
Value of information analysis in
the context of leakage detection in
CO2 storage

July 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Scott William Christopher Bunting

2019
Scott W

illiam
 Christopher Bunting

NT
NU

N
or

w
eg

ia
n 

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s





Value of information analysis in the
context of leakage detection in CO2
storage

Scott William Christopher Bunting

Applied Physics and Mathematics
Submission date: July 2019
Supervisor: Jo Eidsvik, NTNU
Co-supervisor: Anouar Romdhane, SINTEF Industri

Norwegian University of Science and Technology
Department of Mathematical Sciences





Abstract

Carbon capture and storage (CCS) is seen as a promising strategy to reduce emissions of
CO2 into the atmosphere. Currently preparations are being done in Norway for a full-
scale CCS project. CO2 will be stored in deep geological formations, and one of the
locations being studied for such storage is Smeaheia, located in the North Sea. One of
the major risks related to such a storage project is leakage of CO2, and it is important
to design monitoring programs addressing this and other risks. Monitoring is expensive,
so it is important to design monitoring programs in a smart way, in order to optimize the
relationship between value and cost. One possible way to asses the value of a monitor-
ing program is value of information analysis. In such an analysis one defines a decision
problem and measures the value of information (VOI) as the additional value obtained by
acquiring information before making the decision. This study concerns value of informa-
tion analysis of seismic data in the context of CO2 storage decisions. In particular we
develop a framework to assess when in time a seismic survey has most value for leak-
age detection. The decision considered is whether or not to continue the injection of
CO2. In the framework, the simulation-regression approach is used to estimate the VOI
at different times. This approach uses Monte Carlo simulation and statistical regression
techniques to estimate the VOI. The framework is illustrated through a constructed case
study using Smeaheia. Reservoir simulations are done using the Matlab Reservoir Simula-
tion Toolbox (MRST). From simulated saturations of CO2, we generate seismic data. We
then regress values on the seismic data, to estimate the VOI. Two regression techniques
are tested - k-nearest neighbors regression with principal components of the seismic data
and convolutional neural networks. VOI estimates obtained using the k-nearest neighbors
regressions were consistently lower than the estimates obtained using the convolutional
neural networks. It is possible that one or both of the methods make biased estimates of
the VOI. Through bootstrapping, we saw that the k-nearest neighbors approach produced
stable VOI estimates, while the convolutional neural networks produced estimates with
high variability. The high variability might be due to the limiting size of the data set. In
the case study, we were not able to say exactly at which time a seismic survey would have
the highest value. However, we were able to give a reduced interval of time in which the
VOI would most probably obtain its highest value.
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Sammendrag

Karbonfangst og -lagring er en lovende strategi for å redusere utslipp av CO2 til atmos-
færen og i disse tider forberedes et fullskala prosjekt i Norge. CO2 vil bli injesert i dype
geologiske formasjoner, og blant stedene som studeres for lagring er Smeaheia som ligger
i Nordsjøen. En av hovedrisikoene forbundet med CO2-lagring er lekkasje, og det er vik-
tig å lage monitoreringsprogram som addresserer dette og andre risikoer. Monitorering er
kostbart, så det er viktig å lage slike programmer på en smart måte som optimerer forholdet
mellom verdi og kostnad. I et slikt arbeid bør en estimere verdien til et monitoreringspro-
gram. Dette kan gjøres ved å definere en beslutningssituasjon og så se på økningen i
situasjonens verdi dersom en samler data før en tar beslutningen. Denne studien han-
dler om å estimere verdien av informasjon for seismiske undersøkelser i forbindelse med
CO2-lagring. Et rammeverk utvikles for å finne ut ved hvilket tidspunkt en seismisk un-
dersøkelse har størst verdi i forbindelse med å detektere CO2-lekkasje. Beslutningen som
studeres er om en skal fortsette eller avbryte lagringen av CO2. I rammeverket brukes
Monte Carlo simulering sammen med statistiske regresjonsteknikker for å beregne ver-
dien av informasjon. Rammeverket illustreres gjennom et konstruert eksempelstudie knyt-
tet til Smeaheia. Reservoarsimuleringer gjøres ved bruk av Matlab Reservoir Simulation
Toolbox, og fra simulerte CO2-metninger konstrueres seismiske data. Deretter brukes re-
gresjonsmodeller for å beregne verdier gitt data, som så brukes for å estimere verdien av
informasjon. To regresjonteknikker testes i studien, k-nærmeste naboer (KNN) og konvo-
lusjonelle nevrale nettverk (CNN). Beregnede verdier av informasjon var konsistent lavere
ved å bruke KNN sammenlignet med CNN. Det er mulig at estimatene fra en eller begge
metodene ikke er forventningsrette. Videre, ved å gjøre bootstrapping, så kunne vi se at
KNN produserer stabile estimater, mens CNN produserer estimater med høy varians. Den
høye variansen kan skyldes den begrensede størrelsen på datasettet. I eksempelstudien
fikk vi ikke til å oppgi et eksakt tidspunkt for når verdien av en seismisk undersøkelse vil
være størst, men vi fikk til å oppgi et redusert tidsintervall hvor det er sannsynlig at den
største verdien ligger.
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Chapter 1
Introduction

Nordbotten and Celia (2011) refer to the carbon problem as the ongoing increase of con-
centration of CO2 in the atmosphere over the two last centuries. This increase is mainly
driven by human activities (anthropogenic emissions) and most of the emissions come
from the combustion of fossil fuels.

Figure 1.1 shows the Keeling curve, which consists of regular measurements of atmo-
spheric concentration of CO2 taken at Mauna Loa Observatory on Hawaii since 1958
(Keeling et al., 2001). It can be seen from the plot that current levels of CO2 concen-
tration in the atmosphere is above 400 ppm, while the concentrations in the late 1950s
were at around 315 ppm. The concentrations fluctuate, but there has been a steady in-
crease in concentration during the period that the measurements have been taken. In the
introductory chapter of Nordbotten and Celia (2011), the Keeling curve is compared with
measurements of atmospheric concentration of CO2 from ice core data. Over the last 1000
years, ice core data show a stable level of CO2 concentration at around 280 ppm and the
increase above this level began with the industrial revolution. It is also stated that concen-
trations from ice core data over the past 650 000 years vary between about 170 ppm and
300 ppm. This comparison shows an extraordinary increase of atmospheric CO2 concen-
tration since the industrial revolution.

Higher levels of CO2 concentration in the atmosphere contribute to an increased green-
house effect and the consensus is that dangerous climate change is expected unless the
increase is reduced or reversed (Nordbotten and Celia, 2011). The UN states that climate
change is one of the major issues of our time and among the consequences are shifting
weather patterns, which will threaten food production, and increasing sea levels, which
bring increasing risks of catastrophic floods (United Nations, 2019).

Carbon capture and storage (CCS) has emerged as an option to reduce emissions of CO2

into the atmosphere. It involves capturing produced CO2, transporting it and storing it
somewhere else than in the atmosphere. Possible storage locations are rock formations
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Figure 1.1: The Keeling curve: monthly measurements of atmospheric CO2 concentration taken at
the Mauna Loa Observatory on Hawaii (Keeling et al., 2001).

deep underground. In the Norwegian part of the North Sea, CCS has been done at the
Sleipner gas field since 1996. Currently, other locations in the North Sea are being consid-
ered for a full-scale CCS project. Among those are Smeaheia, located approximately 58
km north west of Bergen.

Monitoring is an important part of CO2 storage projects. In 2014 regulations were estab-
lished in Norway, stating that monitoring programs need to ensure (Dupuy et al., 2018):

• Conformance: understanding of how the CO2 behaves in the storage reservoir

• Containment: ensuring that the CO2 migration is controlled

• Contingency: detecting and addressing leakages and other anomalies.

One of the main risks related to CO2 storage is potential leakage, and it is important to
design monitoring programs that detect these. Possible monitoring techniques include
seismic and electromagnetic surveys.

At the Sleipner storage site seismic surveys have been conducted regularly. From the
surveys, a large quantity of data has been made available for research, resulting in many
published studies. See for instance Arts et al. (2004) and Dupuy et al. (2017). In Furre et al.
(2017) 20 years of monitoring CO2 injection at Sleipner is summarized. It is concluded
that the monitoring program at Sleipner, which has strongly relied on seismic surveys,
has been a success and that is has showed that the CO2 has stayed safely in the storage
unit.
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Monitoring is costly, so it is important to design monitoring programs in a smart way that
optimizes the relationship between value and cost. What technology to use, when to mon-
itor, how often and to what extent, are all important questions to ask. Such considerations
should be case specific and risk based (Furre et al., 2017).

One possible way to estimate the value of a monitoring scheme is value of information
analysis (Howard, 1966). In such an analysis one assumes a decision problem and calcu-
lates the value of information (VOI) as the difference between the value of the decision
problem with the information and the value of the decision problem without the informa-
tion. The VOI is thus the additional information obtained by acquiring the information
before making the decision.

In Eidsvik et al. (2015), VOI analysis is integrated with geostatistical modelling. The
book provides applications to the petroleum industry, as well as mining and ground water
management. Sato (2011) provides a high level introduction to VOI analysis in the context
of CO2 storage monitoring.

In real world applications, one is usually not able to calculate the VOI analytically. A
computationally efficient approach to estimate the VOI in such cases, is the simulation-
regression approach, presented and used in medical applications in Strong et al. (2014).
This approach uses Monte Carlo sampling and statistical regression techniques to estimate
the VOI. The approach has been integrated with geostatistics and applied to petroleum
problems in Eidsvik et al. (2017) and Dutta et al. (2019).

The objective of the current study is to do VOI analysis of seismic data in the context
of leakage detection in CO2 storage. A decision problem is constructed where CO2 is
injected into a reservoir and the decision maker at some point will do a seismic survey
and decide between continuing or stopping the injection, based on the result of the survey.
Such a seismic survey will have varying VOI depending on when the survey is taken. In
the study, the VOI will be estimated at different times, to see when it is most beneficial
to do the survey. The analysis is done on a constructed case study with the Smeaheia
storage site. Further we use the simulation-regression approach to estimate the VOI. We
do a large number of simulations of CO2 injections into the reservoir using the Matlab
Reservoir Simulation Toolbox (MRST) (Lie, 2019). From these simulations we generate
seismic data. We then train regression models, where values are regressed on the data, in
order to obtain expected values given data, to use in the VOI estimation. For the regression
part, we will try two different techniques: k-nearest neighbors with principal components
of the seismic data and convolutional neural networks.

In chapter 2 the basics of CO2 storage and monitoring is presented. This includes informa-
tion about how to simulate CO2 storage and seismic data. Chapter 3 contains a thorough
introduction to VOI analysis together with examples that put it into a CO2 storage con-
text. The simulation-regression approach is also presented in chapter 3. The chapter ends
with a presentation of how the simulation-regression approach will be applied in the case
study, including an introduction to the regression techniques that will be tested, which are
k-nearest neighbor (KNN) with principal components (PCs) of the data and convolutional
neural networks. Chapter 4 contains the case study where we measure the VOI of seis-
mic data at different times for a constructed decision problem relating to CO2 storage at

3



Chapter 1. Introduction

Smeaheia. The chapter starts with an explanation of the workflow, followed by results.
Chapter 5 concludes the study. In this study we use the programming languages Matlab
and R.

4



Chapter 2
Basics of CO2 storage and
monitoring

In this section we briefly explain the basics of CO2 storage. We then give an introduction
to reservoir simulation in MRST. Finally, we discuss seismic data.

2.1 CO2 storage

Deep geological formations are the most likely storage locations for CO2.

Two important rock properties when evaluating the suitability of a potential storage loca-
tion are porosity and permeability, which we now define:

• Porosity: The porosity φ of a medium is the proportion of the bulk volume which is
occupied by void space. We thus have 0 ≤ φ ≤ 1 (Lie, 2019).

• Permeability: The permeability κ of a porous medium is its ability to transmit a
single fluid, when the void space of the medium is completely filled by that fluid
(Lie, 2019).

The relationship between porosity and permeability is not always straight forward, but
in general, with other factors kept equal, an increase in porosity implies an increase in
permeability. For a geological formation to be used for CO2 storage, it would need to
satisfy the following (Nordbotten and Celia, 2011):

1. have high permeability to accept a large quantity of CO2,

2. be overlaid by low permeable rock to keep the CO2 in place.

5
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Among the formations being considered for storage are depleted hydrocarbon fields and
saline aquifers. The latter are geological formations consisting of porous rocks saturated
with salt water, commonly referred to as brine.

Once CO2 has been captured, it gets transported to a storage location where it is com-
pressed and injected into the subsurface. The common strategy is to inject CO2 to a depth
where the pressure and temperature exceed its critical point (Nordbotten and Celia, 2011).
Thus, the CO2 transitions into its subcritical phase. This phase is more dense than CO2

in gas phase, which is ideal because the CO2 then takes up less storage space and is less
buoyant. The subcritical CO2 inside a geological storage, is commonly referred to as a
plume.

Before injection of CO2, the saline aquifer is fully saturated with brine. When CO2 is
injected, it partially displaces the brine. The aquifer is then partially saturated with brine
and CO2. Because the CO2 phase is less dense than the brine, the CO2 will start to move
upwards.

2.2 Reservoir simulation in MRST

The Matlab Reservoir Simulation Toolbox (MRST) (Lie, 2019) is an open source software
implemented in Matlab for reservoir simulation and modelling. The toolbox offers simu-
lation tools along with examples, but it is also possible to combine the data structures and
methods of the toolbox to create your own simulations.

The toolbox has an add-on module called co2lab, which offers tools to simulate CO2

injection and storage. In order to simulate CO2 migration differential equations need to
be solved. A discussion of these equations is outside the scope of this study. However,
we note that co2lab uses vertical equilibrium models (SINTEF, 2016b). These assume
that the fluid phases are in vertical equilibrium, which reduces the spatial dimension of the
simulation. This offers superior speed compared to 3D simulations.

For the current study we will define an injection scenario by placing an injection well in
a reservoir and setting injection rates and injection length. We will also switch between
open and closed reservoir boundaries in order to control leakage of CO2 and we will make
perturbations to porosities and permeabilities. All this will be passed into one of the MRST
solvers, and we will get as output vertically averaged CO2 saturations for a 2D cell of the
reservoir for different times.

2.3 Seismic data

Reflection seismic data is one way to estimate properties of the subsurface. One ac-
quires such data by emitting sound waves into the subsurface and recording and pro-
cessing the recorded echoes (Eidsvik et al., 2015). The reflected amplitudes depend on

6



2.3 Seismic data

elastic properties of the subsurface, which again depend on lithology and fluids in the pore
spaces.

To understand the relationship between seismic data and reservoir properties, one must
use rock physics models. However, there is uncertainty related to such interpretations.
The simplest form of seismic data, are reflections at normal incident angels, i.e. the source
and the receiver are at the same location. In an effort to reduce uncertainty, it can be useful
to collect and process reflection amplitudes at an increasing distance between the source
and receiver. This gives reflection amplitudes for a range of different angles. Seismic data
of this type is called amplitude-versus-offset (AVO) data. The acquisition of such data
might not involve a different seismic survey than one used to just get zero-offset data, but
the processing is different and could be more expensive (Eidsvik et al., 2015)

2.3.1 Elastic properties and AVO attributes

Assume a section of the subsurface with two different layers in the vertical direction. For
instance, the top layer could be a cap rock, and the bottom layer could be an aquifer that
is used for CO2 storage. The layers have elastic properties listed below:

• Vp: p-wave velocity

• Vs: s-wave velocity

• ρ: bulk density.

We assume the elastic properties to be homogeneous in the individual layers. We call the
top layer for layer 1 and the bottom layer for layer 2. The elastic properties for layer 1
we denote by Vp1, Vs1 and ρ1, and the elastic properties for layer 2 we denote by Vp2, Vs2
and ρ2. On the top of layer 1 is sea water, with elastic properties denoted by Vp0, Vs0 and
ρ0.

Seismic waves are emitted from a source and the reflections are recorded by receivers.
Both the source and receivers are at sea level connected to a moving boat. When the sound
waves travel through interfaces with changing elastic properties, some of the energy will
be reflected. The reflection amplitudes depend on the elastic properties at the two sides of
the interface. The situation is illustrated in figure 2.1.

In what follows we will only discuss seismic data from the interface between layer 1 and
2, and we look at a specific point at this interface, say point A. Each receiver will receive
a time series of seismic echoes. Processing is then done to distinguish between echoes
from different points in the subsurface. We denote a processed echo by R(θ), where θ is
the reflection angle. An approximate way to describe the relationship between R and θ is
given by (Avseth et al., 2005)

R(θ) ≈ R0 +G sin2 θ, (2.1)

where R0 (intercept) and G (curvature) are AVO attributes which depend on elastic prop-
erties at the given point in the subsurface. Let ∆Vp = Vp2 − Vp1 and Vpm =

Vp1+Vp2

2
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A

A B

Figure 2.1: Illustration of a seismic survey.

(the arithmetic mean). We define similar quantities also for Vs and ρ. Approximate re-
lationships between the AVO attributes and elastic properties are given by (Avseth et al.,
2005)

R0 =
1

2

(
∆Vp
Vpm

+
∆ρ

ρm

)
, (2.2)

G =
1

2

∆Vp
Vpm

− 2

(
Vs
Vp

)2(
2

∆Vs
Vsm

+
∆ρ

ρm

)
. (2.3)

By recording seismic amplitudes at different reflection angels, the AVO attributes for the
given point can be estimated.

2.3.2 Rock physics models

In the current study, we want to use seismic data to map the CO2 plume inside a reservoir.
The elastic properties of a layer of rock, partially saturated with CO2 and brine, can be
approximated by rock physics relations, which will be described in this subsection.

The bulk density of a rock with fluid in its pore spaces is given by (Avseth et al., 2005)

ρ = φρfluid + (1− φ)ρmineral, (2.4)

where ρfluid is the fluid density and ρmineral is the mineral density. The p-wave velocity
depends on ρ, in addition to the rock bulk modulus K and the rock shear modulus µ.
The s-wave velocity depends on ρ and µ. The relationships are given by (Avseth et al.,

8



2.3 Seismic data

2005)

Vp =

√
K + 4

3µ

ρ
(2.5)

and

Vs =

√
µ

ρ
. (2.6)

By relations from Gassmann, it is predicted that a change of rock fluid causes a change in
value of K, but not a change in value of µ.

We now present a method to calculate the elastic properties of a rock partially saturated
by CO2 and brine. The method is taken from Avseth et al. (2005) and uses the Gassmann
relations. It assumes that the elastic properties when the rock is saturated only by brine are
known. We denote these initial values of the elastic properties by V (1)

p , V (1)
s and ρ(1). The

new values of the elastic properties, after CO2 has partially replaced the brine, we denote
by V (2)

p , V (2)
s and ρ(2). The method consists of the following steps:

Step 1: Calculate the initial rock bulk modulus and rock shear modulus using equations
(2.5) and (2.6):

K(1) = ρ(1)
(

(V (1)
p )2 − 4

3
(V (1)
s )2

)
µ(1) = ρ(1)

(
(V (1)
s )2

)
.

Step 2: Use Gassmann’s relation to calculate the new rock bulk modulus K(2). The
relation is given by

K(2)

Kmineral −K(2)
−

K
(2)
fluid

φ(Kmineral −K(2)
fluid)

=
K(1)

Kmineral −K(1)
−

K
(1)
fluid

φ(Kmineral −K(1)
fluid)

,

where Kfluid is the fluid bulk modulus and Kmineral is the mineral bulk modulus. For the
given problem we have K(1)

fluid = Kbrine, where Kbrine is the bulk modules of the brine.
K

(2)
fluid can be calculated using the Brie average (Brie et al., 1995):

K
(2)
fluid = (Kbrine −KCO2)(1− S)e +KCO2 .

Here, KCO2
is the CO2 bulk modulus and S is the CO2 saturation. We set e = 5, as was

done in Dupuy et al. (2017).

Step 3: Set the new rock shear modulus equal to the initial one:

µ(2) = µ(1).
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Step 4: Calculate the new bulk density ρ(2) using equation (2.4):

ρ(2) = φρ
(2)
fluid + (1− φ)ρmineral.

ρ
(2)
fluid can be calculated using the Voigt average (Dupuy et al., 2017):

ρ
(2)
fluid = (1− S)ρbrine + SρCO2 ,

where ρbrine is the brine density and ρCO2 is the CO2 density.

Step 5: Calculate the new p and s-wave velocities using equations (2.5) and (2.6) and the
new values of K, µ and ρ:

V (2)
p =

√
K(2) + 4

3µ
(2)

ρ(2)

V (2)
s =

√
µ(2)

ρ(2)
.

2.3.3 Example

We now move on to illustrate the principles of the current section with an example. The
goal is to see how well an AVO analysis is able to distinguish between different levels of
CO2 saturation in an aquifer. The example follows the workflow of the analysis in Dupuy
et al. (2017).

Assume a reservoir as illustrated in figure 2.1. We assume layer 2 to be an aquifer used for
CO2 storage and layer 1 to be a cap rock. We will investigate five different cases of CO2

saturation in layer 2: 0%, 25%, 50%, 75% and 100%.

We assume the following values for the elastic properties of layer 1:

• Vp1 = 2546 m/s

• Vs1 = 1115 m/s

• ρ1 = 2278 kg/m3.

For layer 2, when it is fully saturated by brine, we assume the following values of the
elastic properties:

• V (1)
p2 = 2965 m/s

• V (1)
s2 = 1475 m/s

• ρ(1)2 = 2187 kg/m3.

The porosity for layer 2 we set to φ = 0.28, and the mineral properties we set to:

• Kmineral,2 = 30.1 GPa
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Figure 2.2: Elastic properties as a function of CO2 saturation.

• ρmineral,2 = 2.61 kg/m3.

Finally, the fluid properties used in the example are given in table 2.1.

Fluid phase Kfluid (GPa) ρfluid (kg/m3)
Brine 2.308 1100
CO2 0.075 760

Table 2.1: Fluid properties.

We start by calculating the values of the elastic properties with changing levels of CO2

saturation. The calculations are done using the method presented in subsection 2.3.2 and
the results are shown in figure 2.2. From the figure we see that the p-wave velocity changes
rapidly among small levels of CO2 saturation, while it changes less among larger levels.
The s-wave velocity increases linearly with the saturation, while the density decreases
linearly with the saturation.

The next step is to generate AVO attributes, R0 andG, for the aquifer with changing levels
of CO2 saturation. We assume the processing of the AVO attributes to be noisy. Given the
elastic properties we assume the AVO attributes to be normally distributed:

(R0, G)T ∼ N (m,T ),

where the mean m is calculated using equations (2.2) and (2.3). The covariance matrix
we set to

T = c

(
0.062 −0.7 · 0.06 · 0.17

−0.7 · 0.06 · 0.17 0.172

)
,

for some c > 0. With c = 1, this covariance matrix corresponds to the one set for the
likelihood model for AVO data in Eidsvik et al. (2015, p. 267).

We do our experiment with three different values of c: 0.01, 0.04 and 0.16. For each value
of c, we generate 50 samples of AVO attributes for each of the five different levels of CO2

saturation.

The results of the experiments are displayed in figure 2.3. For c = 0.01, we see from
figure 2.3a that it is quite easy to discriminate between the saturations, except for the

11



Chapter 2. Basics of CO2 storage and monitoring

higher levels of saturations. As c increases, we see from figure 2.3b and 2.3c that the
discrimination becomes more difficult. This behaviour is as expected, as more noise is
added to the model with an increasing value of c.
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Figure 2.3: 50 realizations of AVO attributes for five different levels of CO2 saturation and different
values of c. Note that the scale of the axes change between the plots.
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Chapter 3
Value of Information Analysis and
Statistical Methodology

In this chapter we look at decision problems under uncertainty and the value of acquiring
additional information to inform the decision maker. The theory is introduced along with
examples. In some cases the value of information (VOI) can be computed exact, while in
others approximate methods are needed. We will look at both cases.

3.1 Decision analysis and value of information

Given is a decision maker which needs to choose some alternative a ∈ A, where A
denotes the set of possible alternatives. Associated to the decision situation is some uncer-
tainty x. The value obtained by the decision maker after having selected a and observed
x, is given by v(x,a). The decision maker has some belief about the uncertainty x, given
by the prior probability distribution p(x).

The following example is a slight modification of the motivating example in Sato (2011)
and will be used as a running example to illustrate the theory in the coming subsections.
A similar example can also be found in Eidsvik et al. (2018).

Example:
A company is considering CO2 storage in a subsurface reservoir. The reservoir is inter-
sected by a fault and it is uncertain whether CO2 will leak across the fault or not. There is
no other escape path for CO2 from the reservoir.

The decision maker has two alternatives, a ∈ {0, 1}: to store CO2 in the reservoir (a = 1)
or not (a = 0). The uncertainty in this decision problem is binary, x ∈ {0, 1}, and is
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Chapter 3. Value of Information Analysis and Statistical Methodology

whether CO2 will leak out from the reservoir (x = 1) or not (x = 0). The prior belief
about the uncertainty is p(x = 0) = 0.75.

If the company chooses not to store the CO2, they must pay 20 money units. The cost of
storing the CO2 is 10 money units. If CO2 leaks out from the reservoir, the company must
pay a fine of 32 money units. This gives the following value function v(x, a):

• v(0, 0) = −20

• v(0, 1) = −10

• v(1, 0) = −20

• v(1, 1) = −32 + (−10) = −42.

3.1.1 Prior value

Assume a decision problem and a risk neutral decision maker. The optimal alternative is
the one that maximizes the expected value (Eidsvik et al., 2015). Thus, the prior of the
decision situation, before acquiring any additional information, is given by

PV = max
a∈A
{E[v(x,a)]} = max

a∈A

{∫
x

v(x,a)p(x)dx

}
. (3.1)

We return to the CO2 storage example. The expected values of the value function for the
two different alternatives are:

E[v(x, 0)] =
∑
x

v(x, 0)p(x) = v(0, 0)p(x = 0) + v(1, 0)p(x = 1)

= −20 · 0.75 + (−20) · 0.25 = −20

and

E[v(x, 1)] =
∑
x

v(x, 1)p(x) = v(0, 1)p(x = 0) + v(1, 1)p(x = 1)

= −10 · 0.75 + (−42) · 0.25 = −18.

The prior choice is then to store CO2 with PV = −18, calculated using equation (3.1).
Notice that since x is a discrete variable, we use sums instead of integrals.

The decision situation is illustrated by the decision tree in figure 3.1. In such a figure,
rectangles represent decisions and ovals represent uncertainties. The arcs out from the
rectangles represent the different alternatives and the expected values of the value function
when choosing the corresponding alternatives. The arcs out from the ovals represent the
different outcomes of the uncertainties and their corresponding probabilities. The leafs of
the tree represents the different outcomes of the decision situation and their corresponding
values.
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(0.25)
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Figure 3.1: The decision tree for the CO2 storage example without additional information.

3.1.2 Posterior value and value of information

Assume now that the decision maker can acquire some information, given by the uncertain
variable y. The dependence between x and y is given by the likelihood p(y|x). The
decision maker, has the opportunity to observe y before making the decision, and the
posterior value of the decision situation, after having observed y, is given by (Eidsvik
et al., 2015)

PoV (y) =

∫
y

max
a∈A
{E[v(x,a)|y]}p(y)dy. (3.2)

We further have

p(y) =

∫
x

p(y|x)p(x)dx (3.3)

and

E[v(x,a)|y] =

∫
x

v(x,a)p(x|y)dx, (3.4)

where p(x|y) is given by Bayes’ theorem:

p(x|y) =
p(y|x)p(x)

p(y)
. (3.5)

The VOI of y, is given by the difference between the posterior value of the decision situa-
tion after having observed the information and the prior value before observing the infor-
mation (Eidsvik et al., 2015). We have

V OI(y) = PoV (y)− PV. (3.6)

The decision maker should acquire information y if V OI(y) is higher than the price the
decision maker has to pay to acquire the information.
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A special case is when the decision maker is able to observe perfect information about
x before making the decision. The posterior value in such a situation is (Eidsvik et al.,
2015)

PoV (x) =

∫
x

max
a∈A
{v(x,a)}p(x)dx, (3.7)

and the value of perfect information is then

V OI(x) = PoV (x)− PV. (3.8)

The value of perfect information is an upper bound for the value of information for a
particular decision situation. If acquiring imperfect information y is more expensive than
V OI(x), the decision maker knows he should refrain from acquiring the information with-
out even having calculated V OI(y).

We again return to the CO2 storage example. First we calculate the posterior value of the
decision situation with perfect information about x:

PoV (x) =
∑
x

max
a∈A
{v(x, a)}p(x)

= max{v(0, 0), v(0, 1)}p(x = 0) + max{v(1, 0), v(1, 1)}p(x = 1)

= max{−20,−10} · 0.75 + max{−20,−42} · 0.25 = −12.5.

The value of perfect information is then

V OI(x) = PoV (x)− PV = −12.5− (−18) = 5.5.

Without doing further analysis, the company can conclude that they should not acquire
any information about the given decision problem if the cost is larger than 5.5.

We now look at imperfect information. Assume that the company can perform a test
indicating whether the reservoir is leaking or not. The result of the test is given by the
random variable y ∈ {0, 1}, where the result y = 1 indicates that the reservoir is leaking
and y = 0 indicates that it is sealing. The likelihood is given by p(y = 0|x = 0) = p(y =
1|x = 1) = q = 0.9.

We first calculate the probabilities for the different outcomes of the test:

p(y = 0) = p(y = 0|x = 0)p(x = 0) + p(y = 0|x = 1)p(x = 1)

= 0.9 · 0.75 + 0.1 · 0.25 = 0.7

and

p(y = 1) = 1− p(y = 0) = 0.3.

We then calculate the probabilities for the different outcomes of x, given the different
outcomes of y:

• p(x = 0|y = 0) = p(y=0|x=0)p(x=0)
p(y=0) = 0.9·0.75

0.7 = 0.964
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3.1 Decision analysis and value of information

• p(x = 1|y = 0) = 1− p(x = 0|y = 0) = 1− 0.964 = 0.036

• p(x = 0|y = 1) = p(y=1|x=0)p(x=0)
p(y=1) = 0.1·0.75

0.3 = 0.25

• p(x = 1|y = 1) = 1− p(x = 0|y = 1) = 1− 0.25 = 0.75.

The expected values of the value function for the two different alternatives, given that the
test reports y = 0, are

E[v(x, 0)|y = 0] =
∑
x

v(x, 0)p(x|y = 0)

= v(0, 0)p(x = 0|y = 0) + v(1, 0)p(x = 1|y = 0)

= −20 · 0.964 + (−20) · 0.036 = −20

and

E[v(x, 1)|y = 0] =
∑
x

v(x, 1)p(x|y = 0)

= v(0, 1)p(x = 0|y = 0) + v(1, 1)p(x = 1|y = 0)

= −10 · 0.964 + (−42) · 0.036 = −11.1,

and the company would choose to store CO2 (a = 1). Similarly, the expected values of
the value function, given that the test reports y = 1, are

E[v(x, 0)|y = 1] = −20

and

E[v(x, 1)|y = 0] = −34,

and the company would choose not to store CO2 (a = 0). This gives the posterior
value

PoV (y) =
∑
y

max
a∈A
{E[v(x, a)|y]}p(y)

= max
a∈A
{E[v(x, a)|y = 0]}p(y = 0) + max

a∈A
{E[v(x, a)|y = 1]}p(y = 1)

= −11.1 · 0.7 + (−20) · 0.3 = −13.8.

We can then finally calculate the value of information:

V OI(y) = PoV (y)− PV = −13.8− (−18) = 4.2.

The conclusion is then that the company should perform the test if the price is less than
4.2 money units.

The decision situation with imperfect information is illustrated by the decision tree in
figure 3.2. The red ovals mark the optimal decisions given the two different outcomes of
the test.

In figure 3.3 the value of information has been calculated and plotted for a range of differ-
ent likelihoods. The value of information is 0 up until a certain threshold of the likelihood
(just below 0.6). After this the VOI increases linearly with the likelihood up until the value
of perfect information.
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Figure 3.2: The decision tree for the CO2 storage example with imperfect information.
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Figure 3.3: Value of information vs. likelihood q for the CO2 storage example. The red line
indicates the value of perfect information.

3.1.3 Conditions for valuable information

In order for information to be valuable it must fulfill three criteria; it must be relevant, it
must be material and it must be economic (Eidsvik et al., 2015). The three different criteria
are described further below:

1. Relevant: observing the information must have the capability to change the decision
maker’s belief about the uncertainty x.
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2. Material: observing the information must have the capability to change the decision
of the the decision maker.

3. Economic: the value of information (V OI(y)) must be larger than the price to
acquire the information.

The criteria can be illustrated by a pyramid as in figure 3.4. If the information is not
relevant, it cannot be material, and if it is not material, it cannot be economic.

ECONOMIC

MATERIAL

RELEVANT

Figure 3.4: Criteria for information to be valuable.

We now look at the CO2 storage example in light of these criteria. The information from
the test is relevant. For instance, if the test reports y = 0, the company’s belief about x
changes from the prior probability p(x = 0) = 0.75 to the posterior probability p(x =
0|y = 0) = 0.964. Further, the information from the test is material. We have seen that
if the test reports y = 0, the company will decide to store CO2, while if the test reports
y = 1, the company will decide not to store CO2. Whether the information from the test
fulfills the economic criteria, depends on the price of the test.

3.2 Time dependent value of information

In the case of CO2 storage, it might be hard to detect if a fault will be leaking, without
having injected any CO2. In this section an extension of the CO2 storage example is
presented, where the accuracy of the test increases with time (and injected amount of
CO2).

Every year, for 10 years, a company will produce 1 unit of CO2 that it wants to store in a
subsurface reservoir. At the beginning of each year, the company will have the option to
perform a test and to possibly stop the injection operation entirely. We assume that the test
can only be performed once and that the injection can not be resumed once it has stopped.
The main question is then: When is it most valuable to perform the test?
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We denote the time in years by t. The start of the storage operation is at t = 0. The prior
belief about x is p(x = 0) = 0.75, and we assume this is the best possible information
available at t = 0. The accuracy of the test, as a function of time (assuming 1 unit of CO2

has been injected into the reservoir each year up until that year), is p(y = 0|x = 0, t) =
p(y = 1|x = 1, t) = q(t) = 1− 0.25 · e−αt, where α > 0.

The costs related to the operation are as follows:

• Fixed cost if injection is done: 5

• Cost of injecting per unit CO2: 0.5

• Fixed cost if leakage: 2

• Fine if leakage per unit injected CO2: 3

• Cost of not injecting per unit CO2: 2.

Included in the fixed cost of injection is a mandatory test to detect leakage after year 9.
We assume that this test will detect leakage with 100% accuracy. Thus, the company will
for sure have to pay the fine if leakage occurs.

Given the available information at t = 0, the prior decision is to inject all units of CO2,
with PV = −18. We now go on to calculate the value of information from tests performed
at years t = 1, 2, ..., 9, before injection is started for the given year. After the test, the
company has the option to continue injecting (a = 1), or to stop entirely (a = 0). As
mentioned, the company may only perform the test once, and thus the prior probability,
will always be the one from t = 0.

The value function is now also a function of t, v(x, a, t). If a test is performed at time t,
the company will already have injected t units of CO2, and the decision to make will be
about the remaining (10− t) units. The posterior value will now be given by

PoV (y, t) = −5− 0.5t− (2 + 3t)p(x = 1)

+ p(y = 0, t) max {−2(10− t),−0.5(10− t)− 3(10− t)p(x = 1|y = 0, t)}
+ p(y = 1, t) max {−2(10− t),−0.5(10− t)− 3(10− t)p(x = 1|y = 1, t)},

where the terms on the first line correspond to the expected value of the value function for
the CO2 already injected and the fixed costs. The two next lines correspond to the value
of the CO2 not already injected.

In figure 3.5 the value of information is plotted vs. the time the test is taken, with α = 0.2.
The value of information is largest when the test is done at t = 4, with V OI(y, 4) =
1.24.

In essence, the decision of when to perform the test in this case is a trade-off between test
accuracy and amount of CO2 put at risk of leakage.
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Figure 3.5: Value of information vs. time of test for CO2 injection over time, with α = 0.2.

3.3 Simulation-Regression Approach

When doing value of information analysis, there is often a need to approximate the pos-
terior value given by equation (3.2). One possible way to do this is by the simulation-
regression approach, which will be described in this section. The method is described and
applied to petroleum geostatistics in Eidsvik et al. (2017). The approach presented in this
section, will closely follow what is written in that article.

In practice, it is rare to have a closed form solution of the conditional expectation, E[v(x,a)|y],
that appears in equation (3.2). The simulation-regression approach is based on Monte-
Carlo sampling of data and then regressing the values on the data to find approximations
of the conditional expectation. The approach consists of the following steps

1. Sample B realizations of x, given by x1, ...,xB , from the prior probability p(x).

2. For each realization, xb, of x and for each alternative a ∈ A, generate values
vba = v(xb,a).

3. For each realization xb, generate data yb, using the likelihood p(yb|xb) or some
other relationship between x and y, yb = f(xb), depending on what is available for
the given case.

4. For each alternative a, fit a model regressing the values on the data, v̂ba = ga(yb, β̂a),
where β̂a are estimated model parameters. v̂ba is then an approximation of the con-
ditional expectation E[v(x,a)|yb].

23



Chapter 3. Value of Information Analysis and Statistical Methodology

5. Approximate the posterior value by

PoV (y) =

∫
y

max
a∈A
{E[v(x,a)|y]}p(y)dy ≈ 1

B

B∑
b=1

max
a∈A
{E[v(x,a)|yb]}

≈ 1

B

B∑
b=1

max
a∈A
{ga(yb, β̂a)} = PoV (y)approx.

(3.9)

6. Use PoV (y)approx to approximate the value of information.

It is considered good practice to also approximate the prior value by (Eidsvik et al.,
2017)

PVapprox = max
a∈A

{
1

B

B∑
b=1

ga(yb, β̂a)

}
. (3.10)

3.3.1 CO2 storage example

We will now test the simulation-regression approach on the CO2 storage example from
section 3.1.

The first step is to simulate B realizations of x, using the prior p(x = 0) = 0.75. From
these realizations we use the likelihood to sample realizations of y. The values vba for the
different realizations of x and the different alternatives a, are set as in section 3.1. The data
is binary and the conditional expectations are fitted as sample averages of the the values
for the two different groups of data y.

We approximate the value of information 10 times for different values of B. The results
are displayed in figure 3.6. We see that the approximations converge towards the true value
of information with increasing B.

3.3.2 Time dependent VOI example

We now apply the simulation-regression approach to the time dependent VOI example
from section 3.2 with α = 0.2. We use B = 5000 and approximate the VOI 20 times for
each of the years 1− 9. The results are displayed in figure 3.7. We see that on average the
approximations are correct, but the variance in the estimates are large, especially for the
early years.

3.4 Estimating the value of seismic data in CO2 storage
monitoring

In this section we discuss how to estimate VOI for seismic data in CO2 storage monitoring.
The presented methodology builds upon the simulation-regression approach presented in
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Figure 3.6: Approximate value of information vs. log10(B), for the CO2 storage example, using
the simulation-regression approach. The red line indicates the true VOI.
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Figure 3.7: Approximate value of information vs. time, for the time dependent VOI example, using
the simulation-regression approach with B = 5000. The red line indicates the true VOI.

section 3.3.

Assume a reservoir as in the previous sections, which may be leaking (x = 0) or not
(x = 1). A company has injected CO2 for a while, and is considering whether they should
continue (a = 1) or stop (a = 0) the injection. They have the opportunity to collect and
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process seismic data in an attempt to see if the reservoir is leaking.

Seismic data, y, would be acquired for a grid at the top of the reservoir, with dimension
I × J cells. In the case of processing reflections at just normal incidence angels, one
seismic attribute, R0, would be available for each cell. In the case of AVO data, two
seismic attributes, R0 and G, would be available for each cell. In the first case y would be
a vector of length IJ , and in the second case, y would be a vector of length 2IJ .

In this case, we have no closed form solution for E[v(x,a)|y], and some approximation
method is needed to calculate the posterior value and VOI.

Building on the simulation-regression approach, presented in section 3.3, we suggest two
different approaches to estimate the VOI. In both of the approaches, B Monte-Carlo sam-
ples of x and y are generated. We split these into two data sets. One data set of size B1 to
use for training of models and one data set of size B2 to use for the estimation of VOI. We
will estimate the posterior value using the approximation

PoV (y) =

∫
y

max
a∈A
{E[v(x, a)|y]}p(y)dy ≈ 1

B2

B2∑
b=1

max
a∈A
{E[v(x, a)|yb]}, (3.11)

inserted some approximation of the conditional expectation E[v(x, a)|yb]. What differs
between the approaches, is how we approximate E[v(x, a)|yb]. The suggested approaches
are:

1. Value regression with a nearest neighbors algorithm.

2. Estimate the conditional expectation by

E[v(x, a)|yb] =
∑
x

v(x, a)p(x|yb) ≈
∑
x

v(x, a)p̂(x|yb), (3.12)

where p̂(x|yb) is estimated by a convolutional neural network.

The approaches are described further below. We will also approximate the prior value by
equation (3.10), in order to avoid the risk of getting negative VOI estimates.

3.4.1 Approach 1: Value regression by nearest neighbors averaging

In this subsection we describe the approach where the VOI is approximated by value re-
gression with a k-nearest neighbors algorithm.

Given is a set of B Monte-Carlo samples of x, y, v(x, 0) and v(x, 1). We keep B1 realiza-
tions for training the algorithm, and set aside B2 = B − B1 realizations to approximate
the VOI.

Let yj be a realization of seismic data to which we want to approximate v(xj , a), for each
a, and let N0 denote the set of k nearest neighbors to yj in the training data. We then
approximate the values by (James et al., 2013):

v̂ja =
1

k

∑
i∈N0

v(xi, a). (3.13)
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3.5 Principal component analysis

These approximations of the values are then used to approximate PV and PoV as in
section 3.3.

Note that our vector of seismic data y is likely to be of high dimension. This can cause
problems when using the nearest neighbors approach, due to curse of dimensionality. It
might therefore be necessary to reduce the dimension of the seismic data by some di-
mension reduction technique. One such technique is principal component analysis (PCA),
which will be described towards the end of this chapter.

3.4.2 Approach 2: Estimating the conditional probability

In this subsection we describe the approach where the VOI is approximated by estimation
of the conditional probabilities p(x|y).

We again have a set of B Monte-Carlo samples of outcomes and seismic data. We use
B1 of these samples to train a binary classification model. Such a model takes as input a
realization of seismic data y and outputs an approximation of the conditional probability
p(x = 1|y). We denote the approximation by p̂(x = 1|y).

After having fitted the model using the training data, we use it to approximate conditional
probabilities for the B2 = B −B1 observations of data in our hold-out set. The estimated
probabilities are then used to calculate PV and PoV .

A popular approach for binary classification is to fit a neural network, which we will use
in the current study. This method will be described in the end of this chapter.

3.5 Principal component analysis

In this section we describe principal component analysis (PCA), which can be used as
a dimension reduction technique. The theory presented here is taken from James et al.
(2013), where PCA is discussed as a dimension reduction technique before fitting a linear
regression. The aim with this section is to give a brief explanation of what principal com-
ponents are, and how you would use PCA in practice as a dimension reduction technique
for regression.

Let Y be a data matrix of size n× p, which consists of n observations of p variables. We
denote a single observation of the p variables as y = (yi1, yi2, ..., yip)

T . When doing PCA,
we first identify the direction in which our data varies the most. This direction is the first
principal component direction. The second principal component direction is the direction
among all the directions orthogonal to the first direction in which the observations vary the
most, and so on. For an observation i, the jth principal component score is given as

zij = φ1j(yi1 − ȳ1) + ...+ φpj(yip − ȳp), (3.14)

with the restriction
φ21j + ...+ φ2pj = 1. (3.15)
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ȳ1 here denotes the mean value of all the observations of the first variable, and so on.
The principal component score is a linear combination of the original variables centered
around zero and is the distance away from zero when the centered observation is projected
on to the jth principal component line. The φs are called principal component loadings
and describe the direction of the principal component. With n observations of p variables,
it is possible to construct a maximum of min {n− 1, p} principal components.

We illustrate the concept of principal components with an example. We draw 30 observa-
tions of 2 variables from a multivariate normal distribution N (µ, σ), with

µ = (45, 65)T and σ2 =

(
40 20
20 45

)
.

The simulated observations, centered around zero, along with the two principal component
directions, are illustrated in figure 3.8. We clearly see that the observations show large
variability in the first principal component direction and that the directions are orthogonal
to each other.

−20 −10 0 10 20

−
20

−
10

0
10

20

y1

y2

Figure 3.8: Simulated data, centered around zero, with the first principal component direction (red
line) and second principal component direction (blue line).

When using principal components as a dimension reduction technique for a regression,
the idea is to construct the first M principal components of the data and then use these as
the covariates in the regression. The hope is that the components that explain most of the
variability in the data, are also the ones that predict the target variable the best. In R, one
can use the function prcomp to construct principal components. To decide the number of
principal components to use in a regression, one can use cross-validation. It is in general
advised to scale each set of variables to have unit variance before constructing principal
components, especially if different variables are measured in different units. This is to
make sure that all the variables are on the same scale.
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3.6 Neural networks

3.6 Neural networks

In this section we describe neural networks applied to classification problems. We start
by describing simple neural networks for classification, which consist of so called fully
connected layers, and then move on to convolutional neural networks, which have a more
complicated layer structure. Such networks are popular for image classification. Neural
networks can be built in R, for instance using the Keras package (Allaire and Chollet,
2019). For this section, theory has been taken from Chollet and Allaire (2018).

3.6.1 Structure of a neural network

Assume a stochastic variable x ∈ {0, 1} and data y. For instance y could be the intensity
of grey in each pixel of an image and x could be a variable describing whether the picture
contains an apple or a pear. For a member in the population, the neural network will take
as input y and return a prediction of the probability p(x = 1|y).

Figure 3.9 illustrates the structure of a simple neural network with fully connected layers.
The network takes as input a 3-dimensional vector y, passes the input through a hidden
layer, and outputs the prediction p̂(x = 1|y). In general, there can be more than one
hidden layer in a neural network. Each layer consists of units. In our example, there are
3 units in the input layer, 2 units in the hidden layer and 1 unit in the output layer. The
number of units in the input and output layer, correspond to the dimension of your input
and output respectively, while the number of units in the hidden layer(s) must be decided
when designing the network. The term fully connected layers refers to that each unit in a
layer is connected to all the units in the next layer.

𝑦1

𝑦2

𝑦3

𝑧1

𝑧2

Ƹ𝑝(𝑥 = 1|𝑦)

Input layer Hidden layer Output layer

Figure 3.9: Illustration of the structure of a simple neural network with fully connected layers.

We will now describe how input is passed through a fully connected network to produce
the output. The explanation will be based on the simple network in figure 3.9, but the
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generalization to more layers and units is straight forward.

The process starts by sending the input y from the input layer to the hidden layer. The
first unit in the hidden layer takes as input each value from the input layer and outputs
the number z1. The second unit in the hidden layer also takes as input each value from
the input layer and outputs the number z2. An output value zj from the hidden layer is
computed in the following way:

zj = f1(α1jy1 + α2jy2 + α3jy3 + βj), (3.16)

where f1 is some activation function decided for the layer. The αs are model parameters.
The output from the hidden layer is then passed on as input to the output layer where
p̂(x = 1|y) is calculated in the same way as for the hidden layer, possibly with a different
activation function.

What must be decided are model parameters for each layer. This is done through training
on data with known values for x.

3.6.2 Activation function

When calculating output from a unit in a hidden layer it is common to use the activation
function rectified linear unit function (relu) defined in the following way:

relu(y) = max {y, 0}. (3.17)

When the output in the output layer is an estimate of a single probability, we need the
activation function to give us a number between 0 and 1. In such a situation it is common
to use the sigmoid function:

sigmoid(z) =
1

1 + e−z
. (3.18)

3.6.3 Training a neural network

Let γ be the set of model parameters. Further, let Y be a matrix whose rows are training
data yi, i = 1, ..., n. Corresponding observations of the response are gathered in the n× 1
vector X . When training a neural network one uses the training data and responses to find
model parameters which make the network able to classify data with high accuracy.

The process of training a neural network is iterative. One starts with an initial guess
of model paramters γ0 and then iteratively finds new parameters γk that improves the
network. Central to the process is the loss function, which is a measure of how far away
the predictions of the network are from the true values. When fitting a binary classification
network, it is common to use a loss function called binary cross-entropy. Applied to our
training observations, this function takes the form

l(γk) = − 1

n

n∑
i

xilog(p̂k(xi = 1|yi)) + (1− xi)log(1− p̂k(xi = 1|yi)), (3.19)
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where p̂k(xi = 1|yi) represents the predictions made by the network with current model
parameters γk. The goal in an iteration is to adjust the model parameters such that the loss
function decreases. To do this one uses a method called stochastic gradient descent. This
method updates the model parameters by moving their values in the opposite direction
of the gradient of the loss function, ∇l(γk), applied to some batch of the training data.
For the current model parameters and the given batch, this is the direction that offers the
largest decrease in the loss function. However, one must only make small adjustments to
the model parameters, as one can not be sure that the loss function behaves as the gradient
suggests outside the actual point γk. Summarized, one iteration of the training process
involves the following steps:

1. Make predictions for a batch of the training data using the current model parameters
γk.

2. Calculate the gradient of the loss function.

3. Update the model parameters by changing them a small quantity in the direction of
the negative of the gradient. The formula for this update is:

γk+1 = γk + δ
∇l(γk)

|∇l(γk)|
, (3.20)

where δ is some small step length.

Each observations of training data is placed into a batch. The size of the batches is a
parameter that must be decided. The algorithm loops over the batches, until all of the
training observations have had a change to update the model parameters. The process then
repeats. One loop over all the training data is called an epoch.

One could let the training process go on until the performance of the network on the train-
ing data stops improving. However, one should be careful with overfitting. This happens
when the network starts learning patterns that are just in the training observations and not
in the general population of observations. This leads to a decrease of performance when
predicting previously unseen data. To avoid overfitting one should hold out a set of ob-
servations from the training observations for validation. The training process should stop
when the performance of the network starts to get worse on the validation set compared to
the performance from previous epochs. Once the ideal number of epochs has been identi-
fied, one should train the network using all the observations in the training set.

3.6.4 Convolutional neural networks

Convolutional neural networks (CNNs) are popular for image classification. The main
difference in architecture from a regular neural network consists of the introduction of a
new kind of hidden layer called convolutional layers. The difference between a fully con-
nected layer and a convolutional layer, is that fully connected layers learn global patterns
in their input feature space, while convolutional layers learn local patterns in windows of
the inputs.
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For a regular neural network that we have discussed so far, the input feature map is given
as a vector. For a CNN the input is given as a three dimensional tensor. Such a feature
map is characterized by its width, height and depth, and the total number of cells is width
× height × depth. For instance, if the input is a RGB picture, the width and height will be
decided by the number of pixels in the picture, and the depth will be 3, one for each of the
intensities of the colors red, green and blue. The depth is also commonly referred to as the
number of channels.

A convolutional layer extracts patches from an input tensor, applies the same transforma-
tion to each patch, and places the transformed patches in an output tensor. Such a layer
has two key parameters: the size (width and depth) of the patches to be extracted from
the input, and the depth of the output. The depth of the extracted patches is the same as
the depth of the input. The transformed patches have dimension 1× output depth. The
transformation of a patch consists of taking a dot product with a matrix of weights and
applying an activation function. The weights will be the same for each patch and are the
parameters that need to be learned for a convolutional layer. This transformation is done
for every possible patch of the decided size that can be extracted from the input.

The transformation process of a convolutional layer is illustrated in figure 3.10. In this
example the input tensor to the convolutional layer has (width, height, channels) = (4, 4, 2),
the patches are specified to have width and height both equal to 3 and the output depth is
set to 3. This implies that each transformed patch will have dimension 1 × 3. There are
four possible patches to be extracted from the input. The transformed patches get the same
relative positions to each other in the output as the original patches had in the input. This
means that the output width and height are both 2.

Input Patches Transformed 
patches

Output

Figure 3.10: How a convolutional layer extracts patches from an input tensor, transforms them, and
places the transformed patches in an output tensor.
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An other common type of layer to include in CNNs are max pooling layers. The max
pooling operation is a way to downsample feature maps. As with convolutional layers,
a max pooling layer extracts patches from the input. We will discuss the most common
case, which is to extract patches of size 2 × 2× input depth. When the algorithm goes
through the input to extract the patches, it will move two cells at a time. This means that
each cell will only appear in one patch. For each channel in each patch, the layer outputs
the maximum value. In conclusion, the layer has downsampled the input feature map by
a factor of 2 in the width and height dimension. One reason to do this, is to reduce the
number of parameters that need to be learned in the network. Having too many parameters
can easily lead to overfitting.

After having sent the features through some numbers of convolutional- and max pooling
layers, it is common to also include one or more fully connected layers before the output
layer. Before sending the current features into a fully connected layer, the feature map
needs to be flattened into a vector.

3.6.5 R implementation

An implementation in R of neural networks can be found in the keras package. We here
present a short example of code to build a CNN to do binary classification.

Assume we have 10000 grey scale images containing either apples or pears. We want to
build a CNN to predict whether an image contains an apple or a pear. Each image has
28× 28 pixels, each containing an intensity of grey.

The images are gathered in the variable images of size 10000× 28× 28× 1. The images
are split into trainImages and testImages, each of size 5000× 28× 28× 1. Training will
be done using trainImages and predictions will be done on testImages. The targets are
gathered in the 10000×1 vector targets. If an image contains an apple, the corresponding
target is 0. If an image contains a pear, the corresponding target is 1. As with the images,
the targets are split into trainTargets and testTargets.

The CNN is designed with the following code:

library(keras)

model <- keras_model_sequential() %>%
layer_conv_2d(filters = 32, kernel_size = c(3, 3),

activation = "relu", input_shape = c(28, 28,1)) %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 64, kernel_size = c(3, 3),

activation = "relu") %>%
layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
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optimizer = "rmsprop",
loss = "binary_crossentropy",

)

The first hidden layer in the CNN is a convolutional layer. The output depth is defined by
filters and the patch size is defined by kernel_size. In the first hidden layer, we also need
to specify the size of the input feature map. In this example, each observation of the input
has size 28 × 28 × 1. The activation function is set by the variable activation. The next
layer in the network is a max pooling layer. The patch size is here specified by pool_size.
Following the max pooling layer is a new convolutional layer. After that, the features are
flattende and passed through a fulle connected layer with 64 nodes, defined by units. The
last layer is the output layer.

The last part of the code above consists of compilling the CNN. Here we specify that the
loss function should be binary cross-entropy.

The next step is to train the network on the training data:

model %>% fit(trainImages, trainTargets, epochs = 50,
batch_size = 64)

We here specify the batch size for each iteration of parameter changes to be 64. The
number of epochs is set to 50.

With the trained model we can predict probabilities for the test images containing a pear:

prob <- model %>% predict_proba(testImages)

The probabilities found in the object prob can then be compared with the true targets.
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Chapter 4
Case study

In this chapter we will simulate CO2 storage and seismic data at Semaheia, a potential
location for CO2 storage in the Norwegian North Sea. Based on the simulations, we will
estimate the value of information for seismic data in relation to detecting CO2 leakage. The
reservoir simulation is done with MRST, and the VOI is estimated using the methodology
suggested in chapter 3.

The chapter starts with some background information about Smehaia. We then present
the decision problem which is a variant of the time dependent VOI example in chapter
3. After that we explain the reservoir simulation and the simulation of seismic data in
Matlab/MRST. Then we do the VOI calculations. The chapter ends with a discussion of
the performance of the methods to calculate the VOI.

4.1 Smeaheia CO2 storage site

This section provides background material about Smeaheia, including geological infor-
mation. The information is taken from Dupuy et al. (2018) and Norwegian Petroleum
Directorate (2014).

Smeaheia is located in the North Sea within the Horda platform, approximately 58 km
north west of Bergen in Norway. To the west of Smeaheia is the Troll gas field and the same
reservoir formations are present in both, i.e. the Sognefjord, Krossfjord and Fensfjord
formations. The storage site is a saline aquifer.

Smeaheia is bounded by two major faults, which are displacements in the rock. On the
western side is the Vette fault and on the eastern side is the Øygarden fault complex. The
situation is displayed in figure 4.1.
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Figure 4.1: Smeaheia storage site. Taken from (Dupuy et al., 2018).

Sognefjord, Krossfjord and Fensfjord are the targets for CO2 storage. They mainly consist
of sandstone and siltstone in addition to some limestone stringers. The porosities are in
the range between 25-32% and the permeabilities between 1-20 Darcy. On this basis the
reservoir quality is expected to be good. On top of Sognefjord is the Heather formation,
which consist of siltstone and claystone, and on top of Heather is the cap-rock seal of
the Draupne formation, which consist of mudstone and claystone. Draupne is expected to
have good sealing capacity, with porosities between 9-18% and very low permeabilities
around 6 · 10−9 Darcy. It is uncertain whether CO2 will migrate through Heather or if it
will be trapped beneath.

There are some uncertainties related to CO2 storage at Smeahiea. One uncertainty is
potential leakage through the faults. An other uncertainty is pressure communication with
the Troll gas field. Currently further development at Smeaheia is put on hold and other
locations are being considered for the CCS project. However, potential CO2 storage at
Smeaheia is still under consideration.

4.2 Decision problem

In this section the decision problem for the case study is presented. The decision problem
is similar to the one that was used when studying time dependent VOI in chapter 3. The
main point here is to decide when a seismic survey has highest value when it comes to
detecting a potential leakage of CO2.

Assume a company that is producing CO2 and is going to start a CO2 storage operation
at Smeaheia. They want to inject 8 megatons of CO2 each year for 25 years. There is
an uncertainty x ∈ {0, 1}, relating to whether the reservoir is leaking (x = 1) or not
(x = 0).
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We let t ∈ {0, 1, ..., 24} denote the time in years. The best available information at t = 0,
right before the injection of the first unit of CO2, says p(x = 0) = 0.75. This is the prior
belief. The company may perform a seismic survey during the injection. Our task is to
calculate the value of such a survey done at different times, assuming the company will
only do the survey once.

The costs in this problem are as follows:

• Fixed cost if injection is done: 5

• Cost of injecting per unit CO2: 0.2

• Fixed cost if leakage: 2

• Fine if leakage per unit of injected CO2: 1.2

• Cost of not injecting per unit CO2: 0.8.

We assume there is a mandatory survey done after the 25 years, at a time where one knows
for certain whether CO2 has leaked or not.

At time t the decision maker has two alternatives a ∈ {0, 1}.

• stop injection at time t (a = 0)

• continue injection (a = 1)

Assuming injection has been done every year until time t, the company will have injected
t units of CO2 at this time. The values, v(x, a) for the different alternatives and outcomes
are then:

• v(0, 0) = −5− 0.2t− 0.8(25− t)

• v(1, 0) = −5− 0.2t− 0.8(25− t)− 2− 1.2t

• v(0, 1) = −10

• v(1, 1) = −42.

Without any seismic survey, the prior optimal alternative will be to continue injection for
all times t, with PV = −18.

4.3 Workflow

Figure 4.2 illustrates the workflow of the case study. The process starts with 10.000 reser-
voir simulations. To each simulation we input a reservoir model of the Sognefjord for-
mation. The porosities and permeabilities are permuted, so they will be different for each
simulation. According to the prior probability of x, we draw if each simulation will be
a leakage (x = 1) or no leakage (x = 0) case. If it is a leakage case, the boundaries
of the reservoir will be set to open. If it is a no leakage case, the boundaries will be set
to closed. The output of the simulations are 10.000 instances of CO2 saturations. From
these, we generate seismic AVO data in a grid which represents the area of interest inside
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the reservoir. We split the dataset into two. The first part of the dataset we use, along with
the known values of x, to train statistical models. We then use these models to calculate
the VOI on the second part of the data.

Reservoir model 2 cases
0: closed boundaries -> No leakage
1: Open boundaries -> Leakage

Rando porosities 
and 
permeabilities

Reservoir 
simulations

Random porosities and 
permeabilities

CO2 saturations

AVO attributes

Dataset 1 Dataset 2

Model training VOI calculations

Figure 4.2: Workflow of the case study.

4.4 Reservoir simulation in MRST

The reservoir simulation is done using MRST. The simulation script for the case study
strongly builds on the example Fully-implicit VE simulation, which can be found on the
MRST website (SINTEF, 2016a). In that example VE simulation is done using a top
surface grid of the Gassum formation. In our simulation this grid is replaced with a top
surface grid of the Sognefjord formation. We place the injection well in the eastern part of
the formation (see figure 4.4).

For each simulation we inject 8 Mt of CO2 each year for 25 years. After the injection
we simulate migration of CO2 in the reservoir for a period of 25 further years. For each
simulation we draw the scenario, leakage (x = 1) or no leakage (x = 1). If a simulation
is drawn to be a leakage scenario, we set the boundaries to open. This will lead to a
considerable amount of CO2 leakage through the eastern boundary. If a simulation is
drawn to be a no leakage scenario, the reservoir boundaries are set to be closed. In these
cases there will not be any significant amount of leakage. All the simulations are run with
injection for 25 years. For open boundary cases, if injection were to stop at an earlier time
than after 25 years, we can not be sure if CO2 will always leak. However, in the current
case study we make this assumption.
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4.4 Reservoir simulation in MRST

Random porosities are generated for each cell for each simulation run. The porosities
are specified to be a fixed mean, plus a random component which is spatially correlated
according to the lateral coordinates of the cells. The mean value is specified to be 0.28 and
we also specify that the porosities have to take values in the range [0.26, 0.30].

From the simulated porosity φ in a cell, we generated the corresponding permeability (in
millidarcy), κ, using the deterministic formula

κ = 0.000029 · e60.346φ. (4.1)

This relationship was found by regression using log and core data and was provided by
Gassnova. The allowed interval of porosities give permeabilities in the interval
[188.00 mD, 2112.4 mD]. Figure 4.3 shows a plot of permeability as a function of poros-
ity.
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Figure 4.3: Modelled relationship between porosity and permeability.

For each simulation we note the value of x and extract saturations for cells in a particular
area of the reservoir for different times. This area is marked in figure 4.4 and contains the
injection well and lays next to the eastern boundary. The dimension of the area is 18× 18.
The reported saturations for a cell are vertically averaged saturations over the reservoir
thickness for the given cell. We assume the CO2 to rise to the top of the reservoir and
the porosity to be constant for the whole depth of a cell. With these assumptions, if the
reported saturation for a cell is 0.5, the top half of the reservoir of that location will be
fully saturated by CO2. We are interested in the saturations at the top of the reservoir and
will use the assumed saturation at the top 5 meters of each cell in the grid for the AVO
data simulation. For a cell, with average saturation Sav and thickness z, we estimate the
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Figure 4.4: Reservoir grid, with the area of the seismic survey marked in yellow. The well is placed
in the blue cell inside the yellow area (but seismic data is also collected there).

saturation S at the top 5 meters by the formula:

S ≈ min {Sav · z, 5}
5

.

We will estimate VOI for 8 different time points, t ∈ {2, 5, 8, 11, 14, 17, 20, 23}, and
thus export and transform saturations from each simulation for these times. Figure 4.5
shows the average saturation for the two different scenarios of boundary conditions at
different times. We see that on average, the CO2 plumes behave differently depending on
the boundaries. In figure 4.6 saturations for the same times have been plotted for one run of
simulations for each of the different boundary cases. We see that the CO2 plume behaves
differently for these two simulations. Notice, however, that the boundary conditions are
not the only thing that differs between the simulations - they also have different porosities
and permeabilities, which also contributes to different plume behaviours.

4.5 AVO data

To estimate elastic properties and simulate AVO data, we follow what was presented in
section 2.3, including the workflow of the example in subsection 2.3.3.

To estimate elastic properties of the cap rock and initial p- and s-wave velocities of the top
of the reservoir, we use well-log data from Dupuy et al. (2018). The elastic properties of
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(b) Closed boundaries, time 14
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(c) Closed boundaries, time 23
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(e) Open boundaries, time 14
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(f) Open boundaries, time 23

Figure 4.5: Average saturations for the two different values of x at times 5, 14 and 23.
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(b) Closed boundaries, time 14
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(c) Closed boundaries, time 23
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(d) Open boundaries, time 5
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(f) Open boundaries, time 23

Figure 4.6: Saturations for one simulation run for each value of x at times 5, 14 and 23.
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(a) Closed boundaries, time 5
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(b) Closed boundaries, time 14
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(c) Closed boundaries, time 23
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(d) Open boundaries, time 5
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(e) Open boundaries, time 14
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(f) Open boundaries, time 23

Figure 4.7: Average R0 attributes for the two different values of x at times 5, 14 and 23.

the cap rock are estimated by taking the average value of the properties over a thickness
of 65 meters above the interface between Heather and Sognefjord formations. The initial
velocities of the top of the reservoir are estimated by taking the average value of the veloc-
ities over a thickness of 65 meters into the reservoir. The estimated values correspond to
the values used in the example in subsection 2.3.3. The initial bulk density of the reservoir
we calculate for the different cells with varying porosities using equation (2.4). The initial
velocities of the reservoir probably also depend on the porosity, but we assume these to be
constant for our rang of changing porosities. The fluid and mineral properties are taken
from Dupuy et al. (2018), excpet for the fluid densities, which are taken from the fluid
object that was calculated in MRST for the simulatuions. The fluid properties are the same
as those used in the example.

To simulate the noise in the AVO data for each cell, we use the same covariance matrix,
T , as in subsection 2.3.3, with c = 0.04. The noise in different cells and from different
times are assumed to be independent.

Figure 4.7 shows average R0 attributes for the two different scenarios of boundary condi-
tions at different times. Comparing with figure 4.5, we see that the average ofR0 attributes
give a good picture of the average saturations. Figure 4.8 shows R0 attributes for the same
times for one run of simulations for each of the different boundary cases. Comparing with
figure 4.6, which contains the same simulation runs, we see that the R0 attributes give
quite a good picture of the saturations, but there is quite a lot of noise.

Figure 4.9 shows average G attributes for the two different scenarios of boundary condi-
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(a) Closed boundaries, time 5
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(b) Closed boundaries, time 14
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(c) Closed boundaries, time 23
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(d) Open boundaries, time 5

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(e) Open boundaries, time 14
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(f) Open boundaries, time 23

Figure 4.8: R0 attributes for one simulation run for each value of x at times 5, 14 and 23.

tions at different times. Comparing with figure 4.5, we see that the average of G attributes
give a good picture of the average saturations. Figure 4.10 shows G attributes for the same
times for one run of simulations for each of the different boundary cases. These simu-
lations runs are the same as in figure 4.6 and 4.8. One is able to see the CO2 plume in
the pictures, but the signals are noisy - more noisy than for the R0 attributes. This is as
expected as the variance is higher for G than for R0.

4.6 Model training

In this section we build statistical models to use for our estimation of VOI for the seismic
data. We will build two kinds of models:

1. KNN models with principal components to estimate values given the seismic data.

2. Neural networks to estimate conditional probabilities of leakage given the seismic
data.

We have extracted data from the simulations for 8 different years during the injection
phase. These are years t = {2, 5, 8, 11, 14, 17, 20, 23}. We want to measure the VOI for
seismic surveys done at all these different times, and thus need to train models for all of
them. We also want to compare the VOI in the case where we just process the R0 attribute
with the case where both R0 and G are processed. Thus, we need to fit models for both
cases. We call a collection of either R0 or R0 and G at a specific time for a data set. We
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(b) Closed boundaries, time 14
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(c) Closed boundaries, time 23
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(d) Open boundaries, time 5
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(e) Open boundaries, time 14
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(f) Open boundaries, time 23

Figure 4.9: Average G attributes for the two different values of x at times 5, 14 and 23.
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(a) Closed boundaries, time 5
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(b) Closed boundaries, time 14
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(c) Closed boundaries, time 23
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(d) Open boundaries, time 5
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(e) Open boundaries, time 14
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(f) Open boundaries, time 23

Figure 4.10: G attributes for one simulation run for each value of x at times 5, 14 and 23.
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thus have 16 data sets. Each model will be trained on 5000 observations of the simulation
data. This set, we call the training set. The remaining data will be used for evaluation and
VOI calculations.

The focus in this section is purely on model training. The VOI calculations will be done
in the next section.

4.6.1 Value regression with KNN using principal components

For the KNN with PCA modelling, we need to fit two regression models for each data set.
One to regress the values when choosing to stop injection of CO2 (a = 0), and one when
choosing to continue (a = 1).

For each model we need to choose the number of neighbors, k, and the number of principal
components (PCs). This we do by comparing the mean square error (MSE) from 5-fold
cross-validation on the training data for different numbers of neighbors and PCs. We
consider number of PCs in the range 1 to 25, and for each number of PCs we consider k
between 1 to 80. For each data set and for each regression, we choose the combination of
k and number of PCs giving the lowest MSE.

The values for k and number of PCs for the different models for data set containing only
R0, found through cross-validation, are shown in table 4.1. We notice that for all times,
the parameters giving the minimum MSE for the model for a = 0 are the same as those for
a = 1. The values for k and number of PCs for the different models for data set containing

a = 0 a = 1
Time k PCs MSE k PCs MSE
t = 2 58 23 3.561 58 23 188.375
t = 5 13 9 8.437 13 9 134.991
t = 8 19 13 13.621 19 13 103.656
t = 11 14 11 18.567 14 11 82.292
t = 14 16 10 25.418 16 10 73.643
t = 17 13 11 31.973 13 11 65.251
t = 20 13 17 37.974 13 17 57.523
t = 23 16 12 43.148 16 12 50.429

Table 4.1: The number of nearest neighbors k and number of principal components chosen for the
KNN value regressions with the data sets containing only R0, for different times and alternatives,
along with the corresponding cross-validation MSE.

R0 and G, found through cross-validation, are shown in table 4.2. Again, we notice that
for all times, the parameters giving the minimum MSE for the model for a = 0 are the
same as those for a = 1.

We now train models on the full sets of training data and use them to predict the values on
the 5000 observations taken out for the VOI calculations. We then compute the MSE and
MAE for these predictions. The results for the models using only R0 data are shown in
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a = 0 a = 1
Time k PCs MSE k PCs MSE
t = 2 79 11 3.690 79 11 195.176
t = 5 18 10 7.989 18 10 127.822
t = 8 16 7 10.015 16 7 76.213
t = 11 13 7 12.830 13 7 56.865
t = 14 13 10 19.773 13 10 57.286
t = 17 10 11 24.942 10 11 50.903
t = 20 11 10 27.827 11 10 42.152
t = 23 10 10 32.994 10 10 38.562

Table 4.2: The number of nearest neighbors k and number of principal components chosen for the
KNN value regressions with the data sets containing R0 and G, for different times and alternatives,
along with the corresponding cross-validation MSE.

table 4.3. The results for the models using both R0 and G data are shown in table 4.4. We
notice that in general the errors are smaller for the models using both R0 and G compared
to the models using only R0. We also notice that for models with a = 1, the errors
generally decrease with time. This is as expected, as for these models the target values do
not change with time and we expect that predictions get more accurate as time increases
and more CO2 has been injected into the reservoir. For the models with a = 0, we do not
see the same trend. This is probably due to the fact that the target values change with time
for these models. We see from the value function in section 4.2 that as time increases the
difference between the values for leakage and no leakage for a = 0 also increases.

a = 0 a = 1
Time MSE MAE MSE MAE
t = 2 3.369 1.573 178.200 11.438
t = 5 8.192 2.077 131.065 8.306
t = 8 12.428 2.351 94.581 6.485
t = 11 17.328 2.407 76.799 5.068
t = 14 23.266 2.669 67.406 4.542
t = 17 29.825 2.873 60.867 4.104
t = 20 35.903 3.013 54.386 3.709
t = 23 40.555 3.108 47.398 3.360

Table 4.3: MSE and MAE for predictions on the hold out set for KNN regression models with the
data sets containing only R0, for different times and alternatives.

4.6.2 Classification with CNN

For the binary classification with CNNs, we only need to fit one model for each data
set.
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a = 0 a = 1
Time MSE MAE MSE MAE
t = 2 3.574 1.626 189.039 11.829
t = 5 7.542 1.983 120.670 7.932
t = 8 8.623 1.686 65.623 4.651
t = 11 12.382 1.743 54.880 3.670
t = 14 17.238 2.000 49.943 3.404
t = 17 21.869 2.083 44.630 2.976
t = 20 25.919 2.162 39.262 2.661
t = 23 28.438 2.165 33.237 2.340

Table 4.4: MSE and MAE for predictions on the hold out set for KNN regression models with the
data sets containing R0 and G, for different times and alternatives.

There are many choices to make when fitting a CNN, for instance how many convolutional
layers to include and how many filters to have in each. This gives many options of different
things to test, when trying to improve the performance of the model. For the current
analysis, we will only consider one model architecture for each kind of data, R0 and
(R0, G). The only parameter we will try to optimize, is the number of epoches to use for
training.

For the models using only R0 data, we will use models set up by the following func-
tion:

build_model <- function() {
model <- keras_model_sequential() %>%

layer_conv_2d(filters = 32, kernel_size = c(3, 3),
activation = "relu", input_shape = c(18, 18,1)) %>%

layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 64, kernel_size = c(3, 3),

activation = "relu") %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 64, kernel_size = c(3, 3),

activation = "relu")

model <- model %>%
layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("accuracy")

)
}
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For the models using both R0 and G, we will use:

build_model2 <- function() {
model <- keras_model_sequential() %>%

layer_conv_2d(filters = 32, kernel_size = c(3, 3),
activation = "relu", input_shape = c(18, 18,2)) %>%

layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 64, kernel_size = c(3, 3),

activation = "relu") %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 64, kernel_size = c(3, 3),

activation = "relu")

model <- model %>%
layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("accuracy")

)
}

Notice that the only difference that we specify, are the size of the input. When using only
R0 data, we pass in to the model a 18×18×1 tensor. When using bothR0 andG, data we
pass in a 18×18×2 tensor. We here fill one channel withR0 and the other withG.

In an attempt to find the optimal number of epochs to use for training the model, we do
5-fold cross-validation on the training data. We test numbers of epochs in the range 1-60
and select the numbers giving the lowest value for the cross-validation loss. The results for
R0 data are reported in table 4.5. The results for R0 and G data are reported in table 4.6.
We see from the tables, that for both the models with onlyR0 data and for the models with
both R0 and G, the loss, with the optimal numbers of epochs, decreases with time, while
the accuracy increases. Accuracy here refers to the proportion of observations sorted into
the correct class using a threshold of 50% probability.

We now fit models on the full set of training data and use these to predict the value of x
for the data in the hold-out set. The results for models using only R0 are shown in table
4.7. Generally the loss is decreasing in time, but this decrease is not strictly, as was the
case with the cross-validation loss. We also notice that the models are in general better at
predicting the no leakage cases than the leakage cases, at least when it comes to assigning
them to the correct class. The results for the models using both R0 and G are shown
in table 4.8. We also here notice that the time behaviour of the loss is different than it
was for the cross-validation loss and that the models are in general better at assigning the
non-leakage cases to the correct class than the leakage cases.
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Time Epochs Loss Accuracy
t = 2 16 0.504 0.774
t = 5 24 0.327 0.865
t = 8 23 0.242 0.904
t = 11 20 0.187 0.927
t = 14 22 0.171 0.936
t = 17 20 0.131 0.951
t = 20 30 0.119 0.955
t = 23 19 0.105 0.957

Table 4.5: The number of epochs chosen for the CNN binary classification with the data sets con-
taining onlyR0, for different times, along with the corresponding cross-validation loss and accuracy.

Time Epochs Loss Accuracy
t = 2 19 0.502 0.773
t = 5 18 0.339 0.856
t = 8 20 0.251 0.904
t = 11 32 0.189 0.924
t = 14 30 0.166 0.933
t = 17 35 0.129 0.953
t = 20 27 0.111 0.958
t = 23 31 0.111 0.960

Table 4.6: The number of epochs chosen for the CNN binary classification with the data sets contain-
ing R0 and G, for different times, along with the corresponding cross-validation loss and accuracy.

Time Loss Accuracy No leakage accuracy Leakage accuracy
t = 2 0.538 0.731 0.778 0.585
t = 5 0.328 0.868 0.931 0.670
t = 8 0.233 0.901 0.985 0.673
t = 11 0.384 0.840 0.806 0.947
t = 14 0.388 0.868 1.000 0.456
t = 17 0.145 0.944 0.983 0.824
t = 20 0.187 0.943 0.996 0.777
t = 23 0.091 0.967 0.983 0.919

Table 4.7: Loss, overall accuracy and accuracy for each class of data for predictions on the hold out
set for CNN classification models with the data sets containing only R0, for different times.

The process of fitting a neural network is not a deterministic one. Even with all settings
held constant and with the same random seed, two different runs will produce two different
models. We illustrate this by comparing the loss on the hold-out set for two different runs
for models using only R0 at different times. This is done in figure 4.11. We see that the
losses vary considerably between the runs. On this basis, one could expect high variance
in the VOI calculations.
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Time Loss Accuracy No leakage accuracy Leakage accuracy
t = 2 0.480 0.784 0.923 0.338
t = 5 0.352 0.855 0.896 0.728
t = 8 0.249 0.894 0.906 0.857
t = 11 0.195 0.932 0.975 0.796
t = 14 0.257 0.921 0.994 0.693
t = 17 0.196 0.938 0.991 0.771
t = 20 0.115 0.957 0.975 0.900
t = 23 0.167 0.939 0.932 0.960

Table 4.8: Loss, overall accuracy and accuracy for each class of data for predictions on the hold out
set for CNN classification models with the data sets containing R0 and G, for different times.
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Figure 4.11: Losses from two different runs of the CNN models using only R0 data.

4.7 Estimating VOI

In this section we estimate the VOI using the approaches presented in section 3.4 with the
models trained in section 4.6. We work our way through the different approaches, present-
ing the VOI calculated for only R0 and R0 and G for the 8 different time points. The VOI
is calculated using the 5000 observations of data held out from the training process. To
get a picture of variability in the estimates, we also train models and calculate the VOI us-
ing bootstrap samples of the data. Bootstrap sampling is sampling with replacement from
the original data set. We do 100 bootstrap estimates for each time and type of data. For
training data, we take bootstrap samples from the original training data and for test data
we take bootstrap samples from the original test data.

50
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4.7.1 Approach 1

Figure 4.12 shows the result of the VOI calculations on onlyR0 data, both with the original
data and with percentiles for the calculations with bootstrap data, using approach 1. We
notice that the VOI is estimated to be largest for a seismic survey done at t = 11.
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Figure 4.12: VOI calculated using approach 1 for different times with only R0 data.

Figure 4.13 shows the result of the VOI calculations with R0 and G data, using approach
1. We have also in this plot included results from the bootstrap estimates. The VOI is
estimated to be largest largest when doing the seismic survey at t = 8 or t = 11.

In figure 4.14, the VOI calculations for both R0 data and R0 and G data are plotted. We
here compare the 50th percentile from the bootstrap calculations. For most times, the VOI
is estimated to be larger for the data sets containing both R0 and G than the data sets
containing only R0.

Since we do not have analytical results for the VOI at the different times, we are not able
to tell how close our results are to the truth. However, our approach have also estimated
the prior values, and for these we have analytical results to compare. These comparions
are done in figure 4.15 forR0 data and figure 4.16 forR0 andG data. For all times, expect
t = 2 and for both sets of data, the analytical results are not inside the 80% bootstrap
interval. Approach 1 has consistently overestimated the prior values.

When doing the bootstrap calculations, training data were sampled from the original train-
ing data set, while test data were sampled from the original test data set. Looking at the test
data set, we see that there is 1213 observations of leakage out of 5000 observations. This
constitutes 24.26% of the observations in the test data set. This means that the prior proba-
bility is wrongly represented in the test data set. If the probability of leakage was 24.26%,
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Figure 4.13: VOI calculated using approach 1 for different times with R0 and G data.
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Figure 4.14: 50th percentiles of the bootstrap VOI calculations for different times with R0 data and
R0 and G data, using approach 1.

the prior value of the decision problem would be−17.76. This is a potential source of bias
in the bootstrap estimation of the prior value. However, this unbalance should also affect
the posterior value, so in total it is uncertain how the unbalance affects the VOI estimates.
We try doing bootstrap sampling again, for models using R0 data only, this time sampling
both training data and test data from the total population. In the total population there is
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Figure 4.15: Estimation of PV using approach 1 with only R0 data compared with the analytical
results.
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Figure 4.16: Estimation of PV using approach 1 with R0 and G data compared with the analytical
results.

2497 leakages out of 10000 observations, so the prior probability is represented consider-
ably better there. The new bootstrap results for the prior values are shown in figure 4.17,
while the new results for the VOI are shown in figure 4.18. In both plots we have included
the 50th percentile from the original bootstrap. We see no improvements for the results for
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the prior value. Also, the VOI estimates do not seem to be affected.
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Figure 4.17: Bootstrap results for the prior values, where the bootstrap training data and test data
are both sampled from the full data set, for approach 1 with R0 data.
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Figure 4.18: Bootstrap results for the VOI, where the bootstrap training data and test data are both
sampled from the full data set, for approach 1 with R0 data.
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4.7.2 Approach 2

Figure 4.19 shows the result of the VOI calculations on only R0 data, both with the orig-
inal data and with percentiles for the calculations with bootstrap data, using approach 2.
We notice large variations in the VOI estimates. The 50th percentile of the bootstrap esti-
mations, reports the VOI to be largest at t = 5.
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Figure 4.19: VOI calculated using approach 2 for different times with only R0 data.

Figure 4.20 shows the result of the VOI calculations with R0 and G data, using approach
2. We have also in this plot included results from the bootstrap estimates. Again we
notice large variations in the VOI estimates. Here the 50th percentile of the bootstraps
estimations, reports the VOI to be largest at t = 11.

In figure 4.21, the VOI calculations for both R0 data and R0 and G data are plotted. We
here compare the 50th percentile from the bootstrap calculations. From the plot, there is
no evidence that the VOI is in general larger for R0 and G, compared to just R0.

We now look at the estimates of the prior values for approach 2 compared to the true prior
values. This is done for R0 data in figure 4.22 and R0 and G data in figure 4.23. We now
see that the bootstrap intervals cover the true prior values. However, the variations of the
bootstrap estimates are large.

4.7.3 Comparison

In table 4.9 we compare the bootstrap estimates of the VOI between the KNN and CNN
approach for data sets containing only R0 at different times. For most times there is no
overlap between the 80% bootstrap intervals for the different approaches. The estimates
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Figure 4.20: VOI calculated using approach 2 for different times with R0 and G data.

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

t

V
O

I

R0
R0 and G

Figure 4.21: 50th percentiles of the bootstrap VOI calculations for different times with R0 data and
R0 and G data, using approach 2.

using the KNN models are consistently smaller than the estimates using the CNN models.
However, what can also be seen, is that the variance in the CNN estimates, are much
larger than those of the KNN estimates. In table 4.10 the bootstrap VOI estimates for the
different models using both R0 and G are compared. We see the same trends as with only
R0 data. The bootstrap intervals for the most part do not overlap, with the approach 1
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Figure 4.22: Estimation of PV using approach 2 with only R0 data compared with the analytical
results.
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Figure 4.23: Estimation of PV using approach 2 with R0 and G data compared with the analytical
results.

having lower estimates for VOI. Further the variances for approach 2 are large compared
to the variances of approach 1.

In figure 4.24 we compare the 50th percentile bootstrap estimate of the two approaches
using R0 data. The value of perfect information has also been included. The consensus
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VOI
Time Model 10th percentile 50th percentile 90th percentile Difference

t = 2
KNN 0.00 0.00 0.00 0.00
CNN 0.22 0.79 1.95 1.73

t = 5
KNN 0.51 0.57 0.63 0.12
CNN 0.86 1.89 3.39 2.53

t = 8
KNN 0.66 0.72 0.79 0.12
CNN 1.22 1.76 2.68 1.45

t = 11
KNN 0.83 0.89 0.95 0.11
CNN 1.22 1.61 2.28 1.06

t = 14
KNN 0.76 0.80 0.85 0.09
CNN 0.91 1.32 1.89 0.99

t = 17
KNN 0.64 0.67 0.71 0.07
CNN 0.70 1.02 1.37 0.68

t = 20
KNN 0.42 0.44 0.46 0.04
CNN 0.51 0.64 0.85 0.34

t = 23
KNN 0.18 0.19 0.19 0.01
CNN 0.18 0.25 0.36 0.17

Table 4.9: Bootstrap VOI for the two different approaches at different times using R0 data. Differ-
ence refers to the difference between the 90th and 10th percentile.

VOI
Time Model 10th percentile 50th percentile 90th percentile Difference

t = 2
KNN 0.00 0.00 0.00 0.00
CNN 0.52 1.23 3.43 2.92

t = 5
KNN 0.33 0.39 0.47 0.15
CNN 0.84 1.67 3.01 2.17

t = 8
KNN 1.03 1.12 1.21 0.18
CNN 0.91 1.69 2.97 2.06

t = 11
KNN 1.10 1.16 1.22 0.12
CNN 1.51 1.79 2.18 0.67

t = 14
KNN 0.87 0.93 0.98 0.11
CNN 1.09 1.45 1.72 0.63

t = 17
KNN 0.69 0.73 0.76 0.07
CNN 0.87 1.07 1.29 0.42

t = 20
KNN 0.47 0.50 0.52 0.05
CNN 0.51 64 0.76 0.26

t = 23
KNN 0.19 0.20 0.21 0.02
CNN 0.22 0.26 0.31 0.09

Table 4.10: Bootstrap VOI for the two different approaches at different times using R0 and G data.
Difference refers to the difference between the 90th and 10th percentile.
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4.8 Sensitivity analysis

between the approaches is that a seismic survey providing only R0 data should be done
after t = 2 and before t = 14. As time increases, there is a smaller difference between
the value of perfect information and the VOI estimates. However, the value of perfect
information decreases with time, as more and more CO2 is put at risk of leakage. In figure
4.25 we do the same comparison for R0 and G data. The conclusion here would probably
be that such a survey has most value at t = 8 or t = 11. Also here the estimates of VOI
get closer to the value of perfect information with time.
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Figure 4.24: 50th percentile bootstrap estimates for each approach for different times using onlyR0

data, in addition to the value of perfect information.

4.8 Sensitivity analysis

In this section we test how the noise in the AVO data affects the VOI calculations. We do
this by comparing the VOI calculations for R0 and G data for t = 11 using approach 1,
for three different values of c. The different values of c are 0.01, 0.04 and 0.16.

We first select the number of principal components and nearest-neighbors to use in the
regressions with 5-fold cross-validation as before. The results are shown in table 4.11.

We now train models and calculate the VOI on 100 bootstrap samples for each value of
c. The results are shown in figure 4.26. The estimates of VOI decrease with increasing
values of c. This is as expected as more noise is added to the AVO data with increasing
values of c.
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Figure 4.25: 50th percentile bootstrap estimates for each approach for different times using R0 and
G data, in addition to the value of perfect information.

a = 0 a = 1
c k PCs MSE k PCs MSE
0.01 4 15 0.730 4 15 38.592
0.04 13 7 12.830 13 7 56.865
0.16 22 5 2.344 22 5 123.987

Table 4.11: The number of nearest neighbors k and number of principal components chosen for the
KNN value regressions with the data sets containing R0 and G at t = 11, for different values of c
and alternatives, along with the corresponding cross-validation MSE.

4.9 Summary and discussion

In this chapter we have applied the simulation-regression approach to estimate the VOI
for seismic surveys at different times for a constructed case relating to leakage detection
of CO2 at Smeaheia. Reservoir simulations were done in MRST and from simulated sat-
urations, we generated noisy AVO data. Two regression approaches were tested for the
value regression, KNN models with principal components of seismic data and CNNs, and
for each approach for different times we tested two different data sets of seismic data.
These were data sets containing only the R0 attribute and data sets containing both the
R0 and G attribute. The estimated values from the models were used to estimate prior
and posterior values, which again were used to estimate VOI. We also trained models and
estimated VOI on bootstrap samples of the data to get an idea of the variability of the VOI
estimates.

VOI estimates provided by the KNN models were lower than the ones provided by the
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Figure 4.26: Bootstrap estimates of VOI calculated using approach 1 with R0 and G data at t = 11
with varying values of c.

CNN models, and for most cases the bootstrap intervals of VOI estimates did not overlap.
It might be that the estimates from one or both of the models were biased. For the prior
values we know the truth, and when looking at bootstrap estimates we saw that the KNN
models consistently overestimated the prior values. However, an understanding of poten-
tial biases in the posterior value calculations would be needed before concluding that the
VOI estimates are biased. For the CNN models, we did not see any consistent over- or
underestimation of the prior values.

The VOI estimates provided by the KNN models showed quite stable behaviour over the
bootstrap samples. This was not the case for the estimates provided by the CNN models.
If the VOI were not calculated over bootstrap samples, we would not have been able to get
any meaningful results from the CNN approach. However, calculating bootstrap samples
as was done here, is computationally expensive.

In theory the VOI should always be higher for data sets containing both R0 and G, com-
pared to data sets containing only R0, as VOI should not decrease by added information.
This was not always the case for our estimates. From approach 1 it could be concluded
that R0 and G data are in general more valuable than just R0 data. This is less the case for
approach 2.

From the VOI estimates, we are not able to say for sure when a seismic survey should be
done, but for both types of data, the general consensus is that a test would have most value
some time after t = 2 and before t = 14. The qualitative behaviour of the VOI curves with
time fits well with the nature of the problem. It is reasonable to assume that the value of
information will be the highest at some intermediate time point during the injection phase.
In the beginning of the injection phase, the value of perfect information will be high, but
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the test accuracy will be low. At stages towards the end of injection, test accuracy will be
high, but the value of perfect information will be low.

Several things could be looked into, in an attempt to optimize the performance of the
regression models. Before calculating the PCs, we scaled the seismic data. This might be
a wise choice when using both R0 and G at the same time, as G varies over a larger scale
than R0, but might not be optimal when using just R0. The scaling was done according
to the standard deviations of R0 and G over the observations in the training data for each
cell in the grid. It might be a more optimal choice to scale by the standard deviations for
the total population of R0 and G attributes in the training data respectively. For the CNN
models we did not do any scaling of the data, so scaling could also be considered before
fitting those models. When passing both R0 and G data into the neural networks, R0

and G were treated as different channels. One could also consider merging them into one
channel. For the CNN models, we only considered one instance of architecture when it
came to things such as number of different kinds of layers and units. A thorough analysis
could be done, to optimize the architecture. However, this would be quite time consuming
for the given case, considering all the different models that were fitted and all the different
things that could be changed in the model architecture. In general, 5000 observations is a
quite low number when fitting CNNs and this might be a cause of the large variability that
we see in the VOI estimates from these models. Further, what could be a problem for both
techniques, is the unbalance of leakages compared to non-leakages in our data. Further
investigation could be done, to see how this affects the performance of the models.
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Chapter 5
Conclusion

In this work we have done VOI calculations of seismic data in the context of CO2 storage
and detection of potential CO2 leakage. A case was developed where a decision maker
must decide when in time to do a seismic survey, and based on the results of the survey
decide between continuing or stopping the injection of CO2. Accuracy of a seismic survey,
is likely to increase with time and amount of CO2 injected into the reservoir. On the other
hand, the cost of leakage is likely to increase with increasing amounts of CO2 injected
into the reservoir. In this sense, the decision of when to do the survey becomes a trade-off
between test accuracy and amount of CO2 put at risk of leakage. For the case study we
have used Smeaheia, which is located in the North-Sea and is a site being considered as
storage location for the Norwegian full-scale CCS project.

To estimate the VOI for seismic surveys at different times, we have used the simulation-
regression approach. 10000 simulations of CO2 injection and storage in Smeahiea was
done using MRST. Two different cases were simulated - open boundary cases, which lead
to leakage, and closed boundary cases which do not lead to leakage. In addition porosi-
ties and permeabilities were randomly permuted between the simulations. Based on CO2

saturations from the reservoir simulations, noisy seismic AVO data were generated. The
next step was to regress values on the seismic data, in order to estimate posterior and prior
values for the VOI calculations. Two regression techniques were tested - KNN models
using principal components of the data and CNNs.

The VOI estimates using KNN models were low compared to the estimates using CNNs.
On the other hand, the estimates from the CNNs had much higher variance. Comparing the
VOI results using the KNN models with the ones using the CNNs, it is not unreasonable
to suspect that the KNN results are downwards biased. For further work, other statistical
methods could be considered to estimate the VOI in this case. One could also try doing
the calculations with a larger data set to see if this decreases the variability of the VOI
estimates from the CNN models.
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In conclusion our VOI estimates did not give us a precise answer of when a seismic survey
has the most value, but we could see that a seismic survey should not be done to early or to
late in the injection process. This is also consistent with the time dependent VOI example
presented in the theory part.

We have demonstrated a fairly general workflow, but inputs like for instance costs in the
decision problem and the prior probability would need to be adjusted on a case to case
basis. These are inputs that will influence the VOI.

A natural next step is to develop a case and a workflow where sequential surveys are
considered. In real world scenarios it is probable that one will consider doing more than
one seismic survey during the injection phase. This would involve the prior probability
being updated when a survey has been done, and would be a more complex case than what
has been considered here.
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