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Abstract
In the later years, there has been an increased interest in control system design and guidance for
autonomous vessels. These systems has high demands for robustness such that they behave as
expected. Autopilots for ships are based on control of the yaw angle typically defined in the ±180
degree range. Using this intervals of reals to constrain the headingwithin this interval causes sev-
eral issues related to mapping, measurement noise and error calculation. As the sensors and de-
vices using anglesmay have different ranges, a correctmapping to the same intervalmust be per-
formed in order for their signals to be processed in a system. The error between two angles could
also end up outside this interval, which means mapping of the error also must be performed. In
addition, small noisemay trick the vessel to be stuck at a 180 degree offset, as it cannot determine
which direction the vessel needs to turn in order to achieve the control objective.
In this thesis, a background study of relevant dynamic models for ships, maneuvering models,
guidance systems and autonomous systems is first presented, as well as a brief introduction to
hybrid dynamical systems and control. A robust hybrid heading controller(HHC) based onmap-
ping the angles to an S1 representation is then derived, tested, analyzed and simulated on a 3DOF
ship model of the scale model of C/S Inocean Cat I Drillship (CSAD). The HHC is derived by first
analyzing several potential function candidates and their deduced non-hybrid kinematic con-
trols. Then a global diffeomorphism is applied to derive two controls and put these into a hybrid
structure. By a smooth switching strategy andbackstepping approach, theneeded control force is
derived such thatGlobal Asymptotic Stability(GAS) canbeachieved. TheHHC is thenextended to
a Velocity Vector Control(VVC) problem including disturbances such as ocean currents, and the
proposedmethod uses adaptive control techniques and sideslip compensation to achieveGAS of
the desired velocity vector. The VVCproblem is extended to a Path-Following Control(PFC) prob-
lem, and different path-generationmethods and Line-of-Sight(LOS) guidance on S1 is developed
to ensure convergence to the path both with and without ocean currents.
The yielded results are promising, as the simulations proved to work as intended. The HHC en-
sured the heading to converge to its desired setpoint, and the VVC design was able to track both
constant and time varying desired velocity vectors, both with and without currents. In addition,
the PFC design proved to be able to converge to both straight and curved paths with a constant
velocity along the path. To validate the results, physical experiments in the ocean basin at the
Marine Cybernetics Laboratory (MC-lab) at the Norwegian University of Science and Technol-
ogy(NTNU) was conducted. The proposed control can be extended and tested with more com-
plex operations such as with wind, waves and constraints in the thrust allocation, as the used
simulationmodel is not of high-fidelity. The work done in this thesis is a stepping stone for more
advanced control systems of ships that increases the level of autonomy and robustness, and can
be extended to spherical orientation control on S2 such as underwater robotics. Full scale testing
would also give valuable insight on how the overall performance is compared tomodel tests.
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Sammendrag
I de senere år har det vært økt interesse for styringssystemdesign og veiledning av autonome
fartøy. Etter hvert som kompleksiteten i disse systemene øker, er det stor etterspørsel etter å de-
signe robuste systemer som oppfører seg som forventet. Autopiloter for skip er basert på kontroll
av en retnings-vinkel somvanligvis er definert i±180 graders området. Ved å bruke dette interval-
let av for å begrense retningen kan det forårsake flere numeriske problemer relatert til mapping,
målestøy og feilberegning. Ettersom sensorene og enhetene som bruker vinkler kan ha forskjel-
lige definisjonsområder, må en korrekt mapping til samme intervall utføres for at signalene skal
behandles i et system. Feilen mellom to vinkler kan også ende opp utenfor dette intervallet, noe
som betyr at mapping av feilen også må utføres. I tillegg kan liten støy lure fartøyet til å sitte fast
ved 180 graders forskyvning, da det ikke kan bestemme hvilken retning fartøyet må vende for å
oppnåmålet.
I denne oppgaven presenteres en bakgrunnsundersøkelse av relevante dynamiske modeller for
skip, manøvreringsmodeller, veiledningssystemer og autonome systemer, samt en introduksjon
til hybride dynamiske systemer og regulering. En robust hybrid retningskontroller (HHC) basert
påkartleggingavvinklene til enS1-representasjonblirderetterutledet, testet, analysertog simulert
på en skipmodell i tre frihetsgrader av skalamodellen til skipetC/S InoceanCat IDrillship (CSAD).
HHC er utledet ved først å analysere flere potensialfunksjons-kandidater og deres avledede ikke-
hybride kinematiske kontrollere. Deretter brukes en global diffeomorfi for å utlede to kontrollere
og sette disse inn i en hybrid struktur. Ved en glatt byttestrategi mellom disse og backstepping-
tilnærming er den nødvendige kontrollstyrken utledet slik at Global Asymptotisk Stabilitet (GAS)
kanoppnås. HHCblirderetterutvidet til ethastighetsvektor(VVC)-problem, inkludert forstyrrelser
somhavstrømmer, ogden foreslåttemetodenbrukeradaptivekontrollteknikkerog sideslip-kom-
pensasjon foråoppnåGAS.VVC-problemeterutvidet til etbanefølgings(PFC)-problem,og forskjel-
lige veidannelsesmetoder og siktelinje-veiledningpåS1 er utviklet for å sikre konvergens til banen
bådemed og uten havstrømmer.
Resultatene er lovende, da simuleringene viste seg å fungere som ønsket. HHC sørget for at ret-
ningen konvergerte til ønsket settpunkt, og VVC-designet var i stand til å følge både konstante og
tidsvarierende ønskede hastighetsvektorer, både med og uten havstrømmer. I tillegg viste PFC-
designet å kunne konvergere til både rette og buede baner med konstant hastighet langs banen.
For å validere resultatene ble fysiske eksperimenter i havbassenget vedMarin Kybernetikk Labo-
ratoriet (MC-lab) vedNorges Teknisk-NaturvitenskapeligeUniversitet(NTNU) gjennomført. Den
foreslåtte kontrolleren bli utvidet og testet med mer komplekse operasjoner som for eksempel
vind, bølger ogbegrensninger i thrust-allokering, dadenbrukte simuleringsmodellen ikke erhøy-
nøyaktig. Arbeidet i denne oppgaven er en skritt på veien for mer avanserte kontrollsystemer for
skip somøker selvstendighetsnivået og robustheten, og kanogsåutvides sfæriskorienteringskon-
troll på S2 som undervannsrobotikk. Fullskala testing vil også gi verdifullt innblikk i hvordan den
samlede ytelsen sammenlignes medmodelltester.
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BODY Body frame coordinate system
CB Constant Bearing
CDM Control DesignModel
COLREG Convention on the International Regulations for PreventingCollisions at

Sea
cRIO National Instrument CompactRIO
CSAD C/S Inocean Cat I Drillship
DOF Degree of Freedom
DP Dynamic Positioning
EBS Enclosure Based Steering
EC Environment Complexity
EKF Extended Kalman Filter
GES Global Exponentially Stable
GS Global Stable
HC Heading Control
HHC Hybrid Heading Controller
HI Human Independence
HIL Hardware In the Loop
IR Infrared
LAS Local Asymptotic Stable
LBS Lookahead-Based Steering
LES Local Exponential Stable
LOS Line of Sight
LP Low-Pass
MC Mission Complexity
MC-lab Marine Cybernetics Laboratory
MSS Marine Systems Simulator toolbox
NED North, East, Down coordinate system
NPO Nonlinear Passive Observer
NTNU Norwegian University of Science and Technology
PFC Path Following Control
PID Proportional, Integral, Derivative

xv



PP Pure Pursuit
PS3 Playstation 3
QTM Qualisys TrackManager
SISO Single Input Single Output
SISO Single-Input-Single-Output
SVM Simulation VerificationModel
TT Target Tracking
UGAS UniformGlobal Asymptotic Stable
UGES UniformGlobal Exponential Stable
VVC Velocity Vector Control
WP Waypoint
Nomenclature
R(ψ) Rotationmatrix
A Compact set
A0 Set
α1, α2 Parameters in derivation of adaptive control
αk Path-tangential angle between waypoints
z̄P Unstable critical point along unit circle
β Crab angle
βc Current direction in NED
βr Sideslip angle
α Azimuth angles
∆ Matrix of damping factors
η Position and attitude vector
ηd Desired position in north, east, yaw
Γu Diagonal matrix for surge speed controller
ν Linear and angular velocity vector
Ω Matrix of natural frequencies
τ Force, either control force or total sum of forces
τcurrent Environmental forces from currents
τFF Feedforward term in controller
τPID Control force from PID-controller
τwave Environmental forces fromwaves
τwind Environmental forces fromwind
θ Estimationmatrix for adaptive control
υ BODY frame linear velocities
υc Ocean current velocity vector in BODY frame
υr Relative BODY frame velocitiy vector
ϕ State dependent vector for adaptive control
C, C1, C2 Flow set
χ Course angle
χd Desired course
χp Path-tangential angle

xvi



χr Velocity path relative angle
χt Course of target vessel
C Class of controls on S1

D,D1,D2 Jump set
δ Rudder angle or synergy gap
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Chapter 1
Introduction

1.1 Objective

The developments of control systems started back in the 19th century, and is now an important
part ofmany systems such as cars, aircrafts andmarine vessels. The control algorithms getsmore
and more complex, while giving increased accuracy and reliability. For marine vessels, the most
important control systems are dynamic positioning and autopilot. During the last years the de-
velopment of autonomous vessels is soon to become a reality. This demands even more robust
systems, both in terms of decisionmaking, but also ensuring the vessel behave thewaywewant it
to. A vessel is equippedwithnumerous sensors that together provide information that the control
system reacts on. These sensorsmight have different standards for the format of the information,
and a robust control systemmust process these data robustly to handle imperfections.
Autopilots for ships arebasedoncontrol of a yawangle typically defined in the±180degree range.
Using this interval of the reals to constrain the headingwithin this interval causes several numeri-
cal issues, such as different devices, angularmapping andmeasurement noise. Thismotivates for
a way to handle these effects robustly such that it does not compromise the safety and reliability
of the control system as a whole.
This thesis will discuss algorithms to cope with these effects, and analyze the methods in terms
of stability and equilibria. The proposed algorithms will be tested on dynamical models of the
Norwegian University of Science and Technology(NTNU)s vessel model C/S Inocean Cat I Drill-
ship(CSAD), as well as physical experiments.

1.2 Scope and Delimitations

This thesis will focus on applying robust hybrid control technologies that has been proposed in
the later years, and adapt them to a 3-Degree of freedom(DOF) shipmodel. The hybrid concepts
will be used to control theheading of a shipbothwithout andwith the influence of ocean currents
in a robustmanner. This thesiswill look intohow thehybrid formulation affects the control inDy-

1



Chapter 1. Introduction

namic Positioning(DP), path following andmaneuvering operations. The work will be separated
into sevenmain parts:

• Perform a background study of relevant dynamic models of ships, maneuvering models,
guidance systems, autonomous systems and hybrid dynamical systems.

• Formulate the 1DOF Heading Control(HC) problemwith a control designmodel(CDM) re-
formulated on S1 based on thework done inMayhew andTeel (2010) with on several poten-
tial functions.

• Design a hybrid heading controller (HHC) with backstepping according to Mayhew et al.
(2011) .

• Formulate the 2DOF Velocity Vector Control(VVC) problem including disturbances and ex-
tend the HHCwith an adaptive surge controller to solve the VVC problem to achieve global
stability.

• Extend the VVC problem into a Path-Following Control(PFC) problem, and present path
generationmethods and Line-of-Sight(LOS) guidance that ensures convergence to and fol-
lowing of a path including current compensation.

• Carry out Hardware-in-the-Loop(HIL) tests to prepare the control algorithms to be tested
on CSAD at theMC-lab.

• Implement and test the control design on the scale model of CSAD at theMC-lab.

1.3 Outline of the Thesis

The rest of this thesis will be organized as follows:
Chapter 2: Describes the kinetics and kinematics of vessels in 6 and 3 DOFs. Methods for Au-
topilot control designs are presented, with references to previous work on DP, course and speed
control, path following and target tracking. Some specification on autonomous marine control
systems are presented, with different axis of complexity.
Chapter 3: Study on hybrid dynamical systems and control, where notation from professor An-
drew Teel is introduced on hybrid systems and control on S1. An example showing a simple point
stabilization problem in S1 is presented, which in general is the core theory behind this thesis.
Lastly, different potential functions for hybrid control on S1 systems with synergistic Lyapunov
functions and backstepping are analyzed, tested and discussed in terms of stability and equilib-
ria.
Chapter 4: Describes the simulations and experimental setup, i.e how the numerical model of
CSAD is implemented in MATLAB/Simulink. In addition, the procedure for HIL testing is pre-
sented, as well as some notes on physical experiments in theMarine Cybernetics(MC)-lab.
Chapter 5: Presents and solves the HC problem. The derivations from Chapter 3 is applied on a
3-DOFmodel of CSAD, and somedifferent cases are shown. In addition, test results fromphysical
experiments are presented.
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1.3 Outline of the Thesis

Chapter 6: Presents and solves the VVC problem. An S1 formulation of angles and current is pre-
sented, and some test scenarios are shown to illustrate the robustness of the controller.
Chapter 7: Presents and solves thePFCproblem. Different path generation techniques are shown
and combined with LOS guidance for both straight and curved paths. The combined guidance
and control are tested through some different scenarios, both with and without the influence of
current.
Chapter 8: Concludes the thesis and proposes further work.
Appendix A: Presents the numerical values for the vessel model of CSAD used in simulations, in
addition to some expressions of differentials not suited to fit in themain part of this thesis.
Appendix B: Provides a QR code that links to a video showing the experiments at theMC-lab
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Chapter 2
Background

In this section, background and definitions for mathematical modelling, control, guidance and
referencemodels are presented. Most of the study was conducted the fall of 2018 for the author’s
project thesis; Haug (2018).

2.1 Dynamical Models of Ships

A dynamic model represents the behaviour of an object over time when exposed to forces. It is
used where the object’s behaviour is best described as a set of states that occur in a defined se-
quence. Hence, a dynamical model of a ship is the combined kinematics(geometry of motion)
and kinetics(how forces create motion).

2.1.1 Ship Dynamics

The ship dynamics can be presented in a compact 6-DOFmatrix-vector as:

η̇ = J(η)υ

Mυ̇ + C(υ)υ + D(υ)υ + g(η) + g0 = τ + τwind + τwave + τcurrent
(2.1)

Where η, υ ∈ R6 are vectors of generalized North-East-Down(NED)-position({n}) and angles η =

[N, E,D, φ, θ, ψ]> and BODY({b})-velocities υ = [u, v,w, p, q, r]>, J(η) ∈ R6x6 is the Euler Angle Trans-
formation matrix, converting {b}-velocities to {n}-velocities, M ∈ R6x6 the system inertia matrix,
including Mass, added mass and second moment of inertia, C(υ) ∈ R6x6 is the Coriolis and cen-
tripetal matrix, due to the rotation of body frame about {n} frame, D(υ) ∈ R6x6 is the damping
matrix, g(η) ∈ R6 is the vector of gravitational and buoyancy forces, g0 ∈ R

6 is the vector used
for pretrimming (ballast control), τ = [X,Y,Z,K,M,N]> ∈ R6 is the vector of control inputs, and
τwind ∈ R

6, τwave ∈ R
6 and τcurrent ∈ R

6 are the vector of environmental loads. For more details; see
Fossen (2011).
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2.1.2 ManeuveringModels

A3-DOFsystem is sufficient to create anautopilotdesign, assuming themotions in roll, heaveand
pitch are small. The states that describes the horizontal motion can be extracted from the 6-DOF
model in (2.1), i.e surge, sway and yaw. Hence, the state vectors describing the 3-DOF systems are
η = [N, E, ψ]> ∈ R3 and υ = [u, v, r]> ∈ R3. Introducing relative velocity υr = υ − υc ∈ R

3, where
υc ∈ R

3 is the current velocity expressed in body frame, gives (2.2):

η̇ = R(ψ)υ (2.2a)
Mυ̇r + C(υr)υr + D(υr)υr = τ (2.2b)

Where R(ψ) ∈ S O(3), M = MA + MRB ∈ R
3x3, C(υr) ∈ R3x3, D(υr) ∈ R3x3, and τ ∈ R3. The matrices

R(ψ),MRB andMA are defined as follows (Fossen, 2011):

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 , MRB =

m 0 0
0 m mxg

0 mxg Iz

 , MA =

−Xu̇ 0 0
0 −Yv̇ −Yṙ

0 −Nv̇ −Nṙ

 (2.3)

The dampingmatrix D(υr) is defined as a linear(L) term and an non-linear(NL) term:

D(υr) = DL + DNL(υr) =

d11(υr) 0 0
0 d22(υr) d23(υr)
0 d32(υr) d33(υr)

 (2.4)

with

DL =

−Xu 0 0
0 −Yv −Yr

0 −Nv −Nr

 , DNL(υr) =

d11,NL(υr) 0 0
0 d22,NL(υr) d23,NL(υr)
0 d32,NL(υr) d33,NL(υr)

 (2.5)

where the NL damping forces are calculated according to (2.6):

d11,NL(υr) = −X|u|u|ur | − Xuuuu2
r (2.6a)

d22,NL(υr) = −Y|v|v|vr | − Y|r|v|r| − Yvvvv2
r (2.6b)

d23,NL(υr) = −Y|v|r |vr | − Y|r|r |r| − Yrrrr2 − Yurur (2.6c)
d32,NL(υr) = −N|v|v|vr | − N|r|v|r| − Nvvvv2

r − Nuvur (2.6d)
d33,NL(υr) = −N|r|r |r| − N|v|r |vr | − Nrrrr2 − Nurur (2.6e)

With themunkmoment :

Yur = −Xu̇ (2.7)
Nuv = −(Yv̇ − Xu̇) (2.8)
Nur = −Yṙ (2.9)

The Coriolis matrix C(υr) are calculated according to (2.10):
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C(υr) = CRB(υr) + CA(υr) (2.10)

CRB(υr) =

 0 0 −m(xgr + vr)
0 0 mur

m(xgr + vr) −mur 0

 , CA(υr) =

 0 0 cA,13(υr)
0 0 cA,23(υr)

−cA,13(υr) −cA,23(υr) 0

 (2.11)

cA,13(υr) = Yv̇vr + Yṙr, cA,23(υr) = −Xu̇ur (2.12)
Then, by solving for υ̇r we obtain:

υ̇r = M−1 (τ − C(υr)υr − D(υr)υr) (2.13)
with

M−1 =


1

m11
0 0

0 −
m33

m2
23−m22m33

m23
m2

23−m22m33

0 m23
m2

23−m22m33
−

m22
m2

23−m22m33

 (2.14)

which from Skjetne (2018) by defining

σ1(υr) := −
d11(υr)

m11
ur +

m22vr + m23r
m11

r (2.15)

σ2(υr) := −
d22(υr)m33 − d32(υr)m23 − m23 (m22 − m11) ur

m22m33 − m2
23

vr

+
d33(υr)m23 − d23(υr)m33 +

(
m11m33 − m2

23

)
ur

m22m33 − m2
23

r (2.16)

σ3(υr) :=
d22(υr)m23 − d32(υr)m22 − m22 (m22 − m11) ur

m22m33 − m2
23

vr

−
(d33(υr)m22 − d23(υr)m23) + m23 (m22 − m11) ur

m22m33 − m2
23

r (2.17)

b11 :=
1

m11
(2.18)

b22 :=
m33

m22m33 − m2
23

, b23 :=
−m23

m22m33 − m2
23

(2.19)

b32 :=
−m23

m22m33 − m2
23

, b33 :=
m22

m22m33 − m2
23

, (2.20)

results in:

u̇r = σ1(υr) + b11τu (2.21a)
v̇r = σ2(υr) + b22τv + b23τr (2.21b)
ṙ = σ3(υr) + b32τv + b33τr (2.21c)
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Chapter 2. Background

For an underactuated ship, the main issue is how to handle the sway dynamics. We can see from
(2.21b) that a force in yaw induces a velocity in sway. We can use the control allocation for a fully
actuated vessel to emulate an underactuated vessel in sway such that b22τv + b23τr = 0. This is
obtained by constraining τv = −

b23
b22
τr =

m23
m33
τr in the control allocation such that

u̇r = σ1(υr) +
1

m11
τu (2.22a)

v̇r = σ2(υr) (2.22b)

ṙ = σ3(υr) +
1

m33
τr (2.22c)

which is themodel the simulations will be based on.
Rendering sway underactuated by Rudder steering
If the dynamic model is derived with an arbitrary center along the vessel’s body axis, the rudder
angle δwill typically generate sway force. According to Tzeng (1998), by transforming the states to
the pivot point of the vessel, you can eliminate the the influence δhas on the sway dynamics. This
can be done by locating the centre of the vessel’s body frame at an appropriate arm xg relative to
the centre of gravity, and suppose:

 τu

τv

τr

 =

 τu

Yδδ
Nδδ

 (2.23)

which inserted in (2.21) gives: u̇r

v̇r

ṙ

 =


−

d11
m11

ur +
m22vr+m23r

m11
r

(m11−m22)m23vr−(m2
23−m11m33)r

m2
23−m22m33

ur +
(d22m33−d32m23)vr+(d23m33−d33m23)r

m2
23−m22m33

(m22−m11)(m23r+m22vr)
m2

23−m22m33
ur −

(d23m23−d33m22)r+(d22m23−d32m22)vr
m2

23−m22m33

 +


1

m11
τu

m23Nδ−m33Yδ
m2

23−m22m33
δ

m23Yδ−m22Nδ

m2
23−m22m33

δ

 (2.24)

where we notice that if we want to set actuation in sway to zero, we use

m23Nδ − m33Yδ = (mxg − Yṙ)Nδ − (Iz − Nṙ) Yδ = 0 (2.25)

m23 =
Yδ
Nδ

m33 (2.26)

xg =
YṙNδ + (Iz − Nṙ) Yδ

mNδ
=

Yṙ

m
+

(Iz − Nṙ) Yδ
mNδ

(2.27)
By this choise ofm23 (and xg) we get for the 3rd component in the input vector of (2.24),

Yδ
Nδ

Yδm33 − m22Nδ(
Yδ
Nδ

)2
m2

33 − m22m33

=

Y2
δ

Nδ
m33 − m22Nδ

Y2
δ

N2
δ

m2
33 − m22m33

=

N2
δ

(
Y2
δ

Nδ
m33 − m22Nδ

)
N2
δ

(
Y2
δ

N2
δ

m2
33 − m22m33

) (2.28)

=

(
m33Y2

δ − m22N2
δ

)
Nδ

m33
(
m33Y2

δ − m22N2
δ

) =
Nδ

m33
. (2.29)

Moreover, we get
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2.2 Dynamic Positioning Control Designs

σ1,δ(υr) = −
d11(υr)

m11
ur +

m22r
m11

vr +
Yδm33

Nδm11
r2 (2.30)

σ21,δ(υr) =
− (d32(υr)Yδ − d22(υr)Nδ) Nδ − (m22 − m11) YδNδur

m33Y2
δ − m22N2

δ

(2.31)

σ22,δ(υr) =
(d23(υr)Nδ − d33(υr)Yδ) Nδ −

(
m33Y2

δ − m11N2
δ

)
ur

m33Y2
δ − m22N2

δ

(2.32)

σ31,δ(υr) =
m22 (m22 − m11) N2

δur −
(
m33YδNδd22(υr) − m22N2

δd32(υr)
)

m33
(
m33Y2

δ − m22N2
δ

) (2.33)

σ32,δ(υr) =
m33 (m22 − m11) YδNδur −

(
m33YδNδd23(υr) − m22N2

δd33(υr)
)

m33
(
m33Y2

δ − m22N2
δ

) (2.34)

resulting in
u̇r = σ1,δ(υr) +

1
m11

τu (2.35a)

v̇r = σ21,δ(υr)vr + σ22,δ(υr)r (2.35b)

ṙ = σ31,δ(υr)vr + σ32,δ(υr)r +
Nδ

m33
δ (2.35c)

where τr = Nδδ. Than, assuming the numerical values of Nδ and Yδ are known, we can render sway
underactuated.

2.2 Dynamic Positioning Control Designs

Dynamic Positioning is a computer controlled system to automatically maintain a vessel’s posi-
tionwith its own controls, i.e its propellers and thrusters. By the aid of position reference sensors,
sensors that measures environmental disturbances, motion sensors, gyroscope, compass etc., a
DP system uses this information to compensate for these disturbances and motions by allocat-
ing thrust to maintain its position at sea. The computer controlled system uses a mathematical
model of the vessel that includes information of the estimated loads from the measured distur-
bances such as wind and current drag, together with the position of the thrusters to calculate the
desired output for each thruster. This allows for stationkeeping operation where mooring or an-
choring is not feasible due to deepwater or restrictions on anchoring nearby seabed installations
like pipelines or templates.
A simplifiedmodel for Proportional-Integral-Derivative(PID) feedback control forDPapplication
can be performed by choosing a bandwidth ωb and pole-placement according to Fossen (2011):
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ωn =
1√

1 − 2ζ2 +
√

4ζ4 − 4ζ2 + 2
ωb ≈

1
0.64

ωb if ζ = 1 (2.36a)

Kp = Mω2
n (2.36b)

Kd = 2ζωnM − DL (2.36c)
Ki =

ωn

10
Kp (2.36d)

η̃ = η − ηd (2.36e)
υ̃ = υ − R(η)>η̇d (2.36f)

τPID = −R>(η)Kpη̃ −Kdυ̃ − R>(η)Ki

∫ t

0
η̃(τ)dτ (2.36g)

τFF = Mυ̇d + DLυd (2.36h)
τ = τPID + τFF (2.36i)

Where τ is the control input to ensure η̃ → 0. The position and attitude reference model ηd is
typically chosen to be a third order for filtering the steps in the reference(typically set by the oper-
ator of theDP system) rn by a first order Low-Pass(LP) filter cascadedwith amass-spring-damper
system:

ηdi

rn
i

=
ω3

ni

s3 + (2ζi + 1)ωni s2 + (2ζi + 1)ω2
ni s + ω3

ni

(2.37)

For a vessel to achieve the desired thrust τ, we have the thrust allocation algorithm

τ = T(α)f = T(α)Ku (2.38)
whereα = [α1, ..., αp]> ∈ Rp is a vector of azimuthangles andT(α) ∈ Rn×r is the thrust configuration
matrix that describes the geometry of locations of the r actuators. K ∈ Rr×r is a diagonal force
coefficient matrix and u ∈ Rn is a vector of control inputs.

2.3 Autopilot Control Designs

In this section, the methods for design of guidance and control systems for marine craft will be
described. Guidance represents the basicmethodology concerned with the transientmotion be-
haviourassociatedwith theachievementofmotioncontrol objectives. Guidance lawscanbeused
to generate a time-varying trajectory or a time-invariant path reference. Skjetne (2019) describes
four different motion control scenarios for ships:

• Regulation - Special case where attitude and position are held constant (e.g Dynamic Posi-
tioning).

• Tracking - Force a system output y(t) ∈ Rm to track a desired output yd(t) ∈ Rm. Can be
achieved be generating a referencemodel with feasible trajectories given the constraints.

• Path following - Follow a predefined path independent of time.

10



2.3 Autopilot Control Designs

• Maneuvering - satisfying both a geometric and dynamic task. The geometric task is defined
as forcing an output y to converge to the desired path yd(s) for a continuous function s(t).
The dynamic task is to force s(t), ṡ(t) or s̈(t) to converge to one ormore of the time τ(t), speed
v(s, t) or acceleration a(ṡ, s, t) assignments.

For surfacevessels themost commoncontrol systemis tocombineaheadingcontroller andspeed
controller in order to track the desired path. The following sections will describe the different
control strategies when controlling a vessels heading and velocity.

2.3.1 Reference Frames

Fossen (2016) present the ocean triangle in Figure 2.1 and the equations in (2.39). They define
course, heading, crabandsideslipangles, aswell as the relevant speedswhenavessel is affectedby
ocean currents. Here, the ships position is defined as pn = [N, E]> = [x, y]> ∈ R2 and its derivatives
ẋ = dx

dt and ẏ =
dy
dt . Note that without current, β = βr.

Sideslip angle: βr = sin−1
(

vr

Ur

)
(2.39a)

Crab angle: β := χ − ψ, β = sin−1
( v
U

)
(2.39b)

Course angle: χ := atan2(ẏ, ẋ) (2.39c)
Heading angle: ψ (2.39d)

Speed over ground: U =
√

u2 + v2, U =

√
ẋ2 + ẏ2

(2.39e)
Relative speed Ur =

√
ur

2 + vr
2 (2.39f)

Current speed Uc =
√

uc
2 + vc

2 (2.39g)
Current direction: βc (2.39h)

Figure 2.1: Reference frames in the horizontal plane. Courtesy: Fossen (2016).

2.3.2 Heading Control

Controlling theheadingof a ship is a Single Input SingleOutput(SISO) control problem,where the
rudder is used as actuator for controlling yaw rate, which is integrated in order to obtain heading.
TheNomotomodel, as first cited inNomoto andTaguchi (1957), is a natural choice in such a case.
There are twomain types of Nomotomodels for the relation between rudder angle and yaw rate.
Both originate from the linearized maneuvering model as shown in (2.2). Picking out the yaw
rate r from this model, transforming it to the Laplace plane and integrate to obtain the transfer
function for the heading ψ results in the second-order Nomotomodel in (2.40):

ψ

δ
(s) =

K(1 + T3s)
s(1 + T1s)(1 + T2s)

(2.40)
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If the dynamics can be approximated as a first order response, one can define an equivalent time
constant T := T1 + T2 − T3 to obtain the first-order Nomotomodel as shown in (2.41).

ψ

δ
(s) =

K
s(1 + T s)

(2.41)

AsimplePID-controller canbechosen tocontrol theheading, such that limt→∞ ψ̃ = 0and limt→∞ r̃ =

0. The controller can be expressed as in (2.42), using the relationship ψ̇ = r.

δc(t) = −Kpψ̃(t) − Kd r̃(t) − Ki

∫ t

0
ψ̃(τ)dτ (2.42)

Here, the error terms are defined as ψ̃ := ψ − ψd and r̃ := r − rd, where ψd and rd are the desired
heading and turning rate, respectively. By including an integral term in the controller, this is able
to correct for steady-state disturbances andmodelling errors. During constant heading hold, cur-
rent might be treated as a steady-state disturbance. It should however be noted that small errors
can be induced by this approach during heading changes when exposed to current.
Ifwe express the transfer function for the controller asHC and the transfer functionof theNomoto
model in (2.40) as HN we can draw a block diagram for the heading loop as shown in Figure 2.2a.
With ocean current, the system ismodelledwith a constant disturbance d as shown inFigure 2.2b.

(a) Block diagram of heading hold loop (b) Block diagram of heading loop with current
modelled as a disturbance entering the system after
the Nomotomodel

Figure 2.2: Block diagrams of heading hold loops

This gives the closed loop transfer function in (2.43), which ensures the heading ψ to converge to
the desired heading ψd giving limt→∞

ψ
ψd

= 1 =⇒ limt→∞ ψ = ψd =⇒ limt→∞ ψ̃ = 0.

ψ

ψd
(s) = Hψ =

−HCHN/s
1 − HCHN/s

=
K(Kd s2 + Kps + Ki)

s3(T s + 1) + K(Kd s2 + Kps + Ki)
(2.43)

With a step change µ1 in the disturbance, it can be proven that the heading error ψ̃ still converges
towards zero by limt→∞

ψ
d (t)µ1(t) = lims→0 sψd (t) 1

s = 0. It is hereby shown that the controller is able
to suppress the effect of a step disturbance entering the feedback loop after the Nomoto model,
implying that the effect of constant or slowly varying current will also be suppressed.
This type of controllerwill be able to control the heading towards a steady value equal to the com-
manded value, and that it will be able to suppress outer disturbances from modelling errors or
constant current. It is thereby not given that it will be able to track a high-frequency time-varying
reference signal, or that it will be able to suppress high-frequency disturbances such as quickly
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2.3 Autopilot Control Designs

varying current (e.g., during a turn, where the BODY-frame current will vary), or wind gusts. In
addition, due to the heading ψ, desired heading ψd and heading error ψ̃ needs to be disrupted
from the point on the circle to the interval [−π, π], there is no proof for this heading control to be
GAS, as there exist more than one equilibrium for the heading error to be zero.

2.3.3 Feedback linearization Speed Control

For a desired surge speed ud, a speed controllermust ensure that the error ũ = u− ud will converge
towards zero limt→∞ ũ = 0. The controller must be able to withstand external disturbances, such
as currents. A proposedmethod in Fossen (2011) is based on a state feedback linearization using
the extracted 1-DOF surge speedmaneuveringmodel in (2.21):

u̇r = −
d11(ur)

m11
ur +

m22r
m11

vr +
m23

m11
r2 +

1
m11

τu (2.44)

Assuming small relative velocity in sway vr ≈ 0, small turning rate r ≈ 0, slowcurrentsur = u−uc ≈ u
and neglecting higher order terms such as Xuuuu2, themodel is simplified to:

u̇ =
Xu

m11
u +

X|u|u
m11
|u| u +

1
m11

τu (2.45)

(m − Xu̇)u̇r − Xuur − X|u|u|ur |ur = τu (2.46)
This is dependent on an accurate model, as the nonlinear terms terms can be important, espe-
cially at higher speeds. For low speed application, the nonlinear term in this model is often set
to zero, but other techniques such as acceleration feedback (Fossen, 2011) by adding nonlinear
terms could be chosen. The input to the system is expressed as in (2.47), with the corresponding
closed loop transfer function in (2.48).

τu(t) = −Kpũ(t) − Ki

∫ t

0
ũ(τ)dτ⇒ Hc(s) =

τ1

ũ
(s) = −Kp −

Ki

s
(2.47)

Hu(s) =
u
ud

(s) =
−Hc(s)HN(s)

1 − Hc(s)HN(s)
=

(sKp + Ki)/(m − Xu̇)
s2 + s(d1 + Kp)/(m − Xu̇) + Ki/(m − Xu̇)

(2.48)

Where limt→∞ Hu(t) = 1 =⇒ u → ud. However, the simplifications made in the control design
might be significant, and thereforemore robust surge speed controller should be designed to ac-
count for parametric uncertainties.

Adaptive Backstepping Speed Control

To account for parametric uncertainty in (2.46) and the effect of an unknown current, an adaptive
controller for the surge speed canbe designed. Inspired byBreivik and Fossen (2007), we can split
σ1(υr) in (2.22a) into a term from themeasurable velocities υ and leave the effect of the current as
an estimate. This gives:
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u̇r = σ1(υr) +
1

m11
τu

u̇ − u̇c = σ1(υ) + ϕ(υ)>θ +
1

m11
τu

(2.49)

where ϕ>θ is the effect of the unknown current. Assuming constant current u̇c = 0 =⇒ u̇r = u̇ and
ur = u − uc. This leads to

u̇ = α1(u − uc) + α2|u − uc|(u − uc) + σ1(υ) +
1

m11
τu

≈ α1(u − uc) + α2(u − uc)2 + σ1(υ) +
1

m11
τu

≈ α1u + α2|u|u − α1uc − 2α2|u|uc + α2u2
c + σ1(υ) +

1
m11

τu

= [u, |u|u, |u|, 1] [α1, α2,−2α2uc,−α1uc − α2|uc|uc]> + σ1(υ) +
1

m11
τu

=
[
ϕ1, ϕ2, ϕ3, ϕ4

]
[θ1, θ2, θ3, θ4]> + σ1(υ) +

1
m11

τu

= ϕ>θ + σ1(υ) +
1

m11
τu

(2.50)

Where the second equality comes from the assumption of u > 0 and u − uc > 0. Hence, we have:

θ = [α1, α2,−2α2uc,−α1uc − α2|uc|uc]> = [θ1, θ2, θ3, θ4]> (2.51a)
ϕ =

[
ϕ1, ϕ2, ϕ3, ϕ4

]>
= [u, |u|u, |u|, 1]> (2.51b)

Where all parameters in θ are assumed to be constant and is subject to estimation. For a desired
surge speed ud, we can define the error as eu = u − ud, which gives the error dynamics:

ėu = ϕ>θ + σ1(υ) +
1

m11
τu − u̇d (2.52)

Then we define the Lyapunov function and its derivative:

V1 =
1
2

m11e2
u (2.53)

V̇1 = m11euėu = eu

(
ϕ>θ + σ1(υ) +

1
m11

τu − u̇d

)
(2.54)

with the control
τu = m11

(
−ϕ>θ̂ − σ1(υ) − Kpueu + u̇d

)
, Kpu > 0 (2.55)

with θ̂ inserted as the estimate of θ. The estimation error is denoted θ̃ = θ− θ̂. Then, (2.54) reduces
to:

V̇1 = −Kpue2
u + ϕ>θ̃eu (2.56)

Defining Lyapunov function V2:
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V2 = V1 +
1
2
θ̃
>
Γ−1

u θ̃, Γu = Γ>u = diag(γu,1, γu,2, γu,3, γu,4) > 0, ˙̃θ = θ̇ − ˙̂θ = − ˙̂θ (2.57)

gives

V̇2 = V̇1 + θ̃
>
Γ−1

u
˙̃θ

= −Kpue2
u + ϕ>θ̃eu + θ̃

>
Γ−1

u
˙̃θ

= −Kpue2
u + ϕ>θ̃eu − θ̃

>
Γ−1

u
˙̂θ

= −Kpue2
u + θ̃

>
(
ϕeu − Γ

−1
u

˙̂θ
) (2.58)

Then, by defining the estimator dynamics:

˙̂θ = Γuϕeu (2.59)
reduces (2.58) to:

V̇2 = −Kpue2
u + θ>

(
ϕeu − Γ

−1
u Γuϕeu

)
= −Kpue2

u < 0 (2.60)

Hence, V̇2 is negative semi-definite, and we achieve uniform global stability and convergence of
eu. This controller will be applied in Section 6.

2.3.4 Path Following and Course Control

For a vesselmaneuvering at sea, the heading is not the same as the course. The angular difference
between course and heading is called sideslip, as defined in (2.39a). Therefore, as the control ob-
jective often is to control the course to a specific direction, the control systemmust compensate
for this when controlling the heading. Breivik and Fossen (2004) and Fossen et al. (2003) presents
a technique for path following for straight lines and circles for underactuatedmarine surface ves-
sels by sideslip compensation,while recent studies suchasFossenet al. (2015) expands the theory
for a curved path with adaptive sideslip compensation with Line-of-Sight. The basic principle is
as shown below.
Straight-Line Paths
The 2-D position of a surface vessel is defined as pn = [N, E]> ∈ R2. A straight line path is, as the
word implies, the straight line between the two points pn

0 and pn
1. Where pn

0 is either the previous
waypointor thecurrentposition, andpn

1 is thenextwaypoint. Thepath tangential angle isdenoted
αk:

pn
0 = [x0, y0]>, pn

1 = [x1, y1]>, αk = atan2(y1 − y0, x1 − x0) (2.61)
Line-of-Sight Guidance
Line-of-sight (LOS) is classified as a three-point guidance scheme since it involves a stationary
reference point, as well as an interceptor, which is typically the vessel we want to control, and a
target that canbeeither amovingor stationarypoint. This technique is oftenusedwhen thevessel
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objective is to reach a set ofwaypointspn
k . The cross-track error canbe foundby rotating theNED-

framecoordinates between the vessel position and thepreviouswaypoint by anangle equal to the
angle of the active path segment. Hence expressing the distance from the previous waypoint in a
path-parallel and a path-normal component. This can bemathematically expressed as in (2.62).

ε =

[
s(t)
e(t)

]
= R>(αk)(pn(t) − pn

k), lim
t→∞

e(t) = 0 (2.62)

Here, s(t) denotes the along-track distance from the previouswaypoint, and e(t) denotes the cross
track error, i.e., the distance from the active path segment asmeasured normal to it. pn(t) denotes
the position of the vessel in the NED frame, and pn

k(t) denotes the position of the first waypoint
in the currently active line segment in the NED frame. The LOS algorithm is used to control the
heading of the ship to ensure convergence to a straight-line path, expressed mathematically in
(2.62).
The guidance system should construct desired heading ψd and surge speed ud as input to the
controllers. Fossen (2011) describes two ways of constructing the desired course angle for path-
followingonstraight linepathsbetweenwaypoints;Enclosure-BasedSteering (EBS)andLookahead-
Based Steering (LBS). Figure 2.3 shows the EBS setup:

χd(t) = atan 2(ylos − y(t), xlos − x(t)) (2.63a)
[xlos − x(t)]2 + [ylos − y(t)]2 = R2

EBS (2.63b)
tan(αk) =

yk+1 − yk

xk+1 − xk
=

ylos − yk

xlos − xk
= const (2.63c)

Figure 2.3: Enclosure-based steering setup. Courtesy: Fossen (2011)

EBS relies on enclosing pn with a circle with radius REBS sufficiently large such that the circle will
intersect the straight line at two points. By directing the velocity vector towards pn

los = [xlos, ylos]>,
we can ensure e(t) → 0 by computing the desired course as in (2.63a), where (xlos, ylos) is the solu-
tion of (2.63b) and (2.63c). See Fossen (2011) for the algebraic solution of (xlos, ylos).
The other method, LBS, relies on constructing the desired course angle as the sum of the path-
tangential angle χp = αk and a velocity-path relative angle χr(e). The setup is shown in Figure
2.4.

16



2.3 Autopilot Control Designs

χd(e) = χp + χr(e) (2.64a)
χp = αk (2.64b)

χr(e) = arctan
(
−e(t)

∆LBS (t)

)
(2.64c)

∆LBS (t) =

√
R2

LBS − e(t)2 (2.64d)
RLBS ≥ |e(t)| (2.64e)

Figure 2.4: Lookahead-based steering setup. Courtesy: Fossen (2011)

Here, ∆LBS (t) denotes a lookahead distance, defined as a desired-path-parallel distance between
the projection point of the vessel on to the path and the point toward which one wishes to steer
the vessel. Hence, a short lookahead distance yields an aggressive course controller, while a long
lookahead distance yields the opposite. It could either be a time varying parameters as in (2.64d),
or chosen to be constant, usually between 1.5− 2.5 of the ships length Lpp. Note that in the case of
RLBS < |e(t)|, other techniques to construct thedesiredcoursemustbedone, suchasdirectingχd to
be thepath-normal projection from its current position, or directly to oneof the activewaypoints.
Sideslip Compensation
As the course and heading of a ship are not necessarily aligned during turning or due to ocean
currents, a sideslip compensation should be done according to (2.65), with β being calculated
according to (2.39b). Also, if the control objective is to obtain a speedUd, the desired surge speed
should account for sway velocity according to (2.66).

ψd = χd − β (2.65)

ud =

√
U2

d − v2 (2.66)

2.3.5 Target Tracking

If there is no trajectory to track, but rather amoving target, the Target tracking scheme presented
in Breivik (2010) can be used. The goal is to make the controlled vessel, (the Interceptor) track
another vessel (the Target).
A constant bearing guidance scheme is a commonly used scheme for marine applications. Here,
the desired velocity vn

d is a combination of the bearing velocity and the target velocity. The ve-
locities are rotated in a LOS reference system, relating the lateral distance and cross track error
as in (2.62). For the interceptor to keep a relative position behind the target, an additional term,
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εd = [sd, ed]> ∈ R2 is added to ε in (2.62) to ensure this, showed in (2.67e). Themethod is based on
the equations in (2.67), related to Figure 2.5.

LOS vector between
interceptor and target: p̃n := pn − pn

t (2.67a)

Stabilizing term: κ =
Ua,max||p̃n||√
(p̃n)>p̃n + ∆2

p̃

(2.67b)

Approach velocity vector: vn
a = −κ

p̃n

||p̃n||
(2.67c)

Desired velocity/course: vn
d = vn

t + vn
a (2.67d)

Cross and alongtrack error: ε = R>(χt)(pn(t) − pn
k) + εd

(2.67e)

Desired approach speed: Ua =

√
u2

a + v2
a (2.67f)

Desired speed: Ud = ||vn
d || (2.67g)

Figure 2.5: Interceptor and target. Courtesy: Fossen (2011)

where ∆ p̃ > 0 affects the transient interceptor-target rendezvous behaviour, meaning the larger
∆p̃, the less aggressive the velocity component pointing directly at the target will be. χt denotes
the course of the target and Ua,max denotes the maximum approach speed toward the target. The
desired velocity vector (2.67d) defines both the desired speed and course.

2.3.6 Referencemodels

In tracking operations, where the ship moves from one position and heading to another, a ref-
erence model is needed for achieving a smooth transition. A feasible trajectory means one that
is consistent with the vessel dynamics in each degree of freedom. In linear system theory this
means that the reference model must have slower eigenvalues compared to the craft dynamics.
In a non-linear case like the one presented, this translates to bandwidth of the reference model
being lower than thebandwidthof themotioncontrol system inorder toobtain satisfactory track-
ing performance and stability. Fossen (2011) presents a velocity reference model modelled as a
mass-spring-damper system:

ν̈d + 2∆Ων̇d +Ω2νd = Ω2rb (2.68)
where νd ∈ R

n is the desired velocity, ν̇d ∈ R
n the desired acceleration and ν̈d ∈ R

n the desired
jerk. ∆ = diag{ζ1, ζ2, ..., ζn} > 0 ∈ Rnxn and Ω = diag{ωn1 , ωn2 , ..., ωnn} > 0 ∈ Rnxn denote the relative
damping ratios and natural frequencies, respectively. rb ∈ Rn is the desired velocity.
For a two dimensional velocity referencemodel in surge and turning rate for amarine vessel, this
reduces to:
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üd + 2ζuωnu u̇d + ω2
nu

ud = ω2
nu

ure f (2.69a)
r̈d + 2ζrωnr ṙd + ω2

nr
rd = ω2

nr
rre f (2.69b)

which results in the transfer functions:

ud

ure f
(s) =

ω2
nu

s2 + 2ζuωnu s + ω2
nu

(2.70a)

rd

rre f
(s) =

ω2
nr

s2 + 2ζrωnr s + ω2
nr

(2.70b)

where ud and rd is the surge speed and turning rate that is used in the controller. The relative
damping ratios ζu and ζr are often set to one to get a critically damped reference. The natural
frequencies ωnu and ωnr should be set such that it generate a feasible velocity trajectory for the
dynamic system it is applied on.

2.4 AutonomousMarine Control Systems

Extensive research and progress has been made when it comes to autonomous systems the last
decades. Lekkas (2018) distinguishes between automatic and autonomous systems, where an au-
tomatic system is a system that does exactlywhat it is programmed todo,without choice or possi-
bility to act in any different way. Furthermore, a deliberating system is a system that performs ac-
tionsmotivated by some intended objectives, justifiable by sound reasoningwith respect to these
objectives. An autonomous system is a combination of these two, i.e a system that possesses self-
governing characteristics which, ideally, allow it to performpre-specified tasks/missions without
human intervention. To characterize the different types of autonomy, Ludvigsen and Sørensen
(2016) present the following four levels of autonomy:
1. Automaticoperation (remote control)means that even though the systemoperates automat-

ically, the humanoperator directs and controls all high-levelmission-planning functions, of-
ten preprogrammed (human-in-the-loop/human operated).

2. Management by consent (teleoperation) means that the system automatically makes rec-
ommendations for mission actions related to specific functions, and the system prompts the
humanoperatorat importantpoints in time for informationordecisions. At this level, the sys-
temmay have limited communication bandwidth including time delay, due to i.e. distance.
The system can performmany functions independently of human control when delegated to
do so (human-delegated).

3. Semi-autonomous or management by exceptionmeans that the system automatically ex-
ecutes mission-related functions when response times are too short for human intervention.
The humanmay override or change parameters and cancel or redirect actions within defined
time lines. The operator attention is only brought to exceptions for certain decisions (human-
supervisory control).

4. Highly autonomous, which means that the system automatically executes mission-related
functions in an unstructured environment with ability to plan and re-plan the mission. The
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human may be informed about the progress. The system is independent and ”intelligent”
(human-out-of-the loop)

Formore details, see NIST (2018) and National Research Council (2005).
The complexity of an autonomous system depends on a number of factors such as the human
Independence(HI), themission complexity(MC) and the environment complexity(EC). Figure 2.6
shows the terminology of an autonomous system, while Figure 2.7 characterizes the conceptual
autonomous capability according to these factors.

Figure 2.6: Autonomy levels framework.
Courtesy: NIST (2018) Figure 2.7: Contextual autonomous capability. Courtesy: NIST

(2018)

Anautonomous systemwhere a humanoperator is in the loopputs highdemands on the human-
machine system to be capable of survivingweaknesses in bothmachine and human functioning.
Hence, the robustness and resilienceof anautonomous systemshouldbeassessed. The resilience
of a system represents its ability to return to normal operation in the case of damages or failures,
while robustness is the systems ability to function effectively in a range of demanding circum-
stances. Both these factors plays a key role for the overall performance of a system to be accept-
able. Recent studies in Matthews Gerald (2016) addresses the challenges posed by interaction
with autonomous systems. This study points out the importance of not only engineering an au-
tonomous system against failures but also such that it can communicate its level of functioning
to the human and to adapt to operator status.
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Chapter 3
Hybrid Dynamical Systems and Control

A hybrid system is a dynamical system which exist both in discrete time and continuous time.
It can either flow in continuous time or jump in discrete time. A hybrid state is defined as the
values in the continuous state and the discrete mode it is in. This section will go through the
mathematical preliminaries and conventions for such systems, and exemplify some of the theory
as it is presented.

3.1 Preliminaries

InGS,LAS,LES,UGAS,UGES, etc., standsG forGlobal, L forLocal, S forStable,U forUniform,A for
Asymptotic, and E for Exponential. A diagonal matrix is denoted diag{a1, . . . , an} ∈ R

n×n. Stacking
several vectors into one is denoted x = col(x1, x2, x3) := [x>1 , x

>
2 , x

>
3 ]>, similarly x> = row(x1, x2, x3)

is a row vector, and whenever convenient, |(x1, x2, x3)| = |x|. The Euclidean vector norm is |x| :=
(x>x)1/2. Total time derivatives of x(t) are denoted ẋ, ẍ, x(3), . . . , x(n). For a function α : Rn → R the
gradient is the row vector ∇α(x) := ∂α

∂x and for α : Rn → Rm the Jacobian is the matrix Jα(x) :=
col

(
∂α1
∂x ,

∂α2
∂x , · · · ,

∂αm
∂x

)
.

3.2 General Hybrid Systems Preliminaries

As many dynamical systems combine behaviours typical for both continuous-time dynamical
systems and discrete-time events, this section is to generalize the concept of switching between
these two events. Rafal Goebel and Teel (2012) presents a general model on the form shown in
(3.1).

ẋ ∈ F(x), x ∈ C (3.1a)
x+ ∈ G(x), x ∈ D (3.1b)

The continuous model is described by (3.1a), where x represents the state in the n-dimensional
euclidean spaceRn, F(x) the first order differential inclusion andC is a subset ofRn. In the discrete
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Chapter 3. Hybrid Dynamical Systems and Control

model (3.1b), x+ denotes the next value of the state through the set-valued mapping G(x) andD
is a subset of Rn. C is called the flow set, F the flowmap,D the jump set andG the jumpmap. The
hybrid form of the entire system (3.1) is denotedH .

H = (C, F,D,G) (3.2)
Thehybrid timedomain isa setE ⊂ R≥0 ×Z≥0 such that foreach (T, J) ∈ E the setE ∩ ([0,T ] × {0, 1, 2, ..., J})
is a compact hybrid time domain.

E =

J⋃
j=0

([ti, ti+1] ∪ {i}) (3.3)

for some J ∈ Z≥0 and real numbers 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ+1. Functions in hybrid time domains is
called hybrid arc, which is a function x : dom x→ Rn with dom x being a hybrid time domain and
for each j ∈ N, t 7→ x(t, j) is locally absolutely continuous. The solution to a hybrid systemH is a
hybrid arc which contains the origin x(0, 0) ∈ C ∪ D and ∀ j ∈ N such that I j := {t : (t, j) ∈ dom x}
has nonempty interior

x(t, j) ∈ C for all t ∈ [min I j, sup I j) (3.4)
ẋ(t, j) = F(x(t, j)) for almost all t ∈ I j (3.5)

and ∀(t, j) ∈ dom x such that (t, j + 1) ∈ dom x and:
x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)) (3.6)

Figure 3.1 illustrates different kind of hybrid time domains and arcs.

(a) Hybrid time domains associated with different
types of solutions of a hybrid system: a) Zeno, b)
eventually discrete, c) purely discrete, d) eventually
continuous, and e) purely continuous

(b) A hybrid arc associated with a hybrid dynamical
system

Figure 3.1: Examples of hybrid time domains and a hybrid arc generated by a hybrid dynamical system
Courtesy: Rafal Goebel and Teel (2012)

Here, (t, j) are pairs of time t and the number of jumps j. A solution is nontrivial if it contains at
least one point different from (0, 0). There is no requirement that C and D does not overlap, so
when C ∩ D , ∅, the solution may either jump or flow depending on the jump and flow map.
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3.3 Hybrid Control on S1

For a hybrid system to be asymptotically stable, there must exist a compact setA ⊂ Rn which is
both stable and attractive forH , is bounded, and the complete solutions converge to the basin of
attraction ofA. If the basin of attraction cover the entire Euclidean space Rn, the solution is said
to be globally asymptotically stable.
Anexampleof aphysical systemthat canbedescribedas ahybrid system is abouncingball, where
the position and velocity while in air follows dynamical equations in continuous time, while the
bouncing event switches sign of the velocity and decreases in absolute value due to energy losses
in the bounce. Generalizing the continuous and discrete time-domains as a hybrid system, en-
ables a structured way of handling switching systems while at the same time providing a frame-
work for analyzing robustness and stability.

3.3 Hybrid Control on S1

Controlling the orientation is a nontrivial task that is subject to topological disruptions, i.e split-
ting angles evolving on a compactmanifold into a defined range (as disrupting S1 to [−π, π]). With
such disruption, a system can not have a globally stabilizing continuous feedback law that has a
single globally asymptotically stable equilibriumpoint. In addition, arbitrary smallmeasurement
noise can destroy asymptotic stability.
In order to design a control law that achieves robust global stability of the desired rotation, there
must be a class of control laws that can be coordinated such that it removes the need ofmanually
placing a hysteresis or define domains of operation of each controller. This section will present a
hybrid control structure for a kinetic point stabilization problem on S1.

3.3.1 Teel’s Notation for S1 Manipulations

For the topicof this thesis, theaim is to conduct ahybrid systemthat controls theheadingof a ship
towards a desired heading. Instead of wrapping the heading and heading errors on to an interval,
the idea is to represent angles as points on the unit circle and control these points towards the
desired point. In Teel (2018) andMayhew and Teel (2010), we define the unit circle S1 and group
of planar rotations S O(2) as:

S1 :=
{
z ∈ R2 : z>z = 1

}
(3.7)

S O(2) :=
{
R ∈ R2×2 : R>R = RR> = I, det(R) = 1

}
(3.8)

where (·)> is the transpose and I is the identity matrix. Let z := col(zx, zy) ∈ S1, e1 := col(1, 0) ∈ S1

and e2 := col(0, 1) ∈ S1, and define thematrices
S := [e2,−e1] , J = [e1,−e2] (3.9)
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Chapter 3. Hybrid Dynamical Systems and Control

Hence, for a counter-clockwise rotation a on S1 from the x-axis, the following holds:{
za

x = cos a
za

y = sin a

}
⇔

 a = atan2
(
za

y , z
a
x

)
1 = (za

x)2 + (za
y)2

 , (3.10)

z−a := Jza = col(za
x,−za

y) ∈ S1, R(z) :=
[

z S z
]
, z = R(z)e1 (3.11)

za = col(za
x, z

a
y) ∈ S1, R(za)> =

[
za

x za
y

−za
y za

x

]
= R(z−a), R(z−a)R(za) = R(za)R(z−a) = I (3.12)

Note that the way of representing the angle directly on S1 makes any "rad2pipi" mapping of an
angle from the (−∞,∞) to the [−π, π) interval in (3.10) unnecessary, and it will not introduce any
other discontinuities that may cause robustness or stability issues for a feedback control system.
Another advantage of representing an angle on S1 is that it introduces a convenientway of adding
and subtracting angles bymultiplication, as well as other rotational relationships:

za ◦ zb = za+b = R(zb)za = R(za)zb, za−b = R(zb)>za = R(z−b)za, R(za)R(zb) = R(zb)R(za) ∈ S O(2), (3.13)
R(zb)>R(za)> = R(za)>R(zb)> ∈ S O(2), R(za)>R(zb) = R(zb)R(za)> ∈ S O(2) (3.14)

Also, the kinematic equation for an angle za constrained tomove along the unit circle is given as:

ża = ωaS za,
d
dt

(
R(za)

)
= ωaS R(za) (3.15)

with ωa ∈ R being the rotation rate in [rad / s].
In the case of a vector defined as ν = [νx, νy] ∈ R2, where U = |ν| =

√
ν>ν and a = atan 2(νy, νx), we

can express the angle on S1 as:

za =
ν

U
= [νx/U, νy/U]> (3.16)

Then, the velocity vector expressed with an S1 formulation is then ν = Uza. Manipulating (3.15),
we can also express the angular rate as:

ωa =
(
za)> S >ża =

ν>

U
S >

(
ν>νI − νν>

U3

)
ν̇ =

ν>

U
S >

U2I
U3 ν̇ =

(
za)> S >

ν̇

U
(3.17)

3.3.2 Example - Robustly Globally Asymptotically Stabilizing a Point on the Circle

Todrawparallels to theproblemof this thesis, a robust hybrid heading controller of a ship can in a
simpleway be interpreted as away to robustly globally asymptotically stabilize a point in the unit
circle. We cannot pick a discontinuous function and expect the system to be robust, but we can
choose a hybrid feedback and get robustness. The key is to make sure that the point (or course
of a ship) points in the desired direction nomatter where it starts and themagnitude of themea-
surement noise. As an example, if a ship is commanded to do a 180 degree turn, you can draw a
line from the heading which the ship is pointing and the way it is going. Small perturbations in
measurements can confuse the controller on which side of this line it is. This can lead to a chat-
tering behaviour in the control input, and in theworst case itwill not reach its reference at all. The
hybrid system for point stabilizing control on S1 can be expressed as in (3.1).
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3.3 Hybrid Control on S1

ẋ =

ż1
ż2
q̇

 =

 z2ω

−z1ω

0

 , C = (C1 × {q = 1}) ∪ (C2 × {q = 2}) (3.18a)

x+ =

z+
1

z+
2

q+

 =

 z1
z2

3 − q

 , D = (D1 × {q = 1}) ∪ (D2 × {q = 2}) (3.18b)

Here, the state vector x = [z1, z2, q]> with z = [z1, z2]> ∈ S1 being the vector constrained to the unit
circle, and ω ∈ R is the control input controlling the point towards e1. A logic mode q ∈ {1, 2} can
be used to toggle between the flow sets C1 and C2.

Figure 3.2: Flow and jump sets for stabilizing a point on S1.

Figure 3.2 illustrates this, where the flow sets C1 and C2(in red) are designed to overlap to ensure
a closed set C. This means that at these points where they overlap, it will either jump or flow de-
pending on the value of q. In the case of x ∈ D(in blue), it will jump and the logic mode q will
toggle. Then, assuming the magnitude of the measurement noise is not large enough, it is not
close to jumping again and it will flow towards the point. What this does is creating a hystere-
sis mechanism to make sure it does not revise its decision on which way to go around the circle
unless there is a dramatic change in the state. Hence, the controller is hybrid with a logic mode
which can not change continuously and guarantees robustness. It is worthmentioning that sim-
ilar properties can be achieved by having a dwell time in the toggling, where it waits for a small
amount of time after toggling before it can toggle again.
The following subsectionswill describe the necessary conditions and equations for designing the
control ω for such system.
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Chapter 3. Hybrid Dynamical Systems and Control

3.3.3 Potential Functions and Virtual Controls - Non-hybrid

A technique presented in Mayhew and Teel (2010) shows how to stabilize a point on the unit cir-
cle S1, which is equivalent to stabilizing a group of planar rotations S O(2) using an alternative
Lyapunov-basedapproach that also reliesonhysteresis to switchbetweenstabilizingcontrol laws.
Lyapunov functions evolving on S1 will need to have at least oneminimumand onemaximumon
the unit circle. We must therefore have minimum two critical points, whereas one is stable and
one is unstable. Therefore, single smooth control laws linked to Lyapunov functions may have
critical pointswhere the control lawvanishes or is not robust enough. A set of Lyapunov functions
with exactly one minimum and one maximum, where the maximum of each Lyapunov function
lieswithin the associated jump set can be defined. Thenwe can construct stabilizing control laws
according to each Lyapunov function, and due to the placement of the unstable equilibrium in-
side the jump sets, we can achieve robust global stability of the desired rotation.
Let P be a family of continuous differentiable potential function, with the following properties
for every P ∈P :
(P1) P : S1 → [0, 1] is surjective (meaning for every element p ∈ [0, 1], there is at least one element

z ∈ S1 such that P(z) = p)
(P2) There exist exactly twocritical points, e1 and z̄P satisfyingP(e1) = 0, P( z̄P) = 1, 〈∇zP(e1), S e1〉 =

0, 〈∇zP( z̄P).S z̄P〉 = 0

Where 〈∇zP(z), S z〉 denotes the gradient of P(z) ∈ P along the manifold S1, i.e the dot product
∇zP(z)> · S z, where ∇z =

[
∂
∂zx
, ∂
∂zy

]>
Next, define a class of control laws C (P) corresponding to a potential function P ∈P :
(C1) 〈∇zP(z), S z〉κ(z) ≤ 0 for all z ∈ S1

(C2) 〈∇zP(z), S z〉κ(z) = 0 if and only if 〈∇zP(z), S z〉 = 0

For an objective to drive an angle za → zb, the error between these can be expressed on S1 as:

z = R
(
zb

)>
za = za ◦ z−b (3.19)

where z = e1 is equivalent to za = zb. With the kinematics of za and zb expressed as ża = ωaS za and
żb = ωbS zb, we have:

ż = (ωa − ωb)S z = ω̃S z (3.20)
Where ω̃ = ωa − ωb.
Hence, for a potential function P(z) ∈P with control law κ(z) ∈ C (P) that drives ω̃→ 0, we have:

Ṗ(z) = ∇zP(z)>ż = ∇zP(z)>ω̃S z = ∇zP(z)>κ(z)S z = 〈∇zP(z), S z〉κ(z) (3.21)
Where it is assumed that ω̃ tracks κ(z) perfectly, i.e ω̃ = κ(z).
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3.3 Hybrid Control on S1

As shown in Bhat and Bernstein (2000), the states of this system evolves on compact manifolds,
and can therefore not have a singleGAS equilibrium. Therefore,MayhewandTeel (2010) presents
a hybrid control for ω̃, by letting κω̃ denote the virtual control for ω̃ that ensures robust global
asymptotic stability of the setA0 := {e1} × Q for the state ξ := (z, q) ∈ S1 × Q, whereQ := {1, 2} is the
allowable values of the logic mode q that switches between the two control laws. Next, define the
set E0 := {(z, q) ∈ S1 × Q : 〈∇zP(z), S z〉κ(z) = 0}. To develop a hybrid control law for ξ, one must first
find a suitable potential function and control law for all z ∈ S1 \ {−e1}, and then use this as a base
to design a hybrid control design that guarantees GAS of the setA0.
A potential function P00(z) ∈P is proposed:

P00(z) =
1
2

(1 − zx) (3.22)

such that P00(e1) = 0 and P00(−e1) = 1 and the differential ∇zP00(z) = − 1
2 e1
>. The gradient along S1

at z = e1 and z = −e1 is then ∇zP00(e1)>S e1 = − 1
2 e1
>e2 = 0 and ∇zP>00(−e1)S (−e1) = 0, respectively.

Hence we have two equilibria, one stable and one unstable. To drive z → e1 for all z ∈ S1 \ {−e1},
we can assume that we can control ω̃→ 0 by the virtual control κ00(z) ∈ C (P00) in (3.23).

κ00(z) = −zy (3.23)
Then, we can replace ω̃with κ00(z) in (3.20). This leads to:

ż = κ00(z)S z = −zyS z = [z2
y ,−zxzy]> (3.24)

And the derivative of P00(z) along S1 with control κ00(z) then becomes:

Ṗ00(z) = 〈∇zP00(z), S z〉κ00(z) = ∇zP00(z)>S zκ00(z) =
1
2

e1
>S zzy = −

1
2

z2
y = −

1
2

sin2 θ (3.25)

where the last equality comes from the fact that zx = cos θ and zy = sin θ. We observe that for all
z ∈ S1 \ {−e1}, we have Ṗ00(z) < 0, driving z→ e1. We can also see that ż has two equilibrium points,
i.e at z = ±e1(θ = {0,±π}), where z = e1 is stable and z = −e1 is unstable. Hence, the singularity
z = −e1 must be avoided, which motivates for a hybrid structure with two potential functions
where an diffeomorphism is applied on the S1 manifold to move this unstable equilibrium onto
the jump sets of two different control laws. More on this later.
We not only want the point to be stable, but also the convergence rate to be uniformly along the
unit circle arc. As κ00(z) is very small close to the unstable equilibrium z = −e1, the rate of con-
vergence is not reflected in the magnitude of the error along the unit circle. Hence, a potential
function P01(z) ∈P is proposed:

P01(z) = L(arccos(λe1
>z) − arccos(λ)), L = 1/(arccos(−λ) − arccos(λ)) (3.26)

This function is designed to reflect the arc length from z to e1 along the unit circle, and is scaled
by 0 � λ < 1 to bound the gradient. Hence, this function satisfies both property (P1) and (P2).
Figure 3.3 shows themanifold of P00(z) and P01(z) for angle errors in the range [−180◦, 180◦]:
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Figure 3.3:Manifold of potential functions P00 and P01

Now that we have a potential function that reflects the arc length along the unit circle, we seek to
find a control κ ∈ C (P01). One candidate is κ01(z) = −Kpzy, Kp > 0, or alternatively:

κ02(z) = −
Kp

λL
zy√

1 − λ2z2
x

√
P01(z), κ03(z) = −

Kp

λL
zy√

1 − λ2z2
x

P01(z) (3.27)

Where κ02 and κ03 gives linear and exponential convergence, respectively. In these functions, the
the term

zy√
1 − λ2z2

x

=
zy√

1 − λ2(1 − z2
y)

=
zy√

1 − λ2 + λ2z2
y

≈
zy

λ|zy|
≈ sign (zy) (3.28)

with 0 << λ < 1 is a smooth sign-function of zy that sets the correct sign of the feedback.
Analyzing the potential function P01, the gradient and derivative when combined becomes:

∇zP01(z) =

 −Lλ√
1 − λ2z2

x

, 0

> , Ṗ01(z) = ∇zP01(z)>ż =
−Lλ√

1 − λ2z2
x

żx (3.29)

where żx is found by inserting κ01, κ02 and κ03 for ω̃ in (3.20). This gives:

żx,κ01 = Kpz2
y , ży,κ01 = −Kpzyzx, Ṗ01,κ01 = Kp

Lλz2
y√

1 − λ2z2
x

(3.30a)

żx,κ02 =
Kp

λL

z2
y
√

P01(z)√
1 − λ2z2

x

, ży,κ02 =
Kp

λL
−zyzx

√
P01(z)√

1 − λ2z2
x

, Ṗ01,κ02 = Kp
z2

y
√

P01(z)

1 − λ2z2
x

(3.30b)

żx,κ03 =
Kp

λL

z2
y P01(z)√
1 − λ2z2

x

, ży,κ03 =
Kp

λL
−zyzxP01(z)√

1 − λ2z2
x

, Ṗ01,κ03 = Kp
z2

y P01(z)

1 − λ2z2
x

(3.30c)

where all renders z = e1 asymptotically stable for (3.20) with region of convergence S1 \ {−e1}. The
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manifolds for all virtual controls κ with Kp = 0.5 and λ = 0.99 is shown in Figure 3.4a, and the
resulting potential function derivatives is shown in Figure 3.4b.
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(a)Manifolds for virtual controls
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(b) Derivatives of potential functions with different
controls

Figure 3.4:Manifolds of virtual controls and their derivatives

The small control signals close to z = −e1 in κ00 and κ01 is solved with κ02 and κ03. In addition, the
derivatives for all controls is negative for all values of z ∈ S1 \ {±e1}. We can see from κ03 that the
virtual control signal decreases linearly as the angle goes to zero, but the convergence rate is even
larger for κ02. By increasing λ even closer to 1, the steepness of the control signal close to z = −e1
also increases. Also, the gain Kp > 0 sets the magnitude of the angular rate. Hence, both λ and Kp

are parameters that can be tuned according to the dynamical system it is applied on.
To illustrate how the different virtual controls affects the change of z along the unit circle, the vec-
tor fields for ż is plotted in Figure 3.5:
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(a) Velocity vector plot of żwith virtual control κ00
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(b) Velocity vector plot of żwith virtual control κ01
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(c) Velocity vector plot of żwith virtual control κ02
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(d) Velocity vector plot of żwith virtual control κ03

Figure 3.5: Velocity vector fields of the resulting z dynamics for different potential functions

Where ż is plotted as a vector field in the neighbourhoodof S1 to better illustrate the gradients of z,
but in reality the only possible gradients are the one on S1. Whenusing the virtual control κ00 from
the potential function P00, we can see that themagnitudes of the gradients are largest for z = ±e2,
andgoes closer to zero inmagnitudewhenmovingcloser to±e1. Thismightbeunwantedand lead
to a slow convergence towards z = e1 for points in the left half plane, and therefore the potential
function P01 was introduced. When using P01 as the potential function and κ02 as virtual control,
the resulting gradients for z is proportionally larger the longer along the arc length the point on
the circle is from e1, and will induce larger control forces when included in a control system.
To illustrate this, the feedback controls κ00, κ01, κ02 and κ03 were applied to a model on S1 with
Kp = 0.5, λ = 0.99 =⇒ L = 0.3498 with initial angles in the range ψ0 ∈ [15◦, 180◦] and desired
angle ψd = 0◦. This was simulated for 20 seconds to see the difference in the response using the
proposed potential functions. The results are shown in Figure 3.6:
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(a) Response when using virtual control κ00
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(b) Response when using virtual control κ01
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(c) Response when using virtual control κ02
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(d) Response when using virtual control κ03

Figure 3.6: Comparison of response from different virtual controls

Where the responses for negative initial angles are the same, but mirrored along the x-axis. This
clearly shows the importance of a adequate potential function and virtual control to obtain fast
convergence. Note that for the initial angle offset of 180◦, none of the controllers will be able to
reach z = e1. This motivates for a hybrid structure avoiding this unstable equilibrium.

3.3.4 Hybrid Control of Planar Rotations

As seen from the previous subsection, the virtual control which resulted in the most stable re-
sponse, both in terms of convergence rate and transient response, was κ02. It is therefore chosen
to proceed with this control and potential function P01 to deduce the hybrid control law from
these, as the hybrid control properties will be similar. The idea is to design a hybrid structure as
described in section 3.3.2 with two potential functions P1 and P2. In these functions, the peak is
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shifted such that the peak of P1 is inD1 and the peak of P2 is inD2. By a Lyapunov-based approach
that relies on switching between stabilizing control laws, one can make sure that the state flows
towards one stable equilibrium point on S1(i.eA0) through the flow sets C1 and C2.
The design of the control law relies on angular stretching of the manifold to form a diffeomor-
phism that maintains the element’s norm and keeps it within its manifold. In order to shift the
critical point z̄P = −e1 to apply hybrid heading control on S1, the following functions must be
applied, according toMayhew and Teel (2010):
The amount of rotation is controlled by a gain k ∈ R and potential function P ∈P . LetΦ : S1 ×R×

P → SO(2) be the exponential map Φ, defined as:

Φ(z, k, P) =

[
cos(ω) − sin(ω)
sin(ω) cos(ω)

]
, ω = kP(z)S (3.31)

where k must satisfy a mild bound. Next, define T : S1 → S1 as:

T (z, k, P) = Φ(z, k, P)z (3.32)
whichapplies the rotation toz. Fornotational simplicity,T (z) = T (z, k, P)whenever suitable. Next,
define the Jacobian of T (with some other properties) as:

JT (z, k, P) = Φ(z, k, P)(I + kS z∇zP>(z))

det(JT (z, k, P)) = 1 + k〈∇zP(z), S z〉

JT (z, k, P)S z = det(JT (z))ST (z)

(3.33)

where I is the identitymatrix and det(JT (z))denotes the determinant ofJT (z). We can express the
derivative along the unit circle of a modified potential function (P ◦ T ) = P(T (z, k, P)) : S1 → R≥0
with a shifted critical point as:

〈∇z(P ◦ T )(z), S z〉 = det(JT (z))〈∇zP(T (z)), ST (z)〉 (3.34)
So T is a global diffeomorphism if k satisfies:

|k| <
1

max{||∇zP(z)|| : z ∈ S1}
(3.35)

meaning that T is a mathematical mapping of a state on the smooth manifold S1 to S1(rotation)
such that it is invertible and maps one differentiable manifold to another such that both func-
tions and its inverse are smooth. With this function we can construct new potential functions
and control laws for S1.
The indexed diffeomorphism Tq(z) : S1 → S1, the indexed potential function Pq(z) : S1 → [0, 1]
and its minimum over Q,M : S1 → [0, 1] are defined as:
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3.3 Hybrid Control on S1

Tq(z) = T (z, kq, P∗q) (3.36)
Pq(z) = P(Tq(z)) (3.37)
M(z) = min{Pq(z) : q ∈ Q} (3.38)

Hence, with P∗q = P = P01 as the base potential function, the modified versions of these can be
expressed as:

P1(z) = P01(T1(z)), T1(z) = T (z, k1, P01)

P2(z) = P01(T2(z)), T2(z) = T (z, k2, P01)
(3.39)

and sincemax{||∇zP01(z)|| : z ∈ S1} =
√

1−λ2

λL , we choose k1 and k2 as:

k1 = 0.495

√
1 − λ2

λL
, k2 = −k1 (3.40)

such that T is a global diffeomorphism. Then, using λ = 0.99 gives the potential functions shown
in Figure 3.7:
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Figure 3.7: Resultingmanifold of P1 and P2

Here, we can see that the peak of P1 and P2 is at approximately θ = ±169◦, while still having the
stable equilibriumat z = e1(θ = 0◦). Now that the hybrid potential functions P1 and P2 are defined,
the next step is to find the associated controls κT1(z) ∈ C (P1) and κT2(z) ∈ C (P2) such that the
conditions (C1) and (C2) holds. Amodification of an original control κ ∈ C (P) suitable for (P ◦ T )
is denoted κT ∈ C (P ◦ T ), and can be expressed as:

κT (z) :=
κ(T (z))

det(JT (z))
(3.41)

Hence, a modification of the original control κ02 ∈ C (P01) gives a control for (P01 ◦ T ) as κT ∈
C (P01 ◦ T ):
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κT (z) =
κ02(T (z))

det(JT (z))
(3.42)

Meaning that for q ∈ Q = 1, 2we have:

κTq(z) =
κ02(Tq(z))

det(JTq(z))
(3.43)

where Tq(z) = T (z, kq, P01). A formal definition of such system is defined by letting D = P × C ×
(R ×P)N × R≥0. Then, lettingQ = {1, ...,N}we can define the tuple H as:

H =
(
P, κ, {(kq, P∗q)}Nq=1, δ

)
∈ D (3.44)

The parameter δ is called the synergy gap, whichmust satisfy the bound 0 < δ < µ in order forTq(z)
to be a diffeomorphism, where:

µ = 1 −max
q∈Q
M(T −1

q (P−1(1)) (3.45)

Where P−1(1) = z̄P and T −1
q (P−1(1)) = T −1

q (z̄P) is the solution for z in Tq(z) = z̄P, which for this
application are the points along the unit circle where Pq(z) = 1.
Hence, the tupleH01 with potential function P = P01, Q = {1, 2}, control κ = κ02 with kq as defined
in (3.40) with the same base potential functions for both P∗1 and P∗2, i.e P∗q = P01, is:

H01 = (P01, κ02, {k1, P01}, {k2, P01}, δ01) ∈ D (3.46)
The value of µ forH01 is calculated offline to be µ01 = 0.0954974 and therefore δ01 = 0.09 is chosen
to be the synergy gap for this application.

Placing these conditions in a hybrid structure, yields:
C = {(z, q) ∈ S1 × Q :M(z) − Pq(z) ≥ −δ01} (3.47)
D = {(z, q) ∈ S1 × Q :M(z) − Pq(z) ≤ −δ01} (3.48)

Next, we define the set-valuedmapping g(z) as g : S1 →
→ Qwhen (z, q) ∈ D:

g(z) = {q ∈ Q : Pq(z) =M(z)} (3.49)
i.e switching q such that z flows along the flow set with the minimum associated potential func-
tion to ensure the potential function is strictly decreasing during flows. Then, the tuple H ∈ D
generate the dynamic system for ξ = (z, q):

ξ̇ = F(ξ), ξ ∈ C (3.50a)
ξ+ ∈ G(ξ), ξ ∈ D (3.50b)

where
F(z, q) =

[
f (z, κTq(z))

0

]
, G(z, q) =

[
z

g(z)

]
(3.51)
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3.3 Hybrid Control on S1

with f (z, κTq(z)) = κTq(z)S z. Figure 3.8 shows the synergy gap δ01 = 0.09 withM(z) − Pq(z) for Q =

{1, 2}.
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Figure 3.8:Manifold ofM(z) − Pq(z) for Q ∈ {1, 2}

We can see that for {θ ∈ [114, 170]) × (q = 1)}, the value of q will switch from 1 to 2, and for {θ ∈
[−170,−114]) × (q = 2)}, the value of q will switch from 2 to 1. We therefore avoid the unstable
equilibria for P1(z) and P2(z), which were located at approximately ±169◦. Hence, we can define
the potential function V0(z, q) and control κ0(z, q) as:

V0(z, q) = Pq(z), κ0(z, q) = κTq(z) (3.52)
Wecan compute the change inV0 alongflows as in (3.53), whichby thedefinition in (3.41) satisfies
(C1) and (C2) is negative for all z ∈ C \ {e1}, and zero for z = e1:

V̇0(z, q) = 〈∇zV0(ξ), F(ξ)〉 = 〈∇z(P01 ◦ Tq)(z), S z〉κTq(z)

< 0, (z, q) ∈ C \ A0

= 0, (z, q) ∈ A0
(3.53)

Furthermore, defining E01 := {(z, q) ∈ S1 × Q : 〈∇zV0(ξ), F(ξ)〉κ0(ξ) = 0}, we see that the set E01 ∩ C =

A0. Hence,A0 is stable during flows. Evaluating the change of V0(z, q) over jumps, it follows that

V0(G(ξ)) − V0(ξ) =M(z) − V0(z, q) (3.54)
and by definition ofD, it follows that V0(G(ξ)) − V0(ξ) ≤ −δ01 for all ξ ∈ D. Hence, we can assert
thatA0 is globally asymptotically stable (G. Sanfelice et al. (2008), Corollary 7.7).
To shorter further notation, we define

V̇0(z, q)
V0(z, q)+

}
= −ρ0(z, q) < 0, (z, q) ∈ (C ∪D) \ A0 (3.55)
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Chapter 3. Hybrid Dynamical Systems and Control

The control along the unit circle for (z, q) ∈ S1 × Q with Kp = 0.5 and λ = 0.99 is shown in Figure
3.9a, and the resulting potential function derivatives in Figure 3.9b.
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(a)Manifold of modified κ for Q ∈ {1, 2}
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(b) Derivatives of potential functions with different
controls

Figure 3.9:Manifolds of hybrid virtual controls and their derivatives

Here, κT1(z) and κT2(z) are continuous differentiable functions on S1. Compared to κ02(z) in Figure
3.4a we can see that the virtual control signal at the original unstable equilibrium at z = −e1 now
has a value different from 0, which means it will flow either way along the unit circle towards the
stable equilibrium z = e1, depending on the value of q. Figure 3.9b illustrates this, where we can
observe that Ṗq(z) is zero inside the jump set illustrated in Figure 3.8, andwewill therefore always
have Ṗq < 0(except in the stable equilibriumwhere Ṗq = 0) during all flows. The resulting velocity
vector plots together with the bounds between the jump- and flow sets are shown in Figure 3.10:
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(a) Velocity vector plot of żwith virtual control κT1
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(b) Velocity vector plot of żwith virtual control κT2

Figure 3.10: Velocity vector fields of the resulting z dynamics for κ1 and κ2
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3.4 Synergistic Lyapunov Functions

Therefore, we can conclude this subsection with having defined a hybrid system that ensuresA0
to be globally asymptotically stable for all ξ = (z, q) ∈ S1 × Q. However, as the hybrid feedback
κ0(z, q) = κTq is discontinuousduring jumps, it cannotbedirectly applicable to adynamical system
to induce control forces, torques and derivatives of these. The following section will introduce a
way of "smoothning" the feedback, while still retain the GAS properties.

3.4 Synergistic Lyapunov Functions

Theuse of synergistic potential functions canbeused todesign smoothhybrid feedback laws that
achievesglobal asymptotic stabilizationofapointonacompactmanifold suchasS1,S2 andS O(3).
By using a family of synergistic potential functions, simple hybrid controllers can be designed by
choosing the corresponding feedback control law to the potential function with the lowest value
as a type of hysteresis to ensure global asymptotic stability.

3.4.1 Synergistic Lyapunov Function and Feedback

Mayhew et al. (2011) generalizes these functions into synergistic Lyapunov functions which en-
ables "smoothing" hybrid feedback such that point stabilization for non-contractible spaces is
possible. These Lyapunov functions need to decrease both during jumps and flows, also in the
case of arbitrary switching. Such function can be designed for the control system

ż = φ(z, q) + ψ(z, q)κ(z, q)
q̇ = 0

}
(z, q) ∈ M0 × Q (3.56)

with φ and ψ being smooth functions, κ ∈ Rm is the control input, the set M0 ⊂ R
n is closed, and

Q is discrete. A smooth Lyapunov function whichmaps values from the state into a non-negative
real number V : M0 × Q → R≥0 and feedback ω = κ : M0 × Q → Rm forms a synergistic Lyapunov
and feedback pair candidate relative to the compact setA0 ⊂ M0 × Q if:

• ∀r ≥ 0, {(z, q) ∈ M0 × Q : V(z, q) ≤ r} is compact
• V is positive definite with respect toA
• Forallpossible states (z, q) ∈ M0×Q, theLyapunov function isnot increasing 〈∇zV(z, q), φ(z, q)+
ψ(z, q)κ(z, q)〉 ≤ 0

As the gradient of the Lyapunov function can be zero, we defineW0 to be the set where the gradi-
ent ∇zV(z, q) is zero, that is,

W0 :=
{
(z, q) ∈ M × Q : ψ(z, q)>∇zV(z, q) = 0

}
(3.57)

and if the combination of φ(z, q) and ψ(z, q)κ gives a derivative of V(z, q) to be zero:

E0 := {(z, q) ∈ M0 × Q : 〈∇zV(z, q), φ(z, q) + ψ(z, q)κ(z, q)〉 = 0} (3.58)
Note that for the system described in (3.50), we have φ(z, q) = 0, ψ(z, q) = S z,m = 1, κ(z, q) = κ0(z, q),
M0 = S1, Q = {1, 2}, r = 1, V = V0(z, q), E0 =W0 = E01. This will be applied in Section 5.2.
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This pair (V, κ) is called the synergistic Lyapunov function feedback pair if µ(V, κ) > δ > 0, as defined
in the previous section. Hence, (V0, κ0) is a synergistic Lyapunov function feedback pair with the
synergy gap µ01 exceeding δ01.

3.4.2 Backstepping

This section will present a way of smoothing κ0(z, q) before introducing it as a virtual control in a
dynamical system with backstepping to deduce the control input. The deduced state p ∈ RL acts
as a smoothing replacement of q.
Defining the state ζ = (z, ω, p)with controls u ∈ Rm, we consider the control system:

ζ̇ = φ1(ζ, q) + ψ1(ζ, q)u

q̇ = 0

 (ζ, q) ∈ M1 × Q (3.59)

Where φ1 and ψ1 are defined as:

φ1(ζ, q) =

φ0(z, q) + ψ0(z, q)ω
0

v(z, p, q)

 , ψ1(ζ, q) =

01
0

 (3.60)

We can construct a new synergistic Lyapunov function and feedback pair (V1,κ1) with synergy gap
exceeding δ > 0 by reducing the system to

ż = φ0(z, q) + ψ0(z, q)ω

q̇ = 0

 (z, q) ∈ M0 × Q (3.61)

with controlsω ∈ Rm. For a synergistic Lyapunov function and feedback pair (V0,κ0) relative to the
compact set A0 ⊂ M0 × Q, we assume that κ0 : M0 × Q → Rm wan be written as linear in some
function of q. By letting ϑ(q) : M0 → R

m×L be a smooth function and σ : Q → RL, where L ≥ 1, we
have

κ0(z, q) = ϑ(z)σ(q) (3.62)
Hence, by letting σ(q) = eq be the q’th unit vector and ϑ(z) = [κ0(z, 1), ..., κ0(z,N)], (3.62) holds. The
new set we nowwant to be stable is:

A1 := {(ζ, q) ∈ M1 × Q : (z, q) ∈ A0, p = σ(q), ω = κ0(z, q)} (3.63)
We then define the Lyapunov function

V1(ζ, q) := V0(z, q) +
1
2
|p − σ(q)|2Γ1

+
1
2
|ω − ϑ(z)p|2Γ2

(3.64)

where |ξ|2
Γ

= ξ>Γξ for a symmetric, positive definite matrix Γ. Γ1 ∈ R
L×L and Γ2 ∈ R

m×m must be
defined such that
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µW(V0, κ0) −
1
2
λmax(Γ1) max

s,q∈Q
|σ(s) − σ(q)|2 > δ (3.65)

Where λmax(Γ1) denotes the largest eigenvalue for Γ1. Then, let θ1, θ2 : R≥0 → R≥0 be continous,
positive definite functions, and let the smooth functionsΘ1 : RL → RL andΘ2 : Rm → Rm satisfy

v>ΓiΘi(v) + Θi(v)>Γiv ≤ −θi(|v|), ∀i ∈ {1, 2} (3.66)
Let ϑi(z) = ϑ(z)ei and define:

κ1(ζ, q) =Θ2(ω − ϑ(z)p) − Γ−1
2 ψ0(z, q)>∇zV0(z, q)

+

L∑
i=1

e>i pDϑi(z)(φ0(z, q) + ψ0(z, q)ω) + ϑ(z)v(z, p, q)

v(z, p, q) =Θ1(p − σ(q)) − Γ−1
1 ϑ(z)>ψ0(z, q)>∇zV0(z, q)

(3.67)

WhereD denote the Jacobianmatrix, where for a smooth function α(z, q), the i j-th entry is ∂αi(z,q)
∂z j

.
We get that for all (ζ, q) ∈ M1 × Q, the following holds:

V̇1 =〈∇ζV1(ζ, q), φ1(ζ, q) + ψ1(ζ, q)κ1(ζ, q)〉

=〈∇zV0(z, q), φ0(z, q) + ψ0(z, q)ω〉 −
1
2
θ1 (|p − σ(q)|) −

1
2
θ2 (|ω − ϑ(z)p|)

− 〈∇zV0(z, q), ψ0(z, q)ϑ(z)(p − σ(q))〉 − 〈∇zV0(z, q), ψ0(z, q)(ω − ϑ(z)p)〉

=〈∇zV0(z, q), φ0(z, q) + ψ0(z, q)ϑ(z)σ(q)〉 −
1
2
θ1 (|p − σ(q)|) −

1
2
θ2 (|ω − ϑ(z)p|)

≤0

(3.68)

The synergy gap is then:

µ(V1, κ1) = µW(V0, κ0) −
1
2
λmax(Γ1) max

s,q∈Q
|σ(s) − σ(q)|2 > δ (3.69)

Thus, the pair (V1,κ1) is a synergistic Lyapunov function and feedback pair relative to the compact
setA1 with a synergy gap exceeding δ.
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Chapter 4
Simulations and Experimental Setup

In this chapter the procedure and setup for testing of the hybrid control system is described. Dur-
ing the project, the testing has been done in four ways, in this order:

• MATLAB simulations where it is assumed that the desired velocities are achieved
• MATLAB simulations where it is assumed that the desired thrust is achieved. The forces are
applied to a 3DOFmathematical vessel model of CSAD

• Hardware In The Loop(HIL) tests with actuator dynamics and thrust allocation of CSAD
• Physical experiments in theMarine Cybernetics Laboratory with CSAD

4.1 MATLAB and Simulink Simulations

The kinetic and kinematic equations in (2.2) and (2.21) are implemented in Simulink andused for
testing of the control algorithms. The Simulink diagram of the dynamics is shown in Figure 4.1.
Thenumeric parameters used for themass, damping andCoriolismatrices are found inAppendix
A.1.

Figure 4.1: 3DOF Simulinkmodel
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4.2 Hardware-in-the-loop Simulations

After making sure the controller works in the simulation environ-
ment with Simulink, the controller is prepared to fit the laboratory
vessel byperformingHIL-simulations. Simulinkmodels canbeused
as a code generator to fit the on-board computer on the vessel. By
building the Simulink system to code in the programming language
C, the system can be run in real time. The custom Veristand in- and
out-ports in Simulink is used to transfer data in and out of the con-
trol system. For HIL-testing, the in and out-ports of the 3DOF ves-
sel model is mapped as Veristand ports, and redirected back to the
Simulink diagram as position and heading measurements through
the Veristand interface. In theory, a single Simulink diagram could
be used for HIL-simulations with an easymapping, but this compli-
cates the procedure to prepare the system for physical experiments,
as it is time consuming to ensure all mappings are correct. To emu-
late the physical vessel, a HIL-box is used, as shown in Figure 4.2.
The generated C-code is uploaded to the box and uses the Veris-
tand in and out-ports to function. A custommonitoring station for
starting and stopping simulations, tuning gains plotting and logging
is developed in order to control and record the tests. The setup is
shown in Figure 4.3.

Figure 4.2: HIL box

Figure 4.3: Screenshot of the workbench used for monitoring HIL simulations and lab experiments
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4.3 Physical Experiments at theMarine Cybernetics Laboratory

The Marine Cybernetics laboratory (MCL, 2017) is a small ocean basin laboratory at the Depart-
ment ofMarine Technology at NTNU. It is relatively small, but suitable for tests ofmotion control
system formodel-scale surface vessels, but could also domore specialized hydrodynamic exper-
iments as towing tests. It is equipped with a movable bridge with positioning cameras capable
of measuring 6DOFmovements of models, as well as a wave maker and two cameras for filming
purposes. The basinmeasures 40[m] × 6.45[m] × 1.5[m] in length, breadth and depth, respectively,
and is displayed in Figure 4.4 together with CSAD.

Figure 4.4: TheMarine Cybernetics Laboratory

4.3.1 Laboratory Hardware

The lab is equipped with the real-time positioning system Qualisys. It supplies a range of hard-
ware and software products for motion capture and analysis of movement data. The key compo-
nents are the Oqus cameras and the Qualisys Track Manager (QTM) software. The Oqus system
in the lab has three high-speed infrared (IR) cameras, which tracks the IR reflectors orbs fitted on
the model scale ships. The experiments can be supervised from the control room with a com-
puter dedicated for the QTM system and a TV connected to the two cameras in the lab. The inter-
nal communication between the systems are done over IP on a dedicatedWLANnetwork to allow
wireless control of themodel-scale ships and transferringof experimental data fromtheon-board
computer. The ship is equippedwith aNational InstrumentCompactRIO (cRIO) embedded com-
puter system for control computation. In addition, a PlayStation 3 (PS3) hand controller is used
for manual control or for switching between different control algorithms.

4.3.2 Laboratory Software

In order to communicatewith the ship, the lab is equippedwith laptops dedicated for each vessel.
These laptopshave installed LABViewFullDevelopment System,MATLABandSimulinkpackage,
as well as the National Instruments complete Veristand software package. Figure 4.5 shows the
topology of the communication between the HW and SW components.
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Figure 4.5: Topology of the HW and SW

4.3.3 Experiments with CyberShip Arctic DrillshipModel Vessel

The vessel used for experiments in the MCL is the CyberShip Arctic Drillship(NTNU, 2017). The
vessel is a 1:90 scalemodel ofEquinorCat IArcticDrillship. It is equippedwith6azimuth thrusters
(3 fore and 3 aft), in addition to amoon-pool for turret andmooring lines. The thruster positions
are shown in Figure 4.6, the x/y-positions and thrust coefficients KT and KQ for each thrusters are
shown in Table 4.1, and its main dimensions in Table 4.2.

Figure 4.6: Illustration of thruster positions

Table 4.1: Thruster positions and coefficients

Thruster Position X[m] Position Y[m] KT KQ

Thruster 1 1.0678 0.0 0.3763 0.0113
Thruster 2 0.9344 0.11 0.3901 0.0117
Thruster 3 0.9344 -0.11 0.3776 0.0113
Thruster 4 -1.1644 0.0 0.5641 0.0169
Thruster 5 -0.9911 -0.1644 0.4799 0.0144
Thruster 6 -0.9911 0.1644 0.5588 0.0168

Table 4.2: Main dimensions of
CSAD

Dimension Value
LOA 2.578[m]
B 0.440[m]
D 0.211[m]
T 0.133[m]
∆ 127.92[kg]
λ 90
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The thrust coefficients was obtained from model tests in Frederich (2016). In this thesis a con-
strained optimal thrust allocation was developed, and will be the thrust allocation applied in
the physical experiments in this thesis. In short, the torque Qa and thrust Ta obtained from the
thrusters canbewritten as a conventional quadratic thruster characteristics described byCarlton
(2012):

Qa = sign(n)KQρD5n2 (4.1a)
Ta = sign(n)KTρD4n2 (4.1b)

where n is the propeller shaft speed, ρ is the water density, and D is the propeller diameter. In a
way, this thrust allocation is a "black box", but seemed to work for the purpose of this thesis. For
a more detailed explanation on the thrust allocation applied, the reader is referred to Frederich
(2016).
After having performed HIL testing, the control system is ready to be tested on board the actual
model of the vessel. The setup is the same as in the HIL-simulations. The only difference is the
mapping of position and headingmeasurements, as Qualisys now supplies these. However, what
Qualisys does not supply are the velocities. In addition, it become clear that the measurements
was highly dependent on a sufficient calibrated camera system. The position and heading mea-
surements had often drop outs and signal freezing, and thus affected the controller performance.
Initially it was chosen to apply a Nonlinear Passive Observer(NPO) as described in Fossen (2011),
but through both testing in simulations and physical experiments, it falsely estimated the veloc-
ities and especially the turning rate. This might have to do with the choosing of gains in the ob-
server, but throughmany different combinations it turned out to still not be satisfactory enough
to use. It was therefore attempted to instead use an Extended Kalman Filter (EKF)(also described
in Fossen (2011)) which turned out to provide accurate velocity estimated after a bit of tuning in
the noise and covariance matrices. It was also implemented a way to reject false heading mea-
surements, as the Qualisys system sometimes misinterpreted the positions of the four IR orbs in
a way that lead to a jumps in the heading measurements. As this is not the main focus of this
thesis, it will not be further explained.
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Chapter 5
Heading Control on S1

In this section, a heading control allocation is derived by implementing the synergistic Lyapunov
function and feedback laws from Section 3.3. This will be combined with the DP controller in
surge and sway as described in Section 2.2 when introduced to physical scale model tests.

5.1 Control Objective

The overall control objective for heading control is to ensure that the heading converges to the
desired heading:

lim
t→∞
|ψ(t) − ψd(t)| = 0 (5.1)

However, this controlobjectivehasmore thanonesolution, asψ = ψd+n360◦, n ∈ {...,−2,−1, 0, 1, 2, ...}
results in the same heading. Therefore, reformulating the control objective to S1, we have:

lim
t→∞

(
zψ(t) − zψd (t)

)
= [0, 0]> ⇐⇒ lim

t→∞
R

(
zψd (t)

)>
zψ(t) = e1 (5.2)

which has only one equilibrium.

5.2 Control Design

A simplified kinetic equation for the heading of a ship can be expressed as:

ψ̇ = r

ṙ = τr
(5.3)

Where ψ is the heading angle, r is the turning rate and τr is the control force in yaw. To implement
a hybrid controller for the heading of a vessel on S1, we define the heading and desired heading
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on S1 as zψ and zψd . The objective is to drive zψ → zψd , and the heading error is defined on S1 as
z = R(zψd )>zψ. The kinematic equations then becomes żψ = S zr and żψd = S zrd, where r and rd are
the turning rate and desired turning rate of the ship. Defining r̃ = r − rd, the kinematic equation
for the error is then ż = S zr̃. Choosing the same hybrid setup as in Section 3.3 with the tupleH01
derived from Section 3.3.3, gives the synergistic Lyapunov and feedback pair (V0, κ0)with the syn-
ergy gap µ01 exceeding δ01.

To derive a backstepping controller from this, we use the steps presented in 3.4.2. We note that
φ0(z, q) = 0, ψ0(z, q) = S z, u = τr − ṙd, ω = r̃, M0 = S1, Q = {1, 2}, m = 1 and L = 2. The combined
system is then:

[
ζ̇

q̇

]
=


ż
˙̃r
ṗ
q̇

 =


S zr̃

τr − ṙd

v(z, p, q)
0


 (z, r̃, p, q) ∈ S1 × R × R2 × Q (5.4)

Expressing κ0(z, q) according to (3.62):

κ0(z, q) = ϑ(z)σ(q) = [κT1(z), κT2(z)][2 − q, q − 1]> = (2 − q)κT1(z) + (q − 1)κT2(z) (5.5)
Next, we define the error:

Υ2 = r̃ − ϑ(z)p ∈ R =⇒ r̃ = Υ2 + ϑ(z)p (5.6)
And as we want do drive p→ σ(q), the error in p is:

p̃ =p − σ(q) (5.7)
˙̃p =ṗ −

∂σ(q)
∂q

q̇ = ṗ = v(z, p, q) (5.8)

Which gives the error dynamics:
Υ̇2 = ˙̃r − ∇zϑ(z)żp − ϑ(z) ṗ (5.9)

Defining the Lyapunov function:

V1(z, q) = V0(z, q) +
1
2

p̃Γ1 p̃ +
1
2
γ2Υ2

2 ≥ 0 (5.10)

with Γ1 = γ1I2×2 =⇒ Γ−1
1 = 1

γ1
I gives the derivative of V1 as:

V̇1(z, q) =∇zV0(z, q)S zr̃ + γ1 p̃> ˙̃p + γ2Υ2Υ̇2

=∇zV0(z, q)S z(Υ2 + ϑ(z)p) + γ1 p̃>v(z, p, q) + γ2Υ2(˙̃r − ∇zϑ(z)żp − ϑ(z) ṗ)
(5.11)

Since p = p̃ + σ(q), ˙̃r = τr − ṙd and ż = S zr̃, we get:
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5.2 Control Design

V̇1(z, q) =∇zV0(z, q)S z(Υ2 + ϑ(z) p̃ +

κ0(z,q)︷    ︸︸    ︷
ϑ(z)σ(q))

+ γ1 p̃>v(z, p, q) + γ2Υ2(τr − ṙd − ∇zϑ(z)S zr̃p − ϑ(z)v(z, p, q))

=∇zV0(z, q)S zκ0(z, q)

+ Υ2(∇zV0(z, q)S z + γ2(τr − ṙd − ∇zϑ(z)S zr̃p − ϑ(z) ṗ))

+ p̃>(γ1v(z, p, q) + ϑ(z)>)

(5.12)

We recognize ∇zV0(z, q)S zκ0(z, q) as −ρ(z, q) from (3.55). Then, by choosing v(z, p, q) and τr as:

v(z, p, q) =
1
γ1

(−ϑ(z)> − K3 p̃), K3 > 0 (5.13)

τr =ṙd + ∇zϑ(z)S zr̃p + ϑ(z)v(z, p, q) −
1
γ2
∇zV0(z, q)S z −

1
γ2

K2Υ2, K2 > 0 (5.14)

we get:

V̇1(z, q) = −ρ0(z, q) − K2Υ2
2 − K3 p̃> p̃ < 0, (z, q) ∈ (C ∪D) \ A1 (5.15)

Hence, as the Lyapunov function also is strictly decreasing during jumps.A1 is GAS, andwe have
defined a global asymptotically stable feedback law for driving an angle zψ → zψd . To emulate an
underactuated ship, the sway force can be chosen as:

τv =
m23

m33
τr (5.16)

Next, the parameters γ1 and K3 must be set to design the switching rate convergence of p. By
choosing γ1 = 50 and K3 = 50, we get an approximate convergence of p in 5 seconds, and is con-
sidered to be a sufficient smoothing of the switch. Figure 5.1 shows the effect of generating the
smooth switch p.
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(b) Resulting virtual control from smooth switch

Figure 5.1: Effect of smooth switch
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We can see from Figure 5.1b that the virtual control κ1 is smoothed compared to κ0. The effect of
this is that the control τr also is smooth, and canmore easily be applied to a dynamical system.
Remark 1 Other dynamics for ṙ can be considered such as ṙ = τr = Nδδ(where Nδ is a gain and
δ is the rudder angle), or ṙ = − 1

T r + K
T δ(Nomoto model with rudder as input). The backstepping

procedure will be similar, but replacing τr with either Nδδ or − 1
T r + K

T δ and solve for δ to get the
rudderangleas input. Due touncertaintiesof theparametersK andT in theNomotomodel, itwas
chosen not to proceed with the Nomoto model for the test cases. In stead the vessel is emulated
to be underactuated, and the response is assumed to be similar to a CDM based on the Nomoto
model.
Remark 2 The procedure for backstepping the non-hybrid control design will be similar. The
resulting desired yawmoment is then:

τr,non−hyb = ṙd + ∇zκ02(z)S z − ∇zP01(z)S z − K2(r̃ − κ02(z)) (5.17)
Remark 3Due to the complexity of the algebraic expressions ∇zϑ(z) and ∇zκ02(z), they are not de-
rived in themain part of this thesis, but rather included in Appendix A.2.

5.3 Physical Experiments

As the simulations of this control allocation is quite simple as we only control 1DOF, the simula-
tion results to test the control design is omitted. In stead, experimental results in theMC-lab will
be presented. The hybrid heading controller was combined with the DP controller described in
Section 2.2 in surge and sway. The chosen bandwidth was ωb = 0.1, which by applying (2.36) and
the diagonal numerical values for M and DL from (A.2) and (A.3) gave the following gains(where
the gains in yaw is set to zero because the hybrid heading controller controls the heading):

Kp =

3.3672 0 0
0 5.6865 0
0 0 0

 , Ki =

0.0526 0 0
0 0.0889 0
0 0 0

 , Kd =

37.75 0 0
0 62.5875 0
0 0 0

 (5.18a)

λ = 0.99, Kp = 0.04, γ1 = 50, γ2 = 2, K2 = 40, K3 = 50 (5.18b)
As the only goal for this experiment was to check the behaviour of the 1DOFheading controller, it
was not attempted to do positional changes, but rather use the DP controller for stationkeeping
while controlling the heading to a setpoint. For all experiments, the vessel was controlled to the
origin with initial heading ψ0 = 0◦. Then three different setpoints of ψd = {−170◦, 180◦, 170◦} was
sent to the heading controller with initial logic modes q0 = {1, 2}. Hence, the experiment was
divided into six cases. Figure 5.2 shows the results, where the left figures shows the heading, and
the right figures shows the logic mode σ(q) and smooth switch p.
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Figure 5.2: Physical DP experiments of CSADwith different heading setpoints

Figures 5.2a and 5.2b shows the response when the setpoint is at ψd = 170◦. It is observed that
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Chapter 5. Heading Control on S1

the logic mode toggles for q0 = 2, but not for q0 = 1. This happens due to the error maps inside
the jump set D2, and the vessel will rotate clockwise. The same effect occurs when q0 = 1 and
ψd = −170◦ as shown in Figure 5.2c and 5.2d. In this case, the error maps into the jump set of
D1, and the vessel will rotate counter-clockwise. The last test was to command the vessel to do
a 180◦ turn, which is shown in figure 5.2e. As the error does not lie within neither of the jump
setsD1 orD2 the logic mode will not switch, as shown in Figure 5.2f. The rotational direction is
now determined by the initial value of q. We see that for q0 = 1, the vessel will rotate clockwise,
while when q0 = 2, the vessel will rotate counter-clockwise. We therefore have full control of the
rotational direction and it will converge to the desired setpoint in a robust and stable manner.

5.3.1 Video of Experiment

The experiments in theMC-lab were recorded and a link to the video can be found in appendix B

5.4 Discussion

The1DOFhybridheading controller developed in this chapter gives promising results. As proven,
the control allocation guarantees robust convergence to the desired headingwith smooth control
signals even when the logic mode switches. As experienced in the lab, the turning rate (and con-
trol forces) was quite largewhen the vessel received a setpoint that generated an error close to the
±180◦ range, but became very low close to the setpoint. Thismight be due to the lack of reference
model, since this design reroutes ψre f = ψd. However, as large errors in the ±180◦ range induced
larger values for τr than physically achievable for themodel vessel when the gain Kp > 0.04, it was
chosen to keep the gain at this value. If a reference model was to be designed, it could not have
the same design as traditional reference models, as these would try to wrap towards the short-
est rotation and possibly disrupt the whole purpose of the robust hybrid design. If a reference
model was to be implemented, it would have needed to have a similar dynamics as ż with possi-
bly a synchronization of the logic mode. However this is not implemented, but should be further
investigated.
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Chapter 6
Velocity Vector Control on S1

6.1 S1 Formulation of Angles and Current

We consider planar motions of a marine surface vessel with position pn := col(x, y) ∈ R2 in {n}-
frame. The surge and sway velocities in {b}-frame are ν = col(u, v) ∈ R2, and yaw rate r = ψ̇.
The three other DOF’s roll, pitch and heave are disregarded, as these are considered to be self-
stabilizing.
The vessels heading expressed on S1 is zψ ∈ S1. If the vessel is exposed to an irrotational constant
current the global frame, this can be defined as νn

c = [Vc cos(βc),Vc sin(βc)]> = Vczβc ∈ R2, with zβc

being the S1 representation of the direction of a current flowing with an angle βc relative to the
north axis. Rotating the {n}-composed current velocity vector to {b} yields νb

c = R(zψ)>νn
c , and the

relative velocity νr ∈ {b} becomes:

νr = ν − νb
c = ν − R(zψ)>νn

c (6.1)
The vessels global and relative speed is defined as U := |ṗn| = |ν| and Ur = |νr | respectively. Next,
we define the course angle as zχ ∈ S1, crab angle zβ ∈ S1 and sideslip angle zβr ∈ S1. The sideslip
and crab angles occur due the the drag forces of ships, where ocean currents and hydrodynamic
forces due to relative velocities make the heading not being equal to the course. The angles are
derived from the relationships in (2.39) and (3.16):

zχ :=
ṗ
U
, zβ =

ν

U
, zβr =

νr

Ur
(6.2)

Such that zχ = R(zψ)zβ =⇒ ṗn = Uzχ = UR(zβ)zψ = R(zψ)ν. Furthermore, using (3.15) and (3.17)
gives:

żβ = ωβS zβ, ωβ =
(
zβ

)>
S >

ν̇

U
(6.3)

żχ =
(
r + ωβ

)
S zχ (6.4)
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Note that, for a zeromotionU = 0, the crab, sideslip and course angles have no physicalmeaning,
while the heading zψ always have a physical meaning.

6.2 Control Objective

With the kinematics
ṗn = R(zψ)ν = UR(zβ)zψ = Uzχ (6.5)
żψ = rS zψ (6.6)

and kinetics
u̇ =σ1(υ) +

1
m11

τu + ϕ1(υ)>θ (6.7a)

v̇r =σ2(υr) (6.7b)

ṙ =σ3(υ) +
1

m33
τr + ϕ3(υ)>θ (6.7c)

and the control objective to track somevelocity vector ṗn
d(t) = Ud(t)zχd (t) ∈ R2, the velocity tracking

problem is to design a control law for (τu, τr) such that:

lim
t→∞

[ ṗn(t) − ṗn
d(t)] = 0 (6.8)

Note that if νn
c , Udzχd , then there are exactly two solutions for zβ ∈ S1 that gives a feasible velocity

tracking. The ship couldeither choose toheadagainst thedirectionof travel ifUd >> Vc, or against
the current if Vc > Ud and "slide backwards" with the current while tracking the desired velocity
vector. Hence, the crab angle may converge to the two solutions corresponding to zβx ∈ [0, 1] or
zβx ∈ [−1, 0], depending on the operation. For simplicity, we constrain the surge velocity to be
positive according to (6.9):

ud(t)2 = max
{
|ṗd(t)|2 − v(t)2, ε2

}
, (6.9)

where ε > 0 is a small number corresponding the the minimum surge speed. Then, zβx will con-
verge to the interval [0, 1]. As it is the course and not the heading itself we want to control, we
redefine z and ż to be the course error and derivative of the course error:

z = R(zχd )>zχ = R(zχd )>R(zψ)zβ (6.10a)
ż = R(zχd )>[R(zψ)żβ + rR(zβ)S zψ] (6.10b)

= R(zχd )>R(zψ)[żβ + rS zβ] (6.10c)
where the goal is to achieve z→ e1. For a time varying desired velocity vector, we have:

żχd = ω ṗd S zχd , ωṗd =
(
zχd

)> S >
p̈d

Ud
. (6.11)

and error dynamics:
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ż =
(
r + ωβ − ω ṗd

)
S z (6.12)

Hence, inserting rd = −ωβ + ω ṗd and ṙd = −ω̇β + ω̇ ṗd in (5.14) will ensure zχ → zχd .
Assuming a constant velocity tracking signal ṗd, we have p̈d = 0 such thatω ṗd = 0. Then the closed
loop system (assuming u(t) = ud(t)) becomes:

ż = κ1(ζ, q)S z (6.13)
v̇r = σ2(υr), (6.14)
v = vr + R(zψ)>νn

c (6.15)

u =

√
max

{
U2

d − v2, ε2
}

(6.16)

It follows that at z = e1 and vr = 0we get
r = 0, (6.17)
ż = 0 (6.18)

v̇r = 0, (6.19)
v̇ = v̇r − rR(zψ)>νn

cz = 0 (6.20)
u̇ = 0 (6.21)

ωβ =
(
zβ

)>
S >

ν̇

U
= 0, (6.22)

v = R(zψ)>νn
c (6.23)

U2 = u2 + v2 =

{
U2

d v2 < U2
d − ε

2

ε2 + v2 v2 > U2
d − ε

2 (6.24)

6.3 Control Design

The resulting Control Design for velocity vector control for an underactuated vessel is done ac-
cording to (2.55), (5.14), (5.16) and (5.17), where the control in yaw can either be hybrid or non-
hybrid. These are restated in (6.25):

τu,d = m11
(
−ϕ>θ̂ − σ1(υ) − Kpueu + u̇d

)
, Kpu > 0 (6.25a)

τv,d =
m23

m33
τr,d (6.25b)

τr,d = −ω̇β + ω̇ ṗd + ∇zϑ(z)S zr̃p + ϑ(z)v(z, p, q) −
1
γ2
∇zV0(z, q)S z −

1
γ2

K2Υ2, K2 > 0 (6.25c)

τr,d,non−hyb = −ω̇β + ω̇ ṗd + ∇zκ02(z)S z − ∇zP01(z)S z − K2(r̃ − κ02(z)) (6.25d)
with

r̃ = r + ωβ − ω ṗd (6.26)
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As the desired thrust might be larger than achievable for the vessel it is applied on, it was chosen
to take these constraints into consideration. According to the CSADUser Manual (NTNU, 2017),
the maximum achievable thrust in surge sway and yaw is approximately τu,max = 9[N], τv,max =

9[N], τr,max = 6[Nm]. It was therefore chosen to constrain the forces to be lower than these in or-
der to obtain a set of control forces which is possible. As these maximums can not be achieved
simultaneously, the commanded saturated forces is set to be lower, according to:

τu,c = sat(τu,d, 3), τv,c = sat(τv,d, 3), τr,c = sat(τr,d, 2) (6.27)
These forces are applied to the model shown in Figure 4.1 with the relative velocities calculated
according to (2.21), both with and without the effect of current, where the body fixed velocities
are found according to (6.1). The numerical values for the vessel parameters is found in Appendix
A.1. The various gains for the controllers and estimators are chosen as in Table 6.1.

Table 6.1: Test parameters for velocity vector control

Parameter Value
Kp 0.04
λ 0.99
L 1/(arccos(−λ) − arccos(λ)) ≈ 0.3498
k1 0.495

√
1 − λ2/(λL) ≈ 0.20162

k2 −k1
Kpu 0.7
Γu 0.1I4x4

γ1 50
γ2 2
K2 40
K3 50
q0 1 or 2
ε 0.01

6.4 Simulations

This sectionwill presentanumberof variouscaseswhereadesiredvelocityvector is tobeachieved.
Simulations of the non-hybrid and hybrid designs are tested, both with andwithout current. The
desired course χd and speed over ground Ud will be included within the figure as a constant or
function of time. This also applies to the current velocity Vc and angle βc whenever there is cur-
rent present. For the hybrid case, the initial and final value of q, i.e q0, q f ∈ {1, 2} are also included.
It is assumed full knowledge of all positions (x, y), velocities (u, v, r, ẋ, ẏ) and angles (χ, ψ, β) either
obtained directly from the output of the Simulink model in Figure 4.1, or deduced from these. In
addition, we consider the desired thrust to be achieved, so there is no thrust allocation or thruster
dynamics used. For all cases, the initial angle is ψ0 = 0◦, and velocities ur,0 = vr,0 = r0 = 0. Without
current, we also have u0 = v0 = 0, and with current [u0, v0]> = R(zψ0)>vn

c .
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6.4 Simulations

6.4.1 Without current

First, thenon-hybrid andhybrid control are testedwithout current. Thedesired course and speed
is set to χd = 90◦ and Ud = 0.1[m/s]. The results for the non-hybrid control is shown in Figure 6.1,
and hybrid control in Figure 6.2. For the path plots in Figure 6.1a and 6.2a, the vessel with its
position and orientation for each 10’th second is shown.
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Figure 6.1: Non-hybrid velocity vector control simulation with χd = 90◦,Ud = 0.1[m/s]
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Figure 6.2: Hybrid velocity vector control simulation with χd = 90◦,Ud = 0.1[m/s]

As expected, both the non-hybrid and hybrid control ensures the course and speed to converge
to their desired values, as the commanded course is not close to generate an error near±180◦. The
crab angle β also converges to zero as there is no current present, and the course and headingwill
be equal once the desired course is reached. We notice that the control forces in 6.1d and 6.2d are
saturated at their maximum values at the start according to (6.27). This is natural, as there is no
referencemodel to generate a smooth desired speed, and the controller will react to a step from 0
toUd = 0.1. In the following figures, the speed, angles and control forces are not presented, as the
path plots as in Figure 6.1a and 6.2a illustrates the overall behaviour.
Next, we test the controllers for a desired course as χd = ±170◦ and initial logic mode q0 = {1, 2}
similar to the DP experiments in Section 5.3. The results are shown in Figure 6.3.
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6.4 Simulations

(a)Non-hybrid control (b)Hybrid control q0 = 1 (c)Hybrid control q0 = 2

(d)Non-hybrid control (e)Hybrid control q0 = 1 (f )Hybrid control q0 = 2

Figure 6.3: Velocity vector control simulation with χd = ±170◦,Ud = 0.1[m/s], q0 = {1, 2}

Here, we observe the effect of the initial value of q. As the non-hybrid control in Figure 6.3a and
6.3dwill rotate according to the shortest rotation, the hybrid controller can choose to rotate in the
other direction depending on the value of q0 as shown in Figure 6.3c and 6.3e. However, when the
course error is at ±180◦, the hybrid controller has a muchmore robust behaviour and will ensure
amore desirable response, as shown in Figure 6.4.

(a)Non-hybrid control (b)Hybrid control q0 = 1 (c)Hybrid control q0 = 2

Figure 6.4: Velocity vector control simulation with χd = 180◦,Ud = 0.1[m/s], q0 = {1, 2}

Here we can see that the non-hybrid controller fails to induce a control force in yaw to reach the
control objective. The hybrid controller however is able to do the desired 180◦ turn, either clock-
wise or counter-clockwise according to q0. It is therefore both stable and robust.
To test the hybrid controller for time varying desired course signals, we consider a linearly in-
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Chapter 6. Velocity Vector Control on S1

creasing (initiated after 100 seconds) χd(t) = 0.5◦t to generate a circular path, and a sinusoidal
χd(t) = 90◦ sin

(
2πt
200

)
to generate a path that varies harmonically between +90◦ and −90◦ with a pe-

riod of 200[s]. The results are shown in Figure 6.5.

(a) Path for linearly increasing χd
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(c) Path for harmonically varying χd
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Figure 6.5: Velocity vector control simulation for time varying χd,Ud = 0.1[m/s], q0 = 1

We see that the achieved velocity vector follows the reference nicely, only with a small time delay.
Next the control allocation will be tested when there is ocean currents present, and from now on
the only control design considered is the hybrid controller.

6.4.2 With current

It is chosen to still test the control design for a desired speed Ud = 0.1[m/s]. The ocean current is
set to have a speed Vc = 0.03[m/s] and direction βc = −135◦. Figure 6.6 shows the response with a
desired course χd = 90◦ and logic mode q0 = 1:
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(a) Path
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Figure 6.6: Velocity vector control simulationwith χd = 90◦,Ud = 0.1[m/s], q0 = 1, Vc = 0.03[m/s], βc = −135◦

As there now are ocean currents present, the initial course will be equal to the current direction
βc = −135◦, as seen in Figure 6.6b. What this does is to trigger q to switch from 1 to 2, as the course
angle error ends up inside the jump setD1. However, when the surge velocity controller ensures
a positive surge velocity, it will switch back to q = 1, as shown in Figure 6.6c. Despite the toggling
of the logic mode, this will not affect the overall behavior, and we still achieve the desired course.
Note that with ocean currents, the crab angle will converge to a nonzero value, as seen in Figure
6.6a. In addition, as the logic mode when q0 = 1 toggles immediately upon initialization, it will in
practice result in a very similar response if the initial logic mode was q0 = 2.
Next, the response for other desired course angles are tested. Figure 6.7 shows the response for
χd = {145◦, 150◦}.

(a) Path χd = 145◦ (b) Path χd = 150◦

Figure 6.7: Velocity vector control simulation with χd = {145◦, 150◦}, Ud = 0.1[m/s], q0 = 1, Vc = 0.03[m/s],
βc = −135◦

This shows that for a desired course of χd = 145◦, the same toggle as in Figure 6.6c will occur, and
the hybrid controller will choose to rotate clockwise. On the other hand, for χd = 150◦ the logic
mode stays at q = 2 after the initial toggle, andwill rotate counter-clockwise to achieve the desired
course. Next,we test theVVCon the timevaryingdesiredcourseswith the samecurrent speedand
angle. The results are shown in Figure 6.8.
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(a) Path for linearly increasing χd
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(c) Path for harmonically varying χd
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Figure 6.8: Velocity vector control simulation for time varying χd, Ud = 0.1[m/s], q0 = 1, Vc = 0.03[m/s],
βc = −135◦

We see that the vessels behaviour is similar, but struggles a bit more to obtain the desired course.
However, it stillmanages to obtain a response similar to the one showed in Figure 6.5. The current
is amplified to Vc = 0.09[m/s] to investigate if it is able to withstand increasing environmental
disturbances. These results are shown in Figure 6.9.
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(a) Path for linearly increasing χd
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Figure 6.9: Velocity vector control simulation for time varying χd, Ud = 0.1[m/s], q0 = 1, Vc = 0.09[m/s],
βc = −135◦

It is observed that the controllers struggles a bit more to achieve the desired velocity vector. An
interestingbehaviour occurs inFigure 6.9a,where theheadingdrastically changesonce theocean
current is aligned with the direction of travel. This can be seen in Figure 6.9b as a "drop" in the
course angle at approximately 580[s]. However, once the vessel has performed the turn, it quickly
converges to again reach the desired course. Note that, as opposed to path following, the vessel
does not compensate for the sudden increase of course error and does not try to reach the cir-
cle path it had initially in Figure 6.5a. For the harmonically varying course command, a similar
occurrence happens at about 160[s]. Here the vessels heading is about ψ = −45◦, which means
that the ocean current is pushing the vessel directly from the starboard side. Therefore, due to the
underactuation in sway, the vessel needs to first orient itself more against the current to be able
to turn.

6.5 Discussion

In this part, the VVC problem with HHC seems to give promising results, both with and without
current. The direction of turn when the course error in within the range {−180,−170} ∪ {170, 180}
is similar to what was presented in section 3.3. In addition, the adaptive surge speed controller
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ensures the desired velocity is achieved, and converges nicely to its desired value. The lack of
reference model in surge is also present here, and could also be implemented to obtain a more
smooth convergence towards the desired speed. On the time changing course maneuvers, it is
observed that the course is a bit behind its reference. Again, this suggest for a larger value of Kp

or to add an integral state in the design for a better tracking performance. However, the overall
result shows that it is able to converge to the desired course, both with and without the influence
of current.
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Chapter 7
Path-following Control on S1

In this section, the VVC problem is extended to Path-Following Control.

7.1 Control Objective

If the vessel is to follow a pathwith an either constant or varying speed along the path, the control
objective is now to satisfy a geometric task and a dynamic task (Skjetne, 2005):
1. Geometric Task: For any continuous function s(t), force the output y, to converge to the

designated path yd(s), that is
lim
t→∞
|y(t) − yd(s(t))| = 0

2. Dynamic Task: Satisfy one or more of the assignments:
• Time Assignment: Force s to converge to a desired time assignment τ(t)

lim
t→∞
|s(t) − τ(t)| = 0 (7.1)

• Speed Assignment: Force ṡ to converge to a desired speed assignment v(s, t),
lim
t→∞
|ṡ(t) − v(s(t), t)| = 0 (7.2)

• AccelerationAssignment: Force s̈ toconverge toadesiredaccelerationassignmentα(ṡ(t), s(t), t),
lim
t→∞
|s̈(t) − α(ṡ(t), s(t), t)| = 0 (7.3)

The objective is for the ship to enter and stay on a path P. These paths can either be piecewise
linear (C0), curved with continuous derivatives at intersections of sub-paths (C1) or paths with
higherorderofdifferentiability (CT ). Theneededdifferentiability isdependenton theapplication.

7.2 Path Generation

A path could either be a discrete, continuous or hybrid parameterization. Skjetne (2005) presents
the general case for generating a CT path for a set of nwaypoints(WP) in R2 as:
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Overall desired curve: pd(s) = col(xd(s), yd(s)), s ∈ [0, n] (7.4a)
Subpaths: pd,i(s) = col(xd,i(s), yd,i(s)), i ∈ I = {1, 2, ..., n} (7.4b)

Way-points: pi = col(xi, yi), i ∈ I ∪ {n + 1} (7.4c)
Toensure that at all intersectionsbetweensub-paths, thederivativesup to the k’thderivativemust
be equal. This is equivalent to solving a linear set of (k + 1) · 2n unknown coefficients to generate
the path:

xd,i(s) = ak,isk + ... + a1,is + a0,i (7.5a)
yd,i(s) = bk,isk + ... + b1,is + b0,i (7.5b)

Where we sort the equations as a linear system
Aφ = b, φ> =

[
a>, b>

]
(7.6)

and solve for φ. You could also scale the slopes/curvatures at the intermediate WPs by a factor λ
by setting the first derivatives as xs

d,i = λ(xi+1 − xi−1) and ys
d,i = λ(yi+1 − yi−1) at each WP. Figure 7.1

shows four different generated paths from theWPs:

WP =

[
20 10 20 30 40 70 80 70
20 30 40 45 15 20 30 40

]
(7.7)
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(a) C0 path
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(b) C1 path with λ = 0.3
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(c) C3 path with λ = 0.3
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(d) C3 path with λ = 0.1

Figure 7.1: Different path generations from a set of WPs

Herewe can see the effect of the order of differentiability. TheC0 is simply sets of straight line sub-
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paths, while the C1 path has continuous derivatives at the intersection of sub-paths, and hence
generates amore smooth path. A typical differentiability for vessel tracking is to choose aC3 path,
which will be applied in Section 7.5.

7.3 Path-Following on Straight Line Paths

The path following guidance for surface vessels as described in Section 2.3.4 will now be imple-
mented with angles represented on S1 and tested together with the underactuated VVC. For sim-
plicity, we consider path-following on the straight-line path

P =
{
p ∈ R2 : ∃s ∈ Rs.t.p = (1 − s)pk + spk+1

}
(7.8)

defined by N WPs (p1, p2, ..., pN). To achieve this, the vessels’ course needs to be aligned with the
angle of the current path segment, where αk in (2.61) is reformulated on S1 as:

zχk :=
pk+1 − pk

|pk+1 − pk|
(7.9)

Defining a path reference frame centered at pk with its x-axis towards pk+1, we can define the
along-track distance ek,x(pn) and cross-track error ek,y(pn) for a vessel in position pn as:

ek(pn) = col(ek,x(pn), ek,y(pn)) = R(zχk )>(pn − pk) (7.10)
Hence, thepath-followingproblem for anunderactuatedvessel is todesign control laws for (τu, τr)
to ensure that:

lim
t→∞

ek,y(pn(t)) = 0 and lim
t→∞

[
U(t) − Up

]
= 0 (7.11)

For a desired speedUp along the path. As the adaptive surge speed controller combined with the
hybrid heading controller is compensating for ocean currents, the only thing needed to solve this
problem is to find a suitable combination of (Ud, zχd ) to track a path.

7.4 Line of Sight Guidance - Straight Line Paths

The LOS guidance scheme in Section 2.3.4 is modified to fit the S1 representation of angles. For
the LBS design, we have:

zχr =

[
cos

(
−ek,y(t)
∆LBS (t)

)
, sin

(
−ek,y(t)
∆LBS (t)

)]>
(7.12a)

zχd
LBS = R(zχk )zχr (7.12b)

And for EBS:
zχd

EBS =

[
cos

(
ylos − y
xlos − x

)
, sin

(
ylos − y
xlos − x

)]>
(7.13)
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Chapter 7. Path-following Control on S1

Where the switching of WP’s is done according to the circle of acceptance:

[xk+1 − x(t)]2 + [yk+1 − y(t)]2 ≤ R2
k+1 (7.14)

The EBS and LBS is tested in to follow the same eightWP’s as in (7.7)(corresponding to theC0 path
inFigure7.1a) andwithan radiusof acceptance for eachWPofRk = 2Lpp, where Lpp is the lengthof
CSAD. This . The starting position and velocities of the vessel as well as the controller parameters
are the same as in Section 6. The desired velocity along the path is chosen to beUd = 0.1[m/s]. The
LBS and EBS parameters are chosen as:

REBS = 2Lpp, RLBS = 2Lpp (7.15)
The following sectionswill present the results from simulationswith andwithout ocean currents.

7.4.1 Simulations - Without Current

Initially, the path following for LBS and EBS was tested without currents. Figure 7.2a and 7.2b
shows the achieved path, while 7.2c and 7.2d shows the cross-track error. For simplicity, ∆LBS (t) =

2Lpp was chosen to be constant to obtain amore stable response.
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7.4 Line of Sight Guidance - Straight Line Paths

(a) Path - EBS (b) Path - LBS
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(d) Cross track error - LBS

Figure 7.2: Path plot of LOS Guidance with EBS & LBS for straight line paths - without current

It is observed that both tracking schemes achieves approximately the same result. This is natural,
as RLBS = REBS and the LOS-vectors points approximately in the same directions. The Cross-
Track-Error plots shows that both goes to zero in a stablemanner, and thusmakes sure the vessels
position converges to a point along the path. Next, the LOS guidance with EBS and LBS is tested
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with currents.

7.4.2 Simulations - With Current

In these simulations, we set a relatively large ocean current(relative to the desired velocity Ud =

0.1[m/s]) tobeVc = 0.09[m/s]withadirectionofβc = −135◦ toput theLOSguidanceandcontrollers
to the test. The performance is shown in Figure 7.3
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(a) Path - EBS (b) Path - LBS
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(d) Cross track error - LBS

Figure 7.3: Path plot of LOS guidance with EBS & LBS for straight line paths - with current Vc = 0.09[m/s],
βc = −135◦

Here, we see that despite the large currents, the vessel is able to track the path nicely. Both the
heading controller and surge speed controller is able to compensate for the ocean currents. How-
ever, it struggles a bit more in sharp turns, but manages to converge to the path in a similar way
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as in Figure 7.2.

7.5 Line of Sight Guidance - Curved Paths

Now the LOS guidance is extended to track a parameterized path in stead of straight line paths
with WP switching logic. In this section we will try to track the C3 path as shown in Figure 7.1c.
According to Skjetne (2005), the objective is now to track the path:

P =
{
(p, ψ, υ) ∈ R2 × S1 × R3 : ∃s ∈ Rs.t.p = pd(s), ψ = ψp(s)

}
(7.16)

Where ψp is the path-tangential angle we want the heading to converge to. Note that with ocean
currents, the objective is to track χ → ψp, and not ψ → ψp. Therefore, we replace ψ with χ and
aim to guide the course to the path-tangential angle in stead of the heading. Note that as crab
angle compensation already is performed by the hybrid controller, the output from this guidance
scheme will be the derired course, and not heading. We nowwant to solve the dynamic task

lim
t→∞
|ṡ(t) − vs(s(t), t)| = 0, vs(s, t) =

Ud(t)∣∣∣ps
d(s)

∣∣∣ (7.17)

Next, we define
ε(pn, s) = R(zχp

PF(s))>(pn − pd(s)) = col(εt, εn) (7.18)
where pn ∈ R2 is the position of the vessel and εt and εn denotes the along-track and cross-track
distance, respectively. χp is the path-tangential angle and is found as:

χp(s) = atan2(ps
d,y(s), ps

d,x(s)) (7.19)
Where the generatedpath-positions pd(s) andfirst derivatives ps

d(s) are foundby solving (7.6)with
the WPs in (7.7) and differentiate the solution once to obtain the derivative as a function of s. By
applying an approach similar to LBS, we have

zχd
PF = R(zχp)zχr , zχr =

[
cos

(
−εn(pn, s)

∆PF(t)

)
, sin

(
−εn(pn, s)

∆PF(t)

)]>
(7.20)

and the path-parameter s is driven by

ṡ =
∆PF√

εn(p, s)2 + ∆2
PF

vs(s, t) + µ
ps

d(s)>∣∣∣ps
d(s)

∣∣∣ (p − pd(s)), µ > 0, ∆PF > 0 (7.21)

The combination of these equations will ensure the vessel to follow the path and ensures ε → 0.
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7.5 Line of Sight Guidance - Curved Paths

7.5.1 Simulations - Without Current

We simulate the path following scheme with the path shown in Figure 7.1c. The desired speed is
chosen to be Ud = 0.1[m/s], RPF = 2Lpp, ∆PF(t) =

√
R2

PF − εn(p, s)2, µ = 0.01. The initial attempt
in Figure 7.4a turned out to be promising. It was however noticed that the heading controller
underperformed in achieving the desired course. Therefore, the gain Kp in the heading controller
was amplified from Kp = 0.04 to Kp = 0.12 such that it induced larger control forces in yaw. The
resulting path following plot is shown in Figure 7.4b.
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(a) Path - Kp = 0.04 (b) Path - Kp = 0.12
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(c) Cross track error - Kp = 0.04
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(d) Cross track error - Kp = 0.12

Figure 7.4: Path plot of LOS Guidance with path following of curved paths

We can see there is a noticeable difference in the cross track errorminimizationwhen amplifying
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7.6 Target Tracking

the heading controller gain. With the increased gain, the heading and surge speed controllers
were able to follow the desired trajectory generated by the LOS guidance for the curved path. The
results are promising and shows that hybrid heading control is adaptable to conventional ways
of path following. The next section will present a guidance scheme to guide a vessels trajectory
relative to amoving target.

7.6 Target Tracking

This sectionwill extend the target trackingmethodology fromSection 2.3.5 such that it is suitable
for S1 control. Inspired by Breivik and Fossen (2007), we define a moving target vessels position
pt(t), driven by ṗt(t) = Ut(t)zχt (t),Ut > 0. The target tracking problem is to design a control law
(τu, τr) such that

lim
t→∞

[
pn(t) − pt(t)

]
= 0 (7.22)

is behaving well and is stable. Different guidance schemes such as pure pursuit(PP), constant
bearing (CB) and LOS are common for solving the target tracking(TT) problem. Focusing on the
CG scheme, we let p̃ = pn − pt, and define the desired velocity by:

vd = Utzχt − Ua
p̃√

p̃> p̃ + ∆2
CB

, Ua < Ut (7.23)

where the first term is a feedforward term to force the vessel to move with the same velocity vec-
tor as the target, and the second is a feedback term that brings the vessel to the target with an
approach speed Ua. The parameter ∆CB > 0 is a gain to affect the rendezvous behaviour towards
the target vessel. From (7.23) we can define the desired course and speed according to:

zχd
TT =

vd

|vd |
, Ud = |vd | (7.24)

Note that if the tracking problem is to obtain and track a relative along- and cross-track position
from the target, we can define εd = [ed, sd]> and subtract this from p̃ such that p̃ = p− pt − εd before
applying (7.23). The next subsections will present case studies for testing the surge- and heading
controller for target tracking purposes.

7.6.1 Simulations

Using∆CB = 2 andUa = 0.05[m/s], we initiate a targets position at pt(0) = col(10, 0)with a constant
velocity Ut = 0.1[m/s] and course zχt = e2(90◦). The controlled vessel has an initial position at the
origin and zero speed. Figure 7.5 shows the vessel and target positions when varying the desired
relative positions εd.
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(a) εd = [0, 0]>
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Figure 7.5: Target tracking with different desired relative positions εd

We see that the guidance schememakes sure that the vessel position itself nicely according to the
desired relative position to the target vessel. Next, the vessel is tested to track amoving targetwith
time-varying course and speed according to the two cases:

• Case 1:
Ut(t) = 0.1 + 0.05 sin

(
2πt
400

)
[m/s], χt(t) = 90◦ + 45◦ sin

(
2πt
800

)
(7.25)

• Case 2:
Ut(t) = 0.1 + 0.05 sin

(
2πt
400

)
[m/s], χt(t) = 90◦ + 90◦ sin

(
2πt
800

)
(7.26)

In both cases, the desired relative position is set to be εd = [−3, 3]>. Figure 7.6 shows the results
from Case 1, both with and without current. The vessels positions are now plotted for each 40th
second.
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7.6 Target Tracking

(a)Without current (b)With current Vc = 0.03[m/s], βc = −135◦

Figure 7.6: Case 1: Target tracking with time varying target course and speed with εd = [−3, 3]>

We can see that the vessel is able to successfully track and maintain its desired relative position
even though the time variations where the target vessel is speeding up initially, before slowing
down in the middle of the first turn. Even with these variations, the target tracking guidance en-
sures the controlled vessel to smoothing in to the desired relative position and hold it. To test the
combined guidance and controllers even more, the time variation amplitudes were made larger
according to Case 2, as well as amplifying the current velocity to Vc = 0.09[m/s]. Figure 7.7 shows
the response.

(a)Without current (b)With current Vc = 0.09[m/s], βc = −135◦

Figure 7.7: Case 2: Target tracking with time varying target course and speed with εd = [−3, 3]>

We see that with amplified disturbances and movement of the target, the vessel still obtains a
satisfactory tracking performance. We can conclude this by having successfully implemented a
robust way of tracking a moving target utilizing an adaptive surge speed controller and hybrid
heading controller, both with current compensation.
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7.7 Discussion

In this chapter, the VVC problem is extended to PFC with different guidance schemes. For WP
tracking, you could either choose to track a C0 path with LOS-guidance for straight paths andWP
switching, or generate a differentiable path for the vessel to follow. Either way, the implemen-
tation shows that the VVC ensures the velocity vector to converge to the output of the guidance
scheme, and thus make sure the vessel tracks the given path nicely. As mentioned earlier, one
concern was the VVC design’s ability to track paths that required sharp turns with the low gain
of Kp = 0.04. When this gain was amplified for the C3 path, the average cross-track error were
reduced by approximately a third. The target tracking performance were also good, and ensured
the vessel to obtain a relative position of the target it was tracking, despite large currents and high
frequently maneuvers by the target.
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Chapter 8
Conclusion and Further Work

8.1 Overall Conclusion

The goal of this thesis was to design, implement and test a robust hybrid heading controller for
ships. A suitablepotential function that reflected theheading error as the arc length along theunit
circle was used as a base, and a non-hybrid virtual control was designed to obtain a satisfactory
convergence and stability for all heading errors that were not ±180◦. Then a diffeomorphismwas
applied to the base potential function and virtual control in order to design two control laws that
achieved similar stability characteristics. By a smooth switching logic between these two con-
trols, global asymptotic stability could be achieved. TheHHCwas combinedwith aDP controller
in surge and sway and tested extensively in theMC-lab to test its robustness. In addition, a Non-
linear Passive Observer and Extended Kalman filter was implemented (but not explained in de-
tail in this thesis) on the lab-experiments, as the velocities needed to be estimated. The HHC
was then extended to a VVC problem, and an adaptive surge speed controller as well as sideslip
compensation that compensates for the effect of ocean currents was designed for this purpose.
Combined with the HHC the vessel was able to track constant and time varying desired velocity
vectors, both with and without the influence of current. Finally, the VVC was extended to path
following on straight and curved paths with LOS guidance, as well as target tracking applications.
The path following guidance were able to guide the vessels velocity vector such that the position
of the vessel converged to the path.
Simulations are done on a very simplified model of the vessel with constant mass, damping and
Coriolis matrices. For the maneuvering problems, the simple dynamics ṙ = τr was chosen to
derive the control designs. The vessel was emulated to be underactuated in sway in the control
allocation such that the vessel behave as if it was underactuated. With a small modification in
the backstepping procedure, more realistic dynamics as the 1DOFNomotomodel can be used to
derivemore suitable feedback lawswith rudder as input if themaneuveringmodelwas linearized
at a transit speed andNomoto gains K and T are chosen accordingly. The control systemwas first
implemented and tested using MATLAB and Simulink. Then HIL simulations were done using
the same software as in theMCLab, and theHHCdesignwas tested physically on the scalemodel
vessel. The VVC and PFC designs were not tested in the MC-lab due to the spacial constraints.
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In the simulations, the control allocation assumed that the desired thrust was instantly achieved,
and it was therefore no thrust allocation or smoothing of the control input, and it is therefore not
guaranteed that the control allocation is suited for scale model test. However, the results shows
that theHHC, VVC and PFCworks as expected given these delimitations and achieves the control
objective.

8.2 FurtherWork

Continuing this topic of study can be extended by developing a reference model with the same
dynamics as ż = ωS z. In addition, themaneuveringmodel could be linearized about some design
cruise speed such that the Nomoto gains T and K could be chosen. Then only a small modifi-
cation of the backstepping procedure for the HHC problem gives the rudder as the input. The
hybrid controller could be tested with a more high-fidelity model than the one used in this the-
sis, such as with waves, winds, slowly varying forces and thrust allocation. Then the scale model
can be tested in a larger ocean basin or even at open sea, as the spacial constraints as the MC-
lab makes the maneuvering and path following designs not so well fitted for testing. However,
the hybrid controller could be further tested at the MC-lab with the DP controller. As it was not
tested with neither waves or current in theMC-lab, a possible continuation could be to adapt the
DP controller in such environments, evenwith robust switching between different DPmodes de-
pendent on the environment. The choice of the gains Kp,K2,K3, γ1 and γ2 was done by trial and
error, but this tuning could be performed in a more structured/mathematical manner or even
with the aid ofmachine learning. As this thesis is a stepping stone formore advanced hybrid con-
trol systems for ships that increases the level of autonomy and robustness, it could be extended
to work on spherical orientation control on S2 such as underwater robotics, and adapted to do
more coordinated operations where several vessels or underwater vehicles cooperate. Full scale
testing would also give valuable insight on how the overall performance is compared to model
tests. In addition, collision avoidance guidance that follows the Convention on the International
Regulations for Preventing Collisions at Sea (COLREG) could be investigated further.
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Appendix A
Appendix

The followingmathematical model in R3 is used:
Mυ̇r + C(υr)υr + D(υr)υr = τ, (A.1)

A.1 Numerical Values for the CSADModel

Table A.1 shows the numerical values of the parameters from different sources. The rightmost
column is the chosen parameters used in this thesis.
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Table A.1: Numerical values of CSAD

Parameter Bjørnø
(2016)

vesselABC
from
Bjørnø
(2019)

Sæterdal
(2018)
& Lyn-
gstadaas
(2018)
Session 1

Sæterdal
(2018)
Session 2

Lyngstadaas
(2018)
Session 2

Chosen
param-
eters
for this
thesis

Unit

L 2.578 2.578 2.578 2.578 2.578 2.578 m
m 127.92 127.5122 127.92 127.92 127.92 127.92 kg
xg 0 0.0433 0.0375 0.0375 0.0375 0.0375 m
Iz 61.967 61.7689 62 62 62 62 kgm2

Xu̇ 3.262 -3.6975 -3.262 -10 -10 -10 kg
Yv̇ 28.89 -29.1179 -28.9 -105 -105 -105 kg
Yṙ 0.525 -1.559 -0.525 -0.525 -0.525 -0.525 kgm
Nv̇ 0.157 -0.5922 -0.157 -0.157 -0.157 -0.157 kgm
Nṙ 14 -12.6085 -14 -3.5 -3.495 -3.5 kgm2

Xu -2.332 - -2.33 -5.1 -5.35 -5.35 kg/s
X|u|u 0 - 0 0 0 0 kg/m
Xuuu -8.56 - -8.56 -18.63 -19.6312 -19 kgs/m2

Yv -4.673 - -4.67 -10.2 -10.16 -10.2 kg/s
Y|v|v 0.3976 - -0.398 -0.86 -0.8647 -0.86 kg/m
Yvvv -313 - -313 -665 -681.175 -681 kgs/m2

Nv 0 - 0 0 0 0 kgm/s
N|v|v -0.2088 - -0.209 -0.24 -0.2088 -0.21 kg/m
Nvvv 0 - 0 0 0 0 kgs/m2

Yr -7.25 - -7.25 -6.25 -7.25 -7.25 kgm/s
Y|r|r -3.45 - -3.450 -3.65 -3.450 -3.45 kg/s
Yrrr 0 - 0 0 0 0 kgs/m2

Nr -0.0168 - -6.916 -14.55 -14.55 -14.55 kg/s
N|r|r -0.0115 - -4.73 -9.96 -9.9597 -9.96 kgm2

Nrrr -
0.000358

- -0.147 -0.31 -0.3101 -0.31 kgs/m2

N|v|r 0.08 - 0.08 0 0.08 0.08 kg/m
N|r|v 0.08 - 0.08 0 0.08 0.08 kg/m
Y|v|r -0.845 - -0.845 0 -0.845 -0.845 kg
Y|r|v -0.805 - -0.805 0 -0.805 -0.805 kg

Direct calculation ofM andDL yields:

M =

137.92 0 0
0 232.92 5.3220
0 4.9540 58.5

 (A.2)

86



A.2 Derivations of ∇zϑ(z) and ∇zκ02(z)

DL =

5.35 0 0
0 10.2 7.25
0 0 14.55

 (A.3)

It is observed that m23 , m32. In some derivations for CDMs, the parameter m∗23 = m∗32 = 1
2 (m23 +

m32) = 5.138 is used for simplification. However, in simulations, the original mass matrix is used.

A.2 Derivations of ∇zϑ(z) and ∇zκ02(z)

∇zκ02(z) =
[
∂κ02(z)
∂zx

∂κ02(z)
∂zy

]
(A.4)

∂κ02(z)
∂zx

= −
Kp zx

2
(
λ2 zx

2 − 1
) √

L (acos (λ zx) − acos (λ))

−
Kp
√

L (acos (λ zx) − acos (λ))

L λ
√

1 − λ2 zx
2

−
Kp λ zx

2 √L (acos (λ zx) − acos (λ))

L
(
1 − λ2 zx

2)3/2 (A.5)

∂κ02(z)
∂zy

= 0 (A.6)

∇zϑ(z) =


∂κT1

zx

∂κT1
zy

∂κT2
zx

∂κT2
zy

 =

[
a11 a12
a21 a22

]
(A.7)

where a1q and a2q for q = {1, 2} are shownbelow. These are solvedbyusing the algebraic expression
for κTq with symbolic variables and calling theMATLAB function diff (κTq , zx) and diff (κTq , zy).
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Appendix B
Video of Experiment

This videopresents the lab experiments showing thehybridmechanisms forwhichway the vessel
turns when initiated at an angle ψ0 = 0◦ and receives setpoints of ψd = {−170◦, 170◦, 180◦} with
initial logic modes q0 = {1, 2}.
https://vimeo.com/344285825
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