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Summary

Deep learning has become a prominent and popular tool in a wide range of applications
concerned with processing of complex data. However, in order to train a sufficient model
for supervised tasks, deep learning relies on vast amounts of labelled data. Even when
data itself is easily attainable, acquiring labels can be tedious, expensive, and in need of
an expert annotator. Active learning (AL) aims to lower the data requirement in deep
learning, and machine learning in general, and consequently reduce labelling cost. By
letting the learner actively choose the data it wants to learn from, active learning aspires
to label only the most valuable data, and to train a classifier with only a small labelled
training set. The idea is that the model is able to single out examples of high informa-
tiveness from a pool of unlabelled data, i.e. instances from which the model will gain
the most information, which often is linked to model uncertainty. Through this thesis,
several aspects of pool-based active learning in text classification are explored, by com-
bining ideas that have shown good results individually. To ensure diverse actively queried
samples, both adding randomness to the active selection, and clustering of the unlabelled
pool have been investigated. Further, seeing that deep models rarely represent models
uncertainty, a Bayesian approximation is computed by sampling sub-models by applying
dropout at test time, and averaging over their predictions. Lastly, active learning is studied
in a transfer learning setting, combined with the previously explored ideas. The experi-
ments clearly show how active learning depends on data and model, as the two different
models and datasets showed quite dissimilar results. The models in question are a simple
CNN for sentence classification, and an AWD LSTM with pre-training, both tested on the
binary sentiment analysis IMDB movie review dataset, and the multi-class AG news cor-
pus. While there were no effect from any AL strategy on AG, with or without advances,
all variations showed improved results on IMDB with the CNN. Although clustering ap-
peared as the preferred choice for the CNN, it had a negative effect when combined with
transfer learning and the AWD LSTM. The combination of clustering and Bayesian ap-
proximations did not add anything more than raised computational cost, even though both
boosted validation accuracy and loss individually with the CNN. All in all, no method was
exceedingly better than random sampling, however, many results introduced interesting
ideas for further work.
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Sammendrag

Dyp læring har blitt et fremtredende og populært verktøy i et bredt spekter av applikasjoner
som omhandler behandling av komplekse data. For å kunne trene en modell tilstrekkelig,
er imidlertid dyp læring avhengig av store mengder annotert data. Selv når data i seg selv
er lett tilgjengelig, kan annotering være tidkrevende, dyrt, og ofte avhengig av en ekspert.
Aktiv læring (AL) tar sikte på å redusere datakravet i dyp læring, og maskinlæring generelt,
og dermed redusere annoteringskostnadene. Ved å la modellen aktivt velge de dataene den
ønsker å lære fra, ønsker aktiv læring å kun annotere de mest verdifulle dataene, og trene
en modell med kun et lite annotert treningssett. Ideén er at modellen skal kunne identi-
fisere informative eksempler fra en stor samling med uannotert data, hvor informativitet
ofte knyttes til modellens usikkerhet. Gjennom denne oppgaven utforskes flere aspekter
ved aktiv læring i tekstklassifisering, ved å kombinere idéer som har vist gode resultater
individuelt. For å sikre mangfold i aktivt valgte data har to metoder for å utforske større
deler av rommet blitt utforsket. Den ene blander inn noen tilfeldig valgte data i det aktive
utvalget, mens den andre grupperer den store samlingen med uannortert data, og velger
kun ett datapunkt i hver klynge. Videre har en bayesiansk tilnærming til modellusikker-
het blitt testet, i og med at dype modeller som regel ikke representerer modellusikkerhet.
Til slutt utforskes også de ulike idéene sammen med transfer learning. Forsøkene viser
tydelig hvordan aktiv læring avhenger av data og modell, da de to forskjellige modellene
og datasettene viste tydelig ulike resultater. De to modellene er en CNN for setningsklas-
sifisering, og an AWD LSTM med pre-trening, som begge er testet på et filmanmeldelse-
datasett (IMDB) med to klasser, of et nyhetsartikkel-datasett (AG) med fire klasser. Selv
om ingen metoder viste noen effekt på AG, forbedret alle variasjoner resultatene for IMDB
med CNN. Mens grupperingsmetoden virket som det mest fordelsaktige valget for CNN,
ga det kun negativ effekt med AWD LSTM. Kombinasjonen av gruppering og bayesianske
tilnærminger ga ingen bedre sammenlagt effekt, selv om begge ga gode resultater individu-
elt. Alt i alt viste ingen metoder overdrevent bedre resultater enn tilfeldig utvalgt data, men
mange av resultatene ga interessante idéer for videre arbeid.
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Chapter 1
Introduction

Machine learning has come to be an important field within artificial intelligence, where
models learn patters from data, rather than having algorithms of explicit instructions. In
other words, machine learning lets the data speak for itself. Even though shallow machine
learning models excel at many tasks, reality is too complex for them to fully describe it.
Deep learning, a sub-field of machine learning, has gained recognition for its ability to
extract useful features from complex data, taking inspiration from how the human brain
process information. It has today become a widely applicable tool, and has automated
numerous tasks, such as translation, spam detection, image captioning, customer service
to a degree, and much more.

However, deep models for supervised classification, and supervised machine learning
models in general, are relying on vast amounts of labelled data for sufficient training.
In some cases, labelled data is easily attainable, however, in other situations, gathering
and labelling data can be extremely tedious and expensive. Active learning addresses this
issue by letting the model actively select data it wants to learn from. Aiming to increase
the value of the training data, the idea behind active learning is to train a model with a
small labelled training set, then let the model use its knowledge to choose data from which
it will gain the most information. The model can then query the labels of the most infor-
mative examples from an oracle, often a human annotator, and add them to the training
set. With the updated labelled set, the model can be re-trained, and with its newly gained
knowledge, query more informative examples. In this way, active learning intends to ob-
tain higher accuracy with less annotated data, and substantially reduce the labelling cost.

A common way of measuring the informativeness of unlabelled data is to consider the
model uncertainty. When classifying an instance, how certain is the model about the
label? If there’s high uncertainty, the model is likely to gain a lot of information from
knowing that label. Often, the uncertainty is computed from the predictive class probabil-
ities, since a large probability would suggest that the learner is certain in its classification.
An issue arising when active learning is combined with deep learning models is that deep
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Chapter 1. Introduction

models often lack a representation of model uncertainty. The predictive probability does
not necessarily reflect upon the model’s confidence towards a prediction. To overcome
this problem, Gal et al. (2017) propose computing a Bayesian approximation by averaging
over T randomly sampled sub-models. By applying dropout at test time, a new sub-model
is sampled at each forward pass, and the average over T predictions can represent model
uncertainty in deep models (Gal and Ghahramani, 2016). Gal et al. (2017) demonstrate
that a Bayesian approximation increases classification accuracy for three different active
learning query strategies in computer vision tasks, including handwritten digit recognition
on MNIST, and skin cancer diagnosis from lesion images.

Computational cost is another challenge with active learning. This becomes especially
apparent when employing large, complex models, as deep models often are. The model is
usually trained from scratch every time a single instance is added to the labelled training
set, a process that could lead to weeks of training, which is unsuitable for many practi-
cal applications today. A solution could be to select more than one informative instance
at once, but then there’s a chance that many similar examples are added, since similar
examples would have similar informativeness. An instance considered as informative dur-
ing one active selection might not be seen as informative at the next active selection, due
to the new knowledge obtained from the previous query. Thus, querying more examples
at once is a way of wasting the labelling budget. To overcome this problem, Zhdanov
(2019) presents a method for clustering the unlabelled data, and selecting instances in a
way that ensures diversity in the queried sample. The unlabelled data is clustered by the
K-means algorithm into n clusters, then n instances are queried, one from each cluster.
The informativeness is incorporated in the K-means objective function, and the instances
closest to the cluster centroids are selected. The method guarantees dissimilarity among
queried examples, while still taking informativeness into account. Note that the method is
independent of the model, and can therefore yield different results in different situations.

There are other ways of dealing with the computational complexity of active learning.
Shen et al. (2017) and Wang et al. (2017) both employ an incremental approach, where the
model is not trained entirely from scratch when an instance is queried, but rather trained
further with the updated labelled set. Another idea is to make use of transfer learning,
which is done by Huang et al. (2018), among others. Transfer learning exploits model
architecture and already learned general features from similar tasks, and can both speed
up training, and lower the data requirement, since the task specific data can be used mostly
for learning task specific features. In combination with active learning, Huang et al. (2018)
also introduce a new criterion for querying, namely distinctiveness, to separate source task
from target task. The proposed algorithm, named active deep model adaptation (ADMA),
takes advantage of the perks of transfer learning in the active learning setup, and queries
examples based on a trade-off between their informativeness and distinctiveness. ADMA
performs well on four different computer vision datasets for both binary and multi-class
classification tasks, and makes use of the pre-trained models AlexNet (Krizhevsky et al.,
2012), VGG (Simonyan and Zisserman, 2015), and ResNet (He et al., 2015).

Transfer learning has for long been important in computer vision, utilizing pre-trained
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models trained on large image databases for general computer vision tasks, then fine-
tuning the model for the target task. However, the same kind of general approach has
not been present for natural language processing (NLP) tasks before recently. Seeing that
language modelling can in NLP serve as large scale image recognition in computer vision,
Howard and Ruder (2018) propose a method for fine-tuning a pre-trained language model
trained on a large corpus, then augmenting it for classification, or other NLP tasks. The
method, known as Universal Language Model Fine-tuning (ULMFiT), promises transfer
learning comparable to computer vision for any NLP task.

In this thesis, pool-based active learning in a text classification setting is explored by look-
ing at several aspects. Several uncertainty measures are investigated, combined with var-
ious adaptations, and further explored in a transfer learning setting. The aim is to answer
to questions on how active learning is influenced by these variations. Inspired by Zhdanov
(2019), one of the adaptations is to cluster the unlabelled pool of data by K-means clus-
tering, however, independently of both the model and query strategy. Furthermore, model
uncertainty is computed as a Bayesian approximation, motivated by the findings of Gal and
Ghahramani (2016) and Gal et al. (2017), to see the effect with the models at hand. The
various methods are first applied with a convolutional neural network (CNN) for text clas-
sification (Kim, 2014), before the same aspects are studied in combination with transfer
learning by introducing ULMFiT (Howard and Ruder, 2018) and a new model, an ASGD
weight dropped long short-term memory network (AWD LSTM) (Merity et al., 2017). The
aim is to answer the following questions:

• When clustering is independent of both model and query strategy, will it still have
an effect over not clustering?

• If both clustering and Bayesian approximations can yield improvements to the active
learning results individually, as seen for Zhdanov (2019) and Gal et al. (2017), will
the combination of the two have a supplementary positive effect?

• When not accounting for distinctiveness, like Huang et al. (2018) do in computer
vision, could transfer learning in active learning be successful in a text classification
setting?

After conducting experiments on the binary sentiment analysis IMDB movie reviews
dataset, and the multi-class text categorization AG news corpus, non of the active learning
methods improved to random sampling on AG. However, there were improvements from
all on IMDB. While both Bayesian and clustering boosted results, the combination of the
two did not improve additionally. When applied with transfer learning, however, cluster-
ing had more of a negative effect, while Bayesian gave an advantage. All in all, there were
not substantial improvements from random selection for any method or variation, only
small differences in accuracy and loss. Although the results were insufficient for drawing
any positive conclusion on the potential of the methods tested, the experiments gave many
new ideas for future work. Additionally, it is important to address that most of the work
behind this thesis has involved computationally expensive experiments, and as new dis-
coveries have come to light, there has been little time left to explore further advances and
new ideas.
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Chapter 1. Introduction

The thesis is outlined as follows. Chapter 2 introduces the concepts of deep learning,
transfer learning, and active learning, along with basic theory and recent advances. A
description of the models, data, and experimental setup is presented in Chapter 3, and the
results are presented and discussed in Chapter 4. Finally, the conclusion of this thesis is
provided in Chapter 5. All implementations are made publicly available12.

1https://github.com/tinaolivia/cnn_al
2https://github.com/tinaolivia/lstm_al
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Chapter 2
Basic Theory

2.1 Deep Learning
With today’s technology, more and more tasks are automated by computers and algorithms.
Not only are computers replacing human labor in time consuming, necessary, straightfor-
ward jobs, they are also generally more effective. One such task is e-mail filtering, which
automatically sends sketchy e-mails to your spam folder, preventing scams and computer
viruses. This task could have easily been done by a human, and it is necessary to prevent
scam and to not overlook e-mails of interest. However, e-mail filtering is an example of
a task where constructing algorithms with explicit instructions is infeasible. A spam de-
tection model should rather learn patters from data and perform inference, a field known
as machine learning (ML). First formulated by Arthur Samuel (Samuel, 1959), machine
learning has become a well known, and not least important, field within artificial intelli-
gence (AI). Supervised ML algorithms build mathematical models from labelled training
data, aiming to make predictions or decisions when faced with new, unseen data points.
E.g. predicting whether an e-mail is spam or not, after seeing a training set of many exam-
ples of spam and non-spam e-mails. In general, the task of an ML algorithm is to approxi-
mate a function. In a regression setting, it would be to map the input to its response value,
and in classification, it would be to map the input to its label. This thesis will be mostly
concerned with supervised classification methods, that is, methods for classification where
training data is available with labels.

So-called shallow ML algorithms, such as linear regression, logistic regression, and linear
discriminant analysis, are great to extract the necessary patterns in many tasks. However,
the real world is often more complex than what these types of methods are able to repre-
sent. Deep learning is a sub-field of machine learning, developed to handle more complex
data. As a term, deep learning was first introduced in the 80’s in the machine learning
community (Dechter, 1986; Schmidhuber, 2017), and has been linked to artificial neural
networks (ANN) for approximately the last two decades (Aizenberg et al., 2000). The
intention behind ANNs was to make computers able to process data in a more human like
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Chapter 2. Basic Theory

Figure 2.1: Illustration of a typical fully connected artificial neural network.

fashion, therefore, ANNs were originally inspired by the neural networks of the human
brain. A typical fully connected feed forward ANN is illustrated in Figure 2.1, which
will be further discussed in Section 2.1.1. An ANN is constructed of an input layer, an
output layer, and some hidden layers in between, where deep models are considered as
ANNs with more than one hidden layer. Input is passed through the input layer, then to
approximate the target function, the hidden layers’ task is to transform the information
into something that is useful for the output layer. That is, in a classification task, it should
be easy for the output layer to classify the input based on the information it receives from
the hidden layers.

The layers of an ANN consist of artificial neurons, which are represented by circles in Fig-
ure 2.1. In a fully connected neural network, each neuron in a layer receives information
from all of the neurons in the previous layer, computes a weighted sum of these inputs,
adds a bias, and passes it to the next layer through an activation function. Mathematically,
in an L layer neural network this means

x
(`)
j = φ(`)

(K(`−1)∑
i=1

w
(`)
i,j x

(`−1)
i + b

(`)
j

)
, ` = 1, ..., L, (2.1)

where x(`)j and x(`−1)i are the outputs from the jth neuron in layer `, and ith neuron in layer

` − 1, respectively, w(`)
i,j is the weight from neuron i in layer ` − 1 to neuron j in layer

`, and b(`)j is the bias associated with neuron j in layer `. Furhter, K(`−1) is the number
of neurons in layer ` − 1, and φ(`) is the activation function of layer `. The objective to
learn is the weights and biases of the model, which are optimized by training the network
with some gradient descent based optimization algorithm. Equation (2.1) demonstrate
how ANNs essentially are functions of functions of functions, and so on, seeing as x(`)j is
a function of the weighted sum of the outputs from layer `− 1, which again are functions
of the weighted sum of the outputs from layer `−2, etc. It is this layering of functions that
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2.1 Deep Learning

enables deeper models to process more complex data, where non-linearity is introduced
by the activation function. Due to these properties, deep learning has become a popular
tool in a wide range of applications, such as machine translation, weather or stock market
predictions, or recognition of speech, handwriting, or objects in images, to name a few.
Some of the basic concepts of deep learning are presented in the following.
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Figure 2.2: Typical activation functions in deep learning. Sigmoid (left), hyperbolic tangent (tanh)
(middle), and rectified linear unit (ReLU) (right).

As seen in Equation (2.1), the activation function returns the final output from a neuron,
and it’s main task is to introduce non-linearity to the approximation. Arguably, the most
popular activation function is the rectified linear unit (ReLU) (Glorot et al., 2011), a func-
tion simply stripping away negative values φ(x) = max{0, x}. ReLU possesses many
desired properties from linear functions, while not being linear. Looking at Figure 2.2,
which displays ReLU (right), as well as two other activation functions, the sigmoid (left),
and the hyperbolic tangent (middle), the key to ReLU’s success is that it has gradient 1
for all positive values. Because ANNs normally are optimized by gradient descent based
algorithms, the sigmoid and hyperbolic tangent introduce the vanishing gradient problem,
as their gradients are mostly 0. Still, the sigmoid and hyperbolic tangent are useful in out-
put layers in binary classification, where a value close to 1 indicates class 1, and a values
close to 0 or -1 indicates class 0 or -1, respectively. In multi-class classification, the output
is a vector, as opposed to a scalar, typically of size C, where C is the number of classes.
Then the output is typically softmaxed in the output layer, i.e. normalized according to

σ(z)j =
exp{zj}∑K
k=1 exp{zk}

,

where z is the un-normalized output, zj is the jth element of z, and σ(z)j is the jth element
of the normalized vector.

To train a neural network, the model parameters, i.e. the weights and biases, are typically
initialized at random, then optimized by backpropagation. Backpropagation is an algo-
rithm which propagates input data forward through the network, making predictions, be-
fore backpropagating information about how the predictions compare to the target values.
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Chapter 2. Basic Theory

Backpropagation was already developed by various researchers in the 60’s (Schmidhuber,
2014), but did not gain recognition until 1986 (Rumelhart et al., 1986a,b). The compar-
ison of the predictions to the true values is done by a loss function or cost function, and
should express how much is lost or how much it costs when predictions are wrong. Model
parameters are optimized by minimizing the loss function by some gradient descent based
optimization algorithm.

The loss function should reflect upon the task, and would normally be a function of the
model’s predictions and target values. In a classification setting, the targets are discrete
classes, C = {c1, ..., cC}, and the outputs are vectors containing class predictive probabil-
ities, ŷ = (pθ(y = c1|x), ..., pθ(y = cC |x))T , where θ is the model parameters, and x
the input. For an instance x, the true class probabilities are contained in a one-hot vector
y = (0, ..., 1, ..., 0)T ∈ RC , where the placement of 1 represents which class x belongs to.
In these situation, the goal would be to have ŷ as close to y as possible, that is, minimize
the distance between the two probability distributions ŷ and y. A way of doing this is to
minimize the cross-entropy, which is defined by

H(p, q) = Ep[− log(q)] = H(p) +KL(p‖q)

= −p log(p)− p log
(q
p

)
= −p log(q),

for probability distributions p and q, where H(p) = −p log(p) is the entropy (Shannon,
1948) of p, and KL(p‖q) = −p log( qp ) is the Kullback-Leibler (KL) divergence (Kull-
back and Leibler, 1951) from p to q. The KL divergence is often used as a measure of
how similar two probability distributions are, even though it is not formally a distance,
due to asymmetry, and that it does not satisfy the triangle inequality. Minimizing the
cross-entropy is evidently the same as minimizing the KL divergence, i.e. minimizing the
difference between p and q, as a KL divergence of 0 would imply that the two distributions
in question are identical. In a C-class classification problem, the cross-entropy loss would
be a sum over all classes and instances,

LCE = −
N∑
i=1

C∑
c=1

p(y = c|xi) log(pθ(y = c|xi)). (2.2)

Minimizing the cross entropy is also equivalent to minimizing the negative log likelihood,
thus maximizing the likelihood.

An important hyperparameter when optimizing the model parameters is the learning rate,
i.e. the step size of the optimization algorithm. A too large learning rate would lead to
overshooting on the minimum, while a too small learning rate would lead to slow conver-
gence, as illustrated in Figure 2.3. It can be challenging to choose the optimal learning
rate, especially if it’s not adjusted while training. A common practice is the use of an-
nealing, which decreases the learning rate during training, since larger values are often
feasible to begin with, then smaller learning rates are more beneficial when getting closer
to the minimum. Another is cyclical learning rates (CLR) (Smith, 2015), which like an-
nealing adjusts the learning rate, but in a cyclical pattern, and eliminates the need to find
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2.1 Deep Learning

one optimal learning rate. The learning rate is gradually increased and decreased between
a minimum and maximum value, and is based on the observation that increasing learn-
ing rates has a negative effect short-term, but a positive effect in the long run, as larger
learning rates can help avoid saddle points. The one cycle policy (Smith, 2018) resembles
CLR, but only one cycle is performed. Starting at the minimum, for approximately half of
the total number of epochs, the learning rate is increased linearly to the maximum, before
decreasing back to the minimum in the same amount of epochs. Then the model is trained
for a few more epochs with the learning rate decreasing further below the minimum.

Large step size Small step size

Figure 2.3: Illustration of gradient descent with large step size (left) and small step size (right).

ANNs are powerful machine learning tools, but there is a significant chance of overfitting
due to the large number of model parameters. Learning with basic backpropagation can
lead to co-adaption among neruons, which generalizes poorly to unseen data. Dropout
(Hinton et al., 2012; Srivastava et al., 2014) is a deep learning regularization technique
lowering dependence and co-adaption between neurons. The idea is simple, at each for-
ward pass during training, activations are randomly set to zero with probability p. An
illustration is presented in Figure 2.4. Since activations are randomly dropped, neurons
can’t rely on the presence of other neurons, thus it breaks up any potential co-adaption.
The elementary idea behind dropout can be translated to other models. Essentially, when
training a large model which easily overfits, sample and train sub-models, which combined
will function as a more general version of the original model.

Figure 2.4: Illustration of how dropout affects a neural network when setting random activations to
zero.
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Chapter 2. Basic Theory

2.1.1 Feed Forward Neural Networks

Feed forward neural networks are maybe the simplest kind of ANNs, the easiest to com-
prehend and illustrate, and therefore often used as illustration when talking about ANNs
and deep learning in general, as done in Figure 2.1. The name, feed forward network,
comes from the information flow in the model, which is straight forward, i.e. there are no
internal loops of information. One can say that each neuron is only visited once per for-
ward pass. Feed forward networks are also known as multilayer perceptrons due to their
connection to Rosenblatt’s perceptron (Rosenblatt, 1958) developed in the 50’s and 60’s.
The perceptron is a single neuron, taking as input several binary inputs, computing the
weighted sum, and returning 1 if the sum is above some threshold value, and 0 otherwise.
Figure 2.5 shows this operation, and notice how the first input is a 1, representing a bias
term.
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Figure 2.5: Illustration of Rosenblatt’s percepton (Rosenblatt, 1958).

The perceptron showed a great ability to approximate functions by learning the weights,
however, it was unable to solve non-linear problems, such as the exclusive-or (XOR) prob-
lem, illustrated in Figure 2.6 along with the AND and OR logic gates. There are two axis,
x and y, and four points, one placed in the origin (0,0), one placed at the x-axis (1,0), one
placed on the y-axis (0,1), and the last placed in (1,1). A white point represents the output
1 (true), and a black point represent the output 0 (false). The three logic gates are simply
x AND y, x OR y, and exclusive x OR exclusive y. The perceptron could be trained to
separate the linearly separable AND and OR problems, while the XOR is not linearly sep-
arable, creating problems for the perceptron. The solution would be more layers, however,
there were not yet any known ways of training a multi-layer neural network. It lead to
the near death of ANN research, until the backpropagation algorithm gained recognition
(Rumelhart et al., 1986a,b). Still, with backpropagation available, the activation function,
which in the perceptron’s case is the step function, would be unsuited for training due
to mostly zero gradients. Nonetheless, neurons in modern day neural networks are still
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2.1 Deep Learning

essentially the same perceptron developed in the late 50’s.

AND OR XOR

x x x

y y y

Figure 2.6: Illustration of the AND, OR and XOR problems.

Convolutional Neural Networks

Up to now, only fully connected feed forward neural networks have been considered. For
instance, Figure 2.1 displays a fully connected network, and Equation (2.1) describes the
output of a neuron in a fully connected ANN. Fully connected indicates that all neurons
in one layer receives information from all neurons in the previous layer, and pass infor-
mation to all neurons in the succeeding layer. Not only do fully connected networks have
a substantial number of parameters to learn, they are also prone to overfitting due to the
complete connectedness. Imagine a computer vision task, for instance classifying cats
from dogs. Each input will have a height of h pixels, a width of w pixels, and in colored
images, each pixel has three color channels, RGB. The input is thus a matrix of h×w× 3
elements, which means that in a fully connected neural network, each neuron in the first
layer has h×w×3+1 parameters to learn, and dependent on the size of the hidden layers,
neurons in succeeding layers may have even more.

Figure 2.7: Illustration of local and shared weights in a CNN.

Convolutional neural networks (CNN) are feed forward neural networks that are not fully
connected. They were originally developed for computer vision tasks, taking inspiration
from a study of the visual cortex system of cats and monkeys (Hubel and Wiesel, 1968).
What was discovered is that in the visual cortex, neurons are responding to a small part
of the visual field, and neighboring cells have overlapping receptive fields. In a bid to
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process image data similar to living creatures, CNNs adapt this finding by having local
connections between layers, and shared weights. Figure 2.7 is an illustration of how both
local connections and shared weigts work between two layers in a CNN. The arrows of the
same color represent the same weights, and notice how a neuron in one layer is connected
to only a few of the closest neurons in the other layer. These properties reduce the number
of weights to learn considerably.

To give a better understanding of how this works in more dimensions, picture an input
matrix in two dimensions, e.g. 4 × 4. The convolution between two N ×M matrices, A
and B, is defined by

A ∗B =

N∑
i=1

M∑
j=1

aijbij ,

where aij , bij range over the elements of A,B, respectively. Now, let there be a kernel or
filter smaller than the input, maybe 2 × 2, which contains weights. This filter slides over
the input matrix, computing the convolution between the weights and the part of the input
matrix it is covering, see Figure 2.8a. The stride is the number of cells the filter moves at
the time, which is one in Figure 2.8a. The convolution is essentially a weighted sum of the
values covered by the filter, and the weighted sum is computed with the same weights over
the whole input. When the input is three dimensional, as in computer vision with colored
images, the same principle is applied with three dimensional filters. This kind of layer is
called a convolutional layer, and by definition, a CNN is a neural network with at least one
convolutional layer.
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Figure 2.8: Illustration of a convolutional layer (left) and max pool layer (right).

In general, after a convolutional layer, there’s a pooling layer. Pooling is a way of reducing
variance, and lower the number of parameters, while still keeping the most important
information received from the convolutional layer. Pooling is used to detect invariant
patterns in the input. Like in a convolutional layer, there’s a window sliding over the
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input, although in this case, the window does not contain any values, and it slides over non-
overlapping parts of the input. What the pooling layer does, is to return a value based on
the values within the window at each step. This could be the average of the values, called
average pooling, or the maximum, called max pooling. A simple max pooling example
is presented in Figure 2.8b. In a computer vision task, it is often beneficial choosing max
pooling over average pooling. Average pooling tends to smooth out lines, and blur out
the image, while the effect of max pooling is enhancement of lines and edges. Take for
instance the example in Figure 2.8b. Imagine the values being shades of grey, where 0 is
black and 9 is white. In the input matrix, there are fairly high values in the top left, top
right, and bottom left 2 × 2 windows, while the bottom right contains fairly low values.
It could be an edge between an object and the background in an image. This is enhanced
when max pooling, as three of the cells in the output matrix contain large values (top left
and right, bottom left), while the last contains a smaller value. The edge is clearer, or
enhanced, after max pooling.

Input Image Convolutional layer: Convolution + Max Pooling Multiple Convolutional layers Fully connected layer

Edge or corner detector Shape 

detector
Object 

detector

Figure 2.9: Typical CNN architecture.

There are usually multiple layers of convolutions and pooling detecting features in a hierar-
chical order. The different convolutional layers have different filters, constructed to detect
different patterns. Basic features are generally detected in early layers, such as edges and
corners, then later layers detect task specific features, like specific shapes or objects. An
illustration of a typical CNN architecture for object detection is presented in Figure 2.9.

Although CNNs originally were developed for computer vision, they have shown great
success in NLP tasks as well (Kim, 2014; Young et al., 2017). In NLP, the input is typically
a sentence, a paragraph, or a longer text document, such as an article. Representing these
as something a computer can understand, that is, as a matrix of values, is usually done by
word embeddings. Words could be represented by one-hot vectors, however, this is not
beneficial when faced with large vocabularies, due to the curse of dimensionality. Word
embeddings are distributional vectors representing the meaning of a word, hence, words
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that have similar meaning should have similar word embeddings. They are constructed
based in the context of a word, rather than the word itself. LetE(w) denote the embedding
of a word w, then they should be created in such a way that e.g. E(king) − E(man) +
E(woman) ≈ E(queen). The size of word embeddings is not fixed, however, the larger
the embedding, the more accurate they are. With word embeddings, the input to a neural
network in an NLP task would be an N ×M matrix, where N is the number of words, or
tokens, in the input document, and M is the size of the word embeddings. For a CNN, the
filter would be of size K ×M , where K typically is a number between 2 and 5, so that
the filter covers 2-5 tokens at a time. Commonly, different layers have different size K to
detect different features.

2.1.2 Recurrent Neural Networks
When reading a text document, humans don’t start thinking from scratch at every word.
The meaning of a word is not extracted from the word alone, we understand the meaning
from context, a sequence of words stored in memory. In feed forward neural networks,
information flows in one direction. Consequently, the prediction of one instance is com-
pletely independent of the previous, in the sense that one prediction does not influence
another. Feed forward networks have no sense of order in time, they can not remember
previous examples when presented with another, making them unsuited for tasks involving
sequence data, such as time series prediction, or language modelling.

. . .A A A A A

xT x0 x1 x2 xT

ŷT ŷ0 ŷ1 ŷ2 ŷT

=
h0 h1 h2 hT-1

Figure 2.10: Illustration of a recurrent neural network (left), and an unrolled recurrent network
(right).

A language model (LM) is a probabilistic model which goal is to predict the next word in
a sequence of words, given the previous words. Denoting a word by w, a probability is
placed over entire sequences, P (w1, .., wn), in addition to a probability of the likelihood of
a given word to follow. Given a sentence, e.g. “The trip has to be cancelled because of the
weather.”, feeding one and one word into a feed forward network making predictions on
the next word in the sentence would give poor results. Since predictions are independent,
the same word would be predicted after “the” both times it appears in the sentence, and it
would probably be neither “trip” or “weather”. It would be the most frequently occurring
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word after “the” in the training data. Language modelling is important as it is the base
for many other NLP tasks, such as machine translation, automatic question answering,
and speech recognition. In order to handle these kind of tasks, as well as other sequence
data problems, recurrent neural networks (RNN) were developed in the early 70’s, a type
of ANN with memory. The first RNN was described in 1972 (Little, 1974), and got the
name Hopfield network after being popularized by John Hopfield in 1982 (Hopfield, 1982).
Later, RNNs have become a popular tool whenever sequence data is involved.

The memory of an RNN is an internal, or a hidden, state in the network. At every time step,
the network computes this state, and passes it back to itself, creating an inner loop in the
architecture. Figure 2.10 is an illustration of the RNN architecture (left), and an unrolled
version (right) for a better understanding of what is going on. RNNs can be viewed as
several copies of a neural network in a sequence, passing information to each other. The
hidden state can be described mathematically by

ht = φ(Wxt + Uht−1),

where, ht is the current hidden state, ht−1 is the previous hidden state, xt is the input,
W is the weight matrix, and U is the hidden-to-hidden-state matrix. The function φ is
some suitable activation function, often the hyperbolic tangent. The output ŷt could equal
the hidden state, or be a filtered version of it, as a consequence, ht is often referred to
as the exposed hidden state. An RNN has thus two inputs at each time step, the input
itself, xt, and the hidden state, ht, in other words, the present and the recent past. Both
inputs are weighted by the matrices W and U , respectively. W and U are learned through
gradient descent and backpropagation through time (BPTT), a backpropagation algorithm
taking several time steps into account when updating the weights. Looking at the unrolled
version of the RNN in Figure 2.10, each time step can be viewed as a copy of the network.
Each copy has an input xt, an output ŷt, and a loss Lt(yt, ŷt), for t = 1, ..., T . Then
the objective to minimize is the loss over several time steps L(y, ŷ) =

∑T
t=1 Lt(yt, ŷt).

BPTT can be fairly computationally expensive, and is therefore often limited to a certain
amount of time steps T . Commonly, the hidden state is initialized by zero, but can also be
randomly initialized with e.g. a Gaussian distribution.

Recurrent networks are not only important in many NLP tasks, as long as the data is
sequential, i.e. the order matters, RNNs are suited, and feed forward networks are probably
not. Tasks include predicting time series, e.g. from financial data or weather data, image
captioning, a cross between NLP and computer vision, and predicting the next chord in a
music piece, opening the possibility of machine composed music. Furthermore, recurrent
networks are not constrained to mapping one input to one output like for feed forward
networks. RNNs can map one to many, many to one, or many to many as well.

Long Short-Term Memory

In general, the traditional RNN has a short-term memory, making it difficult to extract
important information from time series with lags between important events. In language
modelling, there are cases where the information from the recent past is enough, and there
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are cases where information further back in the text is needed. E.g. in the sentence “The
library is filled with books”, the model can predict the word “books” from the word “li-
brary” in the recent past. In a longer text, e.g. “I lived three years in Spain with my family
growing up. ... I speak fluent Spanish”, predicting the word “Spanish” is linked to the word
“Spain” much earlier in the text, making it hard for vanilla RNNs to predict correctly. In
addition, RNNs often have problems with vanishing and exploding gradients.

Partially solving both these problems are long short-term memory (LSTM) networks. Ini-
tially developed to deal with vanishing and exploding gradients, LSTMs also proved to
have longer memory than vanilla RNNs. The LSTM network was first introduced by
Hochreiter and Schmidhuber (1997), and originally an LSTM contained cells with input
and output gates, and later, a forget gate was added (Gers et al., 1999).

tanh

tanh

+

tanh

Standard RNN cell LSTM cell

xtxt

ŷt ŷt

ht

ht

ctht-1 ct-1

ht-1

Figure 2.11: Illustration of a standard RNN cell (left), and a typical LSTM cell (right).

A typical LSTM cell is presented and compared to a vanilla RNN cell in Figure 2.11, but
different versions have been proposed through the years. In the illustration, yellow boxes
represent neural network layers, with σ the sigmoid and tanh the hyperbolic tangent, red
circles are element-wise operations, with +,× addition and multiplication, respectively.
The cells are represented by the A-block in the illustration of an RNN in Figure 2.10.
While the standard RNN cell only has two input channels, the LSTM has three, as well as
two values that are passed back to itself. In Figure 2.11, the bottom horizontal channel in
the LSTM cell represents the exposed hidden state ht, while the one at the top represents
the memory cell state ct. Further, the LSTM has four layers, where the sigmoid layers,
from left to right, are the forget gate, input gate, and output gate, and the last layer is linked
to the memory cell state. An LSTM can be described mathematically by
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it = σ(W ixt + U iht−1),

ft = σ(W fxt + Ufht−1),

ot = σ(W oxt + Uoht−1),

c̃t = tanh(W cxt + U cht−1),

ct = it � c̃t + ft � c̃t−1,

ht = ot � tanh(ct),

(2.3)

where it, ft, ot are the input, forget, and output gates, respectively, at time step t, ct is
the memory cell state, ht the exposed hidden state, and � is element-wise multiplication.
W i,W f ,W o,W c are the non-reccurent weights associated with the input gate, forget
gate, output gate, and cell state, respectively, and U i, Uf , Uo, U c, are the corresponding
hidden-to-hidden weights. The sigmoid layers return values between 0 and 1, representing
the amount of information to be let through, i.e. 0 means no information is passed on,
while 1 means all information is kept. The forget gate determines what can be thrown
away from the internal state, the input gate decides what new information should be stored
in the internal state, and lastly, the output gate determines what to output, which is a filtered
version of the cell state.
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2.2 Transfer Learning

A traditional machine learning assumption is that the training data and test data have to
belong to the same domain, have the same input feature space and come from the same dis-
tribution, as illustrated in Figure 2.12a. E.g. when building a classifier for distinguishing
dogs from cats in images, the training data is images of dogs and cats, and the test data is
images of dogs and cats. However, in many cases, data is limited, expensive or difficult to
obtain, and there might not be resources for collecting enough to train a model sufficiently.
Imagine you have built a classifier for sentiment analysis of reviews of a certain product,
e.g. digital cameras, and you want to do the same for another completely different prod-
uct, e.g. food (Pan and Yang, 2010; Weiss et al., 2016). However, there are considerably
less reviews about the other product, far from enough to train a sufficient classifier. There
are many similarities, as both are reviews, probably text, hopefully in the same language,
but there’s a difference in domain, which may lead to the first classifier being insufficient
for the second product. Transfer learning is a method dealing with this by transferring
knowledge from one domain to another, from a source task to a target task, see Figure
2.12b. The idea is that some of the information obtained when solving the source task also
is useful when solving the target task, making it wasteful to learn the same information
again, especially if the target task data is limited. Sentiment analysis of reviews are pretty
similar regardless of product. By using the first classifier, and tweaking it with the small
set of data about the second product, a high-performance classifier can be trained for this
task as well.

Learning System Learning System Learning System

Tasks

(a) Traditional machine learning

Learning SystemKnowledge

Source Tasks Target Task

(b) Transfer learning

Figure 2.12: Illustration of the difference between traditional machine learning and transfer learn-
ing.

Clearly, there must be some relationship between the source domain and the target domain.
Picture two individuals trying to learn the piano, one has musical background from playing
the guitar, while the other has experience from playing football. Evidently, the knowledge
from football is not overly useful, while the one that has played the guitar can use previous
knowledge to learn to play the piano faster (Pan and Yang, 2010; Weiss et al., 2016). The
same applies for transfer learning. There is not much benefit from using a model trained
to classify dogs and cats when trying to classify food reviews, while a classifier for camera

18



2.2 Transfer Learning

reviews might come in handy. There must be a correspondence in the form of the data,
e.g. if the input is images or text, and the source and target domain should be sub-fields of
the same domain, like guitar and piano both belong to the music domain, and food reviews
and camera reviews both are reviews.

2.2.1 Definitions
In this section, transfer learning is formally defined in a classification setting. A do-
main D is defined by its feature space X , and its marginal probability distribution P (X),
X = (x1, ..., xn) ∈ X , i.e. D = {X , P (X)}. A task T is defined within a domain
by a label space Y , and a predictive function f(·). The predictive function is learned
from observations, (xi, yi), and in a probabilistic classification setting, it can be written as
P (Y |X). Thus, a task is formally written T = {Y, P (Y |X)}. Further, a source domain
and task are denoted DS and TS , while a target domain and task are denoted DT and TT .

In order to apply transfer learning, given a source domain DS and task TS , and a target
domainDT with a corresponding task TT , there must be some sort of relationship between
source and target, and some differences. If the source and target domains differ, it means
that eitherXS 6= XT or P (XS) 6= P (XT ). If the tasks differ, it would imply thatYS 6= YT
or P (YS |XS) 6= P (YT |XT ). Generally, there are four different scenarios;

(1) XS 6= XT , the feature spaces are different. This is referred to as heterogeneous
transfer learning, and for NLP tasks, it can translate to documents being written in
different languages for different tasks. Or it could be that the source data is text,
while the target data is images (Zhu et al., 2011). When XS = XT , it is called
homogeneous transfer learning.

(2) P (XS) 6= P (XT ), i.e. the marginal probability distributions are different, which is
referred to as domain adaptation. An NLP example is document classification where
the documents in the different tasks are concerning different topics. For computer
vision, it could be the difference in product images from a web shop and consumer
images of the same products.

(3) YS 6= YT , the label spaces differ, i.e. the labels of the target task differ from
the labels of the source task. This is a common scenario, but it very rarely occurs
without also the conditional probability distributions being different.

(4) P (YS |XS) 6= P (YT |XT ), the conditional probability distributions differ. This sce-
nario is common in practice, and means that the classes in the source and target data
are unbalanced.

Definition 2.2.1. (Transfer Learning) Given a source domain DS and source task TS , and
a target domain DT and target task TT , where DS 6= DT or TS 6= TT , transfer learning
aims to help learning the predictive function of the target task, fT (·), by using knowledge
from DS and TS . (Pan and Yang, 2010).

There are mainly three types of transfer learning, inductive transfer learning, unsupervised
transfer learning, and transductive transfer learning.
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Definition 2.2.2. (Inductive transfer learning) Given a source domainDS and source task
TS , and a target domain DT and target task TT , inductive transfer learning aims to help
learning the target task predictive function fT (·), using knowledge fromDS and TS , where
TS 6= TT . (Pan and Yang, 2010).

From Definition 2.2.2, inductive transfer learning is the case when the source and target
tasks differ, that is, scenario (3) or (4), or both. The domains may differ as well in this set-
ting, but the difference in tasks categorizes it as inductive transfer learning. This scenario
also requires that there is labelled target data available, so that the target predictive func-
tion fT (·) can be induced from this data, hence the name. Inductive transfer learning is
also most relevant to this thesis, as one of the models utilized in the experiments employs
transfer learning from language modelling to text classification.

The only difference between inductive transfer learning and unsupervised transfer learning
is that the label spaces YS ,YT are not observed in unsupervised transfer learning. Conse-
quently, for unsupervised transfer learning, the focus is on unsupervised methods, such as
clustering and dimensionality reduction.

Definition 2.2.3. (Transductive transfer learning) Given a source domain DS and source
task TS , and target domain DT and target task TT , transductive transfer learning aims to
help learning the target task predictive function fT (·), using knowledge from DS and TS ,
where DS 6= DT and TS = TT . (Pan and Yang, 2010).

Also in the transductive transfer learning setting, see Definition 2.2.3, must some labelled
data for the target task be available. This covers scenario (1) and (2), i.e. the feature spaces
or the marginal distributions differ, whereas the latter is known as domain adaptation.
Since the source and target tasks are the same, the source predictive function fS(·) can be
adapted to the target task with the available labelled target task data. The word transductive
in this setting is used to accentuate that the tasks are the same and there’s access to labelled
target data in this type of transfer learning.

Through the rest of this chapter, when referring to transfer learning, it is in an inductive
or transductive setting, without it being stated explicitly which of the two. The main
assumptions are that there is some difference in source and target, labelled source data is
available or easy to obtain, while labelled target data is sparse or laborious to gather.

2.2.2 Applications
The need for transfer learning appears when training data for a task is challenging or
expensive to obtain, inaccessible, or there simply is not much of it. A necessary condition
for transfer learning is that there’s some related domain where this kind of data is plentiful,
accessible, and maybe already used to train a model for a similar task.

One of the most common of the scenarios presented above in Section 2.2.1 is (2), domain
adaptation, when the marginal probability distributions of the source and target task don’t
coincide. Sometimes, the training and test data might look the same to a human, while
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for the model, there’s a bias, causing overfitting to the training data. For example, when
the training data is images of objects without background, testing the model on images of
the same objects, but with background can induce such a bias. This can happen when the
training data is product images from a web shop, since these often are annotated and easy
to obtain, and the test data is consumer images of the same products. The product review
example from earlier also falls within this category. Different words are used to describe
cameras than to describe food, but can still express the same opinion, or sentiment. More-
over, a lot of pre-trained NLP models are usually trained on a large corpus made up by
news data or other kind of articles, so in the meeting with less formal text documents, like
reviews, or social media messages, the results will not be optimal without fine-tuning.

Relevant for the technological advances of today is speech recognition, as tools like Siri1,
Alexa2, and Google home3 infiltrate our everyday lives. These are trained to recognize
standard accents, making it harder for immigrants, people with dialects or speech imped-
iments, or any other not speaking standard to be understood. In addition, while they are
getting quite good in English, other languages are behind. When a friend tried to convert
Siri to Norwegian, she could not be understood and switched back to English, even though
she is speaking standard Norwegian. Despite that, transfer learning can also be used in a
bilingual setting, transferring knowledge across languages. A lot of NLP data is available
in English, but more sparse in other languages. Being able to use some of the informa-
tion obtained in the English language to train better models in other languages would be
a great advantage (Czapla et al., 2018), and recent advances shows great improvements in
this area (Johnson et al., 2016).

Sometimes, gathering real-world data can, in addition to being time consuming and ex-
pensive, even be dangerous, e.g. when training self driving cars. Gathering data from
simulations is a great way of lowering risk, expense, and time. This is an example of
scenario (2), and as simulations are getting closer to real world data, P (YS |XS) is get-
ting closer to P (YT |XT ). Still, simulations will most likely never be able to replicate the
real world completely, since the interaction patterns between all physical objects are too
intricate to be fully replicated. For self driving cars, simulations are essential4. As well as
being an easy way of collecting data fast, training can also be accelerated, as learning can
be parallelized. Simulated data could also be most practical in robotics and AI. Training
models on real robots is too slow, as well as expensive (Rusu et al., 2016), while in AI,
training an agent in the real world is not only expensive, but real-world data might be too
complex for the agent to learn well (Mikolov et al., 2015). Sometimes, a learner benefits
from simpler data.

1https://www.apple.com/siri/
2https://developer.amazon.com/alexa
3https://store.google.com/product/google_home
4https://techcrunch.com/2017/02/08/udacity-open-sources-its-self-driving-

car-simulator-for-anyone-to-use/?guccounter=1guce_referrer_us=aHR0cDovL3J1Z
GVyLmlvL3RyYW5zZmVyLWxlYXJuaW5nL2luZGV4Lmh0bWwguce_referrer_cs=SGJ2VvKWaew0-
uu2-Y64Rg
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2.2.3 Transfer Learning in Deep Learning
Another motivation for transfer learning arises when training a model is computationally
expensive. It has thus become a popular tool in deep learning because of the vast amounts
of resources required to train deep neural networks on large challenging datasets. Training
a deep model adequately requires substantial amounts of data, it can take weeks, and the
time increases for larger and more complex models. There are mainly three challenges to
overcome in deep learning, (i) designing and creating a network architecture suited for the
task at hand, (ii) tuning the hyperparameters to obtain the best possible result, and (iii) ob-
tain considerable amounts of data for training. These three steps are challenging since (i)
requires domain knowledge and experience to build a qualified model, (ii) must typically
be done in a trial-and-error fashion, which is tough when the number of hyperparameters
is high, and (iii) as mentioned, can be time consuming, demanding, expensive, and even
dangerous. Somehow, by trying to lower the data requirement, transfer learning also elim-
inates (i) as a problem, since model architecture from the source task can be exploited in
the target task. As long as one is able to determine if the source and task domains are
sub-fields of the same domain, there is not need for much more domain knowledge or
experience. Moreover, since many features are already learned, and less data is needed to
obtain good results for the target task, training time is reduced considerably.

In deep neural networks, early layers capture general features, while later layers capture
more task specific features in the data, as illustrated in Section 2.1.1 under Convolutional
Neural Networks. A transfer learning approach in deep learning is to take a pre-trained
model, freeze the early layers, and fine-tune the later layers to fit the target task, and in
that manner avoid wasting data and time on learning general features that are already
learned. Both in computer vision and NLP, one aspect is to look for general tasks that
can serve as source task for many target tasks. With large publicly available datasets, like
ImageNet5 and WikiText-1036, the opportunity for creating large pre-trained models is
present, the next challenge is to train good models for suited source tasks, that can easily
be generalized to different target tasks. In the following, transfer learning in a computer
vision and NLP setting will be discussed, along with some known datasets and pre-trained
models.

Computer Vision

Transfer learning has become an important tool in computer vision (Long et al., 2014;
Weiss et al., 2016; Huang et al., 2018), and applied computer vision models are seldom
trained from scratch. Pre-trained models are trained on large labeled, and well known,
image datasets, such as ImageNet, COCO7, or other.

ImageNet is a large image database organized in accordance to the WordNet8 hierarchy.

5http://www.image-net.org/
6https://blog.einstein.ai/the-wikitext-long-term-dependency-language-

modeling-dataset/
7http://cocodataset.org/#home
8https://wordnet.princeton.edu/
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This hierarchy is an ordering that groups words and expressions in so called synonym sets,
or synsets for short, where each synset represents a specific concept. In ImageNet, there are
more than 100’000 synsets, whereas most are nouns, which makes sense since nouns are
more intuitive to photograph. The ImageNet synsets have on average 500 images, and the
goal is to double this, leaving plenty of image data for most categories. COCO is another
large-scale image dataset for object detection, segmentation, and captioning. It contains
more than 300’000 images, of which more than 200’000 are labeled, and combined there
are more than 1.5 million object instances in over 80 object categories. There are large-
scale image recognition contests based on both these datasets, where the best models often
become publicly available pre-trained models used for transfer learning.

One such example is AlexNet (Krizhevsky et al., 2012), the winner of ImageNet Large
Scale Visual Recognition Challenge 2012 (ILSVRC20129). AlexNet is a convolutional
neural network developed by Alex Krizhevsky, with five convolutional layers, some fol-
lowed by max pool layers, three fully connected layers, and combined 60 million parame-
ters and 650’000 neurons. Krizhevsky et al. (2012) also applied the then new regularization
technique dropout, and used GPUs for more efficient training of the large model. A second
model is VGG (Simonyan and Zisserman, 2015), a very deep convolutional network for
large-scale image recognition, which won the ILSVRC201410 challenge. Simonyan and
Zisserman (2015) explored CNNs of increasing depth with very small 3× 3 convolutional
filters, and achieved state-of-the-art results with 16-19 layers. Another is ResNet (He
et al., 2015), the winner of the same challenge in 2015, ILSRVC201511, and the COCO
2015 competition12. In contrast to AlexNet and VGG, ResNet is a residual network, a kind
of network that eases the complexity, allowing substantially deeper networks than earlier,
without impacting the training time excessively. Residual networks considers the resid-
ual function F(x) = H(x) − x, where H(x) is the underlying mapping fitted by a few
stacked layers in a network, but not necessarily the entire model, and x is the input to the
first of these layers. Note thatH(x) must be of the same dimension as x when the residual
function is F(x) = H(x)−x. The idea is then to let the stacked layers approximate F(x)
instead ofH(x). The model ends up having 152 layers, which is 8 times as deep as VGG,
while still having lower complexity.

Natural Language Processing

While transfer learning has made a great impact on computer vision, equivalent general
approaches have not been available for NLP tasks before recently (Howard and Ruder,
2018). The already existing methods would mostly work only for very similar tasks, and
would often be in need of a large set of in-domain documents to obtain good results, which
in a sense contradicts the motivation for transfer learning. However, Howard and Ruder
(2018) have exploited that language modelling (LM) on a large corpus can be used equiv-
alent to large-scale image recognition model trained on ImageNet or COCO in computer
vision, and they claim that the resulting method, Universal Language Model Fine-Tuning

9http://image-net.org/challenges/LSVRC/2012/index
10http://image-net.org/challenges/LSVRC/2014/index
11http://image-net.org/challenges/LSVRC/2015/index
12http://cocodataset.org/#detection-2015
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(ULMFiT), can be applied to any NLP task. Language modelling is briefly described in
Section 2.1.2. Building a high-performance LM can be challenging, typically the model is
a recurrent network, see Section 2.1.2, and a large corpus is necessary for training. LM can
be used as is, to generate text, or as a base for other NLP tasks, and is crucial in problems
such as machine translation, speech recognition, spelling correction, handwriting recogni-
tion, automatic summarization, and much more.

ULMFiT is based on the most general inductive transfer learning setting for NLP (Pan
and Yang, 2010), see Section 2.2.1, and there are three steps for building and training a
classifier. The first is to train a language model, or to take a pre-trained language model.
Howard and Ruder (2018) have made a publicly available AWD LSTM based on the AWD
LSTM by Merity et al. (2017), through the fastai13 framework. It is trained on the
WikiText-103 dataset, a dataset containing more than 100 million tokens, gathered from
verified articles of Wikipedia. The next step is to fine-tune the later layers of the LM with
data from the task at hand, before the last step, which is augmenting the LM to a classifier,
and fine-tuning it by gradually unfreezing layers.

Since the results of ULMFiT were published, the method has been used in several NLP
tasks, such as language modelling for Polish (Czapla et al., 2018), text classification for
low resource tasks using backtranslation (Shleifer, 2019), and suggestion mining (Anand
et al., 2019). Czapla et al. (2018) stress the importance of transfer learning in a bilingual
setting, since most languages other than English do not have large labelled datasets avail-
able for training good language models. By adapting ULMFiT with sub-word tokenization
to handle Polish, Czapla et al. (2018) came in first in Task 3 of the Polish LM competi-
tion PolEval1814. Also emphasizing the need for transfer learning in low resource tasks is
Shleifer (2019). By augmenting data with backtranslation and utilizing ULMFiT, Shleifer
(2019) significantly improves the results of low resource NLP tasks. Backtranslation is
an augmentation method for NLP data, where a text is translated to another language,
then backtranslated in order to obtain a slightly altered text. Suggestion mining from on-
line text documents is the task of determining whether a review expresses a suggestion or
not. Suggestions can be found in informal online text documents such as reviews, forums,
blogs, or social media posts or comments. In industry, suggestion mining is advantageous
when developing a product, especially when direct reviews are sparse, since very few ac-
tually leave reviews directly. Many would rather complain about or recommend products
in social media or forums. Anand et al. (2019) build a model for suggestion mining based
on ULMFiT, resulting in 10th place for Sub Task A of SemEval 201915. ULMFiT is also
used in this thesis, to see how transfer learning works together with active learning, which
will be discussed next, in Section 2.3.

Devlin et al. (2018) aim to improve fine-tuning based approaches to transfer learning in
NLP (Howard and Ruder, 2018; Radford et al., 2018) by proposing masked language mod-
elling (MLM) as source task. MLM is a language model that, rather than predicting the

13https://docs.fast.ai/
14https://n-waves.com/poleval2018
15http://alt.qcri.org/semeval2019/
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next word in a sequence of words, masks random tokens, and intends to predict the masked
tokens based on context. This approach opens for bidirectional training, as left and right
context can be fused, as opposed to in left-to-right LMs. Devlin et al. (2018) develop a
model based on transformers (Vaswani et al., 2017), and propose the language represen-
tation model Bidirectional Encoder Representations from Transformers (BERT), which
outperforms the state-of-the-art in eleven NLP tasks, including named entity recognition,
sentiment analysis, and question answering.
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2.3 Active learning

As stated in Section 2.2.3, there are three leading challenges in deep learning. These are
(i) designing an architecture efficient and convenient for the task at hand, (ii) tuning the
hyperparameters of the model, and (iii) having enough available labelled data for training.
Active learning (AL), like transfer learning, is a method developed to lower the data re-
quirement in deep learning, and machine learning in general. Even in cases where data is
available, labelling it can be extremely tedious, demanding without domain expertise, and
thus often expensive. By letting the model actively choose examples to learn from, the aim
of active learning is to gain better results with far less data, hence reducing the labelling
cost significantly. Note that active learning will be discussed in a classification setting,
seeing that it is most relevant for this thesis.

A simple active learning setup consists of a large pool of unlabelled data U , a small labelled
set L, a model, an informativeness measure, also known as an acquisition function, an
oracle, and a labelling budget. The model is first trained on L, then, with the knowledge
it has gained from L, it selects one instance from U based on its informativeness. The
selected instance is then labelled by an oracle, often a human annotator, and added to
L. The model is trained from scratch with the updated labelled set, and with its new
knowledge, new instances are queried from U . This loop is repeated until the labelling
budget is empty, or a satisfactory classification accuracy is obtained. This scenario is
appropriately called pool-based active learning, which will be described in more detail in
Section 2.3.1, while ways of measuring the informativeness is presented in Section 2.3.2.
Mainly, informative examples can be found near class borders, since these are areas the
model would be interested in learning more about.

The need for active learning arises when data is available, but labels are expensive to
obtain, either in the sense of money, time, or experience, or a combination of the three.

One such example is classification of magnetic resonance imaging (MRI) scans. To ac-
quire labels, one needs an experienced radiologist to interpret the scans, and the process
is immensely tedious and expensive. Getting an MRI scan in the U.S., according to Time
Magazine based on Medicare data16, can have a cost ranging from $474 to unbelievable
$13’259, depending on location, hospital, and which MRI procedure is performed. E.g.
an MRI of the brain is more expensive than an MRI of the shoulder. On average, the cost
comes at $2’611. Assuming the professional fee, i.e. the fee related to the interpretation
by a radiologist, is 20%, on average the cost will be $522 per label, if the MRIs them-
selves are already available. To achieve a sufficient amount of labels to train a classifier
to acceptable accuracy level, labelled data will come at several $100’000, maybe even
millions.

Another example is speech recognition. To obtain data, there are vast amounts of sound
clips available online, or one can simply press record on a recording device. Labelling the

16http://time.com/money/2995166/why-does-mri-cost-so-much/
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data, on the other hand, can be extremely time consuming, and requires a human expert
in linguistics. According to Zhu (2005), transcription can take up to 10 times the length
of the audio at word-level, and as much as 400 times the recording’s duration at phonetic
level. If one hour of audio takes 400 hours, i.e. more than 16 days or 48 working days, to
interpret, imagine how much work lies behind the data used for training a network, or how
much it will cost to pay the linguist expert for the job.

In many NLP tasks, such as document classification, and information extraction, acquiring
labels has various cost for different documents (Settles and Craven, 2008a). Not only can
document length differ excessively, the language complexity and domain may affect the
labelling cost as well. For instance, some domains, like scientific documents, require ex-
perts for labelling, and come at a higher labelling cost. Nonetheless, even simple newswire
documents can take up to half an hour to properly label. How long will it take to label a
complex article within some expert acquiring domain?

Active learning is a great way to lower labelling cost, however, the computational cost can
be extensive. In the “traditional” approach, only one instance is added to L at each round,
and the model is trained from scratch every time L is updated. This can lead to days,
or even weeks, of training, which is unacceptable in many of today’s practical systems.
There are several proposed solutions for this issue, e.g. adding a larger sample to L at
each round would reduce the computational time considerably. Nevertheless, this could
lead to sampling of similar examples, since similar examples have similar informativeness,
thus, it could be a waste of labelling budget. Other solutions include incremental learning
and transfer learning. While incremental learning might lead to a bias towards the initial
labelled set, transfer learning is more general, as knowledge is transferred from similar
tasks. Some results from applying these solutions are further discussed in Section 2.3.3,
and additionally, adding larger samples to L and transfer learning will be investigated in
this thesis.

2.3.1 Active Learning Scenarios
Active learning is possible when the model is able to query examples, which it is in several
problem settings. According to literature (Settles, 2009), the main scenarios are query
synthesis and sampling, whereas the latter is divided into stream-based and pool-based,
emerging at the three central scenarios,

(i) Membership query synthesis,

(ii) Stream-based selective sampling,

(iii) Pool-based sampling.

The seemingly most common, and probably most intuitive scenario, is pool-based active
learning, which was introduced as an introductory example earlier. All three are described
in the following, even though only pool-based is relevant for the experiments of this ex-
ploration.
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Membership Query Synthesis

Membership query synthesis is the combination of membership querying and query syn-
thesis. Simply explained, membership querying is asking if a sample is member of some
set (Angluin, 1988), and query synthesis is a scenario where the learner can generate sam-
ples based on the input space. The combined scenario is that the learner can generate a
sample, ask whether it is part of the labelled set L or not, then proceed to ask for its label if
the answer is not. Membership query synthesis enables the learner to ask for any instance
in the input space, and is efficient in settings where the problem domain is finite (Angluin,
2001). To acquire informative examples, synthesized queries will typically be near class
borders.

A problem with membership query synthesis was discovered when Lang and Baum (1992)
tried to use active learning with a human oracle to classify handwritten characters. The
learner generated examples with no recognizable symbols, making them impossible for the
human oracle to label. From this, one could imagine that a range of tasks would encounter
the same problem. E.g. in NLP tasks, the learner might generate sequences of words
without any meaning, making it impossible for a human annotator to give it a label.

However, membership query synthesis can be useful in settings where the oracle is not hu-
man. In a bid to automate the scientific process, King et al. (2004) use active learning and
a robot scientist to perform biological experiments on the yeast Saccharomyces cerevisiae.
Each instance consists of a growth medium and a yeast mutant, and the label is whether or
not the yeast thrives in said medium. The whole process is autonomous, from originating
hypothesis in order to describe observations, to physically performing experiments, and
analyzing the results. The composition of the growth medium is subject for synthesizing,
resulting in a 3-fold and 100-fold decrease in cost in comparison to cheapest and random
experiments, respectively.

More recent advances exhibit a query synthesis active learning approach in combination
with generative adversarial networks (GAN) (Zhu and Bento, 2017). A GAN (Goodfellow
et al., 2014) is a combination of two models, one generative, the generator G, and one
discriminative, the discriminator D. While discriminative algorithms aim to classify input
data, i.e. find the probability of the label y given the features x, p(y|x), generative models
seek the opposite, finding the probability of the features x given the label y, p(x|y). The
steps of GANs is to feed labels to G, which will generate features, then the generated
input together with real input is fed to D, which job is to label the input as real or fake.
G’s objective is for D to fail, i.e. to generate as realistic data as possible, making GANs
able to create data of uncanny resemblance to the real world. Zhu and Bento (2017) use
GANs to synthesize queries, avoiding the problems of Lang and Baum (1992) since GANs
are constructed to return seemingly authentic data. Although the approach produces some
good results, it can not outperform pool-based approaches in all settings, probably since
the GAN always will generate examples close to class boundaries, while in pool-based
approaches, the model can explore more of the data space when all boundary examples are
already in the training set.
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Stream-Based Selective Sampling

The problem with query synthesizing is mainly that when data is generated from the whole
input space, there are parts of the input space that doesn’t make sense, and is impossible
to interpret. Stream-based selective sampling (Cohn, 1994; Cohn et al., 1994) solves this
by sampling directly from the underlying distribution. If the distribution is uniform, the
behavior is similar to query synthesis, nonetheless, when the distribution is non-uniform,
or unknown, there is a guarantee that the samples drawn are representative for real world
data.

A crucial assumption for selective sampling to be advantageous is that sampling from the
underlying distribution is free, or at low cost compared to the cost of labelling. When that
being the case, instances can be sampled, then the learner decides whether to query their
labels, or discard them. Commonly, examples are drawn one at the time, and the learner
must determine whether the label is worth asking for before seeing the next instance, thus
called stream-based or sequential active learning. There are several ways of making this
decision, and it is often based on the informativeness according to some query strategy,
see Section 2.3.2. One approach is to compute the informativeness, and query examples in
a biased randomised matter, such that more informative examples are queried (Dagan and
Engelson, 1995). Another is to define a region where the learner is uncertain, a region of
uncertainty, and only query instances within this region (Cohn et al., 1994).

Stream-based active learning is useful in tasks such as part-of-speech tagging (Dagan and
Engelson, 1995), i.e. marking words in speech as verb, noun, adjective etc. Another
example is word sense disambiguation (Fujii et al., 1998), a task concerned with finding
the meaning of words that can have several meanings. E.g. the word "lead" can be both a
verb and a noun, and in both categories, it can have more than one meaning. Stream-based
selective sampling can also be useful in the development and training of chatbots. Chatbots
receive questions in a stream-based matter, and are often trained with a human-in-the-loop
approach, where they should ask for assistance when confidence is low.

Pool-Based Sampling

Pool-based sampling is somewhat more intuitive than the other two active learning scenar-
ios. As indicated by the name, a large pool of unlabelled data, denoted by U , is available,
along with a small labelled set L. The labelled set is often initialized by annotating a
random subset of U . A model is trained on L, then it scans through the instances in U
computing the informativeness, and queries one or more of the most informative exam-
ples. The model is trained again on the updated labelled set, and with its new knowledge,
new instances are queried from U . An illustration is provided in Figure 2.13. Where
stream-based sampling examines instances in a sequential fashion, considering each ex-
ample individually, pool-based sampling compares the informativeness of all unlabelled
data before making a decision. A stream-based approach can hence be preferable when
there are memory restrictions when solving a problem.

The pool-based scenario might be the most described in literature (Settles, 2009), and
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Figure 2.13: Illustration of a typical pool-based active learning loop.

applies to a wide range of real-world problems. Pool-based sampling is relevant when
large quantities of data can be gathered at once, which applies to many tasks in modern
society, as heaps of data is stored at every second, in the hopes of being useful in some way.
As well as a great deal of content being published for information and enlightenment, or
entertainment to the public, such as news articles, scientific papers, podcast clips, images
or videos. However, when the application is not yet known, if, how, and what to label is not
always obvious. In consequence, when a problem suited for machine learning emerges,
the data is often available, but the labels are missing. In this setting, pool-based active
learning is useful.

Given the large amounts of data available, examples of pool-based applications are plen-
tiful. Various text documents can be used for categorical classification, while reviews,
social media messages, or forum posts can be exploited in sentiment analysis. Videos can
not only be used for video captioning or other video or image tasks, the sound can be used
for e.g. speech recognition. Lewis and Gale (1994), McCallum and Nigam (1998), and
Tong and Koller (2002), are just some of the researchers who successfully have studied
pool-based active learning for text classification, while Thompson et al. (1999) and Set-
tles and Craven (2008b) use text data for information extraction. There are also successful
examples of image and video classification, speech recognition, and cancer diagnosis clas-
sification.

2.3.2 Query Strategy Frameworks

One of the most important aspects of active learning is the question of how to measure
informativeness. There are a variety of query strategy frameworks, whereas uncertainty
sampling probably is the most known. In the following, a number of ways to measure
uncertainty is presented, in addition to two other frameworks, query-by-committee and ex-
pected model change, although uncertainty sampling is the only relevant framework in the
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experiments. Let x∗AL denote the most informative instance according to the query strat-
egy AL. Moreover, pθ(y|x) will denote the predictive probability w.r.t. model parameters
θ of x belonging to class y, p(y|x) ∈ {0, 1} the true probability of x belonging to class y,
and ŷ the prediction for instance x, i.e.

ŷ = argmax
y

{
pθ(y|x)

}
.

Further, when talking about the most informative instance, it would be in a pool-based
setting, seeing that in membership query synthesis and sequential selective sampling, ex-
amples are considered individually.

Uncertainty Sampling

As already mentioned, uncertainty sampling might be the most well known of the query
strategy frameworks of active learning. The idea is simple, query examples the model is
most uncertain about to gain more certainty in uncertain areas, typically around class bor-
ders. For probabilistic models, uncertainty sampling is quite unambiguous, and combined
with binary classification, one simply queries the instance for which the predictive prob-
ability is closest to 0.5. The next question to answer is how to compute the uncertainty
of an instance in a multiclass classification setting. The perhaps simplest method is to
query examples by the least confidence principle, selecting instances for which the learner
is least confident in its prediction. This is done by maximizing the variation ratio, given
by

variation ratio(x) = 1− pθ(ŷ|x).

The most informative example is thus given by

x∗LC = argmax
x

{
1− pθ(ŷ|x)

}
. (2.4)

When the predictive probability of x belonging to ŷ is small, i.e. the variation ratio is
large, it means that the model is uncertain in the prediction, as it would suggest that the
sum of the predictive probabilities of the other classes is large. It might indicate that the
instance is near a class border, making it a good candidate for querying.

However, least confidence uncertainty takes only one probability into account. Even
though it seems like the model is uncertain about the instance x, since the probability
pθ(ŷ|x) is small, one can not know how much more certain it is about x belonging to class
y than to e.g. class z. To incorporate this, margin sampling compares the probability of x
belonging to the most probable class and the second most probable class by looking at the
difference, or margin,

Mθ(x) = pθ(ŷ1|x)− pθ(ŷ2|x),

where ŷ1 and ŷ2 are the most probable and second most probable labels for x, respectively,
w.r.t. the model parameters θ. If the margin is large, the model is quite confident that x
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belongs to ŷ1 compared to other labels. If the margin is small, on the other hand, an in-
stance is almost as likely to belong to the second most probable class as the most probable
class, thus, informative instances minimize the margin,

x∗M = argmin
x

{
Mθ(x)}. (2.5)

A small margin implies that an instance lies in the border area between the two classes
considered, however, there is no information on remaining classes. Margin sampling takes
into account some of the information of the distribution of the other labels, although, when
the number of classes is large, a great part of the label distribution is still ignored.

An unceratainty sampling method considering all class probabilities, making a more gen-
eral measure, takes the entropy (Shannon, 1948) as a measure of informativeness. The
entropy, often referred to as Shannon entropy, is an information-theoretic measure, which
for a stochastic process, measures the average rate information is gained or produced. It is
given by

H(X) = −
∑
i

p(xi) log p(xi),

for a random variableX , and discrete probabilities p(xi) for the possible realizations ofX .
That is, unlikely events are more informative than likely events. In statistical mechanics,
entropy is the measure of chaos within a substance, which is not a bad interpretation in
information theory either. Interpreting chaotic as uncertain, the most informative instance
maximizes the entropy

x∗H = argmax
x

{
−
∑
i

pθ(yi|x) log pθ(yi|x)
}
, (2.6)

where yi for i = 1, .., C are the possible labels.

In a binary classification setting, all three presented methods reduce to the same, namely
choosing the instance which predictive probability is closest to 0.5. Figure 2.14 displays
plots of−p log p against p (left), and for all possible probabilities p, the entropy in a binary
classification setting against p (right). The right plot shows how p = 0.5 maximizes the
entropy. In a multi-class setting, the left plot can also give a good indication on how the
entropy behaves. The entropy when one class probability is close to 1, and the rest are
close to 0, would give a rather small entropy. On the other hand, picture a four-class
problem where all probabilities are at approximately 0.25, then the entropy is evidently
large.

Even though active learning has become important in machine learning, applying it to deep
learning is not straightforward (Gal et al., 2017). One of the challenges is the combination
of deep models relying on large amounts of data, while active learning tries to accomplish
the opposite. Second is that uncertainty acquisition functions, as the one discussed, often
are relying on model uncertainty, which is not always represented in deep learning models.
The predictive probabilities, i.e. softmaxed outputs of deep neural networks, does not
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Figure 2.14: −p log p plotted against p (left), and the entropy in a binary classification problem,
−
(
p log p+ (1− p) log(1− p)

)
, plotted against all possible probabilities p.

necessarily represent the confidence the model has towards its prediction. To overcome
the second challenge, Gal et al. (2017) introduce an active learning framework based on
Bayesian approximations using dropout (Gal and Ghahramani, 2016) and Bayesian CNNs.
The Bayesian CNN places a prior on the set of model parameters, θ ∼ p(θ), and defines a
likelihood as

p(y|x,θ) = softmax(fθ(x)),

where fθ(x) denotes the model output. Further, to approximate the posterior, inference is
made by applying dropout at test time, thus every forward pass is made by a sub-model of
the entire network, resulting in slightly different probabilities at each forward pass. The
approximation is done by taking an average over several forward passes, motivated by the
approximation

p(y = c|x,L) =
∫
p(y = c|x,θ)p(θ|L)dθ

≈
∫
p(y = c|x,θ)q∗γ(θ)dθ

≈ 1

T

T∑
t=1

p(y = c|x, θ̂t),

(2.7)

where θ̂t ∼ q∗γ(θ) is the activated parameters at forward pass t, q∗γ(θ) is the dropout
distribution, and T is the number of forward passes made. The first approximation can be
made since q∗γ minimizes the Kullback-Leibler (KL) divergence to the posterior p(θ|L).
This approximation for p(y = c|x,L) is then used in Equation (2.4), (2.5), and (2.6), to
maximize the variation ratio, minimize the margin, and maximize the entropy, respectively.

When using dropout at test time, another uncertainty measure could be to compute the
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variability in the predictions. Still, an approximation to pθ(y = c|x,L) is computed
according to Equation (2.7), then the variability is computed by

V (x) =
∑
i,j

(
p(y = i|x, θ̂j)− p(y = i|x,L)

)2
,

and maximized to obtain the most informative instance,

x∗DV = argmax
x

{∑
i,j

(
p(y = i|x, θ̂j)− p(y = i|x,L)

)2}
. (2.8)

Here i = 1, ..., C are the class labels, and p(y = i|x, θ̂j), j = 1, ..., T , is the probabil-
ity of x belonging to class i according to sub-model j. High variability will then imply
uncertainty in the model, seeing as it would indicate that different sub-models yield very
dissimilar results.

Query-by-Committee

Another query strategy framework is known as query-by-committee (QBC) (Seung et al.,
1992). A committee of models, C = {θ(1), ...,θ(T )}, representing different hypotheses,
are trained on L, then all committee members have a vote when predicting the label of an
instance x. x is considered informative if there’s high disagreement on its label among
committee members. The committee members should represent hypotheses within the
version space, which is defined by the set of hypothesis separatingL correctly according to
classes, or, in other words, are consistent with L. The underlying goal of QBC, and active
learning in general, is to minimize the version space, constraining the search within the
version space for the best model. The basic QBC setup is thus (i) a committee of models
representing different regions of the version space, and (ii) a measure of disagreement.

One way of constructing a committee of models is by using dropout similarly to Gal et al.
(2017) in uncertainty sampling, i.e. applying dropout at test time. Each prediction is
then performed by a sub-model of the entire network, thus, distinct predictions can be
seen as the prediction of different committee members. Another way to put it, committee
members are sub-models sampled from the entire model with the dropout distribution. The
next question is how many members a committee should have. Even small committees of
two or three members have shown good results (Seung et al., 1992), however, there is not
a common consensus on the optimal committee size in literature (Settles, 2009).

Measuring the disagreement is mainly done in two ways, vote entropy (Dagan and Engel-
son, 1995) and average Kullback-Leibler divergence (McCallum and Nigam, 1998). The
simplest strategy is vote entropy, which computes the entropy with V (y)

T as the probability
that x belongs to class y, where T is the number of committee members, and V (y) is the
number of votes y receives for x. As for entropy uncertainty sampling, the vote entropy is
maximized in order to find the most informative instance,

x∗V E = argmax
x

{
−
∑
i

V (yi)

T
log

V (yi)

T

}
,
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where, yi ranges over all classes.

The second approach aims to maximize the KL divergence between each committee mem-
ber and the committee as a whole. If the KL divergence is large between a certain com-
mittee member and the consensus, the committee member disagrees with the common
belief. For each committee member, the KL divergence between a member and committee
is defined by

KL(pθ(t)‖pC) =
∑
i

pθ(t)(yi|x) log
(
pθ(t)(yi|x)
pC(yi|x)

)
,

where yi, i = 1, .., C are the possible labels, pθ(t) represents a particular committee mem-
ber, while pC represents the whole committee, i.e. pC(yi|x) = 1

T

∑T
t=1 pθ(t)(yi|x). To

select instances, the average KL divergence over all committee members is maximized,

x∗KL = argmax
x

{
1

T

T∑
t=1

KL(pθ(t)‖pC)
}
.

In addition to these two disagreement measures, similar computations can be done with
other uncertainty measures, such as margin and variation ratio. Moreover, instead of com-
mittee members giving hard votes on the label of an instance, the posterior label proba-
bilities can be used, together with weights reflective upon the model uncertainties of the
committee members.

Expected Model Change

The third and last active learning query strategy framework to be discussed here is expected
model change, which queries instances that are expected to change the model the most if
their labels were known. Most common in this framework is expected gradient length
(EGL) (Settles and Craven, 2008b), which can be applied to any model using gradient-
based training. It interprets model change as gradient change, and selects examples that
are likely to change the training gradient the most given that their labels are known.

Let∇`θ(L) be the gradient of the objective function ` w.r.t. the model parameters θ, then
∇`θ(L ∪ 〈x, y〉) would be the gradient if 〈x, y〉 is added to L. Further, for computational
efficiency, this can be approximated with ∇`θ(〈x, y〉) since ∇`θ(L) ≈ 0 when the model
is trained to convergence. Since the label y for an instance x is not known, the gradient
length must be calculated as an expectation over all possible labels, and this expectation
should be maximized,

x∗EGL = argmax
x

{∑
i

pθ(yi|x)‖∇`θ(〈x, yi〉)‖
}
.

Seeing as the informativeness is calculated over all possible labels, the queried examples
are the ones that would have the greatest impact on the model parameters, independent of
the actual label queried.
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Similar to uncertainty sampling methods, EGL could also be performed in a Bayesian set-
ting, approximating the posterior p(y = c|x,L) as an average over several forward passes
with dropout, see Equation (2.7). However, considering EGL could be computationally
expensive if the feature space and label set is large, a Bayesian approach may not be ben-
eficial, as it would increase the computational cost even more.

2.3.3 State-of-the-Art
Although active learning decreases the data requirement in machine learning, the com-
putational cost, especially training time, can increase significantly. One reason for this
is the slow increase of the labelled set L, due to only one example being added at the
time, and consequently the model is re-trained numerous of times. Zhdanov (2019) argues
for adding a mini-batch of size B at each round, and uses the informativeness combined
with diversity in the mini-batch to choose examples. By clustering the unlabelled pool U
and choosing the examples closest to the cluster centres in each cluster, Zhdanov (2019)
shows good results compared to random sampling and uncertainty without clustering. The
clustering is done by K-means clustering, where the informativeness is incorporated into
the K-means objective function. This is why the examples closest to cluster centres are
of interest, and not the most informative example in each cluster, since informativeness
already is accounted for. The approach is tested on both NLP and computer vision tasks,
and performed on the Browse Nodes UK dataset17, the 20 Newsgroup dataset18, MNIST19

and CIFAR-1020.

In another bid to reduce computational cost in active learning, Shen et al. (2017) pro-
pose incremental deep active learning for named entity recognition (NER). Instead of re-
training from scratch at each round, newly labelled instances are mixed in with the old,
and the network’s weights are updated by training on the updated labelled set for a few
epochs. The computational cost is additionally reduced by the model architecture, con-
sisting of a convolutional character-level encoder, a convolutional word-level encoder, and
an LSTM tag decoder, a lightweight architecture for NER tasks. The model is used on
the OntoNotes-5.021 English and Chinese datasets, and examples are actively queried by
least confidence, maximum normalized log-probability, and Bayesian Active Learning by
Disagrement (BALD). When testing, the proposed CNN-CNN-LSTM model turns out to
be approximately twice as fast as a CNN-CNN-CRF model, and 44% faster than a CNN-
LSTM-LSTM model on the same datasets, while still obtaining good results. The active
learning algorithms all have similar results which outperform the baseline random sam-
pling. With only 24.9% of the available English data and 30.1% of the Chinese data, they
obtain 99% performance of the best model trained on the entire set.

Wang et al. (2017) also incorporate incremental learning in their novel active learning
framework, Cost-Effective Active Learning (CEAL). The efficiency comes from assigning

17http://amazonnodes.com/
18http://qwone.com/~jason/20Newsgroups/
19http://yann.lecun.com/exdb/mnist/
20https://www.cs.toronto.edu/~kriz/cifar.html
21https://catalog.ldc.upenn.edu/LDC2013T19
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pseudo-labels to high confidence examples, and not only focusing on examples of low
uncertainty. As well as identifying and querying low confidence examples, the CEAL
framework automatically assigns pseudo-labels to high confidence examples, without in-
cluding a human annotator, or other expensive oracles. When updating the model, the
labelled set, including the newly labelled uncertain examples, and the currently pseudo-
labelled examples are utilized. The framework is combined with a CNN, and applied to
image classification on the Cross-Age Celebrity Dataset22 (CACD) and the object dataset
Caltech-25623. The algorithm shows an improvement over random sampling and state-of-
the-art active learning methods.

Since deep models rarely represent model uncertainty, Gal et al. (2017) use dropout at
test time to do a Bayesian approximation, and use the approximated model uncertainty to
compute informativeness in four different ways. The query strategies are maximizing the
entropy, maximizing the variation ratio, maximizing the standard deviations, as well as
maximizing the difference between the entropy and expected entropy, i.e. the information
gained about the model parameters. The method is called Bayesian Active Learning by
Disagreement (BALD) by Gal et al. (2017). The baseline is random selection. The meth-
ods are performed with a Bayesian CNN on the well known MNIST dataset, as well as
on the skin cancer diagnosis dataset ISIC201624. Starting with 20 images in the labelled
set, ten images maximizing the acquisition functions are added to L at each loop, for 100
loops. After averaging over three runs, random sampling and maximizing the standard de-
viations gave similar results, while the other methods could obtain the same accuracy with
approximately half of the training set on the MNIST data. Moreover, BALD and max vari-
ation ratio did significantly better than their deterministic counterparts, while max entropy
did not improve notably.

To overcome the three main challenges of deep learning, which are stated in Section 2.2.3,
Huang et al. (2018) combine active learning with transfer learning, exploiting the architec-
ture, parameters, and knowledge from a pre-trained model while lowering labelling cost
with active learning. When transfer learning is not incorporated in active learning, the
labelling budget is often wasted on querying information held in pre-trained models. In
addition to overcome the challenge of designing a neural network, transfer learning also
lowers the training cost, since only the last layers are trained at each active learning loop.
To select instances for querying, Huang et al. (2018) also introduce the criterion distinc-
tiveness, which distinguishes the source task from the target task. There should be a trade-
off between the uncertainty and distinctiveness. The resulting algorithm, Active Deep
Model Adaption (ADMA), is applied with the pre-trained models AlexNet (Krizhevsky
et al., 2012), VGG (Simonyan and Zisserman, 2015), and ResNet (He et al., 2015), which
are all presented in Section 2.2.3, and further tested on the datasets PASCAL VOC201225,
Indoor, DOGvsCAT, and INRIA Person Dataset. ADMA gives a clearly better result than

22https://bcsiriuschen.github.io/CARC/
23https://authors.library.caltech.edu/7694/
24https://challenge.kitware.com/#challenge/560d7856cad3a57cfde481ba
25http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
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random sampling at PASCAL VOC2012 and Indoor26, and also performs overall better
than Active Incremental Fine-Tuning (AIFT) (Zhou et al., 2017) on DOGvsCAT27 and
INRIA Person dataset28.

26http://web.mit.edu/torralba/www/indoor.html
27https://www.microsoft.com/en-us/download/details.aspx?id=54765
28http://pascal.inrialpes.fr/data/human/
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Experiment

This chapter will give a thorough description of the experiments conducted for this thesis,
see Section 3.3, along with detailed descriptions of the employed models and data, in
Section 3.1 and 3.2, respectively.

3.1 Models

Two models are explored in the experiments, a CNN for sentence classification based on
Kim (2014), and an AWD LSTM inspired by Merity et al. (2017), and implemented in the
fastai library1. Both are outlined and described mathematically in the following.

3.1.1 CNN for Sentence Classification

The first model is a CNN for sentence classification, based on Kim (2014). It’s a relatively
simple model with an embedding layer of dimension d = 128, followed by a convolutional
layer with three filters of sizes k = 3, 4, 5, before a max pool layer and a dropout layer with
dropout probability p = 0.5, and finally a fully connected linear layer. The output is then
softmaxed to obtain class probabilities. An illustration of the architecture is provided in
Figure 3.1. The three filters capture different features, before the max pool layer identifies
the most salient information. The dropout probability p = 0.5 has been shown to give good
train and test errors (Srivastava et al., 2014), and is thus set accordingly. In the original
model, Kim (2014) makes use of pre-trained word vectors2 in the embedding layer, but in
this case, the embeddings are randomly initialized and learned from scratch. Pre-trained
word embeddings would probably give better results in terms of accuracy, nonetheless, the
interesting aspect is the effect of active learning. However, pre-training is an interesting
aspect, which will be pursued with the next model, see Section 3.1.2. The implementation

1https://docs.fast.ai/index.html
2https://code.google.com/archive/p/word2vec/
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Figure 3.1: Illustration of the model architecture of the CNN for sentence classification.

of the CNN itself, and the training loop, is taken from a publicly available repository with
an implementation of Kim’s model3.

Mathematically, the feature extraction can be described as follows. Let the input be a
sentence of length n, denoted by S = (w1, ..., wn)

T where wi, i = 1, ..., n represent
the distinct words or tokens in the sentence. Further, let xi ∈ Rd be the embedding
of dimension d of the token wi, and X = (x1, ...,xn)

T ∈ Rn×d the input matrix to
the convolutional layer, i.e. the concatenation of the word vectors of the n tokens in S.
The concatenation of words, xi, ...,xi+j will be denoted by xi:i+j , thus, X = x1:n. A
filter containing weights, W(k) ∈ Rk×d, detects features in the input sentence by taking
the convolution between the filter weights and windows of k words. A feature f (k)i is
produced by the convolution between W(k) and the window xi:i+k−1, i.e.

f
(k)
i = φ(W(k) ∗ xi:i+k−1 + b), (3.1)

where b is a bias term, and φ is the activation function, in this case ReLU. When applied
to all possible windows of size k × d, a feature map is constructed by concatenating all
the generated features, f (k) = (f

(k)
1 , ..., f

(k)
n+k−1). The max pool layer then extracts the

most important feature, f̂ (k) = max{f (k)}, which will be the feature associated with the
particular filter. That is, there are three main features reported after applying the three
filters.

The model is trained by minimizing the cross entropy loss with Adam optimization (Kingma
and Ba, 2014), and the learning rate is set to 10−3. Further, the model is trained for 50

3https://github.com/Shawn1993/cnn-text-classification-pytorch
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epochs with early stopping, which terminates training if the accuracy have not improved in
the last 250 iterations. The number of epochs is not set higher since the model has a small
amount of training data, and should not be trained for too long. The implementation, along
with adjustments for the relevant data and active learning, is made publicly available4.

3.1.2 AWD LSTM
The second model is somewhat more complex than the CNN described above. The ASGD
weight-dropped LSTM (AWD LSTM) is based on the work of Merity et al. (2017), which
propose an LSTM for word-level language modelling, applying DropConnect (Wan et al.,
2013) to the hidden-to-hidden weights, and averaged SGD (ASGD) (Polyak and Judit-
sky, 1992) for optimization. DropConnect is a generalization of dropout, where random
weights are set to zero, rather than random activations, such that every neuron receives
information from a random subset of the units in the preceding layer. Regular dropout
applied to RNNs might disturb the hidden state’s ability of maintaining long-term depen-
dencies, while DropConnect on the hidden-to-hidden weights does not affect the RNN in
the same manner. Further, ASGD is a form of SGD, where weights are updated by con-
sidering the average over the last I − T + 1 iterations, where I is the total number of
iterations, and T is some threshold value indicating when to start computing the average.

An LSTM can be described mathematically by Equation (2.3) where W i,W f ,W o are the
non-recurrent weights, and U i, Uf , Uo, U c the hidden-to-hidden recurrent weights. In the
AWD LSTM, DropConnect is applied to the recurrent weights, U i, Uf , Uo, U c, and the
same weights are reused over a full sequence. That is, a DropConnect mask is drawn at
random once per input sequence, so that weights that are set to zero stay zero for the length
of the input.

In the fastai implementation, there are four kinds of dropout, embedding dropout, in-
put dropout, weight dropout, and hidden dropout. The embedding dropout maps some
tokens to a zero vector instead of their embedding, while the input dropout zeros some
of the output from the embedding layer. The weight dropout is applied to the hidden-to-
hidden weights, and the hidden dropout is applied to the output of the layers of the RNN
before being used as input to the next layer. All four dropout varieties are constant for
each input sequence, and randomly initialized at the beginning of each sequence. The de-
fault dropout probabilities are set to (0.1, 0.6, 0.5, 0.2) for embedding, input, weight, and
hidden, respectively. These values are used in the experiments.

Moreover, a pre-trained AWD LSTM language model, trained on WikiText-103 is made
available through fastai, and a classifier is trained by applying ULMFiT, see Section
2.2.3. First, the last layer of the pre-trained LM is fine-tuned with the relevant data, run-
ning one cycle of one epoch of the one cycle policy (Smith, 2018), before the model is un-
freezed, and the entire model is fine-tuned with one cycle of 10 epochs and early stopping
monitoring the accuracy. The maximum learning rate is set to 10−2 and 10−3, respec-
tively. Next, the fine-tuned LM is used as encoder when training a classifier. The model is

4https://github.com/tinaolivia/cnn_al
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gradually unfreezed and fine-tuned with one cycle of one epoch until the three last layers
are fine-tuned. The maximum learning rates are set to 2·10−2, 10−2, 5·10−3, respectively.
The the entire model is unfreezed and fine-tuned with one cycle of 100 epochs and early
stopping, and a maximum learning rate of 10−3. The implementation is made publicly
available5.

5https://github.com/tinaolivia/lstm_al
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3.2 Data
The experiments are performed on two datasets, the IMDB movie reveiw dataset (Maas
et al., 2011) for sentiment analysis, and the AG News corpus6 (Zhang et al., 2015) for
topic classification. The datasets are divided into train, validation, and test sets, where the
test set represents the pool of unlabelled data. The train and test sets are updated by active
learning, while the validation set is constant and used for model validation.

• IMDB Movie Review data: a dataset containing movie reviews along with the
sentiment expressed by the writer. The labels are negative (0) and positive (1).
The dataset contains in total 50’000 movie reviews, whereas 25’000 are negative,
and 25’000 positive. There are no movie rated more than 30 times in the dataset,
since reviews towards the same movie tends to have correlated ratings. Initial train,
validation, and test sets are created by randomly sampling 90% of the data to be the
test set, and from the remaining 10%, 4% is randomly sampled as the train set. The
initial partition is thus 192 examples in the train set, 4842 examples in the validation
set, and 44’966 examples in the test set.

• AG News corpus: a dataset consisting of web news articles, in total of 496’835
articles from more than 2000 sources divided into the four main classes. The cate-
gories are world, sport, business and sci/tech. A subset of 127’600 documents are
used in this exploration, whereas 90% are randomly assigned to the test set, and
1.6% of the remaining 10% are randomly sampled as the train set. The initial split
is 196 examples in the train set, 12’667 in the validation set, and 114’737 in the test
set.

6http://www.di.unipi.it/ gulli/AG_corpus_of_news_articles.html

43



Chapter 3. Experiment

3.3 Experimental Setup
This thesis involves several experiments investigating different active learning query strate-
gies in a pool-based setting. The experiments look into the effect of adding randomness
to the active learning selection, clustering of the unlabelled pool of data, in addition to ex-
ploring a Bayesian approximation of model uncertainty in deep models, and how transfer
learning and active learning interact. The experiments are divided into four parts,

(1) Active learning query strategies,

(2) Exploring the data space by adding randomness and clustering of U ,

(3) A Bayesian approach,

(4) Transfer learning and active learning combined.

Two models are taking part in the experiments, a simple CNN mainly used for the three
first parts, and an AWD LSTM with pre-training for investigation of transfer learning.
The models have been described in Section 3.1. There are four query strategies tested,
least confidence sampling, entropy uncertainty sampling, margin uncertainty sampling,
and prediction variability when applying dropout, all described in Section 2.3.2 under
Uncertainty Sampling. Random sampling will be used as baseline. These will from now be
referred to as variation ratio, entropy, margin, variability, and random, respectively. Note
that variability only is relevant in part (3), since is relies on a Bayesian approximation,
and can not be computed deterministically. The experiments are performed using two
NLP datasets, the sentiment analysis IMDB movie review set, and the multi-class text
categorization AG News corpus, see Section 3.2. These will be referred to as IMDB and
AG in the following.

3.3.1 Active Learning Query Strategies
In the introductory experiments, the three active learning query strategies variation ratio,
entropy, and margin, are investigated and compared against random sampling. The CNN
is first trained on the initial labelled sets, which contains 192 ans 196 samples for IMDB
and AG, respectively. Then for each active learning loop, n = 1, 10, 100 instances are
selected from U and added to L, before the model is re-trained, until 1000 samples are
added in total. Some experiments might have more or less than 1000 examples annotated
in total, and when that being the case, it will be stated. There are four methods explored
in this part,

• Random: (baseline) n instances are sampled at random from U , annotated and
added to L. The model is trained on the updated labelled set, before n new instances
are sampled from U . The process continues until 1000 instances have been added to
L.

• Variation ratio: With the initially trained model, n instances are selected from U
according to Equation (2.4), annotated, and added to L. The model is re-trained
with the updated labelled set, before it selects n new instances from U in the same
manner. The process continues until a total of 1000 examples have been added to L.

44



3.3 Experimental Setup

• Entropy: With the initially trained model, n instances are selected from U accord-
ing to Equation (2.6), annotated, and added to L. The model is re-trained on the
updated labelled set, before n new instances are selected. The process continues
until a total of 1000 examples have been added to L.

• Margin: With the initially trained model, n instances are selected according to
Equation (2.5), annotated, and added to L. With the updated labelled set, the model
is re-trained, before selecting n new instances in the same manner. The process
continues until 1000 instances have been added to L in total.

The four methods can all be performed with both datasets, IMDB and AG, and with three
distinct values of n, namely n = 1, 10, 100, thus in total 24 experiments. However, all
experiments will first be performed on the binary classification IMDB data, then the meth-
ods yielding the best results are performed with the AG data, to see if the methods still
work in a multi-class classification setting and with another dataset. Thus, for this part, 12
experiments are performed to begin with. In addition to comparing the methods against
each other, for each method, the results for different n are also investigated. The idea is
to see the effect of n in active learning, since there is a concern that adding more than one
example will waste the labelling budget. Accounting for this concern is discussed in the
next part, Section 3.3.2.

3.3.2 Exploring the Data Space
A challenge with active learning when querying several instances at once is that there’s a
considerable chance of querying many similar examples. The informativeness of examples
are computed w.r.t. the knowledge the model retain at the time, and two similar examples
will have similar informativeness. However, if one of these are labelled, then at the next
active selection, the other is no longer considered informative, since the model has gained
new knowledge from the first example. In a setting where several examples are labelled
at once, both these examples would have been selected, wasting the labelling budget on
instances that are non-informative later in the process. In addition, when oversampling
in some areas, a lot of the data space is consequently ignored, and it could lead to an
undesired bias in the model. To avoid this, two methods aiming to explore larger parts of
the data space are described in the following.

Adding Randomness

The first and simplest approach is to add some randomness to the active selection. With
probability p, each of the n most informative examples is replaced by a randomly sampled
instance from U . Thus, some instances are queried based on their informativeness, and
some are sampled at random. Note that the informative examples in the final sample not
necessarily are the most informative examples in U . Hopefully, the randomness will add
some information about a larger part of the space when sampling more than one instance
at the time.

The experiment is performed for various probabilities, p = 0.05, 0.1, 0.25, 0.5, as well as
baselines p = 0 (no randomness) and p = 1 (random selection) for comparison. To start
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with the approach is tested with entropy with CNN on IMDB, for n = 10 and n = 100,
then more experiments are conducted if it seems feasible. Further, in both cases, n = 10
and n = 100, 100 active learning loops are performed. Thus, for n = 100, a total of
10’000 examples are annotated and added to L to see the long time effect for n = 100.

Clustering

The second approach is to cluster the unlabelled pool of data U , and make sure that there’s
no oversampling within the clusters. In cases where n examples are to be queried, the
data is clustered into n clusters, and only one example is queried from each cluster. That
one example is the one with the highest informativeness within its cluster. The aim is that
no parts of the space is oversampled, but at the same time, considering the informative-
ness. It’s expected that this approach will do fairly better than adding randomness to the
selection, since the exploration of the space is more targeted, and even in parts with low
informativeness, the most informative examples are queried.

To cluster the unlabelled data, the raw text documents are first vectorized by tf-idf with En-
glish stop words removed, then clustered by K-means clustering. Notice that the clustering
is independent of both the model and query strategy, unlike Zhdanov (2019), which created
a K-means algorithms only independent of the model, see Section 2.3.3. Consequently, the
method might behave differently in different situation. Each cluster is examined to find
the most informative document, and these are added to the labelled training set L. Since
Zhdanov (2019) incorporated informativeness into the K-means objective function, he can
query examples closest to the cluster means, ensuring highly informative examples and
high diversity in the sample. This approach yields more diversity than simply querying the
most informative example within a cluster, however, implementing an efficient K-means
algorithm is out of the scope of this thesis.

The procedure is conducted with CNN on both datasets, for varition ratio, entropy, and
margin, while random is used as a baseline. Further, the approach is tested for n = 10
and n = 100, and both random sampling and n = 1 are used as baselines. Nedless to say,
clustering is not performed for n = 1, as it would be exactly the same as not clustering.

3.3.3 A Bayesian Approach

Since deep models often fail to express model uncertainty (Gal and Ghahramani, 2016),
the next experiments focus on computing a Bayesian approximation, and compare to de-
terministic active learning, as seen so far. The experiments are conducted for all three
methods, variation ratio, entropy, and margin, where the acquisition functions stay the
same, namely Equation (2.4), (2.6), and (2.5). Nevertheless, the predictive probabilities
are computed according to Equation (2.7), rather than directly employing the softmaxed
model output. The number of forward passes performed to compute a Bayesian approx-
imation is set to T = 10. In addition, a fourth method, which will be referred to as
variability, will be investigated. Variability selects informative instances in accordance
with Equation (2.8), and has not been considered so far, for the reason that it depends on a
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Bayesian approximation.

All methods are tested for n = 1, 10, 100, and compared to the equivalent deterministic
approaches, except for variability, which lacks one. Random is also added as baseline. In
addition, the Bayesian approach is combined with clustering, and compared to determin-
istic methods with clustering when n > 1. Thus, there are five methods compared in the
final plots when n > 1, and three when n = 1, since clustering has no effect in this case.
For variability there are only three and two, respectively, since there are no determinis-
tic counterparts. The non-Bayesian and Bayesian approaches to variation ratio, entropy,
and margin, will be referred to as deterministic and Bayesian, respectively, and it will be
clear which method is discussed. Variability, on the other hand, will only be known as
variability.

3.3.4 Transfer Learning in Active Learning
In this section, a new model i considered, namely the AWD LSTM presented in Section
3.1.2. The model is an augmentation of a language model, pre-trained on the WikiText-103
corpus, and fine-tuned for the data and task at hand. The same datasets, IMDB and AG, are
used. The aim is to see how transfer learning and active learning works in combination, and
if it may speed up active learning. Since the AWD LSTM is considerably more complex
than the CNN in the preceding experiments, training will be longer, and training time can
thus not be compared for the two models. An idea is to rather compare training time for
AWD LSTM with and without pre-training, however, training an efficient language model
from scratch on the amount of data in the initial training set L would be impossible. In
addition, training the AWD LSTM is too time consuming to repeat the experiments without
pre-training as well.

In general, the idea is to perform the same experiments as in part (1), (2), and (3). However,
after seeing the results with the CNN in the foregoing experiments, and considering the
computational cost related to training the AWD LSTM, some experiments are eliminated.
That is, not all of the preceding experiments are repeated. The initial set up is variation
ratio, entropy, margin, variability, and random as baseline, with parameter n = 1, 10, 100,
and on datasets IMDB and AG. First, the best methods and parameter values are chosen
based on part (1), (2), and (3). These experiments are then performed in a binary classifica-
tion setting on IMDB, and the most interesting experiments are also tested for multi-class
classification on AG.
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Chapter 4
Analysis

In the following, the results are reported and discussed in accordance to the four parts
described in Section 3.3. The results are discussed while they are presented in Section 4.1,
then a summary of the principal findings and further discussion is provided in Section 4.2.

4.1 Results
The results are presented in plots, reporting on the validation accuracy and corresponding
loss, both plotted against the size of the training set L. In order to dispose of noise in
the results, and increase visibility of the effects of the methods, an average over up to ten
identical experiments are reported when possible. The results are further smoothed by
computing a moving average with window w, where w depends on the variations in the
results. The window w is reported together with the number of instances n added at each
active learning round.

In the first three experimental parts, Section 4.1.1, 4.1.2, and 4.1.3, all experiments are
performed with the CNN model, while the experiments in Section 4.1.4 are carried out
with the AWD LSTM. See Section 3.1 for a detailed description of the models, Section 3.2
for a presentation of the datasets, and Section 3.3 for an introduction to the experimental
setup.

4.1.1 Active Learning Query Strategies

This section reports on the findings regarding experiments with the vanilla deterministic
active learning query strategies, which are described in Section 3.3.1.

Figure 4.1 shows how the active learning query strategies compare to random sampling
when a single instance is added to L at each round, i.e. n = 1. The plotted results are
an average over three identical runs of the experiments, in addition, a moving average
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Figure 4.1: Deterministic variation ratio, entropy, and margin are compared to random sampling on
the IMDB dataset. n = 1, w = 50.

is computed to lower the noise even more. The moving average window is set to w =
50. The active learning strategies give fairly similar results. All are doing better than
random sampling in the beginning, up to L contains approximately 600 instances, then
random sampling does better towards the end. This makes sense, as active learning often
gives most effect in the beginning, since informative examples are more valuable when
the training set is small. Later, on the other hand, random sampling has the advantage of
exploring more of the data space, while the AL query strategies keep sampling in border
areas, or outliers. Nonetheless, it seems like all three active learning methods stay quite
stable, with entropy superior when the size of L is between 600 and 900. Variation ratio
and margin have similar results throughout. One would expect to see slightly better results
for AL compared to random, however, the model is a neural network, and there might
be an improvement when looking into Bayesian approximations, which is done later, in
Section 4.1.3.
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Figure 4.2: Deterministic variation ratio, entropy, and margin are compared to random on the IMDB
dataset. n = 10, w = 10.

Next, n is set to 10, and the same experiments are conducted, with results presented in
Figure 4.2. Three consecutive runs were performed and averaged, and a moving average
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with window w = 10 computed. To begin with, all four methods perform similarly,
while the results become more variable later on for the AL methods. There’s no apparent
advantage to active learning in the first rounds, as was seen for n = 1, supporting the
preconception regarding adding a larger sample to L without facilitating a way of ensuring
diversity in the sample. Random selection, on the other hand, will have more variety in
each sample, hence a more stable progress.

The same effects are evident also for n = 100 in a larger scale, see Figure 4.3. Here, an
average is taken over ten identical runs, while a moving average is computed with w = 2.
Variation ratio, entropy, and margin behave very similar in this situation, which makes
sense, since the three methods should be similar in a binary classification setting. However,
random initialization of weights, and machine accuracy can lead to small differences when
the informativeness is computed for different methods, and after one sample is added to L,
which are different for the three methods, the models will have different information, and
act differently from there. This difference is less evident in this case for several reasons.
First of all, when 100 examples are annotated in contrast to 1 or 10, machine accuracy does
not affect the sample as much. Second, when averaging over ten experiments, the effects
become less apparent. When n = 100, an active selection will oversample certain areas
of the data space, primarily border areas, in a larger scale than for n = 10. The samples
are thus not as useful as a random selection, since random adds more diversity, yielding a
sample containing both uncertain and certain examples.
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Figure 4.3: Deterministic variation ratio, entropy, and margin are compared to random on the IMDB
dataset. n = 100, w = 2.

However, an interesting observation when running the same experiment for a longer period
of time, is that the random validation loss starts increasing after passing approximately
2000 examples in the training set, see Figure 4.4. Here 100 examples are queried for 100
rounds, adding a total of 10’000 examples to L. The results presented are an average over
ten identical experiments, and a moving average is computed with w = 10. Still, while the
loss increases, insinuating that the model is overfitted, surprisingly the accuracy stays quite
high. The reported loss is cross entropy, which is computed according to Equation (2.2),
and is large when many predictive probabilities are close to 0.5. Hence, the model might
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Figure 4.4: Deterministic variation ratio, entropy, and margin are compared to random on the IMDB
dataset. 100 active learning rounds with n = 100, w = 10.

classify correctly, but with class probabilities close to 0.5. In one way, this would say that
in the long run, when selecting the most informative examples, the model will have clearer
class boundaries, which somewhat is the goal of active learning. Another unexpected
effect is that active learning performs worse than random sampling at first, then better
around half way through the experiment. One would on the contrary anticipate active
learning to have the most effect in the first loops. Here it seems like active learning works
well when random sampling doesn’t have more to add. This is most likely dependent on
the data, but could be an advantage, and motivation for exploring active learning with a
change of strategy through the process. By starting out with a method performing well in
early loops, then changing strategy to a method more effective in later loops, the overall
performance could improve.
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Figure 4.5: Comparison of n = 1, 10, 100 for variation ration (left), entropy (middle), and margin
(right).

Now, the effect of n on the active learning validation accuracy is inspected by comparing
the different n-values. Figure 4.5 displays the validation accuracy for n = 1, 10, 100 for
variation ratio (4.5a), entropy (4.5b), and margin (4.5c). The moving average windows are
set as in the previous experiments, that is, w = 50 for n = 1, w = 10 for n = 10, and
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w = 2 for n = 100. Evidently, for all three methods, n = 1 does best in the beginning,
and for entropy sampling, remains the best throughout. Moreover, also supporting the
foregoing discussion, n = 100 starts out the worst, but becomes better as the labelled set
grows. Hence, n as less to say when L increases. This also gives weight to the idea of
strategy change, both to obtain good results, and to lower computational cost. All three
values of n will be explored further in the other parts of the experiments.
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Figure 4.6: Deterministic entropy and margin compared to random on AG. n = 1, w = 100.
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Figure 4.7: Deterministic entropy, and margin are compared to random sampling on AG. n = 10,
w = 15.

Lastly, the methods are also explored in a multi-class setting with another dataset, namely
the AG news corpus. Since variation ratio and margin have produced similar results so
far, only entropy and margin are presented here. The vanilla deterministic methods in a
binary setting did not give groundbreaking results, and this is also reflected with the multi-
class AG dataset. Figure 4.6 exhibits the validation accuracy and loss for n = 1, where
a moving average of one single experiment is computed with w = 100. The methods are
fairly similar, as also seen with IMDB, however, here there is no benefit for active learning
in the first loops. Margin even performs worse than random sampling for the most part.
The same is noticeable for n = 10, see Figure 4.7, where the methods also yield similar
accuracy, nevertheless, in this case, entropy seems to perform the worst. The results for
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n = 10 is an average over three identical experiments, as well as a moving average with
w = 15. n = 100 is not included, since random selection was overall superior to the other
methods for n = 100 on IMDB. Additionally, since both n = 1 and n = 10 showed little
effect on AG, there is not reason to believe that n = 100 will be any better.

4.1.2 Exploring the Data Space
Next, two approaches for exploring more of the data space are examined, as an attempt to
avoid oversampling in uncertain areas. The approaches are presented in Section 3.3.2.

Adding Randomness
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Figure 4.8: Adding randomness to the active selection. Entropy uncertainty sampling on IMDB
with n = 10 (top), n = 100 (bottom). w = 10 in both cases.

The experiments in this section have only been performed with one method, namely
entropy, with n = 10 and n = 100. Different values for p have been investigated,
p = 0.05, 0.1, 0.25, 0.5, in addition to baselines p = 0 (no randomness) and p = 1
(random selection). These experiments are not performed for n = 1, since then 0 or 1 ex-
amples would be replaced at each round, while seeing the effect when replacing a fraction
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of each actively selected sample is more of interest. After conducting experiments for all
p, it was observed that p = 0.05 and p = 0.1 gave fairly similar results to p = 0, and were
thus omitted from the final plots.

Figure 4.8 exhibits the validation accuracy and loss for n = 10 (4.8a), and n = 100
(4.8b). In both cases, the final results are averaged over ten runs, and computed as a
moving average with w = 10. A fascinating observation is that p = 0.5 gives similar
results to random sampling short-term, but better results in the long run, and additionally
it outperforms entropy with no randomness. Still, it’s interesting to see that the loss for
n = 100 is less for no randomness, while the accuracy is better for p = 0.25 and p =
0.5. Note also that the loss for higher levels of randomness has the same tendencies as
completely random selection in the long run.

From these findings, it seems like some randomness can be an advantage, however, short-
term it is not better than completely random sampling. A potential explanation is that
when p = 0.5, half of the sample will be around class border, while the other half will
be random, creating a trade-off, in a sense, between uncertain and certain examples. This
method is not taken further in other experiments, even though it would be interesting to see
the interaction between adding randomness and some of the other methods. Furthermore,
this approach could be interesting to include in a change-of-strategy setup.

Clustering

The next approach is more targeted, in a sense, to dealing with the problems arising when
n > 1 in an active query. By rather clustering U , and only choosing the most informative
instance within each cluster, it’s guaranteed that no areas in the data space is oversampled,
while the informativeness of the whole sample is considered as well.

For n = 10, the pool of unlabelled data U is clustered into 10 clusters, before the most
informative example in each cluster is labelled and added to L. The results for not clus-
tering and clustering, along with random and n = 1 as baselines, are displayed in Figure
4.9. For the active learning methods with and without clustering, the presented results are
an average over three identical experiments, and a moving average is taken over a window
w = 15. For random sampling, the average is computed over ten experiments, and the
moving average window is as for the AL methods, namely w = 15. Lastly, for n = 1, an
average is computed over three consecutive experiments, and a moving average is com-
puted with w = 100. For all three methods, variation ratio (4.9a), entropy (4.9b), and
margin (4.9c), the improvement from not clustering to clustering is obvious. Furthermore,
clustering outperforms both baselines in all three cases. Apparently, the more targeted ap-
proach to obtaining diversity also ensures more valuable labelled data, at least short-term.
An unexpected observation is that for variation ratio, see Figure 4.9a, n = 10 without
clustering outperforms n = 1. This could be linked to the computation of the moving av-
erage. Until now, the moving averages of results in the same figures have been computed
with the same window size w, so that the results relative to other methods are unaffected.
An exception is Figure 4.5, which compares different values of n. However, when differ-
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ent values of n are compared, the window is larger for smaller n, as results are reported
more frequently, and are therefore noisier. If there are many dips in the results, this will
influence the moving average negatively.
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Figure 4.9: Deterministic variation ratio (top), entropy (middle), margin (bottom) in IMDB with
and without clustering. n = 10, w = 15. Random and n = 1 are added as baselines.
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Figure 4.10: Deterministic variation ratio (top), entropy (middle), margin (bottom) in IMDB with
and without clustering. n = 100, w = 10. Random is added as baseline.

There are also improvements for n = 100, see Figure 4.10. In this case, 100 active learn-
ing loops are performed, and a moving average with window w = 10 is computed to
get smoother results and better visibility. Random sampling is added as baseline, how-
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ever, n = 1 is omitted in these plots, due to the computation time of 10’000 rounds with
n = 1. In all three cases clustering improves from not clustering, although not compared
to random sampling before late in the process. Random sampling and clustering yield
quite close results, which could be explained by the size of n. When n = 100, there are
many clusters, whereas some contains barely any informativeness. Combined, the actively
selected samples do not hold considerably more information than the randomly selected
samples. It’s also interesting to see how the loss explodes in a similar manner to random.

After inspecting the results from clustering, it seems like entropy with n = 10 yields the
best results on IMDB, and is also tested in a multi-class setting on AG. The validation
accuracy and loss are presented in Figure 4.11. The experiments were performed three
times, and the average results computed, in addition to taking the moving average with
window w = 15. Unlike for IMDB, there’s no evident advancement from not clustering
to clustering, and there’s only a short interval where clustering performs better than not
clustering and random. The effect of active learning is dependent on the data and model,
and in this case, this specific CNN with entropy uncertainty sampling might not be the
best choice. It’s also important to be aware that the model is fairly simple, and developed
for sentence classification. In the original paper, Kim (2014) tests the model on, among
others, a single sentence movie review dataset. Even though many of the movie reviews in
IMDB are longer than one sentence, they are still considerably shorter than news articles,
which may explain the different results with AG.
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Figure 4.11: Deterministic entropy with and without clustering on AG. n = 10, w = 15. Random
selection is added as baseline.

4.1.3 A Bayesian Approach
Next, a Bayesian approach to approximating model uncertainty is looked into. The exper-
imental setup is presented in Section 3.3.3.

For all methods and n = 1, there’s an improvement from deterministic to Bayesian, see
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Figure 4.12, 4.13, and 4.14, for variation ratio, entropy, and margin, respectively. For
variation ratio, Bayesian does not perform better than deterministic until approximately
400 examples are labelled, and L contains 600 instances. Unfortunately, the approach
does not improve to random sampling either, besides in the first few iterations.

400 600 800 1000 1200
# training examples

64

66

68

70

72

74

ac
cu

ra
cy

 (%
)

deterministic
bayesian
random

400 600 800 1000 1200
# training examples

0.00800

0.00825

0.00850

0.00875

0.00900

0.00925

0.00950

0.00975

0.01000

lo
ss

deterministic
bayesian
random

Figure 4.12: Deterministic and Bayesian variation ratio on IMDB. n = 1, w = 100. Random is
added as baseline.

For entropy, however, deterministic and Bayesian behave almost the same, even though
the same tendencies as for variation ratio are present when the size of L grows beyond
600. See Figure 4.13. However, Bayesian is overall better than deterministic. In addi-
tion, compared to variation ratio, both deterministic and Bayesian entropy achieves better
results compared to random. In the last 200 loops, the accuracy of Bayesian and random
coincides, but note that the loss is less for Bayesian entropy than random.
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Figure 4.13: Deterministic and Bayesian entropy on IMDB. n = 1, w = 100. Random is added as
baseline.

Maybe most interesting are the results for margin, see Figure 4.14. Bayesian has a clear
and stable enhancement to deterministic, both in the sense of accuracy and loss, in addition
to performing best compared to random. Also here does random catch up with Bayesian
in terms of accuracy, while the loss for Bayesian stays lower.

59



Chapter 4. Analysis

400 600 800 1000 1200
# training examples

64

66

68

70

72

74
ac

cu
ra

cy
 (%

)
deterministic
bayesian
random

400 600 800 1000 1200
# training examples

0.0080

0.0085

0.0090

0.0095

0.0100

lo
ss

deterministic
bayesian
random

Figure 4.14: Deterministic and Bayesian margin on IMDB. n = 1, w = 100. Random is added as
baseline.

The last results to be presented for n = 1 are for variability compared to random selec-
tion, and are shown in Figure 4.15. As expected in active learning, the active approach has
largest impact in the first loops. Nonetheless, after a while, the progress slows down, again
after passing approximately 600 instances in the labelled set. The variability method does
not perform any better than any of the deterministic methods, while one would expect it
to perform similarly to the Bayesian approaches, seeing as it includes a Bayesian approx-
imation to the model uncertainty. However, this approach does not consider the values of
the predictive probabilities or the values of the Bayesian approximations, only the distance
between them, which could explain the poor results.

400 600 800 1000 1200
# training examples

64

66

68

70

72

74

ac
cu

ra
cy

 (%
)

variability
random

400 600 800 1000 1200
# training examples

0.00800

0.00825

0.00850

0.00875

0.00900

0.00925

0.00950

0.00975

0.01000

lo
ss

variability
random

Figure 4.15: Variability on IMDB. n = 1, w = 100. Random is added as baseline.

When n = 10, the Bayesian approaches will, in addition to being compared to the de-
terministic approaches, also be combined with clustering, and compared to deterministic
clustering. Variability will only be compared to variability with clustering.

The outcomes for variation ratio, entropy, and margin are presented in Figure 4.16, and
there are some of the same tendencies present for all three. For instance, the improvement
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(a) Variation Ratio
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(b) Entropy
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(c) Margin

Figure 4.16: Deterministic and Bayesian, with and without clustering, on IMDB. n = 10, w = 15.
Random is added as baseline.
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from deterministic to clustered deterministic is notable for all. While there is little differ-
ence between deterministic and Bayesian for variation ratio, see Figure 4.16a, there is a
clear boost for Bayesian when querying examples according to entropy and margin, see
Figure 4.16b and 4.16c, respectively. However, even though both clustering and Bayesian
improves results, the combination does not improve the results further for any of the three
methods. A possible explanation is that diversity in the sample is more important, or gives
more effect, than computing more accurate uncertainty. In addition, when only choosing
one example within a cluster, the difference between deterministic and Bayesian uncer-
tainty might be less in some clusters, leading to less differences among deterministic and
Bayesian examples in the actively selected samples.

For variability and n = 10, the active learning advantage that was evident for n = 1 in the
first loops is absent, as seen for the other methods as well. Still, there’s a significant im-
provement when clustering the unlabelled data before starting the active selection, but it’s
still not significantly better than random sampling. This might imply that when clustering
and actively choosing examples based on variability, the diversity obtained is also present
in the random sample. Moreover, based on these results, variability does not seem like
a feasible way of actively querying examples, and is therefore not considered in further
experiments. An idea could be to see if adding randomness could boost results even more.
Nevertheless, computing a Bayesian approximation is somewhat computationally expen-
sive, as it requires T forward passes, where T = 10 in this case, and is thus not pursued
further in this thesis.
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Figure 4.17: Variability with and without clustering on IMDB. n = 10, w = 10. Random is added
as baseline.

None of the discussed methods gave evidently better results than random selection for
n = 100, thus these results are omitted.

In winding up this part of the experiments, the methods have also been applied to the AG
news corpus, for assessment in a multi-class setting. Figure 4.18 shows how deterministic
and Bayesian entropy, with and without clustering, compares to random with n = 10. As
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Figure 4.18: Deterministic and Bayesian entropy, with and without clustering, on AG. n = 10,
w = 15. Random is added as baseline.

seen in Section 4.1.2, under Clustering, there is little to report, and only one method is
tested for that reason. The reason for the poor results in multi-class classification could be
due to the size of the validation set, combined with multi-class classification being a more
difficult problem, and that the CNN is poorly suited for the AG data. The validation set
was constructed to be almost three times as large as for IMDB, and the results might have
been better with a smaller validation set, seeing as the model is trained on small amounts
of data. However, repeating the 12 experiments already performed on AG would be too
time consuming. Still, a smaller validation set could be considered in the remaining part
of the experiments concerning transfer learning in Section 4.1.4. Another reason could
be, as mentioned in Section 4.1.2, is that active learning is data dependent, and it can be
challenging to generalize from one dataset to the next.

4.1.4 Transfer Learning in Active Learning
The last part of the experiments is concerning transfer learning in active learning, introduc-
ing a new model, an AWD LSTM, and ULMFiT, see Section 3.3.4. Most of the previously
conducted experiments are repeated with the new model, but all experiments regarding
n = 100 are eliminated, in addition to Bayesian with clustering, due to computational
cost. After seeing the foregoing results, the methods tested in this section will be entropy
and margin, with parameters n = 1 and n = 10. Instead of doing the experiments step by
step, like for the CNN, where the plain AL methods were presented first, then clustering,
and finally the Bayesian approach, all adaptations are directly compared, common to in
the previous section, Section 4.1.3. In the same manner as in part (1), (2), and (3), binary
classification on IMDB will be considered first, then some experiments are also conducted
for multi-class classification on AG.

Starting with n = 1, it’s important to point out that the process of training the LSTM 1000
times is extremely tedious. Since the label set is small, training the model once is not
too time consuming, on average it took approximately 10 minutes with the IMDB data.
However, that is 10’000 minutes for 1000 rounds, which is roughly 167 hours, and does
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not include the time to actively query examples. Therefore, the experiments were rather
run for a certain amount of time. After running for 6 days, random sampling managed
358 rounds, while entropy and margin accomplished 335 and 331, respectively. However,
when adding a Bayesian approximation for model uncertainty, which is more computation-
ally expensive, entropy finished 216 rounds, and margin 214. In the succeeding figures,
the results are plotted up to the shortest amount of rounds for that experiment. E.g. for
entropy, all variations are plotted up to a total of 216 examples are added to L.
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Figure 4.19: Deterministic and Bayesian entropy with AWD LSTM on IMDB. n = 1, w = 50.
Random is added as baseline.

The validation accuracy and loss for deterministic and Bayesian entropy with n = 1 are
exhibited in Figure 4.19, with random sampling as baseline. Due to computational cost,
only one experiment is conducted, and a moving average is computed with w = 50. It
is expected that the AWD LSTM will perform better than the CNN in general, seeing as
it is a more complex model, in addition to being pre-trained. Nonetheless, it’s interesting
to see that in this interval, up to 400 labelled instances are in the training set, entropy
with n = 1 and the CNN had better performance compared to random sampling. Here, the
deterministic approach performs notably worse than random, while the Bayesian approach
is better for only a few active learning rounds.
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Figure 4.20: Deterministic and Bayesian margin with AWD LSTM on IMDB. n = 1, w = 50.
Random is added as baseline.
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Further, the same results for margin are shown in Figure 4.20. Interestingly, deterministic
margin performs worse than deterministic entropy, while Bayesian margin is better than
Bayesian entropy. Bayesian margin also exhibits better results compared to random, and
attains some of the effects seen earlier in the first active learning loops. These results for
entropy and margin with n = 1 show how active learning can act differently with different
models. With more time and resources available, it would be interesting to see the effect
in a longer experiment.

The computation time for n = 10 is substantially lower than for n = 1, since the model
is re-trained 100 times, as opposed to 1000. Thus, the standard setup applies for n = 10,
where 1000 examples are added to L in total. The final results are averaged over three
identical experiments, and a moving average with w = 10 is computed. Further, deter-
ministic, with and without clustering, Bayesian, and random as baseline, are all presented
together.
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Figure 4.21: Deterministic and Bayesian entropy with AWD LSTM on IMDB. n = 10, w = 10.
Random is added as baseline.
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Figure 4.22: Deterministic and Bayesian margin with AWD LSTM on IMDB. n = 10, w = 10.
Random is added as baseline.

For entropy, see Figure 4.21, it’s interesting to see how both deterministic and Bayesian

65



Chapter 4. Analysis

gives better accuracy and loss than random sampling, while none of the deterministic
methods did better than random for n = 10 with the CNN. Further, clustering does not give
the same effect as seen with the CNN, it stays almost the same as deterministic without
clustering for the duration of this experiment. The results for margin are fairly similar
for deterministic and Bayesian, and are displayed in Figure 4.22. Moreover, clustering is
worse than all other methods for half of the experiment, then it shows sign of improving
towards the end. With more time, it would be interesting to observe a longer experiment, in
order to see if clustering keeps progressing in the same manner. Seeing that the clustering
algorithm not only is dependent of model, but also query strategy, here the latter is also
evident, which is not seen so far. Again, it’s illustrated how different models can respond
differently to active learning, and that it’s crucial to consider both model and data when
deciding on an active learning strategy.

Finally, the AWD LSTM with active learning is also applied to the AG news corpus. An
alteration from the CNN experiments is that the validation set is smaller, closer to the
size of the IMDB validation set. The initial labelled set stays unchanged, however, the
validation set now contains 4908 examples, and the test set 122’496 examples.
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Figure 4.23: Deterministic and Bayesian entropy and margin with AWD LSTM on AG. n = 1,
w = 50. Random is added as baseline.

Like for IMDB, re-training the model 1000 times is tedious, however, training time on
AG was significantly lower than on IMDB. The same setup for n = 1 was applied, and
after 6 days, deterministic managed all 1000 rounds, while the Bayesian approaches ac-
complished approximately half, 550 rounds. For n = 1, one figure displays both the
deterministic and Bayesian approaches to both entropy and margin, namely Figure 4.23.
Both deterministic methods, and random sampling, are very similar, which differs a great
deal from the IMDB results, which displayed very poor results for the deterministic ap-
proaches. However, bear in mind that the same experiment on IMDB only completed a
couple of hundred AL loops. Yet, it’s still clear that up to L contains approximately 400
examples, the results of the deterministic approaches is better on AG than IMDB. Further-
more, the Bayesian approaches surprisingly perform worse than the deterministic, while
for IMDB it showed a considerable improvement. Once more, it becomes transparent that
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Entropy Margin Random
IMDB 631.95 632.57 676.23

AG 117.81 117.27 107.86

Table 4.1: Average training time in seconds for AWD LSTM every time n = 1 examples are added
to L.

active learning is data dependent. Further, notice how the accuracy is comparable to the
IMDB results, even though AG has twice as many classes. This was not the case for the
CNN, where the accuracy for AG was lower than for IMDB. Nevertheless, the results now
might be better due to the validation set being smaller, or it could be that this model is a
better fit for AG than the CNN. As discussed in the previous sections, the CNN is con-
structed for sentence classification, and movie reviews are closer to sentences than what
news articles are. Second, the AWD LSTM is pre-trained on the WikiText-103 corpus,
which i closer to AG than IMDB. As discussed briefly in Section 2.2.2, pre-trained lan-
guage models are mainly trained on formal text documents, like verified Wikipedia articles
as in this case, and need more fine-tuning when encountering less formal text documents,
such as e.g. reviews. This is reflected in the training time of the model, see Table 4.1,
which reports the average training time when training the model between active selec-
tions, for both IMDB and AG. Training to convergence is five to six times as fast with AG,
confirming that the model needs far less fine-tuning than for IMDB. Even with a smaller
validation set when testing the CNN, it’s not expected that the accuracy is as high for AG
as IMDB, seeing that AG has more classes. It’s rather more intuitive to presume that most
of the improvement is because the AWD LSTM is a better fit for the AG news corpus.
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Figure 4.24: Deterministic and Bayesian entropy, with and without clustering, with AWD LSTM
on AG. n = 10, w = 10. Random is added as baseline.

Lastly, for n = 10, entropy and margin are presented in distinct plots, where three con-
secutive experiments are carried out and averaged, and a moving average with w = 10 is
computed. First looking at entropy, presented in Figure 4.24, deterministic, Bayesian, and
clustering give very similar results. Surprisingly, there is even a small deterioration from
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Figure 4.25: Deterministic and Bayesian margin, with and without clustering, with AWD LSTM on
AG. n = 10, w = 10. Random is added as baseline.

deterministic to both Bayesian and clustering. The results for margin, see Figure 4.25 are
very similar, there’s not a particularly visible change from deterministic to Bayesian, but
not either the deterioration seen for entropy. Like for entropy though, clustering has a
small negative effect also for margin. Apparently, active learning does not have an effect
on the AG news corpus, after observing the same with both the CNN and AWD LSTM.
In Section 4.1.3, it was argued that the absence of any effect could be due to the size of
the validation set, which was more than 12’000. However, the validation set was adjusted
to just below 5000 examples for the experiments with the AWD LSTM, which is roughly
the same size as the IMDB validation set. Still, there are no visible effects, raising a ques-
tion whether all examples in AG attain the same informativeness, at least w.r.t. these two
models.
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4.2 Discussion

This section contains a summary of the findings from Section 4.1.1, 4.1.2, 4.1.3, and 4.1.4,
along with some further discussion. While the first three parts are performed with a CNN,
the last is carried out with an AWD LSTM employing ULMFiT and a pre-trained LM.
Essentially, the last part introduces a new model and transfer learning, and the most inter-
esting experiments from the preceding parts are performed. All methods were first tested
in a binary classification setting on the IMDB movie review dataset, then some were tested
in multi-class classification on the AG news corpus. Active learning is highly data depen-
dent, hence, when implementing an AL strategy, it is important to investigate whether
it shows promising effects on the data in question. In this exploration, the active learn-
ing strategies had negative or no effect on AG, while there were encouraging results for
IMDB, thus, the findings discussed in the following are mostly concerning experiments on
IMDB.

To sum up some of the main findings, Table 4.2 contains short comments on the discoveries
related to the distinct methods on IMDB in this thesis. Take into considerations that these
comments reflect on active learning with the two models of this exploration, and are not
universal statements. The effect of active learning is dependent on the model and data,
which is demonstrated by some of the findings of this thesis.

The first part of the experiments, part (1), which results are presented in Section 4.1.1,
looked into three deterministic active learning query strategies without any particular ad-
vances, for different values of the parameter n. The methods are variation ratio, entropy,
and margin, and n was set to 1, 10, and 100. Active learning with n = 1 performed better
than random sampling for just below 400 active learning loops, however, for n = 10 and
n = 100, random performed similar to, or better, than the active learning methods for the
duration of the experiments. While all methods were best for n = 1 in the beginning, the
choice of n had less to say in the long run. Nonetheless, none of the methods excelled,
and random selection was overall better. This was reflected with both datasets, IMDB and
AG. However, in a longer experiment with 100 rounds of n = 100, the AL methods gave
slightly better results than random when L contained more than 6000 annotated examples.

The next section, Section 4.1.2, looked into ways of exploring more of the data space
with active learning. First, some randomness was added to the active selection, and with
50% randomness in the actively selected sample, entropy performed as good as random
short-term, and better in the long run. Still, this approach was only tested for entropy on
IMDB, for n = 10 and n = 100, and was not explored further. Second, the unlabelled
pool U was clustered into n clusters, then only the most informative example within each
cluster was queried. This was tested for variation ratio, entropy, and margin, for n =
10 and n = 100, and clustering definitely improved the accuracy. For n = 100 the
clustered approach gave almost the same results as random selection, but for n = 10,
it did better for all three methods. The clustering approach was inspired by Zhdanov
(2019), who showed better results compared to random than what has been seen here with
n = 100. However, his approach includes the informativeness in the K-means algorithm,
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Method Comment

Plain AL In general no better than random.

Improves from not clustering.
Clustering Better than random for n = 10, as good as

random for n = 100, and better in the long run.

Bayesian Mostly improves to non Bayesian.
Not better than clustering.

No notable improvement to
Bayesian w/cluster deterministic cluster.

Computationally expensive.

Works well for n = 10, better than without.
Transfer Learning Works poorly for n = 1, which is

computationally expensive as well.

Transfer Learning Improvement to deterministic.
and Bayesian

Transfer Learning No benefit in these trials.
w/clustering

Table 4.2: Summary of the main findings on IMDB.
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Variation Ratio Entropy Margin
Deterministic 46.19 46.37 47.53

Deterministic w/clustering 59.22 55.35 54.46
Bayesian 390.07 406.96 392.32

Bayesian w/clustering 455.64 416.72 402.87

Table 4.3: Average time in seconds for one active learning query for n = 10 with CNN on IMDB.

which allows him to query the examples closest to the cluster centres. These examples
will have high informativeness, as well as being diverse, as the centres are the points that
are furthest apart in the data space. In addition, when clustering independent of model and
query strategy, the clusters stay more or less the same through the whole process, while
in Zhdanov’s case, the clusters will change every time the model gains more information.
Moreover, Zhdanov (2019) filters the data before clustering, and only considers a pool
containing the βk ≥ k most informative examples, where k ∈ N is data dependent,
and β ∈ N is a parameter explored in the paper. Even though expanding the K-means
algorithm was out of the scope of this thesis, filtering could have been explored, as it gives
a more informative pool to cluster, which changes after each time the model gains new
knowledge.

In part (3), the last part featuring the CNN model, the uncertainty measures were computed
with a Bayesian approximation to model uncertainty, see section 4.1.3. The same three
uncertainty measures were used, with n = 1 and n = 10, in addition to a new method,
called variability. Variability did not perform better than random sampling, only as good
when combined with clustering for n = 10, and was thus not taken forward in other
experiments. For entropy and margin, a Bayesian approach did improve results for both
n = 1 and n = 10, however, for n = 10, clustering did better, and combining clustering
with the Bayesian approximation did not improve significantly to deterministic clustering.
An issue with a Bayesian approach is that it requires T forward passes per instance in
U , which significantly influence the computation time of an active selection. In this case
T = 10, and while clustering a deterministic approach only increases the computation
time of one active selection by approximately 30%, clustering a Bayesian approach takes
almost ten times as long as deterministic without clustering, see Table 4.3. The table
displays the average time in seconds for an active selection for the different methods and
variations when n = 10. For the CNN on IMDB, clustering with a deterministic approach
to model uncertainty would thus be preferred over a Bayesian approach. Nonetheless, for
n = 1, clustering is not an option, as there is no difference to not clustering. In these cases,
a Bayesian approach is clearly beneficial over deterministic for the CNN. The results with
Bayesian and n = 10 are pretty similar to Gal et al. (2017) when comparing deterministic
to Bayesian without clustering. However, Gal et al. (2017) obtain better accuracy when
comparing the Bayesian approaches to random, while in this exploration, Bayesian with
n = 10 is only as good as random for all four methods studied in this section. Moreover,
for future work, it could be interesting to see if a Bayesian approximation to uncertainty
would have an effect on Zhdanov’s clustering approach, seeing as the computation of the
uncertainty would affect the clustering.
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In the last part, part (4), see Section 4.1.4, the AWD LSTM was introduced with pre-
training and ULMFiT (Howard and Ruder, 2018). Entropy and margin were investigated,
while variation ratio was not explored in this part. The experiments with n = 100 were
eliminated, as well as Bayesian with clustering, seeing as it showed little effect and was
rather computationally expensive. The experiments performed were thus deterministic and
Bayesian with n = 1, and deterministic, with and without clustering, as well as Bayesian
with n = 10. All experiments were performed on both IMDB and AG. Due to the com-
putational cost of retraining the AWD LSTM 1000 times on IMDB, just about 215 rounds
were reported for n = 1. However, on AG, the model needed less fine-tuning, and could
be reported up to 550 AL rounds. Still, there were no considerable results on AG, hence,
only IMDB is discussed from here. An unexpected observation was that deterministic with
n = 10 performed better than deterministic with n = 1 compared to random, for both en-
tropy and margin. In fact, deterministic for n = 10 performed better than random, which
was not seen with the CNN for any method. Moreover, the Bayesian approaches showed
improvements to n = 1 and n = 10 for both methods. Clustering, on the other hand, did
not improve results, and for entropy, yielded close to the same accuracy as for determin-
istic without clustering. For margin, even though clustering did the worst to begin with,
towards the end of the experiment it could look like clustering had faster progress than
deterministic, Bayesian, and random. Clustering might be an advantage after the training
set passes 1200 examples. This could have been investigated further with more time avail-
able. In future work, it could also be of interest to apply ADMA (Huang et al., 2018) in a
text classification setting, and see if some of the studied advances, such as Bayesian and
clustering, can have a positive effect on the results.

A returning observation throughout the experiments has been that one method can be better
than another to begin with, then after a while, the roles reverse. For instance, for the plain
AL methods and n = 1, see Figure 4.1, AL started out better than random, however
stagnated before half way through. The opposite was evident in the long run for n = 100,
see Figure 4.4, as random did best in the beginning, then AL got the upper hand when
the number of labelled instances grew past 6000. Maybe even more impressive was when
adding 25− 50% randomness to entropy sampling, see Figure 4.8b. Active learning with
some randomness was first as good as random, then better in the long run experiment with
n = 100. These kinds of observations could motivate a study on active learning with a
change-of-strategy. By starting out with a method that works well in early loops, then
changing strategy during the active learning process, in order to always obtain the best
possible results. As seen in part (1), n = 1 is often a good choice to begin with, then a
larger n has less to say as the training set grows, see Figure 4.5. In part (4) for margin
and n = 10, a Bayesian approach was clearly superior until the end of the experiment,
however, past that point, deterministic clustering appeared to be beneficial. This could be
an interesting aspect in further work, where the benefits of several methods are exploited,
as opposed to finding one optimal AL method for the model and data in question.
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Chapter 5
Conclusion

Through this thesis, pool-based active learning in text classification has been investigated,
with various adaptations, and combinations of these. Motivated by scientific papers explor-
ing active learning combined with clustering in order to sample diverse mini-batches (Zh-
danov, 2019), Bayesian approximations to model uncertainty in deep models (Gal et al.,
2017), and active learning in combination with transfer learning (Huang et al., 2018), this
study involves similar methods independently, and combined. Two models have taken part
in the experiments, a CNN for sentence classification (Kim, 2014), and an AWD LSTM
with pre-training (Merity et al., 2017). The different methods have first been tested in
a binary classification setting on the IMDB movie review dataset, before also seeing the
effect with another dataset in a multi-class setting with the AG news corpus. Moreover,
the methods have been tested for n = 1, 10, 100, which controls the number of examples
queried at each active learning loop.

Through all experiments regarding the AG news corpus, active learning had close to no
effect on the results, leaving the question of whether all AG examples are of the same
informativeness, at least for the two models of this thesis, and uncertainty sampling. It is
peculiar to see that two such different models are showing the same effects when applying
active learning to the same dataset, nonetheless, it might imply that uncertainty sampling
is unsuited for this particular data. It is evident from the results of this thesis, however,
that active learning is highly data dependent, which coincides with prior beliefs. In the
following, remarks are hence mostly with regards to experiments on IMDB.

First looking at the CNN, plain active learning had little effect, yet, all adaptations im-
proved results. Even though both a Bayesian approach and clustering boosted the accuracy
independently, the combination of the two did not make further advancement. Clustering
appears as the optimal choice for this model and data, seeing as it gives better results than
Bayesian, as well as being far less computationally expensive. Still, in future work, it
would be interesting to see the combination of clustering and Bayesian when informative-
ness is contained in the K-means algorithm, like when Zhdanov (2019) performs clustering
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to obtain diverse mini-batches in active learning. In this thesis, the clustering has been in-
dependent of the query strategy, such that the clusters stays mainly the same after each
query. For Zhdanov (2019), on the other hand, the clusters are affected every time a query
is made, as it will change the informativeness of the unlabelled data. Thus, when cluster-
ing depends on the query strategy, there might be a larger consequence from a Bayesian
approximation, since a Bayesian approach will influence the informativeness, and hence,
also the clusters.

When the methods are introduced to a new setting with transfer learning, and a new model
with the AWD LSTM, the same conclusions do not apply. Here, a Bayesian approach for
both n = 1 and n = 10 is most beneficial. Clustering even deteriorate results, but leaves
an impression of working better later in an active learning process for margin uncertainty
sampling. In future studies, this is an objective to research further, as well as ADMA
(Huang et al., 2018) in a text classification setting, and maybe together with some of the
advances explored in this thesis.

After seeing the same active learning strategies with two different models and datasets,
it is definitely clear that the strategy is dependent on these factors. When employing ac-
tive learning, it is thus very important to reflect upon the task and data, before settling
for a model and strategy. An observation through many of the performed experiments is
that different methods excel at different points during the active learning process. Hence,
there could be a possibility of trying to change method during the active learning process,
proposing a change-of-strategy framework. E.g. for the CNN on IMDB, it could be a
good idea to start out with querying one example at the time, maybe in a Bayesian man-
ner, before increasing the size of the queried sample, and adding some randomness to the
active selection. With this strategy, there is no need to settle on one method, but necessary
to explore some of the advantages and disadvantages for several strategies for the task at
hand. As further work, it is appealing to explore the effect of strategy change, and if the
benefits from several methods can yield a better overall result.
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