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Abstract

There are more than 30,000 kilometers of cross-country skiing tracks in Norway, and to
maintain these track networks municipalities and local ski clubs spend more than 250
million NOK every year. The primary cost driver is the daily grooming operations which
are manually planned based on the experience of the snowcat operators. Large networks
with many vehicles starting at different depots complicate the problem of finding effective
routes. The result is unnecessary high costs due to sub-optimal route choices, yielding a
benefit of solving the route planning problem.

Employees of the municipal enterprise responsible for the cross country facilities in Trond-
heim, Trondheim Bydrift, explains that today’s planning of grooming activities is based
on experience and old habits. As Trondheim is an area known for unstable weather
conditions, long-term planning lack robustness. Meetings are therefore conducted every
morning to handle the variations. The multifaceted Snow Grooming Problem (SGP) in-
volves multiple depots and a heterogeneous fleet of vehicles, where track segments have
numerous attributes. First, they are ranked as requested, priority or regular. Requested
segments are segments booked for grooming by stakeholders like ski clubs, ensuring top
quality for their training sessions and competitions. The requested segments are han-
dled as mandatory by the facilitators of the track network, and a specific time window
is set for grooming operations to obtain a certain standard. The remaining segments are
considered optional, where popular segments are prioritized over peripheral parts of the
network. The track segments are either broad or narrow. Small vehicles can traverse all
tracks, but large vehicles can only traverse broad track segments.

In this report, we further develop an intuitive mathematical model for the SGP faced
by cross-country skiing facilitators, which was implemented and tested in the project
report leading up to this thesis. The goal is finding optimal routes for the daily grooming
operation conducted throughout the winter season, covering as much of the network as
possible with the resources available. Solving the arc routing model to optimality by exact
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solution methods was not found to handle sufficiently large instances. To solve large, real
instances the model is implemented in LocalSolver, a heuristic based commercial solver.
A transformation of the arc routing model into a vehicle routing problem is necessary to
enable implementation in LocalSolver and is therefore conducted.

The arc routing model is formulated as a Mixed Integer Linear Program (MILP) and im-
plemented in the commercial software Xpress. The model is capable of solving instances
up to 20 nodes and 32 edges to optimality within 3,600 seconds, while larger instances
require additional runtime. LocalSolver outperforms the exact model, returning satisfac-
tory solutions within seconds on instances successfully solved by Xpress. The heuristic is
also able to return solutions on the larger instances, but with significant gaps within the
runtime limit of 3,600 seconds.

To our knowledge, this report constitutes the first known attempt of solving the SGP.
An interesting area for future research may be to implement the VRP formulation in
Xpress for additional comparisons between the ARP and VRP formulations, as well as
the heuristic approach. Solving the SGP as a set-partitioning problem before optimizing
the routes is also an interesting approach currently not studied.
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Sammendrag

Det er mer enn 30 000 kilometer med langrennsløyper i Norge, og for å vedlikeholde og
preppe disse løypene bruker kommuner og skiklubber med enn 250 millioner kroner i
året. Den største kostnadsdriveren er den daglige preppingen, som er planlagt manuelt
basert på erfaring hos maskinførerne. Store nettverk med flere preppemaskiner som
starter i forskjellige depoter kompliserer problemet med å finne effektive ruter. Dette
resulterer i en unødvendig høy kostnad på grunn av suboptimale rutevalg, og medfører
at ruteplanleggingsproblemet med fordel kan løses med optimeringsteknikker.

I Trondheimsområdet er det Trondheim Bydrift som har ansvaret for løypenettverket og
vedlikeholdelse av dette. Deres ansatte forteller dagens metode for valg av prepperuter er
basert på erfaring og gammel vane. Siden området rundt Trondheim er kjent for ustabile
værforhold, mangler langtidsplanleggingen robusthet. Daglige morgenmøter blir avholdt
for å ta høyde for variasjoner i vær og andre forhold som spiller inn i planleggingen.
Problemet med å preppe skiløyper blir kalt for SGP (the Snow Grooming Problem).
Aspekter ved dette problemet som må tas høyde for er at det har flere depoter, at flåten
av kjøretøy er heterogen og at løypesegmentene har forskjellige attributter. Løypene blir
enten kategorisert som vanlige, prioriterte eller obligatoriske. De obligatoriske løypene er
segmenter der prepping er bestilt av en brukergruppe, og har et tidsvindu der prepping
må forekomme for gi riktig kvalitet og standard på skiløypene. De resterende løypene
blir behandlet som valgfrie, mens populære løyper blir prioritert over perifere deler at
løypenettet. Løypene er enten brede eller smale. Små preppemaskiner kan traversere alle
løyper, mens store maskiner kun kan kjøre på brede løyper.

I denne oppgaven utvikler vi en matematisk modell for SGP, og sikter mot å finne effek-
tive prepperuter for instanser basert på det lokale løypenettet rundt Trondheim. Målet
er å finne gode ruter for den daglige preppingen som blir gjort i vinterhalvåret, der mest
mulig av nettverket blir preppet med de tilgjengelige ressursene. Først introduserer vi
en kantrutemodell (arc routing problem), som er en intuitiv måte å forstå problemet

v



på. Å løse denne modellen til optimalitet ved eksakte løsningsmetoder har vist seg å
ikke håndtere tilstrekkelige store instanser. Derfor blir en transformasjon til et noderut-
ingsproblem (vehicle routing problem) presentert, og en implementering av dette prob-
lemet i en kommersiell heuristikkbasert solver.

Kanruteproblemet er formulert som et MILP (Mixed Integer Linear Program) og imple-
mentert i den kommersielle programvaren Xpress. Denne modellen er kapabel til å løse
instanser på opptil 20 noder 32 kanter til optimalitet på under 3600 sekunder, mens større
instanser krever ytterligere løsningstid. LocalSolver utkonkurrerer den eksakte modellen,
og de samme løsningene som den eksakte modellen på 0.20% av tiden for de små in-
stansene. Den håndterer også de større instansene, men for de aller største er gapene
relativt store etter 3600 sekunder.

Dette verket fremstår som det første kjente forsøk på å løse SGP. Både problemet og
løsningsmetodene er nye med hensyn til litteraturen, så vårt fokus har vært på tekniske
aspekter. Problemet er krevende med mange elementer, men ved initielle forsøk virker
resultatene lovende. For videre forskning kan det være interessant å implementere VRP-
formuleringen i Xpress, for å sammenligne ARP- og VRP-formuleringene videre. Å løse
SGP som et set-partitioning problem før man finner optimale ruter kan også være en
interessant angrepsvinkel for videre studier.
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Chapter 1
Introduction

There are 5360 kilometers of cross-country skiing tracks in Norway’s top ten most popular
ski facilities. Municipalities, ski clubs and commercial actors in these areas spend more
than 50 million NOK in total every season to maintain their track networks (Dagens
Næringsliv, 2013).

According to numbers from Statistisk Sentralbyrå (2015b), 30125 km of tracks were
planned groomed in 2015, where 6190 km of these were under the responsibility of a
municipality. Interpolating the costs from the popular facilities results in a rough esti-
mate of 281 million NOK spent every year grooming Norwegian track networks. These
networks are complex, consisting of broad and narrow track segments for the different
styles of cross-country skiing. Popular routes must be prioritized and groomed more of-
ten than peripheral segments solely used by enthusiasts to maintain a certain standard
across the whole network. Grooming requests from local ski clubs, winter sport events
and competitions must be handled and included in the planning of the operations. These
events often set high standards for the snow grooming, requiring the grooming to be done
within specific time windows. Requests vary from being weekly requests known from the
start of the season to urgent short-term requests. The fact that requested segments are
mandatory complicates the planning.

According to Visit Lillehammer (2016), there were more than 700 snowcats grooming
track networks and alpine slopes in 2016. Popular areas have fleets of vehicles grooming
simultaneously to meet demand. Statistics Norway show an increase in cabins and holiday
homes in Norway, where an expected consequence is an increase in demand for cross-
country tracks (Statistisk Sentralbyrå, 2015a). Current track networks will therefore
probably undergo an increase in skier traffic, requiring additional networks or expansion
of the current ones to be practical. This will further increase the complexity of the SGP.
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Chapter 1. Introduction

New technology with GPS tracking of snowcats and websites like skisporet.no has made
it easier for skiers to find freshly groomed tracks, but for the facilitators of the networks,
helpful tools for planning grooming operations is hard to find.

The purpose of this report is to describe the problem of grooming a track network, and
based on a mathematical formulation, develop a model optimizing snow grooming oper-
ations on test instances. We examine an extension of the classical arc routing problem,
where we look at the problem of having multiple depots and a heterogeneous fleet. The
track network consists of broad and narrow segments, which are either requested, priori-
tized or regular. Requested segments have to be served within a given time window while
the others can be groomed without regard to time. The optional segments are diversified
by priority based on popularity for skiers, but are groomed without precedence to ensure
an efficient route through the network. This model can be the core of a decision support
system used by popular cross-country skiing areas where the planning of such opera-
tions is complex. Arc routing problems for snow plowing and road gritting have similar
attributes, but this constitutes the first known attempt of solving the Snow Grooming
Problem.

The report starts with an introduction to the different aspects of snow grooming in
Chapter 2. Literature related to arc routing is presented in Chapter 3, with special
emphasis on attributes relevant to the SGP. Important aspects of the SGP is described
in detail in Chapter 4 where we give a detailed description of the problem and its special
attributes. A mathematical model of the problem is outlined in Chapter 5. Specifics
regarding the implementation in LocalSolver is presented in Chapter 6 followed by test
instance generation and conversion in Chapter 7. In Chapter 8, we present the results of
a comprehensive computational study and a discussion of the most significant results. In
Chapter 9, we conclude our findings and give suggestions for further research.

Instead of making our own heuristic, we have chosen to use a commercial heuristic based
solver.
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Chapter 2
Background

This chapter starts with an introduction to the process of grooming ski tracks in Section
2.1. In Section 2.2 different tracks networks are presented, followed by Section 2.3 where
the various stakeholders of snow grooming operations are discussed. In Section 2.4,
the current planning procedure and problems for our test cases, Trondheim Bydrift and
Skiforeningen, are introduced and discussed.

2.1 Operations of Snow Grooming

In Norway, the municipalities are often responsible for the ski track networks, usually
sharing the responsibility with local ski clubs and commercial actors. The responsibility
includes off-season preparations, snow grooming and maintaining the track networks dur-
ing the season, and for some networks also depositing snow for the next season. Normally
the municipality has its own machine park which enables them to cover the complete set
of tasks required to ensure quality tracks for its users. An exception to this is the track
network in the Oslo area. Here, the responsibility lies with Skiforeningen, an organization
whose purpose is to expand the interest in cross country skiing (Skiforeningen, 2019).

Machinery

Grooming the snow, creating the corduroy texture and tracks, requires special machinery
and vehicles. The most important asset is the snowcat (see Figure 2.1), a belt-driven ve-
hicle with various areas of use. With an attached snow grooming system the snowcat can
fulfill all snow grooming operations for cross-country skiing networks. For the remainder
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Chapter 2. Background

of the report, we refer to this combined setup as snowcat only.

The snowcat shuffles the snow to remove air and compress it, making the snow harder
and more durable when skied upon. Weather conditions determine the extent of shuffling
needed, but in general, more massive machines and slower speeds have a positive impact
on the final result (Raap, 2015). The optimal operating speed is therefore dependent on
the current snow conditions, where the extremes are 1 km/h for very icy conditions and
as high as 17 km/h for optimal mid-compact conditions. The standard operating speed
lays around 12-15 km/h. The temperature also influences the choice of speed, where
lower temperatures mean the snowcat must operate a slower pace.

Snowcats are produced in various sizes for different purposes. The ones used for cross-
country skiing often are smaller than the ones for alpine slopes, to manage the curvy and
narrow features found in many track networks. For cross-country skiing, two different
scenarios are influencing the choice of snowcat size. Tracks set for only classic cross-
country skiing are narrower, while tracks for skate (often include classic simultaneously)
are wider and therefore require larger machinery. A groom for a combination of classic
and skate can be seen in Figure 2.2.

Figure 2.1: Example of snowcat used for
snow grooming operations

Figure 2.2: Track segment for both
classic and skate cross country skiing

Off- and Early-Season Preparations

Track networks require maintenance during the bare season to facilitate good results in
the winter. The surroundings and the underlying surface can vary from gravel or asphalt
roads in an open landscape to humid swamps in a dense forest. To improve the standard
of the network, facilitators look to leveling out bumpy surfaces, removing stumps and
other vegetation obstructing the snowcat. Segments like swamps and smaller stream
crossings might have to be strengthened with plastic nets and small bridges respectively,
to lengthen the season of the track (Vethe, 2018). Re-designing the network is also quite
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Chapter 2. Background

easily obtainable in less dense forests above the tree line, to increase the network’s season
in use.

Snowcats cannot be used for all snow levels. They require at least 50 centimeters of
regular snow or 30 centimeters of compressed snow (Finnland, 2018). Compressing the
snow can be done by snowmobiles to create the necessary base layer. An additional effect
of the base layer is lowering the ground temperature in the area, resulting in lower melting
rates of snowfalls to come.

Figure 2.3: Granåsen snow deposit

Since the base layer and ground temperature are crucial for ski tracks, especially at the
start of the season, some municipalities deposit snow during the summer (see Figure 2.3).
In Granåsen, Trondheim they have used this technique to kickstart the season for several
years. At the end of the season in 2018, they deposited 28000 m3 of snow and covered it
in sawdust to minimize melting. Approximately 75 % of the snow survived the summer,
which is sufficient for 3,3 kilometers of ski tracks, the ski jump facility and the biathlon
shooting range before the first snowfall (Jensen, 2018).

2.2 Track Networks

Networks vary in size and complexity from place to place. Some areas have huge and
intricate networks, while others have only a couple of closed loops of tracks. The com-
plexity comes from different track widths, the combination of prioritized and requested
track segments, track crossings, bridges, lakes, swamps and road crossings. Small net-
works are usually groomed by a single snowcat, while large networks have a larger fleet
and potentially multiple depots. Norway has hundreds of track networks, and Figure 2.4
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Chapter 2. Background

shows an overview of those in southern Norway. Figure 2.5 is a more detailed map of the
track network in Bymarka, Trondheim.

Figure 2.4: Overview of track networks
in southern Norway

Figure 2.5: The track network in
Bymarka, Trondheim

Track networks can be organized in different ways. The snowcat operators themselves
usually administer small and medium networks. That is the case for Trondheim Bydrift in
the Granåsen network. More extensive networks, like the one Skiforeningen is responsible
for, are divided into smaller and more manageable networks, clustering nearby track
segments to vehicle depots. Each network has its own snowcats and drivers, which can
either be Skiforeningens own employees or volunteers from local ski clubs, working free of
charge to ensure a top product for its athletes. Although each area is mostly autonomous
in Skiforeningen’s case, they also handle grooming requests and passes them on to the
responsible groomers of the designated area.

The layout of the network is seldom changed. For Skiforeningen, changing the layout is
almost impossible due to strict regulations for outland areas in the Oslo area, stated in
Klima- og miljødepartementet (2009) and the number of private landowners. The net-
works are therefore to a large extent considered fixed, with no possibility of re-designing
any segments. The only flexibility in these networks to enhance the effectiveness of the
operations is the positioning of the depots. For Trondheim Bydrift the case is quite dif-
ferent, as they do not have any regulations and are the sole landowner of most of the
district. This means they the possibility to perform changes and improvements of the
network, either for the sake of the athletes or the groomers.
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Chapter 2. Background

Track networks with stadiums and tracks meant for competitions are often very dense,
meaning they have many intersections and relatively short distances between them. Com-
petition tracks are mostly loops of 3, 5 or 10-kilometer loops, and should be groomed in a
single route so that skiers can use them at once. Grooming dense networks is often more
challenging to plan because of the numerous possibilities, while scattered networks with
fewer segments between intersections and longer track segments pose fewer options.

2.2.1 Lakes

The vast majority of tracks are on solid ground, but open fields such as frozen swamps
and lakes are popular among skiers. For the snowcats and their operators, this poses
a potential hazard of going through the ice. From 2006 up until today, April 2019, 65
snowcats have gone through the ice, killing six people (NVE, 2019). To mitigate the
risk of accidents, a minimum requirement for ice thickness along the entire crossing is
enforced in some places. In other areas, they do not permit grooming iced waters with
snowcats at all. Skiforeningen, as an example, only permits snowmobiles to groom over
waters. This complicates the planning even further and often implicates that larger lakes
become a boundary between two divided track networks.

2.3 Stakeholders

There are many stakeholders with different agendas regarding the snow grooming oper-
ation, the track network and the surrounding nature. The general public is the largest
stakeholder, visiting popular cabins serving food as well as the outskirts of the track
network. They are to some extent interested in quantity over quality when it comes to
grooming, and that the track networks are large enough and to handle popular days.
The second largest stakeholder is the ski clubs and high-schools for athletes. They will
normally have a set of routes that they regularly use for organized training activities,
and are mostly interested in top quality for these specific routes. They will also hand in
grooming requests for special events such as competitions. Primary schools and kinder-
gartens often have special requests for the grooming on an occasional basis, often open
fields with snow structures as jumps and bumps.

Environmentalists prefer as little activity as possible in nature, demanding less activity
in the forests and the mountains. Today’s snowcats have fossil fuel engines, and track
networks result in the cutting of trees and other interventions in nature. Asphalting track
segments close to parking lots to make rollerskiing possible during the summer is also on
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Chapter 2. Background

their agenda to stop. The municipalities want to facilitate for an active, local, population,
while at the same time preserve the regional nature and minimize local pollution in the
area.

2.4 Planning of Snow Grooming Operations

Decisions regarding which segments of the network to prioritize early in the season are
made in collaboration with the stakeholders. On a day to day basis, it is up to the snowcat
operators to determine which tracks to service and when to service them. Planning longer
time-spans is difficult and not robust enough, due to aspects like weather changes and
short-term grooming requests.

Aspects of Planning

During periods of consistent whether a weekly schedule for the network can be followed,
but with an occurrence of precipitation or a change in temperature, the schedule is of
little use. A snowfall resets the problem where all previously groomed segments will have
to be groomed again. Since consistent weather is the exception for most of the season,
the operators experience much overtime.

Fixed grooming schedules for more extended time periods are sub-optimal because the
process involves many unpredictable factors. The most unpredictable factor is the weather.
To obtain a good result, previous weather conditions combined with forecasts of the com-
ing period has to be taken into account. Snowfall, temperature and wind influence when
tracks should be groomed. The optimal scenario is to groom before a cold weather period,
resulting in a hard and durable groom, and right after a snowfall for a fresh top layer.

Grooming of track segments can in some municipalities be requested by stakeholders in
advance, either as a repetitive request throughout the season or as a one-time request
on an occasional basis. These requested tracks must be of a certain standard at a given
time of the day. To fulfill the requirements regarding the quality, the requested tracks
must be groomed within a given time window. The time window is set based on weather
forecasts and projected traffic of skiers in the network, a rule of thumb being finished an
hour before the start of the event. The total duration of the time window depends on the
size of the requested route. The possibility of requesting the grooming of certain tracks
results in a further complication of the route planning.

9
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These segments are often characterized by being close to large parking lots or leading to
serviced cabins. Other segments are used less, but still, they have to be groomed regularly
because of snowfalls. The goal is, therefore, to ensure top track quality for the most
popular tracks, while at the same time not neglecting the other segments, substantiating
the importance of planning. Track networks with multiple depots are faced with a more
complicated planning problem. Coordination of routes to minimize overlapping and non-
groomed track segments is obtainable, but hard to plan since the route selection of the
operators often is done ad hoc with incomplete information of the others’ plan.

With different sizes of snowcats and different widths of tracks comes the problem of
assigning the right snowcat to the right track segment. Large snowcats are typically too
wide to traverse narrow tracks with only classic skiing, meaning they can only be used
on wide tracks (with both classic and skate). The small snowcats are used for the narrow
tracks, but can also be delegated to grooming wide tracks. For a small snowcat to service
a wide track, it must traverse it twice.
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Chapter 3
Literature Survey

Our problem is a type of Arc Routing Problem (ARP), and in this chapter we will focus
on ARPs. We review the existing operations research literature on arc routing problems,
with special emphasis on the elements special to the snow grooming problem. We start
by introducing the history of arc routing and basic notation in Section 3.1. In Section
3.2 we introduce the fundamental routing problems and the notable difference between
node routing and arc routing. In Section 3.3 we look at how the fundamental problems
can be extended to cover more complex problems, in particular, the attributes related to
the snow grooming problem. Section 3.4 gives an overview of recent research on ARPs
and compares this to the Snow Grooming Problem. In Section 3.5 we put the snow
grooming problem in context with the relevant literature, and our contribution to the
field is discussed alongside our motivation for exploring this subject.

Note that in the following, we assume the reader is familiar with the basic terminology
and notation within Operations Research.
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3.1 Arc Routing

Arc routing problems are a family of problems within operational research, where the aim
is to determine the least-cost traversal of a specified arc subset, which may be subject to
various constraints (Eiselt et al., 1995). Such problems arise in many practical contexts
such as transport logistics and street sweeping and have been studied thoroughly by
mathematicians and operations researchers. Mail delivery and garbage collection are
Vehicle Routing Problems (VRPs), which means that the activity is on the nodes rather
than on the arcs, but are often formulated as ARPs. The first person to formalize an
ARP was Euler (1741), with the famous Bridges of Königsberg problem. The city of
Königsberg (now Kaliningrad) had seven bridges connecting two islands with the two
sides of the river. The people of Königsberg wanted to find a route that took them across
each bridge exactly one time. Euler proved this impossible, and in the process lay the
foundations for modern graph theory.

Figure 3.1: The Bridges of Königsberg problem, from geografic view to graph representation

There is some basic notation that is common to most ARPs, according to Laporte and
Osman (1995). Let G = (V,E∪A) be a graph where V = {v1, ...vn} is a set of nodes, A =

{(vi, vj) : i 6= j, vi, vj ∈ V } is a set of directed arcs, and E = {(vi, vj) : i < j, vi, vj ∈ V }
is a set of undirected edges. In most problems, either A = ∅ or E = ∅, resulting in either
a undirected or directed problem. If A,E 6= ∅, the problem is called a mixed problem.
Associated with each arc or edge there can be a cost cij or distance dij.

The term unicursal or Eulerian path describes a traversal through G containing each arc
exactly once and each vertex at least once. If the graph is directed, the number of arcs
entering and leaving each vertex must be equal for the existence of an Eulerian path. If
an Eulerian path starts and ends in the same vertex, it is called an Eulerian Cycle.
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Figure 3.2: Eulerian
path: A-B-C-D-A-C

Figure 3.3: Eulerian
cycle: A-B-C-D-A-C-A

Figure 3.4: Neither
Eulerian path or cycle

exists

3.2 Fundamental Arc Routing Problems

Arc routing is the process of finding the optimal route through a network, and there
are many variations of it. The problem is defined on a graph G = (V,E ∪ A), where
node v1 is a depot from which vehicles depart. The objective can be to find a least-
cost traversal, to minimize dead mileage, to maximize traversed arcs, etc. Several side
constraints can occur such as vehicle capacity, requested arcs, time windows, precedence
relations between arcs, and many more.

The most basic ARP is the Chinese Postman Problem (CPP). The problem was first
introduced by Kwan (1962) from Shangtun Normal College, China. Kwan defined the
problem as "a mailman has to cover his assigned segment before returning to the post
office. The problem is to find the shortest walking distance for the mailman". Thus the
problem is not to cover all nodes, but rather to cover all arcs. Street sweeping and garbage
collection are practical problems that fall under this category. The problem is similar to
the Bridges of Königsberg problem, as it spans over problems where no Eulerian paths
can be found and where the objective is to find a least-cost traversal.

The Windy Postman Problem (WPP) is similar to the CPP, but the cost of traversing
an arc is conditioned by the direction it is traversed. The name comes from the fact that
it is more strenuous to walk against the wind than with it. In practice, it could be that
an arc is either uphill or downhill or that sea currents influence arcs over water.

The arc routing equivalent to the VRP is known as the Capacitated Arc Routing Problem
(CARP). It was first suggested by Golden and Wong (1981), and is formally stated as
follows: Given a connected undirected graph G = (N,E,C,Q), where C is a cost matrix
and Q is a demand matrix, and given a number of identical vehicles each with capacity W,
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find a number of tours such that 1) Each arc with positive demand is serviced by exactly
one vehicle, 2) The sum of demand of those arcs serviced by each vehicle does not exceed
W, and 3) The total cost of the tours is minimized. The cost occurs on each traversal,
and each arc can be traversed multiple times.

3.3 Extensions

This section will cover ARPs which all have some of the components of the snow grooming
problem, and together they will be collectively exhaustive.

In the previously mentioned problems, the fleet is comprised of a set of identical vehi-
cles, known as a homogeneous fleet. When the vehicles are not identical, e.g. they are
characterized by different capacities or costs, the fleet becomes heterogeneous (HF). This
increases the problem complexity (Baldacci et al., 2008).

The Hierarchical Chinese Postman Problem (HCPP) is a variant of CPP where there are
precedence relations on the edges (Corberán and Prins, 2010). The set E is partitioned
into subsets, and if subset Ei precedes subset Ej, the edges of Ei must be serviced before
the edges of Ej. Generally, the HCPP is NP-hard, but according to Dror et al. (1987) it
can be solved in polynomial time if the precedence relations are linear and each subset
Ei induces a connected graph.

The Undirected Capacitated Arc Routing Problem with profits (UCARPP) is in the
group of ARPs where the objective is not to find a least-cost traversal, but rather to
maximize profits (max z). This group has many names, including "orienteering" and
"prize-collecting" problems. The UCARPP is defined on a given graph where profit,
demand and travel times are associated with each edge of a set of profitable edges. A
homogeneous fleet of capacitated vehicles is given to serve the profitable edges. The profit
can be collected by one vehicle only that also has to service the demand on the edge.
To maximize the total collected profits, the aim is to find a set of routes that satisfy the
capacity and total time constraints. Archetti et al. (2010) treats this problem thoroughly,
and gives both exact and heuristic solution methods.

Privatized Rural Postman Problems (PRPP), also referred to as the Prize-collecting Rural
Postman Problem, is analyzed thoroughly by Aráoz et al. (2006). The problem is defined
on an undirected graph, which contains a distinguished vertex d, called the Depot. Each
edge has a profit and a cost associated with traversing it, although the profit can only
be collected on the first traversal. The objective is to find a closed cycle C∗ that passes
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through d and maximizes the sum of the values on the edges traversed in C∗. Solutions
to this problem are further researched in the works of Aráoz et al. (2009).

The Team Orienteering Arc Routing Problem (TOARP) was recently reviewed by Archetti
et al. (2013). In addition to a set of potential customers that have a profit that is collected
when it is serviced, that is, when the associated arc is traversed, the problem contains a
set of regular customers that have to be serviced. The profit from a customer can only
be collected once. A fleet of homogeneous vehicles with a given maximum traveling time
is available. The objective is to identify the customers which maximize the total profit
collected while satisfying the given time limit for each vehicle.

Time Windows (TW) are introduced to ARPs when there exist time horizons for the
demand. An arc (ij) ∈ A have a demand Dij and a time window [T (ij), T )ij)], where
T ij and T ij represent the first and latest time to service arc (ij). Time windows can be
enforced hard or soft. Hard enforcing means that the constraints must be met, whereas
soft enforcing imposes a punishment for breaking the constraints. Reghioui et al. (2007)
introduces CARP with Time Windows (CARPTW) and a greedy randomized adaptive
search procedure (GRASP) heuristic to solve it.

In the work of Amberg et al. (2000) on Multiple Center Capacitated Arc Routing Prob-
lems (MCCARPs), two interesting extensions are introduced: multiple centers (MD) and
customer priority (CP). Multiple centers expand the model by introducing more than one
depot node so that vehicles start at different depots. Customer priority comes from the
fact that some edges may have a higher priority than others. Possible reasons for this can
be to prioritize backlogged edges, edges that are more valuable than others or edges that
for some other reasons are deemed more important than others. Amberg et al. (2000)
suggest adding an additional objective function to account for customer priority.

3.3.1 The Snow Grooming Problem Compared to Other ARPs

The Snow Grooming Problem (SGP) is multifaceted with respect to the attributes asso-
ciated with it. As Table 3.1 shows, all the attributes are covered to some degree by other
ARPs. To properly solve the Snow Grooming Problem all the mentioned attributes must
be taken into account, as we will show in our mathematical model in Chapter 5.
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Table 3.1: SGP compared to other ARPs

NDA HF Q Max z P(ij) MD TW CP

CPP x - - - - - - -
HCPP x - - - - - - x
CARP - - x - - - - -
UCARP x - x - - - - -
MCCARP - - x - - x - x
CARPTW - - x - - - x -
PRPP x x x x x - - -
TOARP - x x x x - - x
SGP x x x x x x x x

Table 3.1 compares the Snow Grooming Problem to other relevant ARPs. Readability is
sacrificed for compactness, so a description of the abbreviations follows: NDA is whether
the graph is directed or undirected (NonDirectional Arcs). HF stands for Heterogeneous
Fleet. Q is whether or not the vehicles are capacity constrained, and Max z is if the
objective function is a minimizing or maximizing function. P(ij) tells us if there is a price
to be collected on each arc/edge (ij). MD is an indicator of the existence of Multiple
Depots, TW stands for Time Windows and CP tells us if there is Customer Priority.
The conclusion to be drawn from Table 3.1 is that not only is this the first time the Snow
Grooming Problem is researched, but it is also the first time a problem with all these
features are looked at.

3.4 Applications of ARPs

For applications on ARPs, we will be reviewing the most recent research on the field.
The following articles all share similarities with the Snow Grooming Problem presented
in this thesis and will be discussed and compared thematically. The articles are cited
repeatedly and are therefore assigned a letter for recognition to ease the study.

[A] Solving the Large-Scale Min–Max K-Rural Postman Problem for Snow Plowing
Quirion-Blais et al. (2017a)

[B] Optimization Models for a Real-World Snow Plow Routing Problem Kinable et al.
(2016)
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[C] A Decision Support Approach for Postal Delivery and Waste Collection Services
Abbatecola et al. (2016) (vis at brukes ARP-metoder)

[D] Routing Problems with Time Dependencies or how Different are Trash Collection
or Newspaper Delivery from Street Sweeping or Winter Gritting? Golden et al.
(2017)

[E] A case study of combined winter road snow plowing and de-icer spreading Quirion-
Blais et al. (2017b)

3.4.1 Objective Function

All the covered articles aim to minimize the objective function, but there are some inter-
esting differences. Article [A] and [E] consider snow plowing, and aim to minimize the
total time spent plowing. [A] has a set of priority classes, and weighs the time according
to class. [E] also weighs according to priority classes, but introduces a penalty for the
time spent deadheading (i.e. driving without plowing). They both have a time counter
and regard the latest completion time of all the jobs.

Article [B] also considers snow plowing, but their objective function is a bit different as
it is only concerned about the last job that is finished. The objective is to minimize the
duration of the longest route, i.e. to minimize the makespan of the schedule.

In article [C] and [D] the aim is to minimize the total length covered. Article [C] covers
the problems of postal delivery and waste collection, while article [D] introduces a basic
model that can be applied to various arc routing problems.

The Snow Grooming Problem, on the other hand, aims to maximize the total length of
groomed ski tracks. This is because the fixed cost of the fleet is considered constant,
and the problem owners wish to provide as good a service as possible. The practical
difference between these objectives is that when maximizing with fixed costs, another
constraining parameter must be used. In the case of SGP, there is a penalty for traversing
already groomed tracks, which is somewhat comparable to deadheading in snow plowing
operations.

3.4.2 Arcs, Edges or Mixed

To get from one node to another, one must traverse an arc or an edge. An edge is a
connection that has no orientation and is undirected, whereas an arc is directed and can
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only be traversed in the given direction. Depending on whether the graph of the problem
contains edges, arcs, or a mix of these generally induce different solving strategies. In the
context of article [A] and [B], the graph is a mix of arcs and edges. In [A], all roads are
defined as edges, unless they are one-way restricted. Arcs must be serviced in the given
direction, and edges must be serviced once in any direction. In [B], roads with one and
two lanes respectively translates to two or four unidirectional arcs. If a road is narrow
enough to be serviced by only one traversal, it is considered an edge.

Article [C], [D] and [E] all deal with arcs exclusively. This is something that separates the
models in these articles from the SGP, as the SGP only contains undirected edges. This
simplifies the formulation of the problem, but complicates the graph transformations,
which will be discussed in Chapter 6.

3.4.3 Classes of Arcs and Edges

Labeling edges and arcs as "priority" or "requested" is a way to group edges and arcs
into classes with different attributes. Several priority classes can be implemented, and
handling these classes can be done in different ways. Both [A] and [E] all have a set
of priority classes. Common for both articles is that the arcs/edges in a higher priority
must be completed before continuing serving the lower prioritized ones. For [A] this rule
is implemented on a route level, where individual vehicles must start with the highest
priority classes that are available. In [E], on the other hand, the classes are enforced
globally over the entire network. Here, no vehicle can start on lower priority classes
before all higher classes are completed.

In article [C] and [D] there is no mention of priority classes or requests of any sort, while
in [B] priority classes is mentioned as a way to incorporate more features to the model.
None of the articles mention the term "requested arcs/edges". This is probably because
all arcs/edges are requested, and the object is to minimize the cost of servicing them.
This attribute is diametrically different from the SGP being a maximization problem.
Since the SGP is modeled as a prize collecting problem, it is unreasonable to say that
all edges must be serviced. Instead, there is a subset of requested edges for tracks that
must be serviced. The SGP includes no hierarchy of priority classes, and there is no
enforcement regarding time windows for these classes. Instead, they are weighted higher
in the objective function.
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3.4.4 Time Windows

The introduction of time windows for certain or all arcs/edges is done if there exist some
constraints as to when the traversal must happen. This can be done to ensure that roads
are plowed before rush hours or that mail is delivered in predetermined time slots. Of
the five articles in this study, only [C] and [D] address time windows in their models.
It is interesting to notice that the models containing objectives measured in time does
not contain time windows and that the models minimizing distance have them. This
shows that all models contain both distance and time variables; thus implementing time
windows can readily be done. For the SGP, there exist time windows only on requested
edges, whereas the time windows introduced in [C] and [D] yields for all arcs.

3.4.5 Exact, Heuristic or Metaheuristic Solution Method

The reader is considered to be familiar with the difference between exact and heuristic
solutions, but the distinction between heuristics and metaheuristics may require an ex-
planation. In short, a heuristic is a problem-specific technique fine-tuned to take full
advantage of the particularities of the problem. A metaheuristic can be viewed as an
extension used to guide an direct the heuristic, so it does not get trapped in a local
optimum. The reviewed articles are not consistent in the use of these terms. According
to this definition, all the reviewed heuristics are in fact metaheuristics, but the term
heuristics will be used for the rest of this report.

The articles display a wide variety of solutions: To solve the problem in article [A] a
construction-improvement metaheuristic, based on an improved adaptive large-neighborhood
search is given. Article [B] suggests a greedy construction with late acceptance improve-
ment of neighborhood operators heuristic, as well as an exact model and a constraint
programming model. In article [C] a two-phase heuristic algorithm is proposed. The
first phase is based on a clustering strategy, and the second phase is based on a farthest
insertion heuristic. Article [D] gives an exact model with zigzag constraints to give better
practical solutions. The model in [E] is solved with an adaptive large neighborhood search
heuristic. This algorithm is divided into two steps. Initially, a solution is built using a
simple construction heuristic. Then, the initial solution is sent to a best neighborhood
improvement step.

Of the articles under review, only [B] presents more than one way of solving the problem.
In the SGP an exact model is proposed, but no heuristic. Instead, a way of implementing
the model in the commercial solver LocalSolver is shown.
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3.4.6 Graph Transformation

In an early paper Pearn et al. (1987) shows how an arc routing problem can be transformed
into a vehicle routing problem. More recent studies, like the one done by Longo et al.
(2006) show improvements to this transformation, and also that the transformation in
many cases is beneficial to the run time of the solver. Accordingly, article [A] and [D]
have chosen to introduce a transformation from ARP to VRP. Their approach is based
on Longo et al. (2006) studies, but diverge slightly to accommodate the attributes of the
specific problem. Arcs and edges are treated differently in the transformation, and the
priority characteristic in the ARP model must survive the transformation.

The transformation in [A] starts with splitting the nodes and adds arcs for every possible
turn. It then continues by doubling all edged into pairwise opposite arcs. For all the
arcs in the ARP model, it then creates a node in the corresponding VRP model and uses
Dijkstra’s algorithm to compute the distances between the new nodes.

Article [C] contains problems usually modeled as ARPs but chooses to define it as VRP
from the start. This way, there is no transformation.

The difference between article [A] and [D] is that the problem in [D] comprises of 2
lane roads, and these road segments are transformed into four arcs represented by four
nodes. In [D] there is also no splitting of nodes or suggestion of algorithm for distance
computation.

The transformation used in the SGP is thoroughly introduced in Chapter 6.

3.5 Our Contribution

As Corberán and Prins (2010) points out, ARP is not nearly as well researched as its
node routing counterpart, although there has been an impressive development in the
last two decades. We aim to participate in and contribute to this development as we
use arc routing methodology on the problem of grooming ski track networks. As far as
our literature research goes, this has never been done before. With this article, we are
therefore breaking new ground in the use of arc routing.

Table 3.2 shows an overview of Section 3.4. It clearly shows how the SGP distinguishes
itself from other ARPs.
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Table 3.2: Comparing the SGP with recent research

Article
Objective
function

Arcs, edges
or mixed

Priority or
request

Time
windows

Solution
method

Graph
transformation

A
Minimizing total
completion time

Mixed Priority No Heuristic Yes

B
Minimize the
makespan

Mixed No No
Exact, Constraint
Programming
and Heuristic

No

C
Minimizing total
length covered

Arcs No Yes Heuristic No, defined as VRP

D
Minimizing total
length covered

Arcs No Yes Exact Yes

E
Minimizing total
completion time

Arcs Priority No Heuristic No

SGP
Maximize length of

groomed tracks
Edges

Priority and
request

Yes
Exact and using

LocalSolver
Yes
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Chapter 4
Problem Description

In this report, we address an extension of the classic arc routing problem. The problem
arises in cross-country skiing facilities around the world when scheduling grooming of the
track networks. The network in Granåsen and various networks in the Oslo and Akershus
area are used as examples. These networks are groomed and maintained by the municipal
enterprises, Trondheim Bydrift and Skiforeningen, respectively. Issues that arise when
modeling the problem is discussed in detail in this chapter.

The network is a set of tracks and intersections between them, where each track segment
belongs to one of three different size categories; wide, narrow and scooter trail. The
characteristics of a track segment can only change at the intersections. In general, the
network is non-directional, meaning that it does not matter in which direction the vehicle
traverses the edge. A network of ski tracks generally contains many intersections and
relatively few track segments between every pair of intersections. Each segment of the
track has a well-defined length and topography.

On narrow tracks, the small snowcat can choose to groom either two classic sections or
a combination of classic and skate. This is a dynamic setting the operator can set with
negligible setup time and cost. For broader track segments, a little snowcat will have to
traverse the segment twice to be able to groom the whole width. The solution is often to
acquire a larger snowcat for networks with many skate segments, which will only have to
traverse these segments once. These large snowcats are unable to traverse the narrower
segments. A noteworthy mention is that although wide track segments are named skate
segments in this report, they are generally groomed for classic as well (see Figure 2.2,
p. 5). Every intersection poses a possibility for change in track type, complicating the
route planning and choice of snowcat type for the route. Different vehicles have similar
attributes apart from width and range. They operate at identical speeds under the
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same weather conditions. Within each vehicle size, there are no significant differences.
Therefore all track segments of the same type can be groomed by the same vehicles. The
employees have full-time contracts, so costs related to wages are fixed and the available
working hours can be fully utilized if necessary.

Figure 4.1 is a snippet of the larger track network in Bymarka, Trondheim, which is
presented in the form of a graph in Figure 4.2. The green highlighted segments are
prioritized and the red highlighted segments are requested. The double lines represent a
wide track segment. The node 10 is an auxiliary node created to connect node 6 and 7
with two different edges. The distance from node 6 to node 10 is therefore set to 0. Node
5 is the depot node, where the fleet consists of one small and one large snowcat.

Figure 4.1: Small part of the track
network in Bymarka, Trondheim

Figure 4.2: Graphical representation of
the map in Figure 4.1. Arc distances are
labelled, whereas node 10 is an auxilary

node

Some networks contain multiple depots, meaning that vehicles start and stop at different
locations. When a track segment is groomed, there is no added benefit by grooming it
over again, and it may even be undesirable for the skiing conditions during periods of
consistent weather conditions. This gives that when faced with multiple depots, the aim
is to groom as much of the track network as possible while minimizing double-grooming.

The sequence of which the tracks should be groomed is dependent on various factors.
Geographic positioning relative to the vehicle depot, user popularity, and local weather
differences are the most important ones. There are also some track segments that are
requested by ski clubs and other organizations. The request includes the track segments
in question and information about the time of their activities. These segments have to
be groomed in a given time window before the start time of the event to ensure a good
end product. Popular segments are labeled as prioritized during planning to ensure that
they are of a good standard.

The problem aims to determine how the track network should be groomed. That is,
which vehicles should groom which track segments, and at what time. The purpose is to
ensure the effective use of the resources available.
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Mathematical Model

In this section, we introduce the mathematical model based on the problem description
in Chapter 4. Some assumptions and simplifications are made to the initial problem,
and these are presented in Section 5.1. The notation used in the model is introduced in
Section 5.2. In Section 5.3 we present the objective function first, and then the constraints
are explained group-wise.

5.1 Modelling Assumptions

Based on the problem description in Chapter 4, some assumptions have to be made. The
aim of the problem is to maximize the length of groomed tracks, while at the same time
minimizing the time spent grooming. This incentivizes finding efficient driving routes
and discourages traversing edges more than once.

Costs of grooming operations are not included in the model. Describing the problem for
daily operations, long-term overhead costs like inventory and wages are considered sunk.
The weather conditions affect the snow conditions, consequently affecting the grooming
operations. Inconsistent weather conditions complicate long-term planning of grooming
operations. We have simplified the complexity resulting from weather conditions by
limiting the planning horizon to one day. In a single day, the weather conditions are known
and consistent and do not include future weather conditions. This way, the weather is
factored out of our model.

Juridically, employees are to follow the Work Environment Act (Lovdata, 2006), which
is legislation stipulating allowable labor hours for the worker. In practice, the employees
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work longer shifts than the law accepts due to snowfalls and other unexpected weather
changes. By handling weather conditions as a fixed input, the only impact the weather
has is on the operating speed of the vehicles. The model is therefore based on fixed
working hours imposed as an upper bound with no possibility of overtime.

The vehicles have a range that is assumed to be constant. In reality, it would vary
according to operating speed, and it is possible for the drivers to bring along extra fuel if
they embark on long rides. It is hard to quantify the relations between fuel consumption
and driving speed, so the available range is determined by fuel capacity and a constant
consumption given by the manufacturer.

i j i j

(ij) ij and ji

Figure 5.1: Edges and arcs

5.2 Notation

We denote the track segments as edges and the intersections as nodes. The problem
is modeled over a network of edges and nodes. When more than one segment directly
connects two intersections, additional nodes and edges are introduced. To ensure a logical
flow through the network, the edges are modeled as directed arcs going both ways between
two intersections, as shown in Figure 5.1. The arc notation is required to ensure flow
and keep track of the time consumption, while the edge notation is required since the
direction the segments are traversed is irrelevant for the quality, and therefore irrelevant
for the objective.

Each edge can be traversed multiple times and each node can be visited each time, which
creates a challenge with describing the route of a vehicle. Since the time an edge is
traversed is essential, we introduce the notion of legs to describe the sequence, ass seen
in Gundersen et al. (2017). The leg index numbers each edge in the route consecutively,
allowing for multiple traversals of edges and multiple visits at nodes.

To handle requested edges, that need to be visited within a given time window, a new
variable is created. This variable selects one, of possibly many, traversal and forces it
to be within the time window. On broad edges, the request is duplicated to account for
the different sizes of vehicles. A large snowcat is able to service both requests at one
traversal, whereas the small vehicle can only service one at a time.
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Sets
K Set of vehicles, k ∈ K
KS Set of small vehicles,KS ⊆ K
KL Set of large vehicles,KL ⊆ K
N Set of possible legs, n ∈ N
V Set of nodes, i, j ∈ V
E Set of edges, (ij) ∈ E
EP Set of prioritized edges, EP ⊆ E
EB Set of broad edges, (ij) ∈ EB, EB ⊆ E
ER Set of requested edges with time windows, (ij) ∈ ER, ER ⊆ EB

A Set of arcs, ij ∈ A

Parameters
L(ij) Length of edge (ij), and arcs ij and ji
S Operating speed for all vehicles

T(ij) Time used to traverse edge (ij), and arcs ij and ji, T(ij) =
L(ij)

S
Hk Available work hours for vehicle k
Rk Range of vehicle k
i(k) First and last node that vehicle k must visit
W Award per length for grooming a prioritized edge
C Penalty per time unit used
T (ij), T (ij) Lower and upper bound of time window for edge (ij) ∈ ER

Variables

xkijn

1, if vehicle k grooms arc ij on leg n

0, otherwise.

wk(ij)n

1, if edge (ij) ∈ ER is serviced by vehicle k on leg n

0, otherwise.

v(ij)

1, if edge (ij) is serviced

0, otherwise.

tkn start time for vehicle k on leg n
τk(ij) time when edge (ij) ∈ ER is serviced by vehicle k
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5.3 Model

Objective function

max z =
∑

(ij)∈E\EP
L(ij)v(ij) + W

∑
(ij)∈EP

L(ij)v(ij)

− C
∑
k∈K

∑
ij∈A

∑
n∈N

T(ij)xkijn (5.1)

The objective function maximizes the length of tracks groomed, rewards grooming of
prioritized tracks and penalizes the traversal of a track more than once.

Routing constraints

xk0i(k)1 = 1 k ∈ K (5.2)∑
ij∈A

xkijn =
∑
ji∈A

xkji(n+1) k ∈ K, j ∈ V , n ∈ N \ |N | (5.3)

∑
n∈N

xki(k)0n = 1 k ∈ K (5.4)

Constraints (5.2) and (5.4) state that vehicle k must start and end its route in its depot
i(k), where 0 is an artificial depot to handle multiple depots. This is done in ARP form,
by fixating that the first traversed edge for vehicle k starts in super node 0 and ends at
its depot i(k), and vice versa with its last traversed edge. The super node is not a part
of the set of nodes V . Constraints (5.3) ensure the flow of vehicles through the nodes. It
states that if vehicle k enters node j, it must exit this same node on its next leg.

Non-directional constraints

v(ij) ≤
∑
k∈KS

∑
n∈N

xkijn +
∑
k∈KS

∑
n∈N

xkjin (ij) ∈ E \ EB (5.5)

v(ij) ≤
∑
k∈KL

∑
n∈N

xkijn +
∑
k∈KL

∑
n∈N

xkjin

+
1

2

∑
k∈KS

∑
n∈N

xkijn +
1

2

∑
k∈KS

∑
n∈N

xkjin (ij) ∈ EB (5.6)
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Constraints (5.5) and (5.6) are constraints that keep track of if an edge (ij) is serviced or
not. The right side of the constraints contain both arc ij and arc ji, so the model becomes
non-directional. Constraints (5.6) also says that for broad edges a small vehicle must
service the edge twice, while large vehicles only need one service traversal. Constraints
(5.6) ensure that only small vehicles are counted on narrow edges.

Capacity constraints∑
ij∈A

∑
n∈N

T(ij)xkijn ≤ Hk k ∈ K (5.7)

∑
ij∈A

∑
n∈N

L(ij)xkijn ≤ Rk k ∈ K (5.8)

Constraints (5.7) make sure the route assigned to vehicle k is shorter than hk hours.
Constraints (5.8) constrain the length of the route based on the vehicles’ ranges. Only
one of these constraints will be binding for each vehicle, depending on the set speed S.

Time window constraints

τk(ij) ≥ tkn −M(1− wk(ij)n) k ∈ K, (ij) ∈ ER, n ∈ N (5.9)

τk(ij) ≤ tkn +M(1− wk(ij)n) k ∈ K, (ij) ∈ ER, n ∈ N (5.10)

T (ij) ≤ τk(ij) ≤ T (ij) k ∈ K, (ij) ∈ ER (5.11)

tk(n+1) ≥ tkn +
∑
ij∈A

T(ij)xkijn k ∈ K, n ∈ N (5.12)

Constraints (5.9) and (5.10) link the τ -variable to the t-variable. Constraints (5.11) make
sure that the requested edges are serviced within their time window. Constraints (5.12)
update the starting time for vehicle k on leg (n+ 1) by adding the time used on leg n to
the starting time of leg n.

Requested edges constraints

wk(ij)n ≤ xkijn + xkjin k ∈ KL, (ij) ∈ ER,

n ∈ N (5.13)

2
∑
k∈KL

∑
n∈N

wk(ij)n +
∑
k∈KS

∑
n∈N

wk(ij)n = 2 (ij) ∈ ER ∩ EB (5.14)

∑
k∈KS

∑
n∈N

wk(ij)n = 1 (ij) ∈ ER ∩ (E \ EB) (5.15)
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Constraints (5.13) link the x-variable with the w-variable, so that a requested edge is
considered serviced independent of which direction it is serviced. Constraints (5.14) state
that the prioritized track segments must be serviced, either once by a large vehicle or
twice by a small vehicle. Constraints (5.15) state that narrow requested edges must be
serviced by a small vehicle

Non-negativity and binary constraints

xkijn ∈ {0, 1} k ∈ K, ij ∈ A, n ∈ N (5.16)

wk(ij)n ∈ {0, 1} k ∈ K, (ij) ∈ ER, n ∈ N (5.17)

v(ij) ∈ {0, 1} (ij) ∈ E , i < j (5.18)

tkn ≥ 0 k ∈ K, n ∈ N (5.19)

τk(ij) ≥ 0 k ∈ K, (ij) ∈ ER (5.20)

Constraints (5.16)-(5.18) are binary constraints, while (5.19) and (5.20) ensure non-
negativity.

Variables xkijn and wk(ij)n for large vehicles are not generated for narrow edges.

5.3.1 Big-M

Constraints (5.9) and (5.10) contains an M -parameter. The Big-M method is used to
ensure that all feasible solutions are obtainable for all allowed values of the variables,
while at the same time tightening the formulation. In this case, Big-M is used to require
that requested edges are constrained by time windows (τk(ij) = tkn when wk(ij)n = 1),
while the remaining edges are not. The value of M is derived as follows:

For: wk(ij)n = 0 wk(ij)n = 1

τk(ij) ≥ tkn −M τk(ij) ≥ tkn

τk(ij) ≤ tkn +M τk(ij) ≤ tkn

=⇒ −M ≤ τk(ij) − tkn ≤M τk(ij) = tkn
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We see that for M to be as tight as possible, we have that M = max{|τk(ij) − tkn|} =
max{|τk(ij)|, |tkn|}. The maximum values that τk(ij) and tkn can take is max{Rk

S
, Hk}.

This is analogue to saying that the latest time a leg can be assigned is either the range
of the vehicle divides with the speed at which it operates or the available work hours,
whichever is the largest. For the rest of the thesis, we use M for simplicity.

5.4 Symmetry-Breaking Constraints

To improve the model introduced in Section 5.3 it is possible to add symmetry-breaking
constraints. Symmetries are easily discoverable in the ARP formulation. Even though the
fleet of vehicles is heterogeneous, the vehicles are partitioned into subgroups consisting of
identical vehicles. Swapping routes in-between identical vehicles yields identical solutions
from a practical point of view, but are mathematically different. In these cases, one can
permute which vehicle is assigned to each route without changing the optimal solution.
Introducing symmetry-breaking constraints removes part of the solution space without
cutting away any solutions of practical difference.

To reduce the symmetric solutions we introduce two pairs of lexicographic ordering con-
straints, 5.21-5.22 and 5.23-5.24.

Number of arcs∑
(ij)∈EB

∑
n∈N

xkijn ≥
∑

(ij)∈EB

∑
n∈N

x(k+1)ijn k ∈ KL | k < |KL| (5.21)

∑
(ij)∈E

∑
n∈N

xkijn ≥
∑
(ij)∈E

∑
n∈N

x(k+1)ijn k ∈ KS | k < |KS| (5.22)

Constraints (5.21) and (5.22) state that the vehicle with the lowest index number should
service the most arcs

Service period∑
(ij)∈EB

∑
n∈N

T(ij)xkijn ≥
∑

(ij)∈EB

∑
n∈N

T(ij)x(k+1)ijn k ∈ KL | k < |KL| (5.23)

∑
(ij)∈E

∑
n∈N

T(ij)xkijn ≥
∑
(ij)∈E

∑
n∈N

T(ij)x(k+1)ijn k ∈ KS | k < |KL| (5.24)
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Constraints (5.23) and (5.24) state that the route with the longest operation duration is
designated the vehicle with the lowest index

The two sets of constraints are mutually exclusive, and cannot be implemented at the
same time with the guarantee that the optimal solution will not be cut. In Chapter 8.1.1
we show the effect of implementing these sets of constraints.

5.5 Reducing Number of Variables Generated

In an attempt to minimize the runtime of the model, a way to reduce the number of
variables generated is suggested. The variable xk(ij)n is by default made for every possible
index. This is done uncritically and without insight into the structure of the problem.
Choosing not to generate variables that are not in the solution space can possibly make
the model run faster. We introduce an algorithm for cutting variables and examine the
effect it has on the computation time.

The key insight to this algorithm is that edges far out in the network cannot be reached
on early legs (low n).

Algorithm 1 Reducing variable generation
Initialize n
Initialize edges, (En = E0 = E)
Initialize starting points in depot nodes, (i(k))
while Entire network not traversed, (En 6= ∅) do

Take one step in all possible directions not yet traversed, start with n = 1

Subtract traversed edges in step n from En, (En−1 ← En - newly traversed edges)
n← n+ 1

end while
for each step taken, (n) do

Exclude xk(ij)n from the variable generation for all (ij) in En

end for
Return variables

The example graph in 5.2 is used as an illustration for the Algorithm 1. The red edges
are all traversable from the depot node 5 and therefore excluded from the set E0 to make
E1. The green edges are traversable in leg n = 2, and similarly cut from the set E1 to
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make E2. The algorithm continues until all edges are traversed. With the sets En created,
the cutting of unnecessary variables can begin.

1 2 3

4

5

6

7

8 9

10

n = 3 n = 2 n = 1
5

Figure 5.2: Algorithm 1 on an example graph
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Chapter 6
Implementation in LocalSolver

6.1 LocalSolver Implementation

As the authors concluded in the project thesis leading up to this masters thesis, solving
the Snow Grooming Problem as an ARP to optimality is not effective. The linear solution
method is only able to handle rather small instances in a reasonable time, resulting in an
insufficient method for practical use. Track networks may contain more than a hundred
arcs, while the ARP model only handled 37 within 3600 seconds. To solve larger instances,
other solution methods are required. In this chapter, we introduce an approach where the
problem is translated into a Vehicle Routing Problem (VRP) and solved in a commercial
heuristic based solver called LocalSolver.

6.1.1 LocalSolver

LocalSolver is a mathematical optimization solver unlike classical solvers such as mixed-
integer linear programming, constraint programming and nonlinear programming. What
is unique with LocalSolver is that it can combine different optimization techniques with-
out needing any parameter tuning. The exact working of the solver is a trade secret, but
according to their website LocalSolver (2019) the solver is able to hybridize different op-
timization techniques dynamically. They claim that it combines constraint propagation
and inference techniques, local and direct search techniques, linear and mixed-integer
programming, as well as nonlinear programming techniques. Benoist et al. (2011) intro-
duces a closer look into the inner workings of LocalSolver, and shows how it is based on
a local search procedure with specially engineered ways of evaluating moves.
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LocalSolver is superior to other OR solution technologies when it comes to scalability, and
according to Blum and Santos (2019) it outperforms several other solvers. LocalSolver
scales nearly linear to problem size. This makes it able to efficiently handle large, real-life
problems with reliability and robustness, which is out of scope for classical solvers. Since
we have chosen LocalSolver as our commercial solver, we must translate the model from
ARP to VRP. This is because LocalSolver does not handle arc type problems. This is
likely an economic decision based on the fact that VRP is more researched and more
widely used.

6.2 Translating Model from ARP to VRP

Based on the literature study presented in Chapter 3 arc routing is a less researched
field than node routing for optimization problems. Solution methods for node routing
problems, such as vehicle routing problems (VRP), are therefore more effective and can
handle larger instances. Translating an ARP into a VRP result in a more extensive
network of nodes and arcs/edges, but the solution methods possible for VRPs are still
outperforming ARP methods. Another highly connected reason for translating to VRP
is that LocalSolver is not capable of directly understanding ARPs.

The arc routing model introduced in Chapter 5 is an intuitive presentation of the snow
grooming problem, where edges and nodes are track segments and intersections, respec-
tively. The characteristics of a VRP limits the possibility of visiting a node more than
once, which in the SGP is both legal and necessary to not cut feasible solutions.

Many of our ideas come from Laporte (1997). Their approach on how to transform ARPs
to Traveling Salesman Problems (TSPs) is shown to work well on low-density graphs
containing few edges. This is according to graphs usually seen in the SGP.

Since each track segment can be traversed in both directions, we start by defining the
ARP edges as pairs of opposite arcs. The edge ij for i < j in the original ARP graph
gives arcs ŝ and s̃ which in turn is turned into nodes in the VRP. Arc ŝ is defined for arc
(ij) with i < j, and s̃ is defined for arc (ij) with i > j. The completion of one of these
nodes corresponds to a fulfilled traversal in the original ARP. For broad arcs we have
the nodes ŝ, ŝ2 and s̃, s̃2. To successfully traverse a broad arc in the ARP model, two of
these four nodes need to be completed. A small snowcat can visit one node at a time,
whereas a large snowcat can visit two at a time. The set of nodes in the VRP is denoted
S. To preserve the attributes of the nodes corresponding to edges in the ARP, the pairs
of nodes are concatenated into jobs in the set P . Various subsets of these nodes and jobs
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are introduced in the complete model below.

1

2 3

1

2 3

â
ã

ĉ

c̃

b̃
b̃2

b̂b̂2becomes

Figure 6.1: From edges to arcs

b̃

â

b̃2

ĉ

b̂

b̂2

ã

c̃

Figure 6.2: Arcs turned into nodes, with new arcs connecting the nodes

The arcs in figure 6.2 gives the underlying information of neighboring jobs and how these
jobs are connected in the initial ARP. In VRPs on the other hand, the vehicles must be
able to visit any node, regardless of the current position. This means one must have a
distance matrix that takes into account the shortest path from any node s to all other
nodes and provides the corresponding distance. To produce this distance matrix, the
Floyd-Warshall algorithm (Pallottino, 1984) is used on the underlying graph. Figure 6.3
shows the complete transformation to a VRP graph. Together with the distance matrix,
we have the basis for our new VRP model.
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b̃

â

b̃2

ĉ

b̂

b̂2

ã
c̃

Figure 6.3: The complete VRP graph after transformation

6.2.1 Depot Nodes

The depot node in the ARP model in translated into the VRP by constructing an artificial
depot (DA) and assigning two arcs between these. This gives us segments Ok and Dk for
Origin and Destination, which is the first and last job vehicle k must do. The length of
these is set to zero.

1

D

2

Figure 6.4: Network with depot

1

D

2

DA

a
ã

c

c̃

b
b̃

Ok

Dk

Figure 6.5: Network with artificial depot introduced

For implementation, all arcs are given time windows. The arcs which are not requested
are given non-constraining time windows that are open the entire planning horizon. We
also set tkO = 0 for all k, which corresponds to all vehicles start at time 0.
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6.3 The VRP Model

Sets
K Set of vehicles, k ∈ K
KS Set of small vehicles,KS ⊆ K
KL Set of large vehicles,KL ⊆ K
A Set of arcs, (st) ∈ A
S Set of nodes, s ∈ S
P Set of jobs, p ∈ P
PP Set of prioritized jobs, p ∈ PP , PP ⊆ P
Sp Set of nodes corresponding to job p, s ∈ Sp, Sp ⊆ S
PB Set of broad jobs, p ∈ PB, PB ⊆ P
PR Set of requested jobs, p ∈ PR, PR ⊆ P
N Set of all nodes including Ok and Dk

Parameters
Lp Segment length of job (segment) p
Lst Distance between node s and node t
S Operating speed for all vehicles

Tst Time usage of doing job s and traversing to job t, Tst =
Lst

S
Hk Available work hours for vehicle k
Rk Range of vehicle k
Ok, Dk Origin and destination node for vehicle k
W Unit award for finishing a prioritized job
C Penalty per time unit used
T s, T s Lower and upper bound of time window for job s ∈ SR

Variables

xkst

1, if vehicle k travels from node s to node t

0, otherwise.

vp

1, if job p fulfilled

0, otherwise.

tks Time vehicle k starts to service node s
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max z =
∑

p∈P\PP

Lpvp + W
∑
p∈PP

Lpvp

− C
∑
k∈K

∑
s∈N

∑
t∈N

Tstxkst (6.1)

∑
t∈N

xkOkt = 1 k ∈ K (6.2)

∑
s∈N

xksu =
∑
t∈N

xkut k ∈ K, u ∈ S, (6.3)

∑
s∈N

xksDk
= 1 k ∈ K (6.4)

vp = 1 p ∈ PR (6.5)

vp =
∑
k∈KS

∑
s∈Sp

∑
t∈N

xkst p ∈ P \ PB (6.6)

vp =
∑
k∈KL

∑
s∈Sp

∑
t∈N

xkst +
1

2

∑
k∈KS

∑
s∈Sp

∑
t∈N

xkst p ∈ PB (6.7)

∑
s∈S

∑
t∈S

Tstxkst ≤ Hk k ∈ K (6.8)

∑
s∈S

∑
t∈S

Lstxkst ≤ Rk k ∈ K (6.9)

tks + Tst −Mst(1− xkst) ≤ tkt k ∈ K, s, t ∈ S (6.10)

T s ≤ tks ≤ T s k ∈ K, p ∈ PR, s ∈ Sp (6.11)

xkst ∈ {0, 1} k ∈ K, s, t ∈ N , (6.12)

vp ∈ {0, 1} p ∈ P (6.13)

tks ≥ 0 k ∈ K (6.14)

The objective function (6.1) maximizes the length of fulfilled nodes and is punished for
the time used. Constraints (6.2) and (6.4) indicate that each vehicle must leave their
depot origin Ok and arrive at their depot destination Dk. Constraints (6.3) state that
after a vehicle arrives at a node, it has to leave for another node. Constraints (6.5)
demand that all requested jobs are done. Constraints (6.6) and (6.7) keep track of jobs
who are to be considered fulfilled in the original ARP problem, for narrow and broad jobs
respectively. Constraints (6.8) and (6.9) are capacity constraints, stating that no vehicle
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can be assigned a route that exceeds its available working hours or range. Constraints
(6.10) establish the relationship between the vehicle departure time from a node and
its immediate successor. Finally constraints (6.11) affirm that service within the given
time windows is accounted for. (6.12) and (6.13) are binary constraints, and (6.14) are
non-negativity constraints.

The Big M in constraint (6.10) can be expressed as:

Mst = max
(
T s + Tst − T t

)
(s, t) ∈ A (6.15)

For each vehicle, the service start variables in constraints (6.2) impose a unique route
direction. This eliminates any subtours and makes classical VRP subtour elimination
constraints redundant.

6.3.1 Differences Between the Arc Routing and Vehicle Routing

Model

We see that in the VRP model the ARP variable xkijn becomes the VRP variable xkst.
It is worth noting that the n-index is missing in the VRP variable. In the ARP model,
this index keeps track of which leg the arc (ij) is traversed on. Due to the nature of the
VRP model, this index is redundant. We also note that the ARP variable τk(ij) is missing
in the VRP model, along with the equations (5.9) and (5.10), which is also due to the
removed n-index.
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Chapter 7
Test Instances

This chapter presents the test instances used to compare the different models in Chapter
8. Section 7.1 describes how the instances are generated for the ARP model introduced in
Chapter 5. For the instances to be possible to use as input for the VRP model introduced
in Section 6.3 a translation of the instances is necessary. The most crucial considerations
regarding this translation is presented in Section 7.2.

7.1 Instance Generation for the ARP Model

Making realistic test cases which mimic real life track networks is challenging. Track net-
works vary greatly with regards to graph density and how intersections are intertwined
and might include special attributes not found generally. Making fictitious networks
is therefore considered to not fully capture the nature of real networks. Accordingly,
we have decided to replicate real networks in our data sets. These are made manually
based on the maps from a public GIS tool covering Norwegian track networks. Although
this process is labor intensive, it is considered necessary for getting good test instances
with the appropriate features. Information regarding the networks is gathered through
interviews with Trondheim Bydrift and Skiforeningen, which are the organizers of the
grooming operations in the Trondheim and Oslo municipality, respectively. The informa-
tion gathered ranges from which track segments are priority or requested and which are
broad or narrow. Their fleet of vehicles is also regarded, and the range and operating
speed of the vehicles are asserted. For prioritized edges, the corresponding time windows
are allocated. Edges that are not requested have time windows set equal to the whole
time-span of the operations, never constraining the model.

44



Chapter 7. Test Instances

With the map over the track network as support, we start by numbering all intersection
and placing them in the set of all nodes. Then all track segments from intersections i to
j with i < j is named ij an put into the set off all edges. Afterward, the subsets of arc
type and arc width are created based on the information from Trondheim Bydrift and
Skiforeningen. The length of all edges is gathered from www.skisporet.no. Traversing
times are computed proportionally based on the length of the edges, meaning no special
considerations are taken regarding a change in altitude or local conditions possibly af-
fecting the speed. This minor simplification is backed by the interviews with Trondheim
Bydrift and Skiforeningen, where the operating speed is considered constant for equal
conditions.

In the real track networks, there are sometimes two track segments directly connecting
two intersections. This proposes a problem with naming since there cannot be more than
one edge called ij. To solve this an auxiliary node is placed on one of the edges, and a
new edge with length 0 is added for connection. For a descriptive figure of this operation,
see Figure 4.2 in the Chapter 4.

A total of 11 different test instances for different network sizes have been generated for
both the exact and heuristic method. Different fleet compositions, totaling 1-4 vehicles,
implies that each instance presented in Table 7.1 holds 24 internal variations. In addition
to these, larger instances containing 50-173 nodes have been generated solely for the VRP
formulation, to test its performance on practical problem sizes.

Table 7.1: Characteristics of the test instances. Each column holds information regarding the
size of the instance. The number of intersections and track segments is indicated by #Nodes

and #Edges, respectively. #Broad,#Priority and #Requested indicates how many broad edges
there are in the network, and how many prioritized and requested edges the instance includes.

#Legs specifies the maximum amount of legs a vehicle’s route can exist of.

Instance #Nodes #Edges #Broad #Priority #Requested #Legs
14nodes.txt 14 22 12 6 4 44
16nodes.txt 16 25 12 6 4 50
18nodes.txt 18 28 12 6 4 56
20nodes.txt 20 32 14 6 4 64
22nodes.txt 22 35 16 6 4 70
24nodes.txt 24 38 16 6 6 76
26nodes.txt 26 41 16 6 6 82
28nodes.txt 28 46 16 6 6 92
30nodes.txt 30 49 19 8 6 98
32nodes.txt 32 52 19 8 6 104
37nodes.txt 37 53 21 10 14 106
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7.2 Conversion of Input Data for the VRP Formulation

The transition from ARP to VRP results in a substantial change in input data, based on
the logic presented in Chapter 6.2. The VRP problem is larger in size than the original
ARP, and the number of nodes depends on the number of narrow and wide arcs. The
behavior of the transformation is shown in Table 7.2.

Table 7.2: Attributes of the ARP and VRP test instances. Each row shows the transition
from the ARP to the VRP representation of the test instances, illustrating the increasing size
of the problem. Each edge in ARP becomes a job consisting of a pair of nodes (each broad

edge yields an additional, identical, duplicate of the pair) in the VRP. The VRP also includes
the artificial depot nodes.

ARP attributes VRP attributes

#Intersections #Edges #Broad #Jobpairs #Nodes

14nodes.txt 14 22 12 22 70
16nodes.txt 16 25 12 25 76
18nodes.txt 18 28 12 28 90
20nodes.txt 20 32 14 32 98
22nodes.txt 22 35 16 35 104
24nodes.txt 24 38 16 38 114
26nodes.txt 26 41 16 41 122
28nodes.txt 28 46 16 46 128
30nodes.txt 30 49 19 49 140
32nodes.txt 32 52 19 52 146
37nodes.txt 37 53 21 53 150

Apart from the artificial depot in the original graph from the ARP, it is possible to reach
any other edge in the graph regardless of the vehicle’s current position. The transformed
graph is therefore very dense, given every node is neighboring every other node, as shown
in Figure 6.3. The distances between every node pair cannot be obtained directly from
the original graph, and since a node in the transformed graph represents an arc with a
different start and end position the distance matrices are computed based on an adapted
version of the Floyd-Warshall algorithm. The shortest path algorithm was published by
Floyd (1962) and is based on dynamic programming. It has a runtime complexity of
O(V 3) where V is the number of nodes in the transformed ARP graph, and the objective
is to find the shortest path between every pair of nodes. The distance between a pair
has to be the shortest existing path for the objective values of the two models to be
comparable. Algorithm 2 is run twice, for both small and large snowcats.
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Algorithm 2 Floyd-Warshall
Initialize set of nodes, N
Initialize length of job at every node, nodeDist
Initialize start and end point for every node, (nstart, nend)
Initialize a large value M, e.g. M = 1

2

∑N
p=n nodeDist(p)

for (p in N , q in N ) do
if nend(p) = nstart(q) then

DistanceMatrix[p][q] = nodeDist(p)

else
DistanceMatrix[p][q] =M

end if
end for
for (p in N , q in N , r in N ) do

if DistanceMatrix[q][r] > DistanceMatrix[q][p] +DistanceMatrix[p][r] then
DistanceMatrix[q][r] = DistanceMatrix[q][p] +DistanceMatrix[p][r]

end if
end for
Return DistanceMatrix

The depot nodes are handled in their own vector, rather than as a part of the, where the
distance from the depot to every node is computed with the same logic applied as the
DistanceMatrix regarding large snowcats.
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Chapter 8
Computational Study

In this chapter, we present a computational study of the ARP model described in Section
5.3 and the VRP model in Section 6.3. Section 8.1 provides a preliminary analysis of the
exact and heuristic method, ensuring that the best performing versions of both are the
ones being compared in 8.2. In Section 8.3 larger test instances not solvable with the exact
method are run in LocalSolver. The ARP model has been implemented in Xpress IVE, a
commercial optimization software. Version 1.24.24 64 bit of Xpress IVE was used, with
Xpress Mosel version 4.8.3 and Xpress Optimizer Version 33.01.02 with the convergence
criteria for the duality gap set to 0.001%. The software was run on a computer with
the operating system Windows 10 Educational 64-bit. The computer had an Intel(R)
Core(TM) i7-7700 CPU @ 3.6 GHz processor with 32 GB RAM internal memory. The
VRP model has been implemented in LocalSolver, a heuristic based, commercial solver
described in Section 6.1. The LocalSolver Version 8.5 was run on a computer with the
operating system macOS Mojave 10.14.4, with Intel(R) Core(TM) i5 CPU @ 2.9 GHz
processor with 8 GB RAM internal memory, to return results obtainable by a standard,
laptop computer likely to be used by the problem owners.

8.1 Preliminary Computational Study

This section consists of analysis regarding each solution method on their own, ensuring
well-performing versions of each are used when comparing the two. Section 8.1.1 presents
results from the parameter tuning of the exact method as well as analyzing the effect of
the symmetry-breaking constraints in the extended model. In Section 8.1.2, we examine
and analyze the effect of different adjustable parameters in LocalSolver.
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8.1.1 Parameter Tuning of the Exact Method

In this section, we analyze the impact the input parameters have on runtime and objective
value. The practical resource parameters is tested in Section 8.1.1, and the modeling
parameter constraining the maximum number of legs in a route is tested in Section 8.1.1.

Resource Parameters

In this section, a comparison of two different approaches for the input parameters is
conducted. Obtaining a basis for comparison as the size of data sets increases are done
by two different approaches. Aspects like the size of the resource constraints, the number
of prioritized and requested edges, the number of legs and the time windows affect the
attributes and complicates a comparison when the size increases. We leave the time
windows equal for all cases, with no additional requested edges from the smallest instance,
14nodes.txt.

To mitigate other factors than the actual size of the problem, we use two different ap-
proaches. The first approach runs all instances with identical input parameters, based
on the average number of legs. This approach causes smaller instances to include exces-
sive amounts of variables and constraints, while the larger instances will be constrained
by it. We ran all sets with a maximum of 76 legs, and the range constraints set at
78,000 meters. The second approach increases the parameters and resource constraints,
incrementally keeping the ratio between size, parameters, and resources constant. The
number of legs, nLegs equals twice the number of edges, while the range of snowcats is
equal to the average length of an edge multiplied by the number of edges in the data set.
Numerous nested loops in the mathematical model increase the search space by n2 for an
increase in nLegs, heavily affecting running time. The results can be found in Table 8.1,
where the small differences in objective value for the models solved to optimality is due
to an accepted duality gap of 0.001% in Xpress.
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Table 8.1: Results and run times for different data set sizes with two approaches for setting
the value of the parameters

Identical Parameters Ratio Parameters

Arcs Obj.val. Time(s) Gap(%) nLegs Range Obj.val. Time(s) Gap(%)

14nodes.txt 22 41,538 8.0 - 44 44,000 41,537.6 33.8 -
16nodes.txt 25 50,440 13.4 - 50 50,000 50,435.2 4.6 -
18nodes.txt 28 55,783 126.7 - 56 56,000 55,779.6 175.4 -
20nodes.txt 32 63,631.2 431.3 - 64 64,000 63,631.6 718.7 -
22nodes.txt 35 68,221.6 >3,600.0 0.02 70 70,000 68,230.8 3,175.8 -
24nodes.txt 38 70,827.6 1,706.9 0.01 76 76,000 70,821.6 >3,600.0 0.01
26nodes.txt 41 78,114.8 >3,600.0 0.02 82 82,000 78,113.2 >3,600.0 0.03
28nodes.txt 46 82,319.2 >3,600.0 0.01 92 92,000 82322.8 >3,600.0 0.01
30nodes.txt 49 85,018.8 >3,600.0 0.01 98 98,000 85,015.2 >3,600.0 0.02
32nodes.txt 52 82,995.6 >3,600.0 4.74 104 104,000 83,538.8 3613.5 4.05

The model handles data sets with a size up to 20 nodes, while larger instances run for
the maximum 3,600 seconds. The optimality gap is low for all instances but starts to
increase for the 32 node instance. Running the model for the real instance at 37 nodes
does not find any solution in the first 3,600 seconds and after 8 hours (28,800 seconds)
the dual gap is still at 34.89%. After 96 hours the computer crashes due to the size of the
branch and bound tree. The dip in runtime for 24nodes.txt run with identical parameters
yields an integer solution was found early, making cuts in the branch and bound tree in
the Xpress solver possible at an early stage.

Number of Legs in a Route

In this section, we examine the impact of an input parameter, nLegs, which defines the
maximum number of segments a snowcat can traverse in a route. The test is run with
the 20nodes.txt data set, where all other parameters are identical for each run. We find
accepting duality gaps less than 0.001% suitable given the absolute values of the objective
function and runtime of the solver. The accepted duality gaps cause the objective values
in Table 8.2 to diverge slightly. For cases where nLegs ≥ 22 the model stops at different,
equivalently good solutions. When the snowcats complete their routes in a maximum
of 22 legs, the objective value is 63,634.4. Logically, all instances with additional legs
from the optimal route, here, more than 22, return the same value but the snowcats
are traversing different distances, indicating that the routes are different. This yields
that additional track segments are covered, where the penalty equals the reward. A
consequence of setting nLegs excessively high increases the runtime. Setting nLegs lower
than the optimal value limits the search space, cutting the optimal solution from the
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feasible region. Limiting nLegs also increases the runtime of the model, which can be
interpreted as a complication of the problem.

Table 8.2: Results and run times for 20nodes.txt with variations of parameter nLegs. Dur. is
the total duration in minutes of a snowcat’s route and Dist. is the total route distance in

meters.

Small snowcat Large snowcat

nLegs Obj.val Time(s) Gap(%) Dur. Dist. Dur. Dist.

50 63,631.2 271.2 0.01 240.2 60,050 114.8 28,700
25 63,632.0 22.3 0.01 225.4 56,350 141.2 35,300
24 63,632.4 2.3 - 187.0 46,750 125.2 31,300
23 63,634.0 8.2 - 177.8 44,450 106.0 26,500
22 63,634.4 17.9 - 169.8 42,450 111.6 27,900
21 63,434.8 45.8 - 169.8 42,450 116.4 29,100
20 61,735.6 99.0 - 170.2 42,550 106.8 26,700

Symmetry-Breaking Constraints

In this section, we analyze the effect of the two pairs of symmetry-breaking constraints
introduced in Section 5.4. The constraints were implemented in the exact ARP model
in Xpress. The two pairs are mutually exclusive, meaning they cut unique solutions
from the feasible region when implemented together. They were therefore implemented
one at the time, and a comparison of their results is presented in Table 8.3. Each test
instance is modified with three different fleet compositions, where |KS| and |KL| indicates
the number of small and large snowcats, respectively. Original is the model without any
symmetry-breaking constraints. #Jobs Completed is the original model including the first
set of constraints, given by Equations 5.21-5.22, while Route Duration includes the second
set, given by Equations 5.23-5.24. >3,600.0 indicates that the first integer solution was
found after the 3,600-second mark but within a reasonably extended time window. The
maximum runtime was set to 3,600 seconds to ensure that the model yields results within
a time limit satisfying practical use of the model.
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Table 8.3: Symmetry-breaking constraints effect on runtime and objective value.

Original #Jobs Completed Route Duration

|KS| |KL| Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%)

14nodes.txt 1 2 6.9 0.01 6.5 0.00 4.6 0.01
14nodes.txt 2 1 9.1 0.01 5.3 0.01 6.2 0.01
14nodes.txt 2 0 109.0 0.01 874.9 0.01 105.5 0.01
16nodes.txt 1 2 9.2 0.01 5.4 0.01 7.0 0.01
16nodes.txt 2 1 12.1 0.01 6.2 0.01 152.9 0.01
16nodes.txt 2 0 334.8 0.01 >3,600.0 0.01 385.1 0.01
18nodes.txt 1 2 304.5 0.01 73.8 0.02 973.1 0.02
18nodes.txt 2 1 >3,600.0 25.44 >3,600.0 49.25 >3,600.0 13.37
18nodes.txt 2 0 1198.9 0.01 >3,600.0 54.32 >3,600.0 4.09
20nodes.txt 1 2 15.2 0.01 14.3 0.01 337.5 0.01
20nodes.txt 2 1 11.5 0.01 17.6 0.01 538.4 0.01
20nodes.txt 2 0 3401.5 0.01 >3,600.0 0.01 >3,600.0 25.42

Average >751.1 2.13 >1283.7 8.64 >1109.2 3.75

The average results yield that the symmetry-breaking constraints are outperformed by
the original model, even though the feasible region has decreased in size. A plausible
reason for this outcome is the unique attributes of the Xpress solver where the symmetry-
breaking constraints can prevent the internal heuristics from finding good primal solu-
tions. Given that both the average gap and computation time of the original model
are unbeaten by the two extended formulations, neither are included in the complete
implementation of the model.

8.1.2 Parameter Testing in LocalSolver

LocalSolver is mostly running the estimation of the parameters internally. The parame-
ters that can be modified are presented in Table 8.4 with their default value, our calibrated
value, and a short description. The level of annealing was an adjustable parameter prior
to version 8.0 of LocalSolver, but is no longer affecting the search algorithm substantially
and is therefore not studied further and set to its default level.
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Table 8.4: Adjustable Parameters in LocalSolver. The parameter names are equal to the
required input in the command line interface (Terminal on macOS. The Default value is the
value LocalSolver uses if the respective parameter is not assigned a value. Calibrated value is

the value in this study, used to ensure best possible results.

Parameter Default value Calibrated value Description

lsNbThreads 2 4
Number of threads used
to parallelize the search.

lsAnnealingLevel 1 1
Annealing level of the
local search.

lsSeed 0 0
Seed of the pseudorandom
number generator.

The LocalSolver team recommends the number of threads not to exceed the number of
cores, a common attribute of a Central Processing Unit (CPU) bound application. The
Intel Core i5 has two real and two virtual cores, resulting in a maximum thread count
of four. Increasing the number of threads, increases the robustness of the solver (that
is, the chance to find better solutions) and the speed of the search, given the underlying
computer power to back it. To validate this rather intuitive statement, we ran our test
instances with the number of cores varying from 1-4. Given that all instances returned
feasible solutions within 3 seconds, the maximum runtime was set to 10 seconds to discover
differences. For the smaller test instances, we did not obtain significant differences, while
a thread count of 2 surprisingly outperformed the others on the larger instances. This
counter-intuitive behavior of the solver, as well as the significant gaps, required further
testing. Increasing the run time limit, which is necessary for the larger instances, four
threads produce better results. Given that the practical SGP includes large instances,
which require more than a 10-second runtime, the calibrated value is therefore equal to
the maximum available computer cores. Test results supporting this can be found in
Appendix C.1.

The annealing level of the local search must be an integer between 0 and 9. 0 is the
equivalent of a standard descent, meaning that moves deteriorating the current solution
are rejected. Increasing the parameter will allow the number of moves in a worse direc-
tion, meaning moves yielding lower objective value than the current solution. Intuitively,
a high annealing level increases the chance of better solutions, but slows down the con-
vergence of the search, affecting runtime. LocalSolver deprecated the significant impact
of the annealing level parameter in version 8.0 and is, therefore, left unchanged. A few
random spot checks varying the annealing level on the larger instances returned insignif-
icant differences, backing the statement. Equivalent spot checks were run for the seed of
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the pseudorandom number generator with similar results, hence no need to calibrate the
default value. Fixing the seed value has no effect on the results since it still generates dif-
ferent numbers from each iteration, impacting the spot check of the annealing parameter
as well.

8.2 Comparing the Formulations

In this section, the best performing models for the ARP and VRP in the preliminary
computational study are compared. That is the ARP model without any symmetry-
breaking constraints and the VRP model with the calibrated LocalSolver parameters
given in Table 8.4.

The optimal routes for the arc routing example presented in Figure 4.1 and 4.2 are
represented by dotted and dashed lines in Figure 8.1, representing the route of the small
and large snowcat, respectively. Double lines indicate a wide track segment, where green
segments are prioritized, and red segments are requested.

Figure 8.1: Optimal traversal for a small(dotted lines) and a large snowcat(dashed lines)
from depot node 5.

For all instances that yielded feasible solutions in the exact model within 3,600 seconds,
the heuristic model returned identical routes in 0.20% of the time. The Xpress solver
finishes the branch in its branch and bound procedure, resulting in some iterations ex-
ceeding the time limit by a few seconds in Table 8.5. The gap for the exact method
is the percentage gap between the best solution and the best bound found in Xpress,
while the gap for the heuristic is the percentage gap between the equivalent numbers in
LocalSolver.
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Table 8.5: Results of running test instances in the ARP and VRP model. Exact refers to
results obtained by the exact ARP model implemented in Xpress, while Heuristic is the VRP

model implemented in LocalSolver. Gap is the gap found by each solver independently.

Exact Heuristic

Time(s) Gap(%) Time(s) Gap(%)

14nodes.txt 33.8 0.00 1.0 0.04
16nodes.txt 4.6 0.00 3.0 0.04
18nodes.txt 175.8 0.00 4.0 0.04
20nodes.txt 718.7 0.00 2.0 0.04
22nodes.txt 3175.8 0.00 5.0 0.04
24nodes.txt 3615.8 0.00 10.0 0.04
26nodes.txt 3607.8 0.00 4.0 0.05
28nodes.txt 3625.0 0.00 8.0 0.04
30nodes.txt 3603.0 0.00 7.0 0.05
32nodes.txt 3613.5 0.04 4.0 0.05
37nodes.txt 3672 7.02 7.0 0.07

Average 2552.2 0.64 5.0 0.45

As described in Chapter 6, the VRP model implemented in LocalSolver has to handle
larger input data than the equivalent ARP formulation of the problem. The impact of this
increase is canceled out by the better solution methods available for VRPs. There are also
generated fewer variables in the VRP since it handles flow without legs, creating fewer
variables and a tighter feasible region. It is clear that the exact method is insufficient as
the size of the test instances increase, while the heuristic method yields promising results.

8.3 Heuristic Results on Large Instances

In this section, the performance of the heuristic approach is tested by running the larger
test instances the exact method is unable to solve.

To be of practical use for the snow grooming operators, the heuristic should yield good
solutions within 3,600 seconds. To test the performance of the heuristic method, we ran
four test instances, ranging from 50 to 173 nodes. The smallest instance is expanded
incrementally to create the larger instances, where the 173 node instance is an exact
replication of the track network found in Bymarka, Trondheim. All fleets consist of two
small snowcats and one large. One large and one small snowcat is placed in Granåsen,
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while the second small one is placed in the last added node, for Bymarka.txt that is
Skistua. By doing so, we ensure that the second snowcat is always starting at a point
closest to its real depot, Skistua, for smaller test instances as well. Figure 8.2 shows the
decrease in gap size for different runtime limits. The yellow graph for the 100nodes.txt
is not visible due to the model returning gap sizes beyond 100% for all time limits. An
explanation is that the depot positioning is not optimal and many combinations of the
small snowcats has to be checked.

Figure 8.2: Gap results for different runtime limits

Up to 75 nodes, LocalSolver obtains a good solution within 300 seconds, whereas com-
plicated features of the 100 node case create problems and very slow convergence of the
search. The real-life instance, Bymarka.txt, yields improving results when extending the
time limit but is unable to reach a satisfactory good solution within 3,600 seconds. After
an extended run of 18,000 seconds, the gap is still as large as 35.78%.
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Chapter 9
Concluding Remarks

In our master’s thesis, we have described the Snow Grooming Problem (SGP). The prob-
lem is found when planning snow grooming operations in ski track networks. Snow
grooming vehicles are often called snowcats, and their job is to shuffle the snow and
compress it to make durable ski track for cross country skiing. Special for the SGP is
the use of a heterogeneous fleet of vehicles to service different sized track segments. A
large snowcat can only be used on broad track segments, whereas a small snowcat can
traverse both broad and narrow segments. If a small snowcat is to groom a broad track
successfully, it must traverse it twice. The problem also takes into account that tracks
have different priorities and that some tracks are required and have time windows for
when they are to be groomed. These interdependencies make the SGP a problem where
computational effort grows rapidly with the size of the track network. The objective of
the problem is to maximize the length of tracks that can be groomed during the time
and resources the grooming crew has at their disposal. To solve this problem, an exact
arc routing model has been proposed and implemented in the exact commercial solver
Xpress. This model has also been transformed into a vehicle routing problem and imple-
mented in the commercial heuristic solver LocalSolver. The models have been tested on
instances that replicate real track networks.

The arc routing model did not yield promising results, as it only handled small instances
and obtained optimal solutions insufficiently fast. The model can solve instances of up to
20 nodes and 32 edges to optimality within 3,600 seconds, while the practical instances
are at least twice as large. To handle the larger instances, a heuristic approach was
studied. Instead of developing a heuristic from scratch, the commercial heuristic based
solver LocalSolver was utilized. To use this solver, a transformation of the model from arc
routing to vehicle routing was needed. The transformation involved splitting edges into a
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pair of opposite arcs, which in turn give a node in the new graph. The connections between
the original arcs and the length of these are used as input in a distance calculation. This
calculation is based on the Floyd-Warshall algorithm and is used to give the distance from
and to all nodes in the vehicle routing graph. The heuristic method yielded promising
results and returned optimal solutions in 0.20% of the time the exact method needed on
the comparable test instances. For larger instances, the heuristic was able to handle data
sets of twice the size within 3,600 seconds, but returned unsatisfactory large gaps for the
real-life instances. As the results of using LocalSolver are promising, we recommend it
for future research.

9.1 Future Research

The model proposed to solve the SGP contains all the relevant constraints to mimic the
real-life problem properly. We, therefore, claim that there is no need to enrich the two
models presented in this thesis, apart from allowing multiple time windows for the same
track segment. An interesting area for future research may be to implement the VRP
formulation in Xpress for additional comparisons between the ARP and VRP formula-
tions, as well as the heuristic approach. Solving the SGP as a set-partitioning problem
before optimizing the routes is also an interesting approach currently not studied.

The SGP can also be reformulated as a design problem to find optimal fleet size or
locations of depots. Admittedly, the practical value of this reformulation is debatable.
For fleet size, a design model might be of value, although the possible variation in fleet
composition is usually sparse. Depot locations are also usually hard to move around. If
the aim is to find the best locations for an additional depot, there are usually not many
possible positions, and the proposed model can be run with these additional locations to
see which location is preferable.

Constructing a bespoke heuristic for the SGP and comparing this with the results from
LocalSolver is considered a viable approach. Approaches with genetic algorithms and/or
variations of neighborhood search algorithms have yielded good results for similar arc
routing problems, and can also be used on the SGP.
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Appendix A
Compressed Arc Routing Model

Sets
K Set of vehicles, k ∈ K
KS Set of small vehicles,KS ⊆ K
KL Set of large vehicles,KL ⊆ K
N Set of possible legs, n ∈ N
V Set of nodes (vertices), i, j ∈ V
E Set of edges, (ij) ∈ E
EP Set of prioritized edges, EP ⊆ E
EB Set of broad edges, (ij) ∈ EB, EB ⊆ E
ER Set of requested edges with time windows, (ij) ∈ ER, ER ⊆ EB

A Set of arcs, ij ∈ A

Parameters
L(ij) Length of edge (ij)

S Operating speed for all vehicles

T(ij) Time used to traverse edge (ij), T(ij) =
L(ij)

S
Hk Available work hours for vehicle k
Rk Range of vehicle k
i(k) First and last node that vehicle k must visit
W Unit award for grooming a prioritized edge
C Penalty per time unit used
T ij, T ij Lower and upper bound of time window for edge ij ∈ ER
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Appendix A. Compressed Arc Routing Model

Variables

xkijn

1, if vehicle k grooms arc ij on leg n

0, otherwise.

wk(ij)n

1, if (ij) ∈ ER is serviced by vehicle k on leg n

0, otherwise.

v(ij)

1, if edge (ij) is serviced

0, otherwise.

tkn start time for vehicle k on leg n
τkij time when (ij) ∈ ER is serviced by vehicle k

Objective function

max z =
∑

(ij)∈E\EP
L(ij)v(ij) + W

∑
(ij)∈EP

L(ij)v(ij)

− C
∑
k∈K

∑
ij∈A

∑
n∈N

T(ij)xkijn (A.1)

xk0i(k)1 = 1 k ∈ K (A.2)∑
ij∈A

xkijn =
∑
ji∈A

xkji(n+1) k ∈ K, j ∈ V , n ∈ N \ |N | (A.3)

∑
n∈N

xki(k)0n = 1 k ∈ K (A.4)

v(ij) ≤
∑
k∈KS

∑
n∈N

xkijn +
∑
k∈KS

∑
n∈N

xkjin (ij) ∈ E \ EB (A.5)

v(ij) ≤
∑
k∈KL

∑
n∈N

xkijn +
∑
k∈KL

∑
n∈N

xkjin

+
1

2

∑
k∈KS

∑
n∈N

xkijn +
1

2

∑
k∈KS

∑
n∈N

xkjin (ij) ∈ EB (A.6)

∑
ij∈A

∑
n∈N

T(ij)xkijn ≤ Hk k ∈ K (A.7)

∑
ij∈A

∑
n∈N

L(ij)xkijn ≤ Rk k ∈ K (A.8)

τk(ij) ≥ tkn −M(1− wk(ij)n) k ∈ K, (ij) ∈ ER, n ∈ N (A.9)

τk(ij) ≤ tkn +M(1− wk(ij)n) k ∈ K, (ij) ∈ ER, n ∈ N (A.10)

T (ij) ≤ τk(ij) ≤ T (ij) k ∈ K, (ij) ∈ ER (A.11)
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tk(n+1) ≥ tkn +
∑
ij∈A

T(ij)xkijn k ∈ K, n ∈ N (A.12)

wk(ij)n ≤ xkijn + xkjin k ∈ KL, (ij) ∈ ER (A.13)

n ∈ N (A.14)

2
∑
k∈KL

∑
n∈N

wk(ij)n +
∑
k∈KS

∑
n∈N

wk(ij)n = 2 (ij) ∈ ER ∩ EB (A.15)

∑
k∈KS

∑
n∈N

wk(ij)n = 1 (ij) ∈ ER ∩ (E \ EB) (A.16)

xkijn ∈ {0, 1} k ∈ K, ij ∈ A, n ∈ N (A.17)

wk(ij)n ∈ {0, 1} k ∈ K, (ij) ∈ ER, n ∈ N (A.18)

v(ij) ∈ {0, 1} (ij) ∈ E , i < j (A.19)

tkn ≥ 0 k ∈ K, n ∈ N (A.20)

τk(ij) ≥ 0 k ∈ K, (ij) ∈ ER (A.21)
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Appendix B
Compressed Vehicle Routing Model

Sets
K Set of vehicles, k ∈ K
KS Set of small vehicles,KS ⊆ K
KL Set of large vehicles,KL ⊆ K
A Set of arcs, (st) ∈ A
S Set of nodes, s ∈ S
P Set of jobs (p ∈ P
PP Set of prioritized jobs, s ∈ SP , SP ⊆ S
Sp Set of nodes corresponding to job p, s ∈ Sp, Sp ⊆ S
PB Set of broad jobs, p ∈ PB, PB ⊆ P
PR Set of requested jobs, p ∈ PR, PR ⊆ P
N Set of all nodes including Ok and Dk

Parameters
Lp Segment length of job (segment) p
Lst Distance between node s and node t
S Operating speed for all vehicles

Tst Time usage of doing job s and traversing to job t, Tst =
Lst

S
Hk Available work hours for vehicle k
Rk Range of vehicle k
Ok, Dk Origin and destination node for vehicle k
W Unit award for finishing a prioritized job
C Penalty per time unit used
T s, T s Lower and upper bound of time window for job s ∈ SR
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Appendix B. Compressed Vehicle Routing Model

Variables

xkst

1, if vehicle k travels from node s to node t

0, otherwise.

vp

1, if job p fulfilled

0, otherwise.

tks Time vehicle k starts to service node s

max z =
∑

p∈P\PP

Lpvp + W
∑
p∈PP

Lpvp

− C
∑
k∈K

∑
s∈N

∑
t∈N

Tstxkst (B.1)

∑
t∈N

xkOkt = 1 k ∈ K (B.2)

∑
s∈N

xksu =
∑
t∈N

xkut k ∈ K, u ∈ S, (B.3)

∑
s∈N

xksDk
= 1 k ∈ K (B.4)

vp = 1 p ∈ PR (B.5)

vp =
∑
k∈KS

∑
s∈Sp

∑
t∈N

xkst p ∈ P \ PB (B.6)

vp =
∑
k∈KL

∑
s∈Sp

∑
t∈N

xkst +
1

2

∑
k∈KS

∑
s∈Sp

∑
t∈N

xkst p ∈ PB (B.7)

∑
s∈S

∑
t∈S

Tstxkst ≤ Hk k ∈ K (B.8)

∑
s∈S

∑
t∈S

Lstxkst ≤ Rk k ∈ K (B.9)

tks + Tst −Mst(1− xkst) ≤ tkt k ∈ K, s, t ∈ S (B.10)

T s ≤ tks ≤ T s k ∈ K, p ∈ PR, s ∈ Sp (B.11)

xkst ∈ {0, 1} k ∈ K, s, t ∈ N (B.12)

vp ∈ {0, 1} p ∈ P (B.13)

tks ≥ 0 k ∈ K (B.14)
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Appendix C
Additional Results from Computational Study

In this appendix, the underlying test results for the calibrated value of the parameter nbThreads
is presented in Section C.1 and the heuristic gap results for Figure 8.2 is given in Section C.2.

C.1 nbThreads Parameter

Table C.1 shows the results with a 10 second time limit. Here, counterintuitively, the model
returns better results when using 2 threads rather than 3 or 4, but with increasing time limits
4 threads outperforms options with fewer threads.

Table C.1: Gap sizes for thread count variations with 10 second runtime limit

1 core 2 cores 3 cores 4 cores

Instance Gap(%) Gap(%) Gap(%) Gap(%)

14nodes.txt 0.04 0.04 0.04 0.04
16nodes.txt 0.04 0.04 0.04 0.04
18nodes.txt 0.04 0.04 0.04 0.04
20nodes.txt 0.04 0.04 0.04 0.04
22nodes.txt 0.04 0.04 0.04 0.04
24nodes.txt 0.04 0.04 0.04 0.04
26nodes.txt 0.04 0.04 0.04 0.04
28nodes.txt 0.04 0.04 0.04 0.04
30nodes.txt 0.05 0.04 0.04 0.04
32nodes.txt 0.05 0.04 0.04 0.05
37nodes.txt 0.07 0.07 0.07 0.06
Bymarka.txt 89.82 88.81 95.21 103.16

69



Appendix C. Additional Results from Computational Study

C.2 Gap Sizes for Various Runtime Limits

Underlying run results for Figure 8.2.

Table C.2: Gap sizes for different runtime limits

50nodes.txt 75nodes.txt 100nodes.txt Bymarka.txt

Runtime(s) Obj. val Gap(%) Obj. val Gap(%) Obj. val Gap(%) Obj. val Gap(%)

10 15836.2 0.07% 28801.4 19.91% 28676.5 161.27% 59450.2 124.17%
60 15836.7 0.07% 32019.0 7.86% 30537.2 145.35% 78141.2 70.55%
300 15837.3 0.06% 34512.7 0.06% 33588.6 123.06% 88921.7 49.87%
600 15837.3 0.06% 34512.7 0.06% 33588.6 123.06% 90961.9 46.51%
1800 15837.3 0.06% 34512.7 0.06% 34807.8 115.24% 93622.2 42.35%
3600 15837.3 0.06% 34512.7 0.06% 34807.8 115.24% 94062.1 41.68%
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