
A
m

irhossein K
azem

i

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s

M
as

te
r’

s
th

es
is

Amirhossein Kazemi

A Semi-Supervised Approach to the
Application of Sensor-based Change-
Point Detection for Failure Prediction
in Industrial Instruments

Master’s thesis in Applied Physics and Mathematics
Supervisor: Prof. Mette Langaas and Dr. Martin Høy

June 2019

Amirhossein Kazemi

A Semi-Supervised Approach to the
Application of Sensor-based Change-
Point Detection for Failure Prediction in
Industrial Instruments

Master’s thesis in Applied Physics and Mathematics
Supervisor: Prof. Mette Langaas and Dr. Martin Høy
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Summary

In this work we analyze the possibility of applying statistical methods of change-
point detection for predicting failures in industrial instruments. In addition,
we provide an overview over various methods of anomaly detection that can
be applied for this purpose. The solution proposed here is model-driven. We
propose to use methods of change-point detection on historical sensor data from
the operation of a machine to identify patterns that have led to unsafe conditions
under which the machine has gone through an unplanned shut-down in the
past. The solution proposed in this work has a semi-supervised nature. We
assume that there exists a change in the distribution of the data in a time
period of known length prior to failures. It is assumed that the time of the
change is unknown. The data points prior to and after this change are labeled
as normal and non-normal, respectively. We develop methods to find signals in
the data the distributions of which are less affected by the normal variations in
the data than by the non-normal changes that cause failures. Based on these
signals, several univariate predictive models are developed. The parameters of
the predictive models are determined with an ad hoc approach, using the semi-
supervised labeling of the data points. The methods presented in this work are
inspired by and applied to a data set provided by the Norwegian DNV GL. The
data comes from the gas compressors and the gas turbines used by a European
gas transmission system (GTS) operator. In this work, as an original work by
the author, the theories of the vector autoregressive model, the offline change-
point detection method, the principal and the Box-Tiao analyses, the Mann-
Whitney U test, the signals discrepancy, leverage and influence, the CUSUM
method and statistical performance metrics have been combined to create end-
to-end solutions to the problem of sensor-based failure prediction in industrial
instruments. The main contribution of the author is combining all the methods
presented in this work into four possible end-to-end solutions and testing and
evaluating the solutions on simulated and real-world data sets. Here we have
underpinned the existence of predictive information in our real-world data and a
potential in the presented methods for detecting the difference between normal
and non-normal behaviour. Achievable improvements of the analyses performed
are proposed in this work. Given the current results, we conclude that applying
the methods presented here for failure prediction in our business case might
be economically profitable if the economic value of a true positive prediction is
much larger than the economic loss of a false positive prediction. We recommend
further work on the subject by conducting a similar multivariate analysis.

i

Preface

This dissertation is an original work of the author Amirhossein Kazemi, per-
formed as a master’s thesis at the Norwegian University of Science and Tech-
nology (NTNU), under the supervision of Prof. Mette Langaas, from the De-
partment of Mathematical Sciences at this university and external supervision
of Dr. Martin Høy from DNV GL. This work is submitted in fulfillment of
the requirements of TMA4900 Industrial Mathematics, Master’s Thesis. The
methods presented in this work are inspired by and tested on a real-world data
set. The business case and the real-world data set were provided to the author
by the Norwegian DNV GL. Additional external support was provided by Dr.
Huiming Zeng, Dr. Abdillah Suyuthi and Jørgen Christian Kadal from this
company. Ian Peter Mather and Edward Paul Goulbourne from DNV GL in
the UK provided useful insight into the business case.

I would like to take this opportunity to express my deepest gratitude to my
main supervisor, Mette. Through many months of work, her unconditional sup-
port made the creation of this dissertation possible and the journey to complete
it enjoyable for me. From replying to my e-mails within minutes after they were
sent to writing encouraging notes in the margins of the drafts of this work, she
spared no pains to support me through the whole journey. I would also like to
express my appreciation to my external supervisor, Martin, whose ideas inspired
much of the analysis performed in this work. In conclusion, I wish to convey
my sincere thanks to Jørgen for his trust and support through the last year of
my studies, including prior to and during the work on this dissertation.

ii

Table of Contents

Summary i

Preface ii

Table of Contents v

List of Tables vii

List of Figures xiv

Abbreviations xv

1 Introduction 1
1.1 Model-Driven Nature of the Solution 1
1.2 Business Case . 2
1.3 Work Overview . 4

2 Concepts 5
2.1 Nature of the Anomalies . 5
2.2 Nature of the Methods . 6
2.3 Nature of the Data . 7
2.4 Online vs. Offline Detection . 8
2.5 Our Semi-Supervised Approach 8

3 Theory 11
3.1 Notation . 12
3.2 Vector Autoregressive (VAR) Models 13

3.2.1 Notation . 13
3.2.2 Stability and Stationarity 14
3.2.3 Estimation . 14

3.3 Change-Point Detection . 17
3.3.1 Notation . 17

iii

3.3.2 General Framework . 17
3.3.3 Penalty Function . 18
3.3.4 Search Methods . 19
3.3.5 Models . 20

3.4 Dimensionality Reduction . 22
3.4.1 Principal Component Analysis (PCA) 23
3.4.2 Box-Tiao Analysis (BTA) 24
3.4.3 Semi-Supervised Nature of the Transformations 27
3.4.4 Covariance Matrix Estimation 28
3.4.5 Signal Selection . 30

3.5 Online Predictive Models . 36
3.5.1 Cumulative Sum (CUSUM) 37
3.5.2 Evaluation . 41

4 Experiments 45
4.1 Data Description . 46

4.1.1 Real-World Data . 46
4.1.2 Simulated Data . 51

4.2 Experiment Design for Signal Selection 55
4.2.1 Experiment 1 . 56
4.2.2 Experiment 2 . 59
4.2.3 Experiment 3 . 60
4.2.4 Experiment 4 . 60
4.2.5 Discussion . 61

4.3 Predictive Model Development 63
4.4 Evaluation . 64
4.5 Implementation . 64

5 Statistical Analyses and Results 67
5.1 Simulation Analysis . 67

5.1.1 Experiments 1 and 3 . 68
5.1.2 Experiments 2 and 4 . 78
5.1.3 Comparison and Discussion 84

5.2 Real-World Analysis . 86
5.2.1 Data Analysis . 86
5.2.2 Signal Selection Results 88
5.2.3 Predictive Model Results 92
5.2.4 A Simple Multivariate Predictive Model 93

6 Discussion and Conclusion 97
6.1 Further Work . 98

6.1.1 The Real-World Data Preparation 99
6.1.2 The Offline Change-Point Detection Method 100
6.1.3 The Simulation Study . 101
6.1.4 The Method of Dimensionality Reduction 102
6.1.5 The Predictive Model . 103

iv

6.2 Conclusion . 104

Bibliography 107

Appendices 111

A The Description of the Data Preparation Process 113
A.1 Data Standardization . 113

A.1.1 Format converting . 113
A.1.2 Sensor name harmonisation 114

A.2 Data Preparation and Cleaning 114
A.2.1 Aggregation of temperature sensors 115
A.2.2 Data quality of temperature sensors 115
A.2.3 Imbalanced Dataset . 116

B Dimensions List 117

C Python Script 119
C.1 Functions and Packages . 119

C.1.1 External Packages . 119
C.1.2 BTA and PCA . 119
C.1.3 CUSUM . 123

C.2 Simulation Study . 128
C.2.1 Data Simulation . 128
C.2.2 Signal Selection . 132
C.2.3 Predictive Model . 142
C.2.4 Results and Figures . 148

C.3 Real-World Study . 155
C.3.1 Data Manipulation . 155
C.3.2 Data Description . 158
C.3.3 Signal Selection . 160
C.3.4 Predictive Models . 167
C.3.5 Results and Figures . 173

v

vi

List of Tables

4.1 The design of the experiments is illustrated in this table. The four
experiments are used as dimensionality reduction approaches in
this work. They differ in the type of transformation used in them
and their alternative signals of interest among which one signal
of interest is to be selected. 55

vii

viii

List of Figures

1.1 An illustration of the gas turbine GE LM2500 provided by GE
Power (2018) . 3

3.1 The analysis pipeline: An overview over the mathematical meth-
ods provided in this work and how they are used in combination
with each other to make a failure prediction model using histor-
ical data. The boxes for mathematical methods are colored blue
while the boxes for different types of data are colored purple. All
the methods and types of data are presented in sufficient detail
in this chapter. 12

3.2 The time axis, where an observation of some multidimensional
time series exists at each ti. Each change-point τk is the end of
its preceding regime k − 1. 17

3.3 This plot illustrates different distributions of the vector variable
Xt in different regimes. The observations are shown in one di-
mension for convenience. 20

3.4 The first time line is prior to a shut-down due to a failure in the
system, and the second time line is prior to a normal planned
shut-down. The red, green and grey color mark respectively the
time referred to as a failure state, a transition state and a normal
state. 31

3.5 The first time line is prior to a shut-down due to a failure in the
system, and the second time line is prior to a normal planned
shut-down. The red, green and grey color mark respectively the
time referred to as a failure state, a transition state and a normal
state. The normal state is divided into intervals of lengths equal
to that of transition states. 40

ix

4.1 Histogram of the lengths of the normal groups in the real-world
data. Each bar covers 1000 minutes. The height of a bar shows
the number of normal groups the in the respective interval. . . . 48

4.2 Histogram of the lengths of the tripping groups in the real-world
data. Each bar covers 1000 minutes. The height of a bar shows
the number of tripping groups in the respective interval. 49

4.3 The natural logarithm of the estimated variance of each of the 62
dimensions in the real-world data is plotted. The estimations for
the normal groups and the tripping groups are performed sepa-
rately. The estimation is performed using the method presented
in (4.1). The dimensions are sorted in the descending order of
their estimated variance in the normal groups. The rank of each
dimension can be found in a table in Appendix B. 51

4.4 An illustration of the dn-th dimension of a simulated normal
group. There exists a normal change-point in this dimension
in minute 262. The data before and after the change-point are
marked with the blue and the red background color, respectively. 53

4.5 An illustration of the dt-th dimension of a simulated normal
group. There exists no change-points in this dimension during
this running group. 54

4.6 An illustration of the dn-th dimension of a simulated tripping
group. There exists no change-points in this dimension during
this running group. 54

4.7 An illustration of the dt-th dimension of a simulated tripping
group. There exists an non-normal change-point in this dimen-
sion in minute 528. The data before and after the change-point
are marked with the blue and the red background color, respec-
tively. 54

4.8 The analysis pipeline for Experiment 1. The performed analysis
in this experiment is marked with the red color. 56

4.9 The analysis pipeline for Experiment 2. The performed analysis
in this experiment is marked with the red color. 59

4.10 The analysis pipeline for Experiment 3. The performed analysis
in this experiment is marked with the red color. 61

4.11 The analysis pipeline for Experiment 4. The performed analysis
in this experiment is marked with the red color. 62

5.1 A histogram showing how frequently a principal or Box-Tiao com-
ponent is selected as the signal of interest in Experiments 1 and 3
in the simulation study. The results for Experiment 1 are in red
while the results for Experiment 3 are in blue. The total number
of simulations is 100 for each experiment. 69

x

5.2 A histogram showing the distribution of the recall of the pre-
dictive models in Experiments 1 and 3 applied to the simulated
test data sets. The results for Experiment 1 are in red while
the results for Experiment 3 are in blue. The total number of
simulations is 100 for each experiment. 71

5.3 A histogram showing the distribution of the precision of the pre-
dictive models in Experiments 1 and 3 applied to the simulated
test data sets. The results for Experiment 1 are in red while
the results for Experiment 3 are in blue. The total number of
simulations is 100 for each experiment. 72

5.4 A histogram showing the distribution of the accuracy of the pre-
dictive models in Experiments 1 and 3 applied to the simulated
test data sets. The results for Experiment 1 are in red while
the results for Experiment 3 are in blue. The total number of
simulations is 100 for each experiment. 73

5.5 The precision and the accuracy of the predictive models in Ex-
periments 1 and 3, applied to the simulated test data sets are
plotted against each other. The plot on the left side is for Exper-
iment 1 and the plot on the right side is for Experiment 3. The
total number of points in each plot is 100. 74

5.6 The precision and the accuracy of the predictive model applied to
the test data set in a simulation are plotted against the selected
signal of interest in that simulation. This is done separately for
Experiments 1 and 3. The points belonging to Experiment 1
are colored red and have the shape of a ”+”, while the points
belonging to Experiment 3 are colored blue and have the shape
of a ”×”. On the x-axis, the numbers 1, ..., 10 represent the 10
principal components in Experiment 1 and the 10 Box-Tiao com-
ponents in Experiment 3. The red lines are linear regression lines
for the points belonging to Experiment 1, and the blue lines are
linear regression lines for the points belonging to Experiment 3.
The total number of points for each experiment is 100. 76

5.7 A histogram showing the distribution of the F1 score of the pre-
dictive models in Experiments 1 and 3 applied to the simulated
test data sets. The results for Experiment 1 are in red while
the results for Experiment 3 are in blue. The total number of
simulations is 100 for each experiment. 77

5.8 A histogram showing how frequently a signal is selected as the
signal of interest in Experiments 2 and 4 in the simulation study.
The results for Experiment 2 are in red while the results for Ex-
periment 4 are in blue. The total number of simulations is 100
for each experiment. 79

xi

5.9 A histogram showing the distribution of the recall of the pre-
dictive models in Experiments 2 and 4 applied to the simulated
test data sets. The results for Experiment 2 are in red while
the results for Experiment 4 are in blue. The total number of
simulations is 100 for each experiment. 80

5.10 A histogram showing the distribution of the precision of the pre-
dictive models in Experiments 2 and 4 applied to the simulated
test data sets. The results for Experiment 2 are in red while
the results for Experiment 4 are in blue. The total number of
simulations is 100 for each experiment. 81

5.11 A histogram showing the distribution of the accuracy of the pre-
dictive models in Experiments 2 and 4 applied to the simulated
test data sets. The results for Experiment 2 are in red while
the results for Experiment 4 are in blue. The total number of
simulations is 100 for each experiment. 82

5.12 A histogram showing the distribution of the F1 score of the pre-
dictive models in Experiments 2 and 4 applied to the simulated
test data sets. The results for Experiment 2 are in red while
the results for Experiment 4 are in blue. The total number of
simulations is 100 for each experiment. 83

5.13 The average recall, precision, F1 score and accuracy of the predic-
tive model in each of the four experiments designed in Subsection
4.2 applied to the simulated test data sets are illustrated here.
The total number of simulations used to calculate the average
metrics is 100. The average values of the recall for Experiments
1−4 are respectively 0.86, 0.73, 0.91 and 0.69. The average values
of the precision for Experiments 1− 4 are respectively 0.51, 0.76,
0.56 and 0.70. The average values of the F1 score for Experiments
1− 4 are respectively 0.51, 0.74, 0.58 and 0.68. The average val-
ues of the accuracy for Experiments 1 − 4 are respectively 0.55,
0.95, 0.60 and 0.94. 85

5.14 In the left plot, the natural logarithm of the estimated normal
and transition variance of the 62 dimensions of the real-world
data are shown separately. In the right plot, the estimated nor-
mal and transition predictability of the 62 dimensions of the data
are shown separately. The predictability is estimated assuming
an autoregressive process of order 1 for each dimension. The es-
timates in the normal states are shown in dark grey while the
estimates in the transition states are shown in green. The di-
mensions are sorted in the descending order of their estimated
normal variance in both plots. The rank of each dimension can
be found in a table in Appendix B. 87

5.15 An illustration of the normal changes in a dimension of the real-
world data set in a normal group. A change-point is marked with
a shift in the background color. 88

xii

5.16 The log(p-values) of the Mann-Whitney U test performed on the
results of the offline change-point detection applied to the signals
discrepancy, leverage and influence of the transformed real-world
signal selection data set. In Experiment 2, the result of which
is presented in the plot to the right, the PCA transformation is
used. In Experiment 4, the result of which is presented in the plot
to the left, the BTA transformation is used. Here the labeling of
the data points is performed as described in Subsection 3.4.5 and
illustrated in Figure 3.4. The penalty function used here for the
change-point detection is provided in (4.2), where m = 60. 90

5.17 The log(p-values) of the Mann-Whitney U test performed on the
results of the offline change-point detection applied to the signals
discrepancy, leverage and influence of the transformed real-world
signal selection data set. In Experiment 2, the result of which
is presented in the plot to the right, the PCA transformation is
used. In Experiment 4, the result of which is presented in the plot
to the left, the BTA transformation is used. Here the labeling of
the data points is performed as described in Subsection 3.5.1 and
illustrated in Figure 3.5. The penalty function used here for the
change-point detection is pl0(τ) = 200K, where K is the number
of change-points. 91

5.18 The p-values of the Mann-Whitney U test performed on the re-
sults of the offline change-point detection applied to the original
dimensions of the real-world data. The signal selection data set
is used for this analysis. 92

5.19 The recall, precision, F1 score and accuracy of the predictive
model in Experiments 2 and 4 applied to the real-world test data
set are illustrated here. These metrics are also calculated and
illustrated for the predictive model based on one of the original
dimensions of the data. The values of the recall for Experiments 2
and 4 are respectively 0.24 and 0.26. The values of the precision
for Experiments 2 and 4 are respectively 0.03 and 0.02. The
values of the F1 score for Experiments 2 and 4 are respectively
0.05 and 0.04. The values of the accuracy for Experiments 2
and 4 are respectively 0.86 and 0.80. The values of the recall,
the precision, the F1 score and the accuracy of the predictive
model based on one of the original dimensions of the data are
respectively 0.08, 0.05, 0.06 and 0.97. 94

xiii

5.20 The recall, precision, F1 score and accuracy of two simple multi-
variate predictive models applied to the real-world test data set
are illustrated here. One of the models is based on the last 10
principal components and the other on the last 10 Box-Tiao com-
ponents. The values of the recall, the precision, the F1 score and
the accuracy of the predictive model based on the last 10 principal
components are respectively 0.55, 0.03, 0.05 and 0.77. The values
of the recall, the precision, the F1 score and the accuracy of the
predictive model based on the last 10 Box-Tiao components are
respectively 0.45, 0.02, 0.05 and 0.59. 95

xiv

Abbreviations

AIC = Akaike Information Criterion
AR = Autoregressive
BIC = Bayesian Information Criterion
BTA = Box-Tiao Analysis
CDF = Cumulative Distribution Function
CLT = Central Limit Theorem
CROPS = Change-points for a Range of PenaltieS
CUSUM = Cumulative Sum
DNV GL = Det Norske Veritas & Germanischer Lloyd
EWMA = Exponentially Weighted Moving Average
FN = False Negative
FP = False Positive
GE = General Electric
GLS = Generalized Least Squares
GTS = Gas Transmission System
LCL = Lower Control Limit
LOCF = Last Observation Carried Forward
NA = Not Available
NTNU = Norwegian University of Science and Technology
OLS = Ordinary Least Squares
PCA = Principal Component Analysis
PCC = Principal Component Classifier
PELT = Pruned Exact Linear Time
RPM = Revolutions Per Minute
SVD = Singular Value Decomposition
TN = True Negative
TP = True Positive
UCL = Upper Control Limit
VAR = Vector Autoregressive

xv

xvi

Chapter 1
Introduction

This study is motivated by the possibility of applying statistical methods of
change-point detection in order to detect anomalies that cause a failure in in-
dustrial instruments. Machines in different industries often fail because of some
undesired behaviour in their operation. Examples of such instruments are jet
motors, wind turbines, gas compressors, etc. A failure in such instruments can
cause a substantial economic cost and even loss of life. Therefore the opera-
tion is monitored using many sensors inside the machine, measuring different
physical quantities such as temperature, pressure, etc. A control system is used
to monitor the sensor values. In general the control system is in charge of the
operation. The rules under which it operates are made by the unit producer.
The control system normally tries to operate the machine in the most optimal
and safe way for achieving the desired output, set by the engineers. However,
often it performs a fast controlled shut-down whenever there is high risk of a
costly failure in order to avoid damage to the machine or its surroundings. This
is not optimal for the user of the machine because an unplanned shut-down can
also cause economic loss. In this work we try to give a framework for applying
statistical methods to predict the unsafe conditions before they occur, giving the
engineers enough time to adjust the operation in order to avoid an unplanned
shut-down performed by the control system.

1.1 Model-Driven Nature of the Solution
The solution proposed here is model-driven. We provide an end-to-end solution
from historical data preparation, through identifying patterns that have led to
unsafe conditions under which the machine has either failed or gone through
an unplanned shut-down in the past, to a predictive model that can be used
to predict and prevent such events in the future. Methods of change-point
detection are applied in different stages of the solution. We will also discuss
the challenges in such problem settings and propose solutions to overcome the

1

Chapter 1. Introduction

challenges.
One challenge for a model-driven model is that most industrial machines

do not actually fail very often, and this provides little data for a model-driven
approach. However, this can be used as an advantage if one assumes that most
of the time the machine is operating under safe circumstances. This is the
so-called normal operation mode. The patterns that cause an unplanned shut-
down are the anomalies in the data, meaning that they do not occur too often.
For instance, if the data is clustered, anomalies are the observations that do not
belong to the largest clusters. It can be assumed that failures are caused by
anomalies. Therefore anomaly detection methods can be developed to predict
occurrence of unsafe conditions in a machine before they occur. However, in
our analysis the normal operation mode as well as the nature of the anomalies
that cause a failure are unknown. In addition, it is not known how long it takes
from the time a pattern leading to a failure starts until the control system shuts
down the machine. Therefore it is assumed here that there exists a change-point
in the data separating the normal operation mode from the anomalies that lead
to failure. Then a predictive model can be developed to detect these changes in
the distribution of the data and thereafter predict the failure.

1.2 Business Case
Methods presented in this work are applied to a data set provided by a Eu-
ropean gas distribution network owner. This company is the owner and the
operator of a gas transmission system (GTS) in a European country. A gas
transmission system is a network of gas pipelines that supplies natural gas to
different power stations, industrial users and gas distribution companies. Gas
distribution companies then distribute the gas further, supplying smaller com-
mercial and domestic natural gas users. It is desired to keep the gas pressure in
the GTS between some lower and upper limit. For this the GTS operator uses
several units of gas compressors stationed at different location points along the
pipelines. The compressors are turned on and off on demand in order to regulate
the gas pressure in the GTS. Gas turbines of the model LM2500 are the most
common type of turbines that the GTS operator uses to produce power for the
gas compressors installed along the GTS. The turbines are produced by General
Electric (GE). One can see an illustration of this machine in Fig. 1.1. The data
set analyzed in this work contains sensor-based data from the gas compressors
and the gas turbines used by the GTS operator. An unplanned shut-down of
one of the systems can be due to a failure either in the gas compressor or the
gas turbine used to power it.

The data set provided to us is divided into different running groups. A
running group refers to the data recorded between the time one compressor is
turned on until the consecutive shut-down. A compressor is considered turned
on as soon as its recorded value of speed goes above 500 revolutions per minute
(RPM). This value is selected in consultation with the field experts. A compres-
sor is considered shut down as soon as its recorded value of speed goes below

2

1.2 Business Case

Figure 1.1: An illustration of the gas turbine GE LM2500 provided by GE Power (2018)

500 RPM.
An unplanned shut-down due to a failure in the system is referred to as a

trip. The running groups are categorized based on their type of shut-down.
The possible categories are normal stop, running trip and starting trip. This
information is manually logged by engineers at the GTS operator company, and
provided to us in a log file. We ignore the running groups ending in a starting
trip and refer to the running groups ending in a normal stop and a running trip
as a normal group and a tripping group, respectively.

Under mild conditions, an unplanned shut-down of one compressor does not
have a substantial impact on the operation of the pipelines. This is because the
load can easily be picked up by the other compressors since a large degree of
redundancy is built into the operations. However, there can be a black out of gas
in some places if several compressors undergo an unplanned shut-down nearly
at the same time. At times, local maximum capacity is needed for maintaining
enough pressure in the pipelines. In this case an unplanned shut-down of even
one critical compressor can cause a black out in some places. Over time this
can have substantial economic consequences for natural gas dependent industries
and commercial and domestic users. The GTS operator company receives a fine
from the state when a black out occurs. Therefore the company is interested in
solving the issue.

The engineers at the GTS operator company already have a good under-
standing of possible issues in the system that can cause an unplanned shut-down
in a compressor. We propose that it is possible to use model-driven solutions in
order to predict failures, giving the engineers enough time to act on the provided
information to avoid unplanned shut-downs in the future.

3

Chapter 1. Introduction

1.3 Work Overview
In Chapter 2 the concepts of anomaly detection and change-point detection are
introduced along with the underlying assumptions of the different approaches.
In addition, we present some of the literature on the subject. We also present
arguments for why it is beneficial to use change-point detection methods in
the way presented in this work for failure prediction in our business case. In
Chapter 3, the mathematical theory needed for our proposed framework for
sensor-based failure prediction is presented. The reader is taken step by step
through the solution. In Chapter 4, we present different approaches to test
the methods presented in Chapter 3. In this chapter a simulation study is
designed to evaluate the framework developed in Chapter 3. In Chapter 4, we
also describe the business case, the real-world data set and the simulated data
sets in details and explain how the methods presented in Chapter 3 can be
applied to these data sets. The details of the implementations of the methods is
also discussed in this chapter. In Chapter 5, we present and analyze the results
of the experiments designed in Chapter 4 and evaluate the different methods
presented in Chapter 3. The conclusions are discussed in Chapter 6, where we
also propose ways to improve the methods to obtain better performance by the
predictive model.

4

Chapter 2
Concepts

Here the concepts of anomaly and change-point detection are introduced. An
anomaly, as defined by Steinwart et al. (2005), is non-concentrated data. For
a time series, a change-point, as defined in Section 3.3, is the time when a
change occurs in the data generating process of the series. Anomaly detection
and change-point detection are two different approaches often applied for the
common purpose of failure prediction. However, they can be combined in order
to create a new approach with few underlying assumptions, as explained in
Subsection 2.5 and Kuncheva and Faithfull (2014). In this work, sensor-based
data is of special interest. Sensor-based data consists of repeated measurements
of some physical quantities recorded by the sensors in a system.

2.1 Nature of the Anomalies
In Chandola et al. (2009), data identified as an anomaly is categorized into three
groups:

• Point anomaly: These are individual data points that can be considered
as anomalies with respect to the rest of the data. A large transaction
in the banking industry can be an example of this kind of anomaly. In
a sensor-based setting this would mean an non-normal value recorded by
one sensor.

• Contextual anomaly: These are data instances that are considered non-
normal in specific contexts while normal in other contexts. For instance a
large amount of rainfall would be non-normal in a desert while the same
amount would be normal in a rain forest. This category is sometimes
referred to as conditional anomaly. In a sensor-based setting, this happens
when the value recorded by a sensor is non-normal given the value recorded
by some other sensors at the same time-point.

5

Chapter 2. Concepts

• Collective anomaly: In this case several related data points make up an
anomaly while each data point by itself might not be non-normal. In a
sensor-based setting, this can be for instance the case if a peak and a
valley happen in an non-normal order in the time series.

In order to detect point anomalies, one approach is to build a model which
predicts the state of the system in the present, given the state of the system
in the past. Then the prediction can be compared to the observed state of the
system in the present, and one can calculate the residuals of the model. Then
one can detect outliers using the residuals. This approach is discussed in detail
in Steinwart et al. (2005), in which the authors present a classication approach
to anomaly detection based on a framework of density-level detection. Following
this approach, one should build a model that explains the normal variations in
the data to a sufficient degree. In our case, the data can be generated under
different normal operation modes, and there does not exist any meta-data about
when the operation mode changes from one to another. Therefore it is specially
challenging to construct a model that explains the normal variations in the data
to a sufficient degree.

For contextual and collective anomaly detection, clustering and K nearest
neighbour techniques can be used. The underlying assumption for clustering
is that normal data points will belong to large clusters while anomalies will
belong to smaller ones. This is somehow similar to the definition of an anomaly
in Steinwart et al. (2005). Following this approach, one assumes that there exists
a clear cluster structure in the data set. However, in an initial analysis of our
data set, conducted by DNV GL, no clear cluster structure could be found in the
data. The main assumption behind K nearest neighbour techniques is that new
anomalies will be closer to known anomalies than to normal data points. In our
case, since the number of normal data points is much larger than the number
of anomalies and there exists no clear cluster structure in the data set, a new
data point will almost always be surrounded by many other normal data points.
Therefore a K nearest neighbour approach may not be suitable for anomaly
detection in our case. The clustering and the K nearest neighbour techniques
are presented with their applications in Choudhary (2017) and Perera (2015).

In this work, we will develop methods that can potentially detect all of the
three types of anomalies presented in this section. Our approach is described in
Section 2.5 and presented in Chapter 3.

2.2 Nature of the Methods
Reviewing the literature on anomaly detection, Chandola et al. (2009), the
methods can be divided into three main categories, namely supervised, semi-
supervised and unsupervised methods. In the following training data refers to
the data used to fit the model used for anomaly detection.

• Supervised: In this approach the training data points are all labeled as
normal or non-normal. Classification methods are used to predict if a

6

2.3 Nature of the Data

previously unseen data point belongs to the normal class or the non-normal
one. K nearest neighbour techniques introduced in Section 2.1 can for
instance be implemented in a supervised manner, if both normal data
points and anomalies are labeled.

• Semi-supervised: In this approach only labeled training data for normal
states is available. Every observation far away from the identified normal
states should be predicted to be an anomaly. K Nearest neighbour tech-
niques can be implemented also in a semi-supervised manner, such that
only the normal data points are labeled and a new data point with too few
normal data points in their neighbourhood is predicted to be an anomaly.

• Unsupervised: In this approach the training data is not labeled at all.
The very fundamental assumption here is that normal behaviour is more
common than anomalies in the data. Therefore one is trying to identify
data points that are different from the common behaviour in the data set
in some sense. Clustering is an example of an unsupervised approach.

Supervised anomaly detection with labeled data can be as simple as a clas-
sification problem. For time series data, Kadous (2011) provides a list of appro-
priate classification methods with references. In our data set, the data points
are not initially labeled as belonging to a normal or non-normal state. In order
to take a semi-supervised or unsupervised approach there needs to exist clear
borders between the normal and the non-normal states. For the clustering and
the K nearest neighbour techniques, this is explained in Section 2.1. In our data
set no clear borders exist between the normal and the non-normal states. We
apply a semi-supervised method of change-point detection, where one assumes
that anomalies happen because of a change in the data generating process. This
approach is described further in Section 2.5.

2.3 Nature of the Data
The nature of the input data is according to Chandola et al. (2009) an important
factor for choosing a suitable technique. Data can be categorical or continuous.
The number of features is another important aspect of the input data. The data
can be:

• 1-dimensional: Consisting of only one feature measured in each data point.

• Multidimensional: Consisting of multiple features measured in each data
point.

Here time series data is of special interest. In the case of multidimensional
time series data, at any given time, values for multiple features are measured.
This means the data consists of multiple so-called streams, that may depend
on each other. Non-normal behaviour might happen in only one stream, or the
behaviour of one stream might be non-normal given the values of some other
streams. This should be taken into account when the method is being developed.

7

Chapter 2. Concepts

2.4 Online vs. Offline Detection
This categorization applies only to time series data, and depends on the ability
of the model to detect anomalies or change-points based only on the past data.

• Online Detection: These methods only need data from the past.

• Offline Detection: These methods require data from both the past and
the future of any given data point.

Offline detection methods can be used for descriptive analysis while online de-
tection methods can be used to make predictive models used in real time.

2.5 Our Semi-Supervised Approach
Change-point detection methods detect changes in the distribution of the data.
The definition of a change-point is provided in Section 3.3, where this method
is discussed in detail. Aminikhanghahi and Cook (2017), in their survey arti-
cle, enumerate, categorize, and compare many of the methods for change-point
detection in time series. We apply change-point detection for failure prediction
in this work. The method presented in Section 3.3 is an offline change-point
detection method while the method presented in Subsection 3.5.1 is an online
change-point detection method. Applying change-point detection for failure
prediction falls under the category of unsupervised anomaly detection if the
parameters of the model are determined independently of the historical data.
This is the case for the offline change-point detection method presented in Sec-
tion 3.3. In the online change-point detection method presented in Subsection
3.5.1, we determine the parameters of the model with an ad hoc approach us-
ing the historical data. In this approach, the normal data is labeled and the
change from the normal state to the non-normal state is assumed to occur in
a predetermined time-window. This falls under the category of semi-supervised
anomaly detection. A change-point detection method should be used for failure
prediction in the cases where it is hypothesized that the system is usually in a
normal state and a change in the distribution of the data will cause a failure.

In our business case, there exist several normal operation modes for the gas
compressors, described in Section 1.2. The operation mode can be changed
without causing a failure in the system. A change in the operation mode causes
a change in the distribution of the data. We refer to these changes as normal
changes. This might be when some other types of changes in the distribution
of the data in fact cause failures. These are referred to as non-normal changes.
We assume that normal changes occur more often than non-normal changes. If
an unsupervised change-point detection model is applied directly to the sensor
measurements, it may raise an alarm when a normal change occurs as well
as when a non-normal change occurs. In this case it might not be possible
to determine the model parameters using the historical data to avoid this issue
because the amplitude of the normal changes might be as large as or larger than

8

2.5 Our Semi-Supervised Approach

the amplitude of the non-normal changes. Therefore in a change-point detection
model applied for failure prediction the number of false positive predictions may
be too high. This may be the case for other unsupervised anomaly detection
models as well. In our case, a false positive prediction occurs when the model
predicts a failure in the system when no failures are in fact going to happen.
Therefore for the purpose of sensor-based failure prediction in business cases
like ours, we propose not to develop an unsupervised change-point detection or
other unsupervised anomaly detection models based on the sensor measurements
directly.

In sensor-based failure prediction, applying supervised anomaly detection is
also challenging. This is because there does not exist a trivial labeling of the
data points. One does not know which data points are normal and which data
points are non-normal. One could argue that the sensor measurements that are
recorded shortly before a failure in the system should be labeled as non-normal,
and the rest of the data set as normal. The question then becomes how close
to a failure should measurements be to be labeled as non-normal.

In this work we present a semi-supervised approach to overcome the chal-
lenges presented in this section. We develop a method to find signals in the
data the distributions of which are less affected by normal changes than by non-
normal changes. The larger the difference is between the effect of non-normal
and normal changes on the distribution of a signal, the more predictive infor-
mation is contained in the signal. We propose to find the signal with maximum
predictive information among some alternatives. This signal is referred to as
the signal of interest. Finally, we present an online predictive model that can
detect changes in the distribution of the signal of interest, and therefore predict
failures. We also present some statistical metrics used to evaluate the predictive
model.

For the selection of the signal of interest and the construction of the predic-
tive model, a semi-supervised labeling of the data points is performed. In this
approach, we assume that there exists a change in the distribution of the signal
of interest in a time period of known length prior to failures. We do not assume
that all the data points in this time period are non-normal, as one would have
assumed in a fully supervised approach. Assuming the existence of a change in
the distribution of the signal of interest in this time period only implies that
the data points appearing after the change has occurred are non-normal. It is
assumed that the time of the change is unknown.

Following our approach both point, contextual and collective anomalies can
potentially be detected. We propose to use a signal of interest that is a linear
combination of the dimensions in the data set. Therefore both point anomalies
in each individual dimension and contextual anomalies in a group of dimensions
should appear in the signal of interest. In the predictive model, we propose to
use a test statistic that to some degree is affected by the observations of the
past states of the system as well as the observation of the present state of the
system at any given time. This approach enables the model to also detect some
types of collective anomalies.

9

Chapter 2. Concepts

10

Chapter 3
Theory

In this chapter, we will present the mathematical theory needed for our proposed
framework that can be used for sensor-based failure prediction in industrial
settings like ours. In Figure 3.1, one can see the analysis pipeline for creating a
predictive model using sensor-based data.

The Cumulative Sum (CUSUM) is our proposed method for the final pre-
dictive model. This method is described in Section 3.5. Some statistical metrics
for evaluation of this model are presented in Subsection 3.5.2. There exists
variations of CUSUM for multidimensional data. We will however only use this
method on a 1-dimensional signal.

We propose a semi-supervised Principal Component Analysis (PCA) or Box-
Tiao Analysis (BTA) method to find directions in the data with maximum
predictive information. These methods and their semi-supervised nature are
described in Section 3.4. In order to perform a PCA or a BTA, one needs to
estimate the covariance matrix of the data. The estimation of the covariance
matrix is specially challenging in our business case since there does not exist one
continuous stream of data. Instead, the data comes from many disconnected
time intervals since the gas turbines are frequently turned on and off. A method
for covariance matrix estimation in problem settings like our business case is
discussed in Subsection 3.4.4. In order to perform a BTA, one also needs a model
describing the data generation process, where the value measured by a sensor
at any time point, t, is modelled as a function of the values recorded by all the
sensors in the time prior to t and some error term. For this purpose, we propose
a linear function, called a Vector Autoregressive (VAR) model, described in
Section 3.2.

After transforming the data, we pick a 1-dimensional signal which is used
for predictive modelling. One is however not limited to picking only one dimen-
sion here and may select as many dimensions as one’s available computational
and implementation capabilities allow. We refer to this 1-dimensional signal as
the signal of interest and the goal is to select the signal with maximum pre-

11

Chapter 3. Theory

Data

VAR Modelling

Covariance
Estimation PCA

BTA

Signal of
Interest

Change-Point
Detection

Discrepancy,
leverage and

Influence
Mann-Whitney U

test

Transformed
Data

CUSUM
(Predictive

Model)
Evaluation

Simulated Data

Real-World Data

Figure 3.1: The analysis pipeline: An overview over the mathematical methods provided in this
work and how they are used in combination with each other to make a failure prediction model
using historical data. The boxes for mathematical methods are colored blue while the boxes for
different types of data are colored purple. All the methods and types of data are presented in
sufficient detail in this chapter.

dictive information. For the selection of the signal of interest, a Change-Point
Detection framework is also needed. This is presented in Section 3.3. VAR
modelling presented in Section 3.2 is a tool also used in our change-point de-
tection framework. The use of this tool in change-point detection is described
in Subsection 3.3.5. Using a Mann-Whitney U test as described in Subsection
3.4.5, one can choose the signal with the lowest p-value as the signal of interest
among some alternatives. Our proposed alternatives are the principal compo-
nents, the Box-Tiao components or one of the signals Discrepancy, Leverage or
Influence computed after the PCA or BTA transformation. The construction of
the discrepancy, leverage and influence is also described in Subsection 3.4.5.

In Section 3.1, some notation is introduced. This notation will be used
throughout this chapter. However, some extra notation may be needed in the
individual sections. This extra notation will be introduced in a subsection in
the beginning of the corresponding section, and may be referred to also in later
sections of this chapter.

3.1 Notation
• Bold capital letters are used for naming matrices. Non-bold capital letters

are used for naming vector variables while the corresponding non-capital
letter is used to refer to an observation of the same variable.

• For any set of indices {t1, ..., tN}, the dummy indices {1, ..., N} can be used
without loss of generality.

• For a set of indices, the corresponding observations of some multidimensional

12

3.2 Vector Autoregressive (VAR) Models

time series
x = {xt}Nt=1 is called a signal.

• For a signal x, xi...j is used to refer to the set of observations of the variable
Xt at time point i to j, namely xi...j = (xi, xi+1, ..., xj).

• For a matrix A, Ai,j is used to refer to the element in the i-th row and the
j-th column of A.

• For an m× n matrix, A, the n×m matrix, AT , is the transposed of A.

• For a random vector variable X, with a multivariate Gaussian distribution
with mean µX and covariance matrix ΣX), write X ∼ N (µX ,ΣX).

3.2 Vector Autoregressive (VAR) Models
In time series analysis the Vector Autoregressive (VAR) model is an extension
of the well-known Autoregressive (AR) model from univariate to multivariate
analysis. In a VAR model of order p, it is assumed that Xt|Xt−1, Xt−2, ..., Xt−p
has a multivariate Gaussian distribution with mean µ + A1Xt−1 + A2Xt−2 +
... + ApXt−p and some constant covariance matrix Σ = ΣXt|Xt−1,Xt−2,...,Xt−p

.
The Xt’s and µ are vectors of dimension r while the Aj ’s and Σ are matrices
of dimension r × r. This means that for t = p + 1, ..., N , Xt can be described
by the following model:

Xt = µ+

p∑
j=1

AjXt−j + Ut, (3.1)

where Ut’s are independent and identically distributed innovation terms follow-
ing a multivariate Gaussian distribution with mean 0 and covariance matrix Σ.
Tsay (2013, Chapter 2) discusses how one can derive Granger causality between
the different dimensions of Xt (sensors) based on Aj ’s. This analysis however
is out of the scope of this work. Our main focus is on estimating Σ, which is
later used for dimensionality reduction in Subsection 3.4.2.

3.2.1 Notation
• For any positive integer, r, Ir is defined as the r×r identity matrix. In matrix

equations, I might also be used to refer to the identity matrix. In this case
the dimension r is chosen appropriately with respect to the other variables
in the equation.

• For an m×n matrix A, the columns of A are referred to as A:,1,A:,2, ...,A:,n

and the rows of A are referred to as A1,:,A2,:, ...,Am,:.

• Let b.c represent the floor function. Then for an m×n matrix, A, and a p×q
matrix, B, the Kronecker product of the two is defined as the mp × nq

13

Chapter 3. Theory

matrix, C = A⊗B, where for i = 1, 2, ...,mp and j = 1, 2, ..., nq, one has:
Ci,j = A⌊ i−1

p

⌋
+1,
⌊

j−1
q

⌋
+1

B
i−
⌊

i−1
p

⌋
p,j−

⌊
j−1
q

⌋
q
.

• For anm×nmatrix A, the vec-operator is defined as vec(A) = [AT
:,1,A

T
:,2, ...,A

T
:,n]T ,

and is used to stack the columns of A into one single mn× 1 column.

3.2.2 Stability and Stationarity

Lütkepohl (2005, Chapter 2) defines stability in a time series following the model
presented in (3.1) as follows:

Stability

Xt is stable if for any complex number z, with absolute value |z| ≤ 1:

det(I−
p∑
j=1

zjAj) 6= 0. (3.2)

For a VAR process of order 1, the condition above is the same as the matrix A1

having eigenvalues with their absolute value being all less than 1.

In the same chapter, Lütkepohl (2005) defines stationarity in the following
way:

Stationarity

A stochastic process is stationary if its first and second moments are time-
invariant. This means a time series Xt, is stationary if for all time points t, and
time lags ∆t, one has:

E(Xt) = ν

and

E[(Xt − ν)(Xt−∆t − ν)T] = Γ(∆t) = (Γ(−∆t))T ,

where E(.) represents the expected value, ν is a constant and Γ(.) is a covariance
matrix, only depending on the lag, ∆t.

Lütkepohl (2005, p. 25) shows that a stable VAR process is also stationary.
As a result, the condition in (3.2) is often referred to as the stationarity condition
in the literature. In this work, we always assume stationarity for time series
generated by a VAR process.

3.2.3 Estimation

Given a realization of a multidimensional time series, x = {xt}Nt=1, assumed to
be generated by a VAR process of order p, a Generalized Least Squares (GLS)

14

3.2 Vector Autoregressive (VAR) Models

method can be used to estimate the model components including µ, Aj ’s and
Σ. Lütkepohl (2005) introduces the following notation:

Y := [xp+1, xp+2, ..., xN] r × (N − p)
Zt := [1, xTt , x

T
t−1, ..., x

T
t−p+1]T (rp+ 1)× 1

Z := [Zp, Zp+1, ..., ZN−1] (rp+ 1)× (N − p)
B := [µ,A1, ...,Ap] r × (rp+ 1)

U := [up+1, up+2, ..., uN] r × (N − p)
Y := vec(Y) r(N − p)× 1

β := vec(B) r(rp+ 1)× 1

U := vec(U) r(N − p)× 1

(3.3)

For t = p+ 1, p+ 2, ..., N , the model in (3.1) can be written as follows:

Y = BZ + U. (3.4)

Following the calculations in Lütkepohl (2005, p. 70), one obtains

Y = (ZT ⊗ Ir)β + U, (3.5)

where the covariance matrix of U , ΣU is shown to be equal to the Kronecker
product of an (N−p)×(N−p) identity matrix and the covariance matrix of Ut,
IN−p ⊗Σ. If the covariance matrix of U , ΣU is of the form ΣU = σ2

UIr(N−p),
where σU is a constant, the Ordinary Least Squares (OLS) method can be used
to estimate β and U in (3.5), where the elements of β are the model coefficients.
If the condition on ΣU is not satisfied, a Generalized Least Squares (GLS)
method can be used for this in a similar way. In this case one would expect ΣU

to be a part of the equation representing the GLS estimator for β. Lütkepohl
(2005, p. 71-72) shows that the GLS estimator for β is:

β̂ = ((ZZT)−1Z⊗ Ir)Y. (3.6)

This is also the maximum likelihood estimator of β. One can observe that ΣU

is not a part of this equation. Interestingly one obtains the same estimator
for β using a GLS method as one would have obtained using an OLS method.
Knowing that B is an r × (tp + 1) matrix, vec is an invertible transformation.
The first r elements of vec(B) are the first column of B, the second r elements
of vec(B) are the second column of B, and so on. In this way, we can obtain
the GLS estimator for B:

vec(B̂) = β̂ = vec(YZT (ZZT)−1)⇒ B̂ = YZT (ZZT)−1.

Asymptotic Properties of β̂

For a sequence of real-valued random variables X1, X2, ..., and a random vari-
able X, let Fn and F be the cumulative distribution functions (CDF) of random

15

Chapter 3. Theory

variables Xn and X, respectively. According to Casella and Berger (2002, Sec-
tion 5.5), the sequence X1, X2, ... is said to converge in distribution to the
random variable X if

lim
n→∞

Fn(x) = F (x),

at every point x at which F is continuous.
Casella and Berger (2002, Section 5.5) also define convergence in probability.

The sequence X1, X2, ... is said to converge in probability to the random variable
X if for all ε > 0

lim
n→∞

Pr(|Xn −X| > ε) = 0,

where Pr(.) denotes the probability of an event.

Denote convergence in distribution by
d−→, and if X1, X2, ...

d−→ X, where

X ∼ N (µX ,ΣX), use the shorter notation Xi
d−→ N (µX ,ΣX). If the sequence

X1, X2, ... converges in probability to the random variable X, one can write
plimn→∞Xn = X.

Consider the notation introduced in (3.3) for a stationary VAR process Xt

defined in (3.1), and let

Π := plim
N→∞

1

N − p
ZZT

exist and be non-singular. Lütkepohl (2005, Subsection 3.2.2) shows that under
some regularity assumptions about the innovation term, Ut, one obtains:

√
N(β̂ − β)

d−→ N (0,Σ⊗Π−1), (3.7)

where β̂ is the GLS estimator for β given in (3.6) and Σ is the covariance matrix
of Ut.

Estimation of Σ

Lütkepohl (2005, p. 75-77) introduces the following estimator for Σ:

Σ̂ =
1

N − (r + 1)p− 1
Y(IN−p − ZT (ZZT)−1Z)YT , (3.8)

and shows that under some regularity conditions on Ut, this estimator converges
in probability to the true covariance matrix of Ut:

plim
N→∞

Σ̂ = Σ.

Note that N−(r+1)p−1 is the number of degrees of freedom in the regression
problem presented in (3.4). The number of degrees of freedom is equal to the
number of equations minus the number of estimated parameters. Equation
(3.4) represents N − p linear equations, one for each t = p+ 1, p+ 2, ..., N . On
the other hand, there are rp + 1 parameters in B that need to be estimated,
namely µ,A1,A2, ...,Ap. As a result, the number of degrees of freedom is

16

3.3 Change-Point Detection

N − p− (rp+ 1) = N − (r + 1)p− 1. Lütkepohl (2005, p. 75) claims that in a
regression problem with fixed, non-stochastic regressors, the adjustment for the
number of degrees of freedom in the estimation of the covariance matrix yields
an unbiased estimator. Therefore we divide by N−(r+1)p−1 when estimating
Σ in (3.8).

3.3 Change-Point Detection
Given a realization of some multidimensional time series
x = {xt}tNt=t1 = {xt1 , ..., xtk , xtk+1

, ..., xtN }, tk is defined as a change-point if
there exists a change in the data generating process of the series between the
observations xtk and xtk+1

. This change can be considered the cause of an
anomaly as it will be discussed in Section 3.4.

We will present some methods for detection of such time points based on
observational data. The methods presented in this section are offline and unsu-
pervised.

A change-point detection problem can be formulated as a statistical hypoth-
esis test where H0: No changes occur in the data generating process, and H1:
a change occurs in the data generating process.

3.3.1 Notation
• For the first change-point in a signal, denoted by τ1 ∈ {t1, ..., tN} such that

τ1 > t1, define the time interval r0 = [t1, τ1] as regime 0. For the last
change-point in a signal, denoted by τK < tN , define the time interval
rK = [τK + 1, tN] as regime K. For any other two consecutive change-
points, τk and τk+1 define the time interval rk = [τk + 1, τk+1] as regime
k. This is illustrated in Figure 3.2

• In each regime k, the corresponding sub-signal is denoted by kx = {xt|t ∈ rk}.
The sub-signal excluding observations in regime k is denoted by −kx =
{xt|t 6∈ rk}.

t0 t2t1

...

τ1

...

τ2

Regime 0 Regime 1

... ...

τK tN

Regime K

Time

Figure 3.2: The time axis, where an observation of some multidimensional time series exists at
each ti. Each change-point τk is the end of its preceding regime k − 1.

3.3.2 General Framework
In order to find the change-points in a signal, a contrast function V (.) is defined.
This function should be minimized over the whole set of possible change-points.

17

Chapter 3. Theory

For any set of K change-points τ = {τk}Kk=1 ⊂ {t1, ..., tN} and a signal x, one
has:

V (τ, x) :=

K∑
k=0

c(kx) (3.9)

In each regime a chosen type of model is fit to the corresponding sub-signal kx,
and c(.) is a cost function measuring the goodness-of-fit of this model to the data.
The cost function is often related to the likelihood function given a model. Its
values are supposed to be low on sub-signals that are well-approximated by the
model and high on sub-signals that are not. Some search methods discussed in
Section 3.3.4 and Truong et al. (2018) also make additional assumptions on the
cost function. Several cost functions and models are discussed in Section 3.3.5.
If some appropriate c(.) is defined, then the change-point detection problem has
been transformed to an optimization problem. Here c(.) is defined based on
what type of data generating process is assumed.

3.3.3 Penalty Function
In the above it is assumed that the number of change-points K is known. This
does not necessarily have to be the case. If one tries to minimize the contrast
function V (.) for any possible number of change-points K, one will quickly
realize that K has to be set equal to N , such that any possible change-point is
in fact detected as a change-point because this will give the perfect fit. This is
a typical over-fitting problem, which can be solved by introducing a penalty for
the complexity of the set of change-points τ in the contrast function, such that

V (τ, x) :=

K∑
k=0

c(kx) + p(τ), (3.10)

where p(τ) is a penalty function for the complexity of τ . The penalty function
has to be such that the number of change-points can be estimated consistently
using this method.

The linear penalty, l0, was first introduced in Hinkley (1970) as:

pl0(τ) := ω|τ | = ωK, (3.11)

where ω > 0. Small values for ω will result in detection of many change-
points and large values make the method sensitive only to the most drastic and
significant change-points, which cause large reduction in the contrast function.
The choice of ω should in theory depend on the choice of the cost function c(.)
for consistent estimation of the number of change-points K. This discussion is
however out of the scope of this work. Truong et al. (2018) suggest that ω should
at least depend on the number of observations, N , and the dimension of the
signal, r. One could think that if this wasn’t the case, then the algorithm would
overestimate the number of change-points for long or high-dimensional signals.
The Bayesian Information Criterion (BIC) and the Akaike Information Criterion

18

3.3 Change-Point Detection

(AIC) are popular statistical procedures used in order to choose a value for ω.
Let m be the number of parameters one needs to estimate. Then for the AIC,
ω = m

2 , and for the BIC, ω = m
2 logN , where N is the length of x. For instance

if one assumes that the 1-dimensional signal x comes from a 1-dimensional
Gaussian distribution with mean µk and standard deviation σk within regime
k, then m = 2, because two variables µk and σk have to be estimated within each
regime. Based on earlier argumentation the BIC is then a better choice when
the method is applied to signals of different lengths. In Truong et al. (2018), one
can find results about consistency in estimating the number of change-points
using the AIC and the BIC under certain strong assumptions. In Bakka (2018)
more variants of the AIC and the BIC are discussed. In fact, Haynes et al.
(2017) argue that it is not appropriate to use the simple AIC or BIC in change-
point detection problems where the true distribution of the data is unknown,
because the consistency of the estimated number of change-points cannot be
guaranteed. Instead they propose an algorithm called the Changepoints for a
Range of PenaltieS (CROPS). Given data, CROPS finds the optimal number of
change-points for every constant ω within an interval [ωmin, ωmax] with a linear
penalty function. Using this, one can choose a value for ω that is the most
suitable for the problem at hand.

In the implementation we will take inspiration from the BIC and set ω =
m
2 logN . We will however tune the value of m in an ad hoc setting to suit our
specific change-point detection problem. This will be explained in more details
in Chapter 4.

3.3.4 Search Methods
Several optimization algorithms are suggested in Truong et al. (2018) for finding
the set of change-points τ which minimizes the contrast function V (.) in (3.9).
For a known number of change-points K, it can be shown that

min
|τ |=K

V (τ, x) = min
τ1≤N−K

[c(0x) + min
|τ |=K−1

V (τ,−0x)],

where τ1 is the earliest change-point, and 0x is the observed signal in the time
period [t1, τ1]. The proof is to be found in Truong et al. (2018). By following
this equation in each step one can reduce the size of the problem, and solve
it recursively using a dynamic programming approach, referred to as optimal
detection or Opt in Truong et al. (2018), which sequentially detects change-
points with optimal accuracy. For an unknown K, a naive approach is to apply
Opt to the contrast function in (3.9) for all possible number of change-points
K = 1, ..., N , and then choose the one that minimizes the contrast function in
(3.10). However, this approach would prove to be very computationally expen-
sive. A faster approach is provided in Killick et al. (2012) under the name of
Pruned Exact Linear Time (PELT). PELT is a modification of Opt which uses a
pruning rule to discard a number of possible prospective solutions, reducing the
computational cost significantly. In the implementation of PELT an assumption
is made on the minimum possible distance between consecutive change-points

19

Chapter 3. Theory

in addition to regularity assumptions on the cost function and linearity assump-
tion of the penalty function. The detailed algorithms for both Opt and PELT in
addition to several other search methods are presented in Truong et al. (2018).

3.3.5 Models

The cost function c(kx) should be decided based on an assumption about the
underlying data generating process for the signal x. One possible assumption
is that the data comes from a multivariate Gaussian distribution, such that at
any given time ti, xi is the realization of the r-dimensional variable Xt with a
multivariate Gaussian distribution. The Gaussianity assumption might not hold
in the case of an observed time series x. In order to address this issue a Vector
Autoregressive (VAR) data generating process of some order p is introduced.
In VAR, at any given time point ti, xi is assumed to be linearly dependent
on the p preceding observations of x, xi−1, ...xi−p and some random innovation
term. Multivariate Gaussian process and vector autoregressive process are both
discussed below. The cost function c(.) should be derived for both of them.

Multivariate Gaussian Process

A vector variable Xt of dimension r with expected value µ and positive defi-
nite covariance matrix Γ, generated by a multivariate Gaussian process has the
following distribution:

f(Xt) = (2π)−
r
2 det(Γ)−

1
2 exp(−1

2
(Xt − µ)TΓ−1(Xt − µ)).

Now divide the time interval [t1, tN] into K + 1 regimes, labeled from 0 to K.
For 1 ≤ k ≤ K, the change-point τk is the last time point in regime k − 1. In
each regime k, the vector variable Xt is assumed to have a Gaussian distribution
fk with mean µk and covariance matrix Γk. This is illustrated in Figure 3.3.

t0 τ1 τ2

 (,)μ0 Σ0

...

τK tN

 (,)μ1 Σ1 (,)μK ΣK

Time

x

Figure 3.3: This plot illustrates different distributions of the vector variable Xt in different
regimes. The observations are shown in one dimension for convenience.

20

3.3 Change-Point Detection

Let Γ̂k be the empirical covariance matrix of the sub-signal kx, then:

Γ̂k =
1

nk − 1

∑
t∈rk

(xt − kx)(xt − kx)T ,

where nk is the number of data points in regime k, and kx is the empirical mean
of the sub-signal kx. According to Truong et al. (2018), the appropriate cost
function is:

c(kx) := nk log det Γ̂k. (3.12)

This is because for a r-dimensional multivariate Gaussian distribution with un-
known mean and unknown covariance matrix the log-likelihood of n independent
observations, can be expressed as

l(µ̂, Γ̂) = −1

2
(rn(log(2π) + 1) + n log det Γ̂), (3.13)

where µ̂ is the empirical mean and Γ̂ is the empirical variance. This means
in order to maximize the log-likehood function one has to minimize c(.) =

n log det Γ̂. A proof for (3.13) is found in Bakka (2018).

Vector Autoregressive (VAR) Process

Assume a signal x is generated by a VAR process of order p, as described in
Section 3.2. Divide the time interval [t1, tN] into K + 1 regimes, as it was done
for the multivariate Gaussian process. From one regime to the next, one or
several of the model parameters µ,A1,A2, ...,Ap, and Σ change. Then Bai
(2000) writes the data generating process as:

Xt =

µ0 + A0,1Xt−1 + A0,2Xt−2 + ...+ A0,pXt−p + (Σ0)1/2ηt t ∈ r0

µ1 + A1,1Xt−1 + A1,2Xt−2 + ...+ A1,pXt−p + (Σ1)1/2ηt t ∈ r1

...

µK+1 + AK+1,1Xt−1 + AK+1,2Xt−2 + ...+ AK+1,pXt−p + (ΣK+1)1/2ηt t ∈ rK

where ηt is a random variable with multivariate Gaussian distribution, mean

0 and covariance matrix I. Σ
1/2
k is defined such that Σk = Σ

1/2
k Σ

1/2
k . Then

(Σk)1/2ηt has a multivariate Gaussian distribution with mean 0 and covariance

matrix Σ
1/2
k IΣ

1/2
k = Σk:

Σ
1/2
k ηt ∼ N (0,Σ).

The derivation of the cost function for this model is out of the scope of this
work. This can be found in Bai (2000). However, Truong (2017, Personal
Correspondence) has confirmed that the following cost function is appropriate
in the case of a VAR process:

c(kx) := nk log det Σ̂k, (3.14)

21

Chapter 3. Theory

where Σ̂k can be computed with the method provided in Subsection 3.2.3. For
a 1-dimensional time series assumed to be generated by a 1-dimensional autore-
gressive process, Truong (2017) shows that the cost function introduced in Bai
(2000) is reduced to:

c(kx) := min
µk,Ak,1,Ak,2,...,Ak,p

∑
t∈rk

||xt−(µk+Ak,1Xt−1+Ak,2Xt−2+...+Ak,pXt−p)||22,

(3.15)
where ||.||22 is the squared l2 norm.

Truong (2017) provides a Python package for change-point detection follow-
ing the framework presented in this section. To this date, Truong (2017) only
has implemented the cost function in (3.15) for 1-dimensional autoregressive
processes, leaving out the cost function in (3.14) for VAR processes. Truong
(2017, Personal Correspondence) has however expressed interest in a collabora-
tion with the author about implementing the cost function in (3.14).

3.4 Dimensionality Reduction
We refer to the number of dimensions used for analysis as the dimensionality.
In this section we present methods for dimensionality reduction given a high-
dimensional data set. The main reason for dimensionality reduction is that many
dimensions in the original data might not contain any information that is useful
for predicting the failures in the system, and including these dimensions in the
predictive model might only add noise to the results. In this work it is desired
to reduce the dimensionality to one using the methods presented in this section.
We refer to the final 1-dimensional signal as the signal of interest, and we try
to maximize the predictive information in this signal. The predictive model
presented in Section 3.5 can be applied to this 1-dimensional signal. It is also
possible to develop a multivariate predictive model based on a multidimensional
signal of interest. This is however out of the scope of this work.

The simplest method for dimensionality reduction is picking one of the orig-
inal dimensions in the data as the signal of interest. Assuming that a training
data set that includes both normal and tripping groups is available, the Mann-
Whitney U test presented in Subsection 3.4.5 can be performed to find the
dimension which is expected to contain the most predictive information. In this
case for every dimension in the original data, the offline change-point detection
presented in Section 3.3 is applied to all the running groups in the training data
set. For high-dimensional data, this might be a very computationally demand-
ing task. In addition, the combination of several dimensions might contain more
predictive information than each of the dimensions alone.

Here a semi-supervised method of dimensionality reduction is developed.
The ultimate goal in this section is to develop a method for finding the directions
in the data with maximum predictive information. First a linear transformation
is created. This is done by taking advantage of Principal Component Analysis
(PCA) or Box-Tiao Analysis (BTA) in a semi-supervised manner described in

22

3.4 Dimensionality Reduction

Subsection 3.4.3. PCA and BTA are respectively described in Subsections 3.4.1
and 3.4.2. Finally in Subsection 3.4.5, we present some methods for reducing
the dimensionality of the data to the desired number of dimensions using the
linear transformations presented in this section.

In this section consider a 1×r vector variable Xt, with mean µX and covari-
ance matrix Γ. Let us assume with no loss of generality that µX = 0. One can
do so because if this is not the case, one can simply consider the 1 × r vector
variable Xt− µX instead. If µX is unknown, it can be estimated by the sample
mean µ̂X . Let x = {xt}Nt=1 be a series of observations of Xt in the time interval
[t1, tN]. Using x, create the N × r matrix, X, where the i-th row is xt for t = ti.

3.4.1 Principal Component Analysis (PCA)
The goal in PCA is to find directions in the data with maximal variance. Let
us refer to the i-th principal component of Xt as PCi. For i = 1, 2, ..., r,
PCi is defined as the linear combination of the columns of Xt with the i-th
most variance such that PCi and PCj are orthogonal to each other for i 6= j.
Seber (2009, Section 5.2) proves that the principal components of Xt are the
projection of the data on the eigenvectors of the covariance matrix of Xt, Γ.
Additionally, PCi is the projection of the data on the eigenvector corresponding
to the i-th largest eigenvalue of Γ. Let Γ have the following diagonalization:

Γ = Ψ∆2ΨT ,

where ∆2 is a diagonal matrix with the eigenvalues of Γ in descending order
on its diagonal and Ψ is a r × r orthonormal matrix. Note that Γ is a positive
definite matrix and its eigenvalues are therefore are greater than 0. The columns
of Ψ are the eigenvectors of Γ. The PCA-transformed data is then defined as:

P = XΨ,

where the i-th column of P is the i-th principal component PCi. Let λi be the
i-the largest eigenvalue of Γ. In other words, λi is the diagonal element in the
i-the row and the i-th column of ∆2. Then Seber (2009, Section 5.2) proves
that:

var(PCi) = λi,

where var(PCi) is the variance of the i-the principal component.
The true mean and covariance matrix of Xt is usually unknown. The sam-

ple principal components of Xt are the projection of the centered data on the
eigenvectors of the estimated covariance matrix of Xt, when the centring has
been performed using the sample mean of Xt, referred to as µ̂X , and calculated
as:

µ̂X =
1

N

N∑
t=1

xt.

We assume that the observation matrix X has full rank. This means N−1 >
r and the rank of X is r. Let X have the following singular value decomposition

23

Chapter 3. Theory

(SVD):
X = UDVT , (3.16)

where U is a N × r orthonormal matrix, V is a r × r orthonormal matrix,
and D is a r × r diagonal matrix with elements larger than or equal to zero.
This decomposition should be done such that the elements of D are sorted in
descending order. Given that X is centered, Seber (2009, Section 1.4) shows
that an unbiased estimator for the covariance matrix of Xt is:

Γ̂ =
1

N − 1
XTX =

1

N − 1
VD2VT . (3.17)

In (3.16), columns of U are eigenvectors of XXT , columns of V are eigenvectors
of XTX and diagonal elements of D are the square root of the eigenvalues of
XTX. The PCA-transformed data, using sample principal components are then
defined as:

Psample = XV,

where the i-th column of Psample is the i-th sample principal component. Seber

(2009, Subsection 5.2.4) shows that by using µ̂X and Γ̂, there is essentially
no difference between the properties of the true and the sample principal com-
ponents. From here we refer to the sample principal components as principal
components since we only have knowledge about the estimated mean and co-
variance matrix of Xt. We also will refer to Psample as P and call its i-th column
as PCi.

The estimated correlation coefficient between the principal component PCi
and the signal X:,k, which is the k-the column of the matrix X, measures the
importance of the k-th variable to PCi. This estimated correlation is given by:

ρ̂ik =
σ̂P:,i,X:,k

σ̂X:,k
σ̂P:,i

, (3.18)

where σ̂P:,i,X:,k
is the estimated covariance between X:,k and the i-th column of

P, P:,i, and σ̂X:,k
and σ̂P:,i

are the estimated variances of respectively X:,k and
P:,i. The expression in (3.18) can be simplified given the eigenvalues and the

eigenvectors of the estimated covariance matrix Γ̂. However, this is not done
here since the correlations are computed according to (3.18) in the implementa-
tion.

3.4.2 Box-Tiao Analysis (BTA)
Box and Tiao (1977) propose a slightly different approach from PCA for reducing
the dimensionality of multidimensional time series data. They call it a canonical
analysis of multiple time series. Here we will refer to it as BTA. The shortcoming
of PCA when applied to time series is that the estimator used for the covariance
matrix is not consistent for time series data. This is shown among others by
Xiao et al. (2012). Box and Tiao (1977) try to take into account the time-
dependency between observations. They propose to maximize predictability
instead of variance.

24

3.4 Dimensionality Reduction

For a 1-dimensional stationary time series, y = {yt}Nt=1, the predictability is
defined as following. Let y be generated by the following process:

yt = f(y1...(t−1)) + ut,

where f is a function of some or all of the preceding observations of y, and
ut a random error term. One can also define ut as the difference between the
observed value of the variable y at time t and the best possible prediction for
yt given all the observations of y prior to this time point. Let ut be called
the innovation term, and assume that the ut’s are independent and have an
identical distribution with mean 0 and constant variance σ2

u. Note that f(.) is a
deterministic function while yt, ut are random variables. However, f(y1...(t−1))
is a function of some random variables and therefore a random variable itself.
Assume that for every time point t, the innovation term ut is independent from
the prediction f(y1...(t−1)). Let σy be the standard deviation of y and assume
σy > 0. Then the variance of f(y1...(t−1)) can be written as:

var(f(y1...(t−1)) = σ2
y − σ2

u.

The predictability of y, qy is the fraction of the variation in y, which is explained
by the effect of its previous observations on its current value. This is defined as:

qy =
σ2
y − σ2

u

σ2
y

= 1− σ−2
y σ2

u. (3.19)

As an example, take the following time series: y2k−1 = 0 and y2k = 1 for
k = 1, 2, This time series is completely deterministic, meaning that given
the observation for yt−1, one can predict yt with no error. The variance of y
is however not 0, while its predictability is 1. For this time series, σy = 0.5
and σu = 0. If y had been a part of a bivariate time series with another
truly random signal with a standard deviation much smaller than 0.5, the first
principal component would have been almost identical to y. However one can
observe that y would not have explained any of the random variation in the
data. This is an example of the challenge Box and Tiao (1977) try to address.

Now let us move on from univariate to multivariate analysis. Consider the
r-dimensional vector variable Xt. Assume that Xt follows the process:

Xt = g(X1...(t−1)) + εt, (3.20)

where g is a function of some or all of the preceding observations of Xt, and εt is
an r-dimensional error term with mean 0 and a time-invariant covariance matrix
Σ. We refer to εt as the innovation term. Assume that εt’s are independent and
identically distributed. Let Γ be the covariance matrix of Xt. The predictability
matrix, Q, is defined as:

Q = I− Γ−1Σ

Box and Tiao (1977) prove that the linear combinations of the data with
maximum predictability are in the direction of the eigenvectors corresponding

25

Chapter 3. Theory

to the largest eigenvalues of the predictability matrix. Let us call the projection
of the data on the eigenvector corresponding to the i-th largest eigenvalue of
the predictability for BTi. Comparing this to PCA, where PCi is the linear
combination with the i-th largest variance, BTi is the linear combination with
the i-th most predictability. Let Q have eigenvectors mi corresponding to the
eigenvalues λi. Then we have:

Qmi = (I− Γ−1Σ)mi = λimi ⇒ Γ−1Σmi = (1− λi)mi.

By taking the inverse of the both sides of the last equation one obtains:

Σ−1Γmi = αimi, (3.21)

where αi = (1− λi)−1. One can easily show that λi’s and αi’s are in the same
order. This means the i-th largest λi corresponds to the i-th largest αi’s. Let
αi’s be in descending order. If the innovation term has covariance matrix equal
to a positive constant times identity, BTA is equivalent to a regular PCA.

Let Σ−1Γ = ΩΘ2ΩT be the diagonalization of Σ−1Γ, such that the diagonal
elements of Θ2 are in descending order. Consider the observation matrix X.
In this analysis we need to compute the projection of the rows of X on the
eigenvectors of Σ−1Γ. The BTA transformed data can therefore be defined as:

T = XΩ,

where the i-the column of T, also referred to as BTi, is the i-th most predictable
component of the observed time series x. Let qi and λi be the predictability of
BTi and the i-th largest eigenvalue of the predictability matrix Q. Then one
has:

qi = λi = 1− α−1
i ,

where αi is the i-th largest eigenvalue of Σ−1Γ and the i-th diagonal element
of Ω2.

The true Σ and Γ are usually unknown. The sample Box-Tiao components
of Xt are the projection of the data on the eigenvectors of the estimated pre-
dictability matrix of Xt. We assume that the observation matrix X has full
rank. This means N − 1 > r and the rank of X is r. Then we estimate Σ and
Γ according to the equations methods provided in Subsections 3.2.3 and 3.4.1,
respectively. Let the estimate Σ̂−1Γ̂ have the following diagonalization:

Σ̂−1Γ̂ = LS2LT (3.22)

The BTA-transformed data, using sample Box-Tiao components is then de-
fined as:

Tsample = XL,

where the i-th column of Tsample is the i-th sample Box-Tiao component. From
here we refer to the sample Box-Tiao components as Box-Tiao components since
we only have knowledge about the estimated predictability matrix of Xt. We
also will refer to Tsample as T and call its i-th column as BTi.

26

3.4 Dimensionality Reduction

The estimated correlation coefficient between the Box-Tiao component BTi
and the signal X:,k, which is the k-the column of the matrix X, measures the
importance of the k-th variable to BTi. This estimated correlation is given by:

π̂ik =
σ̂T:,i,X:,k

σ̂X:,k
σ̂T:,i

,

where σ̂T:,i,X:,k
is the estimated covariance between X:,k and BTi, and σ̂X:,k

and σ̂P:,i
are the estimated variances of respectively X:,k and BTi.

3.4.3 Semi-Supervised Nature of the Transformations
Kuncheva and Faithfull (2014) explain that when change-point detection is ap-
plied for failure prediction, one could think that there might be changes is
some directions in the data that do not cause a failure. These are referred
to as normal change-points and in a failure prediction problem it is not de-
sirable to detect them. This might be when a change in some other direc-
tions in the data in fact causes a failure. These are referred to as non-normal
change-points, and are interesting to detect. To devise a semi-supervised ap-
proach to dimensionality reduction, one first needs to identify some time interval
I = {ta, ta+1, ..., ts} where no interesting change-points occur in the correspond-
ing sub-signal Ix = {xt|t ∈ I}, where I is labeled as a normal time interval. A
transformation can then be created based on Ix. This means that the covariance
matrices needed to build the transformation are estimated using only Ix. An
estimate for the covariance matrix of the data, Γ, is needed for both PCA and
BTA. For BTA an estimate for the covariance matrix of the innovation term,
Σ, is also needed. The estimates are then used in order to transform the whole
data set.

Following this approach in a PCA, the normal variations in the data are
intuitively captured by the principal components with large variances, while
one would expect the principal components with small variances to be the most
sensitive to non-normal changes and therefore the most valuable in a failure
prediction problem. These are the PCi’s for i’s close to r. On the other hand
one could argue that the principal components with the smallest variances might
not include any valuable information and only capture the noise in the data, and
therefore it might be of interest to look at the components with larger variances.
In addition an anomalously large change in the principal components with large
variances means that the change is in a direction of the data in which there
also exists a large degree of normal variation, but the change is of a non-normal
amplitude. This might also be a good predictor for failures in the system. The
principal components with large variances are PCi’s for i’s close to 1.

In the case of a BTA, normal changes will intuitively be captured in the
components with small predictability, while one would expect the components
with large predictability not to include drastic changes under normal operation
mode. A change in these components might therefore be a good predictor for
failure. These are the BTi’s for i’s close to 1. One could however argue that

27

Chapter 3. Theory

the components with small predictability are expected to show a white-noise
behaviour under the normal operation mode. A deviation from this behaviour
might therefore be a good predictor for failure. These are the BTi’s for i’s close
to r.

Intuitively, if the changes that cause failures increase the variance in some
direction of the data, PCA might be a suitable approach to find the optimal
signal of interest. However if the changes that cause failures are in the structure
of the relationships between the dimensions, BTA might be a more suitable
approach than PCA.

Following a semi-supervised approach, it is not clear exactly which linear
combinations include the most predictive information in a failure prediction
problem. The components most sensitive to interesting changes may differ from
a problem to another and can only be determined by experimentation with the
methods presented in Subsection 3.4.5. In Section 4.2, we present more details
on how an experiment can be designed to determine this. In Section 4.2, we
also provide a discussion about the kind of problems in which each principle or
Box-Tiao component should be used for failure prediction. We propose the use
of the semi-supervised approach to separate the normal variations in the data
from the variations that cause a failure in the system. This is the strength of
this approach compared to any unsupervised anomaly detection method.

3.4.4 Covariance Matrix Estimation
Applying methods of dimensionality reduction in our business case follows with
its challenges. The covariance matrix Γ used in both PCA and BTA as well
as the function g and the covariance matrix Σ used in BTA are unknown and
need to be estimated. However, there does not exist a continuous stream of
data that can be used for this purpose. Instead, the data is divided in many
running groups. A running group marks the time from when one compressor
is turned on until the consecutive shut-down. Since there might be a long gap
in time between running groups, it is not reasonable to concatenate the data
and treat it as one continuous signal. This might be the case in many similar
industrial settings. Therefore we present a pooling method here that can be
used for estimation of the unknowns in situations similar to our business case.

First for every running group, i, the estimated covariance matrix Γ̂i is com-
puted within the running group using the estimator in (3.17). Then one obtains
the following equation:

Γ̂i =
1

ni − 1
XT
i Xi,

where Xi is an Ni × r matrix with ni observations of the r-dimensional vector
variable Xt during the running group i. It is assumed that Xi has full rank.
This means Ni − 1 > r and the rank of Xi is r. The observations along each
of the r dimensions are centered around 0 within each running group. Here
it is assumed that within one and the same running group, the r-dimensional
vector variable Xt has a constant expected value with respect to time. This
assumption clearly holds if the process is stationary. However, if there exists

28

3.4 Dimensionality Reduction

a change-point in Xt during a running group, the expected value of Xt is not
necessarily constant during that running group. Assuming constant expected
value in this case might not yield a consistent estimator for the covariance
matrix. This is the case for the data analyzed in this work, however this effect
will be ignored in our analysis. One reason for this is that we have no knowledge
of when change-points occur in the real-world data, and therefore we can not
adjust the estimator of Γ to obtain consistent results. Another reason is that the
inconsistency in the estimator of Γ might actually be desirable in our case. This
is because the variance of the dimensions in the data where there exists normal
change-points will be overestimated in this case. This overestimated variance
will hopefully be captured by one of the first principal components, which makes
the last principal components suitable as alternative signals of interest. With
the same argumentation we assume that the true covariance matrix Γ is also
constant with respect to time across all the running groups. The overall Γ̂ is
then the weighted average of Γ̂i’s:

Γ̂ =

∑
i(ni − 1)Γ̂i∑
i(ni − 1)

,

where ni is the length of the running group i and the summing of matrices is
done element-wise.

Calculating Σ̂ is a more demanding task, since one needs insight into the
function g introduced in (3.20). Let us assume that the time series is generated
by a VAR process of order p, as explained in Section 3.2. We assume that the
order p and the true covariance matrix of the innovation term, Σ, are constant
with respect to time across all the running groups. These assumption will clearly
not hold if there exist change-points in the data. This will be ignored in our
analysis with a similar argumentation to the one provided for ignoring a possibly
non-constant expected value for Xt in the estimation of Γi’s. The order p can
be selected using the methods developed in Lütkepohl (2005, Chapter 4).
However, the methods developed in Lütkepohl (2005, Chapter 4) will not
be used in our analysis. Instead. we pick p in consultation with the field
experts. Within a running group i, Σ̂i is calculated using the method presented
in Subsection 3.2.3. The overall estimated covariance matrix Σ̂ is the weighted
average of Σ̂i’s, where (ni − (r + 1)p) are the weights:

Σ̂ =

∑
i(ni − (r + 1)p)Σ̂i∑
i(ni − (r + 1)p)

.

If Γ̂i’s and Σi’s are unbiased estimators of Γ and Σ, respectively, then Γ̂ and
Σ̂ are also unbiased estimators of respectively Γ and Σ. Assume that E(Γ̂i) = Γ

and E(Σ̂i) = Σ. Then:

E(Γ̂) =

∑
i(ni − 1)E(Γ̂i)∑

i(ni − 1)
= E(Γ̂i) = Γ,

E(Σ̂) =

∑
i(ni − (r + 1)p)E(Σ̂i)∑

i(ni − (r + 1)p)
= E(Σ̂i) = Σ.

29

Chapter 3. Theory

3.4.5 Signal Selection

After transforming the data using PCA or BTA, we want to select one signal
among many to reduce the dimensionality. We call this the signal of inter-
est. Following the semi-supervised approach presented in Subsection 3.4.3, this
signal should be selected by experimentation. In the following two alternative
criteria are presented to select the signal of interest.

For the selection of the signal of interest training data is required. The
training data set should include both periods of normal operation mode and
periods prior to a failure in the system, and to avoid over-fitting, it should ideally
be separate from the data used to create the (BTA or PCA) transformation
and the data used to evaluate the model. In this data set each time point is
labeled as belonging to either a normal state, a transition state, or a failure
state. A normal state consists of time points not close enough to a failure in
the system for possibly containing information about the cause of the failure.
A failure state consists of the time points too close to a failure in the system,
such that predicting the failure in this time window cannot give the engineers
enough time to take preventing actions. A transition state consists of all the
time points in between the other two states. We are interested in being able to
predict the failure in this time window. Using a change-point detection method
for prediction, we are interested in detecting change-points during the transition
state and minimize the number of change-points detected in the normal state.
Change-points detected in the failure state will not affect our model.

Time points prior to and closer than f minutes to a failure in the system
should be labeled as belonging to a failure state. Time points prior to a planned
shut-down should be labeled as belonging to a normal state. Time points prior
to and farther away than ν minutes from a failure in the system should also be
labeled as belonging to a normal state based on the given definition. All other
time points should be labeled as belonging to a transition state. The numerical
values for f and ν differ from a business case to another and should be selected
in consultation with the field experts. This is illustrated in Figure 3.4.

Note that labeling the data points as illustrated in Figure 3.4 makes our
signal selection approach semi-supervised. This is because we do not assume
that all the data points in the transition states are non-normal, as one would
have assumed in a fully supervised approach. However, we assume that there
exists a change-point in each transition state. This only implies that the data
points that appear after the change-point has occurred are non-normal.

In Figure 3.4, one can see that the different states are not necessarily of
the same length. One could therefore think that the probability of detecting a
change-point might be higher in longer states. Since normal states last usually
much longer than transition states, this might introduce an undesirable bias into
the selection of the signal of interest. Note that for the selection of the signal
of interest, the offline change-point detection method presented in Section 3.3
is used. In this method the length of a signal should not affect the number
of change-points detected in it as long as the penalty function discussed in
Subsection 3.3.3 is a function of the length of the signal such that the number of

30

3.4 Dimensionality Reduction

Time (s)

Failure

��− ���− ���

Time (s)

Planned Shut-down

��

Figure 3.4: The first time line is prior to a shut-down due to a failure in the system, and the
second time line is prior to a normal planned shut-down. The red, green and grey color mark
respectively the time referred to as a failure state, a transition state and a normal state.

change-points is estimated consistently. In order to avoid a bias in the selection
of the signal of interest, will use a penalty function inspired by the BIC. In our
case the penalty function will be a function of logN , where N is the length
of the signal. Note that we have not proven that in this case the number of
change-points will be estimated consistently. This is however assumed in this
work. Therefore we can use the division presented in Figure 3.4 for the selection
of the signal of interest.

The Mann-Whitney U test

In this method the number of change-points detected in different states are
compared to each other for the selection of the signal of interest among some
alternatives. The alternatives might be linear combinations of the data, like the
principle or the Box-Tiao components. However, other functions of the data
can also be among the alternatives. Later in this subsection, three non-linear
functions of the data, called the discrepancy, the leverage and the influence
are introduced. These three signals can also be alternatives for the signal of
interest selected by the Mann-Whitney U test method. One can also use the
dimensions in the data directly and pick a signal of interest among them. How-
ever, constructing a function, such as the PCA and the BTA transformation,
which combine several dimensions in the data into one signal of interest might
yield better results. This is because the combination of several dimensions might
contain more predictive information than each of the dimensions alone. Here we
will describe the Mann-Whitney U test as it is applied to pick one of the princi-
pal or the Box-Tiao components as the signal of interest. However, the method
can easily be adjusted to pick the signal of interest among other alternatives.

Divide the data into normal, transition and failure states as illustrated in
Figure 3.4, and consider a column in the transformed data set Cq for q =
1, 2, ..., r. For each period of transition state, i = 1, 2, ..., n, let αi = 1 if a
change-point is detected in Cq during period i, and αi = 0 if no change-point
is detected in Cq during this period. Similarly for each period of normal state

31

Chapter 3. Theory

j = 1, 2, ...,m, let βj = 1 if a change-point is detected in Cq during period j,
and βj = 0 if no change-point is detected in Cq during this period. One might
observe that for many Cq’s, ᾱi > β̄j , where ᾱi and β̄j are correspondingly the
empirical average of αi’s and βj ’s. It can be hypothesized that the distribution
of αi’s is stochastically greater than the distribution of βj ’s. The distribution
of the random variable α ∈ R is stochastically greater than the distribution of
the random variable β ∈ R if:

Pr(β > x) < Pr(α > x) for all x ∈ R,

where Pr(.) is the probability of an event. Whether the distribution of αi’s is
stochastically greater than the distribution of βj ’s or not, can be tested using
a one-sided Mann-Whitney U test, introduced in Mann and Whitney (1947).
This test is formulated as:

H0 : Pr(α > β) ≤ Pr(α < β)

H1 : Pr(α > β) > Pr(α < β)

This formulation is for the one-sided Mann-Whitney U test. There exists a
two-sided version of this test, which is formulated as:

H0 : Pr(α > β) = Pr(α < β)

H1 : Pr(α > β) > Pr(α < β) or Pr(α > β) < Pr(α < β)

In this work we only apply the one-sided Mann-Whitney U test and therefore
we refer to this test as the Mann-Whitney U test.

The Mann-Whitney U test is a non-parametric test, where the assumptions
are:

1. The samples being compared to one another have the same distribution
except for a possible shift in mean.

2. The observations are independent of each other.

3. The variables are ordinal, i.e., from two observations one can in a mean-
ingful way say which one is the greatest.

The Mann-Whitney U test can be applied to compare the distribution of
any two random variables that fulfill the assumptions listed above. We will
take advantage of the Mann-Whitney U test for this purpose many times in our
analysis, for example for comparing the performance of models. However, here
the test is described in the context of the selection of the signal of interest.

One must justify that the αi’s and the βj ’s, as described here fulfill the
assumptions made by the Mann-Whitney U test. The first assumption means
that under the null hypothesis, H0, the distributions from which the αi’s and
the βj ’s are drawn have to be equal, and under the alternative hypothesis, H1,
they are only non-equal in mean, and otherwise similar in form. One could think
that this assumption might not be fulfilled in the case at hand, since the αi’s

32

3.4 Dimensionality Reduction

belong to transition state periods and the βj ’s belong to normal state periods.
On the other hand, we argue that both the αi’s and the βj ’s are the number of
change-points detected on the same signal using the same change-point detection
method, and whether the system is in a transition state or a normal state is
a random event. Therefore it is reasonable to assume the distributions from
which the two samples come from are of the same form and the first assumption
is fulfilled. The other two assumptions are clearly plausible to make.

For α1, α2, ..., αn, β1, β2, ..., βm, put the two sets into one set, γ, of size n+m
and sort γ in an ascending order. Assign each member of γ its numeric rank
ζ(γi), starting with 1 for the smallest member and adjusting for ties such that
the rank is set equal to the mean of the unadjusted rankings. For instance for
α1 = 4, α2 = 7, α3 = 11, β1 = 8, β2 = 8, one obtains γ = (α1 = 4, α2 = 7, β1 =
8, β2 = 8, α3 = 11), and one obtains ζ(α1) = 1, ζ(α2) = 2, ζ(β1) = 3+4

2 = 3.5,
ζ(β2) = 3+4

2 = 3.5, ζ(α3) = 5. Now define the test-statistic U as following:

U =

m∑
j=1

ζ(βj)

This formulation of U differs slightly from the original formulation by Mann
and Whitney (1947), and is taken from Zar (1998). The two formulations give
the same value for U . The distribution of U is derived in Mann and Whitney
(1947). Let Uobs be the observed value for U . If Pr(U ≤ Uobs) ≤ α under the
null hypothesis, the null hypothesis will be rejected at the significance level α.
Mann and Whitney (1947) also gives a table providing the largest value of α
on which H0 is rejected for any value of Uobs and m. Larsen and Marx (1981)
present the Mann-Whitney U test as a variant of Wilcoxon test and show that

for large nm, U is approximately normally distributed with mean n(n+m+1)
2

and variance nm(n+m+1)
12 . Jones et al. (2001–) argue that it is reasonable to use

normal approximation when nm > 20.
In order to choose which linear combination to use, one can compare the

p-value of their corresponding Mann-Whitney U test, and pick the linear combi-
nation, Cq, with the lowest p-value when the Mann-Whitney U test is performed
on its corresponding αi’s and βj ’s. If the null hypothesis in the Mann-Whitney
U test is rejected for Cq on the significance level α = 0.05, one could claim
that on average transition state periods include change-points more often than
normal state periods in the q-th column of the transformed data, when the
transformation is done according to the semi-supervised method introduced in
Section 3.4.3 using a PCA or a BTA transformation. If one is interested in a
multivariate predictive model, one can select p signals of interest by running
this test on every p-tuple of columns, selecting the p-tuple yielding the lowest
p-value.

Discrepancy, Leverage and Influence

In the previous two method, we tried to select one linear combination among
many to reduce the dimensionality. However, here we want to combine all linear

33

Chapter 3. Theory

combinations to obtain a signal of interest. The idea presented here is inspired
by Shyu et al. (2003), who called their method for Principal Component Classi-
fier (PCC). They developed an anomaly detection method using the discrepancy
and leverage (not under these names) as defined here with a semi-supervised
PCA approach as explained in the previous subsections. We combine this idea
with BTA and also introduce the influence as another possible signal of interest.

Let x = {xt}Nt=1 be a r-dimensional signal, and X be its corresponding N×r
matrix. For each column of X, subtract the mean value in the column from the
observations in that column such that the data is centered around 0. Now create
a PCA or a BTA transformation using X. In the case of PCA, select a s < r,
such that the first s principal components explain a large proportion, κ, of the
variance in the data. For instance one could set κ = 0.90. In the case of BTA,
select a s < r, such that the first s components explain a large proportion, κ, of
the predictability in the data. For a new data point, use the same mean values
calculated for the columns of X to centre the data point around 0, and call
the new data point for xnew. Now use the transformation built based on X to
transform xnew, and obtain T (xnew), which is an r-dimensional vector. Here it
is assumed that Xi has full rank. This means Ni − 1 > r and the rank of Xi is
r. Refer to T (xnew)’s i-th element with Ti(xnew).

The leverage, l, of T (xnew) is defined as:

l =

(∑
i≤s

1

λ
′
i

(
Ti(xnew)

)2) 1
2

,

where λ
′

i is the variance of PCi or BTi in the case of PCA and BTA, respectively.

As stated in Subsection 3.4.1, for PCA, λ
′

i is the i-th largest eigenvalue of the
covariance matrix Γ. This is the same as λi defined in Subsection 3.4.1. For
BTA, one can show that λ

′

i is the i-th diagonal element of the matrix ΩTΓΩ,
where Γ and Ω are defined in Subsection 3.4.2. The true covariance matrix Γ
as well as the true Ω are often unknown in practice. In this case, the estimated
matrices Γ̂ and L should be used instead of Γ and Ω, respectively. The estimated
covariance matrix Γ̂ is calculated using the method presented in Subsection
3.4.4, while the matrix L is calculated according to the diagonalization in (3.22).

The discrepancy, d, of T (xnew) is defined as:

d =

(∑
i>s

1

λ
′
i

(
Ti(xnew)

)2) 1
2

,

where λ
′

i’s are defined in the same way as for the leverage.
The influence, c, of T (xnew) is defined as:

c = l × d.

Any of the signals l, d or c can be selected as the signal of interest. In the
case of BTA, l will have a large predictability under normal operation mode

34

3.4 Dimensionality Reduction

and therefore a deviation from its predictable trajectory is a sign of anomaly
that can be a source of failure in the system. The discrepancy doesn’t have a
large predictability and will therefore include many normal changes. However
an anomalously large change in this signal means that the change is in a normal
direction of the data but of a non-normal amplitude, and this might also be a
good predictor for failures in the system. The two signals are combined in the
influence, c, which will show changes in both predictable and non-predictable
directions of the data.

In the case of PCA, d will have a small variance under the normal operation
mode and therefore a deviation from its almost constant trajectory is a sign
of anomaly that can be a source of failure in the system. The leverage has
a large variance under the normal operation mode and will therefore include
many normal changes. However an anomalously large change in this signal
means that the change is in a normal direction of the data but of a non-normal
amplitude, and this might also be a good predictor for failures in the system.
The two signals are combined in the influence, c, which will show changes in
both predictable and non-predictable directions of the data.

It is not clear which of the three signals leverage, discrepancy and influence
should be picked as the signal of interest in any problem. The choice of the
parameter κ is not trivial either. In the case of PCA, κ is the proportion of
the variance in the data explained by the first s principal components. In the
case of BTA, κ is the proportion of the predictability in the data explained by
the first s Box-Tiao components. In this analysis, we use κ = 0.90. One may
use a change-point detection method with a Mann-Whitney U test to select the
best signal of interest. This can be done in a similar way to what was described
previously for the Mann-Whitney U test method, with the difference being that
the alternative signals of interest are now the discrepancy, the leverage and
the influence instead of linear combinations of the data. This means Cq for
q = 1, 2, 3 is now the discrepancy, the leverage and the influence. One should
then select the signal of interest with the most significant Mann-Whitney U
test. If desired, this could be repeated for different choice of κ selecting the
value which yields the most significant Mann-Whitney U test. This is however
not done in this work.

Discussion

One of the methods presented in this subsection should be used for selection of
the signal of interest. There are advantages and disadvantages with both meth-
ods. On one hand, there might exist only one PCA or BTA component which
contains a large amount of predictive information. In this case combining several
components to construct the discrepancy, the leverage and the influence only
adds noise to the signal of interest. On the other hand, combining several PCA
or BTA components into one signal of interest by calculating the discrepancy,
the leverage and the influence might yield a signal of interest which contains
more predictive information than each of the components alone. The proper
approach for every business case should be determined by experimentation.

35

Chapter 3. Theory

The offline change-point detection presented in Section 3.3 is a computa-
tionally demanding task. For every alternative signal of interest, this method
is applied to all the running groups in the training data set for signal selection.
Using the discrepancy, the leverage and the influence, there are only three al-
ternative signals of interest for the Mann-Whitney U test. Using the PCA or
the BTA components, there are as many alternatives as there are linear combi-
nations. In our analysis this is equal to the number of dimensions in the data,
r. If r is large, this will be a computationally demanding task.

The Mann-Whitney U test method allows in theory for selection of as many
signals of interest as desired. In this way a multidimensional predictive model
can be developed. The computational complexity of this method grows however
exponentially with the desired number of signals of interest. Using the dis-
crepancy, the leverage and the influence, one can develop a predictive model of
maximum three dimensions, using all three signals for prediction. This number
cannot be surpassed using the PCA or the BTA components in our business
case due to the computational complexity.

3.5 Online Predictive Models

As predictive model, we propose to use statistical control charts. The purpose
of a control chart is to determine if a process is behaving as it is expected
to. In the literature of control charts, the term in-control is used to refer to
the normal state of a process and the term out-of-control is used to refer to
the anomaly states. The fundamental idea behind control charts is similar to
that of hypothesis testing. One wants to control the probability of concluding
that the process is out-of-control when in fact it is not, while maximizing the
detection power of the out-of-control state.

First the in-control state should be defined on a variable, st. In our case st is
the signal of interest, selected in Section 3.4. For this, one needs some training
data on st from its in-control state. Using this data, one should establish an
in-control state. In practice, this means estimating the expected value and the
variance of st.

Walpole et al. (1993, Chapter 17) introduce the X̄-chart as the simplest
control chart. Here we will present this method to give the reader insight into the
nature of statistical control charts. In this method, one assumes that in the in-
control state, the observations of st are independent and identically distributed
in time. In addition, one assumes that the standard deviation and the expected
value of st are known. Let us refer to these as σs and µs, respectively. If σs
and µs are not known, one can use in-control training data to estimate these
variables. Under these condition, one takes advantage of the Central Limit
Theorem (CLT) to compute a Lower Control Limit (LCL) and an Upper Control
Limit (UCL) in every time interval. Assume that in a time interval k, nk values
of st have been recorded. Let us refer to these as s1, ..., snk

. Then the sample

36

3.5 Online Predictive Models

mean of st in this time interval is defined as:

ks̄t =
1

nk

nk∑
t=1

st.

According to the CLT, we have under the condition that the process is in-control:

ks̄t ∼ N (µs,
σ2
s

nk
). (3.23)

For some α < 1, consider the following limits:

LCL = µ− zα/2
σs√
nk

UCL = µ+ zα/2
σs√
nk
,

where zα/2 is the Z-score for α
2 , being computed from the standard normal distri-

bution. Declare the process out-of-control only when ks̄t > UCL or ks̄t < LCL.
Equation (3.23) tells us that for 100(1 − α)% of the in-control time intervals,
the ks̄t-values will be classified as in-control. In practice, zα/2 is often set to 3,
as a rule of thumb.

In the industry, more sophisticated control charts are often used for the
purpose of quality control of industrial processes. The Exponentially Weighted
Moving Average (EWMA) chart, originally introduced by Roberts (1959), and
the Cumulative Sum (CUSUM) chart, originally proposed by Page (1954), are
two of the most popular ones. According to Arnold et al. (2018), the main
advantage of the CUSUM chart compared to the EWMA and the X̄ charts
is that each point on a CUSUM chart is based on information from all the
observations up to and including the current one. In addition, a CUSUM chart
is more efficient for detecting small but consistent shifts in the mean of the signal
of interest. In the rest of this section we will present the CUSUM method, which
will be applied as a predictive model in our experiments.

3.5.1 Cumulative Sum (CUSUM)
The Cumulative Sum (CUSUM) control chart is often used as an online change-
point detection tool. Let us assume st has a constant expected value µs and
standard deviation σs when the process st is in-control. Now at a time point
t = i define Ci in the following way:

C0 = 0,

Ci =

i∑
t=1

(st − µs) for i > 0.
(3.24)

This can also be written as:

C0 = 0,

Ci = Ci−1 + (st − µs) for i > 0.

37

Chapter 3. Theory

If the process is in-control for t < i:

E[st − µs] = 0⇒ E[Ci] =

i∑
t=1

E[st − µs] = 0,

where E[.] is the expected value function. In CUSUM, one declares the process
to have become out-of-control if Ci is sufficiently different from 0. In other
words, at any time point i, one performs the following hypothesis test:

H0 : E(s1) = E(s2) = ... = E(si) = µs,

H1 : E(st) 6= µs for some t ≤ i.

The following test statistics are used:

C+
i = max(0, si − (T +K) + C+

i−1),

C−i = max(0,−si + (T +K) + C−i−1),
(3.25)

where max(., .) is the maximum function, T is called the target value for si and
K is called the acceptable margin. The target value is the expected value of si
given that the process is in-control, while K is the acceptable deviation of si
from the target value under the in-control state. For some constant threshold
h, the process is declared to have become out-of-control if either C+

i > h or
C−i > h. One can create a one-sided test by only looking at one of C+

i or
C−i . One should only look at C+

i if one is only interested in detecting when the
observed values are higher than the target, while one should only look at C−i if
one is only interested in detecting when the observed values are lower than the
target.

Determining T , K and h is a non-trivial problem. We call these the CUSUM
features. If st’s are independent and identically distributed and follow a Gaus-
sian distribution with different means under the in-control and out-of-control
states, then one can use a training data set from the in-control state to set
reasonable values for CUSUM features. One should estimate the mean and the
standard deviation of st when the process is in-control. Let us call these esti-
mators µ̂s and σ̂s, respectively. It is assumed that the training data set used to
calculate µ̂s and σ̂s is large enough, such that the estimation error is kept under
control. Then it is reasonable to set T = µ̂s. Some widely used rules of thumb
for the other two variables are: K = 1

2 σ̂s and h = 5σ̂s. These work well under
the independence and normality assumptions and for detection of changes in
the mean of st of an amplitude greater than or equal to σ̂s.

If one or several of the assumptions mentioned above are violated, determin-
ing the CUSUM features will be a substantially more difficult task. In our case,
serial dependence in time series data is a challenge that should be addressed.

In this work, we present an ad hoc method to determine the CUSUM fea-
tures. A competing approach is provided by Aue and Horváth (2013). They
present a review on the work done to modify the original CUSUM method to
also work for data exhibiting serial dependence. Using a different notation from

38

3.5 Online Predictive Models

ours, Aue and Horváth (2013) show that the CUSUM features for serially de-
pendent data should be of the same form as for independent data but differ
in a scaling parameter ω on K and h. Aue and Horváth (2013) refer to ω2 as
the long-run variance, and provides estimators for ω2 under different assump-
tions about the distribution of the data. Using ω2, Aue and Horváth (2013)
formulate the CUSUM method as a hypothesis test under different assuptions
about the data. A test statistic Mi is also provided for the hypothesis test. The
asymptotic distribution of Mi is tabulated in Shorack and Wellner (1986).

Lu and Reynolds Jr (2001) provide a performance analysis of the CUSUM
method when applied to autoregressive data. The idea is to test if CUSUM
performs better when applied to the residuals after fitting an autoregressive
model to the data than it does when applied to the original data. Lu and
Reynolds Jr (2001) conclude that CUSUM based on original data performs as
well as CUSUM based on the residuals except in the case in which both the
level of autocorrelation and the shift in the mean are high.

Here we will use CUSUM as a predictive model on our signal of interest se-
lected in Section 3.4. We will perform the following tuning method to determine
the CUSUM features.

Assume that we have access to a training data set. This training data
should be from our signal of interest st, in both periods of normal operation
mode and periods prior to a failure in the system. One can use the same data
set used for signal selection in Subsection 3.4.5, and transform it to arrive to a
1-dimensional signal of interest. Assume that each time point in this data set is
labeled as belonging to either a normal state, a transition state or a failure state,
as described in Subsection 3.4.5. In Figure 3.4, one can see that the different
states are not necessarily of the same length. One could therefore think that the
probability of declaring the process out-of-control by the model might increase
with the length of the states. Since the normal states last usually much longer
than the transition states, this might introduce an undesirable bias both into
the selection of the CUSUM features. To account for this bias, we will divide
all normal states in intervals of the same length as the transition states. This
is illustrated in Figure 3.5.

In this part of the analysis we will only use data from the normal groups for
simplicity. Use the data in the normal states to compute the sample mean and
the sample variance of st. Let the normal states be labeled as j = 1, 2, ..., J ,
and each be of length ν − f as shown in Figure 3.5. Refer to the sub-signal of
interest corresponding to the normal state j as jst. Then the sample mean and
the sample variance of st under the normal states is computed in the following

39

Chapter 3. Theory

Time (s)

Failure

��− ���− ���

Time (s)

Planned Shut-down

��− (� − �)��− 2(� − �)��− 3(� − �)��− 4(� − �)��

− (2� − �)��− (3� − 2�)��

Figure 3.5: The first time line is prior to a shut-down due to a failure in the system, and the
second time line is prior to a normal planned shut-down. The red, green and grey color mark
respectively the time referred to as a failure state, a transition state and a normal state. The
normal state is divided into intervals of lengths equal to that of transition states.

way:

j µ̂s =
1

ν − f
∑
t

jst,

j σ̂
2
s =

1

ν − f − 1

∑
t

(jst − j µ̂s)
2,

µ̂s =
1

J(ν − f)

∑
j

(ν − f)j µ̂s

σ̂2
s =

1

J(ν − f − 1)

∑
j

(ν − f − 1)j σ̂
2
s .

(3.26)

The target value T for CUSUM is set to µ̂s. It remains to determine K and
h. One should now determine a searching space for K, where the optimal K
is picked among some alternatives. We will use Kset = { σ̂s

2 , σ̂s, 2σ̂s, 4σ̂s, 8σ̂s}.
Now we need a searching space for h. For K ∈ Kset execute the following
algorithm:

1. Let T = µ̂s and compute jCi’s for all normal states following (3.24).

2. If any jCi < 0, set jCi = −jCi.

3. For each normal state j, compute max(jCi). Save all the values in a set
and call it hset.

4. Sort hset in descending order.

The set hset is our searching space for h. Note that only the normal states that
are a part of a normal group are used in determining the searching spaces for h
and K.

For every pair (K,h) ∈ Kset×hset, apply the CUSUM method to the training
data. For this part of the analysis, we will use all the normal and the transition
states in the training data. The performance of the CUSUM method is measured

40

3.5 Online Predictive Models

for each pair (K,h) using one of the statistical metrics provided in Subsection
3.5.2. The pair (K,h) yielding the best performance on the training data is
selected.

Note that labeling the data points as illustrated in Figure 3.5 to determine
the CUSUM features with an ad hoc approach makes our predictive model semi-
supervised. In this approach, the normal data is labeled and the change from
the normal state to the non-normal state is assumed to occur in a predetermined
time-window. We do not assume that all the data points in the transition states
are non-normal, as one would have assumed in a fully supervised approach.
However, we assume that there exists a change-point in each transition state.
This only implies that the data points that appear after the change-point has
occurred are non-normal.

The estimation error when estimating µs and σs is ignored in the method
presented in this subsection. This can possibly affect the performance of the
final predictive model. Gandy and Kvaløy (2013) suggest a method based on
bootstrapping the data used to estimate these parameters to overcome this issue.
Taking advantage of this method to estimate the distribution of the data in the
in-control state is out of the scope of this work. The estimation error should
however be kept in mind as a source of the prediction error when evaluating the
model, specially since the unbiasedness of our estimators is not guaranteed for
time series data with serial dependence.

3.5.2 Evaluation
The predictive model constructed with the CUSUM method needs to be tested.
For this we present several statistical metrics that can measure the performance
of the predictive model. Given a test data set including both normal and trip-
ping groups, we divide the data into normal, transition and failure states as
illustrated in Figure 3.5, and define the following concepts:

• True Positive (TP): A transition states in the test data during which the
predictive CUSUM model has declared the process out-of-control at least
once.

• False Positive (FP): A normal states in the test data during which the predic-
tive CUSUM model has declared the process out-of-control at least once.

• True Negative (TN): A normal states in the test data during which the pre-
dictive CUSUM model has not declared the process out-of-control at all.

• False Negative (FN): A transition states in the test data during which the
predictive CUSUM model has not declared the process out-of-control at
all.

Denote the number of TP’s, FP’s, TN’s and FN’s with #TP, #FP, #TN
and #FN, respectively. In a predictive model, it is desired to maximize #TP
and #TN and minimize #FP and #FN. These values can be summarized in

41

Chapter 3. Theory

a confusion matrix. For a binary classification problem, such as our case, the
confusion matrix is defined as: [

#TN #FP
#FN #TP

]
In Koehrsen (2018) the following metrics are presented to measure the perfor-
mance of a model:

Accuracy =
#TP + #TN

#TP + #FP + #TN + #FN

Precision =
#TP

#TP + #FP

Recall =
#TP

#TP + #FN

F1 score = 2× Precision× Recall

Precision + Recall

The accuracy of a model is the proportion of the states identified correctly
by the model. The precision is the proportion of the failure predictions made by
the model that actually were true, the recall is the proportion of failures that
the model could correctly predict, and the F1 score is the harmonic mean of
the precision and the recall. The recall is also referred to as the sensitivity or
the true positive rate in some literature. The precision is also referred to as the
positive predictive value in some literature.

The simplest solution to the model selection problem is to select the model
with the highest accuracy. This approach might however not work well if the
data set is imbalanced. An imbalanced data set is a data set in which the
number of observations belonging to one class is substantially larger than the
number of observations belonging to the other classes. Given an imbalanced
enough data set the model with the highest accuracy is the model that always
predicts the majority class. This is the case in our business case, since the
number of normal states is much larger than the number of transition states.
Therefore the model with the highest accuracy is the model that never declares
the process to be out-of-control and therefore maximizes #TN. This model will
have #TP= 0, but this will not decrease the accuracy substantially since the
maximum possible value of #TP is much smaller than the maximum value of
#TN.

For an imbalanced data set one of the metrics recall, precision or F1 score
should be used. To be able to predict more failures, one should increase #TP. An
approach that selects the model with the highest precision maximizes #TP while
minimizing #FP. In this case the final model might have a large #FN. Note that
for very imbalanced data sets, the model is expected to have a low precision,
since even with a small or moderate false positive rate ((#FP)/(#FP+#TN)),
#FP might still be much larger than the maximum possible value of #TP. An
approach that selects the model with the highest recall maximizes #TP, while
minimizing #FN. In this case the final model might have a large #FP.

42

3.5 Online Predictive Models

Every time the model declares the process to be out-of-control, the business
owner has to take some actions to prevent a failure in the system. These actions
involve a cost for the business owner. In case of a FP, the actions taken were
actually not needed. In this case, we call the actions’ cost for the cost of a FP.
On the other hand, a failure in the system also involves a cost for the business
owner. If the model doesn’t declare the process to be out-of-control in the time
prior to a failure, no actions can be taken by the business owner to prevent the
failure. In this case, we call the failure’s cost for the cost of a FN. If the cost of
a FN is much higher than the cost of a FP, one should prioritize to maximize
the recall. Otherwise the precision should also be kept as high as possible. In
the cases where it is not clear which metric should be maximized, one could
select the model with the highest F1 score, which is the harmonic mean of the
precision and the recall.

43

Chapter 3. Theory

44

Chapter 4
Experiments

In this chapter, we will design experiments to test the different approaches
presented in Chapter 3. Looking at Figure 3.1, there are four possible ways
to arrive at a 1-dimensional signal of interest given a multidimensional data
set. One can use either the PCA or the BTA to transform the data. For each
choice of transformation, one can either pick a linear combination as the signal
of interest directly, or compute the discrepancy, the leverage and the influence
and pick one of these as the signal of interest. We will test out all the four
different approaches to some degree.

First we will simulate a data set based on the real-world data in our business
case. The description of the real-world data and the details about how the
data simulation is performed are presented in Section 4.1. The four different
approaches are tested on the simulated data. The results can be compared at two
levels. One can compare the performance of two approaches either by comparing
the p-value of the Mann-Whitney U test on their corresponding selected signals
of interest, or by using one of the statistical metrics presented in Subsection
3.5.2 on their corresponding CUSUM models using some test data set. The
result of the different methods of evaluation might be different. If one uses
the Mann-Whitney U test, a predictive model does not need to be developed
for the simulation study. However, testing a predictive model based on the
simulated data is beneficial not only for comparing the different approaches but
also for proving the value of using the methods presented in Chapter 3 in failure
prediction problems.

The main goal of the simulation study is to illustrate the power of the meth-
ods in predicting failures given the the right type of data. In addition, we want
to determine if one gains a significant improvement in the model by using a BTA
transformation instead of a PCA transformation. Another goal is to compare
the different methods of selecting the signal of interest. Based on the results
from the simulation study, one or several approaches will be applied to the
real-world data.

45

Chapter 4. Experiments

4.1 Data Description
In this section the data used for the experiments is described. In Subsection
4.1.1, we describe the sensor-based data, which has been the source of inspiration
for this work. This data is provided to us by the Norwegian company DNV
GL. In Subsection 4.1.2, we present our method of data simulation. The data
simulation is inspired by the real-world data.

4.1.1 Real-World Data
We will use real-world sensor-based data from 10 pairs of gas compressor and
gas turbine units to test some of the methods presented in Chapter 3. Each gas
compressor is powered by its corresponding gas turbine. The data is provided by
a European Gas Transmission System (GTS) owner and operator, through the
Norwegian DNV GL. As discussed in Chapter 1, the ultimate goal is to predict
failures on these machines. One or several of the four approaches presented in
Section 4.2 can be used for creating a signal of interest. One can decide on
which approaches are applied based on the results from the simulation study. A
CUSUM method can be developed as a predictive model and the performance
of the model is assessed using the measures presented in Section 4.4.

There is data available on 10 systems from 2013 til 2017. The possible rea-
sons for a failure can be bearing problems, seals, lube oil system issues, process
conditions or combustion related. Failures are further divided into two groups
of starting trips and running trips depending on when the failure happens. A
starting trip is a failure to start the machine and a running trip is a failure that
happens while the machine is running. Here the scope of the analysis is reduced
by only looking at the running trips. The streams of data available for this
analysis are sensor-based values related to measurements in physical quantities
such as temperature, speed, efficiency, pressure, etc.

These gas compressors are used to compress gas in some pipelines, and they
do not run continuously in time. They are turned on when needed and switched
off when the pressure of the gas in the pipeline reaches the desired value. There-
fore the data is divided into different running groups, as described in Section
1.2. The running groups are categorized based on their type of shut-down. The
possible categories are normal stop, running trip and starting trip. As discussed
in Section 1.2, we ignore the running groups ending in a starting trip and refer
to the running groups ending in a normal stop and a running trip as a normal
group and a tripping group, respectively.

The length of each running group varies from about one hour to about 43
days. All the running groups that are shorter than 180 minutes are removed
from the data. Then the first 45 minutes of each running group is removed in
order to avoid detection of change-points in the starting phase, as it is normal
to make adjustments in the starting phase until the compressor reaches the
desired operational mode. For normal groups, the last 15 minutes are also
removed. This is because the process of shutting down the compressor with a
normal stop takes around 15 minutes, and change-points in this time interval

46

4.1 Data Description

are of no interest. An unplanned shut-down sequence usually takes between 5
to 10 minutes. Therefore the last 10 minutes of the tripping groups are also
removed from the data.

The raw data provided by the GTS operator company is not suitable for
analysis. Different sensors register values with different frequencies and the
time of measurements are not synced. A data preparation process is performed
and the data is re-sampled with a frequency of one minute. This is done by
DNV GL. DNV GL has provided a detailed description of the data preparation
process in a report presented in Appendix A. The data provided to us by DNV
GL still includes some Not Available (NA) values. Therefore we perform a data
cleaning process.

If the value recorded by a sensor is NA in more than 10% of the time, the
sensor is removed from the analysis. Then within a running group, the NA
values are replaced with the Last Observation Carried Forward (LOCF). If the
data from a sensor is NA during a whole tripping group, the sensor is removed
from the analysis. This is because we want to avoid removing tripping groups
from the analysis due to their scarcity. If the data from a sensor is NA during
a whole normal group, the normal group is removed.

After the data manipulation described in the last two paragraphs is per-
formed, the number of streams, r, left for this analysis is 62. The 62 dimensions
of the real-world data set, after the data manipulation is performed, are listed in
a table in Appendix B. The number of remaining tripping groups is 76 and the
number of remaining normal groups is 497. The distributions of the lengths of
the remaining normal groups and the remaining tripping groups are illustrated
with histograms in Figures 4.1 and 4.2, respectively. The length of the longest
remaining normal group is 61806 minutes while that of the longest remaining
tripping group is 18751 minutes. In Figures 4.1 and 4.2, one can observe that
most of the remaining running groups are shorter than 1000 minutes.

The real-world data might need to be re-scaled prior to the analysis to obtain
the best possible performance by some of the methods like PCA. This is because
if there is a large difference between the variance of the different dimensions, the
first principal components will be dominated by the dimensions with the largest
variances. Note that if the unit in which a physical quantity is measured changes
from a large to a small unit, its variance will increase. As a result it may go
from having little impact to dominating the first principal component. The PCA
transformation should not be dependent on such re-scaling. Therefore if there
is a large difference between the variance of the different dimensions, all the
dimensions should be re-scaled to have variance 1. In Figure 4.3, the logarithm
of the estimated variance of each of the 62 dimensions is shown separately in
the normal groups and in the tripping groups. The dimensions are sorted in
the descending order of their variance in the normal groups. The rank of each
dimension in Figure 4.3 can be found in a table in Appendix B. The estimated
variances are calculated in the following way: Let Gj refer to the time interval
corresponding to running group j, and let |Gj | be the length of Gj . Let di refer
to the i-th dimension in the data and let di,t be the value of di at time point

47

Chapter 4. Experiments

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000
Normal Groups' Lengths (minutes)

0

50

100

150

200

Nu
m

be
r o

f N
or

m
al

 G
ro

up
s

Figure 4.1: Histogram of the lengths of the normal groups in the real-world data. Each bar covers
1000 minutes. The height of a bar shows the number of normal groups the in the respective
interval.

48

4.1 Data Description

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000110001200013000140001500016000170001800019000
Tripping Groups' Lengths (minutes)

0

5

10

15

20

25

Nu
m

be
r o

f T
rip

pi
ng

 G
ro

up
s

Figure 4.2: Histogram of the lengths of the tripping groups in the real-world data. Each bar
covers 1000 minutes. The height of a bar shows the number of tripping groups in the respective
interval.

49

Chapter 4. Experiments

t. Finally, let NG and TG be the set of normal groups and tripping groups,
respectively. Then:

j µ̂di =
1

|Gj |
∑
t∈Gj

di,t,

j σ̂
2
di =

1

|Gj | − 1

∑
t∈Gj

(di,t − j µ̂di)
2,

Normalσ̂
2
di =

1∑
j∈NG(|Gj | − 1)

∑
j∈NG

(|Gj | − 1)j σ̂
2
di ,

Trippingσ̂
2
di =

1∑
j∈TG(|Gj | − 1)

∑
j∈TG

(|Gj | − 1)j σ̂
2
di ,

(4.1)

where j µ̂di and j σ̂
2
di

are respectively the sample mean and the sample variance
of dimension di during running group j and Normalσ̂

2
di

and Trippingσ̂
2
di

are the
sample variance of dimension dj in the normal groups and the tripping groups,
respectively. One can see in Figure 4.3 that there is substantial differences
between variances of the 62 dimensions. Therefore, the data needs to be re-
scaled.

One can also see in Figure 4.3 that the estimated variances of the different
dimensions in the tripping groups do not differ much from that in the normal
groups. This might be because the process is mostly in a normal state even
during the tripping groups. This means that most of the data used for the
estimation of the variances in the tripping groups comes actually from a normal
state. Therefore it might be interesting to calculate the estimated variances
using only the data from the transition states. This will be presented in Chapter
5.

From the 497 normal groups and the 76 tripping groups, 421 normal groups
are randomly selected for constructing the PCA and the BTA transformations.
This is called the training set. Another 38 normal groups together with 38
tripping groups are randomly selected and used for the selection of the signal
of interest. This is called the signal selection set. Note that for the selection
of the signal of interest, the data is divided into normal, transition and failure
states following the method presented in Subsection 3.4.5. In Figure 3.4, one
can see that for every normal group, there exists a normal state and for every
tripping group, there exists a normal, a transition and a failure state. This
means that there are twice as many normal states as there are transition states
in the signal selection set. Finally the 38 remaining normal groups together
with the 38 remaining tripping groups are used for evaluating the predictive
model. This is called the test set. Note that the signal selection set is also used
for the training of the predictive model. For this purpose, the data in the signal
selection set is divided into normal, transition and failure states following the
method presented in Subsection 3.5.1. In Figure 3.5, one can see that following
this method, the number of normal states will be substantially larger than the
number of transition states in the signal selection set. The same is the case for

50

4.1 Data Description

0 10 20 30 40 50 60
Dimensions

5

0

5

10

15

20
lo

g-
va

ria
nc

e

Normal Groups
Tripping Groups

Figure 4.3: The natural logarithm of the estimated variance of each of the 62 dimensions in the
real-world data is plotted. The estimations for the normal groups and the tripping groups are
performed separately. The estimation is performed using the method presented in (4.1). The
dimensions are sorted in the descending order of their estimated variance in the normal groups.
The rank of each dimension can be found in a table in Appendix B.

the test set.

For each dimension di, the mean and the variance of di in the normal states
are estimated in the same way as in (4.1) using the 421 normal groups in the
training set. Then all the values in di are centered around its estimated mean
and divided by the square root of its estimated variance in the normal states.

4.1.2 Simulated Data

We perform 100 simulations, each containing a 10-dimensional data set with 600
normal groups and 100 tripping groups. A running group is a 10-dimensional
time series with a frequency of one minute, where the data point i represents
”measurements” recorded by 10 ”sensors” in minute i. The length of each
running group is drawn from a discrete uniform distribution over the interval
[300, 700]. The normal groups and the tripping groups are initially generated
by the same VAR process within each simulation. Each data set is generated
by a 10-dimensional random stationary VAR process of order 1. There exists a
change-point in every running group. The change-points in the tripping groups

51

Chapter 4. Experiments

are in a different dimension from the change-points in the normal groups.
In order to differentiate between normal and tripping groups, two different

kinds of change-points can occur in the data, namely normal and non-normal
change-points. Normal change-points appear only in normal groups while non-
normal change-points appear only in tripping groups. For each simulation, let
dn and dt be two distinct random positive integers less than or equal to 10,
drawn from the discrete uniform distribution over the interval [1, 10]. Normal
change-points occur in the mean of the dn-th dimension of the data, while non-
normal change-points occur in the mean of the dt-th dimension. The amplitudes
of the normal and non-normal changes are respectively equal to the estimated
standard deviations of the dn-th and the dt-th dimension. In order to estimate
the standard deviations of the dn-th and the dt-th dimension, first a signal of
length 1000 minutes is simulated by the VAR process. The data in this signal is
used to estimate the standard deviations of the dn-th and the dt-th dimension.
Each normal group contains exactly one normal change-point while each tripping
group contains exactly one non-normal one. Normal change-points can occur at
any time during a normal group with equal probability for each minute. Non-
normal change-points can only occur between 30 and 90 minutes prior to the
end of a tripping group, with equal probability for every minute in this interval.

For each simulation, the VAR process is created in the following way:

1. Sample 10 distinct values from the continuous uniform distribution over
the open interval (−1, 1), and use them as the diagonal elements of the
diagonal 10× 10 matrix DA.

2. Generate a 10× 10 random orthogonal matrix QA, drawn from the O(N)
Haas distribution, as described in Mezzadri (2006).

3. Let A = QADAQT
A.

4. Generate a random symmetric positive-definite matrix Σ with the method
provided in Pedregosa et al. (2011).

5. Let the VAR process be defined as Xt = AXt−1 +Ut for t > 1, where Ut’s
are independent and identically distributed with Ut ∼ N (0,Σ).

6. Let x1 be a vector with 10 elements and set x1 = 0.

7. For t = 2, 3, ..., 1000, set xt = Axt−1 + ut where ut is a random vector
drawn from the multivariate Gaussian distribution N (0,Σ).

8. Using xt’s, create the 1000 × 10 matrix X, where for t = 1, 2, ..., 1000,
the t-th row of X is xt. Estimate the standard deviation of the dn-th
and the dt-th column of X, and call them σ̂n and σ̂t, respectively. These
will be the amplitudes of the changes in the mean of the dn-th and dt-th
dimension, respectively.

Following this construction, A is guaranteed to have 10 real distinct eigenvalues
with their absolute value less than 1. According to the theory presented in
Subsection 3.2, this guarantees stationarity for the time series.

52

4.1 Data Description

0 100 200 300 400 500
Time (minutes)

0

2

d n

Figure 4.4: An illustration of the dn-th dimension of a simulated normal group. There exists a
normal change-point in this dimension in minute 262. The data before and after the change-point
are marked with the blue and the red background color, respectively.

Given the VAR process in a simulation, the running groups are generated in
the following way:

1. Draw a random integer l, from the discrete uniform distribution over the
interval [300, 700]. This will be the length of the running group in minutes.

2. If the running group is a normal group, draw a random integer τ from the
discrete uniform distribution over the half-open interval [0, l). This is the
time point at which a change will occur in the data.

3. If the running group is a tripping group, draw τ from the discrete uniform
distribution over the half-open interval [l − 90, l − 30).

4. Let x1 be a vector with 10 elements and set x1 = 0.

5. For t = 2, 3, ..., l, set xt = Axt−1 + ut where ut is a random vector drawn
from the multivariate Gaussian distribution N (0,Σ).

6. If the running group is a normal group, add σ̂n to the dn-th element of xt
for all t ≥ τ .

7. If the running group is a tripping group, add σ̂t to the dt-th element of xt
for all t ≥ τ .

The simulated data is illustrated in Figures 4.4, 4.5, 4.6 and 4.7. Figures
4.4 and 4.5 are from one and the same simulated normal group while Figures
4.6 and 4.7 are from one and the same simulated tripping group. In the normal
group, there is a change of amplitude 0.83 in the mean of the dn-th dimension
in minute 262, while there is no change in the dt-th dimension in this running
group. In the tripping group, there is a change of amplitude 3.48 in the mean
of the dt-th dimension in minute 528, while there is no change in the dn-th
dimension in this running group.

The methods presented in Chapter 3 can be tested on the simulated data.
From the 600 normal groups and the 100 tripping groups generated in a sim-
ulation, 500 normal groups are used for constructing the PCA and the BTA
transformations. This is called the training set. Another 50 normal groups to-
gether with 50 tripping groups are used for the selection of the signal of interest.

53

Chapter 4. Experiments

0 100 200 300 400 500
Time (minutes)

10
5
0
5

10

d t

Figure 4.5: An illustration of the dt-th dimension of a simulated normal group. There exists no
change-points in this dimension during this running group.

0 100 200 300 400 500
Time (minutes)

2

1

0

1

2

d n

Figure 4.6: An illustration of the dn-th dimension of a simulated tripping group. There exists
no change-points in this dimension during this running group.

0 100 200 300 400 500
Time (minutes)

10
5
0
5

10

d t

Figure 4.7: An illustration of the dt-th dimension of a simulated tripping group. There exists
an non-normal change-point in this dimension in minute 528. The data before and after the
change-point are marked with the blue and the red background color, respectively.

54

4.2 Experiment Design for Signal Selection

Alternative Signals of Interest PCA BTA
BTA and PCA Components Experiment 1 Experiment 3

Discrepancy, Leverage and Influence Experiment 2 Experiment 4

Table 4.1: The design of the experiments is illustrated in this table. The four experiments are
used as dimensionality reduction approaches in this work. They differ in the type of transforma-
tion used in them and their alternative signals of interest among which one signal of interest is to
be selected.

This is called the signal selection set. Finally 50 normal groups together with
50 tripping groups are used for evaluating the method. This is called the test
set.

4.2 Experiment Design for Signal Selection
Here four experiments are designed to test the four possible approaches pre-
sented in Chapter 3. In each subsection the corresponding approach is marked
in the analysis pipeline. All experiments are possible to perform both on the
simulated and on the real-world data. We will however determine which exper-
iments to perform on the real-world data based on the results from performing
all four on the simulated data.

First, one should divide the data in three sets as explained in Section 4.1.
The three sets are the training set, the signal selection set and the test set. The
training set must include normal groups only. The majority of the normal groups
should be in this data set since it is used to estimate the distribution of the data
in the normal states and experimentation has shown that a large amount of data
is required for convergent results in this part. The signal selection set and the
test set must include both normal and tripping groups.

The four different experiments differ only in their method of constructing the
signal of interest. In Experiments 1 and 2, a PCA transformation is used, while
in Experiments 3 and 4, a BTA transformation is used. In Experiments 1 and
3, one of the PCA or BTA components is selected as the signal of interest while
in Experiments 2 and 4, one of the signals discrepancy, leverage or influence
is computed based on the PCA or BTA transformed data and used as the
signal of interest. This is illustrated in Table 4.1. The method applied to
construct a predictive model based of the signal of interest is common for all
four experiments. Therefore only the approaches applied to obtain the signal of
interest are described in every subsection and the description of the construction
of the predictive model is presented for all experiments at the end of this section.

For the training of the predictive model, the running groups in the data are
divided into different states as explained in Figure 3.5. The goal is to make
a predictive model that predicts tripping at least once in the transition state
of most tripping groups while it predicts no tripping in most normal states.
The statistical metrics presented in Subsection 3.5.2 can be used for measuring

55

Chapter 4. Experiments

and comparing the performance of the predictive model on the simulated test
data for the four different approaches. The four experiments are performed
on all of the 100 simulations. The four different approaches can therefore be
compared by using their yielded mean value for a predetermined metric over
the 100 simulations.

4.2.1 Experiment 1

In this experiment, one of the principal components is directly used as the
signal of interest. The approach applied in this experiment is marked with
red in the analysis pipeline in Figure 4.8. The PCA is performed as explained
in Subsection 3.4.1. The PCA transformation has a semi-supervised nature as
explained in Subsection 3.4.3. The training set is used to calculate the estimated
covariance matrix Γ̂ of the data in the normal state. The estimation is performed
according to the method presented in Subsection 3.4.4. Thereafter, Γ̂ is used
to PCA-transform the rest of the running groups. This is done following the
method presented in Subsection 3.4.1.

Data

VAR Modelling

Covariance
Estimation PCA

BTA

Signal of
Interest

Change-Point
Detection

Discrepancy,
leverage and

Influence
Mann-Whitney U

test

Transformed
Data

Figure 4.8: The analysis pipeline for Experiment 1. The performed analysis in this experiment
is marked with the red color.

Within each running group in the signal selection set, an unsupervised offline
change-point detection algorithm, based on the theory presented in Section 3.3,
is applied to every principal component. With an unknown number of change-
points, a penalty function is needed as explained in Subsection 3.3.3. The
following penalty function, inspired from the BIC, is used in the algorithm:

pl0(τ) =
(m

2
log(N)

)
K, (4.2)

56

4.2 Experiment Design for Signal Selection

where N is the length of the running group, K is the number of change-points,
log is the natural logarithm function and m is a constant. It is reasonable that
the penalty function is a function of the length of the running group since the
running groups can be of different lengths. The reason for this is explained
both in Subsection 3.3.3 and Subsection 3.4.5. The constant m in this equation
is to be selected by the user. An ad hoc method can be applied to select this
constant. For the simulated data, we set m = 4. The details about how m
should be selected and the assumptions under which the number of change-
points is estimated consistently using this penalty function is out of the scope
of this work. A brief overview on the literature is provided in Subsection 3.3.3.
If the signals to which the change-point detection method is applied are of equal
length, one can use the following penalty function, inspired by the AIC:

pl0(τ) =
m

2
K,

where K is the number of change-points and m is a constant.
PELT, presented in Subsection 3.3.4, is used as the search method. For the

cost function, (3.15) is used, assuming a 1-dimensional autoregressive process of
order 1. This is because one could argue that a linear combination of the dimen-
sions of some data that is generated by a VAR process is best modelled with
an autoregressive model. For some linear combinations, this can be guaranteed.
Note the following theorem proven by the author:

Theorem Let Xt be an r × 1 time series generated by a VAR process of order
1, such that for t > 1: Xt = A1Xt−1 + Ut, where Ut ∼ N (0,Σ). Let B be
a 1 × r vector. Then Yt = BXt is a 1-dimensional time series that is a linear
combination of the dimensions of Xt. If B is a left eigenvector of A1, then Yt
is generated by an autoregressive process of order 1.

Proof Assume that BA1 = λB and Vt = BUt. One has:

Xt = A1Xt−1 + Ut ⇒ BXt = BA1Xt−1 +BUt ⇒
BXt = λBXt−1 +BA1Xt−1 − λBXt−1 +BUt ⇒
Yt = λYt−1 +B(A1 − λIr)Xt−1 + Vt.

Now we will show that B(A1 − λIr)Xt−1 = 0:

BA1 = λB ⇒ B(A1 − λIr) = 0⇒ B(A1 − λIr)Xt−1 = 0.

Therefore one now has:
Yt = λYt−1 + Vt,

where Vt ∼ N (0, BΣBT). It is proven that Yt is generated by an autoregressive
process of order 1.

In the case of the simulated data, it is known that the data comes from a
VAR process, while in the case of the real-world data, this is an assumption we

57

Chapter 4. Experiments

make. One cannot guarantee that the principal components are best modelled
by an autoregressive process, since they are not necessarily in the direction of
one of the left eigenvectors of the matrix A1. However, for the offline change-
point detection in this analysis, the cost function presented in (3.15) is used,
assuming a 1-dimensional autoregressive process of order 1 for the principal
components.

Following the method in Subsection 3.4.5 and Figure 3.4, every running
group is divided into different states. The f minutes before the end of a tripping
group are labeled as a failure state, while the period between ν minutes before
the end and f minutes before the end of a tripping groups is labeled as the
transition state. The rest of the time points in both normal and tripping groups
are labeled as normal states as illustrated in Figure 3.4. In this experiment,
f = 15 minutes for the simulated data and f = 5 minutes the real-world data.
Note that the last 10 minutes of the tripping groups in the real-world data are
previously removed from the data set. Therefore setting f = 5 minutes means
we want to be able to predict the unplanned shut-downs at least 15 minutes
before the speed of the compressor goes below 500 RPM. For the simulated
data ν = 105 minutes, and for the real-world data ν = 120 minutes. For the
simulated data, the length of the transition states is increased by 15 minutes
in each direction compared to the true length of the transition states given in
Subsection 4.1.2. This is done to allow for the early and the late detection
of the transition state since it is possible that the algorithm detects a change-
point before the transition state starts or after the transition state has ended.
The acceptable margin is 15 minutes. The values for the real-world data are
selected in consultation with the field experts. The change-points detected in
each principal component during every running group in the signal selection set
are used to calculate the αi’s and βj ’s needed to perform the Mann-Whitney U
test, as described in Subsection 3.4.5. Using the values of the αi’s and the βj ’s,
the Mann-Whitney U test is performed on every principal component, and the
principal component with the lowest p-value is selected as the signal of interest.

Instead of the principal components, one could apply this experiment to se-
lect one of the original dimensions in the data set as the signal of interest. There
is reason to believe that transforming the data using the PCA or the BTA would
improve the performance of the final predictive model. However, this experi-
ment is also applied to the original dimensions of the real-world data set in order
to provide a comparison ground to which the performance of the transformation
approaches can be compared. The results are presented in Chapter 5.

The semi-supervised CUSUM method, presented in Subsection 3.5.1, is a
competing method that could replace the unsupervised offline change-point de-
tection method applied for the selection of the signal of interest in this experi-
ment. Applying the CUSUM method, one would need to use historical data to
determine the CUSUM features. In this analysis, the signal selection data set
is used both for the selection of the signal of interest and for determining the
CUSUM features. Using the CUSUM method for the selection of the signal of
interest, the CUSUM features should be determined for each alternative signal.

58

4.2 Experiment Design for Signal Selection

Then the CUSUM method should be applied to the same data set and the signal
yielding the best performance should be selected as the signal of interest. One
can argue that using the signal selection data set for both purposes is a type
of overfitting. Therefore in this analysis the unsupervised offline change-point
detection algorithm is applied for the selection of the signal of interest. Given
a larger data set, one could use the semi-supervised CUSUM method for this
purpose, in which case one should use different data sets for determining the
CUSUM features and the selection of the signal of interest.

4.2.2 Experiment 2

In this experiment one of the signals discrepancy, leverage or influence based on
a PCA transformation is used as the signal of interest. The approach applied
in this experiment is marked with red in the analysis pipeline in Figure 4.9.
The PCA transformation is constructed and applied in the same way as in
Experiment 1.

Data

VAR Modelling

Covariance
Estimation PCA

BTA

Signal of
Interest

Change-Point
Detection

Discrepancy,
leverage and

Influence
Mann-Whitney U

test

Transformed
Data

Figure 4.9: The analysis pipeline for Experiment 2. The performed analysis in this experiment
is marked with the red color.

After transforming each running group in the signal selection set, the dis-
crepancy, the leverage and the influence are calculated as alternative signals of
interest. This is performed following the method presented in Subsection 3.4.5.
The first s principal components are used to calculate the leverage while the
rest of the principal components are used to calculate the discrepancy. The
number s is selected such that the first s principal components explain a large
proportion κ of the variance in the training data set. We set κ = 0.90 both for
the simulated and for the real-world data.

59

Chapter 4. Experiments

Within each running group in the signal selection set, a change-point detec-
tion algorithm, based on the theory presented in Section 3.3, is applied to all
three possible signals of interest. The same penalty function used in Experi-
ment 1 is also used here, except here we set m = 10 for the simulated data and
m = 60 for the real-world data. These values are selected by trial and error.
PELT, presented in Subsection 3.3.4, is used as the search method. The cost
function presented in (3.12) is used here. Since the signal is one dimensional,
the determinant of the estimated covariance matrix in this equation is replaced
with the estimated variance.

After the change-point detection is performed on the three signals discrep-
ancy, leverage and influence in all of the running groups in the signal selection
set, the three signals are compared to each other using the Mann-Whitney U
test. This is done in a similar way as in Experiment 1. Comparing the p-values
of the performed test, one of the three signals is selected as the signal of interest.

4.2.3 Experiment 3
In this experiment, one of the Box-Tiao components is selected as the signal
of interest. The approach applied in this experiment is marked with red in
the analysis pipeline in Figure 4.10. The BTA is performed as explained in
Subsection 3.4.2. The BTA transformation has a semi-supervised nature as
explained in Subsection 3.4.3. The training set is used to estimate a VAR model
of order 1 for the data. Thereafter the estimated covariance matrix of the data
Γ̂ and the estimated covariance matrix of the residuals Σ̂ are calculated for the
data in the normal state. The estimation is performed according to the method
presented in Subsection 3.4.4. Then Σ̂−1Γ̂ is used to BTA-transform the rest of
the running groups. This is done following the method presented in Subsection
3.4.2.

Within each running group in the signal selection set, a change-point detec-
tion algorithm is applied to every Box-Tiao component. The penalty function,
the search method and the cost function used here are all the same as the ones
used in Experiment 1. The Box-Tiao components are linear combinations of the
dimensions of the data. Therefore with a similar argument to the one provided
for Experiment 1 the cost function presented in (3.15) is used for the change-
point detection, assuming a 1-dimensional autoregressive process of order 1 for
the Box-Tiao components.

After the change-point detection is performed on the Box-Tiao components
in all of the running groups in the signal selection set, the Box-Tiao components
are compared to each other using the Mann-Whitney U test. This is done in a
similar way as in Experiment 1. The Box-Tiao component yielding the lowest
p-value is selected as the signal of interest.

4.2.4 Experiment 4
In this experiment one of the signals discrepancy, leverage or influence based on
a BTA transformation is used as the signal of interest. The approach applied

60

4.2 Experiment Design for Signal Selection

Data

VAR Modelling

Covariance
Estimation PCA

BTA

Signal of
Interest

Change-Point
Detection

Discrepancy,
leverage and

Influence
Mann-Whitney U

test

Transformed
Data

Figure 4.10: The analysis pipeline for Experiment 3. The performed analysis in this experiment
is marked with the red color.

in this experiment is marked with red in the analysis pipeline in Figure 4.11.
The BTA transformation is constructed and applied in the same way as in
Experiment 3.

After transforming each running group in the signal selection set, the dis-
crepancy, the leverage and the influence are calculated as alternative signals of
interest in the same way as for Experiment 2, with the same value for κ.

Within each running group in the signal selection set, a change-point detec-
tion algorithm is applied to all three possible signals of interest. The penalty
function, the search method and the cost function used here are all the same as
the ones used in Experiment 2.

After the change-point detection is performed on the three signals discrep-
ancy, leverage and influence in all of the running groups in the signal selection
set, the three signals are compared to each other using the Mann-Whitney U
test. This is done in a similar way as in Experiment 1. The signal yielding the
lowest p-value is selected as the signal of interest.

4.2.5 Discussion
The different experiments presented in this section cover a variety of possible
assumptions on the nature of the problem. BTA is used in Experiments 3 and
4, while PCA is used in Experiments 1 and 2.

BTA makes the assumption that the data comes from a VAR process of
order 1. If the distribution of the data is very different from a VAR process,
the approaches presented in Experiments 3 and 4 might not be suitable for the
problem. If both the normal and the tripping change-points are in the mean

61

Chapter 4. Experiments

Data

VAR Modelling

Covariance
Estimation PCA

BTA

Signal of
Interest

Change-Point
Detection

Discrepancy,
leverage and

Influence
Mann-Whitney U

test

Transformed
Data

Figure 4.11: The analysis pipeline for Experiment 4. The performed analysis in this experiment
is marked with the red color.

or the variance of the dn-th and the dt-th dimension of the data, respectively,
the PCA approach should work well. This is because a change in the mean
or the variance of the dn-th dimension in the normal groups will increase its
estimated variance, while the estimated variance of dt in the normal states
remains low. This means that dn will be a larger factor than dt in the first
principal components while dt will be a larger factor than dn in the last ones.
In this case the principal components in which dt is a large factor will have
small variances in the normal states and larger variances prior to a tripping.
Therefore, intuitively one of the last principal components or the discrepancy
should be selected as the signal of interest. However, this will only be the case
if the variance of dt in the normal states is not in itself substantially larger than
the variance of dn in the normal states. If this is the case, dt will be a larger
factor than dn in the first principal components, which will have large variances
in the normal states and even larger variances prior to a tripping. In this case,
one of the first principal components or the leverage should be selected as the
signal of interest. If the estimated variance of dt and dn in the normal states
are almost equal, it is not clear which principal component will have the most
predictive information.

If one or both of the normal and the tripping changes occur, not in the mean
or the variance of some dimensions, but in the structure of the relations between
them, the BTA approach might be more suitable than the PCA approach. This
is for instance the case if the changes occur in the matrix A1 in a VAR process
of order 1 such that Xt = A1Xt−1 +Ut for t > 1, where Ut ∼ N (0,Σ) for some
covariance matrix Σ. This is because such changes affect the predictability of
the different dimensions but not necessarily their estimated variance. Changes

62

4.3 Predictive Model Development

in the relationships between the different dimensions of the data are not included
in the simulated data. Therefore although the argumentation in this paragraph
seems plausible, it is not tested in this work.

In Experiments 2 and 4, one of the signals discrepancy, leverage or influ-
ence is used as the signal of interest while in Experiments 1 and 3, a linear
combination of the data is selected as the signal of interest. Choosing between
the discrepancy, the leverage and the influence needs less computation power as
the change-point detection needs to be performed only 3 times on each running
group. In the approaches presented in Experiments 1 and 3, the change-point
detection needs to be performed as many times as the number of dimensions
in the data. The difference in the computation time will be more significant
for high-dimensional data. On the other hand, using one of the signals discrep-
ancy, leverage or influence will not result in any useful information about the
cause of the failures in the system. In other words, this approach has little
interpretability. This is while using a linear combination of the data, one knows
how important a sensor measurement is for the signal of interest. This might
provide the field experts with useful information about the cause of the failures
in the system.

4.3 Predictive Model Development
For all the experiments presented in Section 4.2, a predictive model is developed
using the CUSUM method presented in Subsection 3.5.1. We will use the signal
selection set to determine the CUSUM features T , K and h with an ad hoc
method.

The running groups in the signal selection set are divided into different
states as illustrated in Figure 3.5. For the simulated data ν = 90 minutes,
as given in Subsection 4.1.2. We allow for the late detection of the transition
state by the predictive model but not for the early detection since this is not
possible given the online nature of the model. The late detection margin is 15
minutes. Therefore f = 30 − 15 = 15 minutes. The length of each state is
then 75 minutes. For the real-world data ν and f are set to 120 and 5 minutes,
respectively in consultation with the field experts. Note that the last 10 minutes
of the tripping groups in the real-world data are previously removed from the
data set. Therefore setting f = 5 minutes means we want to be able to predict
the unplanned shut-downs at least 15 minutes before the speed of the compressor
goes below 500 RPM.

We set T to the sample mean of the signal of interest in the normal states.
The value of the sample mean µ̂s is calculated using the normal groups in the
signal selection data set and following the method provided in (3.26). Using
the signal selection data set and following the ad hoc method presented in
Subsection 3.5.1, the optimal K and h can be selected such that some statistical
metric is maximized. One of the metrics presented in Subsection 3.5.2 can be
selected for this purpose. The suitable metric is specific to the business case, as
explained in Subsection 3.5.2. In our experiments, K and h are selected such

63

Chapter 4. Experiments

that the F1 score of the model is maximized on the signal selection data set.

Looking at (3.25), in Experiments 2 and 4, the process is declared out-of-
control only if C+

i > h. This is because selecting one of the signals discrepancy,
leverage or influence, we are not interested in declaring the process out-of-control
when the observed value for the signal of interest is ”too low”. In Experiments
1 and 3, the process is declared out-of-control if either C+

i > h or C−i > h.

4.4 Evaluation
One can compare the performance of two approaches either by comparing the
p-value of the Mann-Whitney U test on their corresponding selected signals of
interest, or by using one of the statistical metrics presented in Subsection 3.5.2
on their corresponding CUSUM models using some test data set. In the sim-
ulation study, for each of the 100 simulations, a p-value is yielded for each of
the four experiments. The Mann-Whitney U test is used to compare the es-
timated distribution of the p-values for every combination of two experiments.
The Mann-Whitney U test is performed on the p-value’s to test if the p-values
yielded by one experiment are significantly lower than that yielded by another.
The four different approaches for the selection of the signal of interest are com-
pared in this way.

A test set, which includes both normal and tripping groups, can be used to
evaluate the predictive models developed based on the signal of interest selected
by the four different approaches presented in Section 4.2. The statistical metrics
presented in Subsection 3.5.2 are used to evaluate the predictive models. All
four metrics presented in Subsection 3.5.2 are calculated for each experiment,
and the approaches are evaluated based on the value of all four metrics. The
value of the four statistical metrics calculated on some test data set is the final
evaluation of an approach.

4.5 Implementation
The implementation of the experiments is done in Python, and the code is pro-
vided in Appendix C. The code for the estimation of the covariance matrices Γ
and Σ needed for PCA and BTA presented in Section 3.4 is developed by the
author. The code for the PCA and the BTA transformations and the calcula-
tions of the discrepancy, the leverage and the influence with respect to these
transformations is also developed by the author. The methods are implemented
in a Python object called VARBT, presented in Appendix C. The estimation of
the covariance matrix of the innovation term in a VAR process Σ used for BTA
is performed with the help of the Statsmodel package developed by Seabold and
Perktold (2010).

The VAR model is implemented in
statsmodel.tsa.vector ar.var model. For the data simulation a
VARProcess object should be created. This object takes in the Ai matrices and

64

4.5 Implementation

the covariance matrix of the innovation term Σ used for the construction of the
VAR process as described in Section 3.2. A simulate var function is linked to
each VARProcess object. Using this function, one can simulate data following
the pre-determined VAR process. This function only takes in the desired length
of the simulated data. The random matrices used for the data simulation de-
scribed in 4.1.2 are generated with the help of functions from the Scipy and the
Sklearn packages of Python, developed by Jones et al. (2001–) and Pedregosa
et al. (2011), respectively. A random covariance matrix function can be gener-
ated with the help of the sklearn.datasets.make spd matrix function of
Sklearn, which takes in the number of dimensions and generates a random sym-
metric positive-definite matrix. A random orthogonal matrix given the number
of dimensions can be generated using the scipy.stats.ortho group.rvs
function of Scipy.

In order to estimate a VAR model given data, one should create a VAR
object. This object takes in the data used to fit the model. A fit function is
linked to each VAR object. This function only takes in the desired order of the
VAR model, and returns a result object. Calling the resid attribute of the
result object, one can access the residuals of the fitted VAR model. Using the
residuals, the covariance matrix of the innovation term, Σ can be estimated.

The change-point detection method presented in Section 3.3 is implemented
in a Python package developed by Truong (2017) called Ruptures. This pack-
age is used here for the offline change-point detection. Several search methods
including Opt and PELT, introduced in Subsection 3.3.4 are implemented in
Ruptures. It is possible to use any cost function under some mild regularity
conditions given in Truong (2017). Ruptures has implemented the cost func-
tion for several models including multivariate Gaussian model and univariate
autoregressive process. The implementation of PELT in Ruptures requires the
variables model, min size and jump. Here model is set to "normal" for
Experiments 2 and 4. For Experiments 1 and 3, model is set to "ar". In these
cases, the cost functions presented in (3.12) and (3.15) are used, respectively.
The variable min size is the minimum possible length of a regime and the
variable jump is used to create a sub-sample of possible change-points, such
that every

65

Chapter 4. Experiments

66

Chapter 5
Statistical Analyses and Results

In this chapter we will present the result of performing the experiments designed
in Section 4.2 on the simulated and the real-world data sets, described in Section
4.1.

First, we will perform all four experiments presented in Section 4.2 on the
100 simulated data sets. The data simulation process is described in Section
4.1.2. The results are presented in Section 5.1. In Subsection 5.1.3, the results
yielded by the four different approaches are compared and discussed.

In Section 5.2, we will perform two of the four experiments designed in 4.2
on the real-world data. The experiments performed on the real-world data
are selected based on the discussion of the results of the simulation analysis,
presented in Subsection 5.1.3. In Subsection 5.2.4, we will present some results
that can inspire for further work.

5.1 Simulation Analysis
Here we present the results of performing Experiments 1-4 designed in 4.2 on
the 100 simulated data sets. In Subsection 5.1.1, the results for Experiments
1 and 3 are presented. In these experiments, one of the principal or Box-Tiao
components is selected as the signal of interest. The predictive model is devel-
oped such that it detects deviations from the target value in both directions,
as discussed in Section 4.3. In Subsection 5.1.2, the results for Experiments 2
and 4 are presented. In these experiments, one of the signals discrepancy, lever-
age or influence of the PCA or BTA transformed data is selected as the signal
of interest. The predictive model is developed such that it detects deviations
from the target value only in the positive directions, as discussed in Section 4.3.
The evaluation is done according to the method discussed in Section 4.4. In
Subsection 5.1.3, the results of all 4 experiments are compared and discussed.
Based on the discussion presented in Subsection 5.1.3, two of the experiments
are selected to be performed on the real-world data set.

67

Chapter 5. Statistical Analyses and Results

5.1.1 Experiments 1 and 3
Experiments 1 and 3, presented in Section 4.2, are performed on the 100 sim-
ulated data sets. These experiments are marked in the analysis pipeline in
Figures 4.8 and 4.10, respectively. In Experiments 1 and 3, first a PCA or BTA
transformation is created in a semi-supervised manner, as discussed in Section
3.4.3. Then the offline change-point detection method presented in 3.3 is per-
formed on all principal and Box-Tiao components. The Mann-Whitney U test
is performed on the results of the offline change-point detection, as discussed in
Subsection 3.4.5. The principal or the Box-Tiao component yielding the lowest
p-value for the Mann-Whitney U test are respectively selected as the signal of
interest in Experiment 1 and 3 in each of the 100 simulations.

In Figure 5.1, one can see the number of the simulations in which a principal
or Box-Tiao component is selected as the signal of interest. One can see that
neither the first principal component nor the first Box-Tiao component are ever
selected as the signal of interest. Note that for the normal states the following
holds:

var(PC1) > var(PC2) > ... > var(PC10),

q(BT1) > q(BT2) > ... > q(BT10),

where var(PCi) and q(BTi) are respectively the variance of the i-th principal
component and the predictability of the i-th Box-Tiao component. In Figure
5.1, one can see that if i > j, PCi is selected more often as the signal of
interest than PCj . For the BTA, the ninth Box-Tiao component is the most
often selected signal of interest, while the frequencies of the selection of BTi for
i ∈ {5, 6, 7, 8, 10} are close to each other.

Looking at Figure 5.1, one could argue that in Experiment 3, the predictive
information seems to be concentrated in one Box-Tiao component, which is not
necessarily the last one, while in Experiment 1, the predictive information of
PCi seems to gradually increase with increasing i. Therefore it is plausible to
predict that if a predictive model is developed based on one single principal or
Box-Tiao component, the BTA approach might outperform the PCA approach.
On the other hand, one can see that PC10, which is the most frequently selected
principal component as the signal of interest, is more frequently selected as such
than BT9, which is the most frequently selected Box-Tiao component as the
signal of interest. However, for i ∈ {2, 3, 5, 6, 7}, BTi is selected more frequently
than PCi. Therefore one could argue that in Experiment 3, the predictive
information might be spread out among the Box-Tiao components while in
Experiment 1, the last few principal components might contain most of the
predictive information. Therefore it is plausible to predict that if a predictive
model is developed using one of the signals discrepancy, leverage or influence,
the discrepancy will outperform the other two signal with a PCA approach,
while with a BTA approach, the competition between the discrepancy and the
leverage or the influence will be closer than for the PCA. One should note that
the discussion here might only hold in our simulation study and is not necessarily
generalizable to other data sets.

68

5.1 Simulation Analysis

1 2 3 4 5 6 7 8 9 10
PCA and BTA Components

0

5

10

15

20

25

30

35

Nu
m

be
r o

f S
im

ul
at

io
ns

PCA
BTA

Figure 5.1: A histogram showing how frequently a principal or Box-Tiao component is selected
as the signal of interest in Experiments 1 and 3 in the simulation study. The results for Experi-
ment 1 are in red while the results for Experiment 3 are in blue. The total number of simulations
is 100 for each experiment.

69

Chapter 5. Statistical Analyses and Results

In each simulation, the Box-Tiao or the principal component with the lowest
p-value of the Mann-Whitney U test is selected as the signal of interest. Inspired
by the Fisher’s method, first introduced in Fisher (1925, p. 103), we compute the
natural logarithm of the p-value yielded by the selected signal of interest in each
simulation. Then the sample mean and the sample standard deviation of the
log(p-values) are calculated. This is done separately for Experiments 1 and 3. In
Experiment 1, the sample mean and the sample standard deviation of the log(p-
values) are respectively −57.51 and 22.25. In Experiment 3, the sample mean
and the sample standard deviation of the log(p-values) are respectively −57.55
and 20.64. Based on these values, one can see that for most of the selected
signals of interest, the Mann-Whitney U test, under a significance level of 0.05,
concludes that the distribution of the transition states in which a change-point
is detected is stochastically greater than the distribution of the normal states
in which a change-point is detected.

The Mann-Whitney U test is used to test if the distribution of the p-values
yielded by the selected signal of interest in Experiment 1 is stochastically less
than those Experiment 3. The normalization of the distributions is not necessary
here since the Mann-Whitney U test is a non-parametric test. The p-value of
the test is 0.34. One can see that the H0 is not rejected at a significance level of
0.05. It is therefore concluded that none of the approaches, PCA or BTA, are
necessarily superior to the other in our simulation study, when one compares the
p-values of the Mann-Whitney U test yielded by the selected signal of interest
in Experiment 1 and 3.

For each simulation, a predictive model is constructed based on the signal
of interest selected by each of the two approaches, following the method pre-
sented in Subsections 4.3 and 3.5.1. As described in Subsection 4.3, the CUSUM
features are selected such that the F1 score of the model is maximized on the
signal selection data set. For each simulation and experiment, the predictive
model is applied to the test data set. The recall, the precision, the accuracy
and the F1 score of the models are calculated following the method presented in
Subsection 3.5.2. The results of the calculation of these metrics are illustrated
as histograms in Figures 5.2, 5.3, 5.4 and 5.7, respectively.

In Figure 5.2, the distribution of the recall of the predictive models applied
to the simulated test data sets is presented. This is done separately for Ex-
periments 1 and 3. In this figure, one can see that the predictive models in
a large number of simulations have a recall that is larger than 0.95 both in
Experiment 1 and 3. In these simulations, the predictive model can predict
more than 95% of the trippings in the test data set between 15 and 90 minutes
before they happen. One can see that in the interval (0.95, 1], the number of
simulations with Experiment 3 is larger than that with Experiment 1. This
might mean that Experiment 3 yields a better recall for the predictive model
than Experiment 1. This hypothesis can be tested using the Mann-Whitney U
test. The Mann-Whitney U test is used to test if the distribution of the recall
yielded by the predictive models on the simulated test data sets in Experiment
3 is stochastically greater than that of Experiment 1. The p-value of the test is

70

5.1 Simulation Analysis

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

0

10

20

30

40

50

60

Nu
m

be
r o

f S
im

ul
at

io
ns

PCA
BTA

Figure 5.2: A histogram showing the distribution of the recall of the predictive models in Ex-
periments 1 and 3 applied to the simulated test data sets. The results for Experiment 1 are in red
while the results for Experiment 3 are in blue. The total number of simulations is 100 for each
experiment.

71

Chapter 5. Statistical Analyses and Results

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Precision

0

10

20

30

40

Nu
m

be
r o

f S
im

ul
at

io
ns

PCA
BTA

Figure 5.3: A histogram showing the distribution of the precision of the predictive models in
Experiments 1 and 3 applied to the simulated test data sets. The results for Experiment 1 are in
red while the results for Experiment 3 are in blue. The total number of simulations is 100 for
each experiment.

0.046. One can see that the H0 is rejected at a significance level of 0.05. It is
therefore concluded that Experiment 3 yields a better recall for the predictive
model than Experiment 1 in our simulation study.

The distribution of the precision and the accuracy of the predictive models
on the test data sets are presented in Figures 5.3 and 5.4, respectively. This is
done separately for Experiments 1 and 3. In these figures, it can be observed
that in both experiments, the precision and the accuracy of the predictive model
for a large number of simulations are either in the interval (0.05, 0.1] or in the
interval (0.95, 1]. This means when one of the Experiments 1 or 3 is applied as
the method for the selection of the signal of interest, the resulting predictive
model can have either very low and very high precision and accuracy. Therefore
it is plausible to think that there might be a latent factor affecting the precision
and the accuracy of the predictive model.

One could wonder if the precision and the accuracy are affected by a latent
factor in the same way. In Figure 5.5, the precision and the accuracy of the
predictive model are plotted against each other separately for Experiment 1 and
3. One can see in this figure that for most of the the simulations the precision
and the accuracy of the predictive model are either both high or both low. This

72

5.1 Simulation Analysis

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Accuracy

0

10

20

30

40

50

Nu
m

be
r o

f S
im

ul
at

io
ns

PCA
BTA

Figure 5.4: A histogram showing the distribution of the accuracy of the predictive models in
Experiments 1 and 3 applied to the simulated test data sets. The results for Experiment 1 are in
red while the results for Experiment 3 are in blue. The total number of simulations is 100 for
each experiment.

73

Chapter 5. Statistical Analyses and Results

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PCA

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

BTA

Figure 5.5: The precision and the accuracy of the predictive models in Experiments 1 and 3,
applied to the simulated test data sets are plotted against each other. The plot on the left side is
for Experiment 1 and the plot on the right side is for Experiment 3. The total number of points
in each plot is 100.

74

5.1 Simulation Analysis

supports the hypothesis that the accuracy and the precision are affected in the
same way by a latent factor.

The above-mentioned division in the distribution of the precision and the
accuracy is not observed in the distribution of the recall, presented in Figure
5.2. One could therefore think that the recall might not be affected in the same
way as the precision and the accuracy are by a latent factor. Looking at the
definition of the precision and the recall in Subsection 3.5.2, one can see that
the only difference is that the #FP in the formula for the precision is replaced
with a #FN in the formula for the recall. Therefore it is fair to conclude the the
precision and the accuracy might be affected by a latent factor through #FP in
the model.

It might be hypothesized that the latent factor affecting the precision and
the accuracy is the selected signal of interest. In Figure 5.6, the precision and
the accuracy of the predictive model applied to the test data set in a simulation
are plotted against the selected signal of interest in that simulation. This is done
separately for Experiments 1 and 3. One can observe that for almost all choices
of the signal of interest, there exist simulations in which the precision and the
accuracy are both high and low. For each experiment, the linear regression lines
are plotted for both the precision and the accuracy. One can see that the lines
are almost flat. Therefore it is fair to conclude that the latent factor affecting
the precision and the accuracy is not the selected signal of interest.

The latent variable affecting the precision and the accuracy of the predictive
model on the simulated test data sets might be a property of the underlying
VAR process used to generate the data set. However, investigating this further
is out of the scope of this work.

Looking at Figures 5.3 and 5.4, it seems that the distribution of the precision
and the accuracy of the predictive model in Experiment 3 might be stochastically
greater than that in Experiment 1. This is tested using a Mann-Whitney U
test. The p-values of the Mann-Whitney U test comparing the precision and
the accuracy of the two methods are 0.13 and 0.11, respectively. Neither for
the precision nor for the accuracy, the null hypothesis in the Mann-Whitney
U test is rejected under a significance level of 0.05. It is therefore concluded
that Experiment 3 doesn’t yield significantly better precision or accuracy for
the predictive model than Experiment 1 in our simulation study.

In Figure 5.7, the distribution of the F1 score of the predictive model is
presented in two histograms separately for Experiment 1 and 3. One can see
that a similar division to the one observed in the distribution of the precision
and the accuracy is observed in the distribution of the F1 score. In most of the
simulations, the predictive model has either a F1 score in the interval (0.1, 0.15]
or in the interval (0.95, 1]. This is not surprising since the F1 score is the
harmonic mean of the recall and the precision. It is known that in most of
the simulations, the predictive model has a recall in the interval (0.95, 1] on
the simulated test data sets. Therefore the division in the distribution of the
precision is carried to the distribution of the F1 score.

Looking at Figure 5.7, one can hypothesize that the distribution of the F1

75

Chapter 5. Statistical Analyses and Results

1 2 3 4 5 6 7 8 9 10
Selected Signal of Interest

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PCA
BTA

1 2 3 4 5 6 7 8 9 10
Selected Signal of Interest

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

PCA
BTA

Figure 5.6: The precision and the accuracy of the predictive model applied to the test data set
in a simulation are plotted against the selected signal of interest in that simulation. This is done
separately for Experiments 1 and 3. The points belonging to Experiment 1 are colored red and
have the shape of a ”+”, while the points belonging to Experiment 3 are colored blue and have
the shape of a ”×”. On the x-axis, the numbers 1, ..., 10 represent the 10 principal components
in Experiment 1 and the 10 Box-Tiao components in Experiment 3. The red lines are linear
regression lines for the points belonging to Experiment 1, and the blue lines are linear regression
lines for the points belonging to Experiment 3. The total number of points for each experiment
is 100.

76

5.1 Simulation Analysis

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
F1 Score

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f S
im

ul
at

io
ns

PCA
BTA

Figure 5.7: A histogram showing the distribution of the F1 score of the predictive models in
Experiments 1 and 3 applied to the simulated test data sets. The results for Experiment 1 are in
red while the results for Experiment 3 are in blue. The total number of simulations is 100 for
each experiment.

77

Chapter 5. Statistical Analyses and Results

score in Experiment 3 is stochastically greater than that in Experiment 1. This
is tested using the Mann-Whitney U test. The p-value of the test is 0.08 and the
null hypothesis is not rejected using a significance level of 0.05. It is therefore
concluded that Experiment 3 doesn’t a yield significantly better F1 score for
the predictive model than Experiment 1 in our simulation study.

5.1.2 Experiments 2 and 4
Experiments 2 and 4, presented in Section 4.2, are performed on the 100 sim-
ulated data sets. These experiments are marked in the analysis pipeline in
Figures 4.9 and 4.11, respectively. In Experiments 2 and 4, first a PCA or BTA
transformation is created in a semi-supervised manner, as discussed in Section
3.4.3. The PCA transformation is used in Experiment 2 while the BTA trans-
formation is used in Experiment 4. Then the discrepancy, the leverage and the
influence of the PCA or the BTA transformed data are calculated. These sig-
nals are defined in Subsection 3.4.5. The offline change-point detection method
presented in 3.3 is performed on these three signals in each experiment. Then
the Mann-Whitney U test is performed on the results of the offline change-point
detection with the leverage, the discrepancy and the influence as the alterna-
tive signals of interest, as discussed in Subsection 3.4.5. The signal yielding the
lowest p-value by the Mann-Whitney U test is selected as the signal of interest
in each of the 100 simulations.

In Figure 5.8, one can see the number of the simulations in which each signal
is selected as the signal of interest. This is illustrated separately for Experiment
2 and 4. One can see that in both experiments, the discrepancy is the most
frequent choice of the signal of interest. The leverage is more frequently chosen
in Experiment 4 than in Experiment 2. This is in agreement with the prediction
made in Subsection 5.1.1 based on Figure 5.1. It can be observed that the
influence is chosen as the signal of interest in a very few number of simulations.

In a similar way to the analysis performed for Experiment 1 and 3, we
compute the natural logarithm of the p-value yielded by the selected signal of
interest in each simulation to normalize their distribution. The sample mean
and the sample standard deviation of the log(p-values) are calculated, separately
for Experiments 2 and 4. In Experiment 2, the sample mean and the sample
standard deviation of the log(p-values) are respectively −41.95 and 25.55. In
Experiment 4, the sample mean and the sample standard deviation of the log(p-
values) are respectively −34.51 and 26.84. Based on these values, one can see
that for most of the selected signals of interest, the Mann-Whitney U test under
a significance level of 0.05 concludes that the distribution of the transition states
in which a change-point is detected is stochastically greater than the distribution
of the normal states in which a change-point is detected.

The Mann-Whitney U test is used to test if the distribution of the p-values
yielded by the selected signal of interest in Experiment 2 is stochastically less
than that in Experiment 4. The p-value of the test is 0.04. The H0 is rejected at
a significance level of 0.05. It is therefore concluded that the PCA approach is
superior to the BTA approach in our simulation study, when one compares the

78

5.1 Simulation Analysis

Leverage Discrepancy Influence
Signal of Interest

0

20

40

60

80

Nu
m

be
r o

f S
im

ul
at

io
ns

PCA
BTA

Figure 5.8: A histogram showing how frequently a signal is selected as the signal of interest in
Experiments 2 and 4 in the simulation study. The results for Experiment 2 are in red while the
results for Experiment 4 are in blue. The total number of simulations is 100 for each experiment.

79

Chapter 5. Statistical Analyses and Results

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

0

5

10

15

20

25

30

Nu
m

be
r o

f S
im

ul
at

io
ns

PCA
BTA

Figure 5.9: A histogram showing the distribution of the recall of the predictive models in Ex-
periments 2 and 4 applied to the simulated test data sets. The results for Experiment 2 are in red
while the results for Experiment 4 are in blue. The total number of simulations is 100 for each
experiment.

p-values of the Mann-Whitney U test yielded by the selected signal of interest
in Experiments 2 and 4.

For each simulation, a predictive model is constructed based on the signal of
interest selected in each of the Experiments. This is done following the method
presented in Subsection 4.3 and 3.5.1. As described in Subsection 4.3, the
CUSUM features are selected such that the F1 score of the model is maximized
on the simulated signal selection data sets. For each experiment, the predictive
model is applied to the simulated test data sets. The recall, the precision, the
accuracy and the F1 score of the models are calculated following the method
presented in Subsection 3.5.2. The results of the calculation of these metrics
are illustrated as histograms in Figures 5.9, 5.10, 5.11 and 5.12, respectively.

In Figures 5.9, 5.10, 5.11 and 5.12, one can see that in both experiments, all
the statistical metrics calculated to measure the performance of the predictive
model are in the interval (0.95, 1] for a large number of simulations. For all of the
four metrics, the number of the simulations in which the metric is larger than
0.95 is larger for Experiment 2 than it is for Experiment 4. It can therefore
be hypothesized that using the discrepancy, the leverage or the influence of
the PCA transformed data as the signal of interest might yield better results

80

5.1 Simulation Analysis

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Precision

0

5

10

15

20

25

30

Nu
m

be
r o

f S
im

ul
at

io
ns

PCA
BTA

Figure 5.10: A histogram showing the distribution of the precision of the predictive models in
Experiments 2 and 4 applied to the simulated test data sets. The results for Experiment 2 are in
red while the results for Experiment 4 are in blue. The total number of simulations is 100 for
each experiment.

81

Chapter 5. Statistical Analyses and Results

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Accuracy

0

10

20

30

40

50

60

Nu
m

be
r o

f S
im

ul
at

io
ns

PCA
BTA

Figure 5.11: A histogram showing the distribution of the accuracy of the predictive models in
Experiments 2 and 4 applied to the simulated test data sets. The results for Experiment 2 are in
red while the results for Experiment 4 are in blue. The total number of simulations is 100 for
each experiment.

82

5.1 Simulation Analysis

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
F1 Score

0

5

10

15

20

25

30

Nu
m

be
r o

f S
im

ul
at

io
ns

PCA
BTA

Figure 5.12: A histogram showing the distribution of the F1 score of the predictive models in
Experiments 2 and 4 applied to the simulated test data sets. The results for Experiment 2 are in
red while the results for Experiment 4 are in blue. The total number of simulations is 100 for
each experiment.

83

Chapter 5. Statistical Analyses and Results

for the predictive model than using that of the BTA transformed data in our
simulation study. This hypothesis can be tested using the Mann-Whitney U
test. The Mann-Whitney U test is used to test if the distribution of each of the
four metrics in Experiment 2 is stochastically greater than that in Experiment
4. The p-values of the test on the recall, the precision, the accuracy and the
F1 score are 0.10, 0.11, 0.12 and 0.13 respectively. One can see that the H0

is not rejected at a significance level of 0.05 in any of the tests. It is therefore
concluded that Experiment 2 does not yield significantly better results for the
predictive model than Experiment 4 in our simulation study.

5.1.3 Comparison and Discussion
Looking at Figures 5.10, 5.11 and 5.12 for Experiments 2 and 4, one can not
observe the same division in the distribution of the precision, the accuracy and
the F1 score observed in the distribution of these metrics in Experiments 1
and 3 in Figures 5.3, 5.4 and 5.7. One may therefore infer that the latent
factor affecting the performance of the predictive model in Experiments 1 and
3 is not present in Experiments 2 and 4. Another possible conclusion is that
selecting only one principal or Box-Tiao component as the signal of interest
makes the approaches in Experiments 1 and 3 non-robust. The difference in the
Mann-Whitney U test’s p-values yielded by the different principal or Box-Tiao
components might be small. In this case, the principal or Box-Tiao component
yielding the least p-value might not yield the best performance by the predictive
model.

In Experiments 1 and 3, the last principal and Box-Tiao components are
selected more frequently as the signal of interest than the first ones while in
Experiments 2 and 4 the discrepancy is the most frequently selected signal of
interest. Note that the discrepancy is calculated based on the last principal
or Box-Tiao components. It is therefore fair to conclude that the principal
components with the smallest variances and the Box-Tiao components with
the smallest predictabilities in the normal states contain the most predictive
information in our simulation study.

Comparing the recall of the predictive models in Experiments 1 and 3, it
was concluded that the distribution of the recall is stochastically greater in
Experiment 3 than in Experiment 1. On the other hand comparing the p-
values of the Mann-Whitney U test yielded by the selected signal of interest in
Experiments 2 and 4, it was concluded that the distribution of the p-values in
Experiment 2 is stochastically less than in Experiment 4. Note that the PCA
transformation is used in Experiments 1 and 2, while the BTA transformation is
used in Experiments 3 and 4. Other than the above-mentioned differences, the
performance yielded by the PCA and the BTA are not significantly different.

In our simulation study, we calculate the average recall, precision, F1 score
and accuracy of the predictive model in each of the four experiments designed
in Subsection 4.2. The results are presented in Figure 5.13. Experiments 1
and 3 yield lower average precision, recall and accuracy than Experiment 2 and
4. This is expected given the division in the distribution of these metrics in

84

5.1 Simulation Analysis

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Dimensionality Reduction Approach

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

St
at

ist
ica

l M
et

ric

Recall
Precision
F1 score
Accuracy

Figure 5.13: The average recall, precision, F1 score and accuracy of the predictive model in
each of the four experiments designed in Subsection 4.2 applied to the simulated test data sets
are illustrated here. The total number of simulations used to calculate the average metrics is 100.
The average values of the recall for Experiments 1−4 are respectively 0.86, 0.73, 0.91 and 0.69.
The average values of the precision for Experiments 1− 4 are respectively 0.51, 0.76, 0.56 and
0.70. The average values of the F1 score for Experiments 1−4 are respectively 0.51, 0.74, 0.58
and 0.68. The average values of the accuracy for Experiments 1− 4 are respectively 0.55, 0.95,
0.60 and 0.94.

85

Chapter 5. Statistical Analyses and Results

these experiments. Experiments 1 and 3 yield however larger average recall
than Experiments 2 and 4.

5.2 Real-World Analysis
Based on the results of the simulation study, presented in Section 5.1, we choose
to perform Experiments 2 and 4 on the real-world data set. This is also partly
to save computation time, in addition to avoiding a very low precision and
accuracy as one obtained for many simulations with Experiments 1 and 3.

In Subsection 5.2.1, we present an analysis of the real-world data. This
subsection is an extension of the description of the real-world data presented in
Subsection 4.1.1. The results of the dimensionality reduction performed with
the methods in Experiments 2 and 4 are presented in Subsection 5.2.2. Following
the method presented in Subsection 4.3, a predictive model is developed based
on the selected signal of interest in each of the experiments. The predictive
models are evaluated on a test data set, using the statistical metrics presented
in Subsection 3.5.2. The results of this are presented in Subsection 5.2.3.

Finally, in Subsection 5.2.4, we present the results of a simple multivariate
model, demonstrating the potential in these models. The theory for this experi-
ment is not developed or presented in this work. The results in Subsection 5.2.4
only serve the purpose of inspiring for further work in the field.

5.2.1 Data Analysis
In Figure 4.3, it is observed that the estimated variances for most of the di-
mensions in the tripping groups are not very different from those in the normal
groups. It is argued that this might be because the system is in a normal state
for most of the time even in the tripping groups. In Figure 5.14, the estimated
predictability and the natural logarithm of the estimated variance of the 62
dimensions of the data are shown separately in the normal and in the transi-
tion states. We refer to the variance and the predictability of a dimension in
the normal states as its normal variance and normal predictability, respectively.
The variance and the predictability of a dimension in the transition states are
referred to as its transition variance and transition predictability, respectively.
The normal and the transition states here are defined in Subsection 3.5.1 and
illustrated in Figure 3.5. Here ν = 120 minutes and f = 5 minutes. Only the
normal states in the normal groups are used to estimate the normal variances
and the normal predictabilities. For estimation in the transition states, the data
from 120 minutes to 5 minutes before the end of the tripping groups is used. For
the estimation in the normal states, the normal groups are therefore divided into
intervals of length 115 minutes. Note that the last 10 minutes of each tripping
group is previously removed from the data set. As a result a transition state
is from 130 to 15 minutes before a failure in the system. The final estimation
of the normal and the transition variance and predictability of a dimension are
the average of the estimated variances and predictabilities of that dimension in

86

5.2 Real-World Analysis

0 10 20 30 40 50 60
Dimensions

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ed

ict
ab

ilit
y

Normal States
Transition States

0 10 20 30 40 50 60
Dimensions

5

0

5

10

15

lo
g-

va
ria

nc
e

Normal States
Transition States

Figure 5.14: In the left plot, the natural logarithm of the estimated normal and transition variance
of the 62 dimensions of the real-world data are shown separately. In the right plot, the estimated
normal and transition predictability of the 62 dimensions of the data are shown separately. The
predictability is estimated assuming an autoregressive process of order 1 for each dimension.
The estimates in the normal states are shown in dark grey while the estimates in the transition
states are shown in green. The dimensions are sorted in the descending order of their estimated
normal variance in both plots. The rank of each dimension can be found in a table in Appendix
B.

the normal and the transition states, respectively. The dimensions are sorted in
the descending order of their estimated normal variance in both plots. This is
not necessarily the same as the indexing used in Figure 4.3, since the estimation
is done in a different way here. The rank of each dimension in Figure 5.14 can
be found in a table in Appendix B. The predictability is estimated assuming an
autoregressive process of order 1 for each dimension. The predictability q of a
1-dimensional signal is defined in (3.19).

In Figure 5.14, one can see that the estimated transition variances are slightly
larger than the estimated normal variances for most of the dimensions. Note
that the difference is larger in the values of the estimated variances than it is
in the values of the logarithm of the estimated variances, which are plotted
in Figure 5.14. This difference in the variance in the different states can be
exploited in developing a predictive model.

The plots in Figure 5.14 support the hypothesis that the variance of a sig-
nal and its predictability are independent in the real-world data set. This is
because while the dimensions are sorted in the descending order of their esti-
mated normal variance in both plots, the plot for the estimated predictabilities
shows no clear trend. Note that the predictabilities are estimated assuming an
autoregressive process of order 1 for each dimension. This assumption is clearly
not guaranteed to hold.

The mean estimated normal and transition predictability of the dimensions

87

Chapter 5. Statistical Analyses and Results

0 50 100 150 200
Time (minutes)

0

2

4

Si
gn

al

Figure 5.15: An illustration of the normal changes in a dimension of the real-world data set in a
normal group. A change-point is marked with a shift in the background color.

in the data are respectively 0.63 and 0.67. Note that the relations between the
different dimensions are disregarded in the estimation of the predictabilities.
Looking at the definition of the predictability in (3.19), one can interpret that
the assumption of a 1-dimensional autoregressive process of order 1 explains
in average about 65% of the variance in each dimension. This supports the
hypothesis that the real-world data can be modelled with a VAR model of order
1.

Note that prior to the analysis, the whole data set is scaled by dividing each
observation in each dimension by the square root of its normal variance, shown
in Figure 4.3. However, the calculations of the variances and the predictabilities
illustrated in Figure 5.14 are done prior to the scaling.

In Subsection 5.2.2, the offline change-point detection method together with
the Mann-Whitney U test method are performed on the original dimensions
of the real-world data to provide a comparison ground for the dimensionality
reduction approaches in Experiments 2 and 4. The dimension yielding the lowest
p-value is then selected as the signal of interest. In Subsection 5.2.3, a predictive
model is developed based on this dimension. In Figure 5.15, this dimension is
plotted in a normal group. In Section 3.4.3, we propose not to develop change-
point detection models based on the sensor measurements directly, since there
might be many normal changes in the operation mode of the system. This is
illustrated in Figure 5.15. In this figure, one can see that there are several
changes in the distribution of this dimension during a normal group. Note that
according to the results from applying the offline change-point detection and the
Mann-Whitney U test method to the original dimensions, the difference between
the distribution of the transition and the normal states in which a change-point
is detected is largest for this dimension. Looking at Figure 5.15, it is reasonable
to predict that a model that is supposed to predict failures in the system based
on changes in the distribution of this signal might not have a good performance.

5.2.2 Signal Selection Results
Experiments 2 and 4, presented in Section 4.2 are performed on the real-world
data set. Here the training data set is used to construct the BTA and the PCA
transformations and the signal selection data set is used to select the signal of
interest among the signals leverage, discrepancy and influence in each case. The

88

5.2 Real-World Analysis

different data sets are defined in Subsection 4.1.1.

The Mann-Whitney U test is performed on the results of the offline change-
point detection applied to the signal selection data set for Experiments 2 and 4.
The log(p-values) of the tests are displayed in Figure 5.16. The p-values for all
the tests are larger than 0.99999. This might mean that none of the alternative
signals of interest contain any predictive information, since the distribution of
the transition states in which a change-point is detected is not stochastically
greater than the distribution of the normal states in which a change-point is
detected. This might however be caused by the difference in the lengths of the
different states.

The transition states are all of length ν−f = 115 minutes. This is while the
length of a normal state can be as large as several thousands minutes, looking
at Figures 4.1 and 4.2. By dividing the data set into normal, transition and
failure states following the method presented in Subsection 3.4.5 and illustrated
in Figure 3.4, we assume that the probability of detecting a change-point in an
interval is independent from the length of the interval since the penalty function
in the offline change-point detection method is a function of the length of the
interval, as discussed in Subsection 3.4.5. This assumption is however in no
way guaranteed. This problem was not encountered in the simulation study,
probably since the difference in the length of the normal states and the length
of the transition states in the simulated data sets is not as large as it is in
the real-world data set. To solve this problem, one should divide the normal
states into intervals of equal length to the transition states, as it is illustrated
in Figure 3.5. Then the normal and the transition states will have equal lengths
and the penalty function in the offline change-point detection method will not
need to depend on the length of the running group to estimate the number of
change-points consistently. In this case a linear penalty function inspired by
the AIC can be used. One should note that using a penalty function inspired
by the AIC in this case still does not guarantee the consistency in estimating
the number of change-points. However, non-consistent estimation in this case
has a smaller effect on our results since the intervals that are being compared
to each other are of equal lengths. Even though the division illustrated in
Figure 3.5 is used to calculate the αi’s and βj ’s used to perform the Mann-
Whitney U test, the change-point detection method is still applied to whole
running groups. To avoid the above-mentioned issue completely, one should
divide the data into normal and transition states of equal lengths and then
apply the change-point detection method with the same penalty function to
each individual state separately instead of applying it to whole running groups.
This is however not done in this work. We have divided the normal states into
intervals of equal length to the transition states, as it is illustrated in Figure
3.5, and applied the change-point detection method with a linear penalty to the
running groups. The results are presented in Figure 5.17. Inspired by the AIC,
a constant ω = 200 is used in the penalty function pl0 , presented in (3.11). One
can see in Figure 5.17 that labeling the data points as it is illustrated in Figure
3.5 results in p-values that are in the expected range. Figure 5.17 shows that the

89

Chapter 5. Statistical Analyses and Results

Leverage Discrepancy Influence
Signals

6

5

4

3

2

1

0

lo
g(

p-
va

lu
es

)

1e 10

PCA

Leverage Discrepancy Influence
Signals

0.0000030

0.0000025

0.0000020

0.0000015

0.0000010

0.0000005

0.0000000

lo
g(

p-
va

lu
es

)

BTA

Figure 5.16: The log(p-values) of the Mann-Whitney U test performed on the results of the
offline change-point detection applied to the signals discrepancy, leverage and influence of the
transformed real-world signal selection data set. In Experiment 2, the result of which is presented
in the plot to the right, the PCA transformation is used. In Experiment 4, the result of which is
presented in the plot to the left, the BTA transformation is used. Here the labeling of the data
points is performed as described in Subsection 3.4.5 and illustrated in Figure 3.4. The penalty
function used here for the change-point detection is provided in (4.2), where m = 60.

discrepancy yields the lowest p-value for both experiments. The p-values yielded
by the discrepancy for Experiments 2 and 4 are respectively 0.3612 and 0.0002.
This signal is therefore selected as the signal of interest in both experiments.

The offline change-point detection method presented in Section 3.3 together
with the Mann-Whitney U test method presented in Subsection 3.4.5 are also
performed on the original dimensions to provide a comparison ground for the
dimensionality reduction approaches in Experiments 2 and 4. Here the labeling
of the data points is performed as illustrated in Figure 3.4. By applying the
change-point detection to the original dimensions, we assume that one of them is
selected as the signal of interest on which a predictive model is developed. This
provides a basis with which the performance of our methods in Experiments 2
and 4 can be compared. The offline change-point detection is performed in a
similar way to Experiment 1, assuming an autoregressive model of order 1, and
setting m = 0.02 in the BIC-inspired penalty function. The dimension yielding
the lowest p-value is then selected as the signal of interest. The p-values yielded
by the 62 dimensions are illustrated in Figure 5.18. The lowest p-value is 0.36,
and one can see that most of the p-values are close to 1. The observed effect
in the p-values yielded by the signals discrepancy, leverage and influence when
the labeling of the data points is performed as illustrated in Figure 3.4 is also
observed here. However, this issue is ignored here and the dimension yielding the
lowest p-value is selected as the signal of interest, since the difference between
the p-value yielded by this dimension and the p-values yielded by the other

90

5.2 Real-World Analysis

Leverage Discrepancy Influence
Signals

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

lo
g(

p-
va

lu
es

)
PCA

Leverage Discrepancy Influence
Signals

8

6

4

2

0

lo
g(

p-
va

lu
es

)

BTA

Figure 5.17: The log(p-values) of the Mann-Whitney U test performed on the results of the
offline change-point detection applied to the signals discrepancy, leverage and influence of the
transformed real-world signal selection data set. In Experiment 2, the result of which is presented
in the plot to the right, the PCA transformation is used. In Experiment 4, the result of which is
presented in the plot to the left, the BTA transformation is used. Here the labeling of the data
points is performed as described in Subsection 3.5.1 and illustrated in Figure 3.5. The penalty
function used here for the change-point detection is pl0(τ) = 200K, where K is the number of
change-points.

91

Chapter 5. Statistical Analyses and Results

0 10 20 30 40 50 60
Dimensions

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p-
va

lu
es

Figure 5.18: The p-values of the Mann-Whitney U test performed on the results of the offline
change-point detection applied to the original dimensions of the real-world data. The signal
selection data set is used for this analysis.

dimensions is large enough.

5.2.3 Predictive Model Results

Two CUSUM models are developed based on the discrepancy of the BTA and
the PCA transformed data, as described in Subsection 4.3. Another CUSUM
model based one of the original dimensions in the data is also developed as a
comparison ground. Looking at (3.25), in Experiments 2 and 4, the process is
declared out-of-control only if C+

i > h, as discussed in Subsection 4.3. Selecting
one of the original dimensions as the signal of interest, the process is declared
out-of-control if either C+

i > h or C−i > h. The dimension yielding the lowest
p-value of the Mann-Whitney U test is selected for this purpose. The signal
selection data set consisting of 38 normal groups and 38 tripping groups is used
to determine the CUSUM features in each case such that the F1 score of the
model is optimized, following the method in Subsection 3.5.1. The CUSUM
models are tested on the test data set, also consisting of 38 normal groups and
38 tripping groups. The different data sets are defined in Subsection 4.1.1. The
data is divided into normal, transition and failure states following the method
presented in Subsection 3.5.1 and Figure 3.5. Then there are in total 2627
normal states and 38 transition states in the test data set.

92

5.2 Real-World Analysis

The predictive models are evaluated using the statistical metrics presented
in Subsection 3.5.2. The results are illustrated in Figure 5.19. From the 38
transition states in the test data set, only 3 are detected by the model based
on one of the original dimensions. Using the discrepancy of the PCA and the
BTA transformed data as the signal of interest, the CUSUM model detects
respectively 9 and 10 transition states out of 38. With the PCA and the BTA
transformations, the number of false positives is respectively 336 and 495 out
of 2627 normal states in the test data set. Using one of the original dimensions
in the data, the number of false positives is 52. A lower false positive rate is
the reason why the accuracy of this model is higher than that of the models
using the PCA and the BTA transformations. One can see that while the
number of true positives using the PCA is triple that using no transformations,
the number of false positives using the PCA is more than 6 times that using
no transformations. Therefore one might argue that applying the PCA might
not have a real positive effect on the performance of the model. However,
in further experimentation, we determined the CUSUM features based on the
same individual dimension in the data maximizing the recall of the model on
the signal selection data set. Note that earlier this was done maximizing the
F1 score of the model on the signal selection data set. After applying the new
model to the test data set, we obtained 22 true positives out of 38, and 1868
false positives out of 2627. One can see that while the number of true positives
in this model using no transformations is slightly more than twice that using the
PCA, the number of false positives in this model is more than 5 times that using
the PCA. Therefore we conclude that our dimensionality reduction approaches
should have a positive effect on the performance of the final predictive model.

5.2.4 A Simple Multivariate Predictive Model
Here we present the result of a model that can show the potential of further
work on multivariate CUSUM models. The same PCA and BTA transformations
constructed for Experiments 2 and 4 are used here. We use the last 10 principal
and Box-Tiao components in this model. For each of them, using the signal
selection data set and the method presented in 3.5.1, the CUSUM features are
determined independently such that the F1 score is optimized. A CUSUM model
is developed on each of the signals. Using the BTA transformation, the process
is declared out-of-control if at least one of the last 10 Box-Tiao components is
out-of-control and in-control if all of the last 10 Box-Tiao components are in-
control. Using the PCA transformation, the process is declared out-of-control if
at least one of the last 10 principal components is out-of-control and in-control
if all of the last 10 principal components are in-control. A principal or Box-Tiao
component is out-of-control if either C+

i > h or C−i > h, where C+
i and Ci are

defined in (3.25). The models are tested on the test data set and the results are
illustrated in Figure 5.20.

One can see that the recall is improved substantially compared to the uni-
variate models while the loss of accuracy is limited. From 38 transition states
17 and 21 are detected using the last 10 Box-Tiao and principal components,

93

Chapter 5. Statistical Analyses and Results

Experiment 2 Experiment 4 No Transformation
Dimensionality Reduction Approach

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l M
et

ric

Recall
Precision
F1 score
Accuracy

Figure 5.19: The recall, precision, F1 score and accuracy of the predictive model in Experi-
ments 2 and 4 applied to the real-world test data set are illustrated here. These metrics are also
calculated and illustrated for the predictive model based on one of the original dimensions of the
data. The values of the recall for Experiments 2 and 4 are respectively 0.24 and 0.26. The values
of the precision for Experiments 2 and 4 are respectively 0.03 and 0.02. The values of the F1
score for Experiments 2 and 4 are respectively 0.05 and 0.04. The values of the accuracy for
Experiments 2 and 4 are respectively 0.86 and 0.80. The values of the recall, the precision, the
F1 score and the accuracy of the predictive model based on one of the original dimensions of the
data are respectively 0.08, 0.05, 0.06 and 0.97.

94

5.2 Real-World Analysis

10 Last PCs 10 Last BTs
Dimensionality Reduction Approach

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

St
at

ist
ica

l M
et

ric

Recall
Precision
F1 score
Accuracy

Figure 5.20: The recall, precision, F1 score and accuracy of two simple multivariate predictive
models applied to the real-world test data set are illustrated here. One of the models is based
on the last 10 principal components and the other on the last 10 Box-Tiao components. The
values of the recall, the precision, the F1 score and the accuracy of the predictive model based
on the last 10 principal components are respectively 0.55, 0.03, 0.05 and 0.77. The values of
the recall, the precision, the F1 score and the accuracy of the predictive model based on the last
10 Box-Tiao components are respectively 0.45, 0.02, 0.05 and 0.59.

95

Chapter 5. Statistical Analyses and Results

respectively. The number of false positives using the Box-Tiao and PCA trans-
formation is respectively 1068 and 599 out of 2627 normal states.

The improvement in the performance of the multivariate models compared
to the univariate ones is as expected, since there exist many types of failures
in the system. A principal or Box-Tiao component might contain predictive
information about one type of failure while another one might contain infor-
mation about another type of failure. The results presented in this subsection
only show the potential in multivariate models, and can be improved upon by
selecting the optimal combination of the principal and Box-Tiao components
and developing a more advanced multivariate CUSUM model.

96

Chapter 6
Discussion and Conclusion

Based on the results of the experiments performed in this work, it is concluded
that both in the simulation and in the real-world study, the semi-supervised
nature of the transformations, described in Subsection 3.4.3 is advantageous in
finding the signals in the data with the most predictive information. The results
of all the experiments support the hypothesis that in most cases, the principal
components with the least variances under the normal state contain the most
predictive information. It can be argued that a similar conclusion can be drawn
for the Box-Tiao components with the least predictabilities. However, the simu-
lation study shows that this is not always the case and careful experimentation
should be done in order to select the signal of interest. The semi-supervised
labeling of the data points, described in Subsection 3.4.5 and illustrated in Fig-
ures 3.4 and 3.5, enables the construction of a predictive model without prior
knowledge about exactly when the anomalies occur with respect to the failures
in the system.

One can see in Figure 5.13 that in our simulation study, the average perfor-
mance of the predictive models based on the Box-Tiao components is slightly
better than that based on the principal components. On the other hand, the
average performance of the predictive models based on the signals discrepancy,
leverage or influence of the PCA transformed data is slightly better than that
of the BTA transformed data. The Mann-Whitney U test is used to test if the
differences in the four statistical performance metrics of the models in different
experiments are significant. Using a significance level of 0.05, the only signifi-
cant difference between PCA and BTA in our simulation study is in the recall of
the predictive models based on the Box-Tiao components and that based on the
principal components. In all the other cases, the difference is not significant.
Overall, our study doesn’t confirm the advantage of using the BTA transfor-
mation instead the PCA transformation in our model. However this can be
investigated further with a more comprehensive simulation study which looks
at several types of changes in the distribution of the data.

97

Chapter 6. Discussion and Conclusion

In the simulation study, we compare the results of Experiments 2 and 4,
presented in Subsection 5.1.2, to the results of Experiments 1 and 3, presented
in Subsection 5.1.1. In Experiments 1 and 3, one obtains very low precision and
accuracy metrics for the predictive model in a substantial number of simulations.
This effect is not observed for Experiments 2 and 4. It is therefore possible to
conclude that selecting only one principal or Box-Tiao component as the signal
of interest makes the approaches in Experiments 1 and 3 non-robust. The
results of Experiments 2 and 4 show that combining the principal and Box-
Tiao components into the signals discrepancy, leverage and influence is a more
robust approach to the selection of the signal of interest than choosing only one
principal or Box-Tiao component.

In Subsection 3.5.1, we present the CUSUM method as an online change-
point detection model applied for failure prediction. We refer to the parameters
of this model as the CUSUM features and develop an ad hoc method to de-
termine the CUSUM features, with a semi-supervised approach, described in
Subsection 3.5.1. This method is tested in our simulation and real-world anal-
yses, and the results are presented in Chapter 5. Based on the performances of
the predictive models in our analyses, it is fair to conclude that our proposed
semi-supervised ad hoc approach for determining the CUSUM features yields
acceptable performances by the predictive model. In a more extensive study,
one can apply and compare the results of several methods for determining the
CUSUM features. This is however out of the scope of this work.

The results in Chapter 5 show the potential in developing change-point de-
tection models to predict failures in industrial instruments using sensor-based
data. However, there are several modifications that can be made to improve
the performance of the final predictive model. In Section 6.1, we present rec-
ommendations for future work on the subject.

6.1 Further Work
In order to solve our business case, a competing approach for this work is to
use the unsupervised offline change-point detection method, presented in Section
3.3, to detect change-points in the normal groups, and refer to the time between
each pair of consecutive change-points as a normal state. Then one can construct
several models such that the distribution of the data in each normal state is
explained to a sufficient degree by at least one of the models. Then a predictive
model can be developed based on the residuals of a new data point with respect
to all of the models constructed based on the normal states. If the residuals
are large with respect to all of the models, one can conclude that the new data
point is an anomaly that might cause an unplanned shut-down. This approach
can be tested in future work on the subject.

In this work, only Experiments 2 and 4 were performed on the real-world
data set. These experiments are chosen among the four experiments designed
in Section 4.2, based on the results of the simulation study. However, one
could argue that the conclusions drawn from performing the experiments on

98

6.1 Further Work

the simulated data sets are not necessarily applicable to the real-world case.
In this work, limited computation time prevented us from performing all of the
experiments on the real-world data set. We recommend performing Experiments
1 and 3 on the real-world data set in further work on the subject.

Further in this section we will present achievable improvements on the anal-
ysis in this work that should be kept in mind in further work on the subject.
In Subsection 6.1.1, possible improvements on the process of data preparation
are presented. In Subsection 6.1.2, we propose improvements on the method
of offline change-point detection presented in Section 3.3. In Subsection 6.1.3,
improvements on the simulation study designed in Chapter 4 are proposed. In
Subsection 6.1.4, we propose improvements on the methods of dimensionality
reduction, presented in Section 3.4. Finally in Subsection 6.1.5, we propose
improvements on the online predictive model, presented in Subsection 3.5.1.

6.1.1 The Real-World Data Preparation
The failures in the gas compressors studied in this work are categorized into
different groups. The possible reasons for a failure can be bearing problems,
seals, lube oil system issues, process conditions or combustion related. In this
analysis we ignore the categorization of the failures and refer to all types of
failures as a starting or a running trip depending on the time at which the fail-
ure occurs. The analysis can be improved upon by only looking at one type of
failure at a time. This is because the signals containing the most useful infor-
mation for predicting different types of failures might be different. In addition
the anomalies that lead to different types of failures might happen in different
time-windows with respect to their corresponding unplanned shut-downs. For
example in our case, one could hypothesize that while it might take several min-
utes for the temperature in a component of the system to rise to a dangerous
level, the pressure of the gas might change drastically in a matter of seconds.
Therefore one needs different models to detect anomalies in the temperature
measurements and in the pressure measurements. This was not done in this
work due to the limited number of tripping groups in the data. Dividing the
data set into smaller data sets would have resulted in too few tripping groups
in each data set for a meaningful analysis to be performed. This issue can be
overcome by combining the data from more compressors of the same kind.

The data preparation is performed by DNV GL. A description of this process
is provided in Appendix A. A data cleaning process is performed by the author
after the data preparation is performed by DNV GL. A description of the data
cleaning process is presented in Subsection 4.1.1. The methods applied for the
data preparation and the data cleaning can affect the results of the analysis
presented in this work. The data preparation and cleaning should be performed
according to the assumptions and the requirements of the methods applied in the
analysis. For example, one might need a higher frequency than one observation
per minute to be able to detect some certain anomalies. The methods applied
to remove or replace the NA values, described in Subsection 4.1.1, might also
affect the results of the analysis. The NA values recorded by some sensors might

99

Chapter 6. Discussion and Conclusion

themselves be considered as anomalies that can be used to predict some types
of the failures in the system. This is however ignored in this work. An analysis
of the data preparation and the data cleaning processes and their implications
for the results of our methods can be performed. This is however out of the
scope of this work. We recommend a better integration of the data preparation
and the data cleaning processes in the statistical analysis of the data in future
work.

6.1.2 The Offline Change-Point Detection Method
The change-point detection method, presented in Section 3.3, is used as a tool in
the selection of the signal of interest. Although the theory presented in Section
3.3 allows for multivariate change-point detection, we only use this method
on 1-dimensional signals. One could apply multivariate change-point detection
to select a multidimensional signal of interest. This signal could for example
consist of several principal components. The Mann-Whitney U test, as described
in Subsection 3.4.5, can be used to select the optimal n-tuple of the principal
components for any n ≤ r.

The change-point detection method, presented in Section 3.3, is implemented
in the Ruptures package of Python, developed by Truong (2017). The cost
function used in this method, discussed in Subsection 3.3.5, should be derived
from some assumptions about the distribution of the data and the types of
changes that are desirable to detect. Truong (2017) has implemented a few
popular cost functions in the Ruptures package. However, Ruptures allows the
user to implement any cost function under some mild regularity conditions.
The cost function for a VAR process is not implemented in this package. This
function is presented in (3.14). Truong (2017, Personal Correspondence) has
expressed interest in a collaboration with the author about implementing the
cost function in (3.14). This cost function can be used for multivariate change-
point detection in time series data.

When we apply the change-point detection method to the signal discrep-
ancy, leverage and influence, we use the cost function for a Gaussian distribu-
tion. However, one might be able to derive the distributions of these signals
based on some assumptions about the distribution of the original data. Then
a cost function based on the distributions of these signals can be derived and
implemented for the purpose of change-point detection. One might obtain more
accurate results from the change-point detection if the cost function is derived
and implemented based on reasonable assumptions about the distribution of the
data.

In our experiments, the penalty function in the offline change-point detection
method, discussed in 3.3.3, is inspired by the BIC. The constant m in this func-
tion is chosen by trial and error in each experiment. A more extensive analysis
of what this function should be in the problem at hand can be performed using
CROPS developed by Haynes et al. (2017). If the normal and the transition
states used in the selection of the signal of interest are of different lengths, it is
important that the number of change-points is estimated consistently using the

100

6.1 Further Work

penalty function. Without the use of a normalizing penalty function, there is
statistically a higher chance of detecting change-points in longer time-intervals.
In our case, we first assume that the dependence of the penalty function on the
length of the running group balances out the above-mentioned statistical effect.
This is however not guaranteed. In Figure 5.16, the log(p-value)s of the Mann-
Whitney U test performed on the results of the offline change-point detection
applied to the signals discrepancy, leverage and influence of the transformed
real-world data set are shown. One can see that the p-values are very large.
We argue that the reason for this might be the above-mentioned statistical ef-
fect. To avoid this issue, we divide the normal states into intervals of equal
length to the transition states, as it is illustrated in Figure 3.5. One can see
in Figure 5.17 that doing so, one obtains more meaningful p-values. Note that
even though the division illustrated in Figure 3.5 is used to calculate the αis
and βjs used to perform the Mann-Whitney U test, the change-point detection
method is still applied to whole running groups. To avoid the above-mentioned
issue completely, one should divide the data into normal and transition states
of equal lengths and then apply the change-point detection method with the
same penalty function to each individual state separately instead of applying
it to whole running groups. This is however not done in this work. For the
selection of the signal of interest in the simulation study, we divide the running
groups into normal, transition and failure states as it is illustrated in Figure 3.4.
This is because even though the transition and the normal states are not of the
same lengths in this case, the differences in the lengths in the simulated data
sets are not as large as they are in the real-world data set. However, this issue
should be kept in mind in future simulation studies. Further work is needed
for finding penalty functions that yield consistent estimation of the number of
change-points under different assumptions.

6.1.3 The Simulation Study
The only possible change-points in the simulated data are in the mean of a
dimension. However this does not need to be the case. One can test the methods
on simulated data sets with different types of change-points. The change-points
can for example be in the variance of a dimensions, the predictability of a
dimension, or in the structure of the relations between the dimensions. By
conducting a comprehensive simulation study including several possible types
of change-points, one can determine which one of the four approaches presented
in Subsection 4.2 are suitable for detecting each type of change-points.

In Subsection 5.1.1, we present the results of the application of Experiments
1 and 3, designed in Subsection 4.2, to the simulated data sets. In Figures
5.4, 5.3 and 5.7 one can see a division in the distribution of the precision, the
accuracy and the F1 score of the predictive models applied to the simulated test
data sets. In this work we argue that this division might be caused by a latent
factor affecting the performance of the model. In Figure 5.5, it is illustrated that
the precision and the accuracy of the predictive models are affected in the same
way. Looking at Figure 5.6, we argue that the selected signal of interest can not

101

Chapter 6. Discussion and Conclusion

be causing the division in the distribution of the precision, the accuracy and the
F1 score of the predictive models. The latent factor affecting these statistical
performance metrics is not identified in this work despite our attempts to do
so. One could argue that the reason for the division in the distribution of
these metrics is that selecting only one principal or Box-Tiao component as
the signal of interest might be a non-robust approach. The difference in the
Mann-Whitney U test’s p-values yielded by the different principal or Box-Tiao
components might be small. In this case, the principal or Box-Tiao component
yielding the least p-value might not yield the best performance by the predictive
model. This issue should be addressed and analyzed in future work.

6.1.4 The Method of Dimensionality Reduction
The test statistic used in the Mann-Whitney U test is the binary statistic which
shows whether or not a change-point is detected in a state. However, this is not
the only option, and one could think of several other appropriate test statistics,
for example the number of change-points detected in a state. The choice of the
test statistic should to some degree be determined by the nature of the predictive
model. If the predictive model is developed such that it raises an alarm whenever
a change occurs, the test statistic used in this work is appropriate. However,
if the predictive model operates on the concentration of the change-points and
only raises an alarm when there are too many change-points close to each other
in time, then the number of change-points detected in a state is an appropriate
test statistic.

The data points are labeled as belonging to a normal, transition or failure
state both for the selection of the signal of interest and for the training of the
predictive model, as described in Subsections 3.4.5 and 3.5.1 and illustrated in
Figures 3.4 and 3.5. For the real-world data set, the variables ν and f are set in
consultation with the field experts. In future work on business cases like ours,
one can tune the values of these variables in an ad hoc setting. This might
improve the results yielded by the predictive model.

The offline change-point detection method, presented in Section 3.3, com-
bined with the Mann-Whitney U test method, presented in Subsection 3.4.5, are
applied for the selection of the signal of interest. The point of applying these two
methods is estimating the amount of predictive information in a signal. This
can also be done by using the CUSUM method, presented in Subsection 3.5.1,
combined with one of the statistical metrics, presented in Subsection 3.5.2. In
the analysis in this work, the signal selection data set is used both for the meth-
ods applied to determine the signal of interest and for determining the CUSUM
features, as described in Subsection 3.5.1. In this analysis, the signal of inter-
est is selected before the CUSUM features are determined. However using the
CUSUM method for the selection of the signal of interest, the CUSUM features
should be determined for each alternative signal. Then the CUSUM method
should be applied to the same signals, and the signal yielding the best perfor-
mance should be selected as the signal of interest. One can argue that using the
signal selection data set for both purposes in this case is a type of overfitting.

102

6.1 Further Work

On the other hand, since the CUSUM method is used as the predictive model,
it is reasonable to use the same method for the selection of the signal of interest.
If more data is available, different data sets should be used for the selection of
the signal of interest and determining the CUSUM features.

The selection of the signal of interest can also be done in consultation with
the field experts. The principal and Box-Tiao components are linear combina-
tions of the dimensions of the scaled data set. One can therefore interpret a
principal or Box-Tiao component by comparing the coefficients of the dimen-
sions in its equation. The results of the interpretation can be communicated to
the field experts, and one can use their knowledge in the selection of the signal
of interest.

6.1.5 The Predictive Model
In this work, we propose the CUSUM method as an online change-point de-
tection model for failure prediction. Here this model is only presented for 1-
dimensional signals. However there exist variants of the CUSUM method that
are applicable to multidimensional data. In Subsection 5.2.4, we present the re-
sult of a simple multivariate model that illustrates the potential of further work
on multivariate CUSUM models. Golosnoy et al. (2009) present the multivari-
ate CUSUM method and investigate its properties. In addition, they suggest
several refinements of the method. Following the mathematical theory in Golos-
noy et al. (2009), one can see that applying multivariate CUSUM to principal
or Box-Tiao components yields interesting mathematical properties since these
signals are orthogonal to each other. We recommend the use of the multivariate
CUSUM method as the predictive model in future work.

As described in Subsection 3.5.1, we use an ad hoc method to determine the
CUSUM features in this work. One could instead take advantage of the approach
provided by Aue and Horváth (2013). They present a review on the work done
to modify the original CUSUM method to also work for data exhibiting serial
dependence. Aue and Horváth (2013) also prove some asymptotic properties
for the test statistics they present.

The estimation error when estimating the distribution of the data in the in-
control state is ignored in this work. Inspired by the work done by Gandy and
Kvaløy (2013), one could take advantage of methods based on bootstrapping
the data used to estimate the distribution in the in-control state to overcome
this issue.

The results of applying our proposed predictive model to the real-world test
data set are presented in Subsection 5.2.3. One can see that an imbalanced
data set results in a large number of false positive predictions by the model. In
further work, one could analyze the false positive predictions and try to modify
the method to filter them out. This is only possible if one is able to separate the
false positive predictions from the true positive ones to a sufficient degree. In
this case, a filter can be constructed that allows the majority of the true positive
predictions to pass, filtering out the majority of the false positive ones. This
can potentially improve the performance of the predictive model substantially.

103

Chapter 6. Discussion and Conclusion

In this work the CUSUM method is used as the predictive model. Aminikhang-
hahi and Cook (2017), in their survey article, enumerate, categorize, and com-
pare many of the methods for change-point detection in time series. They also
introduce several criteria to compare the algorithms. Other online change-point
models, presented in Aminikhanghahi and Cook (2017), can be used instead of
the CUSUM method in future works. The choice of the model should depend
on the assumptions and the specifications of the problem setting at hand.

6.2 Conclusion
In this work we propose a semi-supervised change-point detection method ap-
plied for failure prediction in industrial instruments. Four possible approaches
are tested with experiments designed in Chapter 4. A test case is provided by
a European GTS owner and operator through Norwegian DNV GL. The case
is analyzing the possibility of developing a failure prediction model for the gas
compressors and the gas turbines used by the GTS operator, using historical
sensor-based data from these machines.

Since many aspects of the problem at hand were unknown prior to this
analysis, few assumptions could be made when trying to select an optimal ap-
proach. It is not known which parts of the data could be labeled as normal or
non-normal. This challenge is overcome by introducing semi-supervised change-
point detection methods. Applying change-point detection methods for failure
prediction, it is challenging to distinguish between normal changes in the op-
eration mode of the system and non-normal changes that cause failures. To
overcome this issue, principal component analysis and Box-Tiao analysis are
used in a semi-supervised manner for dimensionality reduction. For the Box-
Tiao analysis a model should be assumed for the data. We use the vector
autoregressive model for this purpose. Finally a predictive model is developed
and evaluated on a test data set. The CUSUM method is used for this pur-
pose. All the methods presented in this work are also tested and evaluated in a
simulation study.

The analyses in this work could be improved upon given a longer time frame.
Achievable improvements are proposed in Section 6.1. Given the analyses per-
formed in this work and the current results, we conclude that applying the
methods in this work for failure prediction in our business case might be eco-
nomically profitable if the economic value of a true positive prediction is much
larger than the economic loss of a false positive prediction. A profitability anal-
ysis of the predictive model can be performed based on the results presented in
Subsection 5.2.3. This is however out of the scope of this work.

In this work, as an original work by the author, the theories of the vector
autoregressive model, the offline change-point detection method, the principal
and the Box-Tiao analysis, the Mann-Whitney U test, the signals discrepancy,
leverage and influence, the CUSUM method and statistical performance metrics
have been combined to create end-to-end solutions to the problem of sensor-
based failure prediction in industrial instruments. The main contribution of the

104

6.2 Conclusion

author, as illustrated in Figure 3.1 is combining all the methods presented in
this work into four possible end-to-end solutions and testing and evaluating the
solutions on the simulated and the real-world data sets. The semi-supervised
signal selection methods, discussed in Subsection 3.4.5, the ad hoc method of
determining the CUSUM features, presented in Subsection 3.5.1, and the pooling
method of estimating the covariance matrices, presented in Subsection 3.4.4,
are original ideas of the author. The author has developed large parts of the
implementation of the methods. The Python script developed by the author
and used in this work is available in Appendix C.

In Chapter 5, the performance of our proposed end-to-end solutions and
the predictive information in the last principal and Box-Tiao components are
illustrated. Given the results presented in Chapter 5, we conclude that there is a
potential in applying methods of change-point detection for predicting failure in
the gas compressors analyzed in this work. This might also be the case for other
industrial instruments with a sensor-based monitoring system. We recommend
further work on the subject by conducting a similar multivariate analysis.

105

Chapter 6. Discussion and Conclusion

106

Bibliography

Aminikhanghahi, S., Cook, D. J., 2017. A survey of methods for time series
change point detection. Knowledge and information systems 51 (2), 339–367.

Arnold, T., et al., 2018. Sas/qc 15.1 users guide. [Online; accessed 2019-06-27].
URL https://documentation.sas.com/?docsetId=qcug&
docsetTarget=qcug_cusum_sect039.htm&docsetVersion=15.
1&locale=en

Aue, A., Horváth, L., 2013. Structural breaks in time series. Journal of Time
Series Analysis 34 (1), 1–16.

Bai, J., 2000. Vector autoregressive models with structural changes in regression
coefficients and in variance-covariance matrices. ANNALS OF ECONOMICS
AND FINANCE 1 (1), 303–339.

Bakka, K. B., 2018. Changepoint model selection in Gaussian data by max-
imization of approximate Bayes factors with the pruned exact linear time
algorithm. Master’s thesis at NTNU, 108–114.
URL https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/
2558597

Box, G. E. P., Tiao, G. C., 08 1977. A canonical analysis of multiple time series.
Biometrika 64 (2), 355–365.
URL https://doi.org/10.1093/biomet/64.2.355

Casella, G., Berger, R. L., 2002. Statistical inference. Vol. 2. Duxbury Pacific
Grove, CA.

Chandola, V., Banerjee, A., Kumar, V., Jul. 2009. Anomaly detection: A survey.
ACM Comput. Surv. 41 (3), 15:1–15:58.
URL http://doi.acm.org/10.1145/1541880.1541882

Choudhary, P., 2017. Introduction to anomaly detection. [Online; accessed
2018-11-19].

107

URL https://www.datascience.com/blog/
python-anomaly-detection

Fisher, R. A., 1925. Statistical methods for research workers. Genesis Publishing
Pvt Ltd.

Gandy, A., Kvaløy, J. T., 2013. Guaranteed conditional performance of control
charts via bootstrap methods. Scandinavian Journal of Statistics 40 (4), 647–
668.

GE Power, 2018. Lm2500 aeroderivative gas turbine. [Online; accessed 2018-12-
03].
URL https://www.ge.com/power/gas/gas-turbines/lm2500

Golosnoy, V., Ragulin, S., Schmid, W., 2009. Multivariate CUSUM chart: prop-
erties and enhancements. AStA Advances in Statistical Analysis 93 (3), 263–
279.

Haynes, K., Eckley, I. A., Fearnhead, P., 2017. Computationally efficient change-
point detection for a range of penalties. Journal of Computational and Graph-
ical Statistics 26 (1), 134143.
URL https://doi.org/10.1080/10618600.2015.1116445

Hinkley, D., 1970. Inference about the change-point in a sequence of random
variables. Biometrika 57.

Jones, E., Oliphant, T., Peterson, P., et al., 2001–. SciPy: Open source scientific
tools for Python. [Online; accessed 2018-12-14].
URL http://www.scipy.org/

Kadous, W., 2011. What are some time-series classification methods? [Online;
accessed 2018-11-19].
URL https://www.quora.com/What-are-some-time-series-\
classification-methods

Killick, R., Fearnhead, P., Eckley, I., 12 2012. Optimal detection of change-
points with a linear computational cost. Journal of the American Statistical
Association 107, 1590–1598.

Koehrsen, W., 2018. Beyond accuracy: Precision and recall. [Online; accessed
2019-06-04].
URL https://towardsdatascience.com/
beyond-accuracy-precision-and-recall-3da06bea9f6c

Kuncheva, L. I., Faithfull, W. J., Jan 2014. PCA feature extraction for change
detection in multidimensional unlabeled data. IEEE Transactions on Neural
Networks and Learning Systems 25 (1), 69–80.

Larsen, R., Marx, M. L., 1981. An introduction to mathematical statistics and
its applications. Prentice-Hall.

108

Lu, C.-W., Reynolds Jr, M. R., 2001. CUSUM charts for monitoring an auto-
correlated process. Journal of Quality Technology 33 (3), 316–334.

Lütkepohl, H., 2005. New introduction to multiple time series analysis. Springer
Science & Business Media.

Mann, H. B., Whitney, D. R., 1947. On a test of whether one of two random
variables is stochastically larger than the other. The Annals of Mathematical
Statistics 18 (1), 50–60.
URL http://www.jstor.org/stable/2236101

Mezzadri, F., 2006. How to generate random matrices from the classical compact
groups. arXiv preprint math-ph/0609050.

Page, E. S., 1954. Continuous inspection schemes. Biometrika 41 (1/2), 100–115.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research
12, 2825–2830.

Perera, S., 2015. Introduction to anomaly detection: Concepts and techniques.
[Online; accessed 2018-11-19].
URL https://iwringer.wordpress.com/2015/11/17/
anomaly-detection-concepts-and-techniques/

Roberts, S., 1959. Control chart tests based on geometric moving averages.
Technometrics 1 (3), 239–250.

Seabold, S., Perktold, J., 2010. Statsmodels: Econometric and statistical mod-
eling with python. In: 9th Python in Science Conference.

Seber, G. A., 2009. Multivariate observations. Vol. 252. John Wiley & Sons.

Shorack, G., Wellner, J., 1986. Empirical processes with statistical application.

Shyu, M.-L., Chen, S.-C., Sarinnapakorn, K., Chang, L., 2003. A novel anomaly
detection scheme based on principal component classifier. Tech. rep., MIAMI
UNIV CORAL GABLES FL DEPT OF ELECTRICAL AND COMPUTER
ENGINEERING.

Steinwart, I., Hush, D., Scovel, C., Dec. 2005. A classification framework for
anomaly detection. J. Mach. Learn. Res. 6, 211–232.
URL http://dl.acm.org/citation.cfm?id=1046920.1058109

Truong, C., 2017. Ruptures. [Online; accessed 2018-11-29].
URL http://ctruong.perso.math.cnrs.fr/ruptures-docs/
build/html/index.html

109

Truong, C., Oudre, L., Vayatis, N., 2018. A review of change point detection
methods. CoRR abs/1801.00718.
URL http://arxiv.org/abs/1801.00718

Tsay, R. S., 2013. Multivariate time series analysis: with R and financial appli-
cations. John Wiley & Sons.

Walpole, R. E., Myers, R. H., Myers, S. L., Ye, K., 1993. Probability and
statistics for engineers and scientists. Vol. 5. Macmillan New York.

Xiao, H., Wu, W. B., et al., 2012. Covariance matrix estimation for stationary
time series. The Annals of Statistics 40 (1), 466–493.

Zar, J. H., 1998. Biostatistical Analysis. New Jersey: Prentice Hall Interna-
tional, INC.

110

Appendices

111

Appendix A
The Description of the Data
Preparation Process

This document is provided to us by DNV GL and is not written by the author.
The raw data available in this project comprises timestamped sensor and

trip log data from six stations (locations) covering a total of 10 compressors
spanning a period of 14 years. This data is distributed over 28000 files in .hlg
historian format.

A.1 Data Standardization

A.1.1 Format converting
Process of data:

• Download of all alert historical data for 6 sites (> 28000 files)

• Consolidation of alert baseline configuration to ensure as far as possible a
common configuration of baselines with the maximum value for machinery
monitoring

• Collection of alarm and trip configurations for each machine

• Software tools developed to allow initial data processing

• Operating log data consolidated back to 2004 using alert and HPMIS logs

Processed data is:

• One file per measurement per year

• Number of files: > 172, 000 files

113

• File Format: .csv format

• Size of data: Over 5TB of data

A.1.2 Sensor name harmonisation
In order to compare the same sensors across different compressors, the sensor
names have to be harmonized. Each compressor typically has its own local
sensor-naming convention, so a large amount of manual work has been per-
formed to harmonize sensor names for the 10 compressors studied here in order
to perform analysis across multiple compressors.

A.2 Data Preparation and Cleaning
The data we focus is the data when the compressor is on as the case we are trying
to solve is predicting the tripping when compressor is working. Furthermore, as
there are many factors which might cause the tripping, we would like to look
for information within many relevant sensors at the same time.

The sensor GasGenerator-Speed-Speed is used as an indication of the status of
a compressor. If the speed is above 500 rpm, it is assumed that the compressor
state is labelled ON. Otherwise, the compressor state is labelled OFF. In
this way, the sensor data has been divided into distinct running groups. Each
running group corresponds to a session of use of the compressor: each running
group has a start timestamp, an end timestamp and comprises all the sensor
data between those two timestamps.

Aside from sensor data, historical log data is available which contains manually-
logged information about the timestamps when the compressor was turned on,
when the compressor was off, what is the reason for the stopping of the com-
pressor and the failure causes if the stop was unnormal. It was decided to
restrict the data set to trips concerned with combustion problems, since these
are common. Based on expert advice concerning which sensors are relevant to
combustion trips, an active sensor set was defined as a subset of the available
sensors.

Different sampling frequency across sensors: The raw sensors data are col-
lected at different sampling frequency varying from several seconds to days. In
order to consider all the focused sensors simultaneously, the sensors have been
resampled at one-minute sampling frequency such that all the timestamp across
sensors have been aligned for multivariate analysis.

The sensors related to combustion-related trips are resampled at 1-minute
sample frequency. As a starting point, at each resampled timestamp, each
sensors value is equal to the value in the latest timestamp in the raw data while
the compressor is working.

The sensor data and log data are combined to create a data table containing
both the input (observable) variables and the target feature (trip/no trip). The
following processes for cleaning data have been performed:

114

1. If the maximum speed in a running group is below 3000rpm, it is assumed
that this running group belongs to a specific shutdown sequence. Hence,
it has been removed for further analysis.

2. It is assumed that the overlapping period between sensor data running
group and the period in log data should be at least 50% of time coverage
in period at log data. Otherwise, we will remove the data from that
running group because of the uncertainty in mismatching start time and
end time between a running group and the log data.

3. If there are multiple running groups from sensor data corresponding to one
period in log data, then only the last of these running groups is retained.

4. The end of a running group should align with the end time in the log data.
It is often Observed that there is a 1 hour difference between the two. This
is assumed to be due to the difference between UTC and local time used
for the timestamps in sensor data and log data. [sensor StatusRunningTrip
has been checked against log data to confirm the rough one hours difference
between end time in the period at log data and the running group ending
time.]

5. During the compressor shutdown process, the data points with speed be-
low idle speed are removed.

6. Data points with missing sensors values are removed. [Treatment for miss-
ing data: Deletion, Imputation]

7. For each running group, the first 50 minutes of data has been removed
because the system takes some time to warm up and enter a stable oper-
ational state.

For running trip group, the last 20 datapoints are flagged as Class 1 Running
Trip and others are flagged as Class 0 Normal Stop.

A.2.1 Aggregation of temperature sensors
At each time stamp, eight exhaust gas temperature sensors
(GasGenerator-ExhaustTemperature-TempExhTC1-8ISO) have been ag-
gregated to min, max, median and standard deviation to capture the varying
range and variance within those similar sensors. Through this aggregation, the
problem among those eight sensors has been generalized to some extent. The
same aggregation method has been applied to similar temperature sensors as
well.

A.2.2 Data quality of temperature sensors
There may be some data quality issues for similar exhaust gas temperature sen-
sors which need to be addressed. For example, Sensor

115

GasGenerator-ExhaustTemperature-TempExhTC2ISO at
Unit Aberdeen-UnitA, the maximum value of this sensor is above 1000 while
other similar sensors are around 400 to 800. However, the value from this sensor
was totally deviating from other similar sensors. This could be due to configu-
ration errors in the sensor logging instrument. Another example is sensor value
GasGenerator-ExhaustTemperature-TempExhTC1ISO is low however,
the remaining 7 similar sensors are about 800. This may be due to the sensor
is not working properly. For simplicity, as agreed with domain experts we have
removed those periods with sensor temperature too high (value above 1000) or
too low when compressor is on (below 250). More thorough data quality check
should be performed for all focused sensors. Sensors of bad quality should be
removed for further analysis.

A.2.3 Imbalanced Dataset
After pre-processing and cleaning of data, the dataset is ready for further anal-
ysis. The proportion of normal stop runs against number of running trips is
about 26.65 : 1. Because the running trip is rather rare among the runs for com-
pressors, the data is by nature an unbalanced class problem which makes the
prediction more challenging. The model will always try to predict the majority
class by default. This shall be considered when building up model. Therefore,
in order to make algorithm easier to find pattern within the data, we perform
modification for the number of data points used for analysis. For a normal run,
we randomly pick up 20 data points within the run. For a running trip, we pick
up the last 20 data points.

116

Appendix B
Dimensions List

Here we present the name of the sensors analyzed in this work. These are
the dimensions in the real-world data set after the data cleaning process is
performed. The number in column Rank 1 refers to the rank of the dimension
in Figure 4.3, and the number in column Rank 2 refers to the rank of the
dimension in Figure 5.14.

Dimensions Rank 1 Rank 2
GasCompressor BearingTemperature TempBrgDriveEnd1 4 4

GasCompressor BearingTemperature TempBrgNonDriveEnd1 5 44
GasCompressor BearingTemperature TempBrgThrustActive1 44 40

GasCompressor BearingTemperature TempBrgThrustInactive1 40 59
GasCompressor Efficiency EffIsen 42 42

GasCompressor FlowProcessND FlowProcessND 59 5
GasCompressor FlowProcessStandardVolume FlowProcessStdVol 41 55

GasCompressor HeadPolyAct HeadPolyAct 55 56
GasCompressor PowerAbsorbedGas PowerAbsorbedGas 56 41

GasCompressor PressRatio PressRatio 43 43
GasCompressor PressureDischarge PressDisch 34 34

GasCompressor PressureSuction PressSuct 24 38
GasCompressor SpeedND SpeedND 21 21

GasCompressor Vibration VibDriveEndY 30 28
GasCompressor Vibration VibNonDriveEndX 38 32
GasCompressor Vibration VibNonDriveEndY 19 24

GasGenerator AirInlet TempAirInlet 32 19

117

Dimensions Rank 1 Rank 2
GasGenerator CompressorDelivery PressCompDelISO 36 26
GasGenerator CompressorDelivery TempCompDelISO 26 36

GasGenerator ExhaustTemperature TempExhISO 20 30
GasGenerator ExhaustTemperature TempExhMax 28 20
GasGenerator ExhaustTemperature TempExhMin 39 18

GasGenerator ExhaustTemperature TempExhSpread 18 39
GasGenerator ExhaustTemperature TempExhTC1DevMean 22 22

GasGenerator ExhaustTemperature TempExhTC1ISO 23 27
GasGenerator ExhaustTemperature TempExhTC2DevMean 33 23

GasGenerator ExhaustTemperature TempExhTC2ISO 27 35
GasGenerator ExhaustTemperature TempExhTC3DevMean 51 33

GasGenerator ExhaustTemperature TempExhTC3ISO 35 51
GasGenerator ExhaustTemperature TempExhTC4DevMean 50 37

GasGenerator ExhaustTemperature TempExhTC4ISO 52 29
GasGenerator ExhaustTemperature TempExhTC5DevMean 37 50

GasGenerator ExhaustTemperature TempExhTC5ISO 31 52
GasGenerator ExhaustTemperature TempExhTC6DevMean 25 6

GasGenerator ExhaustTemperature TempExhTC6ISO 29 25
GasGenerator ExhaustTemperature TempExhTC7DevMean 58 31

GasGenerator ExhaustTemperature TempExhTC7ISO 45 57
GasGenerator ExhaustTemperature TempExhTC8DevMean 57 45

GasGenerator ExhaustTemperature TempExhTC8ISO 6 49
GasGenerator FlameTemperature TempFlame 2 58

GasGenerator FlowFuel FlowFuelMassISO 7 7
GasGenerator FlowFuel FlowFuelMassInner 49 2
GasGenerator FlowFuel FlowFuelMassOuter 8 13
GasGenerator FlowFuel FlowFuelMassPilot 13 8

GasGenerator FlowFuel FlowFuelVolISO 3 3
GasGenerator FuelBurnerConfiguration FuelBurnerConfigDmd 60 15

GasGenerator FuelGas PressFuelGasInner2 16 14
GasGenerator FuelGas TempFuelGas1 10 47

GasGenerator GasProperties GasPropFuelRho 0 17
GasGenerator GasTurbineEfficiency EffGT 14 46
GasGenerator PowerNTIISO PowerNTIISO 15 10
GasGenerator PowerNTIPct PowerNTIPct 47 60

GasGenerator PowerNTI PowerNTI 17 0
GasGenerator PressExhISO PressExhISO 46 1

GasGenerator PressExh PressExh 1 12
GasGenerator SpeedISO SpeedISO 11 11

GasGenerator Speed Speed 12 16
PowerTurbine BearingTemperature TempBrgDriveEnd1 61 61

PowerTurbine BearingTemperature TempBrgNonDriveEnd1 53 53
PowerTurbine Speed Speed 54 54

Station TemperatureDischarge TempDisch 48 48
Station TemperatureSuction TempSuct 9 9

118

Appendix C
Python Script

C.1 Functions and Packages
Here one can find the Python script for the functions and packages needed to
perform the analysis in this work.

C.1.1 External Packages
First several packages need to be imported.

import numpy as np
import pandas as pd
from s k l ea rn . p r e p r o c e s s i n g import StandardSca ler
from stat smode l s . t sa . v e c t o r a r . var model

import VAR, VARProcess
import ruptures as rpt
import matp lo t l i b . pyplot as p l t
from random import uniform
from s k l ea rn . da ta s e t s import make spd matrix
from sc ipy . s t a t s import ortho group
from sc ipy . s t a t s import mannwhitneyu
from tqdm import tqdm
from s k l ea rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t
from stat smode l s . t sa . ar model import AR

C.1.2 BTA and PCA
The following class is used for BTA and PCA transformations. If a BTA trans-
formation is desired, one should set BoxTiao to True, and otherwise False.
One can also calculate the discrepancy, the leverage and the influence of a trans-
formed point. A VAR process of order order is assumed in the estimation of

119

the predictability matrix. This has to be determined when the object is created.
The other functions only take in data. If one or both of the covariance matrices
Σ and Γ are known, they can be taken in as inputs in the fit function. Then
one should set SigmaEstimation and GammaEstimation to False when
the object is created. If the data is divided into running groups, the data should
be in a Pandas’ data frame, and the column gr nr should indicate which run-
ning group each data point belongs to. Then the input group c name should
be set to the string gr nr.

c l a s s VARBT:
de f i n i t (s e l f , o rder = 1 , SigmaEstimation = True ,

GammaEstimation = True ,
groug c name = ’ There i s only one group ’ ,

BoxTiao = True) :
s e l f . o rder = order
s e l f . SigmaEstimation = SigmaEstimation
s e l f . GammaEstimation = GammaEstimation
s e l f . groug c name = groug c name
s e l f . BoxTiao = BoxTiao
i f (BoxTiao == False) :

s e l f . SigmaEstimation = False
de f f i t (s e l f , data , Sigma = 0 , Gamma = 0) :

data = pd . DataFrame (data)
i f (s e l f . groug c name in data . columns) :

s e l f . TrueColumns =
data . columns . drop (s e l f . groug c name)

nrOFgr =
len (np . unique (data [s e l f . groug c name]))

grSums = data . groupby (s e l f . groug c name) .
apply (lambda x : np . sum(x))

[s e l f . TrueColumns]
s e l f . meanToScale = np . sum(grSums)/ l en (data)

e l s e :
s e l f . meanToScale = np . mean(data)

i f (s e l f . GammaEstimation) :
de f estimate ScaledGamma (GammaData) :

GammaData = GammaData .
r e s e t i n d e x (drop=True)

GammaDataCentered =
StandardSca ler (w i th s td=False) .

f i t t r a n s f o r m (GammaData)
re turn (np . matmul (GammaDataCentered .

t ranspose () , GammaDataCentered))
i f (s e l f . groug c name in data . columns) :

ScaledGammas = data . groupby (s e l f .

120

groug c name) . apply (lambda x :
estimate ScaledGamma (x [s e l f .

TrueColumns]))
Gamma = (sum(ScaledGammas))/

(l en (data)−nrOFgr)
e l s e :

Gamma = (estimate ScaledGamma (data))/
(l en (data)−1)

i f (s e l f . SigmaEstimation) :
de f es t imate Sca ledS igma (SigmaData) :

SigmaData = SigmaData .
r e s e t i n d e x (drop=True)

TSmodel = VAR(SigmaData)
t ry :

TSresu l t = TSmodel . f i t (s e l f . o rder)
except :

TSresu l t = TSmodel . f i t (s e l f . order ,
trend =’nc ’)

r e turn (np . matmul (TSresu l t . r e s i d .
t ranspose () , TSresu l t . r e s i d))

i f (s e l f . groug c name in data . columns) :
ScaledSigmas = data . groupby (s e l f .

groug c name) . apply (lambda x :
es t imate Sca ledS igma (x

[s e l f . TrueColumns]))
Sigma = (sum(ScaledSigmas))/

(l en (data)−(s e l f . o rder ∗
(l en (data . columns))∗

nrOFgr))
e l s e :

Sigma= (est imate Sca ledS igma (data))/
(l en (data)−(s e l f . o rder ∗

(1+ len (data . columns))))
i f (s e l f . groug c name in data . columns) :

data = data [s e l f . TrueColumns]
s e l f . Sigma = Sigma
s e l f .Gamma = Gamma
i f (s e l f . BoxTiao) :

AdjQ = np . matmul (np . l i n a l g . inv (Sigma) ,Gamma)
e l s e :

AdjQ = Gamma
D unsorted , e igVec unsor ted = np . l i n a l g . e i g (AdjQ)
idx = np . a r g s o r t (−D unsorted)
s e l f . e igVec = (e igVec unsor ted . t ranspose () [idx]) .

121

t ranspose ()
i f (s e l f . BoxTiao) :

s e l f . p r e d i c t a b i l i t i e s = 1−np . power
(D unsorted [idx] ,−1)

s e l f . va r i anc e s = (np . matmul
(s e l f . e igVec . t ranspose () ,

np . matmul (s e l f .Gamma, s e l f . e igVec))) .
d iagona l ()

e l s e :
s e l f . va r i anc e s = D unsorted [idx]

de f trans form (s e l f , t r ans data) :
t r ans data = pd . DataFrame (t rans data)
i f (s e l f . groug c name in t rans data . columns) :

t r ans data = trans data [s e l f . TrueColumns]
t rans data = trans data−s e l f . meanToScale
re turn (np . matmul (t rans data , s e l f . e igVec))

de f f i t t r a n s f o r m (s e l f , f t da ta , f t S igma = 0 ,
ft Gamma = 0 ,

f t g roug vr name = ’ There i s only one group ’) :
f t d a t a = pd . DataFrame (f t d a t a)
s e l f . f i t (data=f t da ta , Sigma = ft Sigma ,

Gamma = ft Gamma ,
groug vr name = ft groug vr name)

return (s e l f . t rans form (t rans data = f t d a t a))
de f i n v e r s e t r a n s f o r m (s e l f , i t d a t a) :

r e turn (pd . DataFrame (np . matmul
(i t da ta ,

np . l i n a l g . inv (s e l f . e igVec)))+
s e l f . meanToScale)

de f Leverage (s e l f , l ev data , s l =1):
l e v t r a n s d a t a = s e l f . t rans form (l e v da ta)

[: , 0 : s l]
l e v t r a n s d a t a s q u a r e d =

l e v t r a n s d a t a ∗ l e v t r a n s d a t a
l e v f i n a l d a t a = l e v t r a n s d a t a s q u a r e d
f o r counter in range (0 , s l) :

l e v f i n a l d a t a [: , counter] /=
s e l f . va r i anc e s [counter]

r e turn (sum(l e v f i n a l d a t a . t ranspose ()))
de f Discrepancy (s e l f , d i s data , s d i =1):

d i s t r a n s d a t a = s e l f . t rans form (d i s d a t a)
n c = d i s t r a n s d a t a . shape [1]
d i s t r a n s d a t a = d i s t r a n s d a t a [: , s d i : n c]
d i s t r a n s d a t a s q u a r e d =

122

d i s t r a n s d a t a ∗ d i s t r a n s d a t a
d i s f i n a l d a t a = d i s t r a n s d a t a s q u a r e d
f o r counter in range (s d i , n c) :

d i s f i n a l d a t a [: , counter−s d i] /=
s e l f . va r i anc e s [counter]

r e turn (sum(d i s f i n a l d a t a . t ranspose ()))
de f I n f l u e n c e (s e l f , i n f da ta , s i =1):

r e turn (s e l f . Discrepancy (in f da ta , s d i = s i)∗
s e l f . Leverage (in f da ta , s l=s i))

C.1.3 CUSUM
Here we present the functions used for the creation and the evaluation of the
predictive model.

The following function takes in a signal and the CUSUM features T and K.
If side=’hi’, the function returns the sequence C+

i and if side=’lo’, the
function returns the sequence C−i . These sequences are defined in (3.25).

de f Compute CUSUM(s i gna l , ta rget , k , s i d e = ’ hi ’) :
c = 0
r e s u l t = []
i f (s i d e ==’hi ’) :

f o r x i in s i g n a l :
c= np . max ([0 , (xi−(t a r g e t+k)+c)])
r e s u l t . append (c)

e l s e :
f o r x i in s i g n a l :

c= np . max ([0 , (target−k+c−x i)])
r e s u l t . append (c)

re turn (r e s u l t)

Given a list of signals that are observations of the same variable, the following
function estimates the mean and the standard deviation of that variable.

de f Compute target and std (g r s i g n a l s) :
means = [np . mean(x) f o r x in g r s i g n a l s]
va r i anc e s = [np . var (x , ddof=1) f o r x in g r s i g n a l s]
l e n s = [l en (x) f o r x in g r s i g n a l s]
t a r g e t = sum(x∗y f o r x , y in z ip (means , l e n s))/

sum(l e n s)
std = np . s q r t (sum(x∗(y−1) f o r x , y in

z ip (var iances , l e n s)) / (sum(l e n s)− l en (g r s i g n a l s)))
re turn ([target , s td])

The following function divides the max signal into intervals of the length
per len, and for each interval, it calculates the maximum of max signal in
that interval. Then it returns a list of the maximums.

123

de f Period Maxes (max signal , p e r l e n) :
r e s u l t = [np . max(max s ignal

[(x∗ p e r l e n) : ((x+1)∗ p e r l e n)]) f o r x in
range (0 , i n t (l en (max s ignal)/ p e r l e n))]

i f ((i n t (l en (max s ignal)/ p e r l e n)∗ p e r l e n) <
l en (max s ignal)) :
r e s u l t . append (np . max(max s ignal

[(i n t (l en (max s ignal)/ p e r l e n)∗ p e r l e n) :]))
r e turn (r e s u l t)

Given data, the following function determines the CUSUM features with an ad
hoc approach as described in Subsection 3.5.1. The inputs NormalSOFs and
TripSOFs are lists of signals in the normal groups and in the tripping groups,
respectively. Looking at Figure 3.5, the inputs NormalLen and TransitionEnd
should respectively be set to ν − f and ν. If we allow for the late detection of
the transition state, DetectMarg should be set to the allowed delay for the de-
tection after the transition state has ended. The CUSUM feature K is selected
among the values of the list k space times the estimated standard deviation
of the signal. The variable include low is set to True if it is desired to
also declare the process out of control when C−i > h. Otherwise only C+

i

will be taken into consideration. The input metric should be selected among
’accuracy’, ’recall’, ’precision’ or ’f1’. This input indicates which
statistical metric should be maximized in the ad hoc approach. The function
returns the CUSUM features in addition to the estimated standard deviation of
the signal and the performance of the model on the signal selection data set.

de f Make CUSUM(NormalSOFs , TripSOFs , NormalLen ,
TransitionEnd , DetectMarg=0, k space = [0 . 5 , 1 , 2 , 4 , 8] ,

i n c lude l ow = True , metr ic = ’ f1 ’ ,
p r i o r i t y = ’ l a r g e s t ’) :

i f (p r i o r i t y == ’ l a r g e s t ’) :
p r i o r i t y i n d = −1

e l s e :
p r i o r i t y i n d = 0

NormalSOFs=[x [(l en (x)%(NormalLen+DetectMarg)) :]
f o r x in NormalSOFs]

TripSOFs=[x [((l en (x)−NormalLen−Transit ionEnd)%
(NormalLen+DetectMarg)) :] f o r x in TripSOFs]

NormalTarget , NormalSTD =
Compute target and std (NormalSOFs)

k space = np . asar ray (k space)
k s e t = np . s o r t (k space ∗ NormalSTD)
TripTimes = np . asar ray

([l en (x) f o r x in TripSOFs])
NormalTimes = np . asar ray

([l en (x) f o r x in NormalSOFs])
TotalNrOfN = 0

124

f o r counter in range (0 , l en (NormalSOFs)) :
TotalNrOfN += np . c e i l (NormalTimes [counter] /

(NormalLen+DetectMarg))
f o r counter in range (0 , l en (TripSOFs)) :

TotalNrOfN += np . c e i l ((TripTimes [counter]−
NormalLen−Transit ionEnd) /

(NormalLen+DetectMarg))
TotalNrOfP = len (TripSOFs)
be s t kh met r i c =[]
b e s t h s =[]
f o r temp k in k s e t :

NormalCUSUMhis = [Compute CUSUM
(x , NormalTarget , temp k)

f o r x in NormalSOFs]
TripCUSUMhis = [Compute CUSUM

(x , NormalTarget , temp k)
f o r x in TripSOFs]

h s e t = [Period Maxes (x , NormalLen)
f o r x in NormalCUSUMhis]

i f (i n c lude l ow) :
NormalCUSUMlos = [Compute CUSUM

(x , NormalTarget , temp k , s i d e =’ lo ’)
f o r x in NormalSOFs]

TripCUSUMlos = [Compute CUSUM
(x , NormalTarget , temp k , s i d e =’ lo ’)

f o r x in TripSOFs]
h s e t . extend ([Period Maxes

(x , NormalLen)
f o r x in NormalCUSUMlos])

h s e t=np . sum(h s e t)
h s e t = np . s o r t (np . unique (h s e t))
b e s t h m e t r i c =[]
f o r temp h in h s e t :

TripOutWheres = [np . where (x) [0]
f o r x in [x>temp h

f o r x in TripCUSUMhis]]
NormalOutWheres = [np . where (x) [0]

f o r x in [x>temp h
f o r x in NormalCUSUMhis]]

i f (i n c lude l ow) :
TripOutWheres . extend ([np . where (x) [0]

f o r x in [x>temp h
f o r x in TripCUSUMlos]])

NormalOutWheres . extend (
[np . where (x) [0] f o r x in

125

[x>temp h
f o r x in NormalCUSUMlos]])

TripOutWheres = [np . asar ray (x)
f o r x in TripOutWheres]

NormalOutWheres = [np . asar ray (x)
f o r x in NormalOutWheres]

TrueP = sum ([(l en (np . i n t e r s e c t 1 d (
range ((TransitionEnd−DetectMarg) ,

(Transit ionEnd+NormalLen)) ,
(TripTimes [x]−

TripOutWheres [x]))) > 0)
f o r x in range

(0 , l en (TripSOFs))])
FalseP = 0
f o r x in NormalOutWheres :

FalseP += len (np . unique (np . f l o o r
(x /(NormalLen+DetectMarg))))

f o r x in range (0 , l en (TripSOFs)) :
FalseP += len (np . unique (np . f l o o r

((TripOutWheres [x])
[(TripOutWheres [x] <=

(TripTimes [x]−NormalLen
−Transit ionEnd))] /

(NormalLen+
DetectMarg))))

TrueN = TotalNrOfN − FalseP
FalseN = TotalNrOfP − TrueP
accuracy = (TrueP+TrueN)/

(TotalNrOfP+TotalNrOfN)
r e c a l l=TrueP/TotalNrOfP
p r e c i s i o n=0
i f (TrueP>0):

p r e c i s i o n=TrueP/(TrueP+FalseP)
f1 = 0
i f ((p r e c i s i o n+r e c a l l)>0):

f 1 =(2∗ p r e c i s i o n ∗ r e c a l l)/
(p r e c i s i o n+r e c a l l)

s p e c i f i c i t y = TrueN/(TotalNrOfN)
b e s t h m e t r i c . append (eva l (metr ic))

b e s t h m e t r i c = np . asar ray (b e s t h m e t r i c)
b e s t h s . append (h s e t [np . where (b e s t h m e t r i c

== np . max(b e s t h m e t r i c)) [0] [p r i o r i t y i n d]])
b e s t kh met r i c . append (np . max(b e s t h m e t r i c))

be s t kh met r i c = np . asar ray (be s t kh met r i c)
b e s t m e t r i c = np . max(be s t kh met r i c)

126

bes t k=k s e t [np . where (be s t kh met r i c == b e s t m e t r i c)
[0] [p r i o r i t y i n d]]

be s t h = b e s t h s [np . where (be s t kh met r i c ==
b e s t m e t r i c) [0] [p r i o r i t y i n d]]

r e turn ([NormalTarget , NormalSTD , best k , best h ,
b e s t m e t r i c])

Given test data and the CUSUM features, the following function evaluates
a CUSUM model, and returns a confusion matrix. The inputs NormalSOFs
and TripSOFs are lists of signals in the normal groups and in the tripping
groups, respectively. The variables NormalTarget, k and h are the CUSUM
features. Looking at Figure 3.5, the inputs NormalLen and TransitionEnd
should respectively be set to ν − f and ν. If we allow for the late detection
of the transition state, DetectMarg should be set to the allowed delay for the
detection after the transition state has ended. The variable include low is set
to True if it is desired to also declare the process out of control when C−i > h.
Otherwise only C+

i will be taken into consideration.

de f Evaluate CUSUM(NormalSOFs , TripSOFs , NormalTarget , k , h ,
NormalLen , TransitionEnd , DetectMarg ,

i n c lude l ow = True) :
NormalSOFs=[x [(l en (x)%(NormalLen+DetectMarg)) :]

f o r x in NormalSOFs]
TripSOFs=[x [((l en (x)−NormalLen−Transit ionEnd)%

(NormalLen+DetectMarg)) :] f o r x in TripSOFs]
TripTimes = np . asar ray ([l en (x) f o r x in TripSOFs])
NormalTimes = np . asar ray ([l en (x)

f o r x in NormalSOFs])
NormalCUSUMhis = [Compute CUSUM(x , NormalTarget , k)

f o r x in NormalSOFs]
TripCUSUMhis = [Compute CUSUM(x , NormalTarget , k)

f o r x in TripSOFs]
NormalOutWheres = [np . where (x) [0] f o r x in [x>h

f o r x in NormalCUSUMhis]]
TripOutWheres = [np . where (x) [0] f o r x in [x>h

f o r x in TripCUSUMhis]]
i f (i n c lude l ow) :

NormalCUSUMlos = [Compute CUSUM
(x , NormalTarget , k , s i d e =’ lo ’)

f o r x in NormalSOFs]
TripCUSUMlos = [Compute CUSUM

(x , NormalTarget , k , s i d e =’ lo ’)
f o r x in TripSOFs]

TripOutWheres . extend ([np . where (x) [0]
f o r x in [x>h f o r x in TripCUSUMlos]])

NormalOutWheres . extend ([np . where (x) [0]
f o r x in [x>h f o r x in NormalCUSUMlos]])

127

TripOutWheres = [np . asar ray (x)
f o r x in TripOutWheres]

NormalOutWheres = [np . asar ray (x)
f o r x in NormalOutWheres]

TripOutWheres = np . asar ray (TripOutWheres)
NormalOutWheres = np . asar ray (NormalOutWheres)
TrueP = sum ([(l en (np . i n t e r s e c t 1 d (range (

(TransitionEnd−DetectMarg) ,
(Transit ionEnd+NormalLen)) ,

(TripTimes [x]−TripOutWheres [x]))) > 0)
f o r x in range (0 , l en (TripSOFs))])

TotalNrOfN = 0
FalseP = 0
f o r counter in range (0 , l en (NormalSOFs)) :

TotalNrOfN += np . c e i l (NormalTimes [counter] /
(NormalLen+DetectMarg))

FalseP += len (np . unique (np . f l o o r (
NormalOutWheres [counter] /

(NormalLen+DetectMarg))))
f o r counter in range (0 , l en (TripSOFs)) :

TotalNrOfN += np . c e i l (
(TripTimes [counter]−NormalLen−Transit ionEnd)/

(NormalLen+DetectMarg))
FalseP += len (np . unique (np . f l o o r (

(TripOutWheres [counter])
[(TripOutWheres [counter] <=

(TripTimes [counter]−NormalLen−
Transit ionEnd))] /

(NormalLen+DetectMarg))))
TotalNrOfP = len (TripSOFs)
FalseN = TotalNrOfP−TrueP
TrueN = TotalNrOfN−FalseP
return (pd . DataFrame ([[TrueN , FalseP] , [FalseN , TrueP]] ,

columns =[’ Pred ic ted Normal ’ , ’ Pred ic ted Trip ’] ,
index =[’ Actual Normal ’ , ’ Actual Trip ’]))

C.2 Simulation Study
Here we will present the Python script for the simulation study.

C.2.1 Data Simulation
First some variables should be set.

NumberOfSimulations = 100

128

NumberOfDimensions = 10
NumberOfNormalGr = 500
NumberOfNormalSSGr = 50
NumberOfNormalTestGr = 50
NumberOfTripSSGr = 50
NumberOfTripTestGr = 50
lengthSD = 200
minLength = 300
TmodeStart = 90
TmodeEnd = 30
TmodeLength = TmodeStart − TmodeEnd
TDetectionMargin = 15
SearchLen = TmodeStart − TmodeEnd + 2∗TDetectionMargin
r s v e c=range (0 , NumberOfSimulations)

In the following code, the simulated data sets are generated. The simulated nor-
mal training data sets are saved in the list VecSimulatedNormal. The simu-
lated signal selection data sets are saved in the lists VecSimulatedNormalSS
and VecSimulatedTripSS, and the simulated test data sets are saved in the
lists VecSimulatedNormalTest and VecSimulatedTripTest.

VecNormalChangePoints =[]
VecNormalSSChangePoints =[]
VecNormalTestChangePoints =[]
VecTripSSChangePoints =[]
VecTripTestChangePoints =[]
VecSimulatedNormal = []
VecSimulatedNormalSS = []
VecSimulatedNormalTest = []
VecSimulatedTripSS = []
VecSimulatedTripTest = []
VecTrainingData = []
f o r s imulat ionCounter in tqdm(r s v e c) :

r s=s imulat ionCounter
np . random . seed (r s)
#Making Sigma
covMat = make spd matrix (NumberOfDimensions ,

random state=r s)
#Making A
A eigs = (2∗np . random . random sample

(s i z e=NumberOfDimensions)) −1
whi l e ((−1) in A e igs) :

A e igs = (2∗np . random . random sample
(s i z e=NumberOfDimensions)) −1

Q = ortho group . rvs
(dim=NumberOfDimensions , random state=r s)

A = np . matmul (Q, np . matmul

129

(np . diag (A e igs) ,Q. t ranspose ()))
#Make the proce s s
y N = VARProcess (c o e f s=np . asanyarray ([A]) ,

s igma u=covMat , c o e f s e x o g =(np . asanyarray ([0])))
#S e l e c t i n g dimensions o f change
NormalChangeDim , TripChangeDim = [0 , 0]
whi l e (NormalChangeDim == TripChangeDim) :

NormalChangeDim , TripChangeDim =
np . random . rand int (NumberOfDimensions , s i z e =2)

#I n i t i a l i z e va lue s f o r s imu la t i on
grMade = 0
NormalChangeAmp = np . std

(y N . s imu la t e va r (s t ep s =1000) [: , NormalChangeDim])
TripChangeAmp = np . std

(y N . s imu la t e va r (s t ep s =1000) [: , TripChangeDim])
NormalChangePoints =[]
NormalSSChangePoints =[]
NormalTestChangePoints =[]
TripSSChangePoints =[]
TripTestChangePoints =[]
SimulatedNormal = []
SimulatedNormalSS = []
SimulatedNormalTest = []
SimulatedTripSS = []
SimulatedTripTest = []
Make normal groups f o r t r a i n i n g
f o r counter in range (0 , NumberOfNormalGr) :

l ength = i n t (uniform (minLength ,
(minLength+2∗ lengthSD +1)))

changeWhere = i n t (uniform (0 , l ength))
NormalChangePoints . append (changeWhere)
temp = y N . s imu la t e va r (s t ep s=length)
temp [changeWhere : , NormalChangeDim] =

temp [changeWhere : , NormalChangeDim]
+ NormalChangeAmp

temp = pd . DataFrame (temp)
temp [’ gr nr ’] = [grMade+counter]∗ l ength
SimulatedNormal . append (temp)

grMade += NumberOfNormalGr
TrainingData = pd . concat (SimulatedNormal)
Make normal groups f o r s i g n a l s e l e c t i o n
f o r counter in range (0 , NumberOfNormalSSGr) :

l ength = i n t (uniform (minLength ,
(minLength+2∗ lengthSD +1)))

changeWhere = i n t (uniform (0 , l ength))

130

NormalSSChangePoints . append (changeWhere)
temp = y N . s imu la t e va r (s t ep s=length)
temp [changeWhere : , NormalChangeDim] =

temp [changeWhere : , NormalChangeDim]
+ NormalChangeAmp

temp = pd . DataFrame (temp)
temp [’ gr nr ’] = [grMade+counter]∗ l ength
SimulatedNormalSS . append (temp)

grMade+= NumberOfNormalSSGr
Make t r i p groups f o r s i g n a l s e l e c t i o n
f o r counter in range (0 , NumberOfTripSSGr) :

l ength = i n t (uniform (minLength ,
(minLength+2∗ lengthSD +1)))

changeWhere = i n t (uniform (
length−TmodeStart , length−TmodeEnd))

TripSSChangePoints . append (changeWhere)
temp = y N . s imu la t e va r (s t ep s=length)
temp [changeWhere : , TripChangeDim] =

temp [changeWhere : , TripChangeDim]
+ TripChangeAmp

temp = pd . DataFrame (temp)
temp [’ gr nr ’] = [grMade+counter]∗ l ength
SimulatedTripSS . append (temp)

grMade+= NumberOfNormalSSGr
Make normal groups f o r t e s t i n g
f o r counter in range (0 , NumberOfNormalTestGr) :

l ength = i n t (uniform (minLength ,
(minLength+2∗ lengthSD +1)))

changeWhere = i n t (uniform (0 , l ength))
NormalTestChangePoints . append (changeWhere)
temp = y N . s imu la t e va r (s t ep s=length)
temp [changeWhere : , NormalChangeDim] =

temp [changeWhere : , NormalChangeDim]
+ NormalChangeAmp

temp = pd . DataFrame (temp)
temp [’ gr nr ’] = [counter]∗ l ength
SimulatedNormalTest . append (temp)

grMade+= NumberOfNormalSSGr
Make t r i p groups f o r t e s t i n g
f o r counter in range (0 , NumberOfTripTestGr) :

l ength = i n t (uniform (minLength ,
(minLength+2∗ lengthSD +1)))

changeWhere = i n t (uniform
(length−TmodeStart , length−TmodeEnd))

TripTestChangePoints . append (changeWhere)

131

temp = y N . s imu la t e va r (s t ep s=length)
temp [changeWhere : , TripChangeDim] =

temp [changeWhere : , TripChangeDim]
+ TripChangeAmp

temp = pd . DataFrame (temp)
temp [’ gr nr ’] = [grMade+counter]∗ l ength
SimulatedTripTest . append (temp)

grMade+= NumberOfNormalSSGr
VecNormalChangePoints .

append (NormalChangePoints)
VecNormalSSChangePoints .

append (NormalSSChangePoints)
VecNormalTestChangePoints .

append (NormalTestChangePoints)
VecTripSSChangePoints .

append (TripSSChangePoints)
VecTripTestChangePoints .

append (TripTestChangePoints)
VecSimulatedNormal .

append (SimulatedNormal)
VecSimulatedNormalSS .

append (SimulatedNormalSS)
VecSimulatedNormalTest .

append (SimulatedNormalTest)
VecSimulatedTripSS .

append (SimulatedTripSS)
VecSimulatedTripTest .

append (SimulatedTripTest)
VecTrainingData .

append (TrainingData)

C.2.2 Signal Selection
Here we present the implementation of the four experiments, designed in 4.2,
for the purpose of selecting the signal of interest in the simulation study.

In each experiment, one can select the constantm in the BIC inspired penalty
function with an ad hoc approach among some alternatives in the list penVec.
However, we only use one alternative. Note that the element in penVec is m

2
for each experiment.

Experiment 1

The following is the implementation of Experiment 1 for the simulated data. For
each simulation, the natural logarithm of the Mann-Whitney U test’s p-value
yielded by the selected signal of interest is saved in PCALinCombBestLogPvalues,
and the selected signal of interest is saved in PCALinCombBestDim.

132

a lgo=rpt . Pe l t (model=”ar ” , jump=i n t (TmodeLength /5) , params
={”order ” : 1})

penVec =[2]
PCALinCombBestLogPvalues = []
PCALinCombBestDim=[]
PCALinCombBestPens =[]
f o r s imulat ionCounter in tqdm(r s v e c) :

NormalChangePoints = VecNormalChangePoints
[s imulat ionCounter]

NormalSSChangePoints= VecNormalSSChangePoints
[s imulat ionCounter]

NormalTestChangePoints = VecNormalTestChangePoints
[s imulat ionCounter]

TripSSChangePoints = VecTripSSChangePoints
[s imulat ionCounter]

TripTestChangePoints = VecTripTestChangePoints
[s imulat ionCounter]

SimulatedNormal = VecSimulatedNormal
[s imulat ionCounter]

SimulatedNormalSS = VecSimulatedNormalSS
[s imulat ionCounter]

SimulatedNormalTest = VecSimulatedNormalTest
[s imulat ionCounter]

SimulatedTripSS = VecSimulatedTripSS
[s imulat ionCounter]

SimulatedTripTest = VecSimulatedTripTest
[s imulat ionCounter]

TrainingData = VecTrainingData
[s imulat ionCounter]

#Making the PCA trans fo rmat ion :
myPC = VARBT(groug c name=’ gr nr ’ , BoxTiao=False)
myPC. f i t (TrainingData)
ExpVar = myPC. va r i ance s /sum(myPC. va r i ance s)

#S e l e c t i n g pen func t i on :
PCApvalMins =[]
PCAPSbestDims =[]
f o r penConst in penVec :

PCAMWUtests = []
f o r linComb in range (0 , l en (myPC. TrueColumns)) :

a lphas = []
betas = []
f o r groupDF in SimulatedTripSS :

SOF = myPC. trans form (groupDF)

133

[: , linComb]
SOF = SOF [((l en (SOF)−TmodeStart−

TDetectionMargin)%SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen =

penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
i f (l en (np . i n t e r s e c t 1 d (range (

TmodeEnd−TDetectionMargin ,
TmodeStart+TDetectionMargin)

, (l en (SOF)−DFresult))) >0) :
a lphas . append (1)

e l s e :
a lphas . append (0)

DFresult=DFresult [(DFresult <=
(len (SOF)−TmodeStart−

TDetectionMargin))]
i f (l en (DFresult)>0):

betas . append (1)
e l s e :

betas . append (0)

f o r groupDF in SimulatedNormalSS :
SOF = myPC. trans form (groupDF)

[: , linComb]
SOF = SOF[(l en (SOF) % SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen =

penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
i f (l en (DFresult)>1):

betas . append (1)
e l s e :

betas . append (0)

t ry :
PCAMWUtests . append (mannwhitneyu (

x=betas , y=alphas ,
a l t e r n a t i v e =’ l e s s ’))

except :
PCAMWUtests . append (mannwhitneyu (

x=[1 ,−1]∗1000 ,y=[−1 ,1]∗1000 ,
a l t e r n a t i v e =’ l e s s ’))

PCApvalMins . append (np . min (
[np . l og (x . pvalue)

134

f o r x in PCAMWUtests]))
PCAPSbestDims . append (np . where (

PCAMWUtests==np . min (
PCAMWUtests)) [0] [0])

PCALinCombBestPens . append (penVec
[np . where (PCApvalMins ==

min (PCApvalMins)) [0] [0]])
PCALinCombBestLogPvalues .

append (min (PCApvalMins))
PCALinCombBestDim . append (

PCAPSbestDims [np . where
(PCApvalMins ==

min (PCApvalMins)) [0] [0]])

Experiment 2

The following is the implementation of Experiment 2 for the simulated data. For
each simulation, the natural logarithm of the Mann-Whitney U test’s p-value
yielded by the selected signal of interest is saved in PCADLIBestLogPvalues,
and the selected signal of interest is saved in PCADLIBestDim.

VarLimit = 0 .9
DLISignals = [’myPC. Leverage (groupDF , s l=S) ’ ,

’myPC. Discrepancy (groupDF , s d i=S) ’ ,
’myPC. I n f l u e n c e (groupDF , s i=S) ’]

a lgo=rpt . Pe l t (model=”normal ” , jump=i n t (TmodeLength /5))
penVec =[5]
PCADLIBestLogPvalues = []
PCADLIBestDim=[]
PCADLIBestPens =[]
f o r s imulat ionCounter in tqdm(r s v e c) :

NormalChangePoints = VecNormalChangePoints
[s imulat ionCounter]

NormalSSChangePoints= VecNormalSSChangePoints
[s imulat ionCounter]

NormalTestChangePoints = VecNormalTestChangePoints
[s imulat ionCounter]

TripSSChangePoints = VecTripSSChangePoints
[s imulat ionCounter]

TripTestChangePoints = VecTripTestChangePoints
[s imulat ionCounter]

SimulatedNormal = VecSimulatedNormal
[s imulat ionCounter]

SimulatedNormalSS = VecSimulatedNormalSS
[s imulat ionCounter]

SimulatedNormalTest = VecSimulatedNormalTest

135

[s imulat ionCounter]
SimulatedTripSS = VecSimulatedTripSS

[s imulat ionCounter]
SimulatedTripTest = VecSimulatedTripTest

[s imulat ionCounter]
TrainingData = VecTrainingData

[s imulat ionCounter]

#Making the PCA trans fo rmat ion :
myPC = VARBT(groug c name=’ gr nr ’ , BoxTiao=False)
myPC. f i t (TrainingData)
ExpVar = myPC. va r i ance s /sum(myPC. va r i ance s)
S = (np . where (np . asanyarray ([sum(ExpVar [: x+1])

f o r x in range (0 , l en (ExpVar))]) >
VarLimit) [0] [0]) + 1

#S e l e c t i n g pen func t i on :
PCApvalMins =[]
PCAPSbestDims =[]
f o r penConst in penVec :

PCAMWUtests = []
f o r DLI in range (0 , l en (DLISignals)) :

a lphas = []
betas = []
f o r groupDF in SimulatedTripSS :

SOF = eva l (DLISignals [DLI])
SOF = SOF [((l en (SOF)−TmodeStart−

TDetectionMargin)%SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen = penConst

∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
i f (l en (np . i n t e r s e c t 1 d (range (TmodeEnd−

TDetectionMargin , TmodeStart+
TDetectionMargin) ,

(l en (SOF)−DFresult))) >0) :
a lphas . append (1)

e l s e :
a lphas . append (0)

DFresult=DFresult [(DFresult <=
(len (SOF)−TmodeStart−

TDetectionMargin))]
i f (l en (DFresult)>0):

betas . append (1)
e l s e :

136

betas . append (0)

f o r groupDF in SimulatedNormalSS :
SOF = eva l (DLISignals [DLI])
SOF = SOF[(l en (SOF) % SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (

pen = penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
i f (l en (DFresult)>1):

betas . append (1)
e l s e :

betas . append (0)
t ry :

PCAMWUtests . append (mannwhitneyu (
x=betas , y=alphas ,

a l t e r n a t i v e =’ l e s s ’))
except :

PCAMWUtests . append (mannwhitneyu (
x=[1 ,−1]∗1000 ,y=[−1 ,1]∗1000 ,

a l t e r n a t i v e =’ l e s s ’))
PCApvalMins . append (np . min ([np . l og (x . pvalue)

f o r x in PCAMWUtests]))
PCAPSbestDims . append (np . where (PCAMWUtests==

np . min (PCAMWUtests)) [0] [0])

PCADLIBestPens . append (penVec [np . where (PCApvalMins ==
min (PCApvalMins)) [0] [0]])

PCADLIBestLogPvalues . append (min (PCApvalMins))
PCADLIBestDim . append (PCAPSbestDims [np . where (

PCApvalMins == min (PCApvalMins)) [0] [0]])

Experiment 3

The following is the implementation of Experiment 3 for the simulated data. For
each simulation, the natural logarithm of the Mann-Whitney U test’s p-value
yielded by the selected signal of interest is saved in BTALinCombBestLogPvalues,
and the selected signal of interest is saved in BTALinCombBestDim.

a lgo=rpt . Pe l t (model=”ar ” , jump=i n t (TmodeLength /5) , params=
{” order ” : 1})

penVec =[2]
BTALinCombBestLogPvalues = []
BTALinCombBestDim=[]
BTALinCombBestPens = []
f o r s imulat ionCounter in tqdm(r s v e c) :

137

NormalChangePoints = VecNormalChangePoints
[s imulat ionCounter]

NormalSSChangePoints= VecNormalSSChangePoints
[s imulat ionCounter]

NormalTestChangePoints = VecNormalTestChangePoints
[s imulat ionCounter]

TripSSChangePoints = VecTripSSChangePoints
[s imulat ionCounter]

TripTestChangePoints = VecTripTestChangePoints
[s imulat ionCounter]

SimulatedNormal = VecSimulatedNormal
[s imulat ionCounter]

SimulatedNormalSS = VecSimulatedNormalSS
[s imulat ionCounter]

SimulatedNormalTest = VecSimulatedNormalTest
[s imulat ionCounter]

SimulatedTripSS = VecSimulatedTripSS
[s imulat ionCounter]

SimulatedTripTest = VecSimulatedTripTest
[s imulat ionCounter]

TrainingData = VecTrainingData
[s imulat ionCounter]

#Making the PCA trans fo rmat ion :
myBT = VARBT(groug c name=’ gr nr ’)
myBT. f i t (TrainingData)
ExpVar = myBT. va r i ance s /sum(myBT. va r i ance s)

#S e l e c t i n g pen func t i on :
BTApvalMins =[]
BTAPSbestDims =[]
f o r penConst in penVec :

BTAMWUtests = []
f o r linComb in range (0 , l en (myBT. TrueColumns)) :

a lphas = []
betas = []
f o r groupDF in SimulatedTripSS :

SOF = myBT. trans form (groupDF) [: , linComb]
SOF = SOF [((l en (SOF)−TmodeStart−

TDetectionMargin)%SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen =

penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
i f (l en (np . i n t e r s e c t 1 d (range (TmodeEnd−

138

TDetectionMargin , TmodeStart+
TDetectionMargin) , (l en (SOF)

−DFresult))) >0) :
a lphas . append (1)

e l s e :
a lphas . append (0)

DFresult=DFresult [(DFresult <= (len (SOF)
−TmodeStart−TDetectionMargin))]

i f (l en (DFresult)>0):
betas . append (1)

e l s e :
betas . append (0)

f o r groupDF in SimulatedNormalSS :
SOF = myBT. trans form (groupDF) [: , linComb]
SOF = SOF[(l en (SOF) % SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen =

penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
i f (l en (DFresult)>1):

betas . append (1)
e l s e :

betas . append (0)

t ry :
BTAMWUtests . append (mannwhitneyu (

x=betas , y=alphas , a l t e r n a t i v e =’ l e s s ’))
except :

BTAMWUtests . append (mannwhitneyu (
x=[1 ,−1]∗1000 ,y=[−1 ,1]∗1000 ,

a l t e r n a t i v e =’ l e s s ’))
BTApvalMins . append (np . min ([np . l og (x . pvalue)

f o r x in BTAMWUtests]))
BTAPSbestDims . append (np . where (BTAMWUtests==

np . min (BTAMWUtests)) [0] [0])
BTALinCombBestPens . append (penVec [np . where (BTApvalMins

== min (BTApvalMins)) [0] [0]])
BTALinCombBestLogPvalues . append (min (BTApvalMins))
BTALinCombBestDim . append (BTAPSbestDims [np . where (

BTApvalMins == min (BTApvalMins)) [0] [0]])

139

Experiment 4

The following is the implementation of Experiment 4 for the simulated data. For
each simulation, the natural logarithm of the Mann-Whitney U test’s p-value
yielded by the selected signal of interest is saved in BTADLIBestLogPvalues,
and the selected signal of interest is saved in BTADLIBestDim.

PredLimit = 0 .9
DLISignals = [’myBT. Leverage (groupDF , s l=S) ’ ,

’myBT. Discrepancy (groupDF , s d i=S) ’ ,
’myBT. I n f l u e n c e (groupDF , s i=S) ’]

a lgo=rpt . Pe l t (model=”normal ” , jump=i n t (TmodeLength /5))
penVec =[5]
BTADLIBestLogPvalues = []
BTADLIBestDim=[]
BTADLIBestPens =[]
f o r s imulat ionCounter in tqdm(r s v e c) :

NormalChangePoints = VecNormalChangePoints
[s imulat ionCounter]

NormalSSChangePoints= VecNormalSSChangePoints
[s imulat ionCounter]

NormalTestChangePoints = VecNormalTestChangePoints
[s imulat ionCounter]

TripSSChangePoints = VecTripSSChangePoints
[s imulat ionCounter]

TripTestChangePoints = VecTripTestChangePoints
[s imulat ionCounter]

SimulatedNormal = VecSimulatedNormal
[s imulat ionCounter]

SimulatedNormalSS = VecSimulatedNormalSS
[s imulat ionCounter]

SimulatedNormalTest = VecSimulatedNormalTest
[s imulat ionCounter]

SimulatedTripSS = VecSimulatedTripSS
[s imulat ionCounter]

SimulatedTripTest = VecSimulatedTripTest
[s imulat ionCounter]

TrainingData = VecTrainingData
[s imulat ionCounter]

#Making the PCA trans fo rmat ion :
myBT = VARBT(groug c name=’ gr nr ’)
myBT. f i t (TrainingData)
ExpPred = myBT. p r e d i c t a b i l i t i e s /

sum(myBT. p r e d i c t a b i l i t i e s)
S = (np . where (np . asanyarray ([sum(ExpPred [: x+1])

f o r x in range (0 , l en (ExpPred))]) > PredLimit)

140

[0] [0]) + 1
#S e l e c t i n g pen func t i on :
BTApvalMins =[]
BTAPSbestDims =[]
f o r penConst in penVec :

BTAMWUtests = []
f o r DLI in range (0 , l en (DLISignals)) :

a lphas = []
betas = []
f o r groupDF in SimulatedTripSS :

SOF = eva l (DLISignals [DLI])
SOF = SOF [((l en (SOF)−TmodeStart−

TDetectionMargin)%SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen =

penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
i f (l en (np . i n t e r s e c t 1 d (range (

TmodeEnd−TDetectionMargin ,
TmodeStart+TDetectionMargin) ,

(l en (SOF)−DFresult))) >0) :
a lphas . append (1)

e l s e :
a lphas . append (0)

DFresult=DFresult [(DFresult <=
(len (SOF)−TmodeStart−

TDetectionMargin))]
i f (l en (DFresult)>0):

betas . append (1)
e l s e :

betas . append (0)

f o r groupDF in SimulatedNormalSS :
SOF = eva l (DLISignals [DLI])
SOF = SOF[(l en (SOF) % SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen =

penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
i f (l en (DFresult)>1):

betas . append (1)
e l s e :

betas . append (0)
t ry :

BTAMWUtests . append (mannwhitneyu (

141

x=betas , y=alphas , a l t e r n a t i v e =’ l e s s ’))
except :

BTAMWUtests . append (mannwhitneyu (
x=[1 ,−1]∗1000 ,y=[−1 ,1]∗1000 ,

a l t e r n a t i v e =’ l e s s ’))
BTApvalMins . append (np . min ([np . l og (x . pvalue)

f o r x in BTAMWUtests]))
BTAPSbestDims . append (np . where (BTAMWUtests==

np . min (BTAMWUtests)) [0] [0])
BTADLIBestLogPvalues . append (min (BTApvalMins))
BTADLIBestDim . append (BTAPSbestDims [np . where (

BTApvalMins == min (BTApvalMins)) [0] [0]])
BTADLIBestPens . append (penVec [np . where (

PCApvalMins == min (PCApvalMins)) [0] [0]])

C.2.3 Predictive Model
Here, we present the Python script used for the training and the evaluation of
the predictive model in the simulation study.

Experiment 1

In the following code, we use the signals of interest selected in Experiment 1
to construct and evaluate a predictive model using the CUSUM method. The
confusion matrices of the models are saved in the list PCALinCombConfMats.

PCALinCombConfMats=[]
PCALinCombBestCusumH = []
PCALinCombBestCusumK = []
PCALinComPCArgets=[]
PCALinCombSTDs=[]
PCALinCombTrainingMetric =[]

f o r s imulat ionCounter in tqdm(r s v e c) :
SimulatedNormalSS = VecSimulatedNormalSS

[s imulat ionCounter]
SimulatedNormalTest = VecSimulatedNormalTest

[s imulat ionCounter]
SimulatedTripSS = VecSimulatedTripSS

[s imulat ionCounter]
SimulatedTripTest = VecSimulatedTripTest

[s imulat ionCounter]
TrainingData = VecTrainingData

[s imulat ionCounter]

#Making the PCA trans fo rmat ion :

142

myPC = VARBT(groug c name=’ gr nr ’ , BoxTiao=False)
myPC. f i t (TrainingData)
PCABestLinComb = PCALinCombBestDim

[s imulat ionCounter]

#Transforming Data
PCALinCombNormalssSOFs = [myPC. trans form (x)

[: , PCABestLinComb] f o r x in SimulatedNormalSS]
PCALinCombTripssSOFs = [myPC. trans form (x)

[: , PCABestLinComb] f o r x in SimulatedTripSS]
PCALinCombNormalTestSOFs = [myPC. trans form (x)

[: , PCABestLinComb] f o r x in SimulatedNormalTest]
PCALinCombTripTestSOFs = [myPC. trans form (x)

[: , PCABestLinComb] f o r x in SimulatedTripTest]

#Making CUSUM
PCALinCombNormalTarget , PCALinCombNormalSTD ,

PCALinCombBest k ,PCALinCombBest h ,
PCALinCombBestTrainingMetric = Make CUSUM(

PCALinCombNormalssSOFs ,
PCALinCombTripssSOFs , TmodeLength ,

TmodeEnd , TDetectionMargin ,
i n c lude l ow = True)

PCALinCombConfMats . append (Evaluate CUSUM(
PCALinCombNormalTestSOFs , PCALinCombTripTestSOFs ,

PCALinCombNormalTarget , PCALinCombBest k ,
PCALinCombBest h , TmodeLength , TmodeEnd ,

TDetectionMargin , i n c lude l ow = True))
PCALinCombBestCusumH . append (PCALinCombBest h)
PCALinCombBestCusumK . append (PCALinCombBest k)
PCALinComPCArgets . append (PCALinCombNormalTarget)
PCALinCombSTDs . append (PCALinCombNormalSTD)
PCALinCombTrainingMetric .

append (PCALinCombBestTrainingMetric)

Experiment 2

In the following code, we use the signals of interest selected in Experiment 2
to construct and evaluate a predictive model using the CUSUM method. The
confusion matrices of the models are saved in the list PCADLIConfMats.

DLISignals = [’myPC. Leverage (x , s l=S) ’ ,
’myPC. Discrepancy (x , s d i=S) ’ ,

’myPC. I n f l u e n c e (x , s i=S) ’]
VarLimit = 0 .90
PCADLIConfMats=[]

143

PCADLIBestCusumH = []
PCADLIBestCusumK = []
PCADLITargets =[]
PCADLISTDs=[]
PCADLITrainingMetric =[]

f o r s imulat ionCounter in tqdm(r s v e c) :
SimulatedNormalSS = VecSimulatedNormalSS

[s imulat ionCounter]
SimulatedNormalTest = VecSimulatedNormalTest

[s imulat ionCounter]
SimulatedTripSS = VecSimulatedTripSS

[s imulat ionCounter]
SimulatedTripTest = VecSimulatedTripTest

[s imulat ionCounter]
TrainingData = VecTrainingData

[s imulat ionCounter]

#Making the PCA trans fo rmat ion :
myPC = VARBT(groug c name=’ gr nr ’ , BoxTiao=False)
myPC. f i t (TrainingData)
ExpVar = myPC. va r i ance s /sum(myPC. va r i ance s)
S = (np . where (np . asanyarray ([sum(ExpVar [: x+1])

f o r x in range (0 , l en (ExpVar))]) > VarLimit)
[0] [0]) + 1

PCABestDLI = PCADLIBestDim [s imulat ionCounter]

#Transforming Data
PCADLINormalssSOFs = [eva l (DLISignals [PCABestDLI])

f o r x in SimulatedNormalSS]
PCADLITripssSOFs = [eva l (DLISignals [PCABestDLI])

f o r x in SimulatedTripSS]
PCADLINormalTestSOFs = [eva l (DLISignals [PCABestDLI])

f o r x in SimulatedNormalTest]
PCADLITripTestSOFs = [eva l (DLISignals [PCABestDLI])

f o r x in SimulatedTripTest]

#Making CUSUM
PCADLINormalTarget , PCADLINormalSTD, PCADLIBest k ,

PCADLIBest h , PCADLIBestTrainingMetric =
Make CUSUM(PCADLINormalssSOFs , PCADLITripssSOFs ,

TmodeLength , TmodeEnd , TDetectionMargin ,
i n c lude l ow = False)

PCADLIConfMats . append (Evaluate CUSUM(
PCADLINormalTestSOFs , PCADLITripTestSOFs ,

144

PCADLINormalTarget , PCADLIBest k , PCADLIBest h ,
TmodeLength , TmodeEnd , TDetectionMargin ,

i n c lude l ow = False))
PCADLIBestCusumH . append (PCADLIBest h)
PCADLIBestCusumK . append (PCADLIBest k)
PCADLITargets . append (PCADLINormalTarget)
PCADLISTDs . append (PCADLINormalSTD)
PCADLITrainingMetric .

append (PCADLIBestTrainingMetric)

Experiment 3

In the following code, we use the signals of interest selected in Experiment 3
to construct and evaluate a predictive model using the CUSUM method. The
confusion matrices of the models are saved in the list BTALinCombConfMats.

BTALinCombConfMats=[]
BTALinCombBestCusumH = []
BTALinCombBestCusumK = []
BTALinCombTargets =[]
BTALinCombSTDs=[]
BTALinCombTrainingMetric =[]

f o r s imulat ionCounter in tqdm(r s v e c) :
SimulatedNormalSS = VecSimulatedNormalSS

[s imulat ionCounter]
SimulatedNormalTest = VecSimulatedNormalTest

[s imulat ionCounter]
SimulatedTripSS = VecSimulatedTripSS

[s imulat ionCounter]
SimulatedTripTest = VecSimulatedTripTest

[s imulat ionCounter]
TrainingData = VecTrainingData

[s imulat ionCounter]

#Making the PCA trans fo rmat ion :
myBT = VARBT(groug c name=’ gr nr ’)
myBT. f i t (TrainingData)
BTABestLinComb = BTALinCombBestDim [s imulat ionCounter]

#Transforming Data
BTALinCombNormalssSOFs =

[myBT. trans form (x) [: , BTABestLinComb]
f o r x in SimulatedNormalSS]

BTALinCombTripssSOFs =
[myBT. trans form (x) [: , BTABestLinComb]

145

f o r x in SimulatedTripSS]
BTALinCombNormalTestSOFs =

[myBT. trans form (x) [: , BTABestLinComb]
f o r x in SimulatedNormalTest]

BTALinCombTripTestSOFs =
[myBT. trans form (x) [: , BTABestLinComb]

f o r x in SimulatedTripTest]

#Making CUSUM
BTALinCombNormalTarget , BTALinCombNormalSTD ,

BTALinCombBest k ,BTALinCombBest h ,
BTALinCombBestTrainingMetric = Make CUSUM(

BTALinCombNormalssSOFs ,
BTALinCombTripssSOFs , TmodeLength ,

TmodeEnd , TDetectionMargin ,
i n c lude l ow = True)

BTALinCombConfMats . append (Evaluate CUSUM(
BTALinCombNormalTestSOFs , BTALinCombTripTestSOFs ,

BTALinCombNormalTarget , BTALinCombBest k ,
BTALinCombBest h , TmodeLength , TmodeEnd ,

TDetectionMargin , i n c lude l ow = True))
BTALinCombBestCusumH . append (BTALinCombBest h)
BTALinCombBestCusumK . append (BTALinCombBest k)
BTALinCombTargets . append (BTALinCombNormalTarget)
BTALinCombSTDs . append (BTALinCombNormalSTD)
BTALinCombTrainingMetric .

append (BTALinCombBestTrainingMetric)

Experiment 4

In the following code, we use the signals of interest selected in Experiment 1
to construct and evaluate a predictive model using the CUSUM method. The
confusion matrices of the models are saved in the list BTADLIConfMats.

DLISignals = [’myBT. Leverage (x , s l=S) ’ ,
’myBT. Discrepancy (x , s d i=S) ’ ,

’myBT. I n f l u e n c e (x , s i=S) ’]
PredLimit = 0 .90
BTADLIConfMats=[]
BTADLIBestCusumH = []
BTADLIBestCusumK = []
BTADLITargets =[]
BTADLISTDs=[]
BTADLITrainingMetric =[]

f o r s imulat ionCounter in tqdm(r s v e c) :

146

SimulatedNormalSS = VecSimulatedNormalSS
[s imulat ionCounter]

SimulatedNormalTest = VecSimulatedNormalTest
[s imulat ionCounter]

SimulatedTripSS = VecSimulatedTripSS
[s imulat ionCounter]

SimulatedTripTest = VecSimulatedTripTest
[s imulat ionCounter]

TrainingData = VecTrainingData
[s imulat ionCounter]

#Making the BTA trans fo rmat ion :
myBT = VARBT(groug c name=’ gr nr ’)
myBT. f i t (TrainingData)
ExpPred = myBT. p r e d i c t a b i l i t i e s /

sum(myBT. p r e d i c t a b i l i t i e s)
S = (np . where (np . asanyarray ([sum(ExpPred [: x+1])

f o r x in range (0 , l en (ExpPred))]) > PredLimit)
[0] [0]) + 1

BTABestDLI = BTADLIBestDim [s imulat ionCounter]

#Transforming Data
BTADLINormalssSOFs = [eva l (DLISignals [BTABestDLI])

f o r x in SimulatedNormalSS]
BTADLITripssSOFs = [eva l (DLISignals [BTABestDLI])

f o r x in SimulatedTripSS]
BTADLINormalTestSOFs = [eva l (DLISignals [BTABestDLI])

f o r x in SimulatedNormalTest]
BTADLITripTestSOFs = [eva l (DLISignals [BTABestDLI])

f o r x in SimulatedTripTest]

#Making CUSUM
BTADLINormalTarget , BTADLINormalSTD, BTADLIBest k

,BTADLIBest h , BTADLIBestTrainingMetric =
Make CUSUM(BTADLINormalssSOFs , BTADLITripssSOFs ,

TmodeLength , TmodeEnd , TDetectionMargin ,
i n c lude l ow = False)

BTADLIConfMats . append (Evaluate CUSUM(
BTADLINormalTestSOFs , BTADLITripTestSOFs ,

BTADLINormalTarget , BTADLIBest k , BTADLIBest h ,
TmodeLength , TmodeEnd , TDetectionMargin ,

i n c lude l ow = False))
BTADLIBestCusumH . append (BTADLIBest h)
BTADLIBestCusumK . append (BTADLIBest k)
BTADLITargets . append (BTADLINormalTarget)

147

BTADLISTDs . append (BTADLINormalSTD)
BTADLITrainingMetric . append (BTADLIBestTrainingMetric)

C.2.4 Results and Figures
The code used to calculate the mean and the standard deviation of the log(p-
values), presented in Subsection 5.1.1:

p r i n t (np . mean(PCALinCombBestLogPvalues))
p r i n t (np . mean(BTALinCombBestLogPvalues))
p r i n t (np . std (PCALinCombBestLogPvalues))
p r i n t (np . std (BTALinCombBestLogPvalues))

The code used to calculate the mean and the standard deviation of the
log(p-values), presented in Subsection 5.1.2:

p r i n t (np . mean(PCADLIBestLogPvalues))
p r i n t (np . mean(BTADLIBestLogPvalues))
p r i n t (np . std (PCADLIBestLogPvalues))
p r i n t (np . std (BTADLIBestLogPvalues))

The code used to create Figure 5.1:

PCALinCombBestDimP1=(np . asar ray (PCALinCombBestDim)+1)
BTALinCombBestDimP1=(np . asar ray (BTALinCombBestDim)+1)
c o l o r s = [’ red ’ , ’ blue ’]
n , bins , patches = p l t . h i s t ([PCALinCombBestDimP1 , BTALinCombBestDimP1] ,

b ins=np . arange (1 ,12)−0.5 , h i s t t y p e =’bar ’ ,
c o l o r=co l o r s , l a b e l =[’PCA’ , ’BTA’])

p l t . l egend (prop={ ’ s i z e ’ : 10})
p l t . x t i c k s (range (1 , 1 1))
p l t . x l a b e l (’PCA and BTA Components ’)
p l t . y l a b e l (’ Number o f S imulat ions ’)
p l t . s a v e f i g (’ SimLinCombhist . pdf ’)

The code used to create Figure 5.8:

c o l o r s = [’ red ’ , ’ blue ’]
n , bins , patches = p l t . h i s t ([PCADLIBestDim , BTADLIBestDim] ,

b ins=np . arange (4)−0.5 , h i s t t y p e =’bar ’ , c o l o r=co l o r s ,
l a b e l =[’PCA’ , ’BTA’])

p l t . l egend (prop={ ’ s i z e ’ : 10})
p l t . x t i c k s (range (0 , 3) , [’ Leverage ’ , ’ Discrepancy ’ , ’ In f lu ence ’])
p l t . x l a b e l (’ S i gna l o f I n t e r e s t ’)
p l t . y l a b e l (’ Number o f S imulat ions ’)
p l t . s a v e f i g (’ DLIS igna lh i s t . pdf ’)

The code used to compare the Mann-Whitney U tests’ p-values yielded by
the different approaches:

148

pr in t (’PCALinComb < BTALinComb ’)
p r i n t (mannwhitneyu (x=PCALinCombBestLogPvalues ,

y=BTALinCombBestLogPvalues , a l t e r n a t i v e =’ l e s s ’))
p r i n t (’PCALinComb < BTADLI’)
p r i n t (mannwhitneyu (x=PCALinCombBestLogPvalues ,

y=BTADLIBestLogPvalues , a l t e r n a t i v e =’ l e s s ’))
p r i n t (’PCALinComb < PCADLI’)
p r i n t (mannwhitneyu (x=PCALinCombBestLogPvalues ,

y=PCADLIBestLogPvalues , a l t e r n a t i v e =’ l e s s ’))
p r i n t (’BTALinComb < BTADLI’)
p r i n t (mannwhitneyu (x=BTALinCombBestLogPvalues ,

y=BTADLIBestLogPvalues , a l t e r n a t i v e =’ l e s s ’))
p r i n t (’BTALinComb < PCADLI’)
p r i n t (mannwhitneyu (x=BTALinCombBestLogPvalues ,

y=PCADLIBestLogPvalues , a l t e r n a t i v e =’ l e s s ’))
p r i n t (’PCADLI < BTADLI’)
p r i n t (mannwhitneyu (x=PCADLIBestLogPvalues ,

y=BTADLIBestLogPvalues , a l t e r n a t i v e =’ l e s s ’))

In the following code we calculate the four statistical metrics accuracy, recall,
precision and F1 score for each simulation experiment:

BTALinCombRecalls=np . asar ray ([(x . i l o c [1 , 1]) /
(x . i l o c [1 ,1]+ x . i l o c [1 , 0]) f o r x in BTALinCombConfMats])

PCALinCombRecalls=np . asar ray ([(x . i l o c [1 , 1]) /
(x . i l o c [1 ,1]+ x . i l o c [1 , 0]) f o r x in PCALinCombConfMats])

BTALinCombPrecisions=np . asar ray ([(x . i l o c [1 , 1]) /
(x . i l o c [1 ,1]+ x . i l o c [0 , 1]) f o r x in BTALinCombConfMats])

PCALinCombPrecisions = np . asar ray ([(x . i l o c [1 , 1]) /
(x . i l o c [1 ,1]+ x . i l o c [0 , 1]) f o r x in PCALinCombConfMats])

BTALinCombF1s = 2∗(BTALinCombRecalls∗BTALinCombPrecisions)/
(BTALinCombRecalls+BTALinCombPrecisions)

PCALinCombF1s = 2∗(PCALinCombRecalls∗PCALinCombPrecisions)/
(PCALinCombRecalls+PCALinCombPrecisions)

BTALinCombAccuracys=np . asar ray ([(x . i l o c [0 ,0]+ x . i l o c [1 , 1]) /
(x . sum () . sum ()) f o r x in BTALinCombConfMats])

PCALinCombAccuracys = np . asar ray ([(x . i l o c [0 ,0]+ x . i l o c [1 , 1]) /
(x . sum () . sum ()) f o r x in PCALinCombConfMats])

BTALinCombSpecificitys=np . asar ray ([(x . i l o c [0 , 0]) /
(x . i l o c [0 ,0]+ x . i l o c [0 , 1]) f o r x in BTALinCombConfMats])

PCALinCombSpecificitys = np . asar ray ([(x . i l o c [0 , 0]) /
(x . i l o c [0 ,0]+ x . i l o c [0 , 1]) f o r x in PCALinCombConfMats])

BTADLIRecalls=np . asar ray ([(x . i l o c [1 , 1]) /
(x . i l o c [1 ,1]+ x . i l o c [1 , 0]) f o r x in BTADLIConfMats])

PCADLIRecalls=np . asar ray ([(x . i l o c [1 , 1]) /
(x . i l o c [1 ,1]+ x . i l o c [1 , 0]) f o r x in PCADLIConfMats])

BTADLIPrecisions=np . asar ray ([(x . i l o c [1 , 1]) /

149

(x . i l o c [1 ,1]+ x . i l o c [0 , 1]) f o r x in BTADLIConfMats])
PCADLIPrecisions = np . asar ray ([(x . i l o c [1 , 1]) /

(x . i l o c [1 ,1]+ x . i l o c [0 , 1]) f o r x in PCADLIConfMats])
BTADLIF1s = 2∗(BTADLIRecalls∗BTADLIPrecisions)/

(BTADLIRecalls+BTADLIPrecisions)
PCADLIF1s = 2∗(PCADLIRecalls∗PCADLIPrecisions)/

(PCADLIRecalls+PCADLIPrecisions)
BTADLIAccuracys=np . asar ray ([(x . i l o c [0 ,0]+ x . i l o c [1 , 1]) /

(x . sum () . sum ()) f o r x in BTADLIConfMats])
PCADLIAccuracys = np . asar ray ([(x . i l o c [0 ,0]+ x . i l o c [1 , 1]) /

(x . sum () . sum ()) f o r x in PCADLIConfMats])
BTADLISpeci f ic itys=np . asar ray ([(x . i l o c [0 , 0]) /

(x . i l o c [0 ,0]+ x . i l o c [0 , 1]) f o r x in BTADLIConfMats])
PCADLISpeci f ic itys = np . asar ray ([(x . i l o c [0 , 0]) /

(x . i l o c [0 ,0]+ x . i l o c [0 , 1]) f o r x in PCADLIConfMats])
BTALinCombF1s=np . nan to num (BTALinCombF1s)
PCALinCombF1s=np . nan to num (PCALinCombF1s)
BTADLIF1s=np . nan to num (BTADLIF1s)
PCADLIF1s=np . nan to num (PCADLIF1s)

Now we set the font size in our figures: bigFsize=16.
The code for producing Figures 5.2, 5.9, 5.3, 5.10, 5.4, 5.11,5.7 and 5.12:

p l t . f i g u r e (f i g s i z e =(12 , 7))
c o l o r s = [’ red ’ , ’ blue ’]
p l t . h i s t ([PCALinCombRecalls , BTALinCombRecalls] ,

b ins=np . arange (0 , 1 . 0 5 , 0 . 0 5) , c o l o r=co l o r s ,
l a b e l =[’PCA’ , ’BTA’])

p l t . x t i c k s (np . arange (0 , 1 . 0 5 , 0 . 0 5))
p l t . l egend (prop={ ’ s i z e ’ : b i g F s i z e })
p l t . x l a b e l (’ Reca l l ’ , f o n t s i z e=b i g F s i z e)
p l t . y l a b e l (’ Number o f S imulat ions ’ , f o n t s i z e=b i g F s i z e)
p l t . s a v e f i g (’ SimLinCombRecallhist . pdf ’)
p l t . show ()

p l t . f i g u r e (f i g s i z e =(12 , 7))
c o l o r s = [’ red ’ , ’ blue ’]
p l t . h i s t ([PCADLIRecalls , BTADLIRecalls] ,

b ins=np . arange (0 , 1 . 0 5 , 0 . 0 5) , c o l o r=co l o r s ,
l a b e l =[’PCA’ , ’BTA’])

p l t . x t i c k s (np . arange (0 , 1 . 0 5 , 0 . 0 5))
p l t . l egend (prop={ ’ s i z e ’ : b i g F s i z e })
p l t . x l a b e l (’ Reca l l ’ , f o n t s i z e=b i g F s i z e)
p l t . y l a b e l (’ Number o f S imulat ions ’ , f o n t s i z e=b i g F s i z e)
p l t . s a v e f i g (’ S imDLIRecal lh ist . pdf ’)
p l t . show ()

150

p l t . f i g u r e (f i g s i z e =(12 , 7))
c o l o r s = [’ red ’ , ’ blue ’]
p l t . h i s t ([PCALinCombPrecisions , BTALinCombPrecisions] ,

b ins=np . arange (0 , 1 . 0 5 , 0 . 0 5) , c o l o r=co l o r s ,
l a b e l =[’PCA’ , ’BTA’])

p l t . x t i c k s (np . arange (0 , 1 . 0 5 , 0 . 0 5))
p l t . l egend (prop={ ’ s i z e ’ : b i g F s i z e })
p l t . x l a b e l (’ Prec i s i on ’ , f o n t s i z e=b i g F s i z e)
p l t . y l a b e l (’ Number o f S imulat ions ’ , f o n t s i z e=b i g F s i z e)
p l t . s a v e f i g (’ SimLinCombPrecis ionhist . pdf ’)
p l t . show ()

p l t . f i g u r e (f i g s i z e =(12 , 7))
c o l o r s = [’ red ’ , ’ blue ’]
p l t . h i s t ([PCADLIPrecisions , BTADLIPrecisions] ,

b ins=np . arange (0 , 1 . 0 5 , 0 . 0 5) , c o l o r=co l o r s ,
l a b e l =[’PCA’ , ’BTA’])

p l t . x t i c k s (np . arange (0 , 1 . 0 5 , 0 . 0 5))
p l t . l egend (prop={ ’ s i z e ’ : b i g F s i z e })
p l t . x l a b e l (’ Prec i s i on ’ , f o n t s i z e=b i g F s i z e)
p l t . y l a b e l (’ Number o f S imulat ions ’ , f o n t s i z e=b i g F s i z e)
p l t . s a v e f i g (’ S imDLIPrec i s ionh i s t . pdf ’)
p l t . show ()

p l t . f i g u r e (f i g s i z e =(12 , 7))
c o l o r s = [’ red ’ , ’ blue ’]
p l t . h i s t ([PCALinCombAccuracys , BTALinCombAccuracys] ,

b ins=np . arange (0 , 1 . 0 5 , 0 . 0 5) , c o l o r=co l o r s ,
l a b e l =[’PCA’ , ’BTA’])

p l t . x t i c k s (np . arange (0 , 1 . 0 5 , 0 . 0 5))
p l t . l egend (prop={ ’ s i z e ’ : b i g F s i z e })
p l t . x l a b e l (’ Accuracy ’ , f o n t s i z e=b i g F s i z e)
p l t . y l a b e l (’ Number o f S imulat ions ’ , f o n t s i z e=b i g F s i z e)
p l t . s a v e f i g (’ SimLinCombAccuracyhist . pdf ’)
p l t . show ()

p l t . f i g u r e (f i g s i z e =(12 , 7))
c o l o r s = [’ red ’ , ’ blue ’]
p l t . h i s t ([PCADLIAccuracys , BTADLIAccuracys] ,

b ins=np . arange (0 , 1 . 0 5 , 0 . 0 5) , c o l o r=co l o r s ,
l a b e l =[’PCA’ , ’BTA’])

p l t . x t i c k s (np . arange (0 , 1 . 0 5 , 0 . 0 5))
p l t . l egend (prop={ ’ s i z e ’ : b i g F s i z e })
p l t . x l a b e l (’ Accuracy ’ , f o n t s i z e=b i g F s i z e)
p l t . y l a b e l (’ Number o f S imulat ions ’ , f o n t s i z e=b i g F s i z e)

151

p l t . s a v e f i g (’ SimDLIAccuracyhist . pdf ’)
p l t . show ()

p l t . f i g u r e (f i g s i z e =(12 , 7))
c o l o r s = [’ red ’ , ’ blue ’]
p l t . h i s t ([PCALinCombF1s , BTALinCombF1s] ,

b ins=np . arange (0 , 1 . 0 5 , 0 . 0 5) , c o l o r=co l o r s ,
l a b e l =[’PCA’ , ’BTA’])

p l t . x t i c k s (np . arange (0 , 1 . 0 5 , 0 . 0 5))
p l t . l egend (prop={ ’ s i z e ’ : b i g F s i z e })
p l t . x l a b e l (’ F1 Score ’ , f o n t s i z e=b i g F s i z e)
p l t . y l a b e l (’ Number o f S imulat ions ’ , f o n t s i z e=b i g F s i z e)
p l t . s a v e f i g (’ SimLinCombF1hist . pdf ’)
p l t . show ()

p l t . f i g u r e (f i g s i z e =(12 , 7))
c o l o r s = [’ red ’ , ’ blue ’]
p l t . h i s t ([PCADLIF1s , BTADLIF1s] , b ins=np . arange (0 , 1 . 0 5 , 0 . 0 5) ,

c o l o r=co l o r s , l a b e l =[’PCA’ , ’BTA’])
p l t . x t i c k s (np . arange (0 , 1 . 0 5 , 0 . 0 5))
p l t . l egend (prop={ ’ s i z e ’ : b i g F s i z e })
p l t . x l a b e l (’ F1 Score ’ , f o n t s i z e=b i g F s i z e)
p l t . y l a b e l (’ Number o f S imulat ions ’ , f o n t s i z e=b i g F s i z e)
p l t . s a v e f i g (’ SimDLIF1hist . pdf ’)
p l t . show ()

The code for comparing the performance metrics of the four different ap-
proaches:

p r i n t (mannwhitneyu (x=PCALinCombRecalls ,
y=BTALinCombRecalls , a l t e r n a t i v e =’ l e s s ’))

p r i n t (mannwhitneyu (x=BTADLIRecalls ,
y=PCADLIRecalls , a l t e r n a t i v e =’ l e s s ’))

p r i n t (mannwhitneyu (x=BTADLIPrecisions ,
y=PCADLIPrecisions , a l t e r n a t i v e =’ l e s s ’))

p r i n t (mannwhitneyu (x=PCALinCombPrecisions ,
y=BTALinCombPrecisions , a l t e r n a t i v e =’ l e s s ’))

p r i n t (mannwhitneyu (x=PCALinCombAccuracys ,
y=BTALinCombAccuracys , a l t e r n a t i v e =’ l e s s ’))

p r i n t (mannwhitneyu (x=BTADLIAccuracys ,
y=PCADLIAccuracys , a l t e r n a t i v e =’ l e s s ’))

p r i n t (mannwhitneyu (x=PCALinCombF1s ,
y=BTALinCombF1s , a l t e r n a t i v e =’ l e s s ’))

p r i n t (mannwhitneyu (x=BTADLIF1s ,
y=PCADLIF1s , a l t e r n a t i v e =’ l e s s ’))

The code for producing Figure 5.6:

152

p l t . f i g u r e (f i g s i z e =(12 , 5))
p l t . subplot (1 , 2 , 1)
p l t . p l o t ((np . asar ray (PCALinCombBestDim)+1) ,

PCALinCombPrecisions , ’+ ’ , c o l o r =’red ’ ,
alpha = 0 . 6 , l a b e l =’PCA’)

m, b=np . p o l y f i t ((np . asar ray (PCALinCombBestDim)+1) ,
PCALinCombPrecisions , 1)

p l t . p l o t ((np . asar ray (PCALinCombBestDim)+1) ,
m∗(np . asar ray (PCALinCombBestDim)+1)+b,’−−r ’)

p l t . p l o t ((np . asar ray (BTALinCombBestDim)+1) ,
BTALinCombPrecisions , ’ x ’ , c o l o r =’blue ’ ,

alpha = 0 . 5 , l a b e l =’BTA’)
m, b=np . p o l y f i t ((np . asar ray (BTALinCombBestDim)+1) ,

BTALinCombPrecisions , 1)
p l t . p l o t ((np . asar ray (BTALinCombBestDim)+1) ,

m∗(np . asar ray (BTALinCombBestDim)+1)+b,’−−b ’)
p l t . l egend (prop={ ’ s i z e ’ : 12})
p l t . x t i c k s (range (1 , 1 1))
p l t . x l a b e l (’ S e l e c t e d S igna l o f I n t e r e s t ’ ,

f o n t s i z e=b i g F s i z e)
p l t . y l a b e l (’ Prec i s i on ’ , f o n t s i z e=b i g F s i z e)
p l t . subplot (1 , 2 , 2)
p l t . p l o t ((np . asar ray (PCALinCombBestDim)+1) ,

PCALinCombAccuracys , ’+ ’ , c o l o r =’red ’ ,
alpha = 0 . 6 , l a b e l =’PCA’)

m, b=np . p o l y f i t ((np . asar ray (PCALinCombBestDim)+1) ,
PCALinCombAccuracys , 1)

p l t . p l o t ((np . asar ray (PCALinCombBestDim)+1) ,
m∗(np . asar ray (PCALinCombBestDim)+1)+b,’−−r ’)

p l t . p l o t ((np . asar ray (BTALinCombBestDim)+1) ,
BTALinCombAccuracys , ’ x ’ , c o l o r =’blue ’ ,

alpha = 0 . 5 , l a b e l =’BTA’)
m, b=np . p o l y f i t ((np . asar ray (BTALinCombBestDim)+1) ,

BTALinCombAccuracys , 1)
p l t . p l o t ((np . asar ray (BTALinCombBestDim)+1) ,

m∗(np . asar ray (BTALinCombBestDim)+1)+b,’−−b ’)
p l t . l egend (prop={ ’ s i z e ’ : 12})
p l t . x t i c k s (range (1 , 1 1))
p l t . x l a b e l (’ S e l e c t e d S igna l o f I n t e r e s t ’ , f o n t s i z e=b i g F s i z e)
p l t . y l a b e l (’ Accuracy ’ , f o n t s i z e=b i g F s i z e)
p l t . s a v e f i g (’ SimLinCombPrecisionSOFs . pdf ’)
p l t . show ()

The code for producing Figure 5.5:

p l t . f i g u r e (f i g s i z e =(12 ,7))
p l t . subplot (1 , 2 , 1)

153

p l t . p l o t (PCALinCombAccuracys , PCALinCombPrecisions ,
’ . ’ , c o l o r =’red ’ , alpha = 0 . 6 , l a b e l =’PCA’)

p l t . x l a b e l (’ Accuracy ’ , f o n t s i z e=b i g F s i z e)
p l t . y l a b e l (’ Prec i s i on ’ , f o n t s i z e=b i g F s i z e)
p l t . l egend (prop={ ’ s i z e ’ : b i g F s i z e })
p l t . subplot (1 , 2 , 2)
p l t . p l o t (BTALinCombAccuracys , BTALinCombPrecisions ,

’ . ’ , c o l o r =’blue ’ , alpha = 0 . 6 , l a b e l =’BTA’)
p l t . l egend (prop={ ’ s i z e ’ : b i g F s i z e })
p l t . x l a b e l (’ Accuracy ’ , f o n t s i z e=b i g F s i z e)
p l t . y l a b e l (’ Prec i s i on ’ , f o n t s i z e=b i g F s i z e)
p l t . s a v e f i g (’ SimLinCombPrecisionAccuracy . pdf ’)
p l t . show ()

The code for taking the average of the performance metrics and producing
Figure 5.13:

PCADLIRecall=np . mean(PCADLIRecalls)
BTADLIRecall=np . mean(BTADLIRecalls)
BTALinCombRecall=np . mean(BTALinCombRecalls)
PCALinCombRecall=np . mean(PCALinCombRecalls)
PCADLIPrecision = np . mean(PCADLIPrecisions)
BTADLIPrecision=np . mean(BTADLIPrecisions)
BTALinCombPrecision=np . mean(BTALinCombPrecisions)
PCALinCombPrecision = np . mean(PCALinCombPrecisions)
PCADLIF1 = np . mean(PCADLIF1s)
BTADLIF1 = np . mean(BTADLIF1s)
BTALinCombF1 = np . mean(BTALinCombF1s)
PCALinCombF1 = np . mean(PCALinCombF1s)
PCADLIAccuracy = np . mean(PCADLIAccuracys)
BTADLIAccuracy=np . mean(BTADLIAccuracys)
BTALinCombAccuracy=np . mean(BTALinCombAccuracys)
PCALinCombAccuracy = np . mean(PCALinCombAccuracys)
p l t . f i g u r e (f i g s i z e =(6 , 7))
p l t . p l o t ([’ Experiment 1 ’ , ’ Experiment 2 ’ , ’ Experiment 3 ’ ,

’ Experiment 4 ’] , [PCALinCombRecall , PCADLIRecall ,
BTALinCombRecall , BTADLIRecall] , ’ ∗ ’ , c o l o r =’red ’ ,

l a b e l =’ Recal l ’)
p l t . p l o t ([’ Experiment 1 ’ , ’ Experiment 2 ’ , ’ Experiment 3 ’ ,

’ Experiment 4 ’] , [PCALinCombPrecision , PCADLIPrecision ,
BTALinCombPrecision , BTADLIPrecision] , ’ ∗ ’ ,

c o l o r =’blue ’ , l a b e l =’ Prec i s i on ’)
p l t . p l o t ([’ Experiment 1 ’ , ’ Experiment 2 ’ , ’ Experiment 3 ’ ,

’ Experiment 4 ’] , [PCALinCombF1 ,PCADLIF1, BTALinCombF1 ,
BTADLIF1] , ’ ∗ ’ , c o l o r =’green ’ , l a b e l =’F1 score ’)

p l t . p l o t ([’ Experiment 1 ’ , ’ Experiment 2 ’ , ’ Experiment 3 ’ ,
’ Experiment 4 ’] , [PCALinCombAccuracy , PCADLIAccuracy ,

154

BTALinCombAccuracy , BTADLIAccuracy] , ’ ∗ ’ ,
c o l o r =’black ’ , l a b e l =’Accuracy ’)

p l t . l egend (prop={ ’ s i z e ’ : 10})
p l t . x l a b e l (’ Dimens iona l i ty Reduction Approach ’)
p l t . y l a b e l (’ Average S t a t i s t i c a l Metric ’)
p l t . s a v e f i g (’ SimAllMetric . pdf ’)

C.3 Real-World Study
Here we present the implementation of the study conducted on the real-world
data set.

First we import the data in a Pandas data frame, and call it df. The
first column is used to indicate the running group. The name of this column
is groupno. The three last columns are meta data about the time of the
measurement and type of the shut-down. The last column indicates the type of
the shut-down. The name of this column is StopReason. The names of the
other two columns are logRowNumber and TimeStamp. The StopReason
can be ’Normal Stop’, ’Running Trip’ or ’Starting Trip’.

C.3.1 Data Manipulation
The following code removes the edges of each running trip, as explained in
Subsection 4.1.1.

de f remove edges (df group , s tartCut = 45 , endCutNormal=15,
endCutAnomal = 1 0) :
notTripped = df group [’ StopReason ’] [0] == ’ Normal Stop ’
i f (notTripped) :

i f (endCutNormal != 0) :
r e turn df group . i l o c [

s tartCut :((−1)∗ endCutNormal) , :]
e l s e :

r e turn df group . i l o c [s tartCut : , :]
e l i f (endCutAnomal != 0) :

r e turn df group . i l o c [s tartCut :((−1)∗ endCutAnomal) , :]
e l s e :

r e turn df group . i l o c [s tartCut : , :]
d f = df . groupby (’ groupno ’) . apply (lambda x : remove edges (x))
df . index = df . timeStamp

Then the following code handles the NA values in the data set. This process
is described in Subsection 4.1.1. In the end, we divide the running groups into
normal and tripping groups.

df=df . r e p l a c e ([np . in f , −np . i n f] , np . nan)
#removing columns with more than 10% miss ing

155

df = df [df . columns [df . i s n u l l () . mean () < 0 . 1]]
#F i l l i n g va lue s in each group f i r s t with forward f i l l
#and then with backward f i l l
d f = df . groupby (’ groupno ’) . apply (lambda x :

x . f i l l n a (method=’ f f i l l ’))
df = df . groupby (’ groupno ’) . apply (lambda x :

x . f i l l n a (method=’ b f i l l ’))
NormalGroups = np . unique (df [’ groupno ’]

[d f [’ StopReason ’]== ’Normal Stop ’])
TripGroups = np . unique (df [’ groupno ’]

[d f [’ StopReason ’] == ’ Running Trip ’])
ColsToRemove = np . asar ray ([])
f o r gr numbr in TripGroups :

d f group = df [df [’ groupno ’]==gr numbr]
ColsToRemove = np . concatenate ((ColsToRemove ,

np . asar ray (df group . i s n u l l () . mean () .
index [d f group . i s n u l l () . mean () > 0])) , a x i s =0)

ColsToRemove = np . unique (ColsToRemove)
#Removing columns where NA e x i s t s in a t r i p group
f o r c in ColsToRemove :

df = df . drop (c , a x i s =1)
#removing normal groups with columns that only have na
df= df . dropna ()
NormalGroups = np . unique (df [’ groupno ’]

[d f [’ StopReason ’]== ’Normal Stop ’])
TripGroups = np . unique (df [’ groupno ’]

[d f [’ StopReason ’] == ’ Running Trip ’])

In the following code we divide the data set into training, signal selection
and test sets. In the training data set, there are only normal groups, while in
the signal selection and the test data sets, there are both normal and tripping
groups.

TrainingGroups , TestGroups=t r a i n t e s t s p l i t (NormalGroups ,
t e s t s i z e=i n t (l en (TripGroups)) , random state =0)

NormalSSGroups , NormalTestGroups =
t r a i n t e s t s p l i t (TestGroups , t e s t s i z e =0.5 ,

random state =0)
TripSSGroups , TripTestGroups = t r a i n t e s t s p l i t (TripGroups ,

t e s t s i z e =0.5 , random state =0)
TrainingData = df [df [’ groupno ’] . i s i n (TrainingGroups)] .

drop ([’ timeStamp ’ , ’ logRowNumber ’ , ’ StopReason ’] , a x i s =1)

Now we use the running groups in the training data set to estimate the
variance of each dimension, and use the variances to scale the whole data set.
Then we save the training, signal selection and test set in different variables.

NormalScaledVariances = TrainingData . groupby (’ groupno ’) .

156

apply (lambda x : ((l en (x)−1)∗np . var (x .
drop ([’ groupno ’] , a x i s =1) , ddof =1)))

NormalVariances=np . sum(NormalScaledVariances)/
(l en (TrainingData)− l en (TrainingGroups))

df [d f . columns . drop ([’ groupno ’ , ’ timeStamp ’ , ’ logRowNumber ’ ,
’ StopReason ’])] = df [df . columns .

drop ([’ groupno ’ , ’ timeStamp ’ , ’ logRowNumber ’ ,
’ StopReason ’])] / np . s q r t (NormalVariances)

NormalSS = [df [df [’ groupno ’]==x] .
drop ([’ timeStamp ’ , ’ logRowNumber ’ , ’ StopReason ’] , a x i s =1)

f o r x in NormalSSGroups]
NormalTest = [df [d f [’ groupno ’]==x] .

drop ([’ timeStamp ’ , ’ logRowNumber ’ , ’ StopReason ’] , a x i s =1)
f o r x in NormalTestGroups]

TripSS = [df [df [’ groupno ’]==x] .
drop ([’ timeStamp ’ , ’ logRowNumber ’ , ’ StopReason ’] , a x i s =1)

f o r x in TripSSGroups]
TripTest = [df [d f [’ groupno ’]==x] .

drop ([’ timeStamp ’ , ’ logRowNumber ’ , ’ StopReason ’] , a x i s =1)
f o r x in TripTestGroups]

TrainingData = df [df [’ groupno ’] . i s i n (TrainingGroups)] .
drop ([’ timeStamp ’ , ’ logRowNumber ’ , ’ StopReason ’] , a x i s =1)

The following code prints the number of running groups in each data set.

p r i n t (’ Number o f Normal Groups in
the S igna l S e l e c t i o n Set : ’)

p r i n t (l en (NormalSSGroups))
p r i n t (’ Number o f Normal Groups in the Test Set : ’)
p r i n t (l en (NormalTestGroups))
p r i n t (’ Number o f Trip Groups in the S igna l S e l e c t i o n Set : ’)
p r i n t (l en (TripSSGroups))
p r i n t (’ Number o f Trip Groups in the Test Set : ’)
p r i n t (l en (TripTestGroups))
p r i n t (’ Number o f Normal Groups in the Train ing Set : ’)
p r i n t (l en (TrainingGroups))

Finally we set some initial values for the analysis.

TmodeStart = 120
TmodeEnd = 5
TmodeLength = TmodeStart − TmodeEnd
TDetectionMargin = 0
SearchLen = TmodeStart − TmodeEnd + 2∗TDetectionMargin

157

C.3.2 Data Description
Here we present the code used for calculating numbers and making figures used
to describe the real-world data set.

The following code calculates the length of the normal and the tripping
groups:

TripLengths = df [df [’ groupno ’] . i s i n (TripGroups)] .
groupby (’ groupno ’) . apply (lambda x : l en (x))

NormalLengths = df [df [’ groupno ’] . i s i n (NormalGroups)] .
groupby (’ groupno ’) . apply (lambda x : l en (x))

The following code produces Figure 4.3:

idx = np . a r g s o r t (−NormalVariances)
p l t . f i g u r e (f i g s i z e =(7 , 5))
p l t . p l o t (range (0 , (l en (NormalVariances))) ,

np . l og (NormalVariances [idx]) , c o l o r =’blue ’ ,
l a b e l =’Normal Groups ’ , alpha =0.5 , l i n ew id th =2.0)

p l t . p l o t (range (0 , (l en (TripVar iances))) ,
np . l og (TripVar iances [idx]) , c o l o r =’red ’ ,

l a b e l =’ Tripping Groups ’ , alpha =0.5 , l i n ew id th =2.0)
p l t . l egend (prop={ ’ s i z e ’ : 10})
p l t . y l a b e l (’ log−var iance ’)
p l t . x l a b e l (’ Dimensions ’)
p l t . s a v e f i g (’ l o g v a r p l o t . pdf ’)
p l t . show ()

The following functions are used to estimate the variances and the pre-
dictabilities of the dimensions in the real-world data set, separately in the nor-
mal and in the transition states:

de f dividedVar (xdf) :
counter=−116
r e sve c =[]
whi l e ((− counter)< l en (xdf)) :

r e sv e c . append (np . var (xdf . i l o c
[counter : (counter +115) , :] , ddof =1))

counter −= 115
return (sum(r e sve c)/ l en (r e sve c))

de f p r e d i c t a b i l i t y (inputarray) :
inputarray=np . asar ray (inputarray)
re turn (1−(np . var (AR(inputarray) . f i t (1) . r e s i d)/

np . var (inputarray)))

de f DFpred i c t ab i l i t y (inputDF) :
r e s u l t =[]
f o r c in inputDF . columns :

158

r e s u l t . append (p r e d i c t a b i l i t y (inputDF [c]))
r e s u l t=pd . core . s e r i e s . S e r i e s (r e s u l t)
r e s u l t . index = inputDF . columns
return (r e s u l t)

de f div idedPred (xdf) :
counter=−116
r e sve c =[]
whi l e ((− counter)< l en (xdf)) :

r e sv e c . append (DFpred i c t ab i l i t y (xdf . i l o c
[counter : (counter + 1 1 5) , :]))

counter −= 115
return (sum(r e sve c)/ l en (r e sve c))

The following code uses the functions above to estimate the variances and
the predictabilities of the dimensions in the real-world data set, separately in
the normal and in the transition states:

NormalStatesVariances = NormalDF . groupby (’ groupno ’) .
apply (lambda x : dividedVar (x))

Trans i t i onSca l edVar iance s = TripDF . groupby (’ groupno ’) .
apply (lambda x : (np . var (x . i l o c [−120:−5 , :] , ddof =1)))

Trans i t i onVar iance s=np . mean(Trans i t i onSca l edVar iance s)
Trans i t i onVar iance s=Trans i t i onVar iance s .

drop ([’ groupno ’ , ’ logRowNumber ’])
NormalStateVariances=np . mean(NormalStatesVariances)
NormalStateVariances=NormalStateVariances .

drop ([’ groupno ’ , ’ logRowNumber ’])
stateIDX=np . a r g s o r t (−NormalStateVariances)
NormalStatesPreds = NormalDF . groupby (’ groupno ’) .

apply (lambda x : div idedPred (x .
drop ([’ timeStamp ’ , ’ logRowNumber ’ ,

’ StopReason ’ , ’ groupno ’] , a x i s =1)))
NormalScaledPreds = NormalDF . groupby (’ groupno ’) .

apply (lambda x : l en (x)∗ DFpred i c t ab i l i t y (x .
drop ([’ timeStamp ’ , ’ logRowNumber ’ ,

’ StopReason ’ , ’ groupno ’] , a x i s =1)))
TripScaledPreds = TripDF . groupby (’ groupno ’) .

apply (lambda x : l en (x)∗ DFpred i c t ab i l i t y (x .
drop ([’ timeStamp ’ , ’ logRowNumber ’ ,

’ StopReason ’ , ’ groupno ’] , a x i s =1)))
Trans i t i onSca l edPreds = TripDF . groupby (’ groupno ’) .

apply (lambda x : DFpred i c t ab i l i t y ((x .
drop ([’ timeStamp ’ , ’ logRowNumber ’ ,

’ StopReason ’ , ’ groupno ’] , a x i s =1)) .
i l o c [−120 : −5 , :]))

NormalPreds=np . sum(NormalScaledPreds)/ l en (NormalDF)

159

TripPreds=np . sum(TripScaledPreds)/ l en (TripDF)
Trans i t ionPreds = np . mean(Trans i t i onSca l edPreds)
NormalStatePreds = np . mean(NormalStatesPreds)

The following code produces Figure 5.14:

p l t . f i g u r e (f i g s i z e =(12 , 5))
p l t . subplot (1 , 2 , 2)
p l t . p l o t (range (0 , (l en (NormalPreds))) ,

NormalStatePreds [stateIDX] , c o l o r =’black ’ ,
l a b e l =’Normal States ’ , alpha =0.5 , l i n ew id th =2.0)

p l t . p l o t (range (0 , (l en (TripPreds))) ,
Trans i t ionPreds [stateIDX] , c o l o r =’green ’ ,

l a b e l =’ Trans i t i on States ’ , alpha =0.5 , l i n ew id th =2.0)
p l t . l egend (prop={ ’ s i z e ’ : 11})
p l t . y l a b e l (’ P r e d i c t a b i l i t y ’ , f o n t s i z e =13)
p l t . x l a b e l (’ Dimensions ’ , f o n t s i z e =13)
p l t . subplot (1 , 2 , 1)
p l t . p l o t (range (0 , (l en (NormalStateVariances))) ,

np . l og (NormalStateVariances [stateIDX]) , c o l o r =’black ’ ,
l a b e l =’Normal States ’ , alpha =0.5 , l i n ew id th =2.0)

p l t . p l o t (range (0 , (l en (Trans i t i onVar iance s))) ,
np . l og (Trans i t i onVar iance s [stateIDX]) , c o l o r =’green ’ ,

l a b e l =’ Trans i t i on States ’ , alpha =0.5 , l i n ew id th =2.0)
p l t . l egend (prop={ ’ s i z e ’ : 11})
p l t . y l a b e l (’ log−var iance ’ , f o n t s i z e =13)
p l t . x l a b e l (’ Dimensions ’ , f o n t s i z e =13)
p l t . s a v e f i g (’ Predplot . pdf ’)
p l t . show ()

C.3.3 Signal Selection
Here we apply different experiments to select the signal of interest.

No Transformation

In the following code, we select the signal of interest among the dimensions of
the data:

a lgo=rpt . Pe l t (model=”ar ” , jump=i n t (TmodeLength /5))
penConst= 0 .01
S i g n a l s = df . columns . drop ([’ groupno ’ , ’ timeStamp ’ ,

’ logRowNumber ’ , ’ StopReason ’])
#S e l e c t i n g pen func t i on :
NTMWUtests = []
f o r DLI in tqdm(S i g n a l s) :

a lphas = []

160

betas = []
f o r groupDF in TripSS :

SOF = np . asar ray (groupDF [DLI])
SOF = SOF [((l en (SOF)−TmodeStart−

TDetectionMargin)%SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen =

penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
i f (l en (np . i n t e r s e c t 1 d (range (

TmodeEnd−TDetectionMargin ,
TmodeStart+TDetectionMargin) ,

(l en (SOF)−DFresult))) >0) :
a lphas . append (1)

e l s e :
a lphas . append (0)

DFresult=DFresult [(DFresult <=
(len (SOF)−TmodeStart−TDetectionMargin))]

i f (l en (DFresult)>0):
betas . append (1)

e l s e :
betas . append (0)

f o r groupDF in NormalSS :
SOF = np . asar ray (groupDF [DLI])
SOF = SOF[(l en (SOF) % SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen =

penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
i f (l en (DFresult)>1):

betas . append (1)
e l s e :

betas . append (0)
t ry :

NTMWUtests . append (mannwhitneyu (
x=betas , y=alphas , a l t e r n a t i v e =’ l e s s ’))

except :
NTMWUtests . append (mannwhitneyu (x=[1 ,−1]∗1000 ,

y=[−1 ,1]∗1000 , a l t e r n a t i v e =’ l e s s ’))
NTpvalMins=np . min ([np . l og (x . pvalue) f o r x in NTMWUtests])
NTPSbestDims=np . where (NTMWUtests==np . min (NTMWUtests)) [0] [0]

161

Experiment 2

In the following code we select the signal of interest among the signals leverage,
discrepancy and influence of the PCA transformed data. Here the αis and βjs
are set according to the division in Figure 3.4.

VarLimit = 0 .9
DLISignals = [’myPC. Leverage (groupDF , s l=S) ’ ,

’myPC. Discrepancy (groupDF , s d i=S) ’ ,
’myPC. I n f l u e n c e (groupDF , s i=S) ’]

a lgo=rpt . Pe l t (model=”normal ” , jump=i n t (TmodeLength /5))
penConst= 30
myPC = VARBT(groug c name=’groupno ’ , BoxTiao=False)
myPC. f i t (TrainingData)
ExpVar = myPC. va r i ance s /sum(myPC. va r i ance s)
S = (np . where (np . asanyarray ([sum(ExpVar [: x+1])

f o r x in range (0 , l en (ExpVar))]) > VarLimit) [0] [0]) + 1
PCAMWUtests = []
f o r DLI in tqdm(range (0 , l en (DLISignals))) :

a lphas = []
betas = []
f o r groupDF in TripSS :

SOF = eva l (DLISignals [DLI])
SOF = SOF [((l en (SOF)−TmodeStart−

TDetectionMargin)%SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen =

penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
i f (l en (np . i n t e r s e c t 1 d (range (

TmodeEnd−TDetectionMargin ,
TmodeStart+TDetectionMargin) ,

(l en (SOF)−DFresult))) >0) :
a lphas . append (1)

e l s e :
a lphas . append (0)

DFresult=DFresult [(DFresult <=
(len (SOF)−TmodeStart−TDetectionMargin))]

i f (l en (DFresult)>0):
betas . append (1)

e l s e :
betas . append (0)

f o r groupDF in NormalSS :
SOF = eva l (DLISignals [DLI])
SOF = SOF[(l en (SOF) % SearchLen) :]
a lgo = algo . f i t (SOF)

162

DFresult = a lgo . p r e d i c t (pen =
penConst∗np . l og (l en (SOF)))

DFresult = np . asar ray (DFresult)
i f (l en (DFresult)>1):

betas . append (1)
e l s e :

betas . append (0)
t ry :

PCAMWUtests . append (mannwhitneyu (
x=betas , y=alphas , a l t e r n a t i v e =’ l e s s ’))

except :
PCAMWUtests . append (mannwhitneyu (

x=[1 ,−1]∗1000 ,y=[−1 ,1]∗1000 ,
a l t e r n a t i v e =’ l e s s ’))

PCApvalMins=np . min ([np . l og (x . pvalue) f o r x in PCAMWUtests])
PCAPSbestDims=np .

where (PCAMWUtests==np . min (PCAMWUtests)) [0] [0]

In the following code we select the signal of interest among the signals lever-
age, discrepancy and influence of the PCA transformed data. Here the αis and
βjs are set according to the division in Figure 3.5.

VarLimit = 0 .9
DLISignals = [’myPC. Leverage (groupDF , s l=S) ’ ,

’myPC. Discrepancy (groupDF , s d i=S) ’ ,
’myPC. I n f l u e n c e (groupDF , s i=S) ’]

a lgo=rpt . Pe l t (model=”normal ” , jump=i n t (TmodeLength /5))
penConst= 30
myPC = VARBT(groug c name=’groupno ’ , BoxTiao=False)
myPC. f i t (TrainingData)
ExpVar = myPC. va r i ance s /sum(myPC. va r i ance s)
S = (np . where (np . asanyarray ([sum(ExpVar [: x+1])

f o r x in range (0 , l en (ExpVar))]) > VarLimit) [0] [0]) + 1
PCAMWUtests = []
f o r DLI in tqdm(range (0 , l en (DLISignals))) :

a lphas = []
betas = []
f o r groupDF in TripSS :

SOF = eva l (DLISignals [DLI])
SOF = SOF [((l en (SOF)−TmodeStart−

TDetectionMargin)%SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen = 200)
DFresult = np . asar ray (DFresult)
i f (l en (np . i n t e r s e c t 1 d (range (

TmodeEnd−TDetectionMargin , TmodeStart+
TDetectionMargin) , (l en (SOF)−DFresult))) >0) :

163

a lphas . append (1)
e l s e :

a lphas . append (0)
DFresult=DFresult [(DFresult <=

(len (SOF)−TmodeStart−TDetectionMargin))]
TotalNrOfN =

np . c e i l ((l en (SOF)−TmodeStart−TDetectionMargin)/
SearchLen)

FalseN = len (np . unique (np . f l o o r (DFresult /
SearchLen)))

betas . extend ([1] ∗ i n t (FalseN))
betas . extend ([0] ∗ i n t (TotalNrOfN−FalseN))

f o r groupDF in NormalSS :
SOF = eva l (DLISignals [DLI])
SOF = SOF[(l en (SOF) % SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen =

penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
TotalNrOfN = np . c e i l (DFresult [−1] / SearchLen)
FalseN = len (np . unique (np . f l o o r (DFresult [: −1] /

SearchLen)))
betas . extend ([1] ∗ i n t (FalseN))
betas . extend ([0] ∗ i n t (TotalNrOfN−FalseN))

t ry :
PCAMWUtests . append (mannwhitneyu (

x=betas , y=alphas , a l t e r n a t i v e =’ l e s s ’))
except :

PCAMWUtests . append (mannwhitneyu (
x=[1 ,−1]∗1000 ,y=[−1 ,1]∗1000 ,

a l t e r n a t i v e =’ l e s s ’))
PCApvalMins=np . min ([np . l og (x . pvalue) f o r x in PCAMWUtests])
PCAPSbestDims=np .

where (PCAMWUtests==np . min (PCAMWUtests)) [0] [0]

Experiment 4

In the following code we select the signal of interest among the signals leverage,
discrepancy and influence of the BTA transformed data. Here the αis and βjs
are set according to the division in Figure 3.4.

PredLimit = 0 .9
DLISignals = [’myBT. Leverage (groupDF , s l=S) ’ ,

’myBT. Discrepancy (groupDF , s d i=S) ’ ,
’myBT. I n f l u e n c e (groupDF , s i=S) ’]

164

a lgo=rpt . Pe l t (model=”normal ” , jump=i n t (TmodeLength /5))
penConst= 30
myBT = VARBT(groug c name=’groupno ’)
myBT. f i t (TrainingData)
ExpPred = myBT. p r e d i c t a b i l i t i e s /sum(myBT. p r e d i c t a b i l i t i e s)
S = (np . where (np . asanyarray ([sum(ExpPred [: x+1])

f o r x in range (0 , l en (ExpPred))]) > PredLimit) [0] [0]) + 1
BTAMWUtests = []
f o r DLI in tqdm(range (0 , l en (DLISignals))) :

a lphas = []
betas = []
f o r groupDF in TripSS :

SOF = eva l (DLISignals [DLI])
SOF = SOF [((l en (SOF)−TmodeStart−

TDetectionMargin)%SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen =

penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
i f (l en (np . i n t e r s e c t 1 d (range (TmodeEnd−

TDetectionMargin , TmodeStart+
TDetectionMargin) , (l en (SOF)−

DFresult))) >0) :
a lphas . append (1)

e l s e :
a lphas . append (0)

DFresult=DFresult [(DFresult <=
(len (SOF)−TmodeStart−TDetectionMargin))]

i f (l en (DFresult)>0):
betas . append (1)

e l s e :
betas . append (0)

f o r groupDF in NormalSS :
SOF = eva l (DLISignals [DLI])
SOF = SOF[(l en (SOF) % SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen =

penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
i f (l en (DFresult)>1):

betas . append (1)
e l s e :

betas . append (0)
t ry :

165

BTAMWUtests . append (mannwhitneyu (
x=betas , y=alphas , a l t e r n a t i v e =’ l e s s ’))

except :
BTAMWUtests . append (mannwhitneyu (

x=[1 ,−1]∗1000 ,y=[−1 ,1]∗1000 ,
a l t e r n a t i v e =’ l e s s ’))

BTApvalMins=np . min ([np . l og (x . pvalue) f o r x in BTAMWUtests])
BTAPSbestDims=np . where (BTAMWUtests==

np . min (BTAMWUtests)) [0] [0]

In the following code we select the signal of interest among the signals lever-
age, discrepancy and influence of the BTA transformed data. Here the αis and
βjs are set according to the division in Figure 3.5.

PredLimit = 0 .9
DLISignals = [’myBT. Leverage (groupDF , s l=S) ’ ,

’myBT. Discrepancy (groupDF , s d i=S) ’ ,
’myBT. I n f l u e n c e (groupDF , s i=S) ’]

a lgo=rpt . Pe l t (model=”normal ” , jump=i n t (TmodeLength /5))
penConst= 30
myBT = VARBT(groug c name=’groupno ’)
myBT. f i t (TrainingData)
ExpPred = myBT. p r e d i c t a b i l i t i e s /sum(myBT. p r e d i c t a b i l i t i e s)
S = (np . where (np . asanyarray ([sum(ExpPred [: x+1])

f o r x in range (0 , l en (ExpPred))]) > PredLimit) [0] [0]) + 1
BTAMWUtests = []
f o r DLI in tqdm(range (0 , l en (DLISignals))) :

a lphas = []
betas = []
f o r groupDF in TripSS :

SOF = eva l (DLISignals [DLI])
SOF = SOF [((l en (SOF)−TmodeStart−

TDetectionMargin)%SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen = 200)
DFresult = np . asar ray (DFresult)
i f (l en (np . i n t e r s e c t 1 d (range (TmodeEnd−

TDetectionMargin , TmodeStart+
TDetectionMargin) ,

(l en (SOF)−DFresult))) >0) :
a lphas . append (1)

e l s e :
a lphas . append (0)

DFresult=DFresult [(DFresult <=
(len (SOF)−TmodeStart−TDetectionMargin))]

TotalNrOfN =
np . c e i l ((l en (SOF)−TmodeStart−TDetectionMargin)/

166

SearchLen)
FalseN = len (np . unique (np . f l o o r (DFresult /

SearchLen)))
betas . extend ([1] ∗ i n t (FalseN))
betas . extend ([0] ∗ i n t (TotalNrOfN−FalseN))

f o r groupDF in NormalSS :
SOF = eva l (DLISignals [DLI])
SOF = SOF[(l en (SOF) % SearchLen) :]
a lgo = algo . f i t (SOF)
DFresult = a lgo . p r e d i c t (pen =

penConst∗np . l og (l en (SOF)))
DFresult = np . asar ray (DFresult)
TotalNrOfN = np . c e i l (DFresult [−1] / SearchLen)
FalseN = len (np . unique (np . f l o o r (DFresult [: −1] /

SearchLen)))
betas . extend ([1] ∗ i n t (FalseN))
betas . extend ([0] ∗ i n t (TotalNrOfN−FalseN))

t ry :
BTAMWUtests . append (mannwhitneyu (

x=betas , y=alphas , a l t e r n a t i v e =’ l e s s ’))
except :

BTAMWUtests . append (mannwhitneyu (
x=[1 ,−1]∗1000 ,y=[−1 ,1]∗1000 ,

a l t e r n a t i v e =’ l e s s ’))
BTApvalMins=np . min ([np . l og (x . pvalue) f o r x in BTAMWUtests])
BTAPSbestDims=np . where (BTAMWUtests==

np . min (BTAMWUtests)) [0] [0]

C.3.4 Predictive Models
Here, we present the code used for the training and the evaluation of the pre-
dictive models on the real-world data set.

No Transformation

The code for the training and the evaluation of a CUSUM model based on one
of the original dimensions of the data, selected in the signal selection part:

S i g n a l s = df . columns . drop ([’ groupno ’ , ’ timeStamp ’ ,
’ logRowNumber ’ , ’ StopReason ’])

DLI = S i g n a l s [NTPSbestDims]

NTNormalssSOFs = [np . asar ray (x [DLI]) f o r x in NormalSS]
NTTripssSOFs = [np . asar ray (x [DLI]) f o r x in TripSS]
NTNormalTestSOFs = [np . asar ray (x [DLI]) f o r x in NormalTest]

167

NTTripTestSOFs = [np . asar ray (x [DLI]) f o r x in TripTest]

#Making CUSUM
NTNormalTarget , NTNormalSTD, NTBest k , NTBest h ,

NTBestTrainingMetric = Make CUSUM(NTNormalssSOFs ,
NTTripssSOFs , TmodeLength , TmodeEnd ,

TDetectionMargin ,
i n c lude l ow = True , metr ic=”f1 ”)

NTConfMat = Evaluate CUSUM(NTNormalTestSOFs ,
NTTripTestSOFs , NTNormalTarget , NTBest k , NTBest h ,

TmodeLength , TmodeEnd , TDetectionMargin ,
i n c lude l ow = True)

Experiment 2

The code for the training and the evaluation of a CUSUM model based on the
discrepancy of the PCA transformed data:

DLISignals = [’myPC. Leverage (x , s l=S) ’ ,
’myPC. Discrepancy (x , s d i=S) ’ ,

’myPC. I n f l u e n c e (x , s i=S) ’]
DLI = DLISignals [PCAPSbestDims]
VarLimit = 0 .90
S = (np . where (np . asanyarray ([sum(ExpVar [: x+1])

f o r x in range (0 , l en (ExpVar))]) > VarLimit) [0] [0]) + 1
PCADLINormalssSOFs = [eva l (DLI) f o r x in NormalSS]
PCADLITripssSOFs = [eva l (DLI) f o r x in TripSS]
PCADLINormalTestSOFs = [eva l (DLI) f o r x in NormalTest]
PCADLITripTestSOFs = [eva l (DLI) f o r x in TripTest]

#Making CUSUM
PCADLINormalTarget , PCADLINormalSTD, PCADLIBest k ,

PCADLIBest h , PCADLIBestTrainingMetric =
Make CUSUM(PCADLINormalssSOFs , PCADLITripssSOFs ,

TmodeLength , TmodeEnd , TDetectionMargin ,
i n c lude l ow = False)

PCADLIConfMat = Evaluate CUSUM(PCADLINormalTestSOFs ,
PCADLITripTestSOFs , PCADLINormalTarget , PCADLIBest k ,

PCADLIBest h , TmodeLength , TmodeEnd ,
TDetectionMargin , i n c lude l ow = False)

Experiment 4

The code for the training and the evaluation of a CUSUM model based on the
discrepancy of the BTA transformed data:

168

DLISignals = [’myBT. Leverage (x , s l=S) ’ ,
’myBT. Discrepancy (x , s d i=S) ’ ,

’myBT. I n f l u e n c e (x , s i=S) ’]
DLI = DLISignals [BTAPSbestDims]
PredLimit = 0 .90
S = (np . where (np . asanyarray ([sum(ExpPred [: x+1])

f o r x in range (0 , l en (ExpPred))]) > PredLimit) [0] [0]) + 1
BTADLINormalssSOFs = [eva l (DLI) f o r x in NormalSS]
BTADLITripssSOFs = [eva l (DLI) f o r x in TripSS]
BTADLINormalTestSOFs = [eva l (DLI) f o r x in NormalTest]
BTADLITripTestSOFs = [eva l (DLI) f o r x in TripTest]

#Making CUSUM
BTADLINormalTarget , BTADLINormalSTD, BTADLIBest k ,

BTADLIBest h , BTADLIBestTrainingMetric =
Make CUSUM(BTADLINormalssSOFs , BTADLITripssSOFs ,

TmodeLength , TmodeEnd , TDetectionMargin ,
i n c lude l ow = False)

BTADLIConfMat = Evaluate CUSUM(BTADLINormalTestSOFs ,
BTADLITripTestSOFs , BTADLINormalTarget , BTADLIBest k ,

BTADLIBest h , TmodeLength , TmodeEnd ,
TDetectionMargin , i n c lude l ow = False)

Multivariate Models

First we define a new function for the evaluation of our multivariate CUSUM
model:

de f Evaluate CUSUM multi (NormalData , TripData ,
NormalTargets , ks , hs , NormalLen , TransitionEnd ,

DetectMarg , i n c lude l ow = True , t r sh =0):
NormalCUSUMhisvec = np . asar ray ([])
dimvec = NormalData [0] . columns
NormalOutWheresVec = []
TripOutWheresVec = []
f o r dimC in tqdm(range (0 , l en (dimvec))) :

dim=dimvec [dimC]
NormalTarget=NormalTargets [dimC]
k=ks [dimC]
h=hs [dimC]
NormalSOFs=np . asar ray ([np . asar ray (x [dim])

f o r x in NormalData])
TripSOFs=np . asar ray ([np . asar ray (x [dim])

f o r x in TripData])
NormalSOFs=[x [(l en (x)%(NormalLen+DetectMarg)) :]

f o r x in NormalSOFs]

169

TripSOFs=[x [((l en (x)−NormalLen−Transit ionEnd)%
(NormalLen+DetectMarg)) :] f o r x in TripSOFs]

TripTimes = np . asar ray ([l en (x) f o r x in TripSOFs])
NormalTimes = np . asar ray ([l en (x)

f o r x in NormalSOFs])
NormalCUSUMhis = [Compute CUSUM(x , NormalTarget , k)

f o r x in NormalSOFs]
TripCUSUMhis = [Compute CUSUM(x , NormalTarget , k)

f o r x in TripSOFs]
NormalOutWheres = [np . where (x) [0] f o r x in

[x>h f o r x in NormalCUSUMhis]]
TripOutWheres = [np . where (x) [0] f o r x in

[x>h f o r x in TripCUSUMhis]]
i f (i n c lude l ow) :

NormalCUSUMlos = [Compute CUSUM(
x , NormalTarget , k , s i d e =’ lo ’)

f o r x in NormalSOFs]
TripCUSUMlos = [Compute CUSUM(

x , NormalTarget , k , s i d e =’ lo ’)
f o r x in TripSOFs]

TripOutWheres . extend ([np . where (x) [0]
f o r x in [x>h f o r x in TripCUSUMlos]])

NormalOutWheres . extend ([np . where (x) [0]
f o r x in [x>h f o r x in NormalCUSUMlos]])

TripOutWheres = [np . asar ray (x)
f o r x in TripOutWheres]

NormalOutWheres = [np . asar ray (x)
f o r x in NormalOutWheres]

TripOutWheres = np . asar ray (TripOutWheres)
NormalOutWheres = np . asar ray (NormalOutWheres)
NormalOutWheresVec . append (NormalOutWheres)
TripOutWheresVec . append (TripOutWheres)

TruePvec=[np . asar ray ([(l en (np . i n t e r s e c t 1 d (
range ((TransitionEnd−DetectMarg) ,

(Transit ionEnd+NormalLen)) ,
(TripTimes [x]−TripOutWheres [x]))) > 0)

f o r x in range (0 , l en (TripSOFs))])
f o r TripOutWheres in

TripOutWheresVec]

TrueP = sum(sum(TruePvec)> t r sh)
TotalNrOfN = 0
FalseP = 0
f o r counter in range (0 , l en (NormalSOFs)) :

TotalNrOfN += np . c e i l (NormalTimes [counter] /

170

(NormalLen+DetectMarg))
f o r counter in range (0 , l en (TripSOFs)) :

TotalNrOfN += np . c e i l (
(TripTimes [counter]−NormalLen−Transit ionEnd)/

(NormalLen+DetectMarg))
TotalNrOfP = len (TripSOFs)

FalsePvec =[]
whereC=0
f o r counter in range (0 , l en (NormalSOFs)) :

f o r NormalOutWheres in NormalOutWheresVec :
FalsePvec += (whereC+np . unique (

np . f l o o r (NormalOutWheres [counter] /
(NormalLen+DetectMarg)))) . t o l i s t ()

whereC+=np . max(FalsePvec)+1
f o r counter in range (0 , l en (TripSOFs)) :

f o r TripOutWheres in TripOutWheresVec :
FalsePvec += (whereC+np . unique (np . f l o o r ((

TripOutWheres [counter]) [(TripOutWheres
[counter] <= (TripTimes [counter]−

NormalLen−Transit ionEnd))] /
(NormalLen+DetectMarg)))) .

t o l i s t ()
whereC+=np . max(FalsePvec)+1

uniqs , counts=np . unique (FalsePvec , r e tu rn count s=True)
FalseP = len (uniqs [np . asar ray (counts)> t r sh])
FalseN = TotalNrOfP−TrueP
TrueN = TotalNrOfN−FalseP
return (pd . DataFrame ([[TrueN , FalseP] ,

[FalseN , TrueP]] , columns=
[’ Pred ic ted Normal ’ , ’ Pred ic ted Trip ’] ,

index =[’ Actual Normal ’ , ’ Actual Trip ’]))

The code for a multivariate model with the last 10 principal components:

S i g n a l s = range (52 ,62)
DLI = range (52 ,62)
PC10NormalTestSOFs = [pd . DataFrame (myPC. trans form (x)

[: , DLI]) f o r x in NormalTest]
PC10TripTestSOFs = [pd . DataFrame (myPC. trans form (x)

[: , DLI]) f o r x in TripTest]
PC10NormalTargets =[]
PC10Best ks =[]
PC10Best hs =[]
#Making CUSUM
f o r DLI in tqdm(S i g n a l s) :

PC10NormalssSOFs = [np . asar ray (myPC. trans form (x)

171

[: , DLI]) f o r x in NormalSS]
PC10TripssSOFs = [np . asar ray (myPC. trans form (x)

[: , DLI]) f o r x in TripSS]
aPC10NormalTarget , aPC10NormalSTD , aPC10Best k ,

aPC10Best h , aPC10BestTrainingMetric =
Make CUSUM(PC10NormalssSOFs , PC10TripssSOFs ,

TmodeLength , TmodeEnd , TDetectionMargin ,
i n c lude l ow = True)

PC10NormalTargets . append (aPC10NormalTarget)
PC10Best ks . append (aPC10Best k)
PC10Best hs . append (aPC10Best h)

aPC10ConfMat = Evaluate CUSUM multi ([x . i l o c [: , range (2 0 , 3 0)]
f o r x in PC10NormalTestSOFs] , [x . i l o c [: , range (2 0 , 3 0)]

f o r x in PC10TripTestSOFs] , PC10NormalTargets [2 0 : 3 0] ,
PC10Best ks [2 0 : 3 0] , PC10Best hs [2 0 : 3 0] ,

TmodeLength , TmodeEnd , TDetectionMargin ,
i n c lude l ow = True)

The code for a multivariate model with the last 10 Box-Tiao components:

S i g n a l s = range (52 ,62)
DLI = range (52 ,62)
BT10NormalTestSOFs = [pd . DataFrame (myBT. trans form (x)

[: , DLI]) f o r x in NormalTest]
BT10TripTestSOFs = [pd . DataFrame (myBT. trans form (x) [: , DLI])

f o r x in TripTest]
BT10NormalTargets =[]
BT10Best ks =[]
BT10Best hs =[]
#Making CUSUM
f o r DLI in tqdm(S i g n a l s) :

BT10NormalssSOFs = [np . asar ray (myBT. transform (x) [: , DLI])
f o r x in NormalSS]

BT10TripssSOFs = [np . asar ray (myBT. trans form (x) [: , DLI])
f o r x in TripSS]

aBT10NormalTarget , aBT10NormalSTD , aBT10Best k ,
aBT10Best h , aBT10BestTrainingMetric =

Make CUSUM(BT10NormalssSOFs , BT10TripssSOFs ,
TmodeLength , TmodeEnd , TDetectionMargin ,

i n c lude l ow = True)
BT10NormalTargets . append (aBT10NormalTarget)
BT10Best ks . append (aBT10Best k)
BT10Best hs . append (aBT10Best h)

aBT10ConfMat = Evaluate CUSUM multi (BT10NormalTestSOFs ,
BT10TripTestSOFs , BT10NormalTargets , BT10Best ks ,

BT10Best hs , TmodeLength , TmodeEnd ,
TDetectionMargin , i n c lude l ow = True)

172

C.3.5 Results and Figures
Here, we present the code used for calculating the statistical metrics and pro-
ducing the figures.

The code for producing Figures 5.18, 5.16 and 5.17:

p l t . p l o t ([x . pvalue f o r x in NTMWUtests])
p l t . x l a b e l (’ Dimensions ’)
p l t . y l a b e l (’ p−values ’)
p l t . s a v e f i g (’ RWNTpvalues . pdf ’)

p l t . f i g u r e (f i g s i z e =(12 , 5))
p l t . subplot (1 , 2 , 2)
p l t . p l o t ([’ Leverage ’ , ’ Discrepancy ’ , ’ In f luence ’] ,

[np . l og (x . pvalue) f o r x in PCAMWUtests] , c o l o r = ’ red ’ ,
l a b e l = ’PCA’)

p l t . x l a b e l (’ S igna l s ’ , f o n t s i z e = 16)
p l t . x t i c k s ([’ Leverage ’ , ’ Discrepancy ’ , ’ In f lu ence ’] ,

f o n t s i z e = 13)
p l t . l egend (prop={ ’ s i z e ’ : 16})
p l t . y l a b e l (’ l og (p−va lue s) ’ , f o n t s i z e =16)
p l t . subplot (1 , 2 , 1)
p l t . p l o t ([’ Leverage ’ , ’ Discrepancy ’ , ’ In f luence ’] ,

[np . l og (x . pvalue) f o r x in BTAMWUtests] ,
c o l o r = ’ blue ’ , l a b e l = ’BTA’)

p l t . x l a b e l (’ S igna l s ’ , f o n t s i z e = 16)
p l t . x t i c k s ([’ Leverage ’ , ’ Discrepancy ’ , ’ In f lu ence ’] ,

f o n t s i z e = 13)
p l t . y l a b e l (’ l og (p−va lue s) ’ , f o n t s i z e =16)
p l t . l egend (prop={ ’ s i z e ’ : 16})
p l t . s a v e f i g (’ RWpvalues . pdf ’)

The code used to produce Figure 5.15:

S i g n a l s = df . columns . drop ([’ groupno ’ , ’ timeStamp ’ ,
’ logRowNumber ’ , ’ StopReason ’])

DLI = S i g n a l s [NTPSbestDims]
rpt . d i s p l a y (NormalSS [4] [DLI] ,

[42 ,95 ,125 ,130 ,175 ,210 , l en (NormalSS [4] [DLI])])
p l t . y l a b e l (’ S ignal ’ , f o n t s i z e =13)
p l t . x l a b e l (’ Time (minutes) ’ , f o n t s i z e =13)
p l t . s a v e f i g (’ RWBestDimNormal . pdf ’ , bbox inches = ” t i g h t ”)
p l t . show ()

Now we calculate the four statistical metrics for our models:

x=BTADLIConfMat
BTADLIRecall=(x . i l o c [1 , 1]) / (x . i l o c [1 ,1]+ x . i l o c [1 , 0])
BTADLIPrecision=(x . i l o c [1 , 1]) / (x . i l o c [1 ,1]+ x . i l o c [0 , 1])

173

BTADLIF1 = 2∗(BTADLIRecall∗BTADLIPrecision)/
(BTADLIRecall+BTADLIPrecision)

BTADLIAccuracy=(x . i l o c [0 ,0]+ x . i l o c [1 , 1]) /
(x . sum () . sum ())

x=PCADLIConfMat
PCADLIRecall=(x . i l o c [1 , 1]) / (x . i l o c [1 ,1]+ x . i l o c [1 , 0])
PCADLIPrecision = (x . i l o c [1 , 1]) / (x . i l o c [1 ,1]+ x . i l o c [0 , 1])
PCADLIF1 = 2∗(PCADLIRecall∗PCADLIPrecision)/

(PCADLIRecall+PCADLIPrecision)
PCADLIAccuracy = (x . i l o c [0 ,0]+ x . i l o c [1 , 1]) / (x . sum () . sum ())

x=NTConfMat
NTRecall=(x . i l o c [1 , 1]) / (x . i l o c [1 ,1]+ x . i l o c [1 , 0])
NTPrecision = (x . i l o c [1 , 1]) / (x . i l o c [1 ,1]+ x . i l o c [0 , 1])
NTF1 = 2∗(PCADLIRecall∗PCADLIPrecision)/

(PCADLIRecall+PCADLIPrecision)
NTAccuracy = (x . i l o c [0 ,0]+ x . i l o c [1 , 1]) / (x . sum () . sum ())

x=aPC10ConfMat
NT10PCRecall=(x . i l o c [1 , 1]) / (x . i l o c [1 ,1]+ x . i l o c [1 , 0])
NT10PCPrecision = (x . i l o c [1 , 1]) / (x . i l o c [1 ,1]+ x . i l o c [0 , 1])
NT10PCF1 = 2∗(PCADLIRecall∗PCADLIPrecision)/

(PCADLIRecall+PCADLIPrecision)
NT10PCAccuracy = (x . i l o c [0 ,0]+ x . i l o c [1 , 1]) / (x . sum () . sum ())

x=aBT10ConfMat
NT10BTRecall=(x . i l o c [1 , 1]) / (x . i l o c [1 ,1]+ x . i l o c [1 , 0])
NT10BTPrecision = (x . i l o c [1 , 1]) / (x . i l o c [1 ,1]+ x . i l o c [0 , 1])
NT10BTF1 = 2∗(PCADLIRecall∗PCADLIPrecision)/

(PCADLIRecall+PCADLIPrecision)
NT10BTAccuracy = (x . i l o c [0 ,0]+ x . i l o c [1 , 1]) / (x . sum () . sum ())

The following code is used for the production of Figure 5.19:

p l t . f i g u r e (f i g s i z e =(6 , 7))
p l t . p l o t ([’ Experiment 2 ’ , ’ Experiment 4 ’ , ’No Transformation ’]

, [PCADLIRecall , BTADLIRecall , NTRecall] , ’ ∗ ’ ,
c o l o r =’red ’ , l a b e l =’ Recal l ’)

p l t . p l o t ([’ Experiment 2 ’ , ’ Experiment 4 ’ , ’No Transformation ’]
, [PCADLIPrecision , BTADLIPrecision , NTPrecision] , ’ ∗ ’ ,

c o l o r =’blue ’ , l a b e l =’ Prec i s i on ’)
p l t . p l o t ([’ Experiment 2 ’ , ’ Experiment 4 ’ , ’No Transformation ’]

, [PCADLIF1,BTADLIF1,NTF1] , ’ ∗ ’ , c o l o r =’green ’ ,
l a b e l =’F1 score ’)

p l t . p l o t ([’ Experiment 2 ’ , ’ Experiment 4 ’ , ’No Transformation ’]
, [PCADLIAccuracy , BTADLIAccuracy , NTAccuracy] , ’ ∗ ’ ,

174

c o l o r =’black ’ , l a b e l =’Accuracy ’)
p l t . l egend (prop={ ’ s i z e ’ : 10})
p l t . x l a b e l (’ Dimens iona l i ty Reduction Approach ’)
p l t . y l a b e l (’ S t a t i s t i c a l Metric ’)
p l t . s a v e f i g (’ RWAllMetric . pdf ’)

The following code is used for the production of Figure 5.20:

p l t . f i g u r e (f i g s i z e =(6 , 7))
p l t . p l o t ([’ 1 0 Last PCs ’ , ’ 1 0 Last BTs ’] ,

[NT10PCRecall , NT10BTRecall] , ’ ∗ ’ , c o l o r =’red ’ ,
l a b e l =’ Recal l ’)

p l t . p l o t ([’ 1 0 Last PCs ’ , ’ 1 0 Last BTs ’] ,
[NT10PCPrecision , NT10BTPrecision] , ’ ∗ ’ , c o l o r =’blue ’ ,

l a b e l =’ Prec i s i on ’)
p l t . p l o t ([’ 1 0 Last PCs ’ , ’ 1 0 Last BTs ’] ,

[NT10PCF1,NT10BTF1] , ’ ∗ ’ , c o l o r =’green ’ , l a b e l =’F1 score ’)
p l t . p l o t ([’ 1 0 Last PCs ’ , ’ 1 0 Last BTs ’] ,

[NT10PCAccuracy , NT10BTAccuracy] , ’ ∗ ’ , c o l o r =’black ’ ,
l a b e l =’Accuracy ’)

p l t . l egend (prop={ ’ s i z e ’ : 10})
p l t . x l a b e l (’ Dimens iona l i ty Reduction Approach ’)
p l t . y l a b e l (’ S t a t i s t i c a l Metric ’)
p l t . s a v e f i g (’ RWideasMetric . pdf ’)

175

A
m

irhossein K
azem

i

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s

M
as

te
r’

s
th

es
is

Amirhossein Kazemi

A Semi-Supervised Approach to the
Application of Sensor-based Change-
Point Detection for Failure Prediction
in Industrial Instruments

Master’s thesis in Applied Physics and Mathematics
Supervisor: Prof. Mette Langaas and Dr. Martin Høy

June 2019

