BEITO 2018 ###

65 ## MEN

66 data_mat <- readMat("./SenTIF_material/beito2018_sprint_men_version1.mat") # Beito

2018 sprint men

67 data_2018m <- SortSprintData(data_mat) # 13 skiers

68 data_2018m <- SetMassGenderYear("data_2018m")

69
70
71 ## WOMEN
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72 data_mat <- readMat("./SenTIF_material/beito2018_sprint_women_version1.mat") # Beito

2018 women

73 data_2018f <- SortSprintData(data_mat) # 11 skiers

74 data_2018f <- SetMassGenderYear("data_2018f")

75
76
77
78 ### BEITO 2017 ###

79 #Data

80 #data_mat <- readMat("./SenTIF_material/beito_data_sprint_processed.mat") # Beito

2017 (men only, 1000 data points)

81 data_mat <- readMat("./SenTIF_material/beito2017_sprintprologue_men_classification.

mat") # Beito 2017 men with classification

82 dgps_data <- readMat("./SenTIF_material/DPGS_elevation_beito_sprint2017.mat") #

Elevation, men 2017

83 #dgps <- data.frame(elevation = dgps_data$DGPS.elevation[[1]], distance = dgps_data$

DGPS.elevation[[4]])

84 data_2017m <- SortSprintData(data_mat) # 9 skiers

85
86 # Insert DGPS data

87 data_2017m$elevation <- rep(dgps_data$DGPS.elevation[[1]], length(unique(data_2017m$

skier)))

88 data_2017m$distance <- rep(dgps_data$DGPS.elevation[[4]], length(unique(data_2017m$

skier)))

89
90 data_2017m <- SetMassGenderYear("data_2017m")

91
92
93 ### OVERALL -------------------------------

94 rm(data_mat,data_c2018m_unprocessed, data_c2018f_unprocessed)

95 #data <- rbind(data_c2018m, data_c2018f, data_2018m, data_2018f, data_2017m)

96
97
98 ## SAVE DATA FRAMES

99 #save(data, file = "./data/data.RData")

100 save(data_c2018m, file = "./data/data_c2018m.RData")

101 save(data_c2018f, file = "./data/data_c2018f.RData")

102 save(data_2017m, file = "./data/data_2017m.RData")

103 save(data_2018m, file = "./data/data_2018m.RData")

104 save(data_2018f, file = "./data/data_2018f.RData")
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./../utils/calculate_acc_and_slope_angle.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5
6 ## ACCELERATION, SLOPE, ANGLE

7 # Calculate acceleration and slope angle in the track

8
9
10 # Libraries

11 library(ggplot2)

12 library(magrittr)

13
14 # Sources

15 source("./utils/angle_and_slope_calc_functions.R")

16 source("./utils/central_difference.R")

17 source("./utils/smoothing_splines.R")

18
19
20
21 # Initialize

22 window <- 2

23
24
25 ## 2018 CLASSIC MEN -------------------------------------------------------

26 # No. of observations: 68951

27 data_c2018m <- CentralDifferences("time", "speed", data_c2018m, window, col.name = "

acc") # Acceleration

28 data_c2018m <- AngleCalculation(data_c2018m, window) # Slope angle

29 data_c2018m <- SmoothingSplines("distance", "speed", data_c2018m, 68951) # Smooth

speed

30 data_c2018m <- CentralDifferences("time", "speedSmoothed", data_c2018m, window, col.

name = "accSpeedSmoothed") # Acceleration smoothed speed

31 # data_c2018m[’CdA’] <- GetDragAreaValueClassical(data_c2018m$subtechnique)

32
33 data_c2018m[’window’] = window

34 save(data_c2018m, file = "./data/data_c2018m.RData")

35
36
37 ## 2018 CLASSIC WOMEN ---------------------------------------------------------------

38 # No. of observations: 76031

39 data_c2018f <- CentralDifferences("time", "speed", data_c2018f, window, col.name = "

acc") # Acceleration

40 data_c2018f <- AngleCalculation(data_c2018f, window) # Slope angle

41 data_c2018f <- SmoothingSplines("distance", "speed", data_c2018f, 76031) # Smooth

speed

42 data_c2018f <- CentralDifferences("time", "speedSmoothed", data_c2018f, window, col.

name = "accSpeedSmoothed") # Acceleration smoothed speed

43
44 data_c2018f[’window’] = window

45 save(data_c2018f, file = "./data/data_c2018f.RData")
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46
47
48
49 ## 2017, MEN CLASSIC

----------------------------------------------------------------------------

50 # No. of observations: 21341

51 window <- 150

52 data_2017m <- CentralDifferences("time", "speed", data_2017m, window, col.name = "acc

") # Acceleration

53 data_2017m <- AngleCalculation(data_2017m, window) # Slope angle

54 data_2017m <- SmoothingSplines("distance", "speed", data_2017m, 21341) # Smooth speed

55 data_2017m <- CentralDifferences("time", "speedSmoothed", data_2017m, window, col.

name = "accSpeedSmoothed") # Acceleration smoothed speed

56
57
58 data_2017m[’window’] = window

59 save(data_2017m, file = "./data/data_2017m.RData")

60
61
62
63 ## 2018, MEN SKATE ---------------------------------------------------------------

64 # No. of observations: 1000

65 data_2018m <- CentralDifferences("time", "speed", data_2018m, window, col.name = "acc

") # Acceleration

66 data_2018m <- AngleCalculation(data_2018m, window) # Slope angle

67 data_2018m <- SmoothingSplines("distance", "speed", data_2018m, 1000) # Smooth speed

68 data_2018m <- CentralDifferences("time", "speedSmoothed", data_2018m, window, col.

name = "accSpeedSmoothed") # Acceleration smoothed speed

69
70 data_2018m[’window’] = window

71 save(data_2018m, file = "./data/data_2018m.RData")

72
73
74
75 ## 2018, WOMEN SKATE ----------------------------------------------------------

76 # No. of observations: 1000

77 data_2018f <- CentralDifferences("time", "speed", data_2018f, window, col.name = "acc

") # Acceleration

78 data_2018f <- AngleCalculation(data_2018f, window) # Slope angle

79 data_2018f <- SmoothingSplines("distance", "speed", data_2018f, 1000) # Smooth speed

80 data_2018f <- CentralDifferences("time", "speedSmoothed", data_2018f, window, col.

name = "accSpeedSmoothed") # Acceleration smoothed speed

81
82
83 data_2018f[’window’] = window

84 save(data_2018f, file = "./data/data_2018f.RData")

72



./../testing/2017_classic_sprint_men.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5 ## TESTING Classic sprint races men 2017 (No. of observations: 21341)

6 # - Sensitivity analysis of parameters in an uphill segment

7 # - Monte Carlo simulation in the same uphill segment

8
9
10 library(ggplot2)

11 library(ggpubr)

12 library(ggsci)

13 library(viridis)

14
15 source("./testing/MonteCarloSimulation.R")

16 source("./testing/ParameterSensitivity.R")

17 source("./utils/model_calc.R")

18 source("./utils/drag_area_values.R")

19
20 load("./data/data_2017m.RData")

21
22 ## Set global parameters for data_2017m

23 CdA <- GetDragAreaValueClassical(data_2017m$subtechnique, testing = FALSE)

24 par <- list(data_2017m$mu[1], 9.81, 0.50, 0.23, 0.45, 1.1, CdA) # data_2017m$mu[1] =

0.025

25
26
27 ### ----- Regular model calculation -----

28 window <- 200

29
30 # High h -----

31 data_2017m <- CentralDifferences("time", "speed", data_2017m, window, col.name = "acc

") # Acceleration

32 data_2017m <- AngleCalculation(data_2017m, window) # Slope angle

33 data_2017m <- SmoothingSplines("distance", "speed", data_2017m, 21341) # Smooth speed

34 data_2017m <- CentralDifferences("time", "speedSmoothed", data_2017m, window, col.

name = "accSpeedSmoothed") # Acceleration smoothed speed

35
36 # Power calc

37 df <- model(data_2017m, par, speed.type = "speedSmoothed", acc.type = "

accSpeedSmoothed", classical.or.skate = "classical", testing = FALSE)

38 #skier <- df[df$skier == "HSprintP_40", ] # One skier only

39
40 # relative.df <- data.frame()

41 # for(i in unique(df$skier)){

42 # relative.df <- rbind(relative.df, data.frame(skier = i, diff = (df[df$skier==i, ]

$rel.power - df[df$skier=="HSprintP_40", ]$rel.power),

43 # distance = df[df$skier==i, ]$

distance))

44 # }

45 #
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46 # ggplot(relative.df) + geom_line(aes(distance, diff, color = skier))

47 # ggplot(df) + geom_line(aes(distance, rel.power, color = skier))

48 # ggplot(df) + geom_line(aes(distance, speedSmoothed, color = skier)) + facet_wrap(~

skier)

49 #

50 # #[relative.df$distance>600 & relative.df$distance<800, ]

51 #

52 # ## Plots

53 # high.h.total <- ggplot(skier, size = 2) + geom_line(aes(distance, drag), color = "

red") +

54 # geom_line(aes(distance, friction), color = "blue") +

55 # geom_line(aes(distance, gravity), color = "orange") +

56 # geom_line(aes(distance, kin.energy), color = "darkgreen") +

57 # theme(text = element_text(size = 20)) +

58 # labs(title = "Model terms in the power balance model", subtitle = "h = 200, df =

n = 21341", x ="distance [m]", y = "model terms [J/s]")

59 # high.h.total

60
61
62 ### --------- Sensitivity analysis ----------

63
64 ## Friction

65 tab.mu <- data.frame()

66
67 for(i in unique(data_2017m$skier)){

68 # Set ’data’ and parameter vector

69 data <- data_2017m[data_2017m$skier==i, ]

70 CdA <- GetDragAreaValueClassical(data$subtechnique, testing = FALSE)

71 par <- list(data_2017m$mu[1], 9.81, 0.50,0.23,0.45,1.1, CdA)

72
73 # Calculate power with varying parameters for friction

74 friction <- ParameterSensitivity("friction", data, par, "classical", speed.type = "

speedSmoothed", acc.type = "accSpeedSmoothed")

75 # Look at uphill segment

76 up.friction <- friction[which(friction$distance>600 & friction$distance<800),]

77 diff.mu <- abs(up.friction[up.friction$mu==min(up.friction$mu), ]$rel.power - up.

friction[up.friction$mu==max(up.friction$mu), ]$rel.power)

78 mu.ref <- up.friction[up.friction$mu==data$mu[1], ]$rel.power

79
80 rel.max <- max(diff.mu)/mu.ref[which.max(diff.mu)]

81 rel.min <- min(diff.mu)/mu.ref[which.min(diff.mu)]

82 max(diff.mu)

83 min(diff.mu)

84
85 tab.mu <- rbind(tab.mu, data.frame(skier = i, max.diff = max(diff.mu), min.diff =

min(diff.mu), rel.max = rel.max*100, rel.min = rel.min*100))

86
87 }

88
89 # up1 <- ggplot(up.friction) + geom_line(aes(distance, rel.power, color = factor(mu))

) + labs(title="Propulsive power with varying mu") +

90 # theme(text=element_text(size=20), legend.position = "bottom")
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91 # up2 <- ggplot(up.friction) + geom_line(aes(distance, elevation)) + theme(text=

element_text(size=20))

92 # ggarrange(up1,up2, nrow=2, legend = "bottom")

93
94
95
96
97 ### ----- Drag area -------

98
99 tab.drag <- data.frame()

100
101 for (i in unique(data_2017m$skier)){

102 data <- data_2017m[data_2017m$skier==i, ]

103 CdA <- GetDragAreaValueClassical(data$subtechnique, testing = FALSE)

104 par <- list(data_2017m$mu[1], 9.81, 0.50,0.23,0.45,1.1, CdA)

105
106 drag.area <- ParameterSensitivity("drag.area", data, par, "classical", speed.type =

"speedSmoothed", acc.type = "accSpeedSmoothed")

107 up.drag <- drag.area[which(drag.area$distance>600 & drag.area$distance<800), ]

108 diff.drag <- abs(up.drag[up.drag$drag.area==min(up.drag$drag.area), ]$rel.power -

up.drag[up.drag$drag.area==max(up.drag$drag.area),]$rel.power) # Absolute

difference in relative power

109 drag.ref <- up.drag[up.drag$drag.area==0.45, ]$rel.power # Relative power for

lowfriction

110
111 rel.max <- max(diff.drag)/drag.ref[which.max(diff.drag)] # Max difference relative

to rel.power for low friction

112 rel.min <- min(diff.drag)/drag.ref[which.min(diff.drag)] # Min difference relative

to rel.power for high friction

113 max(diff.drag)

114 min(diff.drag)

115
116 tab.drag <- rbind(tab.drag, data.frame(skier = i, max.diff = max(diff.drag), min.

diff = min(diff.drag), rel.max = rel.max*100, rel.min = rel.min*100))

117
118 }

119
120 pl1 <- ggplot(up.drag) + geom_line(aes(distance, rel.power, color = factor(drag.area)

), size = 1) +

121 labs(title = "Power with varying drag area for uphill segment") + theme(text=

element_text(size = 20), legend.position = "bottom")

122 pl2 <- ggplot(up.drag) + geom_line(aes(distance, elevation), size = 1) + labs(

subtitle = "Track profile") +

123 theme(text=element_text(size = 20))

124 pl3 <- ggplot(up.drag) + geom_line(aes(distance, speedSmoothed), size = 1) + labs(

subtitle = "Speed") +

125 theme(text=element_text(size = 20))

126 ggarrange(pl1,pl2,pl3, nrow=3,legend="bottom")

127
128
129
130 ### Mass
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131 tab.mass <- data.frame()

132
133 for (i in unique(data_2017m$skier)){

134 data <- data_2017m[data_2017m$skier==i, ]

135 CdA <- GetDragAreaValueClassical(data$subtechnique, testing = FALSE)

136 par <- list(data_2017m$mu[1], 9.81, 0.50,0.23,0.45,1.1, CdA)

137
138 mass <- ParameterSensitivity("mass", data, par, "classical", speed.type = "

speedSmoothed", acc.type = "accSpeedSmoothed")

139 up.mass <- mass[which(mass$distance>600 & mass$distance<800),]

140 diff.mass <- abs(up.mass[up.mass$mass == max(mass$mass),]$rel.power - up.mass[up.

mass$mass == min(mass$mass),]$rel.power) # Absolute diff in relative power

141 mass.ref <- up.mass[up.mass$mass==data$mass[1], ]$rel.power # Relative power for

ref mass

142
143 rel.max <- max(diff.mass)/mass.ref[which.max(diff.mass)] # Max difference relative

to rel.power for ref mass

144 rel.min <- min(diff.mass)/mass.ref[which.min(diff.mass)] # Min difference relative

to rel.power for ref mass

145 max(diff.drag)

146 min(diff.drag)

147
148 tab.mass <- rbind(tab.mass, data.frame(skier = i, max.diff = max(diff.mass), min.

diff = min(diff.mass), rel.max = rel.max*100, rel.min = rel.min*100))

149
150 }

151
152 # ggplot(mass, aes(distance, rel.power)) + geom_line(aes(color=factor(mass))) +

153 # labs(title = "Power with varying skier mass") + theme(text=element_text(size =

20), legend.position = "bottom")

154
155 mass1 <- ggplot(up.mass) + geom_line(aes(distance, rel.power, color = factor(mass)))

156 mass2 <- ggplot(up.mass) + geom_line(aes(distance, elevation))

157 ggarrange(mass1,mass2,nrow=2,legend="bottom")

158
159
160
161 ## Air density

162 #

163 tab.air <- data.frame()

164
165 for (i in unique(data_2017m$skier)){

166 data <- data_2017m[data_2017m$skier==i, ]

167 CdA <- GetDragAreaValueClassical(data$subtechnique, testing = FALSE)

168 par <- list(data_2017m$mu[1], 9.81, 0.50,0.23,0.45,1.1, CdA)

169
170 air <- ParameterSensitivity("air.density", data, par, "classical", speed.type = "

speedSmoothed", acc.type = "accSpeedSmoothed")

171 up.air <- air[which(air$distance>600 & mass$distance<800),]

172 diff.air <- abs(up.air[up.air$rho == max(air$rho), ]$rel.power - up.air[up.air$rho

== min(air$rho), ]$rel.power) # Absolute diff in relative power

173 air.ref <- up.air[up.air$rho==1.1, ]$rel.power # Relative power for ref rho
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174
175 rel.max <- max(diff.air)/air.ref[which.max(diff.air)] # Max difference relative to

rel.power for ref rho

176 rel.min <- min(diff.air)/air.ref[which.min(diff.air)] # Min difference relative to

rel.power for ref rho

177 max(diff.air)

178 min(diff.air)

179
180 tab.air <- rbind(tab.air, data.frame(skier = i, max.diff = max(diff.air), min.diff

= min(diff.air), rel.max = rel.max*100, rel.min = rel.min*100))

181
182 }

183
184
185
186 ### ----- Monte Carlo Simulation -----

187 set.seed(1234)

188 mc <- data.frame()

189 #data_2017m <- data_2017m[data_2017m$distance>600 & data_2017m$distance<800, ]

190 for(skier in unique(df$skier)){

191 data <- MonteCarloSimulation(1, data_2017m[data_2017m$skier==skier, ], "classical",

"speedSmoothed", "accSpeedSmoothed")

192 ref <- df[df$skier==skier, ]

193 for (run in unique(data$run)){

194 mc <- rbind(mc, data.frame(skier = data[data$run==run, ]$skier,

195 distance = data[data$run==run, ]$distance,

196 run = run,

197 diff = (data[data$run==run,]$rel.power - ref$rel.power

),

198 rel = ((data[data$run == run, ]$rel.power - ref$rel.

power)/ref$rel.power)*100))

199 } # end runs

200 #mc[which(is.nan(mc$rel)), ]$rel <- 0

201 # print(skier)

202 # val <- max(abs(mc[mc$skier==skier, ]$rel))

203 # print(val)

204 }

205
206 #mc[which(is.nan(mc$rel)), ]$rel <- 0

207 mc.up <- mc[which(mc$distance>600 & mc$distance<800), ]

208
209 ggplot(mc.up) + geom_histogram(aes(rel,..density..), bins = 30, na.rm = TRUE) + facet

_wrap(~skier)

210 ggplot(mc.up) + geom_histogram(aes(diff,..density..), bins = 30, na.rm = TRUE) +

facet_wrap(~skier)

211
212 vec <- sort(abs(mc.up$rel))

213 ci.2017m <- c(vec[round(0.025*length(vec))], vec[round(0.975*length(vec))])

214 ci.2017m

215
216 # hist.2017 <- sort(mc.up$rel)

217 # hist2017 <- data.frame(deviation = hist.2017[ round(0.025*length(hist.2017)):round
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(0.975*length(hist.2017))])

218 # ggplot(hist2017) + geom_histogram(aes(deviation,..density..), color = "black", fill

= "white", bins = 50)

219
220 mean(abs(mc.up$rel))

221 min(abs(mc.up$rel))

222 max(abs(mc.up$rel))
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./../testing/2018_skate_sprint.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5 # TESTING Skate sprint 2018

6
7 ## TESTING Skate sprint races 2018

8 # - Sensitivity analysis of parameters in an uphill segment

9 # - Monte Carlo simulation in the same uphill segment

10
11 library(ggplot2)

12 library(ggpubr)

13 library(ggsci)

14 library(viridis)

15
16 source("./testing/MonteCarloSimulation.R")

17 source("./testing/ParameterSensitivity.R")

18 source("./utils/model_calc.R")

19
20
21 ### MEN -----------------------------------------------------

22 load("./data/data_2018m.RData")

23 ### ----- Regular model calculation -----

24 window <- 20

25
26 # High h -----

27 data_2018m <- CentralDifferences("time", "speed", data_2018m, window, col.name = "acc

") # Acceleration

28 data_2018m <- SmoothingSplines("distance", "speed", data_2018m, 1000) # Smooth speed

29 data_2018m <- SmoothingSplines("distance", "elevation", data_2018m, 1000) # Smooth

elevation

30 data_2018m <- CentralDifferences("time", "speedSmoothed", data_2018m, window, col.

name = "accSpeedSmoothed") # Acceleration smoothed speed

31 data_2018m$elevation <- data_2018m$elevationSmoothed

32 data_2018m <- AngleCalculation(data_2018m, window) # Slope angle

33
34 ggplot(data_2018m) + geom_line(aes(distance, elevation)) + facet_wrap(~skier)

35
36 # Set global parameters for data_2018m

37 CdA <- GetDragAreaValueSkate(data_2018m$speedSmoothed, 0.50, 0.23, testing = FALSE)

38 par <- list(data_2018m$mu[1], 9.81, 0.50, 0.23, 0.45, 1.1, CdA)

39
40 # Power calc

41 df2018m <- model(data_2018m, par, speed.type = "speedSmoothed", acc.type = "

accSpeedSmoothed", classical.or.skate = "skate", testing = FALSE)

42
43 # Monte Carlo simulation

44 set.seed(1234)

45 mc2018m <- data.frame()

46 tic()

47 for(skier in unique(df2018m$skier)){
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48 #data <- sim.all[sim.all$skier==skier, ]

49 data <- MonteCarloSimulation(200, data_2018m[data_2018m$skier==skier, ], "skate", "

speedSmoothed", "accSpeedSmoothed")

50 ref <- df2018m[df2018m$skier==skier, ]

51 for (run in unique(data$run)){

52 mc2018m <- rbind(mc2018m, data.frame(skier = data[data$run==run, ]$skier,

53 distance = data[data$run==run, ]$distance,

54 run = run,

55 diff = (data[data$run==run,]$rel.power - ref$rel.power

),

56 rel = ((data[data$run == run, ]$rel.power - ref$rel.

power)/ref$rel.power)*100))

57 } # end runs

58 } # skier

59 toc()

60 # Find suitable uphill range

61 xrange <- c(700,875)

62
63 # Check elevation is strictly uphill and rel.power > 0

64 ggplot(df2018m[which(df2018m$distance>xrange[1] & df2018m$distance<xrange[2]), ]) +

geom_line(aes(distance, elevation)) + facet_wrap(~skier)

65 ggplot(df2018m[which(df2018m$distance>xrange[1] & df2018m$distance<xrange[2]), ]) +

geom_line(aes(distance, rel.power)) + facet_wrap(~skier)

66
67 mc2018m.up <- mc2018m[which(mc2018m$distance>xrange[1] & mc2018m$distance<xrange[2]),

]

68 sum(is.nan(mc2018m.up$rel))/length(mc2018m.up$rel) # Check no NaNs

69
70 vec.2018m <- sort(abs(mc2018m.up$rel))

71 ci.2018m <- c(vec.2018m[round(0.025*length(vec.2018m))], vec.2018m[round(0.975*length

(vec.2018m))])

72 ci.2018m

73
74 mean(abs(mc2018m.up$rel))

75 min(abs(mc2018m.up$rel))

76 max(abs(mc2018m.up$rel))

77
78 ggplot(mc2018m.up) + geom_histogram(aes(rel,..density..), bins = 30, na.rm = TRUE) +

facet_wrap(~skier)

79
80
81
82
83 ### WOMEN -------------------------------------------------

84 load("./data/data_2018f.RData")

85
86 ### ----- Regular model calculation -----

87 window <- 20

88
89 data_2018f <- CentralDifferences("time", "speed", data_2018f, window, col.name = "acc

") # Acceleration

90 data_2018f <- SmoothingSplines("distance", "speed", data_2018f, 1000) # Smooth speed
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91 data_2018f <- SmoothingSplines("distance", "elevation", data_2018f, 1000) # Smooth

elevation

92 data_2018f <- CentralDifferences("time", "speedSmoothed", data_2018f, window, col.

name = "accSpeedSmoothed") # Acceleration smoothed speed

93 data_2018f$elevation <- data_2018f$elevationSmoothed

94 data_2018f <- AngleCalculation(data_2018f, window) # Slope angle

95
96 # Set global parameters for data_2018m

97 CdA <- GetDragAreaValueSkate(data_2018f$speedSmoothed, 0.50, 0.23, testing = FALSE)

98 par <- list(data_2018f$mu[1], 9.81, 0.50, 0.23, 0.45, 1.1, CdA)

99
100 # Power calc

101 df2018f <- model(data_2018f, par, speed.type = "speedSmoothed", acc.type = "

accSpeedSmoothed", classical.or.skate = "skate", testing = FALSE)

102
103 # Monte Carlo simulation

104 set.seed(1234)

105 mc2018f <- data.frame()

106 for(skier in unique(df2018f$skier)){

107 #data <- sim.all[sim.all$skier==skier, ]

108 data <- MonteCarloSimulation(200, data_2018f[data_2018f$skier==skier, ], "skate", "

speedSmoothed", "accSpeedSmoothed")

109 ref <- df2018f[df2018f$skier==skier, ]

110 for (run in unique(data$run)){

111 mc2018f <- rbind(mc2018f, data.frame(skier = data[data$run==run, ]$skier,

112 distance = data[data$run==run, ]$distance,

113 run = run,

114 diff = (data[data$run==run,]$rel.power - ref

$rel.power),

115 rel = ((data[data$run == run, ]$rel.power -

ref$rel.power)/ref$rel.power)*100))

116 } # end runs

117 }

118
119
120 mc2018f.up <- mc2018f[which(mc2018f$distance>550 & mc2018f$distance<700), ]

121
122 ggplot(df2018f[which(df2018f$distance>550 & df2018f$distance<700), ]) + geom_line(aes

(distance, rel.power)) + facet_wrap(~skier)

123 ggplot(df2018f[which(df2018f$distance>550 & df2018f$distance<700), ]) + geom_line(aes

(distance, elevation)) + facet_wrap(~skier)

124
125 sum(is.nan(mc2018f.up$rel))/length(mc2018f.up$rel) # fraction of NaNs

126
127
128 vec.2018f <- sort(abs(mc2018f.up$rel))

129 ci.2018f <- c(vec.2018f[round(0.025*length(vec.2018f))], vec.2018f[round(0.975*length

(vec.2018f))])

130 ci.2018f

131
132 ggplot(mc2018f.up) + geom_histogram(aes(rel,..density..), bins = 30, na.rm = TRUE) +

facet_wrap(~skier)
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133
134 mean(abs(mc2018f.up$rel))

135 min(abs(mc2018f.up$rel))

136 max(abs(mc2018f.up$rel))
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./../testing/2018_classic_long_distance.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5 ## TESTING Classical 10/15 km 2018

6 # - Sensitivity analysis of parameters in an uphill segment

7 # - Monte Carlo simulation in the same uphill segment

8
9 library(ggplot2)

10 library(ggpubr)

11 library(ggsci)

12 library(viridis)

13
14 source("./testing/MonteCarloSimulation.R")

15 source("./testing/ParameterSensitivity.R")

16 source("./utils/model_calc.R")

17 source("./utils/angle_and_slope_calc_functions.R")

18 source("./utils/central_difference.R")

19 source("./utils/smoothing_splines.R")

20 source("./utils/drag_area_values.R")

21
22 ### WOMEN -----------------------------------------------------

23
24 load("./data/data_c2018f.RData")

25
26 test <- data_c2018f[data_c2018f$skier=="D10CL_46", ]

27 ggplot(test) + geom_line(aes(distance, elevation)) + facet_wrap(~lap)

28 ggplot(test) + geom_line(aes(distance, elevation)) + facet_wrap(~lap)

29 #(250/(length(test$time)/2))*(test$distance[152062])

30
31 ### ----- Regular model calculation -----

32 window <- 250

33
34 #data_c2018f <- CentralDifferences("time", "speed", data_c2018f, window, col.name = "

acc") # acc from unfiltered/unsmoothed speed

35 data_c2018f <- SmoothingSplines("distance", "speed", data_c2018f, 1000) # Smooth

speed

36 data_c2018f <- CentralDifferences("time", "speedSmoothed", data_c2018f, window, col.

name = "accSpeedSmoothed") # acc based on smoothed speed

37 data_c2018f <- SmoothingSplines("distance", "elevation", data_c2018f, 1000) # Smooth

elevation

38 data_c2018f$elevation <- data_c2018f$elevationSmoothed

39 data_c2018f <- AngleCalculation(data_c2018f, window)

40
41 # Set global parameters for data_2018m

42 CdA <- GetDragAreaValueClassical(data_c2018f$subtechnique, testing = FALSE)

43 par <- list(data_c2018f$mu[1], 9.81, 0.50, 0.23, 0.45, 1.1, CdA)

44
45 # Power calc

46 df_c2018f <- model(data_c2018f, par, speed.type = "speedSmoothed", acc.type = "

accSpeedSmoothed", classical.or.skate = "classical", testing = FALSE)
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47
48 # Monte Carlo simulation

49 set.seed(1234)

50 mc_c2018f <- data.frame()

51 for(skier in unique(df_c2018f$skier)){

52 for(lap in unique(df_c2018f$lap)){

53 print(skier)

54 print(lap)

55 data <- MonteCarloSimulation(50, data_c2018f[(data_c2018f$skier==skier & data_

c2018f$lap==lap), ], "classical", "speedSmoothed", "accSpeedSmoothed")

56 ref <- df_c2018f[(df_c2018f$skier==skier & df_c2018f$lap == lap), ]

57 for (run in unique(data$run)){

58 print(run)

59 mc_c2018f <- rbind(mc_c2018f, data.frame(skier = data[data$run==run, ]$skier,

60 distance = data[data$run==run, ]$distance,

61 run = run,

62 lap = data[data$run==run, ]$lap,

63 diff = (data[data$run==run,]$rel.power -

ref$rel.power),

64 rel = ((data[data$run == run, ]$rel.power

- ref$rel.power)/ref$rel.power)*100))

65 } # runs

66
67 } # lap

68 } # skier

69
70 # Find suitable uphill range

71 xrange <- c(835,980)

72 # Check elevation is strictly uphill and rel.power > 0

73 ggplot(df_c2018f[which(df_c2018f$distance>xrange[1] & df_c2018f$distance<xrange[2]),

]) + geom_line(aes(distance, elevationSmoothed)) + facet_wrap(~skier)

74 ggplot(df_c2018f[which(df_c2018f$distance>xrange[1] & df_c2018f$distance<xrange[2]),

]) + geom_line(aes(distance, rel.power)) + facet_wrap(~skier)

75 mc_c2018f.up <- mc_c2018f[which(mc_c2018f$distance>xrange[1] & mc_c2018f$distance<

xrange[2]), ]

76 sum(is.nan(mc_c2018f.up$rel))/length(mc_c2018f.up$rel) # Check no NaNs

77
78 ggplot(mc_c2018f.up) + geom_histogram(aes(rel,..density..), bins = 30, na.rm = TRUE)

+ facet_wrap(~skier)

79
80 vec.c2018f <- sort(abs(mc_c2018f.up$rel))

81 ci.c2018f <- c(vec.c2018f[round(0.025*length(vec.c2018f))], vec.c2018f[round(0.975*

length(vec.c2018f))])

82 ci.c2018f

83
84 hist.vec <- sort(mc_c2018f.up$rel)

85 hist.frame <- data.frame(deviation = hist.vec[round(0.025*length(hist.vec)):round

(0.975*length(hist.vec))])

86
87 ggplot(hist.frame) + geom_histogram(aes(deviation,..density..), color = "black", fill

= "lightblue", bins = 50) +

88 theme(text = element_text(size = 12)) + labs(title="Relative deviation in
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propulsive power",

89 subtitle = "10 km classic (W)", x = "

deviation [%]")

90
91 mean(abs(mc_c2018f.up$rel))

92 min(abs(mc_c2018f.up$rel))

93 max(abs(mc_c2018f.up$rel))

94
95
96 ### MEN -----------------------------------------------------

97
98 load("~/Masteroppgave/data/data_c2018m.RData")

99 ### ----- Regular model calculation -----

100 window <- 250

101
102 data_c2018m <- SmoothingSplines("distance", "speed", data_c2018m, 100) # Smooth speed

103 data_c2018m <- CentralDifferences("time", "speedSmoothed", data_c2018m, window, col.

name = "accSpeedSmoothed") # acc based on smoothed speed

104 data_c2018m <- SmoothingSplines("distance", "elevation", data_c2018m, 1000) # Smooth

elevation

105 data_c2018m$elevation <- data_c2018m$elevationSmoothed

106 data_c2018m <- AngleCalculation(data_c2018m, window)

107
108 ggplot(data_c2018m) + geom_line(aes(distance, speedSmoothed, color = factor(lap))) +

facet_wrap(~skier)

109 ggplot(data_c2018m) + geom_line(aes(distance, elevationSmoothed, color = factor(lap))

) + facet_wrap(~skier)

110
111
112 # Set global parameters for data_2018m

113 CdA <- GetDragAreaValueClassical(data_c2018m$subtechnique, testing = FALSE)

114 par <- list(data_c2018m$mu[1], 9.81, 0.50, 0.23, 0.45, 1.1, CdA)

115
116 # Power calc

117 df_c2018m <- model(data_c2018m, par, speed.type = "speedSmoothed", acc.type = "

accSpeedSmoothed", classical.or.skate = "classical", testing = FALSE)

118
119 # Monte Carlo simulation

120 set.seed(1234)

121 mc_c2018m <- data.frame()

122 for(skier in unique(df_c2018m$skier)){

123 for(lap in unique(df_c2018m$lap)){

124 print(skier)

125 print(lap)

126 data <- MonteCarloSimulation(10, data_c2018m[(data_c2018m$skier==skier & data_

c2018m$lap==lap), ], "classical", "speedSmoothed", "accSpeedSmoothed")

127 ref <- df_c2018m[(df_c2018m$skier==skier & df_c2018m$lap == lap), ]

128 for (run in unique(data$run)){

129 print(run)

130 mc_c2018m <- rbind(mc_c2018m, data.frame(skier = data[data$run==run, ]$skier,

131 distance = data[data$run==run, ]$

distance,
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132 run = run,

133 lap = data[data$run==run, ]$lap,

134 diff = (data[data$run==run,]$rel.power

- ref$rel.power),

135 rel = ((data[data$run == run, ]$rel.

power - ref$rel.power)/ref$rel.

power)*100))

136 } # runs

137
138 } # lap

139 } # skier

140
141
142 # Find suitable uphill range

143 xrange <- c(2400,2600)

144
145 # Check elevation is strictly uphill and rel.power > 0

146 ggplot(df_c2018m[which(df_c2018m$distance>xrange[1] & df_c2018m$distance<xrange[2]),

]) + geom_line(aes(distance, elevationSmoothed)) + facet_wrap(~skier)

147 ggplot(df_c2018m[which(df_c2018m$distance>xrange[1] & df_c2018m$distance<xrange[2]),

]) + geom_line(aes(distance, rel.power)) + facet_wrap(~skier)

148 mc_c2018m.up <- mc_c2018m[which(mc_c2018m$distance>xrange[1] & mc_c2018m$distance<

xrange[2]), ]

149 sum(is.nan(mc_c2018m.up$rel))/length(mc_c2018m.up$rel) # Check no NaNs

150
151 vec.c2018m <- sort(abs(mc_c2018m.up$rel))

152 ci.c2018m <- c(vec.c2018m[round(0.025*length(vec.c2018m))], vec.c2018m[round(0.975*

length(vec.c2018m))])

153 ci.c2018m

154
155 mean(abs(mc_c2018m.up$rel))

156 min(abs(mc_c2018m.up$rel))

157 max(abs(mc_c2018m.up$rel))

158
159 ggplot(mc_c2018m.up) + geom_histogram(aes(rel,..density..), bins = 30, na.rm = TRUE)

+ facet_wrap(~skier)
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Functions

./../utils/SortSprintData.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5 SortSprintData <- function(data){

6 # Sort loaded MATALB data frame into organized R data frame

7 #

8 # Args:

9 # data: Loaded MATLAB data to sort

10 #

11 # Returns: Sorted R data frame, ready for further data analysis

12 #

13 # Note: Loads differently based on sprint style (classic 2017 or skate 2018)

14
15 df <- data.frame()

16 dimname <- dimnames(data$data[[1]][[1]])[[1]]

17
18
19 if (sum(dimname =="technique")){

20 # For classic sprint 2017

21 for(skier in 1:length(data$data)){

22 df <- rbind(df, data.frame(

23 skier = data$data[[skier]][[1]][[which(dimname =="name")]],

24 time = data$data[[skier]][[1]][[which(dimname =="time")]],

25 distance = data$data[[skier]][[1]][[which(dimname =="distance")]],

26 speed = data$data[[skier]][[1]][[which(dimname =="speed")]]/3.6,

27 elevation = data$data[[skier]][[1]][[which(dimname =="elevation")]],

28 subtechnique = t(data$data[[skier]][[1]][[which(dimname =="technique")]]),

29 technique = "classic"

30 ))

31 }

32 } else {

33 # For skate sprint 2018

34 for(skier in 1:length(data$data)){

35 df <- rbind(df, data.frame(

36 skier = data$data[[skier]][[1]][[which(dimname =="name")]],

37 time = data$data[[skier]][[1]][[which(dimname =="time")]],

38 distance = t(data$data[[skier]][[1]][[which(dimname =="distance")]]),

39 speed = data$data[[skier]][[1]][[which(dimname =="speed")]],

40 elevation = data$data[[skier]][[1]][[which(dimname =="elevation")]],

41 technique = "skate"

42 ))

43 } # end for

44 }# end if

45
46
47
48 return(df)

49
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50
51
52 }

88



./../utils/SortClassicalData.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5
6 SortClassicalData <- function(data){

7 # Sort data structure into organized R data frame

8 #

9 # Arguments:

10 # data: Data frame loaded from MATLAB to sort

11 #

12 # Returns:

13 # Data frame ’frame.name’ with sorted data, ready for analysis and further

calculations

14
15 # Note: Indices in lists are found based on investigation of the lists when loaded

in R.

16
17
18 # Allocate

19 frame.name <- data.frame()

20 names <- data.frame()

21 # Extract names of skiers

22 for (i in 1:length(data$data)){

23 names <- rbind(names, data$data[[i]][[1]][[1]])

24 }

25 # Put into data frame

26 num.skiers <- dim(unique(names))[1] # Number of unique skiers

27 num.laps <- dim(names)[1]/num.skiers # Number of laps

28
29 # Go through every skier, for every lap/round

30 for(skier in 1:num.skiers){

31 append.lap <- data.frame()

32 for(lap in 1:num.laps){

33 lap.data <- data$data[[skier + (lap-1)*num.skiers]][[1]] # Possibly change this

line (avoid raw data)

34 append.lap <- rbind(append.lap, data.frame(

35 skier = lap.data[[1]],

36 time = lap.data[[9]],

37 distance = lap.data[[3]],

38 speed = lap.data[[4]]/3.6, # speed is given in km/h, want m/s

39 elevation = lap.data[[8]],

40 subtechnique = t(lap.data[[10]]),

41 technique = "classic",

42 lap = lap))

43 }

44 # Put in data frame

45 frame.name <- rbind(frame.name, append.lap)

46 }

47
48 # Save and return
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49 return(frame.name)

50
51
52 } # end function
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./../utils/set_mass_gender_year.R

1 SetMassGenderYear <- function(data.frame){

2 # Assign mass and gender of skier and year of race as columns in the data frame

3 #

4 # Args:

5 # data.frame: Race data frame name to assign column variables to

6 #

7 # Returns:

8 # Data frame with additional columns "mass", "gender" and "year"

9 #

10 # Note: Function assumes data.frame s in if sentences already exist

11
12 # Ensure correct data.frame name

13 frame.names <- c("data_c2018m", "data_c2018f", "data_2018m", "data_2018f", "data_

2017m")

14 while(!(sum(data.frame == frame.names)==1)){

15 data.frame <- readline(prompt = "Invalid data frame name. Try again: ")

16 }

17
18 # -------------------------------------------------------------------------

19 if(data.frame == "data_c2018m"){ # 2018 CLASSIC MEN 15 km

20 # Gender and year

21 data_c2018m[’gender’] = "male"

22 data_c2018m[’year’] = 2018

23 data_c2018m[’mu’] = 0.02845 # Avg. of the two estimated values for the particular

race day

24
25 # Mass

26 # NOTE: ?77 means no mass is known for the skier and 77 kgs is assumed

27 # NOTE: ID 39 is wrong, is actually ID 55. No weight known, 77 kg assumed

28 #[1] H15CL_50=74 H15CL_10=77 H15CL_1003=?77 H15CL_13=82 H15CL_14=75 H15CL_

27=?77 H15CL_28=?77

29 # H15CL_29=?77 H15CL_31=80 H15CL_32=86 H15CL_33=82 H15CL_34=76 H15CL_36=85

30 #[14] H15CL_37=75 H15CL_(39=55!)=?77 H15CL_41=75 H15CL_42=83 H15CL_45=72

H15CL_47=68 H15CL_49=76 H15CL_6=75

31
32 lenM <- length(data_c2018m[data_c2018m$skier == "H15CL_50",]$time)

33 data_c2018m[’mass’] = c(rep(74,lenM), rep(77, lenM), rep(77, lenM), rep(82, lenM)

, rep(75, lenM), rep(77,lenM), rep(77, lenM), rep(77, lenM),

34 rep(80, lenM), rep(86, lenM),rep(82, lenM), rep(76,lenM), rep

(85,lenM), rep(75, lenM), rep(77, lenM),rep(75, lenM),

rep(83, lenM),

35 rep(72, lenM),rep(68, lenM) ,rep(76,lenM), rep(75, lenM)) + 3

#+3kg in mass is for equipment

36
37 levels(data_c2018m$skier) <- gsub("H15CL_39", "H15CL_55", levels(data_c2018m$

skier)) # Change wrong ID from 39 to 55

38
39 #Return

40 return.frame <- data_c2018m

41
42
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43
44 # ------------------------------------------------------------------------

45 } else if (data.frame == "data_c2018f") { # 2018 CLASSIC WOMEN 10 km

46 # Gender and year

47 data_c2018f[’gender’] = "female"

48 data_c2018f[’year’] = 2018

49 data_c2018f[’mu’] = 0.02845

50
51 # Mass

52 lenW <- length(data_c2018f[data_c2018f$skier == "D10CL_46",]$time)

53 data_c2018f[’mass’] = c(rep(52, lenW), rep(55,lenW), rep(53,lenW), rep(58, lenW),

rep(65, lenW), rep(56,lenW),

54 rep(63, lenW)) + 3 #+3kg in mass is for equipment

55
56 # Return

57 return.frame <- data_c2018f

58
59
60 # ------------------------------------------------------------------------

61 } else if (data.frame == "data_2018m"){ # 2018 SPRINT SKATE MEN

62 # Gender and year (+ technique and lap)

63 data_2018m[’year’] = 2018

64 data_2018m[’gender’] = "male"

65 data_2018m[’technique’] = "free/skate"

66 data_2018m[’lap’] = 1

67 data_2018m[’mu’] = 0.02499

68
69 # Mass

70 # Sprint_10=77 Sprint_12=80 Sprint_13=82 Sprint_15=78 Sprint_31=80 Sprint_33=82

Sprint_34=76 Sprint_35=74 Sprint_36=85 Sprint_37=75 Sprint_42=83 Sprint_

50=74 Sprint_6=75

71 lenM <- length(data_2018m[data_2018m$skier == "Sprint_10",]$time)

72 data_2018m[’mass’] = c(rep(77,lenM), rep(80,lenM), rep(82,lenM), rep(78,lenM),

rep(80,lenM),

73 rep(82,lenM), rep(76,lenM), rep(74,lenM), rep(85,lenM), rep

(75,lenM),

74 rep(83,lenM), rep(74,lenM), rep(75, lenM)) + 3 # +3kg for

equipment

75
76 # Return

77 return.frame <- data_2018m

78
79 # ------------------------------------------------------------------------

80 } else if (data.frame == "data_2018f"){ # 2018 SPRINT SKATE WOMEN

81 # Gender and year (+ technique and lap)

82 data_2018f[’year’] = 2018

83 data_2018f[’gender’] = c("female")

84 data_2018f[’technique’] = "free/skate"

85 data_2018f[’lap’] = 1

86 data_2018f[’mu’] = 0.02499

87
88 # Mass
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89 # Sprint_11=58 Sprint_16=62 Sprint_38=55 Sprint_39=65 Sprint_40=58 Sprint_43=68

Sprint_48=57 Sprint_51=56 Sprint_52=63 Sprint_8=60 Sprint_9=63

90 lenW <- length(data_2018f[data_2018f$skier == "Sprint_11",]$time)

91 data_2018f[’mass’] = c(rep(58,lenW),rep(62,lenW), rep(55,lenW), rep(65,lenW), rep

(58,lenW), rep(68,lenW),

92 rep(57,lenW), rep(56,lenW), rep(63,lenW), rep(60,lenW), rep(63, lenW)) + 3

#+3kg for equipment

93
94 # Return

95 return.frame <- data_2018f

96
97
98
99 # ------------------------------------------------------------------------

100 } else if (data.frame == "data_2017m"){ # 2017 SPRINT CLASSIC MEN

101 # Gender and year (+ technique and lap)

102 data_2017m[’year’] = 2017

103 data_2017m[’gender’] = c("male")

104 data_2017m[’technique’] = "classic"

105 data_2017m[’lap’] = 1

106 data_2017m[’mu’] = 0.025

107
108 # Mass

109 #mass_2017m <- c(79,82,78,82,76,74,75,83,80) + 3 # +3kg is for equipment

110
111 len <- length(data_2017m[data_2017m$skier =="HSprintP_40",]$time)

112 data_2017m[’mass’] = c(rep(79, len), rep(82, len), rep(78, len), rep(82,len), rep

(76, len), rep(74, len), rep(75, len), rep(83, len), rep(80, len)) + 3 # +3

kg for equipment

113
114 # Return

115 return.frame <- data_2017m

116
117 } else {

118 print("Something wrong happened. Check ’SetMassGenderYear.R’")

119 }

120
121 return(return.frame)

122
123 }

93



./../utils/angle_and_slope_calc_functions.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5 ## INCLINE ANGLE AND SLOPE CALCULATION

6
7 AngleCalculation <- function(data, window.size.h){

8 # Calculate slope angle in race track

9 #

10 # Args:

11 # data: Data frame to compute angle from

12 # window.size.h: Width of window in central differences algorithm

13 #

14 # Returns:

15 # data: Input data frame and calculated ’angle’ and ’slope’ column

16
17 data <- CentralDifferences("distance", "elevation", data, window.size.h, "slope")

18 data[’angle’] <- atan(data$slope)

19 return(data)

20 }
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./../utils/central_difference.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5
6 # For all skiers simultaneously

7 CentralDifferences <- function(x.name,y.name, data, window, col.name){

8 # Approximates derivative by amended central differences scheme

9 #

10 # Args:

11 # x.name, y.name: Column names for variables x and y

12 # data: Data frame to extract variables x,y data from

13 # window: Window size ’h’ in central differences scheme

14 # col.name: Name of resulting column after use of central differences.

15 # Ex. x.name = time, y.name = speed -> col.name = acc

16 #

17 # Returns:

18 # data: Data frame including new column with approximated derivative

19 #

20 # Note: Central differences scheme needs ’h’ data points on each side when

calculating for data point ’i’.

21 # Amendments are therefore made in each end of the vector where this is not the

case, the scheme is regular in the middle.

22
23
24 # Find columns matching x and y input

25 index <- which(colnames(data) == x.name | colnames(data) == y.name)

26 data[paste(col.name)] = 0

27 h <- window

28
29
30 for(skier in unique(data$skier)){

31 df <- data[data$skier == skier, ] # Extract data for one skier

32
33 for (lap in unique(data$lap)){

34 x <- df[df$lap == lap, index[1]] # Calculate for each lap

35 y <- df[df$lap == lap, index[2]]

36
37 # Allocate

38 deriv <- rep(0,length(x))

39
40
41 ### Approximate derivative ###

42 #Middle

43 for(i in (h+1):(length(x)-h)){

44 deriv[i] <- (y[i+h]-y[i-h])/(x[i+h]-x[i-h])

45 }

46 #Beginning

47 for(i in 1:h){

48 deriv[i] <- (y[i+h]-y[1])/(x[i+h]-x[1])

49 }
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50 #End

51 for(i in (length(x)-h+1):length(x)){

52 deriv[i] <- (y[length(x)]-y[i-h])/(x[length(x)]-x[i-h])

53 }

54 #

55 data[(data$lap==lap & data$skier==skier), paste(col.name)] = deriv

56
57 } # end for lap

58 } # end for skier

59
60 return(data)

61
62 } # end function
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./../utils/smoothing_splines.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5
6 ## Smoothing splines

7
8 SmoothingSplines <- function(x, y, data.frame, df){

9 # Smooth y(x) by cubic smoothing splines

10 #

11 # Args:

12 # x, y: String names of columns x and y to smooth, ex. x = "distance", y = "

speed"

13 # data.frame: Data frame containing data x and y

14 # df: Degrees of freedom in the smoothing spline algorithm. Minimum 1, maximum

’n’ = no. of observations

15 #

16 # Returns: data.frame with smoothed data added in separate column

17
18 data.frame[paste(y,"Smoothed",sep="")] = 0 # if y = "speed" then data.frame["

speedSmoothed"] = 0 is set

19 index <- which(colnames(data.frame)==x | colnames(data.frame)==y)

20 #i=1

21 for (skier in unique(data.frame$skier)){

22 data <- data.frame[data.frame$skier == skier, ] # Data for one skier only

23 print(data$skier[1])

24 for (lap in unique(data$lap)){

25 print(lap)

26 xin <- data[data$lap==lap ,index[1]]

27 yin <- data[data$lap==lap ,index[2]]

28 fit <- smooth.spline(x=xin, y=yin, df=df) # Loop through laps because smooth.

spline is sensitive to duplicate values / demands unique values

29 data.frame[(data.frame$lap == lap & data.frame$skier == skier),paste(y,"

Smoothed",sep="")] <- fit$y

30 }

31 }

32 return(data.frame)

33
34
35 }
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./../utils/drag_area_values.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5 # TODO: Update documentation

6 # TODO: Decide how to include testing

7
8 GetDragAreaValueClassical <- function(subtechnique, testing = FALSE){

9 # Determines drag contribution (drag area value CdA) based on subtechnique

10 # Values chosen based on article by Ainegren and Jonsson

11 # ("Drag area, frontal area and drag coefficient in cross-country skiing

techniques")

12 #

13 # Args:

14 # subtechnique: Vector with values 0,1,2,3

15 # 0: Other (= tuck + turn)

16 # 1: DP = Double poling

17 # 2: DIA/DS = Diagonal stride

18 # 3: DPK = Double pole kick

19 # testing: TRUE/FALSE

20 # If TRUE, drag area values are drawn from a normal distribution

21 # with given mean and standard deviation

22 #

23 # Return: Vector of drag area values for classical subtechniques

24
25 drag.area.values <- rep(0, length(subtechnique))

26 subtechnique <- round(subtechnique)

27
28 # Set CdA value

29 if (testing == TRUE){

30 # Draw from distribution

31 drag.area.values[subtechnique == 0] <- rnorm(1, mean = 0.23, sd = 0.025) # Other

(=tuck/turn)!!

32 drag.area.values[subtechnique == 1] <- rnorm(1, mean = 0.44, sd = 0.025) # Double

poling

33 drag.area.values[subtechnique == 2] <- rnorm(1, mean = 0.54, sd = 0.025) #

Diagonal stride

34 drag.area.values[subtechnique == 3] <- rnorm(1, mean = 0.46, sd = 0.025) # Double

poling w/kick

35
36 } else {

37 # Regular

38 drag.area.values[subtechnique == 0] <- 0.23 # Other (=tuck/turn)

39 drag.area.values[subtechnique == 1] <- 0.44 # Double poling

40 drag.area.values[subtechnique == 2] <- 0.54 # Diagonal stride

41 drag.area.values[subtechnique == 3] <- 0.46 # Double poling w/kick

42 }

43
44 return(drag.area.values)

45 }

46
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47
48
49 GetDragAreaValueSkate <- function(speed, acd.upright, acd.tuck, testing = FALSE){

50 # Set drag area value CdA for each value in the speed vector.

51 # Value is determined by speed.

52 #

53 # Args:

54 # speed: Vector with speed values

55 # acd.upright: CdA for upright position. This position is assumed for v < 10 m/

s

56 # acd.tuck: CdA for tucked position, which is assumed for v > 10 m/s

57 # testing: TRUE/FALSE

58 # If TRUE, drag area values are drawn from a normal distribution

59 # with given mean and standard deviation

60 #

61 # Returns: Vector of drag area values for skating technique

62
63 drag.area.values <- rep(0, length(speed))

64
65 if (testing == TRUE){

66 drag.area.values[speed > 10] <- rnorm(n = 1, mean = acd.tuck, sd = 0.025) # > 10

m/s tuck is assumed

67 drag.area.values[speed <= 10] <- rnorm(n = 1, mean = acd.upright, sd = 0.075) # <

10 m/s upright is assumed

68
69 } else {

70 drag.area.values[speed > 10] <- acd.tuck # > 10 m/s tuck is assumed

71 drag.area.values[speed <= 10] <- acd.upright # < 10 m/s upright is assumed

72 }

73
74 return(drag.area.values)

75
76
77 }
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./../utils/model_calc.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5 ## Power balance model calculation ----------------------------------------------

6
7 model <- function(data, parameters, speed.type = "original", acc.type = "original",

classical.or.skate = "skate", testing = FALSE){

8 # Calculating propulsive power based on the power balance model

9 # P = efficiency + friction + gravity + drag

10 #

11 # Args:

12 # data: Data frame with race data to compute power from

13 # parameters: List of model parameters g, CdA, rho and mu

14 # speed.type: Smoothed or original speed. Determines what speed values to base

calculations on.

15 # Options: 1) "speedSmoothed" (smoothed by cubic splines) or 2) "original".

Default is "original".

16 # acc.type: Smoothed or original acceleration.

17 # Options:

18 # 1) "accSmoothed" (acc by original v, then smoothed),

19 # 2) "accSpeedSmoothed" (acc calculated from smoothed speed) or

20 # 3) "original" (acc calculated from original speed)

21 # classical.or.skate: "classical" or "skate", determining how to find drag area

value based on subtechnique.

22 # "skate" is default.

23 # testing: Simulation on/off

24 # If testing = FALSE, model parameters are constant and predetermined

25 # If tesing = TRUE, model parameters are drawn from a normal distribution

with

26 # mean = predetermined value and sd = chosen uncertainty (Only done for

mass within this function)

27 #

28 # Returns: Data frame ’data’, now including power calculations

29
30 # Sources

31 source("./utils/drag_area_values.R")

32
33
34 # Model parameters

35 mu <- parameters[[1]]; g.acc <- parameters[[2]]; acd.upright <- parameters[[3]]

36 acd.tuck <- parameters[[4]]; acd.avg <- parameters[[5]]; rho <- parameters[[6]]

37 CdA <- parameters[[7]]

38
39
40 # Allocate

41 data[’power’] = 0

42 data[’friction’] = 0

43 data[’gravity’] = 0

44 data[’drag’] = 0

45 data[’rel.power’] = 0 # Power relative to mass
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46 data[’CdA’] = CdA # List of CdA values found from subtechnique

47 data[’kin.energy’] = 0

48
49
50 # Go through all skiers

51 for (i in unique(data$skier)){

52
53 # Determine speed

54 if(speed.type == "speedSmoothed"){

55 v <- data[data$skier==i,]$speedSmoothed

56 #print("speedSmoothed chosen")

57 } else {

58 v <- data[data$skier==i,]$speed

59 #print("Original speed chosen")

60 }

61
62 # Determine acceleration

63 if(acc.type == "accSmoothed"){

64 acc <- data[data$skier==i,]$accSmoothed

65 #print("accSmoothed chosen")

66 } else if (acc.type == "accSpeedSmoothed") {

67 acc <- data[data$skier==i,]$accSpeedSmoothed

68 #print("accSpeedSmoothed chosen")

69 } else {

70 acc <- data[data$skier==i,]$acc

71 #print("Original acc chosen")

72 }

73
74 # Extract from data frame before calculation

75 alpha <- data[data$skier==i, ]$angle

76
77 if (testing == TRUE){

78 m <- rnorm(n=1, mean = data[data$skier==i,]$mass[1], sd = 1)

79 } else {

80 m <- data[data$skier==i,]$mass[1]

81 }

82
83 ### CALCULATE POWER ###

84
85 # Terms separately

86 data[data$skier==i, ]$friction <- mu*m*g.acc*cos(alpha)*v # Friction

87 data[data$skier==i, ]$gravity <- m*g.acc*sin(alpha)*v # Gravity

88 data[data$skier==i, ]$drag <- (1/2)*rho*data[data$skier==i, ]$CdA*(v^3) # Drag

89 data[data$skier==i, ]$kin.energy <- m*v*acc # Change in kinetic energy

90
91 # Propulsive power

92 data[data$skier==i,]$power <- m*v*acc + data[data$skier==i,]$friction + data[data

$skier==i,]$gravity + data[data$skier==i,]$drag

93 #data[data$skier==i, ]$power <- m*v*acc + mu*m*g.acc*v + m*g.acc*sin(alpha)*v +

(1/2)*rho*acd.avg*(v^3) # Calculate with avg. CdA

94 data[which(data$power<0), ]$power = 0 # Set negative power to zero

95 data[data$skier==i, ]$rel.power <- data[data$skier==i,]$power/m # Power relative
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to skier mass

96
97
98 } # end for

99 return(data)

100
101 } # end function
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./../testing/ParameterSensitivity.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5
6 ParameterSensitivity <- function(parameter, data.frame, parameter.vector, classical.

or.skate, speed.type, acc.type){

7 # Calculating power with variations in a single parameter at a time to evaluate

sensitivity

8 #

9 # Args:

10 # parameter: Which model parameter to vary

11 # Options: drag.area, friction, air.density, mass

12 # data.frame: Data set to evaluate

13 # parameter.vector: Vector of values to test

14 # classical.or.skate: Skiing technique in race in data.frame

15 #

16 # Returns:

17 # Data frame res.frame with calculated power corresponding to the variations

in the ’parameter’ argument

18
19 source("./utils/model_calc.R")

20 res.frame <- data.frame()

21
22 ### Drag area

23 if (parameter == "drag.area"){

24 len <- length(parameter.vector[[7]])

25 drag <- parameter.vector[[7]]

26
27 #drag.area.vecs <- list(rep(0.20, len), rep(0.40, len), rep(0.60, len)) # Test

one

28 #drag.area.vecs <- list(rep(0.30, len), rep(0.40, len), rep(0.50, len)) # Test

two

29 drag.area.vecs <- list(rep(0.35, len), rep(0.45, len), rep(0.50, len)) # Test

three

30
31
32 for (par in drag.area.vecs){

33 parameter.vector[[7]] <- par

34 data <- model(data.frame, parameter.vector, speed.type = speed.type, acc.type =

acc.type, classical.or.skate = classical.or.skate, testing = FALSE)

35 res.frame <- rbind(res.frame,

36 data.frame(power = data$power, rel.power = data$rel.power, distance = data$

distance, drag.area = data$CdA,

37 skier = data$skier, elevation = data$elevation, drag =data$drag,

speedSmoothed = data$speedSmoothed))

38 }

39 return(res.frame)

40
41
42 ### Friction
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43 } else if (parameter == "friction"){

44 mu <- data.frame$mu[1]

45 friction <- c(mu-0.005, mu, mu+0.005, mu+0.010) # Test 1

46 #friction <- c(mu-0.0025, mu, mu+0.0025, mu+0.0050) # Test 2

47 #friction <- c(mu-0.0025, mu, mu+0.0025) # Test 3

48
49 for (par in friction){

50 parameter.vector[[1]] <- par

51 data <- model(data.frame, parameter.vector, speed.type = speed.type, acc.type =

acc.type, classical.or.skate = classical.or.skate, testing = FALSE)

52 res.frame <- rbind(res.frame,

53 data.frame(power = data$power, rel.power = data$rel.power, distance = data$

distance, friction = data$friction, mu = par,

54 skier = data$skier, elevation = data$elevation))

55 }

56 return(res.frame)

57
58
59
60 ### Air density

61 } else if (parameter == "air.density"){

62 air.density <- c(0.9, 1.1, 1.3) # Test 1

63 #air.density <- c(1.0, 1.1, 1.2) # Test 2

64 #air.density <- c(1.05, 1.1, 1.15) # Test 3

65 for(rho in air.density){

66 parameter.vector[[6]] <- rho

67 data <- model(data.frame, parameter.vector, speed.type = speed.type, acc.type =

acc.type, classical.or.skate = classical.or.skate, testing = FALSE)

68 res.frame <- rbind(res.frame,

69 data.frame(power = data$power, rel.power = data$rel.power, distance = data$

distance, drag = data$drag, rho = rho,

70 skier = data$skier, elevation = data$elevation))

71
72 }

73 return(res.frame)

74
75
76
77 } else if (parameter == "mass"){

78 kgs <- data.frame$mass[1]

79 skier.mass <- c(kgs-2, kgs, kgs+2) # Test 1

80 #skier.mass <- c(kgs-1, kgs, kgs+1) # Test 2

81 #skier.mass <- c(kgs-0.5, kgs, kgs+0.5) # Test 3

82
83 for(mass in skier.mass){

84 data.frame$mass <- mass

85 data <- model(data.frame, parameter.vector, speed.type = speed.type, acc.type =

acc.type, classical.or.skate, testing = FALSE)

86 res.frame <- rbind(res.frame,

87 data.frame(power = data$power, rel.power = data$rel.power, distance = data$

distance, skier = data$skier, elevation = data$elevation, mass = data$

mass))
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88 }

89
90 return(res.frame)

91 } # end if

92
93 } # end function
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./../testing/MonteCarloSimulation.R

1 # Master thesis, Gina Magnussen

2 # In collaboration with SenTIF Trondheim

3 # Spring 2019

4
5 MonteCarloSimulation <- function(num.runs, data.frame, classical.or.skate, speed.type

, acc.type){

6 # Simulating propulsive power by varying model parameters: Friction, drag area, rho

,

7 # and mass (done in model() (model_calc.R))

8 #

9 # Args:

10 # num.runs: Number of simulation runs

11 # data.frame: Data frame with race data to base simulations on

12 # classical.or.skate: Technique of race analyzed - "classical" or "skate"

13 # speed.type: Type of speed used in model calculation,

14 # 1) "original" (unfiltered speed) or 2) "speedSmoothed" (speed smoothed

by smoothing splines)

15 # acc.type: Type of acceleration used in model calculation,

16 # 1) "original" (acc calculated from unfiltered speed) or 2) "

accSpeedSmoothed" (acc calculated from smoothed speed)

17 #

18 # Returns:

19 # res.frame: Data frame with simulation data

20 #

21
22
23 source("./utils/model_calc.R")

24 source("./utils/drag_area_values.R")

25 library(tictoc)

26 tic()

27 res.frame <- data.frame()

28
29 for(run in 1:num.runs){

30 # Put together the parameter vector

31 friction <- rnorm(n = 1, mean = data.frame$mu[1], sd = 0.0025)

32 rho <- rnorm(n=1, mean=1.1, sd = 0.1)#??

33 if (classical.or.skate == "classical"){

34 CdA <- GetDragAreaValueClassical(data.frame$subtechnique, testing = TRUE)

35 } else if (classical.or.skate == "skate"){

36 if(speed.type == "original"){

37 CdA <- GetDragAreaValueSkate(data.frame$speed, 0.5, 0.23, testing = TRUE)

38 } else if (speed.type == "speedSmoothed"){

39 CdA <- GetDragAreaValueSkate(data.frame$speedSmoothed, 0.50, 0.23, testing

= TRUE)

40 }

41 }

42
43 par <- list(friction, 9.81, 0.50, 0.23, 0.365, rho, CdA)

44 # 9.81 = g.acc, 0.50 = acd.upright, 0.23 = acd.tuck, 0.365 = acd.avg

45
46
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47 # Calculate power

48 model.calc <- model(data.frame,

49 par,

50 speed.type = speed.type,

51 acc.type = acc.type,

52 classical.or.skate = classical.or.skate,

53 testing = TRUE)

54 #print(run)

55 res.frame <- rbind(res.frame, data.frame(skier = model.calc$skier, power = model.

calc$power,

56 rel.power = model.calc$rel.power, distance = model.calc$

distance,

57 drag.area = model.calc$CdA, run = run, lap=model.calc$lap))

58
59 } # end for

60
61 toc()

62 return(res.frame)

63
64 } # end function
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