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Abstract

In the later years, there has been an increased interest in control system design and guidance for
autonomous vessels. These systems has high demands for robustness such that they behave as
expected. Autopilots for ships are based on control of the yaw angle typically defined in the +180
degree range. Using this intervals of reals to constrain the heading within this interval causes sev-
eral issues related to mapping, measurement noise and error calculation. As the sensors and de-
vices using angles may have different ranges, a correct mapping to the same interval must be per-
formed in order for their signals to be processed in a system. The error between two angles could
also end up outside this interval, which means mapping of the error also must be performed. In
addition, small noise may trick the vessel to be stuck at a 180 degree offset, as it can not determine
which direction the vessel needs to turn in order to achieve the control objective.

In this thesis, a background study of relevant dynamic models for ships, maneuvering models,
guidance systems and autonomous systems is first presented, as well as a brief introduction to
hybrid dynamical systems and control. A robust hybrid heading controller(HHC) based on map-
ping the angles to an S! representation is then derived, tested, analyzed and simulated on a 3DOF
ship model of the scale model of C/S Inocean Cat I Drillship (CSAD). The HHC is derived by first
analyzing several potential function candidates and their deduced non-hybrid kinematic con-
trols. Then a global diffeomorphism is applied to derive two controls and put these into a hybrid
structure. By a smooth switching strategy and backstepping approach, the needed control force is
derived such that Global Asymptotic Stability(GAS) can be achieved. The HHC is then extended to
a Velocity Vector Control(VVC) problem including disturbances such as ocean currents, and the
proposed method uses adaptive control techniques and sideslip compensation to achieve GAS of
the desired velocity vector. The VVC problem is extended to a Path-Following Control(PFC) prob-
lem, and different path-generation methods and Line-of-Sight(LOS) guidance on S! is developed
to ensure convergence to the path both with and without ocean currents.

The yielded results are promising, as the simulations proved to work as intended. The HHC en-
sured the heading to converge to its desired setpoint, and the VVC design was able to track both
constant and time varying desired velocity vectors, both with and without currents. In addition,
the PFC design proved to be able to converge to both straight and curved paths with a constant
velocity along the path. To validate the results, physical experiments in the ocean basin at the
Marine Cybernetics Laboratory (MC-lab) at the Norwegian University of Science and Technol-
ogy(NTNU) was conducted. The proposed control can be extended and tested with more com-
plex operations such as with wind, waves and constraints in the thrust allocation, as the used
simulation model is not of high-fidelity. The work done in this thesis is a stepping stone for more
advanced control systems of ships that increases the level of autonomy and robustness, and can
be extended to spherical orientation control on S? such as underwater robotics. Full scale testing
would also give valuable insight on how the overall performance is compared to model tests.




Sammendrag

I de senere ar har det veert gkt interesse for styringssystemdesign og veiledning av autonome
fartey. Etter hvert som kompleksiteten i disse systemene oker, er det stor ettersporsel etter & de-
signe robuste systemer som oppforer seg som forventet. Autopiloter for skip er basert pa kontroll
av en retnings-vinkel som vanligvis er definerti+180 graders omradet. Ved & bruke dette interval-
let av for & begrense retningen kan det forarsake flere numeriske problemer relatert til mapping,
malestoy og feilberegning. Ettersom sensorene og enhetene som bruker vinkler kan ha forskjel-
lige definisjonsomréder, ma en korrekt mapping til samme intervall utfores for at signalene skal
behandles i et system. Feilen mellom to vinkler kan ogsa ende opp utenfor dette intervallet, noe
som betyr at mapping av feilen ogsa ma utfores. I tillegg kan liten stoy lure fartoyet til a sitte fast
ved 180 graders forskyvning, da det ikke kan bestemme hvilken retning fartoyet ma vende for &
oppna malet.

I denne oppgaven presenteres en bakgrunnsundersokelse av relevante dynamiske modeller for
skip, mangvreringsmodeller, veiledningssystemer og autonome systemer, samt en introduksjon
til hybride dynamiske systemer og regulering. En robust hybrid retningskontroller (HHC) basert
pakartlegging avvinklene til en S! -representasjon blir deretter utledet, testet, analysert og simulert
pa enskipmodellitre frihetsgrader av skalamodellen til skipet C/S Inocean Cat I Drillship (CSAD).
HHC er utledet ved forst 4 analysere flere potensialfunksjons-kandidater og deres avledede ikke-
hybride kinematiske kontrollere. Deretter brukes en global diffeomorfi for & utlede to kontrollere
og sette disse inn i en hybrid struktur. Ved en glatt byttestrategi mellom disse og backstepping-
tilneerming er den nedvendige kontrollstyrken utledet slik at Global Asymptotisk Stabilitet (GAS)
kan oppnas. HHCblir deretter utvidet til et hastighetsvektor(VVC)-problem, inkludert forstyrrelser
som havstremmer, og den foreslatte metoden bruker adaptive kontrollteknikker og sideslip- kom-
pensasjon for 4 oppna GAS. VVC-problemet er utvidet til et banefolgings(PFC)-problem, og forskjel-
lige veidannelsesmetoder og siktelinje-veiledning pa S! er utviklet for & sikre konvergens til banen
béde med og uten havstremmer.

Resultatene er lovende, da simuleringene viste seg a fungere som gnsket. HHC sorget for at ret-
ningen konvergerte til ensket settpunkt, og VVC-designet var i stand til 4 felge bade konstante og
tidsvarierende enskede hastighetsvektorer, bAde med og uten havstrommer. I tillegg viste PFC-
designet & kunne konvergere til bade rette og buede baner med konstant hastighet langs banen.
For a validere resultatene ble fysiske eksperimenter i havbassenget ved Marin Kybernetikk Labo-
ratoriet (MC-lab) ved Norges Teknisk-Naturvitenskapelige Universitet(NTNU) gjennomfert. Den
foreslétte kontrolleren bli utvidet og testet med mer komplekse operasjoner som for eksempel
vind, belger og begrensninger i thrust-allokering, da den brukte simuleringsmodellen ikke er hoy-
noyaktig. Arbeidet i denne oppgaven er en skritt pa veien for mer avanserte kontrollsystemer for
skip som gker selvstendighetsnivéet og robustheten, og kan ogsa utvides sfeerisk orienteringskon-
troll pa S* som undervannsrobotikk. Fullskala testing vil ogsa gi verdifullt innblikk i hvordan den
samlede ytelsen sammenlignes med modelltester.
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Abbreviations
BODY

CB

CDM

COLREG

cRIO
CSAD
DOF
DP
EBS
EC
EKF
GES
GS
HC
HHC
HI
HIL
IR
LAS
LBS
LES
LOS
LP
MC
MC-lab
MSS
NED
NPO
NTNU
PFC
PID

Body frame coordinate system
Constant Bearing
Control Design Model

Convention on the International Regulations for Preventing Collisions at

Sea

National Instrument CompactRIO
C/S Inocean Cat I Drillship

Degree of Freedom

Dynamic Positioning

Enclosure Based Steering
Environment Complexity
Extended Kalman Filter

Global Exponentially Stable
Global Stable

Heading Control

Hybrid Heading Controller
Human Independence

Hardware In the Loop

Infrared

Local Asymptotic Stable
Lookahead-Based Steering

Local Exponential Stable

Line of Sight

Low-Pass

Mission Complexity

Marine Cybernetics Laboratory
Marine Systems Simulator toolbox
North, East, Down coordinate system
Nonlinear Passive Observer
Norwegian University of Science and Technology
Path Following Control
Proportional, Integral, Derivative
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PS3
QTM
SISO
SISO
SVM
TT
UGAS
UGES
VVC
WP

Nomenclature
R()

a8 =

N D=

Tcurrent
TFF
TPID
Tywave
Twind

0

v

U

Uy
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C Ci,C
X

Xd

Xp

Pure Pursuit

Playstation 3

Qualisys Track Manager

Single Input Single Output
Single-Input-Single-Output
Simulation Verification Model
Target Tracking

Uniform Global Asymptotic Stable
Uniform Global Exponential Stable
Velocity Vector Control

Waypoint

Rotation matrix

Compact set

Set

Parameters in derivation of adaptive control
Path-tangential angle between waypoints
Unstable critical point along unit circle
Crab angle

Current direction in NED

Sideslip angle

Azimuth angles

Matrix of damping factors

Position and attitude vector

Desired position in north, east, yaw
Diagonal matrix for surge speed controller
Linear and angular velocity vector

Matrix of natural frequencies
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Introduction

1.1 Objective

The developments of control systems started back in the 19th century, and is now an important
part of many systems such as cars, aircrafts and marine vessels. The control algorithms gets more
and more complex, while giving increased accuracy and reliability. For marine vessels, the most
important control systems are dynamic positioning and autopilot. During the last years the de-
velopment of autonomous vessels is soon to become a reality. This demands even more robust
systems, both in terms of decision making, but also ensuring the vessel behave the way we want it
to. Avessel is equipped with numerous sensors that together provide information that the control
system reacts on. These sensors might have different standards for the format of the information,
and a robust control system must process these data robustly to handle imperfections.

Autopilots for ships are based on control of a yaw angle typically defined in the + 180 degree range.
Using this interval of the reals to constrain the heading within this interval causes several numeri-
calissues, such as different devices, angular mapping and measurement noise. This motivates for
a way to handle these effects robustly such that it does not compromise the safety and reliability
of the control system as a whole.

This thesis will discuss algorithms to cope with these effects, and analyze the methods in terms
of stability and equilibria. The proposed algorithms will be tested on dynamical models of the
Norwegian University of Science and Technology(NTNU)s vessel model C/S Inocean Cat I Drill-
ship(CSAD), as well as physical experiments.

1.2 Scope and Delimitations

This thesis will focus on applying robust hybrid control technologies that has been proposed in
the later years, and adapt them to a 3-Degree of freedom(DOF) ship model. The hybrid concepts
will be used to control the heading of a ship both without and with the influence of ocean currents
in arobust manner. This thesis will look into how the hybrid formulation affects the control in Dy-
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namic Positioning(DP), path following and maneuvering operations. The work will be separated
into seven main parts:

e Perform a background study of relevant dynamic models of ships, maneuvering models,
guidance systems, autonomous systems and hybrid dynamical systems.

e Formulate the 1IDOF Heading Control(HC) problem with a control design model(CDM) re-
formulated on S! based on the work done in Mayhew and Teel (2010) with on several poten-
tial functions.

* Design a hybrid heading controller (HHC) with backstepping according to Mayhew et al.
(2011) .

e Formulate the 2DOF Velocity Vector Control(VVC) problem including disturbances and ex-
tend the HHC with an adaptive surge controller to solve the VVC problem to achieve global
stability.

» Extend the VVC problem into a Path-Following Control(PFC) problem, and present path
generation methods and Line-of-Sight(LOS) guidance that ensures convergence to and fol-
lowing of a path including current compensation.

e Carry out Hardware-in-the-Loop(HIL) tests to prepare the control algorithms to be tested
on CSAD at the MC-lab.

* Implement and test the control design on the scale model of CSAD at the MC-lab.

1.3 Outline of the Thesis

The rest of this thesis will be organized as follows:

Chapter 2: Describes the kinetics and kinematics of vessels in 6 and 3 DOFs. Methods for Au-
topilot control designs are presented, with references to previous work on DP, course and speed
control, path following and target tracking. Some specification on autonomous marine control
systems are presented, with different axis of complexity.

Chapter 3: Study on hybrid dynamical systems and control, where notation from professor An-
drew Teel is introduced on hybrid systems and control on S'. An example showing a simple point
stabilization problem in S' is presented, which in general is the core theory behind this thesis.
Lastly, different potential functions for hybrid control on S! systems with synergistic Lyapunov
functions and backstepping are analyzed, tested and discussed in terms of stability and equilib-
ria.

Chapter 4: Describes the simulations and experimental setup, i.e how the numerical model of
CSAD is implemented in MATLAB/Simulink. In addition, the procedure for HIL testing is pre-
sented, as well as some notes on physical experiments in the Marine Cybernetics(MC)-lab.

Chapter 5: Presents and solves the HC problem. The derivations from Chapter 3 is applied on a
3-DOF model of CSAD, and some different cases are shown. In addition, test results from physical
experiments are presented.
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Chapter 6: Presents and solves the VVC problem. An $' formulation of angles and current is pre-
sented, and some test scenarios are shown to illustrate the robustness of the controller.

Chapter 7: Presents and solves the PFC problem. Different path generation techniques are shown
and combined with LOS guidance for both straight and curved paths. The combined guidance
and control are tested through some different scenarios, both with and without the influence of
current.

Chapter 8: Concludes the thesis and proposes further work.

Appendix A: Presents the numerical values for the vessel model of CSAD used in simulations, in
addition to some expressions of differentials not suited to fit in the main part of this thesis.

Appendix B: Provides a QR code that links to a video showing the experiments at the MC-lab
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Background

In this section, background and definitions for mathematical modelling, control, guidance and
reference models are presented. Most of the study was conducted the fall of 2018 for the author’s
project thesis; Haug (2018).

2.1 Dynamical Models of Ships

A dynamic model represents the behaviour of an object over time when exposed to forces. It is
used where the object’s behaviour is best described as a set of states that occur in a defined se-
quence. Hence, a dynamical model of a ship is the combined kinematics(geometry of motion)
and kinetics(how forces create motion).

2.1.1 Ship Dynamics

The ship dynamics can be presented in a compact 6-DOF matrix-vector as:

n=Jmu

. (2.1)
M7 + C(v)v + D(v)v + g(n) + 80 = T+ Twind + Twave + Teurrent

Where 5, v € R® are vectors of generalized North-East-Down(NED)-position({n}) and angles 5 =
[N,E, D, ¢,0,y]" and BODY({b})-velocities v = [u, v, w, p,q,7]", J() € R®® is the Euler Angle Trans-
formation matrix, converting {b}-velocities to {n}-velocities, M € R6* the system inertia matrix,
including Mass, added mass and second moment of inertia, C(v) € R® is the Coriolis and cen-
tripetal matrix, due to the rotation of body frame about {n} frame, D(v) € R is the damping
matrix, g(n) € R® is the vector of gravitational and buoyancy forces, gy € R® is the vector used
for pretrimming (ballast control), T = [X,Y,Z, K, M,N]" € RS is the vector of control inputs, and
Twind € RS, Tyave € RO and 7.,rens € RO are the vector of environmental loads. For more details; see
Fossen (2011).
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2.1.2 Maneuvering Models

A 3-DOF system is sufficient to create an autopilot design, assuming the motions inroll, heave and
pitch are small. The states that describes the horizontal motion can be extracted from the 6-DOF
modelin (2.1), i.e surge, sway and yaw. Hence, the state vectors describing the 3-DOF systems are
n=I[NEy]" e R®and v = [u,v,r]T € R’. Introducing relative velocity v, = v — v. € R3, where
v. € R3 is the current velocity expressed in body frame, gives (2.2):

n=RWv (2.2a)
Mv, + C(v,)v, + Dv,)v, =T (2.2b)

Where R(y) € SO3), M = My + Mg € R, C(v,) € R¥*3, D(v,) € R*3, and T € R3. The matrices
R®), Mg and M, are defined as follows (Fossen, 2011):

cos(y) —sin(y) O m 0 0 -X; 0 0
R(W) = |sin(y) cos@y) O, Mgz =|0 m  mxg|, My=| 0 -V, -Y:| (2.3
0 0 1 0 mxg IZ 0 —N\', —N,'a
The damping matrix D(v,) is defined as a linear(L) term and an non-linear(NL) term:
dy(vy) 0 0
D(Ur) =D, + DNL(Ur) = 0 d22(vr) d23(vr) (2.4)
0 dn(vy) d33(vy)
with
-X, O 0 dy1nL(vy) 0 0
D,=| 0 -Y, -V, Dyi(v,) = 0 dnNL(vy) dypni(vy) (2.5)
0 -N, —-N, 0 dnN(vy) di3zni(vy)
where the NL damping forces are calculated according to (2.6):
dinL@y) = =Xiulitr| = Xt} (2.6a)
d22,NL(Ur) = _Ylv\vlvrl - Y\rlvlrl - vavv;% (2.6b)
dy NL(Yy) = _Ylv\r|vr| - erlrlrl - Yrrrr2 = Yurtty (2.6¢)
d32,NL(vr) = _]Vlvlvlvrl - N|r|v|r| - vavV% = Nyty (2.6d)
d33 NL(Vy) = _N|r|r|r| - lerlvrl - ]\'Irrr"'2 = Nurtty (2.6€)
With the munk moment:
Yur = =X 2.7)
Nuv = _(Yf/ - Xu) (28)
Ny = =Y; 2.9

The Coriolis matrix C(v,) are calculated according to (2.10):
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C(v,) = Crp(vy) + Ca(vy) (2.10)
0 0 —m(xgr+vy) 0 0 ca13(vy)
Crp(v,) = 0 0 muy > Ca(v)) = 0 0 CA,23(vr) (2.11)
m(Xxgr +vy)  —mity 0 —ca13(vy)  —cap3(vy) 0
ca3(vy) = Yyvp + Yir, ca23(vy) = —Xjuy (2.12)
Then, by solving for v, we obtain:
v, =M™ (r - Cw,)v, - D, )v,) (2.13)
with
o 0 0
m m
M=l 0 _m%—rrj;zm_sa m%—ﬂizm.%s (2.14)
ma3 _ my
m%3—m22m33 m§3—m22m33

which from Skjetne (2018) by defining

di (v, -+
o1y 1= ~ 2@, | maaVe + Mot (2.15)
mi mi
_ dn(vy)msz — dy(v)mas — mo3 (myp — myy) uy
O-Q(Ur) = ) Vr
mpom33 — m23
dz3(vy)mp3 — das(vy)mss + (m11m33 - m%3) Ur
+ 5 r (2.16)
mpoms33 — m23
_ dn()mys — dy(v)may — may (mpa — myy) uy
o3(vy) = 5 Vr
mpyms3 — m23
_ (d33(vp)mo) — dy3(vr)ma3) + ;7123 (my —myy) ur 2.17)
npams33 — m23
1
by = — (2.18)
my
m —m
by = ——2— b= (2.19)
m22m33 — My, m22Mm33 — My,
bpi=—— 2 b= (2.20)
maom33 — Ny Mm33 — My,
results in:
u = O'I(Ur)-l-b]lTu (2.21a)
V= O'Q(Ur) + by, + by3T, (2.21b)
i = 03(v) + b3ty + b33ty (2.21¢)
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For an underactuated ship, the main issue is how to handle the sway dynamics. We can see from
(2.21b) that a force in yaw induces a velocity in sway. We can use the control allocation for a fully

actuated vessel to emulate an underactuated vessel in sway such that by, 1, + bysr, = 0. This is

obtained by constraining 7, = —Z—ﬁr, = ’,’;—in in the control allocation such that

1
i, = o(vy) + —71, (2.22a)
miy
v, = o(v,) (2.22b)
1
r=o3v,) + —7, (2.22¢)
mas3

which is the model the simulations will be based on.

Rendering sway underactuated by Rudder steering

If the dynamic model is derived with an arbitrary center along the vessel’s body axis, the rudder
angle ¢ will typically generate sway force. According to Tzeng (1998), by transforming the states to
the pivot point of the vessel, you can eliminate the the influence § has on the sway dynamics. This
can be done by locating the centre of the vessel’s body frame at an appropriate arm x, relative to
the centre of gravity, and suppose:

Tu Tu
T, |=| Y50 (2.23)
Ty N55

which inserted in (2.21) gives:

myVv,+nmo3r
11ur+ 20Vl 1

U ) mlb miy T
. (m|1—mzz)mz3vr—(m23—m1|m33 r (dyomsz—daymo3)v,+(dozmaz—dzzmoz)r Mé‘
v | = 3 up + 3 +| E—mpm (2.24)
M55 —M22M33 M3 —M221M33 23)/ 22 ;\%
r (myp—my )mpsr+mopvy) - (daamas—dssmp)r+{dypmas —dzpmap)ve )
r _
m3,—mxpma; m2,—myms3 M3 —M22m33

where we notice that if we want to set actuation in sway to zero, we use

ma3Ns —m33Ys = (mxg — Yi)Ns — (I, = N;) Y5 =0 (2.25)
Y
My = Vim” (2.26)
YiNs+ (I, — N;) Y, Y; I,-N;)Y
Xg = Vo (z r)6:_r+(z r)6 (2'27)
mN; m mN;
By this choise of m»3 (and x,) we get for the 3rd component in the input vector of (2.24),
Ys Y2 N2 Yg N
v Ysm3z — maNs N33 — mnNs 5 | n;Mm33 — MmpiNs 5 28
vs\2, 2 o, _N2Y§2 (228
(F(S) m33 — mpams33 N_§m33 — mpams33 S N_§m33 — Mom33
my3Y? —mpN2)Ns N
= (a3 J) =2 (2.29)

ms3 (m33 Y2 - mzzNg) ms3

Moreover, we get
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dii(vy) moor Ysms33
"+ + r

o15vy) = — r r (2.30)
miy mii Nsmyy
a1 5y = = (d3(v,)Y5 — dzz(vr)l\z’a) Ns — (Zm —myy) YsNsuy 2.31)
m33Yy — mp Ny
(d23(v,)Ns = ds3(v,)Ys) Ns — (m33¥2 = my1N2 ),
onsvy) = 5 5 (2.32)
m33Y5 — my Ny
ma (myz — myy) Niu, — (m33 YsNsdy(vy) — m22N§d32(Ur))
o315V = 5 > (2.33)
ms33 (m33 Y5 - m22N§)
m33 (my — myy) YsNsu, — (m33 YsNsdy3(vy) — m22N§d33(vr))
o35V, = > > (2.34)
ms3 (m33 Y5 - mzzNé)
resulting in
1
u =015+ —1, (2.35a)
mpy
vy = 0216V, + 0'22,5(1},«)1’ (2.35b)
N,
i = 0315WrV + o325(V)F + L) (2.35¢)

ms33

where 7, = Ns6. Than, assuming the numerical values of N5 and Y; are known, we can render sway
underactuated.

2.2 Dynamic Positioning Control Designs

Dynamic Positioning is a computer controlled system to automatically maintain a vessel’s posi-
tion with its own controls, i.e its propellers and thrusters. By the aid of position reference sensors,
sensors that measures environmental disturbances, motion sensors, gyroscope, compass etc., a
DP system uses this information to compensate for these disturbances and motions by allocat-
ing thrust to maintain its position at sea. The computer controlled system uses a mathematical
model of the vessel that includes information of the estimated loads from the measured distur-
bances such as wind and current drag, together with the position of the thrusters to calculate the
desired output for each thruster. This allows for stationkeeping operation where mooring or an-
choring is not feasible due to deep water or restrictions on anchoring nearby seabed installations
like pipelines or templates.

A simplified model for Proportional-Integral-Derivative (PID) feedback control for DP application
can be performed by choosing a bandwidth w;, and pole-placement according to Fossen (2011):
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1 1
Wy = wp ® wp, if =1 (2.36a)
0.64
\/1 =202+ A -4+ 2
K, = Ma),21 (2.36b)
K, =2{w,M -D (2.36¢)
Wp
K; = —K 2.
s (2.36d)
n=n-mny (2.36€)
v=v-R@®'ny, (2.36f)
!
Tpip = —“RT (K, i) — Kav — RT(K; j(; fj(r)dr (2.36g)
TrF = Mg + Dryg (2.36h)
T=Tpip+TFF (2.361)

Where 7 is the control input to ensure 7 — 0. The position and attitude reference model 5, is
typically chosen to be a third order for filtering the steps in the reference(typically set by the oper-
ator of the DP system) r” by a first order Low-Pass(LP) filter cascaded with a mass-spring-damper
system:

3
Nd; Wy,

= (2.37)
i S+ Q4+ Dwp s> + (24 + l)w%is + wfli
For a vessel to achieve the desired thrust 7, we have the thrust allocation algorithm
7 = T(@)f = T(@)Ku (2.38)

wherea = [ay, ...,a,]" € R?isavector of azimuth angles and T(«) € R™ is the thrust configuration
matrix that describes the geometry of locations of the r actuators. K € R™ is a diagonal force
coefficient matrix and u € R” is a vector of control inputs.

2.3 Autopilot Control Designs

In this section, the methods for design of guidance and control systems for marine craft will be
described. Guidance represents the basic methodology concerned with the transient motion be-
haviour associated with the achievement of motion control objectives. Guidance laws can be used
to generate a time-varying frajectory or a time-invariant path reference. Skjetne (2019) describes
four different motion control scenarios for ships:

* Regulation - Special case where attitude and position are held constant (e.g Dynamic Posi-
tioning).

» Tracking - Force a system output y(rf) € R™ to track a desired output y,(rf) € R™. Can be
achieved be generating a reference model with feasible trajectories given the constraints.

* Path following - Follow a predefined path independent of time.

10
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* Maneuvering - satisfying both a geometric and dynamic task. The geometric task is defined
as forcing an output y to converge to the desired path y,(s) for a continuous function s().
The dynamic task is to force s(7), $(r) or 5(¢) to converge to one or more of the time 7(¢), speed
v(s, 1) or acceleration a(s, s, ) assignments.

For surface vessels the most common control system is to combine a heading controller and speed
controller in order to track the desired path. The following sections will describe the different
control strategies when controlling a vessels heading and velocity.

2.3.1 Reference Frames

Fossen (2016) present the ocean triangle in Figure 2.1 and the equations in (2.39). They define
course, heading, crab and sideslip angles, as well as the relevant speeds when a vessel is affected by
ocean currents. Here, the ships position is defined as p” = [N, E]™ = [x,y]" € R? and its derivatives
X = ‘ZI—’; andy = %. Note that without current, 8 = §,.

Sideslip angle: By = sin”! (%) (2.39a)
Crab angle: Bi=x—-v, B=sin! (%) (2.39b)
Course angle: x := atan2(y, X) (2.39¢)
Heading angle: v (2.39d)
Speed over ground: U = Vu? +v2, U = [i? +3?
(2.39¢)
Relative speed U, = Vu,2 +v,2 (2.391)
Current speed Us, = Vul2 +v.2 (2.39g)
Current direction: S, (2.39h)

Figure 2.1: Reference frames in the horizontal plane. Courtesy: Fossen (2016).

2.3.2 Heading Control

Controlling the heading of a ship is a Single Input Single Output(SISO) control problem, where the
rudder is used as actuator for controlling yaw rate, which is integrated in order to obtain heading.
The Nomoto model, as first cited in Nomoto and Taguchi (1957), is a natural choice in such a case.
There are two main types of Nomoto models for the relation between rudder angle and yaw rate.
Both originate from the linearized maneuvering model as shown in (2.2). Picking out the yaw
rate r from this model, transforming it to the Laplace plane and integrate to obtain the transfer
function for the heading y results in the second-order Nomoto model in (2.40):

ﬂ( ) = K + T3s)
5 VT S0+ T1s)(1 + To)

(2.40)

11
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If the dynamics can be approximated as a first order response, one can define an equivalent time
constant 7 := Ty + T, — T to obtain the first-order Nomoto model as shown in (2.41).

v K

=(§) = — 2.41

s = ST+ Ts) (2.41)
Asimple PID-controller can be chosen to control the heading, such thatlim,. ¢ = 0 and lim,_,, 7 =

0. The controller can be expressed as in (2.42), using the relationship ¢ = r.

t
0c(1) = - p@(t)—KdT’(l)—Kif J(r)dr (2.42)
0

Here, the error terms are defined as ¢ := ¢ — ¥, and 7 := r — ry, where y, and r, are the desired
heading and turning rate, respectively. By including an integral term in the controller, this is able
to correct for steady-state disturbances and modelling errors. During constant heading hold, cur-
rent might be treated as a steady-state disturbance. It should however be noted that small errors
can be induced by this approach during heading changes when exposed to current.

If we express the transfer function for the controller as He and the transfer function of the Nomoto
model in (2.40) as Hy we can draw a block diagram for the heading loop as shown in Figure 2.2a.
With ocean current, the system is modelled with a constant disturbance d as shown in Figure 2.2b.

wdﬁgﬁ— He Hh — wdﬁ?f He Hn

(a) Block diagram of heading hold loop (b) Block diagram of heading loop with current
modelled as a disturbance entering the system after
the Nomoto model

d

b

W

Figure 2.2: Block diagrams of heading hold loops

This gives the closed loop transfer function in (2.43), which ensures the heading y to converge to
the desired heading v, giving lim,_, % =1 = limset =¥y = lim_e @ = 0.

~HcHy/s K(Kys* + Kps + K;)
1 —HcHy/s  s3(Ts+ 1)+ K(Kgs® + Kps + K;)

Y= Hy = (2.43)
Ya

With a step change y; in the disturbance, it can be proven that the heading error i still converges
towards zero by lim,_, %(t),ul (1) = lim,_0 s%(t)% = 0. It is hereby shown that the controller is able
to suppress the effect of a step disturbance entering the feedback loop after the Nomoto model,
implying that the effect of constant or slowly varying current will also be suppressed.

This type of controller will be able to control the heading towards a steady value equal to the com-
manded value, and that it will be able to suppress outer disturbances from modelling errors or
constant current. It is thereby not given that it will be able to track a high-frequency time-varying
reference signal, or that it will be able to suppress high-frequency disturbances such as quickly
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2.3 Autopilot Control Designs

varying current (e.g., during a turn, where the BODY-frame current will vary), or wind gusts. In
addition, due to the heading ¢, desired heading ¢, and heading error  needs to be disrupted
from the point on the circle to the interval [-r, x], there is no proof for this heading control to be
GAS, as there exist more than one equilibrium for the heading error to be zero.

2.3.3 Feedback linearization Speed Control

For a desired surge speed u,, a speed controller must ensure that the error it = u — u, will converge
towards zero lim;_,., # = 0. The controller must be able to withstand external disturbances, such
as currents. A proposed method in Fossen (2011) is based on a state feedback linearization using
the extracted 1-DOF surge speed maneuvering model in (2.21):

dii(ur) mpr - m3 1
== i, + v+ —r? + —1, (2.44)
miy miy miy miy
Assuming small relative velocity in sway v, ~ 0, small turningrate r ~ 0, slow currents u, = u—u. ~ u

and neglecting higher order terms such as X,,,,u%, the model is simplified to:

X X 1
= e 2y — 1, (2.45)
mi mii nmii
(m = Xty — Xyuy — Xlululurlur =Ty (2.46)

This is dependent on an accurate model, as the nonlinear terms terms can be important, espe-
cially at higher speeds. For low speed application, the nonlinear term in this model is often set
to zero, but other techniques such as acceleration feedback (Fossen, 2011) by adding nonlinear
terms could be chosen. The input to the system is expressed as in (2.47), with the corresponding
closed loop transfer function in (2.48).

t .
7,(t) = —K,i(t) — K,-f i(t)dr = H.(s) = %(s) =-K, - % (2.47)
0

H(s) = uid (5) = —H.($)HN(s) (sKp + Ki)/(m — X;,) (2.48)

1= H(s)Hn(s) 52+ s(dy + K,)/(m — Xz) + Ki/(m — Xz)

Where lim,,, H,(f) = 1 = u — uy. However, the simplifications made in the control design
might be significant, and therefore more robust surge speed controller should be designed to ac-
count for parametric uncertainties.

Adaptive Backstepping Speed Control

To account for parametric uncertainty in (2.46) and the effect of an unknown current, an adaptive
controller for the surge speed can be designed. Inspired by Breivik and Fossen (2007), we can split
o1 (v,) in (2.22a) into a term from the measurable velocities v and leave the effect of the current as
an estimate. This gives:

13



Chapter 2. Background

. 1
Ur = O—l(vr) + m_Tu
i . (2.49)
i—i.=0o(v)+e@) 0+ —1,
miy
where ¢ "0 is the effect of the unknown current. Assuming constant current i, = 0 = i, = izand
u, = u—u.. Thisleads to
i 1
u=a(u—u)+au—ulu-u.)+o(w)+—,
mij
2 1
~ai(u—u.)+ar(u—u) +o1(v)+ —1y
mi|
2 1
~ aju + aslulu — aue — 2azlulue + aru; + o (V) + —1y
mi|

(2.50)

1
= [l/t, |I/l|l/l, |l/t|, l] [CY], as, _2a2MC’ —a1Uc — 02|ucluc]—r + o-l(v) + m_llTLl
1
= [01, 02,03, ¢04] [01,62,63,04]" + o1 (V) + Pl

1
= ‘PTH +oiv)+ —r1,
mii

Where the second equality comes from the assumption of u > 0 and u — u. > 0. Hence, we have:

0 = [a1, @2, —22uc, —arue — @2lucluc)” = [61,62,63,64]7 (2.51a)
@ = (@1, 02, 03, 04]" = [u, lulu, Jul, 117 (2.51b)

Where all parameters in 6 are assumed to be constant and is subject to estimation. For a desired
surge speed u,, we can define the error as e, = u — uy, which gives the error dynamics:

1
eu=¢ 0+01v)+ m_nT” — Ity (2.52)

Then we define the Lyapunov function and its derivative:

1
V| = Em“eﬁ (2.53)
. 1
Vi =myie e, = ey (cpTH +o1(v)+ —71,— ud) (2.54)
mi
with the control
Ty =mi (-9 - o1(v) = Kpuew + tta). Kpu >0 (2.55)

with # inserted as the estimate of . The estimation error is denoted @ = § — 8. Then, (2.54) reduces
to:

Vi = —Kpuel+ ¢ be, (2.56)

Defining Lyapunov function V;:
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2.3 Autopilot Control Designs

1. ~ . 2 . A A
Vo=V + EaTrgle, T, =T = diag(yu1s Yu2s Yuss Yus) > O, 6=6-0=-0 (257

gives

Vz = V] + éTF;lé

= —Kpueg +¢ e, + éTF;lé

. . 5 (2.58)
= K2 +¢ e, —0'T,'0
= Kyl + 8 (peu - T7'0)
Then, by defining the estimator dynamics:
0 = T,pe, (2.59)
reduces (2.58) to:
o 2 T -1 _ 2
Va = —Kpues + 07 (e, - T, 'Tupe,) = ~Kpues < 0 (2.60)

Hence, V; is negative semi-definite, and we achieve uniform global stability and convergence of
e,. This controller will be applied in Section 6.

2.3.4 Path Following and Course Control

For a vessel maneuvering at sea, the heading is not the same as the course. The angular difference
between course and heading is called sideslip, as defined in (2.39a). Therefore, as the control ob-
jective often is to control the course to a specific direction, the control system must compensate
for this when controlling the heading. Breivik and Fossen (2004) and Fossen et al. (2003) presents
a technique for path following for straight lines and circles for underactuated marine surface ves-
sels by sideslip compensation, while recent studies such as Fossen et al. (2015) expands the theory
for a curved path with adaptive sideslip compensation with Line-of-Sight. The basic principle is
as shown below.

Straight-Line Paths

The 2-D position of a surface vessel is defined as p” = [N, E]T € R?. A straight line path is, as the
word implies, the straight line between the two points pj and p}. Where pj is either the previous
waypointor the current position, and p} is the next waypoint. The path tangential angle is denoted
A

P = [x0, 01", P} =[xi,yl’, @y = atan2(y; — yo, X1 — Xo) (2.61)

Line-of-Sight Guidance

Line-of-sight (LOS) is classified as a three-point guidance scheme since it involves a stationary
reference point, as well as an interceptor, which is typically the vessel we want to control, and a
target that can be either a moving or stationary point. This technique is often used when the vessel
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objective is to reach a set of waypoints p}. The cross-track error can be found by rotating the NED-
frame coordinates between the vessel position and the previous waypoint by an angle equal to the
angle of the active path segment. Hence expressing the distance from the previous waypoint in a
path-parallel and a path-normal component. This can be mathematically expressed as in (2.62).

s
€~ [e(t)

Here, s(r) denotes the along-track distance from the previous waypoint, and e(¢) denotes the cross
track error, i.e., the distance from the active path segment as measured normal to it. p"(f) denotes
the position of the vessel in the NED frame, and p/(¢) denotes the position of the first waypoint
in the currently active line segment in the NED frame. The LOS algorithm is used to control the
heading of the ship to ensure convergence to a straight-line path, expressed mathematically in
(2.62).

} =R (@) (@"(1) - pp): lim e(r) = 0 (2.62)

The guidance system should construct desired heading ¢, and surge speed u, as input to the
controllers. Fossen (2011) describes two ways of constructing the desired course angle for path-
following on straightline paths between waypoints; Enclosure-Based Steering(EBS) and Lookahead-
Based Steering (LBS). Figure 2.3 shows the EBS setup:

North Py
L» East (T 10w Yion)
desired
course angle
Xd(t) = atan 2(ylos - y(t), Xlos — x(t)) (2633)
Az [X10s = X(1)]* + [Yios — Y()]* = R (2.63b)
tan(ay) = 2L 72k s T oonst (2.63¢)

Xk+1 — Xk Xlos — Xk

Figure 2.3: Enclosure-based steering setup. Courtesy: Fossen (2011)

EBS relies on enclosing p” with a circle with radius Rgps sufficiently large such that the circle will
intersect the straight line at two points. By directing the velocity vector towards p} = [Xios, Yios]
we can ensure ¢(f) — 0 by computing the desired course as in (2.63a), where (x5, yios) is the solu-
tion of (2.63b) and (2.63c). See Fossen (2011) for the algebraic solution of (x;ys, yios)-

The other method, LBS, relies on constructing the desired course angle as the sum of the path-
tangential angle y, = o and a velocity-path relative angle y.(e). The setup is shown in Figure
2.4.
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pk+]

(T 109 Y10s)

Xxa(e) = xp + xr(e) (2.64a)
Xp = Qk (2.64b)

LOS vector _
x(e) = arctan (A Zit()f)) (2.64c¢)
Dy, Arps(t) = R%BS - e(t)2 (2.64d)
Rips > le(?)] (2.64e)

Figure 2.4: Lookahead-based steering setup. Courtesy: Fossen (2011)

Here, A s (r) denotes a lookahead distance, defined as a desired-path-parallel distance between
the projection point of the vessel on to the path and the point toward which one wishes to steer
the vessel. Hence, a short lookahead distance yields an aggressive course controller, while a long
lookahead distance yields the opposite. It could either be a time varying parameters as in (2.64d),
or chosen to be constant, usually between 1.5 - 2.5 of the ships length L,,. Note that in the case of
Rips < le(?)], other techniques to construct the desired course must be done, such as directing y, to
be the path-normal projection from its current position, or directly to one of the active waypoints.

Sideslip Compensation

As the course and heading of a ship are not necessarily aligned during turning or due to ocean
currents, a sideslip compensation should be done according to (2.65), with g being calculated
according to (2.39b). Also, if the control objective is to obtain a speed Uy, the desired surge speed
should account for sway velocity according to (2.66).

Ya=xa—PB (2.65)
g = \JU3 —v? (2.66)

2.3.5 Target Tracking

If there is no trajectory to track, but rather a moving target, the Target tracking scheme presented
in Breivik (2010) can be used. The goal is to make the controlled vessel, (the Interceptor) track
another vessel (the Target).

A constant bearing guidance scheme is a commonly used scheme for marine applications. Here,
the desired velocity v/} is a combination of the bearing velocity and the target velocity. The ve-
locities are rotated in a LOS reference system, relating the lateral distance and cross track error
as in (2.62). For the interceptor to keep a relative position behind the target, an additional term,
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€; = [sq,e4]” € R?is added to € in (2.62) to ensure this, showed in (2.67¢). The method is based on
the equations in (2.67), related to Figure 2.5.

LOS vector between
Interceptor ]
interceptor and target: p'=p" -p; (2.67a)
eYs o Uamax”f)n”
Stabilizing term: k= ————  (2.67b)
- JETE + A2
p, n/
o Approach velocity vector: V) = —K”ll;n” (2.67¢)
a n
3 Va Desired velocity/course: V=V 4V, (2.67d)
- i_;’,’ /, Constant Cross and alongtrack error: € = R"(x,)(p" (1) — p}) + €4
F ‘ . bearing (CB)
’ 5 (2.67e)
Desired approach speed: U, = Ju+v2 (2.671)
Desired speed: Ua = |Ivyll (2.67g)

Figure 2.5: Interceptor and target. Courtesy: Fossen (2011)

where A; > 0 affects the transient interceptor-target rendezvous behaviour, meaning the larger
Ajp, the less aggressive the velocity component pointing directly at the target will be. y; denotes
the course of the target and U, .., denotes the maximum approach speed toward the target. The
desired velocity vector (2.67d) defines both the desired speed and course.

2.3.6 Reference models

In tracking operations, where the ship moves from one position and heading to another, a ref-
erence model is needed for achieving a smooth transition. A feasible trajectory means one that
is consistent with the vessel dynamics in each degree of freedom. In linear system theory this
means that the reference model must have slower eigenvalues compared to the craft dynamics.
In a non-linear case like the one presented, this translates to bandwidth of the reference model
beinglower than the bandwidth of the motion control system in order to obtain satisfactory track-
ing performance and stability. Fossen (2011) presents a velocity reference model modelled as a
mass-spring-damper system:

v, + 20, + Q%v, = Q%P (2.68)

where v; € R” is the desired velocity, v, € R” the desired acceleration and ¥; € R” the desired
jerk. A = diagl{éy, &, ... &n} > 0 € R™ and Q = diag{wy,, Wy, , ..., wp,} > 0 € R™ denote the relative
damping ratios and natural frequencies, respectively. r” € R is the desired velocity.

For a two dimensional velocity reference model in surge and turning rate for a marine vessel, this
reduces to:
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fig + 20y wn, g + Wy Ug = W Uref (2.69a)
Fg+ 2§rwnri"d + wﬁrrd = wﬁr Tref (2.69b)

which results in the transfer functions:

2

w
L (s) = R (2.70a)
Uref 5%+ 20,wp, s + Wy,
2
rq wy,
- s) = 5 > (2.70b)
ref 5%+ 20wp, s + Wy,

where u; and r, is the surge speed and turning rate that is used in the controller. The relative
damping ratios ¢, and ¢, are often set to one to get a critically damped reference. The natural
frequencies w,, and w,, should be set such that it generate a feasible velocity trajectory for the
dynamic system it is applied on.

2.4 Autonomous Marine Control Systems

Extensive research and progress has been made when it comes to autonomous systems the last
decades. Lekkas (2018) distinguishes between automatic and autonomous systems, where an au-
tomatic system is a system that does exactly what it is programmed to do, without choice or possi-
bility to act in any different way. Furthermore, a deliberating system is a system that performs ac-
tions motivated by some intended objectives, justifiable by sound reasoning with respect to these
objectives. An autonomous system is a combination of these two, i.e a system that possesses self-
governing characteristics which, ideally, allow it to perform pre-specified tasks/missions without
human intervention. To characterize the different types of autonomy, Ludvigsen and Serensen
(2016) present the following four levels of autonomy:

1. Automatic operation (remote control) means that even though the system operates automat-
ically, the human operator directs and controls all high-level mission-planning functions, of-
ten preprogrammed (human-in-the-loop/human operated).

2. Management by consent (teleoperation) means that the system automatically makes rec-
ommendations for mission actions related to specific functions, and the system prompts the
human operator at important points in time for information or decisions. At this level, the sys-
tem may have limited communication bandwidth including time delay, due to i.e. distance.
The system can perform many functions independently of human control when delegated to
do so (human-delegated).

3. Semi-autonomous or management by exception means that the system automatically ex-
ecutes mission-related functions when response times are too short for human intervention.
The human may override or change parameters and cancel or redirect actions within defined
time lines. The operator attention is only brought to exceptions for certain decisions (human-
supervisory control).

4. Highly autonomous, which means that the system automatically executes mission-related
functions in an unstructured environment with ability to plan and re-plan the mission. The
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»”

human may be informed about the progress. The system is independent and "intelligent
(human-out-of-the loop)

For more details, see NIST (2018) and National Research Council (2005).

The complexity of an autonomous system depends on a number of factors such as the human
Independence(HI), the mission complexity(MC) and the environment complexity(EC). Figure 2.6
shows the terminology of an autonomous system, while Figure 2.7 characterizes the conceptual
autonomous capability according to these factors.

« approaching 1
« highest compl
AUTONOMY LEVELS FOR UNMAMNED SYSTEMS all m

(ALFUS) FRAMEWORK * extreme envir

Mission < high level HI
Complexity « collaborative, high

« mid level HI complexity missions

; 2 ’ « difficult environment
* mid complexity, multi-
functional missions
* moderate environment
Human Independence or
En\gmnnl-lea,tal Oparahm'::depondmcaor
omplehty Autonomy Level
| [ I [ I I
. Lowest Highest
Figure 2.6: Autonomy levels framework.
Courtesy: NIST (2018) Figure 2.7: Contextual autonomous capability. Courtesy: NIST

(2018)

An autonomous system where a human operator is in the loop puts high demands on the human-
machine system to be capable of surviving weaknesses in both machine and human functioning.
Hence, the robustness and resilience of an autonomous system should be assessed. The resilience
of a system represents its ability to return to normal operation in the case of damages or failures,
while robustness is the systems ability to function effectively in a range of demanding circum-
stances. Both these factors plays a key role for the overall performance of a system to be accept-
able. Recent studies in Matthews Gerald (2016) addresses the challenges posed by interaction
with autonomous systems. This study points out the importance of not only engineering an au-
tonomous system against failures but also such that it can communicate its level of functioning
to the human and to adapt to operator status.
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Chapter

Hybrid Dynamical Systems and Control

A hybrid system is a dynamical system which exist both in discrete time and continuous time.
It can either flow in continuous time or jump in discrete time. A hybrid state is defined as the
values in the continuous state and the discrete mode it is in. This section will go through the
mathematical preliminaries and conventions for such systems, and exemplify some of the theory
asitis presented.

3.1 Preliminaries

In GS, LAS, LES, UGAS, UGES, etc., stands G for Global, L for Local, S for Stable, U for Uniform, A for
Asymptotic, and E for Exponential. A diagonal matrix is denoted diag{ay, ..., a,} € R™". Stacking
several vectors into one is denoted x = col(xy, x2, x3) := [x],x],x;]", similarly x™ = row(xy, x2, x3)
is a row vector, and whenever convenient, |(x;, x2, x3)| = |x|. The Euclidean vector norm is |x| :=
(xTx)1/2. Total time derivatives of x(¢) are denoted %, &, x®, ..., x™. For a function @ : R* — R the

gradient is the row vector Va(x) := % and for ¢ : R* — R the Jacobian is the matrix J,(x) :=
col(% day f?a_m)
ox’ 0x° > ox )°

3.2 General Hybrid Systems Preliminaries

As many dynamical systems combine behaviours typical for both continuous-time dynamical
systems and discrete-time events, this section is to generalize the concept of switching between
these two events. Rafal Goebel and Teel (2012) presents a general model on the form shown in
(3.1).

X € F(x), xeC (3.1a)
X" € G(x), xeD (3.1b)

The continuous model is described by (3.1a), where x represents the state in the n-dimensional
euclidean space R”, F(x) the first order differential inclusion and C is a subset of R”. In the discrete
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model (3.1b), x* denotes the next value of the state through the set-valued mapping G(x) and D
is a subset of R”. C is called the flow set, F the flow map, D the jump set and G the jump map. The
hybrid form of the entire system (3.1) is denoted H.

H =(C,F,D,G) (3.2)

The hybrid time domainisaset E c Ry X Zso such thatforeach (7, J) € Etheset EN([0,T] x {0, 1,2,...,J})
is a compact hybrid time domain.

J
E =t u i) (33)
=0

for some J € Z5p and real numbers 0 =ty < 7; <, < ... < t;41. Functions in hybrid time domains is
called hybrid arc, which is a function x : dom x — R” with dom x being a hybrid time domain and
foreach j € N, t — x(z, j) is locally absolutely continuous. The solution to a hybrid system H is a
hybrid arc which contains the origin x(0,0) € CU D and Vj € Nsuch that/; := {r : (¢, j) € dom x}

has nonempty interior
x(t, j))eC forallz € [min /;,sup /) (3.4)

x(t, j) = F(x(t, ))) for almostallr € I; (3.5

and Y(7, j) € dom x such that (7, j + 1) € dom x and:
x(t, j) € D,x(t, j+ 1) € G(x(¢, ))) (3.6)

Figure 3.1 illustrates different kind of hybrid time domains and arcs.

z(t,5) §

.II:'[].. “] o

ty to 13 ¢

(a) Hybrid time domains associated with different

types of solutions of a hybrid system: a) Zeno, b)

eventually discrete, c) purely discrete, d) eventually (b) A hybrid arc associated with a hybrid dynamical
continuous, and e) purely continuous system

Figure 3.1: Examples of hybrid time domains and a hybrid arc generated by a hybrid dynamical system
Courtesy: Rafal Goebel and Teel (2012)

Here, (7, j) are pairs of time 7 and the number of jumps j. A solution is nontrivial if it contains at
least one point different from (0,0). There is no requirement that C and D does not overlap, so
when C N D # 0, the solution may either jump or flow depending on the jump and flow map.
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For a hybrid system to be asymptotically stable, there must exist a compact set A c R” which is
both stable and attractive for H, is bounded, and the complete solutions converge to the basin of
attraction of A. If the basin of attraction cover the entire Euclidean space R”, the solution is said
to be globally asymptotically stable.

An example of a physical system that can be described as a hybrid system is a bouncing ball, where
the position and velocity while in air follows dynamical equations in continuous time, while the
bouncing event switches sign of the velocity and decreases in absolute value due to energy losses
in the bounce. Generalizing the continuous and discrete time-domains as a hybrid system, en-
ables a structured way of handling switching systems while at the same time providing a frame-
work for analyzing robustness and stability.

3.3 Hybrid Control on S!

Controlling the orientation is a nontrivial task that is subject to topological disruptions, i.e split-
ting angles evolving on a compact manifold into a defined range (as disrupting S! to [, 7]). With
such disruption, a system can not have a globally stabilizing continuous feedback law that has a
single globally asymptotically stable equilibrium point. In addition, arbitrary small measurement
noise can destroy asymptotic stability.

In order to design a control law that achieves robust global stability of the desired rotation, there
must be a class of control laws that can be coordinated such that it removes the need of manually
placing a hysteresis or define domains of operation of each controller. This section will present a
hybrid control structure for a kinetic point stabilization problem on S'.

3.3.1 Teel’s Notation for S' Manipulations

For the topic of this thesis, the aim is to conduct a hybrid system that controls the heading of a ship
towards a desired heading. Instead of wrapping the heading and heading errors on to an interval,
the idea is to represent angles as points on the unit circle and control these points towards the
desired point. In Teel (2018) and Mayhew and Teel (2010), we define the unit circle S' and group
of planar rotations S O(2) as:

s'i={ceR*:7Tz=1} (3.7)

SOQ):={ReR¥ :RTR=RR" =1, det(R) = 1| (3.8)

where (-)7 is the transpose and / is the identity matrix. Let z := col(zy, zy) € S!, €1 := col(1,0) € S!
and e, := col(0, 1) € S', and define the matrices
S :=[ez,—eq], J = [e1,—e3] 3.9
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Hence, for a counter-clockwise rotation a on S! from the x-axis, the following holds:

{ 7% =cosa } <@{ a = atan2 (%, 29) } (3.10)

zy = sina 1= (292 +(2)?
7%= J% = col(zy, —zy) € st, R(z) := [ z Sz ], 7= R()e; (3.11)

| Fe
7%= col(zfc,z;’) es’, R(zHT = [ _xa y

u } = R(z™), RZYR(Z") =REZHR(Zz ™ =1 (3.12)
Zy

Note that the way of representing the angle directly on S' makes any "rad2pipi" mapping of an
angle from the (-0, ) to the [-x, 7) interval in (3.10) unnecessary, and it will not introduce any
other discontinuities that may cause robustness or stability issues for a feedback control system.
Another advantage of representing an angle on S! is that it introduces a convenient way of adding
and subtracting angles by multiplication, as well as other rotational relationships:

o =2 = R =R, 7" = RE@) " = R REHRE) = REHR(E) € SOQ2), (3.13)

RE)TREZHT = REZY)TRE)T € SOQ), RZHTR(EZ?) = RE)R(ZHT € SO2) (3.14)

Also, the kinematic equation for an angle z* constrained to move along the unit circle is given as:

d
2 = wlS7, P (R(z")) = waS R(Z") (3.15)
with w, € R being the rotation rate in [rad / s].

In the case of a vector defined as v = [vy,vy] € R2, where U = |v| = VwTvand a = atan 2(vy, vy), We
can express the angle on S' as:

= 5 = [va/U, vy /UTT (3.16)

Then, the velocity vector expressed with an S! formulation is then v = Uz¢. Manipulating (3.15),
we can also express the angular rate as:

v vivl —vyT vl _U?I v
wa:(Za)TST.a:UST(T)V: ?STFV:(Za)TSTU (317)

3.3.2 Example - Robustly Globally Asymptotically Stabilizing a Point on the Circle

To draw parallels to the problem of this thesis, a robust hybrid heading controller of a ship canin a
simple way be interpreted as a way to robustly globally asymptotically stabilize a point in the unit
circle. We cannot pick a discontinuous function and expect the system to be robust, but we can
choose a hybrid feedback and get robustness. The key is to make sure that the point (or course
of a ship) points in the desired direction no matter where it starts and the magnitude of the mea-
surement noise. As an example, if a ship is commanded to do a 180 degree turn, you can draw a
line from the heading which the ship is pointing and the way it is going. Small perturbations in
measurements can confuse the controller on which side of this line it is. This can lead to a chat-
tering behaviour in the control input, and in the worst case it will not reach its reference at all. The
hybrid system for point stabilizing control on S! can be expressed as in (3.1).

24



3.3 Hybrid Control on '

21 2w
X = |2 =|-aw|, C=Cix{g=1HU(Cax{g=12} (3.18a)
[ 0
[z} 21
x'=|z|=| 2 |, D =D x{g=1)U (D1 x{qg=2}) (3.18b)
"] 13-¢

Here, the state vector x = [z1,72,¢]" withz = [z1,2,]7 € S! being the vector constrained to the unit
circle, and w € R is the control input controlling the point towards e;. A logic mode ¢ € {1,2} can
be used to toggle between the flow sets C; and C».

q=1 g=2
rY Jump A
C C
Flow ! Flow 2
Overlaps
D]_ and Cz
Dy
Jump
Jump
DZ
Flow Sven Flow
erlaps
€1 Dy and C; Cz

Figure 3.2: Flow and jump sets for stabilizing a point on S'.

Figure 3.2 illustrates this, where the flow sets C; and C;(in red) are designed to overlap to ensure
a closed set C. This means that at these points where they overlap, it will either jump or flow de-
pending on the value of ¢. In the case of x € D(in blue), it will jump and the logic mode ¢ will
toggle. Then, assuming the magnitude of the measurement noise is not large enough, it is not
close to jumping again and it will flow towards the point. What this does is creating a hystere-
sis mechanism to make sure it does not revise its decision on which way to go around the circle
unless there is a dramatic change in the state. Hence, the controller is hybrid with a logic mode
which can not change continuously and guarantees robustness. It is worth mentioning that sim-
ilar properties can be achieved by having a dwell time in the toggling, where it waits for a small
amount of time after toggling before it can toggle again.

The following subsections will describe the necessary conditions and equations for designing the
control w for such system.

25



Chapter 3. Hybrid Dynamical Systems and Control

3.3.3 Potential Functions and Virtual Controls - Non-hybrid

A technique presented in Mayhew and Teel (2010) shows how to stabilize a point on the unit cir-
cle s!, which is equivalent to stabilizing a group of planar rotations S O(2) using an alternative
Lyapunov-based approach that also relies on hysteresis to switch between stabilizing control laws.
Lyapunov functions evolving on S' will need to have at least one minimum and one maximum on
the unit circle. We must therefore have minimum two critical points, whereas one is stable and
one is unstable. Therefore, single smooth control laws linked to Lyapunov functions may have
critical points where the control law vanishes or is not robust enough. A set of Lyapunov functions
with exactly one minimum and one maximum, where the maximum of each Lyapunov function
lies within the associated jump set can be defined. Then we can construct stabilizing control laws
according to each Lyapunov function, and due to the placement of the unstable equilibrium in-
side the jump sets, we can achieve robust global stability of the desired rotation.

Let & be a family of continuous differentiable potential function, with the following properties
forevery P € &:

(P1) P:s'— [0, 1]is surjective (meaning for every element p € [0, 1], there is at least one element
z € S! such that P(z) = p)

(P2) There exist exactly two critical points, e; and zp satisfying P(e;) = 0, P(zp) = 1,(V_P(e}),Se;) =
0,(V.P(zp).Szp) =0

Where (V,P(z), S z) denotes the gradient of P(z) € £ along the manifold S', i.e the dot product
T

V.P(z)T - Sz, where V, = [% %]

Next, define a class of control laws %' (P) corresponding to a potential function P € #2:

(C1) (V.P(2),Sz)k(z) < Oforallz e S!

(C2) (V. P(z),S2)k(z) = 0if and only if (V,P(z),Sz) = 0

For an objective to drive an angle z% — 7?, the error between these can be expressed on S' as:

7= R(z”)T F=Foz? (3.19)

where z = e, is equivalent to z* = z°. With the kinematics of z* and z” expressed as z* = w,Sz* and

7P = wpS z?, we have:

z2=(wg —wp)Sz=0Sz (3.20)
Where & = w, — wp.

Hence, for a potential function P(z) € & with control law «(z) € (P) that drives @ — 0, we have:

P(z) = V.P(2)"z = V.P) @Sz = V.P(z) k(2)S z = (V.P(z), S 2)k(2) (3.21)

Where it is assumed that @ tracks «(z) perfectly, i.e @ = x(2).
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3.3 Hybrid Control on '

As shown in Bhat and Bernstein (2000), the states of this system evolves on compact manifolds,
and can therefore not have a single GAS equilibrium. Therefore, Mayhew and Teel (2010) presents
a hybrid control for @, by letting «; denote the virtual control for @ that ensures robust global
asymptotic stability of the set Ay := {e;} x Q for the state ¢ := (z,¢) € S! x Q, where Q := {1,2} is the
allowable values of the logic mode g that switches between the two control laws. Next, define the
set& := {(z.q) € S' X Q : (V,P(z),Sz)k(z) = 0}. To develop a hybrid control law for ¢, one must first
find a suitable potential function and control law for all z € S! \ {~e;}, and then use this as a base
to design a hybrid control design that guarantees GAS of the set Ay.

A potential function Pyy(z) € & is proposed:

1
Poo(z) = 3 (I -2z (3.22)

such that Pyy(e;) = 0 and Pyy(—e;) = 1 and the differential V,P(z) = —%elT. The gradient along S'
atz = e; and z = —e; is then V,Pyo(e;)"Se; = —%elTez = 0 and V_Pj (—e;)S(—e;) = 0, respectively.
Hence we have two equilibria, one stable and one unstable. To drive 7 — e; forall z € S' \ {~e;},

we can assume that we can control @ — 0 by the virtual control xy(z) € € (Poo) in (3.23).

Koo(2) = —zy (3.23)

Then, we can replace @ with «go(z) in (3.20). This leads to:

2= k00(2)Sz = —2ySz = [, —2xzy]” (3.24)

And the derivative of Py (z) along S! with control ky(z) then becomes:

Poo(2) = (V-Poo(2). S2)k00(2) = V-Poo(z) S zk00(2) = %elTSzzy = —%zﬁ = —% sin” (3.25)
where the last equality comes from the fact that z, = cos6 and z, = sin6. We observe that for all
z € S'\ {~e}, we have Py(z) < 0, driving z — e;. We can also see that z has two equilibrium points,
i.,eatz = +e|(0 = {0,+n}), where z = e; is stable and z = —e; is unstable. Hence, the singularity
z = —e; must be avoided, which motivates for a hybrid structure with two potential functions
where an diffeomorphism is applied on the S! manifold to move this unstable equilibrium onto

the jump sets of two different control laws. More on this later.

We not only want the point to be stable, but also the convergence rate to be uniformly along the
unit circle arc. As ky(z) is very small close to the unstable equilibrium z = —e;, the rate of con-
vergence is not reflected in the magnitude of the error along the unit circle. Hence, a potential
function Py (z) € & is proposed:

Po1(2) = L(arccos(e; ' z) — arccos(1)), L = 1/(arccos(—A) — arccos(A)) (3.26)

This function is designed to reflect the arc length from z to e; along the unit circle, and is scaled
by 0 < 1 < 1to bound the gradient. Hence, this function satisfies both property (P1) and (P2).
Figure 3.3 shows the manifold of Pyy(z) and Py;(z) for angle errors in the range [-180°, 180°]:
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Figure 3.3: Manifold of potential functions Py, and Py,

Now that we have a potential function that reflects the arc length along the unit circle, we seek to
find a control x € € (Py;). One candidate is ko1 (z) = —K,z,, K, > 0, or alternatively:

<y

A — (3.27)
AL \1 - 2222

Ko2(z) = — Ko3(z) = — Po1(2)

K Zv
2L 2Py,
AL \[1 = 2222

Where «(, and kg3 gives linear and exponential convergence, respectively. In these functions, the
the term

Zy Zy Zy Zy

V1 - 222 \/1 - 22(1 - Z)Z) [1- 12+ /12Z§ Alzy

with 0 << 1 < 1is a smooth sign-function of z, that sets the correct sign of the feedback.

(3.28)

~ sign (zy)

Analyzing the potential function Py, the gradient and derivative when combined becomes:

T

—-LA . —-LA
V. Pp1(2) = | —.0| , Poi1(z) = V. Pyi1(2) "2 = ——¢ (3.29)
where z, is found by inserting o, ko2 and ko3 for @ in (3.20). This gives:
. ) . : Liz
ZX»KOI = szy, ZY,KOI = _KpZny, POLK()I = Kp\/l?/lzz.% (3.303)
. K, 2 VPo12) K, =2y2x VPo1(2) . 2 VPoI2)
Lxkon = E—’ ke = 37 T ——— » Potug, = P 22 (3.30b)
1- 22 AL 1 - 22 1 — A%z
K, Z2Poi(2) K, —7y2:xPo1(2) . 2Po1(2)
ik = o ———, ks = o, Potgs = Kp=2—55 (3.30¢)
AL 1 = 2272 AL 1 = 272 1 —A°zy

where all renders z = e; asymptotically stable for (3.20) with region of convergence S' \ {—e;}. The
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3.3 Hybrid Control on '

manifolds for all virtual controls « with K, = 0.5 and A = 0.99 is shown in Figure 3.4a, and the
resulting potential function derivatives is shown in Figure 3.4b.
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(a) Manifolds for virtual controls controls

Figure 3.4: Manifolds of virtual controls and their derivatives

The small control signals close to z = —e; in kg9 and «p; is solved with «p, and «o3. In addition, the
derivatives for all controls is negative for all values of z € S' \ {+e;}. We can see from ko3 that the
virtual control signal decreases linearly as the angle goes to zero, but the convergence rate is even
larger for «¢,. By increasing A even closer to 1, the steepness of the control signal close to z = —e;
also increases. Also, the gain K, > 0 sets the magnitude of the angular rate. Hence, both 2 and K,
are parameters that can be tuned according to the dynamical system it is applied on.

To illustrate how the different virtual controls affects the change of z along the unit circle, the vec-
tor fields for z is plotted in Figure 3.5:
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Figure 3.5: Velocity vector fields of the resulting z dynamics for different potential functions

Where zis plotted as a vector field in the neighbourhood of S! to better illustrate the gradients of z,
but in reality the only possible gradients are the one on S'. When using the virtual control ko from
the potential function Pyy, we can see that the magnitudes of the gradients are largest for z = +e,,
and goes closer to zero in magnitude when moving closer to +e;. This might be unwanted and lead
to a slow convergence towards z = e; for points in the left half plane, and therefore the potential
function Py, was introduced. When using Py, as the potential function and «, as virtual control,
the resulting gradients for z is proportionally larger the longer along the arc length the point on
the circle is from e;, and will induce larger control forces when included in a control system.

To illustrate this, the feedback controls o, ko1, ko2 and o3 were applied to a model on S! with
K, = 05,1 =09 = L = 0.3498 with initial angles in the range y, € [15°,180°] and desired
angle ¢, = 0°. This was simulated for 20 seconds to see the difference in the response using the
proposed potential functions. The results are shown in Figure 3.6:

30



3.3 Hybrid Control on '

Yo = 90°
Py = 45°
Yo = 30°
Yo = 15°

Go = 180°
Py = 179°
Py = 150°
o = 125°

"0
Time [sec]

(a) Response when using virtual control g

200 T

20

180
160 ||
140 ||

120

Gy = 90°
Yo = 45°
W = 30°
Wy = 15°

by = 180°
= 179°
Yy = 150°
o = 125°

200

180 ———

160

0 5 10
Time [sec]

(b) Response when using virtual control o,

200

20

180 -
160 ||

140 |\

Time [sec]

(c) Response when using virtual control o,

20

Time [sec]

(d) Response when using virtual control o3

Figure 3.6: Comparison of response from different virtual controls

20

Where the responses for negative initial angles are the same, but mirrored along the x-axis. This
clearly shows the importance of a adequate potential function and virtual control to obtain fast
convergence. Note that for the initial angle offset of 180°, none of the controllers will be able to

reach z = e;. This motivates for a hybrid structure avoiding this unstable equilibrium.

3.3.4 Hybrid Control of Planar Rotations

As seen from the previous subsection, the virtual control which resulted in the most stable re-
sponse, both in terms of convergence rate and transient response, was ;. It is therefore chosen
to proceed with this control and potential function Py; to deduce the hybrid control law from
these, as the hybrid control properties will be similar. The idea is to design a hybrid structure as
described in section 3.3.2 with two potential functions P; and P,. In these functions, the peak is
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shifted such that the peak of P, is in D, and the peak of P, isin D,. By a Lyapunov-based approach
that relies on switching between stabilizing control laws, one can make sure that the state flows
towards one stable equilibrium point on S!(i.e Ap) through the flow sets C; and C;.

The design of the control law relies on angular stretching of the manifold to form a diffeomor-
phism that maintains the element’s norm and keeps it within its manifold. In order to shift the
critical point zp = —e; to apply hybrid heading control on S!, the following functions must be
applied, according to Mayhew and Teel (2010):

The amount of rotation is controlled by a gain k € R and potential function P € &. Let ® : S! xR x
Z — SO(2) be the exponential map ®, defined as:

w = kP(2)S (3.31)

(k. P) = [cos(a)) - sin(w)],

sin(w) cos(w)

where k must satisfy a mild bound. Next, define 7 : ! — S! as:

T (z,k,P) = O(z,k, P)z (3.32)

which applies the rotation to z. For notational simplicity, 7 (z) = 7 (z, k, P) whenever suitable. Next,
define the Jacobian of 7~ (with some other properties) as:

J7(z,k, P) = Oz, k, P)(I + kSZV.P'(2))
det(J7(z,k, P)) = 1 + k(V,P(z),Sz) (3.33)
J7(2,k, P)Sz = det(J7(2)S T (2)

where 7 is the identity matrix and det(J+(z)) denotes the determinant of J4(z). We can express the
derivative along the unit circle of a modified potential function (P o 7)) = P(7(z,k, P)) : S! — Rxq
with a shifted critical point as:

(Vz(PoT)(2),S2) = det(J7()NVP(T (2)), ST (2)) (3.34)
So 7 is a global diffeomorphism if k satisfies:

k| < ! (3.35)
max{[V-PQ)I : < € 5]

meaning that 7~ is a mathematical mapping of a state on the smooth manifold S' to S' (rotation)
such that it is invertible and maps one differentiable manifold to another such that both func-
tions and its inverse are smooth. With this function we can construct new potential functions
and control laws for S!.

The indexed diffeomorphism 7,(z) : s! — s!, the indexed potential function Pyz) : St - [0,1]
and its minimum over @ M : S! — [0, 1] are defined as:
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3.3 Hybrid Control on '

T4(2) = T (2, kg, Py) (3.36)
Py(2) = P(T4(2)) (3.37)
M(z) = min{Py(2) : q € Q} (3.38)

Hence, with P, = P = Py as the base potential function, the modified versions of these can be
expressed as:

P1(2) = Po1(T1(2)), T1(z) = T (2, k1, Po1) (3.39)
Py(2) = Ppi1(T2(2), T2(z) = T (z, ka, Po1) '
. . I _ V12 .
and since max{|[V_Po1(2)|| : z € S'} = ——7~, we choose k; and k; as:
ki = 0.495 - ky = —k (3.40)
1 = V. L 5 2 = 1 .

such that 7~ is a global diffeomorphism. Then, using 1 = 0.99 gives the potential functions shown
in Figure 3.7:
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Figure 3.7: Resulting manifold of P, and P,

Here, we can see that the peak of P, and P; is at approximately 6 = +169°, while still having the
stable equilibrium at z = e; (¢ = 0°). Now that the hybrid potential functions P; and P, are defined,
the next step is to find the associated controls «7,(z) € € (P;) and «7,(z) € € (P,) such that the
conditions (C1) and (C2) holds. A modification of an original control x € € (P) suitable for (P o 7")
is denoted ks~ € € (P o 7), and can be expressed as:

KT
T = T @) 5-41)

Hence, a modification of the original control xp, € %(Py;) gives a control for (Py; o 7)) as k5 €
E(Poy o T):
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k02(7 (2))

k7 (z) = —det( T7Q) (3.42)
Meaning that for g € Q = 1,2 we have:
k02(7T 4(2))
= " 3.43
7 = G T (@) (549

where 7,(z) = 7 (z, kg, Po1). A formal definition of such system is defined by letting 2 = & x ¢ x
R x 2)N x Rs. Then, letting Q = {1, ..., N} we can define the tuple H as:

H = (P, {(kgs P, 0) € F (3.44)
The parameter 6 is called the synergy gap, which must satisfy the bound 0 < ¢ < u in order for 7,(z)

to be a diffeomorphism, where:

p=1-max M7, (P7'(1)) (3.45)
qeQ
Where P7'(1) = zp and 7, '(P~'(1)) = 7, '(zp) is the solution for z in 7,(z) = zp, which for this
application are the points along the unit circle where P,(z) = 1.

Hence, the tuple Hj; with potential function P = Py, Q = {1, 2}, control « = ko, with k, as defined
in (3.40) with the same base potential functions for both P} and P}, i.e Py = Py, is:

Ho1 = (Po1, ko2, {k1, Po1}, tka, Po1}, 601) € (3.46)

The value of u for Hy, is calculated offline to be uy; = 0.0954974 and therefore 6p; = 0.09 is chosen
to be the synergy gap for this application.

Placing these conditions in a hybrid structure, yields:
C=1{z¢q €S'xQ: M(z) - Pyz) > —601} (3.47)

D={z9 €S'xQ: M(z) - Pyz) < —501) (3.48)
Next, we define the set-valued mapping g(z) as g : S! 3 Qwhen (z,q) € D:

8(2) ={g € Q: Py(z) = M(2)} (3.49)

i.e switching ¢ such that z flows along the flow set with the minimum associated potential func-
tion to ensure the potential function is strictly decreasing during flows. Then, the tuple H €
generate the dynamic system for ¢ = (z, ¢):

E=F(©), £ecC (3.50a)
EMeG), £eD (3.50b)
where
_ /@ k7, (2) |z
F(z,q) = [ 0 ] G(z,q) = [g(z)] (3.51)
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with f(z,k7,(2)) = «7,(2)Sz. Figure 3.8 shows the synergy gap do1 = 0.09 with M(z) — P,(z) for Q =
{1,2}.
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Figure 3.8: Manifold of M(z) — P,(z) for Q € {1, 2}

We can see that for {6 € [114,170]) X (¢ = 1)}, the value of ¢ will switch from 1 to 2, and for {6 €
[-170,-114]) x (¢ = 2)}, the value of g will switch from 2 to 1. We therefore avoid the unstable
equilibria for P(z) and P,(z), which were located at approximately +169°. Hence, we can define
the potential function Vy(z, ¢) and control «y(z, ¢) as:

Vo(z,q) = Py(2), k0(z, q) = k7,(2) (3.52)

We can compute the change in V|, along flows as in (3.53), which by the definition in (3.41) satisfies
(C1) and (C2) is negative for allz € C \ {e;}, and zero for z = e;:

jO,(&q)ec\fh (3.53)

Vo(z, q) = (V,Vo(&), F(&)) = (V,(Po1 o Tq)(Z),SZ>K‘Tq(Z){ 0, (z.q) €A

Furthermore, defining Eo; := {(z,9) € S' X Q : (V. Vo(&), F(€))ko(€) = 0}, we see that the set g N C =
Ap. Hence, Ay is stable during flows. Evaluating the change of Vy(z, ¢) over jumps, it follows that

Vo(G(£) = Vo(§) = M(2) = Vo(z, @) (3.54)

and by definition of D, it follows that V(G(¢)) — Vo(¢) < —d0;1 for all ¢ € D. Hence, we can assert
that Aj is globally asymptotically stable (G. Sanfelice et al. (2008), Corollary 7.7).

To shorter further notation, we define

Vo(z,9) o
Volz.q)* }—/ML®<Q (z,9) € (CU D)\ A (3.55)
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The control along the unit circle for (z,¢) € S! x Qwith K, = 0.5 and A = 0.99 is shown in Figure
3.9a, and the resulting potential function derivatives in Figure 3.9b.
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Figure 3.9: Manifolds of hybrid virtual controls and their derivatives

Here, 7, (z) and 7, (z) are continuous differentiable functions on S!. Compared to g, (z) in Figure
3.4a we can see that the virtual control signal at the original unstable equilibrium at z = —e; now
has a value different from 0, which means it will flow either way along the unit circle towards the
stable equilibrium z = e;, depending on the value of ¢. Figure 3.9b illustrates this, where we can
observe that P,(z) is zero inside the jump set illustrated in Figure 3.8, and we will therefore always
have P, < 0(except in the stable equilibrium where P, = 0) during all flows. The resulting velocity
vector plots together with the bounds between the jump- and flow sets are shown in Figure 3.10:

0.8

0.6

04

0.2 r

-0.2

0.4 |

-0.6 +

-0.8 +

(a) Velocity vector plot of z with virtual control k7, (b) Velocity vector plot of 7 with virtual control «,

Figure 3.10: Velocity vector fields of the resulting z dynamics for ; and «,
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Therefore, we can conclude this subsection with having defined a hybrid system that ensures Ay
to be globally asymptotically stable for all ¢ = (z,q) € S! x Q. However, as the hybrid feedback
k0(z, q) = k7, is discontinuous during jumps, it cannot be directly applicable to a dynamical system
to induce control forces, torques and derivatives of these. The following section will introduce a
way of "smoothning" the feedback, while still retain the GAS properties.

3.4 Synergistic Lyapunov Functions

The use of synergistic potential functions can be used to design smooth hybrid feedback laws that
achieves global asymptotic stabilization of a point on a compact manifold such as !, S> and S O(3).
By using a family of synergistic potential functions, simple hybrid controllers can be designed by
choosing the corresponding feedback control law to the potential function with the lowest value
as a type of hysteresis to ensure global asymptotic stability.

3.4.1 Synergistic Lyapunov Function and Feedback

Mayhew et al. (2011) generalizes these functions into synergistic Lyapunov functions which en-
ables "smoothing" hybrid feedback such that point stabilization for non-contractible spaces is
possible. These Lyapunov functions need to decrease both during jumps and flows, also in the
case of arbitrary switching. Such function can be designed for the control system

z =z, + ¥z, 9k, q)

g =0 }(z, q) € My x Q (3.56)

with ¢ and ¢ being smooth functions, « € R” is the control input, the set My c R" is closed, and
Qis discrete. A smooth Lyapunov function which maps values from the state into a non-negative
real number V : My x Q — Ry and feedback w = x : My x Q — R™ forms a synergistic Lyapunov
and feedback pair candidate relative to the compact set Ay ¢ My x Q if:

* Vr>0,1{(z,9) € My x Q:V(z,q) <r}is compact
* Vs positive definite with respect to A

* Forallpossiblestates(z, g) € MypxQ, the Lyapunov functionis notincreasing(V,V(z, ¢), ¢(z, ¢)+
Uz, k(z,q)) <0

As the gradient of the Lyapunov function can be zero, we define ‘W), to be the set where the gradi-
ent V. V(z, q) is zero, that is,

Wo:={z.q9) e Mx Q: ¥(z.9) V.V(z.q) = 0} (3.57)

and if the combination of ¢(z, ¢) and ¥(z, ¢)x gives a derivative of V(z, ¢) to be zero:

Eo :=1{(z.9) € My x Q : (V.V(z,q), (2, q) + ¥(z. 9)k(z, q)) = O} (3.58)

Note that for the system described in (3.50), we have ¢(z,q) = 0, ¥(z,q) = Sz, m = 1, x(z, q) = ko(z, q),
My=S,Q=1{1,2},r=1,V = Vy(z,q), E = Wy = Epr. This will be applied in Section 5.2.
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This pair (V, x) is called the synergistic Lyapunov function feedback pair if u(V,x) > § > 0, as defined
in the previous section. Hence, (Vy, o) is a synergistic Lyapunov function feedback pair with the
synergy gap po; exceeding ;.

3.4.2 Backstepping

This section will present a way of smoothing «y(z, ¢) before introducing it as a virtual control in a
dynamical system with backstepping to deduce the control input. The deduced state p € RL acts
as a smoothing replacement of g.

Defining the state ¢ = (z, w, p) with controls u € R”, we consider the control system:

{=0&a)+ i, q)u} o) e M1 % 0 (3.59)
g=0
Where ¢, and ¢, are defined as:
$0(z,q) + Yo(z, Qw 0
¢1({7 C]) = 0 B wl(§7 CI) =11 (360)
vz, p,q) 0

We can construct a new synergistic Lyapunov function and feedback pair (V,«;) with synergy gap
exceeding 6 > 0 by reducing the system to

z= ¢O(Z’ 4) + wO(Z’ CI)CU

: } (2,9) € Mo X Q (3.61)
q=0

with controls w € R™. For a synergistic Lyapunov function and feedback pair (Vj,«) relative to the
compact set Ay C My x Q, we assume that o : My x Q — R” wan be written as linear in some
function of ¢. By letting 9(q) : My — R™L be a smooth function and o : Q — RE, where L > 1, we
have

ko(z,q) = H2)o(q) (3.62)

Hence, by letting o(¢) = e, be the q’th unit vector and ¥(z) = [ko(z, 1), ..., ko(z, N)], (3.62) holds. The
new set we now want to be stable is:

A ={(.q) € Mi X Q: (z,q) € Ap, p = 0(q), w = ko(z, 9)} (3.63)
We then define the Lyapunov function

1 1
VilZ,9) = oz @) + 3 Ip = (@If, + 5 lw = B, (3.64)

where |§|% = ¢TT¢ for a symmetric, positive definite matrix I'. I'y € REXE and I’ € R™ must be
defined such that
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3.4 Synergistic Lyapunov Functions

1
Haw (Vo,K0) = 5 Amax(T1) max |or(s) = () > 6 (3.65)
5,q€Q

Where 4,,,.(I'1) denotes the largest eigenvalue for I';. Then, let 6;,6, : Ryo — Ry be continous,
positive definite functions, and let the smooth functions ®; : RE — Rl and @, : R™ — R™ satisfy

le",-G)i(v) + @i(V)TriV < =6;(v)), Vie{l,2} (3.66)
Let 9,(2) = 9(z)e; and define:

K1, @) =02 (w — H2)p) — T3 oz, 9) V. Vo(z, q)

L
+ > €] pT0iD(¢0(z 9) + Yo(z, ) + Dz, p,q) (3.67)
i=1

Wz p,q) =01(p — o(9)) = T 9() Yoz, 9) " V:Vo(z, )
Where 2 denote the Jacobian matrix, where for a smooth function a(z, g), the i j-th entry is 6“%;},’").
We get that for all (£, ¢) € M, x Q, the following holds:

Vi =(VVild, s 014 @) + 91 i (&, 9))

1 1
=(V.Vo(z,q), $0(z, q) + Yo(z, 9)w) — 501 (Ip—o(@l) - 592 (lw = ¥(2)pl)

— (V. Vo(z, 9), ¥o(z, ) (p — () — (V. Vo(z, 9), Yo(z, 9)(w — () p)) (3.68)
1 1
=(V.Vo(z,q), $0(z, q) + Yo(z, ) HNz)o(q)) — 591 (Ip—o(@l) - 592 (lw = H2)pl)
<0
The synergy gap is then:
1
u(Vi, k1) = pw(Vo, ko) — E/lmax(rl) ?31?5 lo(s) — o (@)I* > & (3.69)

Thus, the pair (V),«;) is a synergistic Lyapunov function and feedback pair relative to the compact
set A; with a synergy gap exceeding 6.
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Chapter

Simulations and Experimental Setup

In this chapter the procedure and setup for testing of the hybrid control system is described. Dur-
ing the project, the testing has been done in four ways, in this order:

e MATLAB simulations where it is assumed that the desired velocities are achieved

e MATLAB simulations where it is assumed that the desired thrust is achieved. The forces are
applied to a 3DOF mathematical vessel model of CSAD

» Hardware In The Loop(HIL) tests with actuator dynamics and thrust allocation of CSAD

 Physical experiments in the Marine Cybernetics Laboratory with CSAD

4.1 MATLAB and Simulink Simulations

The kinetic and kinematic equations in (2.2) and (2.21) are implemented in Simulink and used for
testing of the control algorithms. The Simulink diagram of the dynamics is shown in Figure 4.1.
The numeric parameters used for the mass, damping and Coriolis matrices are found in Appendix
A.l.
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Figure 4.1: 3DOF Simulink model
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4.2 Hardware-in-the-loop Simulations

After making sure the controller works in the simulation environ-
ment with Simulink, the controller is prepared to fit the laboratory
vessel by performing HIL-simulations. Simulink models can be used
as a code generator to fit the on-board computer on the vessel. By
building the Simulink system to code in the programming language
C, the system can be run in real time. The custom Veristand in- and
out-ports in Simulink is used to transfer data in and out of the con-
trol system. For HIL-testing, the in and out-ports of the 3DOF ves-
sel model is mapped as Veristand ports, and redirected back to the
Simulink diagram as position and heading measurements through
the Veristand interface. In theory, a single Simulink diagram could
be used for HIL-simulations with an easy mapping, but this compli-
cates the procedure to prepare the system for physical experiments,
as it is time consuming to ensure all mappings are correct. To emu-
late the physical vessel, a HIL-box is used, as shown in Figure 4.2.
The generated C-code is uploaded to the box and uses the Veris-
tand in and out-ports to function. A custom monitoring station for
starting and stopping simulations, tuning gains plotting and logging
is developed in order to control and record the tests. The setup is
shown in Figure 4.3.

HILLAB1

Figure 4.2: HIL box
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Figure 4.3: Screenshot of the workbench used for monitoring HIL simulations and lab experiments
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4.3 Physical Experiments at the Marine Cybernetics Laboratory

4.3 Physical Experiments at the Marine Cybernetics Laboratory

The Marine Cybernetics laboratory (MCL, 2017) is a small ocean basin laboratory at the Depart-
ment of Marine Technology at NTNU. It is relatively small, but suitable for tests of motion control
system for model-scale surface vessels, but could also do more specialized hydrodynamic exper-
iments as towing tests. It is equipped with a movable bridge with positioning cameras capable
of measuring 6DOF movements of models, as well as a wave maker and two cameras for filming
purposes. The basin measures 40[m] x 6.45[m] x 1.5[m] in length, breadth and depth, respectively,
and is displayed in Figure 4.4 together with CSAD.

Figure 4.4: The Marine Cybernetics Laboratory

4.3.1 Laboratory Hardware

The lab is equipped with the real-time positioning system Qualisys. It supplies a range of hard-
ware and software products for motion capture and analysis of movement data. The key compo-
nents are the Oqus cameras and the Qualisys Track Manager (QTM) software. The Oqus system
in the lab has three high-speed infrared (IR) cameras, which tracks the IR reflectors orbs fitted on
the model scale ships. The experiments can be supervised from the control room with a com-
puter dedicated for the QTM system and a TV connected to the two cameras in the lab. The inter-
nal communication between the systems are done over IP on a dedicated WLAN network to allow
wireless control of the model-scale ships and transferring of experimental data from the on-board
computer. The ship is equipped with a National Instrument CompactRIO (cRIO) embedded com-
puter system for control computation. In addition, a PlayStation 3 (PS3) hand controller is used
for manual control or for switching between different control algorithms.

4.3.2 Laboratory Software

In order to communicate with the ship, the lab is equipped with laptops dedicated for each vessel.
These laptops have installed LABView Full Development System, MATLAB and Simulink package,
as well as the National Instruments complete Veristand software package. Figure 4.5 shows the
topology of the communication between the HW and SW components.
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Figure 4.5: Topology of the HW and SW

4.3.3 Experiments with CyberShip Arctic Drillship Model Vessel

The vessel used for experiments in the MCL is the CyberShip Arctic Drillship(NTNU, 2017). The
vesselisa 1:90 scale model of Equinor Cat I Arctic Drillship. Itis equipped with 6 azimuth thrusters
(3 fore and 3 aft), in addition to a moon-pool for turret and mooring lines. The thruster positions
are shown in Figure 4.6, the x/y-positions and thrust coefficients Kr and K, for each thrusters are
shown in Table 4.1, and its main dimensions in Table 4.2.

Ly5 CE 3 @

) Ly3
@ o o ® L
< > >
Lx5, 6 LX2,3
<« > >
Lx4 Lx1
Figure 4.6: [llustration of thruster positions
Table 4.1: Thruster positions and coefficients Table 4.2: Main dimensions of
CSAD
Thruster Position X[m] Position Y[m] Kr Ko
Thruster 1 1.0678 0.0 0.3763 0.0113 _Dimension | Value
Thruster 2 0.9344 0.11 0.3901 0.0117 LOA 2.578[m]
Thruster 3 0.9344 -0.11 0.3776 0.0113 B 0.440[m]
Thruster 4 -1.1644 0.0 0.5641 0.0169 D 0.211[m]
Thruster 5 -0.9911 -0.1644 0.4799 0.0144 T 0.133[m]
Thruster 6 -0.9911 0.1644 0.5588 0.0168 A 127.92[kg]
A 90
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4.3 Physical Experiments at the Marine Cybernetics Laboratory

The thrust coefficients was obtained from model tests in Frederich (2016). In this thesis a con-
strained optimal thrust allocation was developed, and will be the thrust allocation applied in
the physical experiments in this thesis. In short, the torque Q, and thrust 7, obtained from the
thrusters can be written as a conventional quadratic thruster characteristics described by Carlton
(2012):

Q. = sign(mKopD’n’ (4.1a)
T, = sign(n)KrpD*n® (4.1b)

where 7 is the propeller shaft speed, p is the water density, and D is the propeller diameter. In a
way, this thrust allocation is a "black box", but seemed to work for the purpose of this thesis. For
a more detailed explanation on the thrust allocation applied, the reader is referred to Frederich
(2016).

After having performed HIL testing, the control system is ready to be tested on board the actual
model of the vessel. The setup is the same as in the HIL-simulations. The only difference is the
mapping of position and heading measurements, as Qualisys now supplies these. However, what
Qualisys does not supply are the velocities. In addition, it become clear that the measurements
was highly dependent on a sufficient calibrated camera system. The position and heading mea-
surements had often drop outs and signal freezing, and thus affected the controller performance.
Initially it was chosen to apply a Nonlinear Passive Observer(NPO) as described in Fossen (2011),
but through both testing in simulations and physical experiments, it falsely estimated the veloc-
ities and especially the turning rate. This might have to do with the choosing of gains in the ob-
server, but through many different combinations it turned out to still not be satisfactory enough
to use. It was therefore attempted to instead use an Extended Kalman Filter (EKF) (also described
in Fossen (2011)) which turned out to provide accurate velocity estimated after a bit of tuning in
the noise and covariance matrices. It was also implemented a way to reject false heading mea-
surements, as the Qualisys system sometimes misinterpreted the positions of the four IR orbs in
a way that lead to a jumps in the heading measurements. As this is not the main focus of this
thesis, it will not be further explained.
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Chapter

Heading Control on S!

In this section, a heading control allocation is derived by implementing the synergistic Lyapunov
function and feedback laws from Section 3.3. This will be combined with the DP controller in
surge and sway as described in Section 2.2 when introduced to physical scale model tests.

5.1 Control Objective

The overall control objective for heading control is to ensure that the heading converges to the
desired heading:

Lim (1) = ()] = O (5.1)

However, this control objective has more than one solution, asy = ;+n360°,n € {...,-2,-1,0, 1,2, ...}
results in the same heading. Therefore, reformulating the control objective to S', we have:

lim (/) - () = [0,0" & lim R((n)" /(1) = e, (52)
which has only one equilibrium.
5.2 Control Design

A simplified kinetic equation for the heading of a ship can be expressed as:

(5.3)

Where y is the heading angle, r is the turning rate and 7, is the control force in yaw. To implement
a hybrid controller for the heading of a vessel on S!, we define the heading and desired heading
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on S' as z¥ and z%“. The objective is to drive z — z%¢, and the heading error is defined on S' as
z = R(z%4)"7¥. The kinematic equations then becomes ¥ = Szr and 7%¢ = §zry, where r and r, are
the turning rate and desired turning rate of the ship. Defining 7 = r — r,4, the kinematic equation
for the error is then z = Sz7. Choosing the same hybrid setup as in Section 3.3 with the tuple Hp,
derived from Section 3.3.3, gives the synergistic Lyapunov and feedback pair (Vj, xo) with the syn-
ergy gap uo; exceeding 6.

To derive a backstepping controller from this, we use the steps presented in 3.4.2. We note that
#0(z.q) = 0, ¥o(z,q) = Sz, u = 7, —igyw = 7, My = S', @ = {1,2},m = 1 and L = 2. The combined
system is then:

Z S z7
 AF |- - 1 2
L.]]— o= v g Z7p,g €S XRXR*XQ (5.4)
g 0
Expressing «y(z, ¢) according to (3.62):
k0(z,q) = H2)o(q) = [k7,(2) kD2 = g, — 11" = 2 — @)k7,(2) + (g — Dy (2) (5.5)
Next, we define the error:
T)=F-92)peR = F=Tr+9)p (5.6)

And as we want do drive p — o(g), the error in p is:

p=p-o0(q) (5.7)
s . Oolg), .
=p - a—qq = p=v(zDp,q9) (5.8)
q

Which gives the error dynamics:
Tr = 7= V9(2)p - 9@)p (5.9)

Defining the Lyapunov function:

1. 1 5

Viz.q) = Vo @) + 5pT1p + 57213 2 0 (5.10)

with[} = y1/7? = TI]! = %I gives the derivative of V; as:
Vi(z,q) =V Vo2, Q)SzZF + y1p " p + y2 12T
=V Vo(@ @S 2(V2 + H2)p) + 1D vz, p, q) + y2 L2 (F = V9(2)zp — 9(2)p)

Since p = p + o(q), ¥ = 7, — iy and z = S zF, we get:

(5.11)
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5.2 Control Design

. k0(z,q)
Vi(z,q) =V Vo(z, 9)S 2(T2 + H2)p + H2)o(q))
+ 1PV, P, @) + 72 Ya(1, — g = VH(2)S 2Fp — H2)v(z, p, q))
=V Vo(z, 9)S z&0(z, 9)
+ 1o (V Vo(z, @)S z + yo(tr — Fa — V9(2)S zFp — H(2)p))
+p (yv(z p,q) +9(2)")
We recognize V,Vy(z, ¢)S zx0(z, q) as —p(z, ¢) from (3.55). Then, by choosing v(z, p, ¢) and 7, as:

(5.12)

1
1
1 1
T =ia + V@S p + 9@V p.g) = -V Vol @)S 2= Ko, K> >0 (5.14)
2 2
we get:
Vi(z,9) = —po(z,q) — K205 — K3p" p <0, (z.q9) € (CUD)\ A, (5.15)

Hence, as the Lyapunov function also is strictly decreasing during jumps. A; is GAS, and we have
defined a global asymptotically stable feedback law for driving an angle z¥ — z%¢. To emulate an
underactuated ship, the sway force can be chosen as:

7, = 22, (5.16)
m33
Next, the parameters y; and K3 must be set to design the switching rate convergence of p. By
choosing y; = 50 and K3 = 50, we get an approximate convergence of p in 5 seconds, and is con-
sidered to be a sufficient smoothing of the switch. Figure 5.1 shows the effect of generating the
smooth switch p.

1k —
‘ 7 o1t f&‘\
105+ /// Ul(q) 1 //
= , o /
/
0 / | 0.05 | /
32‘0 32‘2 32‘4 32‘6 32‘8 33‘0 o
Time [sec] = /
of ig
N — ; ; ; 1
\
\
S5t . 2(q)] | -0.05
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(a) Generation of smooth switch p (b) Resulting virtual control from smooth switch

Figure 5.1: Effect of smooth switch
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We can see from Figure 5.1b that the virtual control «; is smoothed compared to «,. The effect of
this is that the control 7, also is smooth, and can more easily be applied to a dynamical system.

Remark 1 Other dynamics for i can be considered such as i = 7, = Ns§(where N; is a gain and
¢ is the rudder angle), or i = —1r + X£5(Nomoto model with rudder as input). The backstepping
procedure will be similar, but replacing 7, with either N6 or —%r + %6 and solve for § to get the
rudder angle as input. Due to uncertainties of the parameters K and 7 in the Nomoto model, it was
chosen not to proceed with the Nomoto model for the test cases. In stead the vessel is emulated
to be underactuated, and the response is assumed to be similar to a CDM based on the Nomoto
model.

Remark 2 The procedure for backstepping the non-hybrid control design will be similar. The
resulting desired yaw moment is then:

Trnon—hyb = Fa + Vk02(2)S 7 — V Po1(2)S z — K2 (F — k02(2)) (5.17)

Remark 3 Due to the complexity of the algebraic expressions V,¥(z) and V_«y,(z), they are not de-
rived in the main part of this thesis, but rather included in Appendix A.2.

5.3 Physical Experiments

As the simulations of this control allocation is quite simple as we only control 1DOE the simula-
tion results to test the control design is omitted. In stead, experimental results in the MC-lab will
be presented. The hybrid heading controller was combined with the DP controller described in
Section 2.2 in surge and sway. The chosen bandwidth was w;, = 0.1, which by applying (2.36) and
the diagonal numerical values for M and D, from (A.2) and (A.3) gave the following gains(where
the gains in yaw is set to zero because the hybrid heading controller controls the heading):

3.3672 0 0 0.0526 0 0 37.75 0 0
K,=| 0 5.6865 0|, K;= 0 0.0889 0|, Kg;=| 0 625875 0 (5.18a)
0 0 0 0 0 0 0 0 0
4=0.99, K, =0.04, v1 =50, v2 =2, K> =40, K3 =50 (5.18b)

As the only goal for this experiment was to check the behaviour of the 1IDOF heading controller, it
was not attempted to do positional changes, but rather use the DP controller for stationkeeping
while controlling the heading to a setpoint. For all experiments, the vessel was controlled to the
origin with initial heading yy = 0°. Then three different setpoints of y,;, = {-170°, 180°, 170°} was
sent to the heading controller with initial logic modes ¢y = {1,2}. Hence, the experiment was
divided into six cases. Figure 5.2 shows the results, where the left figures shows the heading, and
the right figures shows the logic mode o(g) and smooth switch p.
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Figure 5.2: Physical DP experiments of CSAD with different heading setpoints

Figures 5.2a and 5.2b shows the response when the setpoint is at ; = 170°. It is observed that
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the logic mode toggles for ¢p = 2, but not for go = 1. This happens due to the error maps inside
the jump set 9,, and the vessel will rotate clockwise. The same effect occurs when ¢ = 1 and
Ywq = —170° as shown in Figure 5.2c and 5.2d. In this case, the error maps into the jump set of
D, and the vessel will rotate counter-clockwise. The last test was to command the vessel to do
a 180° turn, which is shown in figure 5.2e. As the error does not lie within neither of the jump
sets D or D, the logic mode will not switch, as shown in Figure 5.2f. The rotational direction is
now determined by the initial value of g. We see that for ¢p = 1, the vessel will rotate clockwise,
while when gy = 2, the vessel will rotate counter-clockwise. We therefore have full control of the
rotational direction and it will converge to the desired setpoint in a robust and stable manner.

5.3.1 Video of Experiment

The experiments in the MC-lab were recorded and a link to the video can be found in appendix B

5.4 Discussion

The 1DOF hybrid heading controller developed in this chapter gives promising results. As proven,
the control allocation guarantees robust convergence to the desired heading with smooth control
signals even when the logic mode switches. As experienced in the lab, the turning rate (and con-
trol forces) was quite large when the vessel received a setpoint that generated an error close to the
+180° range, but became very low close to the setpoint. This might be due to the lack of reference
model, since this design reroutes y,.; = 4. However, as large errors in the +180° range induced
larger values for 7, than physically achievable for the model vessel when the gain K, > 0.04, it was
chosen to keep the gain at this value. If a reference model was to be designed, it could not have
the same design as traditional reference models, as these would try to wrap towards the short-
est rotation and possibly disrupt the whole purpose of the robust hybrid design. If a reference
model was to be implemented, it would have needed to have a similar dynamics as z with possi-
bly a synchronization of the logic mode. However this is not implemented, but should be further
investigated.
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6.1 S! Formulation of Angles and Current

We consider planar motions of a marine surface vessel with position p" := col(x,y) € R? in {n}-
frame. The surge and sway velocities in {b}-frame are v = col(u,v) € R?, and yaw rate r = .
The three other DOF’s roll, pitch and heave are disregarded, as these are considered to be self-
stabilizing.

The vessels heading expressed on S! is z¥ € S!. If the vessel is exposed to an irrotational constant
current the global frame, this can be defined as v = [V, cos(8,), V. sin(8.,)]T = V.z% € R?, with 2
being the S! representation of the direction of a current flowing with an angle g, relative to the
north axis. Rotating the {n}-composed current velocity vector to {b} yields v> = R(z¥)™»", and the
relative velocity v, € {b} becomes:

V=V — vf =v—-RZ"H)™V! (6.1)

The vessels global and relative speed is defined as U := |p"| = |v| and U, = |v,| respectively. Next,
we define the course angle as z¢ € S!, crab angle 7% € S! and sideslip angle % € S!. The sideslip
and crab angles occur due the the drag forces of ships, where ocean currents and hydrodynamic
forces due to relative velocities make the heading not being equal to the course. The angles are
derived from the relationships in (2.39) and (3.16):

.- P _ v P 6.2
= # L F U (6.2)

Such that ¥ = R(z¥)? = p" = Uz¥ = UR(Z)?¥ = R(z¥)v. Furthermore, using (3.15) and (3.17)
gives:

Pows?,  wp=(¢) ST% 6.3)

2= (r + wp) S2¥ (6.4)
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Note that, for a zero motion U = 0, the crab, sideslip and course angles have no physical meaning,
while the heading z¥ always have a physical meaning.

6.2 Control Objective

With the kinematics
" =RE")v = URP)Z = Uz (6.5)
¥ =rs (6.6)
and kinetics !
i=01(v)+ —1,+01(v)"6 (6.7a)
mi
vy ZO-Z(Ur) (67b)
1
i =03(v) + —71, + @3(v) "0 (6.7¢)
ms3

and the control objective to track some velocity vector p'(t) = Uy(£)z¥(¢) € R?, the velocity tracking
problem is to design a control law for (r,, 7,) such that:

Lim[p"(1) = pg(D] = 0 (6.8)

Note that if v* # U,z¥4, then there are exactly two solutions for Z# € S! that gives a feasible velocity
tracking. The ship could either choose to head against the direction of travel if U; >> V., or against
the current if V. > U, and "slide backwards" with the current while tracking the desired velocity
vector. Hence, the crab angle may converge to the two solutions corresponding to 2 < [0, 1] or
2 € [~1,0], depending on the operation. For simplicity, we constrain the surge velocity to be
positive according to (6.9):

ug(t)” = max{|pa()° = vt 8}, (6.9)

where & > 0 is a small number corresponding the the minimum surge speed. Then, Z will con-
verge to the interval [0, 1]. As it is the course and not the heading itself we want to control, we
redefine z and z to be the course error and derivative of the course error:

7= R(Z*) Tz = RZX)TRN)P (6.10a)
2= R T[RENHP + rR(P)S Y] (6.10b)
= R(ZX)"RE)[Z + rS ] (6.10c)

where the goal is to achieve z — e;. For a time varying desired velocity vector, we have:

ﬁ_d

. _ _ T T
ZXU’ — wpdSZXa” wpd — (ZXU') S Ud

(6.11)

and error dynamics:
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z=(r+wp—wp,)Sz (6.12)
Hence, inserting ry = —wp + wp, and iy = —wp + Wy, in (5.14) will ensure z¥ — z¥4.

Assuming a constant velocity tracking signal p,, we have p; = 0 such that w;, = 0. Then the closed
loop system (assuming u(r) = uy(r)) becomes:

z=k1({,q)Sz (6.13)
vy = o2(vy), (6.14)
v=v,+RE")V! (6.15)
u= yJmax{U2 -2, ¢2) (6.16)
It follows that at z = e; and v, = 0 we get
r=0, (6.17)
z=0 (6.18)
v, =0, (6.19)
v="v,—rRZ")"V'z=0 (6.20)
=0 (6.21)
T 14

= ST—=0, 6.22
wp= () 87T (6.22)
V= R(z‘”)TvZ (6.23)

2 _ 2 2 Utzi V2<U§—82
U=u"+v —{ 82+V2 V2>U[21—82 (6.24)

6.3 Control Design

The resulting Control Design for velocity vector control for an underactuated vessel is done ac-
cording to (2.55), (5.14), (5.16) and (5.17), where the control in yaw can either be hybrid or non-
hybrid. These are restated in (6.25):

Tua =mi (—970 - 01 (V) = Kpuey + ita). Kpu >0 (6.25a)
Tt = 21,y (6.25b)
ms;3

1 1
Trq = —wg + Wp, + V,H2)Szip + H2)v(z, p, q) — V_VZVO(Z’ q)Sz— 7K2T2, K> >0 (6.25¢)

2 2
Trdnon—hyb = —Wp + Wp, + V:k02(2)S 2 — V. Po1(2)S z — Ko (7 — k02(2)) (6.25d)

with

F=r+wg—wp, (6.26)
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As the desired thrust might be larger than achievable for the vessel it is applied on, it was chosen
to take these constraints into consideration. According to the CSAD User Manual (NTNU, 2017),
the maximum achievable thrust in surge sway and yaw is approximately 7, uqx = 9N, Ty max =
9[N], Tr.max = 6[Nm]. It was therefore chosen to constrain the forces to be lower than these in or-
der to obtain a set of control forces which is possible. As these maximums can not be achieved
simultaneously, the commanded saturated forces is set to be lower, according to:

Tu,c = SCll‘(Tu’d, 3)7 Tye = Sat(Tv,de 3)> Tre = Sat(Tr,dy 2) (6.27)

These forces are applied to the model shown in Figure 4.1 with the relative velocities calculated
according to (2.21), both with and without the effect of current, where the body fixed velocities
are found according to (6.1). The numerical values for the vessel parameters is found in Appendix
A.1. The various gains for the controllers and estimators are chosen as in Table 6.1.

Table 6.1: Test parameters for velocity vector control

Parameter Value
K, 0.04
A 0.99
L 1/(arccos(—A) — arccos(1)) =~ 0.3498
ki 0.495 V1 — A%2/(AL) = 0.20162
k> —ky
Kpu 0.7
T, 0.11**
Y1 50
Y2 2
K> 40
K; 50
q0 lor2
£ 0.01

6.4 Simulations

This section will present a number of various cases where a desired velocity vector is to be achieved.
Simulations of the non-hybrid and hybrid designs are tested, both with and without current. The

desired course y,; and speed over ground U, will be included within the figure as a constant or

function of time. This also applies to the current velocity V. and angle 8. whenever there is cur-

rent present. For the hybrid case, the initial and final value of ¢, i.e g, ¢ € {1,2} are also included.

It is assumed full knowledge of all positions (x, y), velocities (u, v, r, X, y) and angles (y, ¥, ) either

obtained directly from the output of the Simulink model in Figure 4.1, or deduced from these. In

addition, we consider the desired thrust to be achieved, so there is no thrust allocation or thruster

dynamics used. For all cases, the initial angle is ¢ = 0°, and velocities u,o = v, o = rp = 0. Without

current, we also have uy = vy = 0, and with current [ug, vo]" = R(z/0) TV
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6.4 Simulations

6.4.1 Without current

First, the non-hybrid and hybrid control are tested without current. The desired course and speed
isset to y; = 90° and U, = 0.1[m/s]. The results for the non-hybrid control is shown in Figure 6.1,
and hybrid control in Figure 6.2. For the path plots in Figure 6.1a and 6.2a, the vessel with its
position and orientation for each 10’th second is shown.
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Figure 6.1: Non-hybrid velocity vector control simulation with y, = 90°, U; = 0.1[m/s]
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Figure 6.2: Hybrid velocity vector control simulation with y, = 90°, U; = 0.1[m/s]

As expected, both the non-hybrid and hybrid control ensures the course and speed to converge
to their desired values, as the commanded course is not close to generate an error near +180°. The
crab angle g also converges to zero as there is no current present, and the course and heading will
be equal once the desired course is reached. We notice that the control forces in 6.1d and 6.2d are
saturated at their maximum values at the start according to (6.27). This is natural, as there is no
reference model to generate a smooth desired speed, and the controller will react to a step from 0
to U, = 0.1. In the following figures, the speed, angles and control forces are not presented, as the

path plots as in Figure 6.1a and 6.2a illustrates the overall behaviour.

Next, we test the controllers for a desired course as y; = +170° and initial logic mode ¢o = {1, 2}
similar to the DP experiments in Section 5.3. The results are shown in Figure 6.3.
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Figure 6.3: Velocity vector control simulation with y, = £170°, U, = 0.1[m/s], qo = {1, 2}

Here, we observe the effect of the initial value of ¢g. As the non-hybrid control in Figure 6.3a and
6.3d will rotate according to the shortest rotation, the hybrid controller can choose to rotate in the
other direction depending on the value of ¢y as shown in Figure 6.3c and 6.3e. However, when the
course error is at +180°, the hybrid controller has a much more robust behaviour and will ensure
amore desirable response, as shown in Figure 6.4.
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Figure 6.4: Velocity vector control simulation with y, = 180°, U, = 0.1[m/s], g0 = {1,2}

Here we can see that the non-hybrid controller fails to induce a control force in yaw to reach the
control objective. The hybrid controller however is able to do the desired 180° turn, either clock-
wise or counter-clockwise according to go. It is therefore both stable and robust.

To test the hybrid controller for time varying desired course signals, we consider a linearly in-
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creasing (initiated after 100 seconds) y,(r) = 0.5°¢ to generate a circular path, and a sinusoidal
xa(?) = 90° sin (%) to generate a path that varies harmonically between +90° and —90° with a pe-
riod of 200[s]. The results are shown in Figure 6.5.
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Figure 6.5: Velocity vector control simulation for time varying y,, U, = 0.1[m/s], go = 1

We see that the achieved velocity vector follows the reference nicely, only with a small time delay.
Next the control allocation will be tested when there is ocean currents present, and from now on
the only control design considered is the hybrid controller.

6.4.2 With current

It is chosen to still test the control design for a desired speed U, = 0.1[m/s]. The ocean current is

set to have a speed V. = 0.03[m/s] and direction 8. = —135°. Figure 6.6 shows the response with a
desired course y,; = 90° and logic mode ¢ = 1:
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Figure 6.6: Velocity vector control simulation with y, = 90°, U, = 0.1[m/s], ¢o = 1, V. = 0.03[m/s], B. = —135°

As there now are ocean currents present, the initial course will be equal to the current direction
Bc = —135°, as seen in Figure 6.6b. What this does is to trigger ¢ to switch from 1 to 2, as the course
angle error ends up inside the jump set ;. However, when the surge velocity controller ensures
a positive surge velocity, it will switch back to ¢ = 1, as shown in Figure 6.6¢. Despite the toggling
of the logic mode, this will not affect the overall behavior, and we still achieve the desired course.
Note that with ocean currents, the crab angle will converge to a nonzero value, as seen in Figure
6.6a. In addition, as the logic mode when ¢ = 1 toggles immediately upon initialization, it will in
practice result in a very similar response if the initial logic mode was ¢ = 2.

Next, the response for other desired course angles are tested. Figure 6.7 shows the response for
Xa = {145°,150°}.
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Figure 6.7: Velocity vector control simulation with y, = {145°,150°}, U; = 0.1[m/s], go = 1, V. = 0.03[m/s],
Be = —135°

This shows that for a desired course of y; = 145°, the same toggle as in Figure 6.6¢ will occur, and
the hybrid controller will choose to rotate clockwise. On the other hand, for y, = 150° the logic
mode stays at g = 2 after the initial toggle, and will rotate counter-clockwise to achieve the desired

course. Next, we test the VVC on the time varying desired courses with the same current speed and
angle. The results are shown in Figure 6.8.
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Figure 6.8: Velocity vector control simulation for time varying y,, U; = 0.1[m/s], go = 1, V. = 0.03[m/s],
B = —135°

We see that the vessels behaviour is similar, but struggles a bit more to obtain the desired course.
However, it still manages to obtain a response similar to the one showed in Figure 6.5. The current

is amplified to V. = 0.09[m/s] to investigate if it is able to withstand increasing environmental
disturbances. These results are shown in Figure 6.9.
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Figure 6.9: Velocity vector control simulation for time varying y,, U; = 0.1[m/s], go = 1, V. = 0.09[m/s],
B. = —135°

It is observed that the controllers struggles a bit more to achieve the desired velocity vector. An
interesting behaviour occurs in Figure 6.9a, where the heading drastically changes once the ocean
current is aligned with the direction of travel. This can be seen in Figure 6.9b as a "drop" in the
course angle at approximately 580[s]. However, once the vessel has performed the turn, it quickly
converges to again reach the desired course. Note that, as opposed to path following, the vessel
does not compensate for the sudden increase of course error and does not try to reach the cir-
cle path it had initially in Figure 6.5a. For the harmonically varying course command, a similar
occurrence happens at about 160[s]. Here the vessels heading is about ¢y = —45°, which means
that the ocean current is pushing the vessel directly from the starboard side. Therefore, due to the
underactuation in sway, the vessel needs to first orient itself more against the current to be able
to turn.

6.5 Discussion

In this part, the VVC problem with HHC seems to give promising results, both with and without
current. The direction of turn when the course error in within the range {—180, —170} U {170, 180}
is similar to what was presented in section 3.3. In addition, the adaptive surge speed controller
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ensures the desired velocity is achieved, and converges nicely to its desired value. The lack of
reference model in surge is also present here, and could also be implemented to obtain a more
smooth convergence towards the desired speed. On the time changing course maneuvers, it is
observed that the course is a bit behind its reference. Again, this suggest for a larger value of K,
or to add an integral state in the design for a better tracking performance. However, the overall
result shows that it is able to converge to the desired course, both with and without the influence
of current.
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In this section, the VVC problem is extended to Path-Following Control.

7.1 Control Objective

If the vessel is to follow a path with an either constant or varying speed along the path, the control
objective is now to satisfy a geometric task and a dynamic task (Skjetne, 2005):

1. Geometric Task: For any continuous function s(z), force the output y, to converge to the
designated path y,(s), thatis

Iim |y(®) = ya(s(®)l = 0
2. Dynamic Task: Satisfy one or more of the assignments:

» Time Assignment: Force s to converge to a desired time assignment 7(¢)
lim |s(t) — ()] = 0 (7.1)
—0o0

* Speed Assignment: Force s to converge to a desired speed assignment v(s, 1),
lim [5(1) — v(s(0). )] = 0 (7.2)

* Acceleration Assignment: Force §to converge to a desired acceleration assignment a(s(7), s(¢), 1),
}im 135(2) — a(3(9), s(1), )| = 0 (7.3)

The objective is for the ship to enter and stay on a path #. These paths can either be piecewise
linear (C°), curved with continuous derivatives at intersections of sub-paths (C') or paths with
higher order of differentiability (CT). The needed differentiability is dependent on the application.

7.2 Path Generation

A path could either be a discrete, continuous or hybrid parameterization. Skjetne (2005) presents
the general case for generating a C” path for a set of n waypoints(WP) in R as:
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Overall desired curve: pa(s) = col(xy(s), ya(s)), s € [0, n] (7.4a)
Subpaths: Pa.i(s) = col(xgi(s), ya.i(s)), iel={1,2,..n} (7.4b)
Way-points: pi = col(x;, i), iefU{n+1} (7.4¢)

To ensure that at all intersections between sub-paths, the derivatives up to the k’th derivative must
be equal. This is equivalent to solving a linear set of (k + 1) - 2n unknown coefficients to generate
the path:

xqi(8) = ak,,-sk +...+ais+ao; (7.5a)
Yai(s) = bris* + ...+ bris + by, (7.5b)

Where we sort the equations as a linear system
A¢ = b, o7 =a". 07| (7.6)

and solve for ¢. You could also scale the slopes/curvatures at the intermediate WPs by a factor 4
by setting the first derivatives as x),, = A(xj+1 — x;-1) and y , = A(yi+1 — yi-1) at each WP. Figure 7.1
shows four different generated paths from the WPs:
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Figure 7.1: Different path generations from a set of WPs

Here we can see the effect of the order of differentiability. The C” is simply sets of straight line sub-

66



7.3 Path-Following on Straight Line Paths

paths, while the C! path has continuous derivatives at the intersection of sub-paths, and hence
generates a more smooth path. A typical differentiability for vessel tracking is to choose a C? path,
which will be applied in Section 7.5.

7.3 Path-Following on Straight Line Paths

The path following guidance for surface vessels as described in Section 2.3.4 will now be imple-
mented with angles represented on S' and tested together with the underactuated VVC. For sim-
plicity, we consider path-following on the straight-line path

P = {peRz :dseRs.t.p=(1 —s)pk+spk+1} (7.8)

defined by N WPs (py, pa, ..., pn)- To achieve this, the vessels’ course needs to be aligned with the
angle of the current path segment, where a; in (2.61) is reformulated on S! as:

X = Pi+1 — Pk (7.9)
|Pks1 — Drl

Defining a path reference frame centered at p; with its x-axis towards py.;, we can define the
along-track distance e, (p") and cross-track error e ,(p") for a vessel in position p” as:

ex(p") = col(ex x(p™), exy(p™) = RE@*) T (p" - pr) (7.10)

Hence, the path-following problem for an underactuated vessel is to design control laws for (7, 7,)
to ensure that:

lim e, (p"(0) =0 and  lim [U(®) ~U,|=0 (7.11)

For a desired speed U, along the path. As the adaptive surge speed controller combined with the
hybrid heading controller is compensating for ocean currents, the only thing needed to solve this
problem is to find a suitable combination of (U, z¥¢) to track a path.

7.4 Line of Sight Guidance - Straight Line Paths

The LOS guidance scheme in Section 2.3.4 is modified to fit the S! representation of angles. For
the LBS design, we have:

.
Xr — _ek’y(t) . _ek,y(t)
) [COS (ALBS ©) ™\ azss ) (7.12a)
Zﬁas = R(Z¥%)zXr 712b)
And for EBS: )
4 = _)Uos—y . [ Yios =Y
Z)I(EBS - [COS (xlos - x) S (X[OS - x)] (7.13)
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Chapter 7. Path-following Control on §'

Where the switching of WP’s is done according to the circle of acceptance:

[xes1 — X(O1 + [yesr — Y(OF < RE, (7.14)

The EBS and LBS is tested in to follow the same eight WP’s as in (7.7) (corresponding to the C° path
in Figure 7.1a) and with an radius of acceptance for each WP of R, = 2L,,, where L,,, is thelength of
CSAD. This . The starting position and velocities of the vessel as well as the controller parameters
are the same as in Section 6. The desired velocity along the path is chosen to be U, = 0.1[m/s]. The
LBS and EBS parameters are chosen as:

Rgps = 2Lpps Rips = 2Lpp (7.15)

The following sections will present the results from simulations with and without ocean currents.
7.4.1 Simulations - Without Current
Initially, the path following for LBS and EBS was tested without currents. Figure 7.2a and 7.2b

shows the achieved path, while 7.2c and 7.2d shows the cross-track error. For simplicity, Az s (7) =
2L,, was chosen to be constant to obtain a more stable response.
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Figure 7.2: Path plot of LOS Guidance with EBS & LBS for straight line paths - without current

It is observed that both tracking schemes achieves approximately the same result. This is natural,
as R ps = Rgps and the LOS-vectors points approximately in the same directions. The Cross-
Track-Error plots shows that both goes to zero in a stable manner, and thus makes sure the vessels
position converges to a point along the path. Next, the LOS guidance with EBS and LBS is tested

69



Chapter 7. Path-following Control on §'

with currents.

7.4.2 Simulations - With Current

In these simulations, we set a relatively large ocean current(relative to the desired velocity U; =
0.1[m/s]) tobe V. = 0.09[m/s] with a direction of 8. = —135° to put the LOS guidance and controllers
to the test. The performance is shown in Figure 7.3
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Figure 7.3: Path plot of LOS guidance with EBS & LBS for straight line paths - with current V, = 0.09[m/s],
Be=-135°

Here, we see that despite the large currents, the vessel is able to track the path nicely. Both the
heading controller and surge speed controller is able to compensate for the ocean currents. How-
ever, it struggles a bit more in sharp turns, but manages to converge to the path in a similar way
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as in Figure 7.2.

7.5 Line of Sight Guidance - Curved Paths

Now the LOS guidance is extended to track a parameterized path in stead of straight line paths
with WP switching logic. In this section we will try to track the C3 path as shown in Figure 7.1c.
According to Skjetne (2005), the objective is now to track the path:

P ={(p.y.v) e R*x S' xR : As € Rs.t.p = pa(s). 1 = ¥p(s)} (7.16)

Where ¢, is the path-tangential angle we want the heading to converge to. Note that with ocean
currents, the objective is to track y — ¢,, and noty — y,. Therefore, we replace y with y and
aim to guide the course to the path-tangential angle in stead of the heading. Note that as crab
angle compensation already is performed by the hybrid controller, the output from this guidance
scheme will be the derired course, and not heading. We now want to solve the dynamic task

lim |$(¢) — ve(s(2), 1) = 0, ve(s, 1) = Ua(®) (7.17)
= |ps)
Next, we define
e(p",s) = RE&).())T (" = pa(s)) = col(e, &) (7.18)

where p" € R? is the position of the vessel and ¢ and ¢, denotes the along-track and cross-track
distance, respectively. y, is the path-tangential angle and is found as:

Xp(s) = atan2(p} (), p () (7.19)

Where the generated path-positions p,(s) and first derivatives p’(s) are found by solving (7.6) with
the WPs in (7.7) and differentiate the solution once to obtain the derivative as a function of s. By
applying an approach similar to LBS, we have

n n T
d _ Xp\Xr Xr — _En(p ,S) . _En(p ,S)
25 = R(Z)ZY, z [cos (—APF o ), sin (—APF o (7.20)
and the path-parameter s is driven by
A Py’
N [P

The combination of these equations will ensure the vessel to follow the path and ensures € — 0.
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7.5 Line of Sight Guidance - Curved Paths

7.5.1 Simulations - Without Current

We simulate the path following scheme with the path shown in Figure 7.1c. The desired speed is
chosen to be U; = 0.1[m/s], Rpr = 2L,,, App(t) = 4 /R%,F - &(p, $)%, u = 0.01. The initial attempt
in Figure 7.4a turned out to be promising. It was however noticed that the heading controller
underperformed in achieving the desired course. Therefore, the gain K, in the heading controller

was amplified from K, = 0.04 to K, = 0.12 such that it induced larger control forces in yaw. The
resulting path following plot is shown in Figure 7.4b.
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7.6 Target Tracking

the heading controller gain. With the increased gain, the heading and surge speed controllers
were able to follow the desired trajectory generated by the LOS guidance for the curved path. The
results are promising and shows that hybrid heading control is adaptable to conventional ways
of path following. The next section will present a guidance scheme to guide a vessels trajectory
relative to a moving target.

7.6 Target Tracking

This section will extend the target tracking methodology from Section 2.3.5 such that it is suitable
for S' control. Inspired by Breivik and Fossen (2007), we define a moving target vessels position
p:(), driven by p,(t) = Utz (t),U; > 0. The target tracking problem is to design a control law
(14, 7) such that

lim ["() = pi(0)] = 0 (7.22)

is behaving well and is stable. Different guidance schemes such as pure pursuit(PP), constant
bearing(CB) and LOS are common for solving the target tracking(TT) problem. Focusing on the
CG scheme, we let p = p" — p;, and define the desired velocity by:

14

PP A

where the first term is a feedforward term to force the vessel to move with the same velocity vec-
tor as the target, and the second is a feedback term that brings the vessel to the target with an
approach speed U,. The parameter Acp > 0 is a gain to affect the rendezvous behaviour towards
the target vessel. From (7.23) we can define the desired course and speed according to:

va = Uz = U, U, < U, (7.23)

d Vd
=—, Ug = 7.24
TT |Vd| d |Vd| ( )
Note that if the tracking problem is to obtain and track a relative along- and cross-track position
from the target, we can define ¢; = [ey, s;]" and subtract this from p such that p = p— p; — ¢, before
applying (7.23). The next subsections will present case studies for testing the surge- and heading

controller for target tracking purposes.

7.6.1 Simulations

Using Acg = 2 and U, = 0.05[m/s], we initiate a targets position at p,(0) = col(10, 0) with a constant
velocity U, = 0.1[m/s] and course z¥* = e,(90°). The controlled vessel has an initial position at the
origin and zero speed. Figure 7.5 shows the vessel and target positions when varying the desired
relative positions ¢;,.
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Figure 7.5: Target tracking with different desired relative positions ¢,

We see that the guidance scheme makes sure that the vessel position itself nicely according to the
desired relative position to the target vessel. Next, the vessel is tested to track a moving target with
time-varying course and speed according to the two cases:

e Casel: 5 5
. it . . . it
U;(®) = 0.1 +0.05sin (m) [m/s], X:(®) =90° + 45°sin (800) (7.25)
e Case?2: ) )
. it o o . it
U;(t) = 0.1 + 0.05 sin (m) [m/s], X:(®) =90° +90° sin (800) (7.26)

In both cases, the desired relative position is set to be ¢; = [-3,3]". Figure 7.6 shows the results
from Case 1, both with and without current. The vessels positions are now plotted for each 40th

second.
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Figure 7.6: Case 1: Target tracking with time varying target course and speed with ¢; = [-3,3]"

We can see that the vessel is able to successfully track and maintain its desired relative position
even though the time variations where the target vessel is speeding up initially, before slowing
down in the middle of the first turn. Even with these variations, the target tracking guidance en-
sures the controlled vessel to smoothing in to the desired relative position and hold it. To test the
combined guidance and controllers even more, the time variation amplitudes were made larger
according to Case 2, as well as amplifying the current velocity to V., = 0.09[m/s]. Figure 7.7 shows
the response.
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Figure 7.7: Case 2: Target tracking with time varying target course and speed with ¢; = [-3,3]"

We see that with amplified disturbances and movement of the target, the vessel still obtains a
satisfactory tracking performance. We can conclude this by having successfully implemented a
robust way of tracking a moving target utilizing an adaptive surge speed controller and hybrid
heading controller, both with current compensation.
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7.7 Discussion

In this chapter, the VVC problem is extended to PFC with different guidance schemes. For WP
tracking, you could either choose to track a C° path with LOS-guidance for straight paths and WP
switching, or generate a differentiable path for the vessel to follow. Either way, the implemen-
tation shows that the VVC ensures the velocity vector to converge to the output of the guidance
scheme, and thus make sure the vessel tracks the given path nicely. As mentioned earlier, one
concern was the VVC design’s ability to track paths that required sharp turns with the low gain
of K, = 0.04. When this gain was amplified for the C* path, the average cross-track error were
reduced by approximately a third. The target tracking performance were also good, and ensured
the vessel to obtain a relative position of the target it was tracking, despite large currents and high
frequently maneuvers by the target.
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Chapter

Conclusion and Further Work

8.1 Overall Conclusion

The goal of this thesis was to design, implement and test a robust hybrid heading controller for
ships. A suitable potential function that reflected the heading error as the arc length along the unit
circle was used as a base, and a non-hybrid virtual control was designed to obtain a satisfactory
convergence and stability for all heading errors that were not +£180°. Then a diffeomorphism was
applied to the base potential function and virtual control in order to design two control laws that
achieved similar stability characteristics. By a smooth switching logic between these two con-
trols, global asymptotic stability could be achieved. The HHC was combined with a DP controller
in surge and sway and tested extensively in the MC-lab to test its robustness. In addition, a Non-
linear Passive Observer and Extended Kalman filter was implemented (but not explained in de-
tail in this thesis) on the lab-experiments, as the velocities needed to be estimated. The HHC
was then extended to a VVC problem, and an adaptive surge speed controller as well as sideslip
compensation that compensates for the effect of ocean currents was designed for this purpose.
Combined with the HHC the vessel was able to track constant and time varying desired velocity
vectors, both with and without the influence of current. Finally, the VVC was extended to path
following on straight and curved paths with LOS guidance, as well as target tracking applications.
The path following guidance were able to guide the vessels velocity vector such that the position
of the vessel converged to the path.

Simulations are done on a very simplified model of the vessel with constant mass, damping and
Coriolis matrices. For the maneuvering problems, the simple dynamics # = 7, was chosen to
derive the control designs. The vessel was emulated to be underactuated in sway in the control
allocation such that the vessel behave as if it was underactuated. With a small modification in
the backstepping procedure, more realistic dynamics as the IDOF Nomoto model can be used to
derive more suitable feedback laws with rudder as input if the maneuvering model was linearized
at a transit speed and Nomoto gains K and T are chosen accordingly. The control system was first
implemented and tested using MATLAB and Simulink. Then HIL simulations were done using
the same software as in the MC Lab, and the HHC design was tested physically on the scale model
vessel. The VVC and PFC designs were not tested in the MC-lab due to the spacial constraints.
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In the simulations, the control allocation assumed that the desired thrust was instantly achieved,
and it was therefore no thrust allocation or smoothing of the control input, and it is therefore not
guaranteed that the control allocation is suited for scale model test. However, the results shows
that the HHC, VVC and PFC works as expected given these delimitations and achieves the control
objective.

8.2 Further Work

Continuing this topic of study can be extended by developing a reference model with the same
dynamics as z = wS z. In addition, the maneuvering model could be linearized about some design
cruise speed such that the Nomoto gains 7 and K could be chosen. Then only a small modifi-
cation of the backstepping procedure for the HHC problem gives the rudder as the input. The
hybrid controller could be tested with a more high-fidelity model than the one used in this the-
sis, such as with waves, winds, slowly varying forces and thrust allocation. Then the scale model
can be tested in a larger ocean basin or even at open sea, as the spacial constraints as the MC-
lab makes the maneuvering and path following designs not so well fitted for testing. However,
the hybrid controller could be further tested at the MC-lab with the DP controller. As it was not
tested with neither waves or current in the MC-lab, a possible continuation could be to adapt the
DP controller in such environments, even with robust switching between different DP modes de-
pendent on the environment. The choice of the gains K, K>, K3,y; and y, was done by trial and
error, but this tuning could be performed in a more structured/mathematical manner or even
with the aid of machine learning. As this thesis is a stepping stone for more advanced hybrid con-
trol systems for ships that increases the level of autonomy and robustness, it could be extended
to work on spherical orientation control on S? such as underwater robotics, and adapted to do
more coordinated operations where several vessels or underwater vehicles cooperate. Full scale
testing would also give valuable insight on how the overall performance is compared to model
tests. In addition, collision avoidance guidance that follows the Convention on the International
Regulations for Preventing Collisions at Sea (COLREG) could be investigated further.
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Appendix A

Appendix

The following mathematical model in R? is used:
My, + C(v,)v, + D(v,)v, =T, (A.1)

A.1 Numerical Values for the CSAD Model

Table A.1 shows the numerical values of the parameters from different sources. The rightmost
column is the chosen parameters used in this thesis.
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Table A.1: Numerical values of CSAD

Parameter| Bjorne vesselABC| Seeterdal | Seeterdal | LyngstadaasChosen Unit
(2016) from (2018) (2018) (2018) param-
Bjorno & Lyn- | Session2 | Session2 | eters
(2019) gstadaas for this
(2018) thesis
Session 1
L 2.578 2.578 2.578 2.578 2.578 2.578 m
m 127.92 127.5122 | 127.92 127.92 127.92 127.92 kg
Xg 0 0.0433 0.0375 0.0375 0.0375 0.0375 m
I 61.967 61.7689 62 62 62 62 kgm?
X 3.262 -3.6975 -3.262 -10 -10 -10 kg
Y; 28.89 -29.1179 | -28.9 -105 -105 -105 kg
Y; 0.525 -1.559 -0.525 -0.525 -0.525 -0.525 kgm
Ny 0.157 -0.5922 -0.157 -0.157 -0.157 -0.157 kgm
N; 14 -12.6085 | -14 -3.5 -3.495 -3.5 kgm?
X, -2.332 - -2.33 -5.1 -5.35 -5.35 kg/s
Xiu 0 - 0 0 0 0 kg/m
Xuuu -8.56 - -8.56 -18.63 -19.6312 | -19 kgs/m?
Y, -4.673 - -4.67 -10.2 -10.16 -10.2 kg/s
Yy 0.3976 - -0.398 -0.86 -0.8647 -0.86 kg/m
Yiw -313 - -313 -665 -681.175 | -681 kgs/m?
N, 0 - 0 0 0 0 kgm/s
Ny -0.2088 - -0.209 -0.24 -0.2088 -0.21 kg/m
Ny 0 - 0 0 0 0 kgs/m?
Y, -7.25 - -7.25 -6.25 -7.25 -7.25 kgm/s
Yirr -3.45 - -3.450 -3.65 -3.450 -3.45 kg/s
Yyrr 0 - 0 0 0 0 kgs/m?
N, -0.0168 - -6.916 -14.55 -14.55 -14.55 kg/s
Ny -0.0115 - -4.73 -9.96 -9.9597 -9.96 kgm
Ny - - -0.147 -0.31 -0.3101 -0.31 kgs/m?
0.000358
Ny 0.08 - 0.08 0 0.08 0.08 kg/m
Ny 0.08 - 0.08 0 0.08 0.08 kg/m
Yir -0.845 - -0.845 0 -0.845 -0.845 kg
Yy -0.805 - -0.805 0 -0.805 -0.805 kg
Direct calculation of M and D, yields:
137.92 0 0
M= l 0 232.92 5.3220] (A.2)
0 49540 58.5
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A.2 Derivations of V,%(z) and V. «(»(z)

0 102 7.25
0 0 1455

D; = (A.3)

535 0 0 ‘

It is observed that m3 # m3;. In some derivations for CDMs, the parameter m3; = mj, = %(m23 +
m3y) = 5.138 is used for simplification. However, in simulations, the original mass matrix is used.

A.2 Derivations of V_9(z) and V_kp(z)

Vakoa(d) = [FR2 2O (A4)
Okoo(2) _ Kp 2x
02y 2 (A2z,2 - 1) /L (acos (1z,) — acos (1))
K, VL (acos (1z,) — acos (1))
LAA1-22z2

K, 22,2 VL (acos (Az,) — acos (1))

(A.5)
L(1- 22727
Oko2(2) _ 0 (A.6)
0zy
(')kl Ok
I Zy _ 411 an

Vai(2) = la'z% 6’?2] B [azl azZ] A7)

= 3

where a;, and ay, for g = {1, 2} are shown below. These are solved by using the algebraic expression
for k7, with symbolic variables and calling the MATLAB function diff («7,, zx) and diff (7, zy).
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A.2 Derivations of V,%(z) and V. «(»(z)
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Appendix B

Video of Experiment

This video presents the lab experiments showing the hybrid mechanisms for which way the vessel
turns when initiated at an angle ¢ = 0° and receives setpoints of y; = {-170°,170°, 180°} with
initial logic modes ¢y = {1,2}.

https://vimeo.com/344285825
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