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Summary

This thesis is a pilot study, conducted in order to investigate the possible relation-
ships between genotyped SNPs and the gene expression of a gene. We will use
the gene ITGAL as a prototype gene, and analyse the samples from individuals
with and without chronic bowel diseases. The selected SNPs are located within
the ITGAL gene. The gene expression of ITGAL is measured and preprocessed
with two different technologies, microarray and RNASeq. From the microarray
data we have 62 samples, and from the RNASeq data we have 75 samples. For
all samples, we have the ITGAL gene expression, disease status and SNP status
for the selected SNPs. For each sample from patients with chronic bowel disease,
it is specified whether the gene expression of ITGAL is measured in inflamed or
uninflamed tissue. The data set is compiled by the IBD research group at the De-
partment of Clinical and Molecular Medicine, NTNU. The methods considered in
this project are multiple linear models and generalized linear models, where the
response is the gene expression of ITGAL, and the covariates are disease status
and the interaction between disease status and SNP status. We are interested in
how the gene expression of ITGAL is affected when the disease status and SNP
status change. There are very few significant results for the microarray data when
we correct for multiple testing. For the RNASeq data, no covariates with the inter-
action term is significant even if we do not correct for multiple testing. We have
also compared the two groups of inflamed and uninflamed tissues, regardless of
disease. In addition, we have looked at the genotyped SNPs within a distance from
ITGAL, and the correlation between the SNPs with significant results. The next
step is to expand the pilot study to other genes.
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Chapter 1
Introduction

In this project we perform statistical analysis of data from persons with inflammable
bowel disease.

1.1 Inflammable bowel disease

Inflammable bowel disease (IBD) is a term to describe multiple chronic bowel
diseases, where the two most common are Crohn’s disease (CD) and ulcerative
colitis (UC). The difference between these diseases is that ulcerative colitis is just
in the colon, while Crohn’s disease can occur in any part of the gastrointestinal
tract. This is illustrated in Figure 1.1. In many cases, it may be difficult to tell the
difference between these diseases (Aabakken, 2016).

Crohn’s disease may cause inflammations through the whole digestive system, but
is most common in the small and large intestine. The inflammation can go straight
through the intestinal walls and create false openings (fistulas), which may lead
to infections, and narrow areas, which may cause twisting of the stomach (gastric
volvulus) (Aabakken, 2018).

Ulcerative colitis usually starts in the lower part of the large intestine and rectum,
but might spread through the colon and to the lower part of the small intestine.
The inflammation is usually limited to the mucosa. Areas with pus arises in the
colon. These areas are called crypt abscesses, and when these breaks, wounds ap-
pear where tissue fluid and blood seeps through (Aabakken and Halstensen, 2018).

We will in this thesis look at measurements from patients with Crohn’s disease in
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Figure 1.1: This figure shows the difference between Crohn’s disease and ulcerative
colitis. The red parts represent where the colon is inflamed.
Source: https://commons.wikimedia.org/wiki/File:Crohn%27s Disease vs Colitis ulcerosa.svg,
licensed under CC BY-SA 3.0

inflamed tissue (CDA), patients with Crohn’s disease in uninflamed tissue (CDU),
patients with ulcerative colitis in inflamed tissue (UCA) and patients with ulcera-
tive colitis in uninflamed tissue (UCU).

1.2 SNP-data

DNA is a self-replicating material which is carrier of genetic information. It de-
scribes how the organism will look and function, and these descriptions are inher-
ited from one generation to the next (Martinsen, 2019). SNP (single-nucleotide
polymorphism) is a position-based one-base-variation in the DNA. We will study
bi-allelic SNPs, which means that there are two base variants. This is illustrated in
Figure 1.2. To be classified as a SNP, the least frequent variant (the minor allele)
must exist in at least one percent of the population (if not, it is called a SNV). In a
genome-wide association study (GWAS) the objective is to search for associations
between a phenotype (for example a disease) and a SNP. In this project we will
focus on a selection of SNPs located inside and within a distance from the gene
ITGAL. As a running example, we will use the SNP with identification number
rs11150589, which is located in chromosome 16, position 30 482 494. According
to Jostins et al. (2012) this SNP is associated with ulcerative colitis.

2



Figure 1.2: SNP is a position-based one-base-variation in the DNA. As illustrated here,
the upper base-pair is C/G, while the lower base-pair is A/T.
Source: https://commons.wikimedia.org/wiki/File:Dna-SNP.svg, licensed under CC BY
4.0

1.3 Linkage disequilibrium and genotype correlation

Linkage disequilibrium (LD) is a non-random association of alleles, and is defined
as ”the difference between the observed frequency of a particular combination of
alleles at two loci and the frequency expected for random association” (Robinson,
2004, pp. 1586). It is a measure for correlation between the SNPs. A haplotype
is a combination of alleles in nearby loci in a DNA molecule. Ideally each SNP
contribute to two alleles as in Table 1.1.

SNP 1 SNP 2 Haplotype A Haplotype B
0 0 0-0 0-0
0 1 0-0 0-1
0 2 0-1 0-1
1 0 1-0 0-0
1 1 1-0 or 1-1 0-1 or 0-0
1 2 0-1 1-1
2 0 1-0 1-0
2 1 1-0 1-1
2 2 1-1 1-1

Table 1.1: Table showing connection between SNP status and haplotype.

As we do not have the haplotype data, we do not know if the SNP status 1 at SNP
1 and 1 at SNP 2 is a representation of haplotype 0-1 and 1-0 or 0-0 and 1-1.

3



Figure 1.3: Illustration of the transcription from DNA to RNA, and the translation of RNA
to protein.
Source: https://commons.wikimedia.org/wiki/File:Genetic code.svg, licensed under CC
BY-SA 3.0

Due to this, we prefer to calculate the genotype correlation coefficient, which is a
measure of composite LD. The formula is Corr(Y1, Y2), where Y1 and Y2 are the
SNP statuses of two SNPs.

1.4 Gene expression

Gene expression is the process where the information in a gene’s DNA sequence
is transcribed and translated to the structures and functions of the cell. Usually
the end products are proteins (Alberts et al., 2014, pp. 228). Gene expression
includes the transcription from DNA to RNA and (for coded genes) translation
of RNA to protein. This is illustrated in Figure 1.3. In this project we will look
at RNA measurements of ITGAL, or Integrin alpha L, which is a gene involved
in a variety of immune phenomena. We will analyse gene expression data from
two technologies: microarray data are from the Illumina human HT-12 expression
BeadChips, and RNASeq data from the sequencing (75 cycles single end reads)
Illumina HiSeq4000 instrument.

1.5 eQTL

The expression quantitative trait loci (eQTL) is according to Nica and Dermitzakis
(2012) ”the discovery of genetic variants that explain variation in gene expression
levels”. An eQTL is a locus which explains a fraction of the genetic variance of a
gene expression phenotype. In our case, the phenotype is the gene expression of
the ITGAL gene. In the statistical model for discovering eQTLs also disease status
and SNP status will be included. Regulatory variants are called cis or trans acting,
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and depends on the distance from the transcriptional start site (TSS). The TSS is the
location where transcription starts. The cis acting is within 1 megabase (Mb) from
TSS, on both sides, while the trans acting is within 5 Mb. The term 1 megabase
means that we are looking at the nearest 1 000 000 base pairs. However, there are
other ways to use the definitions cis and trans, where the terms describe whether
the regulation works directly or through other eQTLs. In this thesis, we will use the
terms local and distant cis-acting to describe the distance from TSS. As discussed
in Nica and Dermitzakis (2012), it might be difficult to detect differences between
causal and reactive expression changes. The aim of eQTL is to find the association
between SNPs and gene expression. In Chapter 3 we will look at SNPs located
inside and within a distance from the gene ITGAL and relate these to the gene
expression of ITGAL.

1.6 HUNT Cloud

HUNT Cloud is a digital infrastructure where researches can store, access and
analyse sensitive data in controlled environments. This includes research unrelated
to HUNT (Helseundersøkelsen i Nord-Trøndelag), as in this project. The data set
analysed in this thesis contains data on genotyped (and imputed) SNPs for the
participants in the study, and this makes it possible to identify them. For their
protection, it is necessary to perform the analysis in a safe environment. We have
used command line tools in Linux, and run R and Rstudio using X2Go. To access
the data, two factor authentication was necessary. More information on HUNT can
be found at https://www.ntnu.no/hunt.

1.7 Thesis outline

The structure of the thesis is as follows: In Chapter 2 we present the theory of the
statistical models used in this project, in order to understand the results. We also
present the structure of the data set. In Chapter 3 we look at the model set-up and
the connections to genetic models. The results from a running example are shown.
In Chapter 4 we look at the process for performing the calculations. The data set
is presented properly, the theory from Chapter 2 is applied on the data set and the
results are presented. We also expand our data set to investigate how this affects
the results. In Chapter 5 we discuss the results and suggest directions for further
work.

5



6



Chapter 2
Linear and generalized linear
models

In this chapter we will present the statistical methods used to perform eQTL anal-
ysis. We will use the gene expression of the gene ITGAL and the SNP with iden-
tification number rs11150589 located within the ITGAL gene as a running exam-
ple. From the microarray data we have 62 observations for this gene, and from
RNASeq we have 75 observations. For each observation we have the SNP status
and the gene expression represented as either a preprocessed value from the mi-
croarray technology or count data from the RNASeq technology. The microarray
data will be analysed with multiple linear regression and RNASeq with a variant
of generalized linear model. We also have information on disease status to include
in the model.

2.1 Multiple linear regression model

This presentation is based on Fahrmeir et al. (2013, pp. 73-168).

For our eQTL analysis, we will use the multiple linear regression (MLR) model.
We use the following notation:
Y is a (n× 1) vector of responses (random variables)
X is a (n× p) design matrix with rows xTi for i = 1, ..., n
β is a (p× 1) vector of regression parameters including intercept
ε is a (n× 1) vector of random errors

The classical normal linear regression model is Y = Xβ + ε. We define the linear

7



predictor as ηi = xTi β. The following is assumed:
1. E (ε) = 0
2. Cov (ε) = E

(
εεT

)
= σ2I

3. The design matrix X has full rank, rank(X) = p
4. ε ∼ Nn

(
0, σ2I

)
It is assumed that the observation pairs are measured from sampling units

(
xTi ,Yi

)
and that the observation pairs are independent from each other. We assume that
our sample is representative of some population of interest.

In the running example, the response vector Y is the microarray gene expression
of ITGAL. The design matrix is X = [Xe Xg], where e represents the covariate
disease and g represents the interaction between disease status and SNP status.
This means that in our running example, the vector Y and design matrix X (with
additive coding, this is explained in Section 3.1) will be

Y =



7.25
7.28
6.55
6.64
6.80

...
7.59



X =



0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 1 0 0 0 0 2 0



The columns 1-5 in the design matrix X represent the disease status. Column
1 shows N (which means samples without any bowel disease), column 2 shows
”Crohns disease inflamed (CDA)”, column 3 shows ”Crohns disease uninflamed
(CDU)”, column 4 shows ”ulcerative colitis inflamed (UCA)” and column 5 shows
”ulcerative colitis uninflamed (UCU)”. The columns 6-10 shows the interaction

8



between disease status and SNP status, so they show the SNP status multiplied by
respectively column 1-5. The observant reader may notice that there is no intercept
nor main effect of SNP in this design matrix. This is explained further in Section
3.1.2, and is used because it is easier to make contrasts with this parameterization.

2.1.1 Parameter estimation

In MLR the aim is to estimate the regression parameters β and σ2. We assume a
sample of independent random variables Y = Y1, ..., Yn. Each Yi has an univariate
normal distribution

f
(
yi;β, σ

2
)

=
1√
2πσ

· exp

(
− 1

2σ2
(
yi − xTi β

)2)
.

Assuming independent joint distribution for the sample Y

f
(
y;β, σ2

)
=

n∏
i=1

f
(
yi;β, σ

2
)
,

which gives the likelihood function

L
(
β, σ2; y

)
= f

(
y;β, σ2

)
.

It is common to use the natural logarithm of the likelihood, which is called the log-
likelihood function l

(
β, σ2; y

)
. This makes the calculations easier, and is allowed

because the log-function is a monotone function so these likelihood functions have
optimum at the same point. This gives

l
(
β, σ2; y

)
= ln

(
L
(
β, σ2; y

))
=

n∑
i=1

ln f
(
yi;β, σ

2
)
.

The parameters β and σ2 are unknown, but we may estimate them by maximising
the log-likelihood. The maximum likelihood estimates β̂ and σ̂2 are the values of
β and σ2 respectively so that

lnL
(
β̂, σ̂2; y

)
≥ lnL

(
β, σ2; y

)
for all β, σ2.

To find the maximum likelihood estimates, we want to maximise l
(
β, σ2; y

)
. This

is done by solving this set of equations with respect to the β-part:

∂l
(
β, σ2; y

)
∂β

= 0

9



which leads to the normal equations (in matrix notation)

XTXβ̂ = XTY.

The estimator for β̂ is

β̂ =
(
XTX

)−1 XTY,

with E
(
β̂
)

= β and Cov
(
β̂
)

= σ2
(
XTX

)−1. Here β̂ is multivariate normally
distributed, because it is a set of linear combinations of the random variables in Y
which we know are independent and normally distributed.
The maximum likelihood estimator for σ2 is found by maximising the likelihood
inserted the estimate for β̂, and the formula is

σ̂2 =
1

n

(
Y− Xβ̂

)T (
Y− Xβ̂

)
=

SSE
n
.

However, this is a biased estimator of σ2. It is known that

σ̂2 (n− p)
σ2

∼ χ2
n−p

so to get unbiased estimator, which is preferred, we use restricted maximum like-
lihood (REML). This gives

s2 =
1

n− p
SSE.

In our running example, we get

β̂diseaseN
β̂diseaseCDA
β̂diseaseCDU
β̂diseaseUCA
β̂diseaseUCU
β̂diseaseN :snp

β̂diseaseCDU :snp

β̂diseaseUCA:snp
β̂diseaseUCU :snp


=



4.589380
4.705833
4.591303
5.032506
4.707411
0.075255
0.087544
0.181252
0.047407


and

s2 = 0.21752 = 0.04731.
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2.1.2 Hypothesis testing

In single hypothesis testing, we want to test a null hypothesis against an alternative
hypothesis. In the MLR we study

H0 : βj = 0

H1 : βj 6= 0.

In hypothesis testing there are two different types of errors that can be made. The
”type I error” is when the null hypothesis H0 is rejected, even though H0 is true.
The other type of error, ”type II error”, is whenH0 is not rejected, even thoughH0

is false. This can be illustrated in a table:

Not reject H0 Reject H0

H0 true Correct Type I error
H0 false Type II error Correct

To choose whether H0 should be rejected or not, we can calculate a p-value. A
p-value is defined informally as the probability of our result or a more extreme
result, given that H0 is true. The H0 is chosen to be rejected at some significance
level α if the p-value is smaller than the chosen α. The p-value is based on a test
statistic, and for the MLR the test statistic for testing H0 is

T0j =
β̂j − 0

σ̂
√(

XTX
)−1
[j,j]

∼ tn−p,

where
(
XTX

)−1
[j,j]

is the j-th element of the diagonal of the
(
XTX

)−1 matrix. The
formula for our two-sided test uses the test statistic T0j and the observed test statis-
tic value t0j . The t-distribution is symmetric around zero, so the p-value can be
calculated as

p-value = P (T0j > abs (t0j))+P (T0j < −abs (t0j)) = 2 ·P (T0j > abs (t0j)) .

In our running example, the p-values are shown in Table 2.1. We choose the sig-
nificance level to be α = 0.05. This means that the diseaseN, diseaseCDA, dis-
easeCDU, diseaseUCA, diseaseUCU and diseaseUCA:snp are significant, while
diseaseN:snp, diseaseCDA:snp, diseaseCDU:snp and diseaseUCU:snp are not sig-
nificant.

11



Estimate Std. Error t value Pr(> |t|)
diseaseN 4.589380 0.101404 45.258166 4.90E-44

diseaseCDA 4.705833 0.217488 21.637173 5.67E-28
diseaseCDU 4.591303 0.126986 36.156030 4.99E-39
diseaseUCA 5.032506 0.117950 42.666573 1.03E-42
diseaseUCU 4.707411 0.081622 57.673367 1.66E-49

diseaseN:snp 0.075255 0.082796 0.908918 3.68E-01
diseaseCDU:snp 0.087544 0.108744 0.805049 4.24E-01
diseaseUCA:snp 0.181252 0.079748 2.272795 2.71E-02
diseaseUCU:snp 0.047407 0.063224 0.749829 4.57E-01

Table 2.1: Summary of the results from fitting a MLR to the running example. The number
2.16E-52 is the scientific notation of 2.16 · 10−52.

2.1.3 Model assessment

There are different ways to measure how well a model fits the data. For the MLR,
one way is to look at the total variability in the data, called the sums-of-squares
total (SST). The SST can be decomposed into one part that is explained by the
regression, sums-of-squares regression (SSR), and one part that is not explained by
the regression, sums-of-squares error (SSE). Using Ȳ = 1

n

∑n
i=1 Yi and Ŷi = xTi β̂,

then we have

SST = SSR + SSE

where

SST =

n∑
i=1

(
Yi − Ȳ

)2
SSR =

n∑
i=1

(
Ŷi − Ȳ

)2
SSE =

n∑
i=1

(
Yi − Ŷi

)2

We can use this to define the coefficient of determination R2, which is the ratio
between SSR and SST. This gives

R2 = SSR/SST = 1− SSE/SST.

12



(a) Normal QQ-plot. (b) Residuals vs fitted values.

Figure 2.1: Residual plots for the running example.

.
This R2 is the squared correlation coefficient between the observed and predicted
response. In our running example we have R2 = 0.9983. This means that more
than 99 % of the variability in the data is explained.

Another way to determine whether a model fit is good or not, is to look at a nor-
mal QQ-plot and the plot showing residuals versus fitted values. The residuals
ei = Yi − Ŷi are predicted values for the error terms εi. The normal QQ-plot can
be used to evaluate the assumption of normality of error terms. The residuals ver-
sus fitted values-plot shows if the residuals have non-linear patterns. This can be
used to test the assumption of a linear relationship between the response and the
covariates. For our running example, plots are shown in Figure 2.1. The normal
QQ-plot looks good because the values follow the straight line, while the plot of
the residual versus fitted values looks good because there are no clear trends.

The Anderson-Darling normality test can be used to test if a sample comes from a
normal distribution, so we have

H0 : The data follow a normal distribution

H1 : The data do not follow a normal distribution

and the test statistic, as reviewed in Das and Imon (2016), is

A2 = −
(

1 +
0.75

n
+

2.25

n2

)[∑n
i=1[(2i− 1) log

(
ẑ(i)
(
1− ẑ(n−i+1)

))
]

n
+ n

]
,

13



where ẑ(i) = Φ
(
[y(i) − µ̂]/σ̂

)
and Φ (·) is the cumulative distribution function of

an N (0, 1) random variable. To find the distribution of A under H0, see Table 2
in Stephens (1974). In the R package nortest (Gross and Ligges, 2015), a table
from another publication of Stephens is used.

2.2 Generalized linear models

In a regression setting, where Yi is the response and xi are covariates, we describe
the generalized linear model (GLM) consisting of three ingredients:
1) Distribution of Yi (random component)
2) Linear predictor ηi (systematic component)
3) Link function g (link between E(Yi) and linear predictor ηi)

2.2.1 Distribution of Yi

For a generalized linear model, the distribution of Yi can be written as a univariate
exponential family

f (yi | θi) = exp

(
yiθi − b (θi)

φ
+ c (yi, φ)

)
where θi is the canonical parameter, φ is the nuisance parameter and b and c are
known functions. It can be shown that E (Yi) = b′ (θi) = θ and Var (Yi) = b′′ (θi)·φ.
Further, V(µi) = b′′ (θi) is called the variance function. The linear model, presented
in Section 2.1, is a GLM with Yi ∼ N .

2.2.1.1 Normal distribution

f
(
yi;µi, σ

2
)

=
1√
2πσ

· exp

(
− 1

2σ2
(yi − µi)2

)
When Yi ∼ N

(
µi, σ

2
)
, then θi = µi, b (θi) = 1

2θ
2
i and φ = σ2. Thus E (Yi) =

b′ (θi) = µi and Var (Yi) = b′′ (θi) · φ = σ2.

2.2.1.2 Negative binomial distribution

A common parameterization for the probability mass function is

f (yi;µi, α) =
Γ
(
yi + 1

α

)
Γ
(
1
α

)
Γ (yi + 1)

(
µi

µi + 1
α

)yi ( 1
α

µi + 1
α

) 1
α

, yi = 0, 1, 2...
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According to Agresti (2015, pp. 247-250), α acts like ”a type of dispersion pa-
rameter”. The reason is that the negative binomial distribution can be seen as a
mixture model for count data. Conditional on a parameter λ, let Y be Poisson(λ).
The Poisson(λ) has mean and variance λ. Further, let λ have a gamma distribution.
Then it can be shown that marginally Y has negative binomial distribution. If we
look at Var(Yi) = µi+αµ

2
i in the negative binomial distribution, when α→ 0 then

Var(Yi)→ µi and the negative binomial distribution can be proven to converge to
the Poisson distribution. So in this sense α acts as a ”dispersion parameter”. When
α is fixed, then according to de Jong and Heller (2008, pp. 39), this is an univariate
exponential family with

θi = ln

(
µi

αµi + 1

)
, b (θi) = − 1

α
ln
(

1− αeθi
)
, φ = 1

Thus,

E (Yi) = b′ (θi) =
eθi

1− αeθi
=

µi/ (1 + αµi)

1− α · µi/ (1 + αµi)
= µi

Var (Yi) = b′′ (θi) · φ =
eθi

(1− eθi)2
· 1 =

µi (1 + αµi)

(1 + αµi)
2 − 2αµi (1 + αµi) + α2µ2i

= µi (1 + αµi) .

The variance function is b′′ (θi) = Var (Yi).

2.2.2 Linear predictor

The linear predictor is the same as for the linear model,

ηi = xTi β

where
xi is a (p× 1) vector
β is a (p× 1) vector

2.2.3 Link function

The link function g is used to connect E(Yi) = µi to the linear predictor ηi. We
have ηi = g (µi), and assume that g is monotone and twice differentiable. The
inverse function is called the response function: h (ηi) = µi. The canonical link is

ηi = θi ⇐⇒ g (µi) = θi.

15



Figure 2.2: The parameters θi, µi, β and the linear predictor ηi are connected.

2.2.3.1 Normal distribution

For the normal distribution the canonical link is g (µi) = µi.

2.2.3.2 Negative binomial distribution

For the negative binomial distribution, the canonical link is g (µi) = θi = ln
(

µi
µi+α

)
,

but we will use g (µi) = ln (µi).

2.2.4 Parameter estimation

In GLM, the aim is to estimate β and φ. We might as well estimate the parameters
µi, ηi or θi, as they are all connected as shown in Figure 2.2.
The log-likelihood function is written on the form

l (β) =
n∑
i=1

li (β) =
n∑
i=1

1

φ
(yiθi − b (θi)) +

n∑
i=1

c (yi, φ) .

To estimate the unknown parameters, we set s (β) = ∂l
∂β = 0. This is called the

score function, and s (β) is a (p× 1) vector. This gives

s (β) =
∂l

∂β
=

n∑
i=1

∂li
∂β

=

n∑
i=1

si (β)

where

li =
yiθi − b (θi)

φ
+ c (yi, φ) .
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To find the score function, each component is calculated by using the chain rule:

si (β) =
∂li
∂β

=
∂li
∂θi
· ∂θi
∂µi
· ∂µi
∂ηi
· ∂ηi
∂β

=
(
yi − b′ (θi)

)
· 1

b′′ (θi)
· h′ (ηi) · xi

= (yi − µi) ·
1

Var (Yi)
· h′ (ηi) · xi.

The score function is

s (β) =
n∑
i=1

(yi − µi) · xi · h′ (ηi)
Var (Yi)

.

2.2.4.1 Normal distribution

For the normal distribution, the log-likelihood function is

l (β) =
(√

2π
)−n

2 · σ−
n
2 · exp

(
−1

2

n∑
i=1

(yi − µi)2

σ2

)

and the score function is

s (β) =
n∑
i=1

(
yi − xTi β

)
· xi

σ2
.

This is easy to solve. The β̂ is as shown in Section 2.1.1,

β̂ =
(
XTX

)−1 XTY.

2.2.4.2 Negative binomial distribution

For the negative binomial distribution, the log-likelihood function is

L (µ, α, ) =
n∑
i=1

[
log Γ

(
yi +

1

α

)
− log Γ

(
1

α

)
− log Γ (yi + 1)

]

+
n∑
i=1

[
yi log

(
αµi

1 + αµi

)
−
(

1

α

)
log (1 + αµi)

]
.

Using the log-link, ηi = ln(µi) and ηi = xTi β, the score function is

s (β) =
n∑
i=1

(
yi − exp

(
xTi β

))
· xi · exp

(
xTi β

)
exp

(
xTi β

) (
1 + α exp

(
xTi β

)) (2.1)
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Newton-Raphson and Fisher scoring
For the negative binomial distribution the equation s (β) = 0 does not have a
closed form solution, but can be solved using Newton’s method (Quarteroni et al.,
2007, pp. 311):

β(t+1) = β(t) −H
(
β(t)

)−1
s
(
β(t)

)
where H (β) is the Hessian on the log-likelihood, also called the observed Fisher
information matrix,

H (β) =
∂l(β)

∂β∂βT
.

In statistics we use the expected information matrix F−1(β̂
(t)

) instead of the

observed Fisher information matrix H
(
β̂
(t)
)−1

, which gives the Fisher scoring
method:

β(t+1) = β(t) + F−1
(
β(t)

)
s
(
β(t)

)
. (2.2)

The expected Fisher information matrix is in general given as

F (β)[h,l] =
n∑
i=1

xihxil[h
′ (ηi)]

2

Var (Yi)
,

for an exponential family GLM model. This can be rewritten into

F (β) = XTWX (2.3)

where W = diag
(
h′(ηi)

2

Var(Yi)

)
. In our case, the negative binomial distribution with

the log-link, W = diag
(

exp(xTi β)
2

exp(xTi β)(1+α exp(xTi β))

)
. To find β̂, insert (2.1) and

(2.3) into (2.2). This is possible as long as α is fixed.

2.2.5 Properties of parameter estimators

It can be shown that asymptotically

β̂ ≈ Np

(
β, F−1 (β)

)
and even

β̂ ≈ Np

(
β, F̂−1

(
β̂
))

where F̂−1
(
β̂
)

is as in (2.3), but inserting β̂ into W to get Ŵ.
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2.2.6 Wald test

For the GLM we want to test the multivariate hypotheses

H0 : Cβ = d

H1 : Cβ 6= d

where C is a (r × p) matrix. An estimator for Cβ is Cβ̂, where

E
(
Cβ̂
)

= Cβ

Cov
(
Cβ̂
)

= C · Cov
(
β̂
)
CT = CF−1 (β)CT

The Wald test statistic is

w =
(
Cβ̂ − d

)T
[CF−1

(
β̂
)
CT ]−1

(
Cβ̂ − d

)
which is asymptotically χ2-distributed with r degrees of freedom (Fahrmeir et al.,
2013, pp. 286).

2.3 Several SNPs and multiple testing

In this project we want to test multiple SNPs, and for this we may use multiple
hypothesis testing. We assume that we have m hypothesis tests, which gives m
p-values, and then we choose a cut-off on the p-values at a local significance level
αloc to decide if we want to reject each null hypothesis. The null hypotheses with
p-value lower than αloc are rejected, and this gives R rejected null hypotheses.
The number of false null hypotheses that are rejected hypotheses is called S, and
the number of true null hypotheses that are rejected is called V (type I error). The
number of true null hypotheses that is not rejected is called U , and the number of
false null hypotheses that are not rejected is called T (type II error). This gives the
Table 2.2. The only quantities that are observed are R and m.

Not reject H0 Reject H0 Total
H0 true U V m0

H0 false T S m−m0

Total m−R R m

Table 2.2: Multiple testing set-up (Benjamini and Hochberg, 1995).
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2.3.1 Familywise error rate

The familywise error rate (FWER) is defined as the probability of one or more
false positive findings

FWER = P (V > 0)

where V is the number of type I errors in the m hypothesis tests. Here V is an
unobservable random variable. To control the FWER we find a local significance
level cut-off αloc to be used on each of the m hypothesis tests.

2.3.2 Bonferroni method

The Bonferroni method is a method for controlling the FWER. We have

FWER = P (R1 ∪ · · · ∪Rm) ≤
m∑
j=1

P (Rj) =
m∑
j=1

αloc = mαloc

whereRj is the event where we reject the hypothesis number j. Setting the FWER
to α, we solve

mαloc = α

which gives the local significance level

αloc =
α

m

for the Bonferroni method.
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Chapter 3
Analysing gene expression data

In this chapter, we will apply the theory from Chapter 2 on the dataset briefly
presented in Chapter 1. We will start by looking at design matrices and their con-
nections to genetic models, interactions between covariates and introduce the term
contrasts. Then we present the two technologies and use them both to analyse one
SNP.

3.1 Design matrices and contrasts

There are different ways to look at the effect of a SNP. In this thesis we will look
at additive SNP effects and relation between additive SNP effect and disease. For
completeness next we give a presentation of the additive, dominant, recessive and
codominant genetic models.

3.1.1 Genetic models

Let the most common variant of the SNP be called a, while the least common is
called A. The SNP statuses are represented by numbers, where aa = 0, Aa = 1
and AA = 2. First, the additive model assumes that the mean increase in the
response when comparing two different SNP statuses is linear dependent on the
number of as. The dominant model assumes that the change in the response de-
pends on whether there is any A in the SNP or not, regardless of how many. The
recessive model assumes that the only change in response is when the SNP is AA.
The codominant model assumes that the response changes, but not linearly, with
SNP status. This is illustrated in Figure 3.1.
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Figure 3.1: This figure shows different genetic models. On the vertical axis we have gene
expression on some scale.

The genetic models can be represented as codings in design matrices. We will
now consider a hypothetical data set with three individuals with SNP statuses =
[aa Aa AA]T . The additive model is linear, where the SNP status is a linear factor:

Xadd =

0
1
2


The recessive model represents whether the SNP status is AA or not:

Xres =

0
0
1


The dominant model represents whether the SNP status is aa or not:

Xdom =

0
1
1
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The codominant model can be regarded as one factor with three levels. The SNP
status aa is the reference level. The first column represents whether the SNP status
is Aa or not, and the second column whether the status is AA or not. The model
is then:

Xcod =

0 0
1 0
0 1



As mentioned above, we will use the additive encoding in this thesis.

3.1.2 Interactions

We now examine two different covariates (SNP status and disease status), to study
their effect in the linear predictor. These effects are not necessarily additive, and
there might be an additional effect because the effect of the SNP on the response
varies for different diseases. This means that we have to consider models with
an additional interactive effect as well. Consider 15 individuals, where these 15
have all possible combinations of the 5 diseases statuses and the 3 SNP statuses.
For our running example with the additive model, the β and design matrix for the
microarray data will be:

β =



βdiseaseN
βdiseaseCDA
βdiseaseCDU
βdiseaseUCA
βdiseaseUCU
βdiseaseN :snp

βdiseaseCDA:snp
βdiseaseCDU :snp

βdiseaseUCA:snp
βdiseaseUCU :snp


23



Xmicro =



1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 2 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 2 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 2 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 2 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 2



(3.1)

This means that in row 1 the sample has disease status N and SNP status 0, in row
5 the sample has disease status CDA and SNP status 1 and in row 15 the sample
has disease status UCU and SNP status 2. The RNASeq data does not contain any
samples with disease status N, so the β and the design matrix are

β =



βdiseaseCDA
βdiseaseCDU
βdiseaseUCA
βdiseaseUCU

βdiseaseCDA:snp
βdiseaseCDU :snp

βdiseaseUCA:snp
βdiseaseUCU :snp
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XRNASeq =



1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 2 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 2 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 2 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 2



(3.2)

This means that in row 1 the sample has disease status CDA and SNP status 0,
in row 5 the sample has disease status CDU and SNP status 1 and in row 12 the
sample has disease status UCU and SNP status 2.

We have chosen a parameterization with main effect of disease and interaction
between SNP and disease. Instead, we could have chosen a parametrization with
intercept, dummy variable coding of main effect of disease, linear (additive) main
effect of SNP and dummy variable coding of the interaction between SNP and
disease. In both of these two parameterizations we would be able to estimate the
same number of parameters, 10 for the microarray data and 8 for the RNASeq data.

3.1.3 Contrasts of interest

Assume we are interested in looking at the difference between inflamed and unin-
flamed tissues, independent of the disease status. Then the data are grouped into
two groups: CDA+UCA (inflamed) and CDU+UCU (uninflamed). To study this,
we multiply the β vector with a vectorC. TheC vector can be written in different
ways, depending on which elements of β we want the difference between. In our
case, and for the RNASeq data, there are four interesting C vectors, called C0,
C1, C2 and C3. The first is

C0 =
[
1 −1 1 −1 0 0 0 0

]
and shows the difference

(βdiseaseCDA + βdiseaseUCA − (βdiseaseCDU + βdiseaseUCU )) .
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This is the difference between inflamed and uninflamed tissues when the SNP
status equals 0. The second C vector is C1

C1 =
[
1 −1 1 −1 1 −1 1 −1

]
and shows the difference

βdiseaseCDA + βdiseaseCDA:snp + βdiseaseUCA + βdiseaseUCA:snp

− (βdiseaseCDU + βdiseaseCDU :snp + βdiseaseUCU + βdiseaseUCU :snp) .

This is the difference between inflamed and uninflamed tissues when the SNP
status equals 1. The third C vector is C2

C2 =
[
1 −1 1 −1 2 −2 2 −2

]
and shows the difference

βdiseaseCDA + 2βdiseaseCDA:snp + βdiseaseUCA + 2βdiseaseUCA:snp

− (βdiseaseCDU + 2βdiseaseCDU :snp + βdiseaseUCU + 2βdiseaseUCU :snp) .

This is the difference between inflamed and uninflamed tissues when the SNP
status equals 2. The fourth C vector is

C3 =
[
0 0 0 0 1 −1 1 −1

]
and shows the difference

(βdiseaseCDA:snp + βdiseaseUCA:snp − (βdiseaseCDU :snp + βdiseaseUCU :snp)) .

This is the difference between the effects of the change in SNP status (from 0 to 1
or from 1 to 2) for inflamed and uninflamed tissues. See above thatC3 = C1−C0.
Since we have additive coding of SNP, C3 can also be interpreted as C2 −C1.

For the microarray data, the β includes N, so we have

C0 =
[
0 1 −1 1 −1 0 0 0 0 0

]
and

C3 =
[
0 0 0 0 0 0 1 −1 1 −1

]
For both microarray data and RNASeq data, we do not have complete data, and
the contrast vectors will be adjusted. There are only one observation for CDA in
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our microarray data set, so we can not estimate βdiseaseCDA:snp. This means that
the contrast vectors change to

C0 =
[
0 1 −1 1 −1 0 0 0 0

]
C3 =

[
0 0 0 0 0 0 −1 1 −1

]
and similarly for other types of missing data.

3.2 Microarray and LM

For the microarray data, we will use LM. We have recieved data which are already
preprocessed, by so-called quantile normalization and transformed to the log2-
scale. As we will see in Section 3.3, the RNASeq data will be analysed on natural
log scale. Hence, the preprocessed microarray data was divided by log2(exp(1))
to more easily compare results across technologies. Using the methods presented
in Chapter 2 with design matrix (3.1), the fitted model for our running example
rs11150589 is presented in Figure 3.2 and Table 3.1.

Figure 3.2: Fitted model for rs11150589. The observed values are represented as dots.
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Estimate Std. Error t value Pr(> |t|)
diseaseN 4.589380 0.101404 45.258166 4.90E-44

diseaseCDA 4.705833 0.217488 21.637173 5.67E-28
diseaseCDU 4.591303 0.126986 36.156030 4.99E-39
diseaseUCA 5.032506 0.117950 42.666573 1.03E-42
diseaseUCU 4.707411 0.081622 57.673367 1.66E-49

diseaseN:snp 0.075255 0.082796 0.908918 3.68E-01
diseaseCDU:snp 0.087544 0.108744 0.805049 4.24E-01
diseaseUCA:snp 0.181252 0.079748 2.272795 2.71E-02
diseaseUCU:snp 0.047407 0.063224 0.749829 4.57E-01

Table 3.1: Summary of the fitted model for rs11150589.

There are only one observation of a sample with CDA, so there are no estimated
effect of SNP for CDA. Out of the covariates representing interaction between SNP
status and disease status, βdiseaseUCA:snp is the only significant one (at level 0.05).
To look at the effect of the difference between inflamed and uninflamed tissues,
we use the contrast vector C0 which is presented in Section 3.1.3. We study

H0 : C0β = 0

H1 : C0β 6= 0.

We have

C0β̂ = β̂diseaseCDA + β̂diseaseUCA − (β̂diseaseCDU + β̂diseaseUCU )

= 4.705833 + 5.032506− (4.591303 + 4.707411) = 0.439625

and the Wald test gives a p-value of

Wdisease = 0.01582864

This means that there is a significant effect of the difference between inflammable
and un-inflammable tissues. When we look at the contrast vector C3, we have

H0 : C3β = 0

H1 : C3β 6= 0

where

C3β̂ = β̂diseaseUCA:snp − (β̂diseaseCDU :snp + β̂diseaseUCU :snp)

= 0.181252− (0.087544 + 0.047407) = 0.046301
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(a) Normal QQ-plot. (b) Residuals vs fitted values.

Figure 3.3: Residual plots for rs11150589.

The Wald test gives a p-value of

WSNPi = 0.3832292

which means that there are no significant effect of the difference between in-
flammable and un-inflammable tissues when we are looking at the interaction be-
tween disease status and SNP status. The normal QQ-plot is shown in Figure 3.3a
and the plot for the residuals vs fitted values is shown in Figure 3.3b, and they look
good. The Anderson-Darling normality test has a p-value = 0.001265. This means
that even though the plots look good, we have to show caution when interpreting
p-values, because the error terms are not necessarily normally distributed.

3.3 RNASeq and GLM

We want to compare the gene expressions for patients with different SNP sta-
tuses and disease statuses. When analysing RNASeq data, the gene expression
is represented as count data. We used ESNG-number for ITGAL to find correct
transcript. For preprocessing, the transcript expression values were generated by
quasi alignment using Salmon and the Ensemble (GRCh38) human transcriptome.
Aggregation of transcript to gene expression was performed using tximport. Gene
expression values with CPM (counts per million) below one in more than three
samples were filtered out before differential expression analysis. The preprocess-
ing was performed at the group of Atle van Beelen Granlund, and we received
preprocessed count data.
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According to Holmes and Huber (2018), there are challenges in using count data.
This is because their distribution is not symmetric, and the variance and distribu-
tion shape of the data in different parts of the dynamic range are very different.

To not deviate too much from the notation used in Love et al. (2014a), we use
the index i for the gene and j for the sample in this section. To compare our
observations, due to the challenges in using count data, the data from different
samples have to be scaled with a factor. To calculate this factor, we use the data
from all available genes. In our case we have 58 051 genes. This scaling factor is
called a size factor, and is a different number for each sample. The size factor sj is
calculated using the R function estimateSizeFactors from the R package
DESeq2 (Love et al., 2014b), which uses the ”median ratio method” as described
in Love et al. (2014a). For our data set, the size factors are

s =



1.0467966
1.0031062
1.0885007
0.8742161
1.0313613

...
1.2620621


The distribution of the size factors for all samples in our data set are presented in
Figure 3.4.

Let Kij be the RNASeq count for gene i and sample j, and m the number of
samples, then we have

ŝj = mediani
Kij

(Πm
v=1Kiv)1/m

where the denominator gives the geometric mean. Further, we assume

Kij ∼ NB(µij , αi)

where NB(µij , αi) denotes the negative binomial distribution with mean µij and
dispersion parameter αi. In Chapter 2, we saw that α can be regarded as a kind of
dispersion parameter, and following Love et al. (2014a) we refer to α as a disper-
sion parameter here. We further assume that

µij = sjqij

log(qij) = xTj βi
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Figure 3.4: Distribution of size factors for all samples in our data set. The range of the
data is 0.46-1.35.

In this thesis we are only looking at one gene (ITGAL), so we use the negative
binomial model for one gene, omitting the i subscript. The observed count of the
ITGAL RNASeq gene expression is Kj , where

Kj ∼ NB(µj , α)

with

µj = sjqj

log(qj) = xTj β

Observe that µj is a product. Using a log-link this can be written as

log(µj) = log(sj) + log(xTj β)

where the term log(sj) is called an offset and is considered a constant and not es-
timated in the GLM routine. In the GLM, we also assume that α is known. In
GLM we have used φ = 1 for negative binomial, but it can also be estimated in
R. To estimate the dispersion factor α, the R function estimateDispersions
is used. This function calculates dispersion estimates for negative binomial dis-
tributed data, borrowing strength across all genes, see Love et al. (2014a) for de-
tails on the estimation. The dispersion estimate for ITGAL is

α̂ITGAL = 0.2202738.
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Figure 3.5: The distribution of dispersion factors for all genes in our data set.

The distribution of the dispersion factors for all genes in our data set are presented
in Figure 3.5.
To perform hypothesis testing for many genes simultaneously, the R function
nbinomWaldTest was considered, but it will not be used. This is because we
have a large enough sample size to perform hypothesis testing without borrowing
strength from other observations. We will instead use the R function glm with the
negative binomial family from the R package MASS (Venables and Ripley, 2002).
For comparison, we also show the result of running the nbinomWaldTest.

Using the methods presented in Chapter 2 with design matrix (3.2), the fitted model
for our running example rs11150589 is presented in Figure 3.6 and Table 3.2. We
want to plot the observed data. For plotting, it is recommended to use normalised
data, transforming the data to get the same variance. There are many ways to do
this. In Love et al. (2014a) it is recommended to use regularized logarithm transfor-
mation (rlog), which must be calculated based on all genes simultaneously. This
operation is time-consuming when we have many genes. Another way to trans-
form the data is to use a variance-stabilising transformation (vst), which stabilise
the variance, but this transformation does not take the size factor into account.
This means that rlog might be better, but due to this being very time consuming
and we are only interested in the ITGAL gene, we have chosen to use vst in this
thesis because it is faster. According to Love et al. (2014a) the value of rlog(Kij)
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for large counts is approximately equal to log2
(
Kij
sj

)
. The vst values are used

for plotting the observed values from the RNASeq data in Figure 3.6, Chapter 4
and Appendix C. The data shown are vst values divided by log(exp(1)), because
we work on the natural log scale, while the DESeq2 uses log2 scale. Table 3.3
shows the results using the R function nbinomWaldTest, which uses almost 4
minutes and perform the calculations for all genes, but for one SNP. As we can
see, the results are similar to the results from glm and we prefer using glm due to
running time and because we are only interested in the results for ITGAL.

Figure 3.6: Fitted model for rs11150589.

Estimate Std. Error z value Pr(> |z|)
diseaseCDA 7.464120 0.185182 40.306983 0.00E+00
diseaseCDU 6.209766 0.196842 31.546945 1.97E-218
diseaseUCA 7.209524 0.171076 42.142231 0.00E+00
diseaseUCU 6.369039 0.171791 37.074384 7.27E-301

diseaseCDA:snp 0.057709 0.157115 0.367307 7.13E-01
diseaseCDU:snp 0.330731 0.209419 1.579282 1.14E-01
diseaseUCA:snp 0.153356 0.142041 1.079659 2.80E-01
diseaseUCU:snp 0.177812 0.150583 1.180825 2.38E-01

Table 3.2: Summary of the fitted model for rs11150589 using the R function glm.

None of the covariates representing interaction between SNP status and disease
status are significant at level 0.05.
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Estimate Std. Error z value Pr(> |z|)
diseaseCDA 7.464142 0.182841 40.823126 0.00E+00
diseaseCDU 6.209770 0.194369 31.948423 5.68E-224
diseaseUCA 7.209495 0.168915 42.681150 0.00E+00
diseaseUCU 6.369016 0.169635 37.545339 0.00E+00

diseaseCDA.rs11150589 0.057687 0.155128 0.371867 7.10E-01
diseaseCDU.rs11150589 0.330730 0.206784 1.599404 1.10E-01
diseaseUCA.rs11150589 0.153386 0.140246 1.093696 2.74E-01
diseaseUCU.rs11150589 0.177833 0.148692 1.195985 2.32E-01

Table 3.3: Summary of the fitted model for rs11150589 using the R function
nbinomWaldTest.

To look at the effect of the disease groups, we use the contrast vector C0 which is
presented in Section 3.1.3. We study

H0 : C0β = 0

H1 : C0β 6= 0.

We have

C0β̂ = β̂diseaseCDA + β̂diseaseUCA − (β̂diseaseCDU + β̂diseaseUCU )

= 7.464120 + 7.209524− (6.209766 + 6.369039) = 2.094839

and the Wald test gives a p-value of

Wdisease = 1.522387E − 08.

This means that there is an significant effect of the difference between inflammable
and un-inflammable tissues. When we look at the contrast vector C3, we have

H0 : C3β = 0

H1 : C3β 6= 0

where

C3β̂ = β̂diseaseCDA:snp + β̂diseaseUCA:snp − (β̂diseaseCDU :snp + β̂diseaseUCU :snp)

= 0.057709 + 0.153356− (0.330731 + 0.177812) = −0.297478

The Wald test gives a p-value of

WSNPi = 0.382014
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(a) Normal QQ-plot. (b) Residuals vs fitted values.

Figure 3.7: Residual plots for rs11150589.

which means that there are no significant effect of the difference between in-
flammable and un-inflammable tissues when we are looking at the interaction be-
tween disease status and SNP status.

The normal QQ-plot is shown in Figure 3.7a and the plot for the residuals vs fitted
values is shown in Figure 3.7b, and they look good. Even though we have fitted a
GLM model with negative binomial distribution, it is not unusual to study residual
plots for trends. We have plotted the deviance residuals, as explained in Dunn and
Smyth (2018, pp. 297-300).

35



36



Chapter 4
eQTL analyses

4.1 Process overview

Figure 4.1: Flowchart explaining the operations performed on the gene expression and
SNP data.

To perform the analysis presented in Chapter 3 and this chapter, we have executed
a series of operations on the gene expression and SNP data. This is presented in
the flowchart in Figure 4.1. We will now explain the process. The starting point
is that the researcher want to perform an eQTL analysis for a specific gene. The
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gene name, in our analysis ITGAL, is related to our RNASeq data and microarray
data through an ESNG-number. We have used the R package biomaRt (Durinck
et al., 2005) to extract the appropriate ESNG-number. We also used biomaRt
to find the exact chromosomal position of the ITGAL gene, and from this the po-
sitions of SNPs inside and within a distance from the gene. We have used the
stand-alone tool vcftools (Danecek et al., 2011) to extract SNP data at these
locations (commands are presented in Appendix B). To identify a SNP other than
by chromosomal position, we have used the rs coding scheme number, also ob-
tained from biomaRt. The rs numbers are presented in Section 4.2.

The RNASeq data and the microarray data are connected to the clinical data, with
information on disease status. From here, the data are treated differently. For
the microarray data we use multiple linear regression, as presented in Section 3.2
and GLM Wald test. For the RNASeq data we use generalized linear models, as
presented in Section 3.3, and GLM Wald test.

4.2 SNPs inside the ITGAL gene

In this pilot study, we have analysed the gene expression of ITGAL. This is a gene
at chromosome 16, position 30 472 658 - 30 523 185. We now look at SNPs inside
the ITGAL gene, positions 30 482 494 - 30 518 041. In our data, this interval con-
tains nine genotyped SNPs, and we have transformed their chromosomal position
to rs coding scheme number, as shown in Table 4.1. We have performed nine sep-
arate analyses, one for each genotyped SNP, for both the microarray and RNASeq
data.

Chromosomal position rs number
16:30482494 rs11150589
16:30490515 rs34166708
16:30490776 rs146094039
16:30492823 rs1064524
16:30493000 rs11574941
16:30495412 rs2285459
16:30500761 rs3087438
16:30516565 rs34838942
16:30518041 rs2230433

Table 4.1: Table showing connection between chromosomal position and rs number.
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4.2.1 Microarray data

Our data set contains nine genotyped SNPs. The number of observations for each
disease and SNP status is shown for each genotyped SNP in Table 4.2 for the
microarray data. There is only one sample with CDA in this study, which makes
it hard to estimate the general effect for samples with this disease. For the other
diseases there are between 10 and 24 samples, which makes it possible to fit linear
models. The ITGAL samples sorted by their SNP status and disease status are
shown in Figure 4.2. We notice that the samples with UCA have higher ITGAL
values than the others.

CDA CDU N UCA UCU
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

rs11150589 1 0 0 2 7 2 4 3 3 2 7 7 5 12 7
rs34166708 1 0 0 11 0 0 10 0 0 16 0 0 24 0 0
rs146094039 1 0 0 11 0 0 10 0 0 16 0 0 24 0 0
rs1064524 1 0 0 11 0 0 10 0 0 14 2 0 19 5 0
rs11574941 1 0 0 8 3 0 6 3 1 12 3 1 20 4 0
rs2285459 1 0 0 2 7 2 4 3 3 2 7 7 4 11 9
rs3087438 1 0 0 4 6 1 5 5 0 5 7 4 8 12 4
rs34838942 1 0 0 11 0 0 10 0 0 16 0 0 24 0 0
rs2230433 0 1 0 5 4 2 4 3 3 8 7 1 18 5 1

Table 4.2: Number of observations for each disease status and SNP status for each geno-
typed SNP for the microarray data.
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4.2.2 RNASeq data

The number of observations for each disease and SNP status is shown for each
genotyped SNP in Table 4.3 for the RNASeq data. There are no normal samples
(labeled N) in this study, so the parameters βdiseaseN and βdiseaseN :snp will not be
estimated here. For the other diseases there are between 17 and 20 samples, which
makes it possible to fit linear models. The ITGAL values from samples sorted by
their SNP status and disease status are shown in Figure 4.3. We notice that the
samples with CDA and UCA, the inflamed tissues, have higher gene expression of
ITGAL than the others.

CDA CDU N UCA UCU
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

rs11150589 5 9 4 5 11 1 0 0 0 6 9 5 6 10 4
rs34166708 18 0 0 17 0 0 0 0 0 20 0 0 20 0 0
rs146094039 18 0 0 17 0 0 0 0 0 20 0 0 20 0 0
rs1064524 15 3 0 17 0 0 0 0 0 17 3 0 18 2 0
rs11574941 15 3 0 15 2 0 0 0 0 17 3 0 17 3 0
rs2285459 5 9 4 5 10 2 0 0 0 5 10 5 5 11 4
rs3087438 6 10 2 8 8 1 0 0 0 8 8 4 8 9 3
rs34838942 18 0 0 17 0 0 0 0 0 20 0 0 20 0 0
rs2230433 6 11 1 4 12 1 0 0 0 12 6 2 12 7 1

Table 4.3: Number of observations for each disease status and SNP status for each geno-
typed SNP for RNASeq data.

4.2.3 Minor allele frequency

We study biallelic SNPs, so there is a frequency for the most common allele (the
major allele) and for the least common allele (the minor allele) (Nica and Der-
mitzakis, 2012). The minor allele frequencies (MAF) for the nine genotyped SNPs
in this project are found by using vcftools and are presented in Table 4.4. The
MAF influences the sample size for the number of persons with each genotype for
the SNPs. If the two copies of a SNP that one person receives from his/her parents
are inherited independently, then we would expect on average the following:

SNP status Number of samples with this SNP status
0 n · (1−MAF)2

1 n · 2 ·MAF(1−MAF)
2 n ·MAF2
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Here n is the total number of samples. The MAF for the nine genotyped SNPs
are presented in Table 4.4. This explains the fact that we only have observed SNP
status 0 for SNPs rs34166708, rs146094039 and rs34838942.

MAF
rs11150589 0.4771
rs34166708 0.0115
rs146094039 0.0112
rs1064524 0.0601
rs11574941 0.1035
rs2285459 0.4784
rs3087438 0.3911
rs34838942 0.0059
rs2230433 0.2952

Table 4.4: Minor allele frequency for the nine genotyped SNPs.

4.3 Results from SNPs inside the ITGAL gene

4.3.1 Microarray data

For the microarray data, theCβ̂ and results from the Wald test are shown in Table
4.5, using the contrast vectors C0 and C3 for all SNPs. As there are only one ob-
servation of CDA, we can not estimate an interaction between SNP and the disease
CDA. The contrast C3 is between the groups UCA and UCU+CDU. Looking at
the difference in effect of the interaction between disease and SNP for these dis-
ease groups, this is significant at level 0.05 for two SNPs (when we do not correct
for multiple testing): rs1064524 and rs3087438. When we correct for multiple
testing using the Bonferroni method (with m = 13), only the result for rs1064524
is significant.

The plots and results for the microarray data are presented in Section 3.2 and Ap-
pendix C. The only significant covariate with interaction at level 0.05 (when we do
not correct for multiple testing) is βdiseaseUCA:snp, which is significant for almost
all SNPs. The exceptions are rs34166708, because there are no interaction terms
here, and rs11574941, because this is borderline when we use the limit 0.05. When
we correct for multiple testing using the Bonferroni method (with m = 57), only
βdiseaseUCA:snp for rs3087438 is significant.
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SNP Data C β̂ Wald test

rs11150589 CDA has no change in SNP status
0.43962416 0.1293071
0.0463003 0.7558989

rs34166708 All SNP status equals 0
0.5386151 0.02750116
0 NA

rs1064524
CDA and CDU have no change 0.4634648 0.04251931
in SNP status 0.5691513 0.002489612

rs11574941 CDA has no change in SNP status
0.6216958 0.01137627
-0.2402065 0.2589941

rs2285459 CDA has no change in SNP status
0.43250705 0.1389713
0.05709455 0.701793

rs3087438 CDA has no change in SNP status
0.2780598 0.2568068
0.2891405 0.03036489

rs2230433 CDA has no change in SNP status
0.5841934 0.01582864
-0.1252623 0.3832292

Table 4.5: Results for the microarray data. The SNPs rs34166708, rs146094039 and
rs34838942 have identical results because only SNP status 0 is observed for all samples,
so only results for rs34166708 are shown. For each SNP there are two rows, where the
first row shows C0 and the second shows C3. Wald test is performed and presented with
7 significant digits.

4.3.2 RNASeq data

For the RNASeq data, the Cβ̂ and results from the Wald test are shown in Table
4.6, using the contrast vectors C0 and C3 for all SNPs. None of the effects of
the interaction between SNP status and disease status are significant here, even if
we do not correct for multiple testing (where we would have used the Bonferroni
method with m = 13).

The plots and results for the RNASeq data are presented in Section 3.3 and Ap-
pendix C. There are no significant SNPs with the interaction term, even when
we do not correct for multiple testing (where we would have used the Bonferroni
method with m = 51).

44



SNP Data C β̂ Wald test

rs11150589 Complete data set
2.0948389 1.522387E-08
-0.2974784 0.382014

rs34166708 All SNP status equals 0
1.864325 6.73849E-16
0 NA

rs1064524 CDU has no change in SNP status
1.9754792 4.501684E-17
-0.8165941 0.1427063

rs11574941 Complete data set
1.8223896 5.091212E-13
0.3318308 0.6185999

rs2285459 Complete data set
2.0511837 4.897462E-08
-0.2316014 0.4829886

rs3087438 Complete data set
1.9975641 7.031259E-10
-0.2010314 0.5453224

rs2230433 Complete data set
1.7956275 4.50224E-07
0.1263684 0.7529079

Table 4.6: Results for the RNASeq data. The SNPs rs34166708, rs146094039 and
rs34838942 have identical results because only SNP status 0 is observed for all samples,
so only results for rs34166708 are shown. For each SNP there are two rows, where the
first row shows C0 and the second shows C3. Wald test is performed and presented with
7 significant digits.
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4.4 SNPs within a distance from ITGAL

As explained in Section 1.5, investigation of the SNPs around ITGAL is called
local and distant cis-acting. In our case, the local cis-acting, from 29 472 658 to
31 523 185, includes 419 SNPs. The distant cis-acting, from 25 472 658 to 35 523
185, includes 1044 SNPs. In this section, we look at the distant cis-acting SNPs.

We will just look at the SNPs where our data has at least SNP status 0 and 1 for
all disease statuses (CDA, CDU, UCA and UCU). The microarray data contains
only one sample with CDA, so we have chosen to only perform analysis from
the RNASeq data. Out of our 1044 SNPs, there are 468 SNPs which fulfill the
restrictions. Using the Wald test with significance level 0.05, we have 36 signif-
icant SNPs. When we correct for multiple testing with Bonferroni method (with
m = 468), there are no significant SNPs. The positions of the 36 SNPs are pre-
sented in Figure 4.4, and their correlation is presented in Figure 4.5.
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Figure 4.5: Correlation plot showing the correlation between the 36 SNPs. The column
names are their position on chromosome 16, and the row names are their corresponding rs
scheme number.
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Chapter 5
Discussion and conclusion

This thesis is a pilot study to investigate how a change in SNP status affects the
gene expression of ITGAL for different inflammable bowel diseases. We have
fitted different models to describe this relationship. These models can be used
to investigate gene expressions and SNPs inside and within a distance from other
genes as well. We now present some of the challenges in the data analysis and the
interpretation of the results, conclusion and further work.

Microarray and RNASeq data The microarray data and the RNASeq data come
from different technologies and have different samples. The results can therefore
not be compared directly. It would be interesting if a method could be developed
so that all data - from both platforms - could be analysed together. At present, we
have just compared the p-values from similar tests.

Independent measurements In the microarray dataset, there are 8 out of 54
persons with two observations, and in the RNASeq dataset, 22 out of 53 persons
have two observations. When there are two observations from the same person,
there is one observation from inflamed tissue and one observation from uninflamed
tissue. In these cases, the observations are related. For the microarray data we
fitted linear mixed effects models with person as random intercept. This gave
close to identical results as using LM, so we will not use the random intercept
model. For microarray data the intra class correlation was estimated to 0.21-0.37,
see Table 4.1 in Mathisen (2018). For the RNASeq data we fitted a GLMM, which
gave similar results. Based on this, we concluded that we could perform analysis
with LM and GLM and assume that observations from the same person can be
considered independent. However, this might not always be the case and care
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should be taken to address this problem. To our knowledge a mixed effects version
of DESeq is not available.

Interpretation Our main task in this project is to look for any relationship be-
tween change in the SNP status and the gene expression of ITGAL for the different
diseases. We have considered models with an interaction term. This means that
the effect is depending on both SNP status and disease status, so the effect of a
change in SNP status is different for each disease. The use of plots of the type in
Figure 3.2 and 3.6 have helped in presenting the results.

Sample size Even though our data set is large compared to other data sets in ge-
nomics we consider it small from a statistical perspective. The methods to acquire
the data are expensive, so the sample size is affected by economical limitations.
Small data sets (from a statistical perspective) makes it hard to fit precise models.
For the microarray data, we have only one patient with the disease CDA, so we
could not estimate any effect of the interaction between SNP status and the disease
CDA. Some of the genotyped SNPs in this project have low MAF-values, which
means that the least common allele is rarely observed, and in a small data set they
might not even occur at all. For the genotyped SNPs rs34166708, rs146094039
and rs34838942 there are only observations with SNP status 0. For the microarray
data, the genotyped SNP rs1064524 have no observations with SNP status 2, while
there are 55 observations with SNP status 0 and 7 observations with SNP status 1.
For the RNASeq data, rs1064524 and rs11574941 have no observations with SNP
status 2. Overall, we have to take care when interpreting the results.

Multiple testing In this thesis, we have used α = 0.05 as significance level
for all tests before correcting for multiple testing. In Section 4.4 we looked at
m = 468 hypothesis tests for the 468 SNPs which fulfilled our restrictions. Using
the Bonferroni method to calculate a local significance level, we get αloc = α

m =
0.05
468 = 1.0684 · 10−4. With this local significance level, no SNPs are significant.
In general when we use multiple testing, we have to be precise on what we are
inspecting. Considering the Wald tests for C3β for all SNPs from RNASeq, we
have 1044 hypothesis tests, which gives αloc = 0.05

1044 = 4.7893 · 10−5. If we in-
clude C0β we have 2088 hypothesis tests, and if we include microarray data as
well, we have 4176 hypothesis tests. The local significance level will be respec-
tively αloc = 2.3946 · 10−5 and αloc = 1.1973 · 10−5. This means that the number
of significant covariates depends on which hypothesis tests we decide to look at.
When we analyse more than one gene, this problem will be even more prominent
and has to be addressed properly.
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Running time To choose whether we wanted to use the function glm or
nBinomWaldTest, we investigated the running time. For one SNP, the func-
tion nBinomWaldTest used 222.370 seconds (which equals 3 minutes and 42
seconds). This is in large contrast to glm, which only used 0.007 seconds. Con-
sidering few SNPs, both functions could have been used. However, in Section
4.4 there are 1044 SNPs, and performing the nBinomWaldTest on all of them
would have used almost 2.7 days. Due to this and the relatively large sample size
for RNASeq data, and because of the similar results for these functions (presented
in Section 3.3), we have chosen to use glm in this thesis.

Conclusion and further work We have fitted multiple linear models and gener-
alized linear models for investigating the relation between gene expression, SNP
status and disease status. When we look at how the gene expression of ITGAL is
affected by the SNP status for different diseases, we have some significant results
for the microarray data. For the RNASeq data there are no significant results, even
if we do not correct for multiple testing using Bonferroni method. We have also
compared the two groups of inflamed and uninflamed tissues, regardless of disease.
We have significant results for microarray data here as well, but only if we do not
correct for multiple testing. For the RNASeq data, there are no significant results at
all. For further work, we could look at gene expressions and corresponding SNPs
for other genes.
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Appendix A
R code

A.1 Linear models for microarray data

1 f i l e l o c # change t o your d i r e c t o r y
2 #now r e a d i n g 012− f i l e s made wi th v c f t o o l s
3

4 f i l e p r e f =” ITGALout . 0 1 2 ”
5 mat= r e a d . t a b l e ( p a s t e ( f i l e l o c , f i l e p r e f , sep =” ” ) ) [ ,−1]
6 dim ( mat )
7 #432 9
8 #We have 432 samples wi th SNP s t a t u s f o r t h e 9 SNPs
9

10 pasnames=rownames ( mat ) = scan ( p a s t e ( f i l e l o c , f i l e p r e f , ” . i ndv ” , sep =” ” )
, what=” s ” )

11 s n p i d s = colnames ( mat ) = r e a d . t a b l e ( p a s t e ( f i l e l o c , f i l e p r e f , ” . pos ” , sep =
” ” ) , h e a d e r =FALSE) [ , 2 ]

12

13 #We have 432 i d s , and on ly a few of t h o s e a r e IBDs
14 # Working t o s p l i t names o f p e r s o n s
15 df = d a t a . f rame ( ” i d ”=pasnames , s t r i n g s A s F a c t o r s = FALSE)
16 df $ i d
17 df %>% d p l y r : : rowwise ( ) %>% d p l y r : : m u t a t e ( new i d = s u b s t r i n g ( id ,

f i r s t = n c h a r ( i d )−2, l a s t = n c h a r ( i d ) ) ,
18 b a t c h = s u b s t r i n g ( id ,

f i r s t = n c h a r ( i d )−3, l a s t = n c h a r ( i d )−3)
19 ) −> snp . i d s
20 snp . i d s $ i d 0 =NA
21 snp . i d s $ i d 0 [ snp . i d s $ b a t c h ==0]= snp . i d s $new i d [ snp . i d s $ b a t c h ==0]
22 snp . i d s
23 t a b l e ( snp . i d s $ b a t c h )
24 t a b l e ( snp . i d s $ i d 0 )
25 # b a t c h and newid t o g e t h e r d e f i n e s p e r s o n s , same newid i s n o t same

57



p e r s o n i f n o t b a t c h i s t h e same
26

27 any ( t a b l e ( snp . i d s $new id , snp . i d s $ b a t c h ) >1)
28 # we on ly c o n s i d e r b a t c h =0 f o r t h e s e a n a l y s e s
29 # FINAL snp . i d s t o be used f u r t h e r
30

31 # now r e a d i n g gene e x p r e s s i o n
32 ge= r e a d . csv ( p a s t e ( f i l e l o c , ” e x p r e s s i o n S e t ITGAL IFNG . csv ” , sep =” ” ) )
33 # dummy v a r i a b l e cod in g f o r t h e 5 groups , we a l s o make a f a c t o r
34

35 # making c l a s s f o r p a t i e n t s
36 a p p l y ( ge [ , 4 : 8 ] , 1 , sum )
37 ge . c l a s s = r e p ( ”N” , dim ( ge ) [ 1 ] )
38 ge . c l a s s [ ge [ , 5 ] = = 1 ] = ”CDA”
39 ge . c l a s s [ ge [ , 6 ] = = 1 ] = ”UCA”
40 ge . c l a s s [ ge [ , 7 ] = = 1 ] = ”CDU”
41 ge . c l a s s [ ge [ , 8 ] = = 1 ] = ”UCU”
42 ge . c l a s s
43 t a b l e ( ge . c l a s s )
44 a p p l y ( ge [ , 4 : 8 ] , 2 , sum )
45

46 # p a t i e n t i d from ge
47 df = d a t a . f rame ( i d = as . c h a r a c t e r ( ge [ , 1 ] ) , s t r i n g s A s F a c t o r s = FALSE)
48 df %>% d p l y r : : rowwise ( ) %>% d p l y r : : m u t a t e ( new i d = s u b s t r i n g ( id ,

f i r s t =1 , l a s t =3) ) −> ge . i d s
49 ge . i d s
50 # h e r e 108S and 108F i s t h e same person , b u t two t i s s u e s −

i n f l a m e d ( S ) and u n i n f l a m e d ( F )
51

52 # match ing ge and snp p a t i e n t s
53 i d g e<−match ( ge . i d s $new id , snp . i d s $ i d 0 )
54 i d g e
55 sum ( ! i s . na ( i d g e ) )
56 l e n g t h ( ge . i d s $new i d )
57

58 ”SNP”= g t . d f $new g t [ i d g e [ ! i s . na ( i d g e ) ] ]
59

60 snpge = d a t a . f rame ( ”ITGAL”=ge $ITGAL [ ! i s . na ( i d g e ) ] , mat [ i d g e [ ! i s . na (
i d g e ) ] , ] , ”PAS . ID ”=snp . i d s $ i d 0 [ i d g e [ ! i s . na ( i d g e ) ] ] ,

61 ”PAS . SNP”=snp . i d s $ i d [ i d g e [ ! i s . na ( i d g e ) ] ] , ”PAS . GE”
=ge . i d s $ i d [ ! i s . na ( i d g e ) ] , ”CLASS”=ge . c l a s s [ ! i s . na ( i d g e ) ] )

62

63

64 # Change from chromosomal p o s i t i o n t o r s scheme number
65 v a r i a t i o n = useEnsembl ( b i o m a r t = ” snp ” , d a t a s e t = ” h s a p i e n s snp ” ,

h o s t =” grch37 . ensembl . o rg ” )
66 snp l i b r a r y = getBM ( a t t r i b u t e s = c ( ’ r e f s n p i d ’ , ’ a l l e l e ’ , ’ chrom

s t a r t ’ , ’ chrom s t r a n d ’ ) ,
67 f i l t e r s = c ( ’ c h r name ’ , ’ s t a r t ’ , ’ end ’ ) ,
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68 v a l u e s = l i s t ( 1 6 , 30482400 , 30518060) ,
69 mar t = v a r i a t i o n )
70 c b i n d ( snp l i b r a r y $ r e f s n p id , snp l i b r a r y $chrom s t a r t )
71 co lnames ( snpge ) [ 2 : 1 0 ] = snp l i b r a r y $ r e f s n p [ match ( co lnames ( snpge )

[ 2 : 1 0 ] , snp l i b r a r y $chrom s t a r t ) ]
72

73

74 snp a n a l y s i s = d a t a . f rame ( ” i t g a l ” = snpge $ITGAL / log2 ( exp ( 1 ) ) , ” snp
” = snpge [ i +1 ] , ” d i s e a s e ” = snpge $CLASS , ” pas ” = snpge $PAS . SNP
)

75 snp a n a l y s i s $ d i s e a s e <− r e l e v e l ( snp a n a l y s i s $ d i s e a s e , r e f = ”N” )
76 co lnames ( snp a n a l y s i s ) [ 2 ] = ” snp ”
77 b e s t model = lm ( i t g a l ˜ d i s e a s e −1+ d i s e a s e : snp , d a t a =snp a n a l y s i s )

A.2 Generalized linear models for RNASeq data

1

2 pas i n f o t o t <− r e a d . csv ( p a s t e ( f i l e l o c , ’ s amp leShee tCo lon . csv ’ , sep =
” ” ) )

3 pas i n f o <− d a t a . f rame ( ” pas i d ” = pas i n f o t o t $X, ” d i s e a s e ” = pas
i n f o t o t $ Sample Group , ” b i o s o u r c e ” = pas i n f o t o t $ Sample
B i o s o u r c e )

4 # e x t r a c t r e l e v a n t columns
5

6 pas i n f o $ pas i d <− as . c h a r a c t e r ( pas i n f o $ pas i d )
7

8 pas i n f o $ ibdnumber <− s u b s t r ( s t r s p l i t f i x e d ( pas i n f o $ pas id , ” ” ,
2 ) [ , 1 ] , 1 , n c h a r ( s t r s p l i t f i x e d ( pas i n f o $ pas id , ” ” , 2 )

[ , 1 ] ) −1)
9 pas i n f o $ l e t t e r <− s u b s t r ( s t r s p l i t f i x e d ( pas i n f o $ pas id , ” ” , 2 )

[ , 1 ] , n c h a r ( s t r s p l i t f i x e d ( pas i n f o $ pas id , ” ” , 2 ) [ , 1 ] ) ,
n c h a r ( s t r s p l i t f i x e d ( pas i n f o $ pas id , ” ” , 2 ) [ , 1 ] ) )

10 pas i n f o $ add i n f o <− s t r s p l i t f i x e d ( pas i n f o $ pas id , ” ” , 2 ) [ , 2 ]
11

12

13 f o r ( i i n 1 : nrow ( pas i n f o ) ) {
14 i f ( n c h a r ( pas i n f o $ ibdnumber [ i ] ) == 3) {
15 pas i n f o $ ibdnumber [ i ] <− p a s t e 0 ( ’ IBD0 ’ , pas i n f o $ ibdnumber [ i ] )
16 } e l s e {
17 pas i n f o $ ibdnumber [ i ] <− p a s t e 0 ( ’ IBD ’ , pas i n f o $ ibdnumber [ i ] )
18 }
19 }
20

21 # change o r d e r o f columns
22 pas i n f o <− pas i n f o [ , c ( 1 , 4 , 5 , 6 , 2 , 3 ) ]
23 pas i n f o
24

25 #> dim ( pas i n f o )
26 # [ 1 ] 113 6

59



27

28

29 ##SNP s t a t u s
30 gene name = ”ITGAL”
31 f i l e p r e f =”ITGALny . 0 1 2 ”
32 snp s t a t u s = r e a d . t a b l e ( p a s t e ( f i l e l o c , f i l e p r e f , sep =” ” ) ) [ ,−1]
33 pasnames=rownames ( snp s t a t u s ) = scan ( p a s t e ( f i l e l o c , f i l e p r e f , ” . i ndv ” ,

sep =” ” ) , what=” s ” )
34 s n p i d s = colnames ( snp s t a t u s ) = r e a d . t a b l e ( p a s t e ( f i l e l o c , f i l e p r e f , ” .

pos ” , sep =” ” ) , h e a d e r =FALSE) [ , 2 ]
35 row . names ( snp s t a t u s ) <− s u b s t r i n g ( row . names ( snp s t a t u s ) , n c h a r (

row . names ( snp s t a t u s ) )−6, n c h a r ( row . names ( snp s t a t u s ) ) )
36 # snp s t a t u s
37

38 #> dim ( snp s t a t u s )
39 # [ 1 ] 432 9
40

41

42 ensembl = useMar t ( ” ensembl ” , d a t a s e t = ” h s a p i e n s gene ensembl ” )
43 gene ensg <− getBM ( a t t r i b u t e s = c ( ” ensembl gene i d ” ) , f i l t e r s = ”

hgnc symbol ” , v a l u e s = gene name , mar t = ensembl ) $ ensembl gene
i d

44 # now gene ensg i s t h e name f o r ITGAL
45

46 snps = colnames ( snp s t a t u s )
47 i dma tch =match ( pas i n f o $ ibdnumber , rownames ( snp s t a t u s ) )
48

49 pas i n f o new= c b i n d ( pas i n f o [ idmatch , ] , snp s t a t u s [ idmatch , ] )
50

51 f o r ( i i n snps ) {
52 pas i n f o <− c b i n d ( pas i n f o , snp s t a t u s [ , i ] [ match ( pas i n f o $

ibdnumber , rownames ( snp s t a t u s ) ) ] )
53 names ( pas i n f o ) [ l e n g t h ( names ( pas i n f o ) ) ] <− i
54 }
55

56

57 pas i n f o t o t <− pas i n f o [ c o m p l e t e . c a s e s ( pas i n f o ) , ]
58 i d = ( 1 : dim ( pas i n f o t o t ) [ 1 ] ) [ pas i n f o t o t $ b i o s o u r c e == ” Colon

t i s s u e ” ]
59 pas i n f o t o t <− pas i n f o t o t [ id , ]
60

61

62 # change t o r s scheme number
63

64 # l i s t E n s e m b l ( )
65 v a r i a t i o n = useEnsembl ( b i o m a r t = ” snp ” , d a t a s e t = ” h s a p i e n s snp ” ,

h o s t =” grch37 . ensembl . o rg ” )
66 snp l i b r a r y = getBM ( a t t r i b u t e s = c ( ’ r e f s n p i d ’ , ’ a l l e l e ’ , ’ chrom

s t a r t ’ , ’ chrom s t r a n d ’ ) ,
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67 f i l t e r s = c ( ’ c h r name ’ , ’ s t a r t ’ , ’ end ’ ) ,
68 v a l u e s = l i s t ( 1 6 , 30482400 , 30518060) ,
69 mar t = v a r i a t i o n )
70 c b i n d ( snp l i b r a r y $ r e f s n p id , snp l i b r a r y $chrom s t a r t )
71 # v a r i a t i o n = useEnsembl ( b i o m a r t = ” snp ” , d a t a s e t = ” h s a p i e n s snp ” )
72 co lnames ( pas i n f o t o t ) [ 7 : 1 5 ] = snp l i b r a r y $ r e f s n p [ match ( co lnames (

pas i n f o t o t ) [ 7 : 1 5 ] , snp l i b r a r y $chrom s t a r t ) ]
73

74

75 # no ove r t o RNAseq d a t a
76

77 c o u n t s 2 <− c o u n t s
78 names ( c o u n t s 2 ) <− s u b s t r i n g ( names ( c o u n t s 2 ) , 2 )
79 c o u n t s 2 <− c o u n t s 2 [ , co lnames ( c o u n t s 2 )%i n%pas i n f o t o t $ pas i d ]
80

81 #> dim ( c o u n t s 2 )
82 # [ 1 ] 58051 75
83

84 # we on ly want ITGAL now , and t h e name i s i n gene ensg
85

86 # ############ f o r SNP9 ( we can do t h i s f o r a l l SNPs )
87

88 dd9 <− DESeqDataSetFromMatr ix ( c o u n t D a t a = coun t s2 ,
89 c o l D a t a = pas i n f o t o t , d e s i g n = ˜

d i s e a s e −1+ d i s e a s e : r s2230433 )
90 dd9= e s t i m a t e S i z e F a c t o r s ( dd9 )
91 dd9= e s t i m a t e D i s p e r s i o n s ( dd9 )
92 dd9=nbinomWaldTest ( dd9 )
93 r e s u l t s ( dd9 )
94 dd9raw=mcols ( dd9 )
95 names ( dd9raw )
96

97 id row =na . omi t ( match ( gene ensg , rownames ( dd9raw ) ) )
98 # 108 − t h i s i s t h e on ly row we need
99

100 dd9raw [ idrow , ]
101 r e s u l t s ( dd9 ) [ gene ensg , ]
102

103 a l p h a = d i s p e r s i o n s ( dd9 ) [ id row ]
104 y d a t a = u n l i s t ( c o u n t s 2 [ idrow , ] )
105 d a t a = d a t a . f rame ( y= yda ta , s= s i z e F a c t o r s ( dd9 ) ,
106 d i s e a s e = pas i n f o t o t $ d i s e a s e ,
107 snp= pas i n f o t o t $ rs2230433 ,
108 p a t i e n t = pas i n f o t o t $ ibdnumber )
109

110 f i t =glm ( y ˜ d i s e a s e −1+ d i s e a s e : snp , o f f s e t = l o g ( s ) ,
111 f a m i l y = n e g a t i v e . b i n o m i a l ( t h e t a =1 / a lpha , l i n k =” l o g ” ) , d a t a =

d a t a )
112 summary ( f i t , d i s p e r s i o n = 1) #We s e t d i s p e r s i o n t o 1
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A.3 Wald test

1 # Th i s code i s f o r m i c r o a r r a y da t a , f o r RNASeq d a t a t h e code i s
s l i g h t l y a d j u s t e d

2 snpge = d a t a . f rame ( ”ITGAL”=ge $ITGAL [ ! i s . na ( i d g e ) ] , mat [ i d g e [ ! i s . na (
i d g e ) ] , ] , ”PAS . ID ”=snp . i d s $ i d 0 [ i d g e [ ! i s . na ( i d g e ) ] ] ,

3 ”PAS . SNP”=snp . i d s $ i d [ i d g e [ ! i s . na ( i d g e ) ] ] , ”PAS . GE”
=ge . i d s $ i d [ ! i s . na ( i d g e ) ] , ”CLASS”=ge . c l a s s [ ! i s . na ( i d g e ) ] )

4

5 pvalueMain <− NA
6 pvalueSNP <− NA
7 isNAvec <− NA
8

9 f o r ( i i n 1 : 1 0 4 4 ) {
10 snp a n a l y s i s = d a t a . f rame ( ” i t g a l ” = snpge $ITGAL / log2 ( exp ( 1 ) ) , ”

snp ” = snpge [ i +1 ] , ” d i s e a s e ” = snpge $CLASS , ” pas ” = snpge $PAS .
SNP)

11 snp a n a l y s i s $ d i s e a s e <− r e l e v e l ( snp a n a l y s i s $ d i s e a s e , r e f = ”N” )
12 co lnames ( snp a n a l y s i s ) [ 2 ] = ” snp ”
13

14

15 f i t = lm ( i t g a l ˜ d i s e a s e −1+ d i s e a s e : snp , d a t a =snp a n a l y s i s )
16

17

18 # c r e a t e c o n s t r a s t v e c t o r s C0 and C3
19 convec <− m a t r i x (NA, n c o l = 10 , nrow = 2)
20 convec [ 1 , 1 ] <− 0
21 convec [ 2 , 1 ] <− 0
22 convec [ 1 , 6 ] <− 0
23 convec [ 2 , 6 ] <− 0
24 f o r ( j i n 1 : 1 0 ) {
25 i f ( i s . na ( c o e f f i c i e n t s ( f i t ) [ j ] ) ) {
26 isNAvec [ i ] <− 1
27 convec [ 1 , j ] <− NA
28 convec [ 2 , j ] <− NA
29 }
30 e l s e {
31 i f ( j == 2 | j == 4) {
32 convec [ 1 , j ] <− 1
33 convec [ 2 , j ] <− 0
34 }
35 e l s e i f ( j ==3 | j ==5){
36 convec [ 1 , j ] <− −1
37 convec [ 2 , j ] <− 0
38 }
39 e l s e i f ( j ==7 | j ==9){
40 convec [ 1 , j ] <− 0
41 convec [ 2 , j ] <− 1
42 }
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43 e l s e i f ( j ==8 | j ==10){
44 convec [ 1 , j ] <− 0
45 convec [ 2 , j ] <− −1
46 }
47

48 }
49 }
50

51 # C a l c u l a t e p−v a l u e s
52 AvsU <− convec [ , colSums ( i s . na ( convec ) ) ! = nrow ( convec ) ]
53 AvsUcoeff=AvsU%∗%c o e f f i c i e n t s ( f i t ) [ which ( convec [ 1 , ] ! =”NA” ) ]
54 AvsUvar=AvsU%∗%vcov ( f i t )%∗%t ( AvsU )
55 WaldmainAvsU=AvsUcoeff [ 1 ] / s q r t ( AvsUvar [ 1 , 1 ] )
56 WaldsnpAvsU=AvsUcoeff [ 2 ] / s q r t ( AvsUvar [ 2 , 2 ] )
57 pvalueMain [ i ] <− 2∗pnorm ( abs ( WaldmainAvsU ) , lower . t a i l =FALSE)
58 pvalueSNP [ i ]<− 2∗pnorm ( abs ( WaldsnpAvsU ) , lower . t a i l =FALSE)
59 }
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Appendix B
VCFtools

VCFtools is a program package for working with VCF files (Danecek et al., 2011).
The VCF files store gene information, and VCFtools is used to filter out specific
variants. In this project, we use it to get the genotyped SNPs in a specific interval
and the SNP status for patients with different diseases. We also get a MAF-value,
which explains how rare this different SNPs are.

The query used for getting the SNP statuses as 0,1,2 within a region is:

1 v c f t o o l s −−v c f f i l e . v c f −−o u t ITGALout −−012 −−c h r 16
2 −−to−bp 30523185 −−from−bp 30472658 −−keep− f i l t e r e d GENOTYPED

The query used for getting the MAF values is:

1 v c f t o o l s −−v c f f i l e . v c f −−o u t ITGALoutMAF −−r e c o d e
2 −−r ecode−INFO−a l l −−c h r 16 −−to−bp 30523185 −−from−bp 30472658
3 −−keep− f i l t e r e d GENOTYPED
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Appendix C
Results

C.1 Results for microarray data
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Estimate Std. Error t value Pr(> |t|)
diseaseN 4.657109 0.070681 65.888887 1.71E-55

diseaseCDA 4.705833 0.223514 21.053884 1.45E-28
diseaseCDU 4.678848 0.067392 69.427414 9.00E-57
diseaseUCA 5.270399 0.055878 94.319002 2.72E-64
diseaseUCU 4.758769 0.045625 104.302793 9.08E-67

Wdisease = 0.02750116

WSNPi = NA
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Estimate Std. Error t value Pr(> |t|)
diseaseN 4.657109 0.065551 71.045446 8.47E-56

diseaseCDA 4.705833 0.207291 22.701591 1.31E-29
diseaseCDU 4.678848 0.062501 74.860904 4.91E-57
diseaseUCA 5.205265 0.055401 93.956457 2.02E-62
diseaseUCU 4.768785 0.047556 100.277691 5.75E-64

diseaseUCA:snp 0.521074 0.156697 3.325356 1.58E-03
diseaseUCU:snp -0.048077 0.104190 -0.461442 6.46E-01

Wdisease = 0.04251931

WSNPi = 0.002489612
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Estimate Std. Error t value Pr(> |t|)
diseaseN 4.612872 0.086465 53.349586 9.65E-48

diseaseCDA 4.705833 0.219229 21.465398 8.29E-28
diseaseCDU 4.636677 0.077509 59.821085 2.46E-50
diseaseUCA 5.327499 0.062185 85.671505 1.62E-58
diseaseUCU 4.774958 0.049021 97.406299 1.88E-61

diseaseN:snp 0.088476 0.103345 0.856115 3.96E-01
diseaseCDU:snp 0.154626 0.148419 1.041826 3.02E-01
diseaseUCA:snp -0.182719 0.094015 -1.943506 5.73E-02
diseaseUCU:snp -0.097139 0.120077 -0.808975 4.22E-01

Wdisease = 0.01137627

WSNPi = 0.2589941
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Estimate Std. Error t value Pr(> |t|)
diseaseN 4.589380 0.101618 45.163106 5.47E-44

diseaseCDA 4.705833 0.217946 21.591727 6.27E-28
diseaseCDU 4.591303 0.127253 36.080088 5.56E-39
diseaseUCA 5.032506 0.118198 42.576957 1.15E-42
diseaseUCU 4.714528 0.088198 53.454112 8.72E-48

diseaseN:snp 0.075255 0.082971 0.907009 3.69E-01
diseaseCDU:snp 0.087544 0.108973 0.803358 4.25E-01
diseaseUCA:snp 0.181252 0.079916 2.268021 2.74E-02
diseaseUCU:snp 0.036613 0.063025 0.580927 5.64E-01

Wdisease = 0.1389713

WSNPi = 0.701793
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Estimate Std. Error t value Pr(> |t|)
diseaseN 4.659853 0.090105 51.715849 4.87E-47

diseaseCDA 4.705833 0.201481 23.356239 1.44E-29
diseaseCDU 4.735062 0.093941 50.404698 1.85E-46
diseaseUCA 5.020173 0.080803 62.128268 3.41E-51
diseaseUCU 4.712884 0.064644 72.905223 7.81E-55

diseaseN:snp -0.005488 0.127428 -0.043064 9.66E-01
diseaseCDU:snp -0.077295 0.098526 -0.784510 4.36E-01
diseaseUCA:snp 0.266907 0.067395 3.960358 2.25E-04
diseaseUCU:snp 0.055061 0.059849 0.920005 3.62E-01

Wdisease = 0.2568068

WSNPi = 0.03036489
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Estimate Std. Error t value Pr(> |t|)
diseaseN 4.691395 0.097297 48.217032 1.85E-45

diseaseCDA 4.705833 0.208680 22.550491 7.83E-29
diseaseCDU 4.781888 0.087663 54.548487 3.03E-48
diseaseUCA 5.417362 0.071009 76.290912 7.20E-56
diseaseUCU 4.757113 0.048444 98.197405 1.22E-61

diseaseN:snp -0.038096 0.079443 -0.479533 6.34E-01
diseaseCDU:snp -0.141680 0.083931 -1.688049 9.73E-02
diseaseUCA:snp -0.261267 0.085640 -3.050748 3.56E-03
diseaseUCU:snp 0.005675 0.079109 0.071732 9.43E-01

Wdisease = 0.01582864

WSNPi = 0.3832292
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C.2 Results for RNASeq data

Estimate Std. Error z value Pr(> |z|)
diseaseCDA 7.519584 0.110749 67.897675 0.00E+00
diseaseCDU 6.480014 0.114212 56.736856 0.00E+00
diseaseUCA 7.362919 0.105090 70.062676 0.00E+00
diseaseUCU 6.538164 0.105352 62.060009 0.00E+00

Wdisease = 6.73849E − 16

WSNPi = NA
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Estimate Std. Error z value Pr(> |z|)
diseaseCDA 7.546609 0.121316 62.206108 0.00E+00
diseaseCDU 6.480014 0.114212 56.736853 0.00E+00
diseaseUCA 7.376645 0.113986 64.715262 0.00E+00
diseaseUCU 6.467760 0.111090 58.220940 0.00E+00

diseaseCDA:snp -0.174317 0.297205 -0.586521 5.58E-01
diseaseUCA:snp -0.095268 0.294318 -0.323692 7.46E-01
diseaseUCU:snp 0.547009 0.350611 1.560160 1.19E-01

Wdisease = 4.501684E − 17

WSNPi = 0.1427063
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Estimate Std. Error z value Pr(> |z|)
diseaseCDA 7.517705 0.121319 61.966235 0.00E+00
diseaseCDU 6.453529 0.121603 53.070317 0.00E+00
diseaseUCA 7.354198 0.113993 64.514271 0.00E+00
diseaseUCU 6.595984 0.114246 57.734711 0.00E+00

diseaseCDA:snp 0.011221 0.297169 0.037761 9.70E-01
diseaseCDU:snp 0.205417 0.354245 0.579873 5.62E-01
diseaseUCA:snp 0.056723 0.294236 0.192782 8.47E-01
diseaseUCU:snp -0.469303 0.295516 -1.588080 1.12E-01

Wdisease = 5.091212E − 13

WSNPi = 0.6185999
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Estimate Std. Error z value Pr(> |z|)
diseaseCDA 7.464120 0.185182 40.306983 0.00E+00
diseaseCDU 6.202188 0.190655 32.530903 3.90E-232
diseaseUCA 7.157768 0.182094 39.308119 0.00E+00
diseaseUCU 6.368517 0.183214 34.759928 9.81E-265

diseaseCDA:snp 0.057709 0.157115 0.367307 7.13E-01
diseaseCDU:snp 0.313053 0.185146 1.690843 9.09E-02
diseaseUCA:snp 0.194090 0.148644 1.305739 1.92E-01
diseaseUCU:snp 0.170348 0.157602 1.080875 2.80E-01

Wdisease = 4.897462E − 08

WSNPi = 0.4829886
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Estimate Std. Error z value Pr(> |z|)
diseaseCDA 7.462710 0.176223 42.348032 0.00E+00
diseaseCDU 6.383177 0.160014 39.891322 0.00E+00
diseaseUCA 7.237075 0.153867 47.034521 0.00E+00
diseaseUCU 6.319044 0.154771 40.828292 0.00E+00

diseaseCDA:snp 0.071664 0.176197 0.406726 6.84E-01
diseaseCDU:snp 0.156032 0.190356 0.819683 4.12E-01
diseaseUCA:snp 0.148711 0.140435 1.058927 2.90E-01
diseaseUCU:snp 0.265375 0.150886 1.758774 7.86E-02

Wdisease = 7.031259E − 10

WSNPi = 0.5453224
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Estimate Std. Error z value Pr(> |z|)
diseaseCDA 7.274596 0.181127 40.163044 0.00E+00
diseaseCDU 6.304883 0.216202 29.161993 5.89E-187
diseaseUCA 7.426022 0.131058 56.662155 0.00E+00
diseaseUCU 6.600107 0.132539 49.797608 0.00E+00

diseaseCDA:snp 0.320317 0.198369 1.614754 1.06E-01
diseaseCDU:snp 0.205647 0.222765 0.923158 3.56E-01
diseaseUCA:snp -0.134593 0.156660 -0.859143 3.90E-01
diseaseUCU:snp -0.146292 0.178719 -0.818555 4.13E-01

Wdisease = 4.50224E − 07

WSNPi = 0.7529079
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