
June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Mohammed S R Alhayek
Bjørn Løvland Manheim
Henrik Klauset Svensson

2019
M

oham
m

ed S R Alhayek, Bjørn Løvland M
anheim

, H
enrik Klauset Svensson

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
co

no
m

ic
s

an
d

M
an

ag
em

en
t

De
pa

rt
m

en
t o

f I
nd

us
tr

ia
l E

co
no

m
ic

s
an

d
Te

ch
no

lo
gy

M
an

ag
em

en
t

Mohammed S R Alhayek
Bjørn Løvland Manheim
Henrik Klauset Svensson

Industrial Economics and Technology Management
Submission date: June 2019
Supervisor: Magnus Stålhane

Norwegian University of Science and Technology
Department of Industrial Economics and Technology Management

Abstract

Natural gas (NG) is expected to play a significant role in the transition toward
a lower-carbon energy mix. For long-distance trade, NG is transformed into a
liquid state and transported by sea in specially built vessels. Many of the op-
erational challenges associated with liquified natural gas (LNG) transportation
can be modeled and solved using mathematical programming. This makes LNG
transportation interesting from an operations research perspective. This thesis
examines a short-term ship routing and scheduling problem for an LNG producer
with a heterogeneous fleet of LNG vessels. This problem aims to create routes
and schedules for the vessel fleet such that the producer fulfills a set of long-term
contracts and at the same time exploit the opportunities in the spot market.

A review of relevant literature is conducted. The surveyed literature comprises
operational LNG planning problems and routing problems that are tightly related
to the problem studied in this thesis. The findings indicate that exact solution
methods are insufficient to solve similar problems of realistic sizes within a rea-
sonable time. In addition, many of the surveyed problems in the LNG literature
are solved by incorporating a mixed integer linear program in a heuristic solution
procedure. This is often attributed to complicating side-constraints.

In addition to a mixed integer linear program formulation, two heuristic solution
methods for solving the optimization problem are presented. These two methods
are referred to as The LNG Adaptive Large Neighborhood Search heuristic (ALNS)
and The LNG Fix and Optimize heuristic (FO). The models are applied to realistic
problem data sets. Similar to the surveyed problems in the literature review,
results show that a MIP is not able to solve the largest and most complex instances
within a time frame of 3600 seconds, even with onboard heuristics activated in a
commercial MIP solver.

The first solution method, FO, assumes a feasible solution populated with vessel
legs at hand. It then searches the solutions space by destroying (removing) some of

i

the vessel legs before applying a MIP, attempting to repair (rebuild) the solution
for a pre-specified amount of time. The second solution method, ALNS, searches
the solution space by destroying and repairing the solution many times, while ad-
justing methods for destroying and repairing in an adaptive manner, attempting
to reach new, improving solutions. Further, two different algorithms are developed
to construct initial feasible solutions as input to the solution methods. Both solu-
tion methods show promising results compared to MIP as they find high-quality
solutions within a reasonable time. However, FO outperforms ALNS in terms of
consistency in finding high-quality solutions.

Alongside these two solution methods, an event-based simulation program has
been developed. The simulation program has been applied to evaluate solutions
not only in terms of projected deterministic monetary value but also in terms of
statistical robustness. One of the concrete outputs from this simulation program
is an approximation of a Pareto frontier between profitability and total arrival
time violation of time windows. The frontier is defined by a set of non-dominated
high-quality solutions consisting of a trade-off between profitability and robust-
ness. This frontier allows the decision maker to select a solution that fits his risk
preferences.

In addition, we propose three robustness strategies to guide the proposed solution
methods to find more robust and reliable solutions. The strategies comprise penal-
izing late arrivals, planning with exaggerated sailing times and buffer quantities.
The effect of these strategies is benchmarked against a case base where no strate-
gies are implemented. Test results are promising and indicate a significant value
add for a decision maker.

ii

Sammendrag

Naturgass er forventet å spille en viktig rolle i en overgang mot energiproduksjon
med lavere klimagassutslipp, som for eksempel CO2. I forbindelse med langdis-
tanse handel og transport av naturgass, er gassen kjølt kraftig ned slik at den blir til
væske, kalt flytende naturgass eller LNG, før væsken blir transportert med spesielt
egnede skip. Mange av de operasjonelle utfordringene som oppst̊ar i forbindelse
med frakt av LNG kan modelleres og løses ved hjelp av matematisk program-
mering, nærmere bestemt av et lineært blandet heltallsprogram. Dette gjør LNG
transport til et relevant og viktig forskningsomr̊ade innen optimering og beslut-
ningstøtte (eng: operations research). Denne masteroppgaven omhandler rute
-planlegging og de øvrige beslutningene p̊a kort sikt for en LNG-produsent med en
fl̊ate av ulike skip. Kort sikt betyr i denne sammenheng en periode p̊a ∼90 dager.
Resultatet fra masteroppgaven har som m̊al å utforme ruter og tidsplaner for fl̊aten
av skip innen rimelig tid for relativt store problemstørrelser (>10 skip). Rutene
og tidsplanene samt øvrige beslutninger m̊a tilfredsstille en rekke krav, i tillegg
til å tilfredsstille grunnprinsipper som å imøtekomme behov fra faste kunder. At
fokusomr̊adet er planlegging p̊a kort sikt innebærer mer detaljert modellering samt
at potensielle salgsmuligheter i spotmarkedet blir hensyntatt.

En studie som omhandler relevant litteratur har blitt gjennomført. Studien omhan-
dler operasjonelle planleggingsproblemer for LNG, rute-planleggingsproblemer som
er tett knyttet til problemet som denne masteroppgaven omhandler. Tidlige
studier indikerer at eksakte løsningsmetoder ikke evner å finne gode løsninger p̊a
problemet innen tidsbegrensningene som er satt. Videre observeres det at mye av
den relevante litteraturen tar utgangspunkt i en heuristisk løsningsmetode kom-
binert med bruk av et blandet heltallsprogram. Dette er mye p̊a grunn av kom-
pliserende tilleggs-begrensninger som gjør at problemet skiller seg fra tradisjonelle
rute-planleggingsproblem for kjøretøy (VRP).

I tillegg til en formulering basert p̊a blandet heltallsproblem metodikk, er det
ogs̊a presentert to heuristiske metoder for å løse optimeringsproblemet. Disse to

iii

metodene refereres til som LNG Adaptive Large Neighborhood Search heuristic
(ALNS) og LNG Fix and Optimize heuristic (FO). Modellene er testet p̊a realis-
tiske datasett. Resultatene fra eksakte løsningsmetoder av det blandete heltall-
sproblemet viser at disse metodene ikke er i stand til å løse de største og mest
komplekse problemene innen en tidsramme p̊a 3600 sekunder, dette gjelder ogs̊a
for kommersielle optimeringsprogram med innebygde heuristiske metoder aktivert.
Disse resultatene er i tr̊ad med problemene som har blitt forsøkt løst i relatert lit-
teratur.

Den første heuristikken, FO, tar utgangspunkt i en gyldig løsning p̊a optimer-
ingsproblemet. Deretter g̊ar metoden ut p̊a å søke etter nye, bedre, løsninger gjen-
nom å ødelegge og reparere løsningsrommet gjentatte ganger. Ødelegging foreg̊ar
ved at en delmengde av rutevariablene settes fri mens resten av rutevariablene fik-
seres. Reparasjonsprosedyren foreg̊ar ved at et kommersielt optimeringsprogram
løser et blandet heltallsproblem der den resterende delmengden av løsningen er
fiksert. Den andre heuristikken, ALNS, søker ogs̊a etter nye løsninger slik som FO
ved hjelp av å ødelegge og reparere løsninger gjentatte ganger. Denne heuristikken
justerer parametere og hvilke metoder som blir brukt for å ødelegge og reparere
adaptivt. Hovedforskjellen fra FO er at denne heuristikken bruker langt flere
metoder for å ødelegge og reparere løsninger. Videre s̊a blir to ulike algoritmer
for å konstruere en initial-løsning presentert. Begge heuristikkene viser lovende
resultater ved sammenlikning opp mot å løse et blandet heltallsproblem, ettersom
de ofte finner gode løsninger innen relativt kort tid. FO har dog vist seg å være
overlegen sammenliknet med ALNS. Den er mer konsistent, og er i tillegg en langt
kraftigere løsningsmetode n̊ar den er p̊a sitt beste. Videre s̊a er FO vist å være
bedre b̊ade n̊ar det gjelder å finne løsninger p̊a under 250 sekunder og under 3600
sekunder.

I tillegg til disse to løsningsmetodene, s̊a har et simuleringsprogram blitt utviklet.
Simuleringsprogrammet er brukt til å evaluere løsninger, ikke kun ved hjelp av
å vurdere lønnsomhet, men ogs̊a ved å vurdere robusthet. En av de konkrete
leveransene fra dette arbeidet er en approksimasjon av en Pareto-front mellom
lønnsomhet og total forsinkelse. Denne fronten gjør det mulig for bruker å ta
avgjørelser som passer med brukerens risikopreferanser. I tillegg presenteres tre
robusthets-strategier. Disse strategiene harsom form̊al å styre de nevnte løsningsmetodene
mot å finne robuste løsninger. De tre strategiene inkluderer: straff ved sen ankomst,
planlegging med overdrevne seilingstider samt økte buffer-kvantiteter. Tester viser
at disse strategiene fungerer godt og at de gir betydelig verdi for beslutningstaker.

iv

Contents

1 Introduction 1
1.1 Purpose and Contribution . 2
1.2 Structure of Thesis . 2

2 Background 5
2.1 The LNG Supply Chain . 5

2.1.1 Supply Chain Structure . 6
2.1.2 Supply Chain Management Components 9

2.2 Aspects of Propulsion and Fuel Consumption for LNG Vessels . . . 13
2.2.1 Propulsion Systems . 13
2.2.2 Speed and Fuel Consumption 15

3 Related Literature Review 17
3.1 LNG Delivery Planning . 17

3.1.1 LNG Inventory Routing Problems 17
3.1.2 Annual Delivery Program 19

3.2 Relevant Literature Related to the LNG Routing and Scheduling
Problem . 21
3.2.1 Decomposition-Based Matheuristics 22
3.2.2 Improvement Based Matheuristics 25
3.2.3 Branch-and-Price and Column Generation-Based Approaches 25

3.3 Summary of Literature Review . 26

4 Problem Description 29

5 Mathematical Model 31
5.1 Mathematical Model . 32
5.2 Linearization . 41
5.3 Variable Reduction . 48

v

6 Adaptive Large Neighborhood Search 51
6.1 The Adaptive Large Neighborhood Search Framework 52
6.2 Solution Representation . 55
6.3 Initial solution . 55
6.4 Search Space and Feasibility . 55
6.5 Evaluation Function . 56

6.5.1 Route Cost . 57
6.5.2 Cost of Unserviced Nodes 57
6.5.3 Penalty Cost . 58
6.5.4 Total Evaluation Function 58
6.5.5 Feasibility . 58

6.6 Destroy Operators . 59
6.6.1 Random Removal . 59
6.6.2 Shaw Removal . 60
6.6.3 Worst Removal . 61
6.6.4 Vessel Removal . 62

6.7 Repair Operators . 62
6.7.1 Basic Greedy Insertion . 63
6.7.2 Deep Greedy Insertion . 63
6.7.3 Regret-k Insertion . 64

6.8 Local Search Operators . 65
6.8.1 Ejection Swap . 65
6.8.2 Inter Swap . 65
6.8.3 Re-assign . 66
6.8.4 Tabu list . 67
6.8.5 Neighbor Selection Strategy 67

6.9 Selecting a Destroy and a Repair Operator 67
6.10 Adaptive Weight Adjustment . 68
6.11 Acceptance Criteria - Simulated Annealing 69

7 Fix and Optimize Large Neighborhood Search 71
7.1 Constructing Initial Solutions . 71

7.1.1 Destroying Infeasibilities From ADP Plan 72
7.1.2 Constructing an Initial Solution 72
7.1.3 Ignoring Infeasibilities . 73

7.2 Model and Framework . 76
7.2.1 Model Overview . 76
7.2.2 Modeling Decisions and Similarities with an ALNS 77
7.2.3 Model Details . 77

7.3 Robustness Strategies . 81

vi

7.3.1 Penalizing Late Arrivals . 81
7.3.2 Increasing Sailing Time . 82
7.3.3 Increasing Buffer Quantity 82

8 Simulation Model 83
8.1 Aim and Motivation . 83
8.2 General Overview . 84
8.3 Simulation Components . 86

8.3.1 System States . 86
8.3.2 Entities . 86
8.3.3 Environment . 87

8.4 Process-Related Events . 89
8.4.1 Sailing . 90
8.4.2 Arrival . 93
8.4.3 Cool-Down . 94
8.4.4 Loading . 94
8.4.5 Unloading . 94
8.4.6 FOB Sale . 95
8.4.7 Disruption-Related events 96
8.4.8 Output . 96

9 Data Research & Generation 99
9.1 Input Data . 99

9.1.1 Case Description . 99
9.1.2 Vessel Characteristics . 100
9.1.3 Revenue and Costs . 102

9.2 ADP Generation . 102
9.2.1 Allocated Volume . 103

9.3 Chartering . 103
9.4 Disruption and Randomization . 104

9.4.1 Spot . 104
9.4.2 Randomization of Allocated Volumes 104
9.4.3 Uncertainty in Origin . 104

9.5 Instance Sizes and Combination of Vessels and Nodes 104

10 Computational Study 107
10.1 Sequential Decision Making . 107

10.1.1 Variables Considered for Sequential Decision Making 108
10.1.2 Configurations of Decisions 111
10.1.3 Results and Conclusion . 111

vii

10.2 Description of Problem Instances 112
10.2.1 Disruption of Problem Instances 113

10.3 ALNS . 113
10.3.1 Tuning of the ALNS Parameters 113
10.3.2 Results and Discussion . 119

10.4 Fix and Optimize . 123
10.4.1 Preliminary studies . 124
10.4.2 Model Tuning . 125
10.4.3 Model Performance - Results and Discussion 130

10.5 Comparison of the ALNS and the Fix and Optimize Heuristics . . 139
10.6 Simulation and Robustness Strategies 141

10.6.1 Test Settings and Problem Instance 141
10.6.2 Variance Reduction . 142
10.6.3 Ranking and Selection . 143
10.6.4 Robustness Strategies . 147
10.6.5 Penalizing Late Arrivals . 148
10.6.6 Increasing Buffer Quantity to Avoid Cool-Down 149
10.6.7 Increasing Sailing Time . 151
10.6.8 Approximation of Pareto Frontier 152

11 Concluding Remarks 155
11.1 Concluding Remarks . 155
11.2 Future Research Opportunities . 156

A Appendices I
A.1 Figures . I
A.2 Introducing Variable Speed to the Mathematical Model III

A.2.1 Modelling Fuel Consumption Functions III

viii

List of Figures

2.1 Supply chain of LNG. The images are by unknown authors and
licensed under Creative Commons 6

2.2 Side view of an LNG Moss tanker.1 7
2.3 Example of costs of a bulk ship. The figure is inspired and based

on (Stopford, 2013) . 12

6.1 A schematic overview of the ALNS heuristic 52
6.2 Solution representation . 55
6.3 Illustration of Ejection Swap operator 65
6.4 An illustration of Inter Swap operator 66
6.5 An illustration of Re-assign operator 66

8.1 Flow chart of the simulation model 85
8.2 Flow chart of a vessel’s journey in the simulator 89
8.3 A realization of fitted probability density function to sailing time

data between Rome (Italy) and Bergen (Norway). Source: Halvorsen-
Weare, Fagerholt, and Rönnqvist (2013). 90

10.1 Illustratation of how tight time-windows can constrain possible de-
livery quantities . 110

10.2 Test results for randomly selected model runs for problem size N105 -
V12 for blocks 1, 3, 4, 5. 138

10.3 Selected gap vs. time developments for the FO heuristic 139
10.4 Schematic overview of the testing procedure 142
10.5 99 % confidence interval of four different solutions 145
10.6 Two-dimensional confidence interval represented by a bounding box 145
10.7 Profit and total time violation when penalizing late arrivals 149
10.8 Profit and total time violation when increasing buffer quantity . . 150
10.9 Profit and total time violation when increasing sailing time 152

ix

10.10An approximation of Pareto frontier based on base case and robust-
ness strategies . 154

A.1 Example of two competing solutions being close to each other in
objective value but far away from each other in the solution space II

A.2 Fuel Consumption ton/time unit as a function of speed for a LNG
vessel with re-liquefaction technology IV

A.3 Fuel Consumption ton/time unit as a function of speed for a LNG
vessel with steam engine . V

A.4 Non-convex fuel consumption curve VI

x

List of Tables

6.1 Score adjustment parameters . 68

8.1 Weather states with the associated wave height interval and speed
reduction. Source: Halvorsen-Weare and Fagerholt (2011) 91

8.2 Starting state probabilities. Source: Halvorsen-Weare and Fager-
holt (2011) . 91

8.3 Transition probability matrix. Source: Halvorsen-Weare and Fager-
holt (2011) . 92

8.4 Disruptive events related to ports. Source: Berle et al., 2013 97

9.1 Distances in nautical miles between liquefaction and regasification
ports . 100

9.2 Distances in nautical miles between regasification ports 100
9.3 Vessel type characteristics . 100
9.4 Problem sizes . 105

10.1 Sequential decision making - Assessing different options for simpli-
fying decisions in step one . 111

10.2 Sequential decision making - effect of postponing decisions 112
10.3 Problem instances used for testing 112
10.4 Disruption categorization - initial position and allocated volume (AV)113
10.5 Overview of ALNS parameters and their initial values 115
10.6 Simulated annealing - overview of parameter combinations subject

for tuning . 116
10.7 Penalty costs - overview of parameter combinations subject for tuning117
10.8 Simulated annealing - overview of parameter combinations subject

for tuning . 117
10.9 Local search - tuning of maximum number of iterations before recourse118
10.10Final ALNS parameter values . 119

xi

10.11Overall ALNS Performance after 1 hour 120
10.12ALNS performance for selected comp. times 121
10.13Comparison of ALNS and the MIP, where the MIP makes similar

assumptions as the ALNS (C5) . 123
10.14FO with and without simplifying using maximum vessel speed . . . 124
10.15Percentage of successful instructions sent to the destroy method in

FO . 126
10.16Initial values for degree of destruction and time budget for each

iteration . 129
10.17Destroy more compared to solving longer - gap thresholds. Less

than 1% was also tested, but it was found to not perform as well
and the model became unstable . 129

10.18Maximum # of non-improving iterations before parameter tuning . 129
10.19FO key parameter values . 130
10.20Overall Fix and Optimize Performance after 1 hour 133
10.21Fix and Optimize performance for selected comp. times 135
10.22Fix and Optimize time to outperform MIP 136
10.23Comparison of ALNS and Fix and Optimize - initial solution from

ADP has been used . 140
10.24Problem instance characteristics 141
10.25Parameters of robustness strategies 147
10.26Parameter values used in testing robustness strategies 147

xii

1. Introduction

As the world demand for energy is higher than ever, natural gas (NG) is expected to
play a significant role in fulfilling this demand. Driven by its flexibility, versatility,
and abundance as it can be used in many applications like home heating, electricity
generation and fuel for trucks and ships, NG is the only fossil fuel to grow its share
of the world energy mix in the next two decades (World Energy Outlook 2018).

NG is traditionally transported by pipelines from producer to consumer. However,
an increase in the number of proven reserves and the long distances between re-
serves and consuming markets made this alternative unfeasible or uneconomical.
The increasing demand for NG and the producer’s desire to capitalize on their
reserves have led to developing other forms of transporting NG. Transport of NG
over long distances is done efficiently by transforming NG into a liquid state which
reduces its volume by a factor of 1:600. Today, the share of liquified natural gas in
the global NG trade accounts for 45 %. LNG is also expected to capture 90% of
the projected growth in long-distance trade of natural gas as it is more economical
than pipelines across oceans and over long distances (ibid.).

The high capital-intensity and complexity of the LNG industry have forced sup-
pliers and customers to share risk through long-term contracts with a duration of
around 20 years. However, the emergence of new suppliers and markets, overca-
pacity in the supply side, many new supply projects under construction combined
with customers pushing for more flexibility have paved the way for a structural
shift. This includes the emergence of the short-term and spot market and a shift
toward contractual flexibility in delivery quantities, pricing terms, and destination
flexibility.

To satisfy the long-term contracts, an LNG producer usually plans deliveries for 12
months at a time. Such a plan is called the Annual Delivery Program (ADP) and
consists of a delivery schedule and vessel routes for one contract year. Although
the scheduling and routing process is usually done manually based on pre-specified

1

2

rules and industry experience, the increasing complexity of the LNG industry
makes manual scheduling prohibitively time consuming and cumbersome. This
makes an ADP rigid and inflexible in the face of rapid changes, disruptions, and
the emergence of opportunities in the spot market. For this reason, many producers
see an opportunity in utilizing decision support techniques to make good decisions
quickly.

1.1 Purpose and Contribution

The purpose of this thesis is to investigate and solve a short-term ship routing and
scheduling problem for an LNG producer. The aim of this problem is to produce
an alternative for ADP when it becomes inefficient in the face of disruptions and
rapid changes during a contract year. For this reason, it focuses on a short planning
horizon of around three months and incorporates a high level of operational detail.
The goal of this problem is to maximize the producer’s profit while satisfying the
customers’ time and quantity requirements in a planning horizon of around three
months.

Due to the complexity and large solution space in routing and scheduling problems,
exact solution methods are often insufficient to solve this problem within a rea-
sonable time. This necessitates the development of a heuristic solution approach
to improve the computational time of solving this operational problem. The main
contribution of this master’s thesis can be summarized as follows:

• A literature survey on LNG planning problems and tightly related routing
problems with a focus on the applied solution methods.

• A mathematical model of the LNG routing and scheduling problem with
some inventory elements are included.

• Two different large neighborhood-based approaches capable of solving prob-
lem instances with realistic sizes and within a reasonable time.

• A simulation framework used to measure the robustness of solutions.

1.2 Structure of Thesis

The remainder of this thesis begins with a short introduction to the LNG industry
in Chapter 2. A formal description of the problem is presented in Chapter 4. A
literature review on the LNG delivery problem and relevant routing problems with
a focus on the applied solution methods is presented in Chapter 3. We translate

3

the problem into a mathematical model in Chapter 5. Chapter 6 presents an adap-
tive large neighborhood search heuristic for solving the aforementioned problem,
while Chapter 7 presents a fix and optimize large neighborhood search heuristic for
solving the same problem. In addition, three robustness strategies are proposed.
Chapter 8 presents a simulation model to evaluate the robustness of solutions.
Chapter 9 describes how the input of the solution methods is generated. Further-
more, a computational study on the problem, the proposed solution methods, and
simulation model is presented in Chapter 10 before rounding off by concluding this
thesis and presenting future research opportunities in Chapter 11.

4

2. Background

As the world economic output is expected to double by 2040, the global energy
demand is likely to grow by 25 percent. This trend will mainly be driven by
population growth of two billion people, a growing middle class and improved
living standards. This might result in a near doubling in electricity demand in
non-OECD nations by 2040 (Exxon Mobil Corporation, 2018).

During the same period, initiatives intended to counteract the issue of global warm-
ing is likely to increase the demand for less carbon-intensive sources of energy.
Natural gas (NG) is expected to play a major role in the transition toward a
lower-carbon energy mix. NG emits 50% less CO2 than coal and 30% less than oil
(National Energy Technology Laboratory, 2013). Additionally, NG is also known
for its flexibility, versatility, and abundance as it can be used in many applications
like home heating, electricity generation, and fuel for trucks and ships. For these
reasons, NG is expected to grow by 40% to increase its share in the world energy
mix from 23% to 26% by 2040. (Exxon Mobil Corporation, 2018)

The current global natural gas market has evolved from a collection of local and
regional markets with few suppliers and customers. However, an increase in the
number of proven reserves and rapid growth in demand in countries far away from
these reserves have created an international market for natural gas. This imbalance
necessitated the international trade of NG by long-distance pipelines. Also, this
led to the transportation of NG by the sea in specialized tankers, where the NG
is in liquid form where NG is cooled down to below its boiling point at around
-160◦C and transported in specialized tankers (Tusiani and Shearer, 2007).

2.1 The LNG Supply Chain

In this section we present a brief introduction to the LNG supply chain.

5

6

2.1.1 Supply Chain Structure

The LNG supply chain can be divided into four parts before the end consumer
consumes it. These parts are shown in Figure 2.1.

Figure 2.1: Supply chain of LNG. The images are by unknown authors and licensed
under Creative Commons

Exploration and Production

The first step in the LNG supply chain is the exploration and development of
the gas field. Unlike before, when natural gas was considered a less preferred
by-product of oil, exploration today is often aimed directly at the discovery of
gas reserves. Natural gas can be found onshore or offshore and can either be
produced with the oil from an oil reservoir (associated gas) or come from a gas
field (non-associated gas). The non-associated gas is called ”dry” if it contains
nearly pure methane, or ”wet” if it contains heavier hydrocarbons such as propane,
butane, and condensates. LNG is typically categorized as either “rich” or “lean”,
depending on the hydrocarbon content mix, and therefore the calorific value, i.e.
the specific energy quantity in the LNG. Lean LNG contains mostly methane with
some small quantities of ethane, giving it a lower energy content than rich LNG,
which contains more of the heavier hydrocarbons. The type of LNG produced
depends on the origin gas/oil field and the liquefaction technique (Liquefied natural
gas: understanding the basic facts 2005). Since the heating value is different, the
price is also different for the two types of LNG. Therefore, it is important for
the buyer and seller of LNG to specify the LNG type. In most cases, exploration
and production are covered by agreements between the host government and the
energy companies (Tusiani and Shearer, 2007).

7

Liquefaction and Storage

The produced gas is transported by pipeline to the liquefaction plant. To ensure
that the gas has desirable combustion and liquefaction properties it has to be
treated before liquefaction by removing heavy hydrocarbons and other contami-
nants. This can either be done at the production facilities or at the liquefaction
plant. For wet gas, the extracted liquefied petroleum gasses which consist of
heavier hydrocarbons than LNG and the condensate generate additional revenue
streams. The liquefaction process cools the natural gas to around -160◦C, trans-
forming it to a liquid state, allowing storage and transportation at atmospheric
pressure. The LNG is stored in insulated cryogenic tanks designed to keep the LNG
cold until it’s loaded onto LNG tankers. The plant also contains loading facilities
to allow safe access for the LNG tankers (Liquefied natural gas: understanding the
basic facts 2005).

Transportation

After liquefaction, the LNG is loaded onto LNG vessels. These vessels are spe-
cially designed to store the LNG in insulated cargo tanks. The two main types of
tanks are spherical tanks (also called Moss tanks), which are self-supporting, and
membrane tanks, which use their insulation and the ship for support. A side view
of an LNG Moss tanker is shown below.

Figure 2.2: Side view of an LNG Moss tanker.1
1 (The picture is under CC-BY-SA-3.0. Source: https://commons.wikimedia.org/)

Because of the challenges of maintaining the LNG at a stable temperature, about
0.15% of the cargo boils off every day (Dobrota et al., 2013). This so-called boil-off
gas (BOG) needs to be removed from the tanks. The majority of today’s LNG
vessels have a cargo capacity in the range 130,000-150,000m3. These conventional
LNG vessels usually use a steam turbine propulsion system or duel-fuel diesel
engines, where the boil-off gas can be used as fuel. During the last decade, several

8

Q-Max and Q-Flex vessels have joined the LNG fleet. Q-Max vessels are the
largest ships that can dock at the LNG terminals in Qatar with a cargo capacity
of 266,000m3. Q-Flex vessels have a capacity between 210,000m3 and 216,000m3.
Both of these vessel types are equipped with an onboard re-liquefaction system
to liquefy the boil-off gas and transfer it back to the LNG tanks, to avoid the
loss of cargo during operation. The Q-Max and Q-Flex vessels use a single-fuel
diesel-mechanical propulsion system, but can be converted to use the boil-off gas
as fuel (IGU, 2018).

Loading and unloading rates for the LNG tankers usually vary between 12000m3

per hour and 14000m3 per hour, depending on the size of the vessel (Tusiani
and Shearer, 2007). At the liquefaction plant, the vessels’ storage tanks are only
loaded to 98% of their capacity, as required by the IMO. The 2% remaining storage
capacity prevents liquid from entering into the ventilation pipeline and spilling into
the hull structure of the vessels (Dobrota et al., 2013). In most cases, only between
98.5% and 99% of the gas is unloaded at the regasification plant. The gas left in
the tanks is called ”heel” and is used to keep the tanks cold during the vessel’s
ballast voyage. For vessels without a re-liquefaction system, the heel must also
take the expected boil-off during the return leg into account. It is possible to
choose to empty the tanks completely during unloading and let them go warm.
This is called doing a ”heel out”. The vessels are then required to go through a
cool-down process at the next loading port before it can start loading. This process
is expensive and time-consuming, but it is necessary to minimize the vaporization
of LNG and to avoid thermal shocks for the tanks. With today’s technology, the
cool-down process takes approximately one full day to complete; however, it takes
a shorter time if the vessel has membrane tanks instead of spherical tanks since
the spherical tanks have larger mass (Tusiani and Shearer, 2007).

Vessels regularly undergo planned maintenance activities at specific times and
locations. During the maintenance period, the vessel tanks are emptied completely
and warmed for a dry dock. When the vessel is sent back into operation, the cargo
tanks are filled up with inert gas or nitrogen for purging. Inert gas contains about
14% carbon-dioxide, which will freeze at around -60 ◦C and produces a white
powder which can block valves, filters, and nozzles, so if inert gas is used, the
vessel has to be ”gassed up” and cooled down at the next liquefaction terminal
before it can start loading. Gassing up involves replacing the CO2 with LNG vapor
(Liquefied Gas Carrier, n.d.). The combined process of gassing up, cool-down and
loading can take up to three days (Msakni and Haouari, 2018).

9

Regasification, Storage and Distribution

The last component of the LNG supply chain is the regasification plant, where the
LNG cargoes are unloaded from the vessels, stored and vaporized, before being
transferred to the distribution network by pipeline. The plant might also contain
facilities for loading the LNG onto tanker trucks for road delivery. The regasifi-
cation plants are usually owned by the customer, but the customer may in some
cases lease capacity on a third-party access basis (Tusiani and Shearer, 2007).

2.1.2 Supply Chain Management Components

In this section, some important aspects of the LNG supply chain management are
presented.

Planning Levels

Decision making and planning in the maritime industry can be categorized by
different planning levels based on the length of the planning horizon and business
impact of the decisions. Traditionally, planning problems can be divided into three
classes: Strategic, tactical and operational. The strategic planning level involves
decisions that make a long term impact on the business, usually with a planning
horizon of 5 to 20 years (Rakke, 2012). A typical strategic planning problem is the
determination of the optimal fleet size and mix, which usually involves a decision of
reducing or extending an already existing fleet. Other common strategic decisions
are contract evaluation, vessel design, and network design. Tactical planning prob-
lems usually address medium-term planning decisions, typically with a planning
horizon from a few weeks to a couple of years. Common tactical planning prob-
lems are ship routing and scheduling, fleet deployment and inventory ship routing.
Operational planning tends to only have a short-term impact on the business, for
instance only affect one sailing leg and can be used to handle uncertain operational
environments. Typical operational decisions in the maritime industry can be ship
loading, speed optimization, disruption management, and booking of single orders.
It is important to note that the boundaries between the different planning levels
are somewhat loosely defined. For instance, many tactical planning decisions like
routing and scheduling problems may include operational aspects such as speed
optimization.

Market Liquidity

The high capital-intensity and complexity of the LNG industry have forced sup-
pliers and customers to share risk. This is typically ensured through the sale and

10

purchase agreement (SPA) which is a long-term contract that guarantees LNG
supply to the customer over a period of 10-20 years and a minimum level of cash
flow to the supplier. These contracts usually have a take-or-pay clause (TOP)
which assigns the price risk to the seller and the volume risk to the buyer by obli-
gating the buyer to pay for a percentage of the annual contracted quantity even
if the buyer decides not to receive it. Additionally, the SPA usually includes a
delivery obligation which requires the seller to deliver a specified amount during
the contract period. If the seller fails to fulfill this obligation, the seller has to
pay the buyer a penalty cost or any additional costs related to the procurement
of alternative fuels (Chandra, 2017). The amount of LNG specified in the SPA is
either a monthly demand to be delivered, or a yearly demand, which is to be fairly
evenly spread out throughout the year. There is some flexibility with respect to
the total amount delivered for a given year; however, it should even out in the
long-term.

Although the major part of the LNG is traded through long-term contracts, more
liquid forms for buying/trading LNG are emerging. These forms include spot and
short-term contracts. The International Group of Liquefied Natural Gas Importers
defines short-term contracts as contracts with a duration of four years or less,
while pure spot contracts are deliveries that occur less than three months from the
transaction date. Deliveries defined as short-term accounted for 27 % for the LNG
imports in 2017, while pure spot deliveries accounted for 20 % (GIIGNL, 2018).

Shipping

SPA states the point where the responsibility for LNG transfers from the buyer
and the seller. LNG is often sold on free-on-board (FOB) or delivered ex-ship
(DES) basis. In FOB shipping, the responsibility for LNG transfers at loading
port where the buyer arranges the shipping service. Hence, the sale price does not
include transportation costs. In DES shipping, the seller is responsible for delivery
and shipping LNG to the destination port. In this case, the sale price includes
shipping and insurance costs.

Historically, LNG vessels have been built in relation to a specific project and
designed to serve the ports of the supplier and the customer as specified in the
SPA. Also, the supplier usually managed these vessels. However, there is a shifting
trend among buyers to increase operational and destination flexibility by taking an
active role in the LNG shipping (Tusiani and Shearer, 2007). This is done through
charter parties or direct ownership in the LNG vessels. The most used charter
parties in the LNG industry are time and bareboat charter parties.

In a long-term contract, the supplier and the customer agree on an Annual Delivery

11

Program (ADP) before each contract year. The ADP specifies the (approximate)
delivery dates/time-windows and the corresponding amounts to be delivered. The
time-windows often span 1-7 days. The underlying reason for creating an ADP is
to satisfy the long-term contracts. This ADP serves as an input to the operational
short-term plan, which additionally integrates the opportunities of spot contracts.
The ADP setup is a tactical planning problem with a typical planning horizon
of 12-18 months. The ADP planning is similar to the short-term planning in the
sense that it should provide an optimal fleet schedule, approximate delivery dates
or time windows. It should satisfy inventory and/or demand constraints and berth
constraints. (Andersson, Christiansen, Desaulniers, and Rakke, 2017)

Costs in shipping

In general, the financial performance of a shipowner depends on the method of
financing building/buying the ship, costs of running day-to-day operations, and
revenues generated from operating or chartering the ship. Although there is no
standard cost classification standards in the shipping industry, it is common to
classify ship’s costs into five categories:

• Operating costs are also known as OPEX and accounts. These are the day-to-
day expenses of running the ship which include costs of stores and lubricants,
insurance, crew, and unplanned repairs and maintenance during sailing time.

• Periodic maintenance costs consist of the expenses involved in major upgrad-
ing and repairs. This post is usually considerable for old ships.

• Voyage costs, also known as VOYEX, are all the expenses related to a specific
voyage. This includes fuel, canal dues, and port charges.

• Capital costs are known as CAPEX and include all the expenses related to
financing the investment.

• Cargo-handling costs are all expenses associated with cargo loading, dis-
charging and stowing.

12

Figure 2.3: Example of costs of a bulk ship. The figure is inspired and based on
(Stopford, 2013)

Note that in the operations research literature, operating costs are often used to
refer to the variable part of the day-to-day expenses of a ship which include voyage
and cargo-handling costs.

Chartering

LNG producers usually charter LNG vessels from each other if they are short for
idle vessel capacity. In this case, chartering is a cost for the LNG producer with
a lack of capacity and revenue for the producer with idle capacity. According to
Stopford (2013), the shipowner’s revenues can simply be estimated based on the
price received per unit transported (also called freight rate) and the total capacity
of the ship. The contract between the shipowner and the charterer (the shipper)
is called a charter party. There are three main forms of charter parties:

• A bareboat charter: The charterer enjoys full control of the vessel and is
responsible for maintenance, crew, insurance, and everything needed to use
the vessel during the contract period. The shipowner gets capital expenses
(CAPEX) in return.

• Time charter: The charterer pays a fixed payment per time unit which cov-

13

ers capital expenses (CAPEX) and operating expenditures (OPEX). On the
other hand, the shipowner offers a vessel that is compliant with international
conventions and experienced and competent crew. In this case, the charterer
takes the market risk since he has to pay the hire regardless of market con-
ditions, while the shipowner takes the operational risk since he does not get
paid in case of breakdown.

• Voyage charter: the charterer pays a freight rate per unit transported. The
shipowner is responsible for the planning and execution of the voyage and
pays all expenses during that voyage. In this case, the shipowner takes
the market risk in case of no cargo is available to be transported and the
operational risk in case of breakdown.

Although the shipowner’s revenues are limited by the ship’s capacity and the
freight rate that the charterer is willing to pay, many other factors can have a
considerable impact on the revenues. These factors include, among others:

• Ship productivity, which concerns the number of loaded days in a financial
year

• Deadweight utilization which refers to how much of the full payload is utilized
during the loaded days.

• Optimizing operating speed, which determines how much cargo can be trans-
ported to customers during a period of time.

2.2 Aspects of Propulsion and Fuel Consumption
for LNG Vessels

In this section, we present an overview of the main propulsion systems used in
LNG vessels. Finally, some aspects of the relationship between fuel consumption
and speed are discussed.

2.2.1 Propulsion Systems

Since the middle of the 2000s, the propulsion systems in LNG tankers have expe-
rienced large innovations and improvements in order to better utilize and handle
the boil-off gas and reduce the voyage fuel cost. The most common LNG tanker
propulsion alternatives according to IGU (2018) are described below.

14

Steam Turbines

The traditional propulsion system on LNG vessels is steam turbines. This system
consists of boilers, usually fully or partially fueled with heavy fuel oil, generating
steam to power the propulsion. All BOG from the tanks are used in the boilers, so
no combustion unit is necessary. Another advantage is the low maintenance and
operating cost due to the simplicity of the system. Still, the steam turbine has
low thermal efficiency and large LNG carriers tend to require more power than
what existing steam turbines can generate. In 2017, 63% of the LNG fleet was
steam-based, however; these vessels are mostly smaller and older vessels (less than
150,000m3 and over 10 years old).

Dual-Fuel Diesel Electric/Tri-Fuel Diesel Electric (DFDE/ TFDE)

DFDE systems can be fueled with both BOG and diesel oil and improve fuel effi-
ciency by 25-30% compared to the traditional steam turbines. DFDE systems are
electric propulsion systems powered by duel-fuel, medium-speed diesel generator
sets. These diesel engines can run on either natural gas or marine diesel oil, and
the engine operator can switch between the two fuel types. Unlike steam turbines,
these propulsion systems need combustion units to burn excess BOG if necessary.
This extra equipment requires extra maintenance. TFTE vessel is able to run on
heavy fuel oil, diesel oil, and gas, thus further improving the ability to optimize
propulsion efficiency. In 2017, 31% of the active world LNG fleet was equipped
with DFDE or TFDE propulsion systems. So around 94% of the current fleet use
either steam-based propulsion or DFDE/TFDE systems.

Slow-Speed Diesel (SSD) with a BOG Re-liquefaction Plant

This propulsion system consists of a conventional low-speed diesel engine generator
sets fueled by heavy fuel oil or marine diesel oil. So instead of using the BOG as
fuel, the gas is re-liquefied and led back into the cargo tanks. Vessels using this
propulsion system also require a combustion unit to burn BOG when necessary.
This propulsion system is advantageous when fuel oil is cheap compared to the
BOG as it allows transportation of LNG without any loss of cargo. Today, the
entire Q-class vessels use this propulsion system.

M-type, Electronically Controlled, Gas Injection (ME-GI)

The ME-GI utilizes high-pressure slow-speed gas injection engines that, unlike the
Q-class propulsion system, can use BOG in the engine if necessary, instead of
only re-liquefying the BOG. This allows better optimization of fuel consumption,

15

improving the fuel efficiency with around 15% over the TFDE engines. Only a
small number of vessels in the current world fleet uses this propulsion system.
However, around 42% of the vessels in the order book are equipped with this
engine type.

Winterthur Gas & Diesel (WinGD) Low-Pressure Two Stroke Engine

This engine is an alternative to the DFDE propulsion system that reduces the
capital cost of the propulsion system due to its lower cost gas handling system.
Very few vessels are equipped with this engine type, and it accounted for around
2% of the 2017 order book.

2.2.2 Speed and Fuel Consumption

Changes in speed have a considerable impact on the voyage costs. Fuel consump-
tion per distance unit can be estimated to be proportional to the second power of
speed. Stopford (2013) uses the following formula to estimate fuel consumption

F = F ∗(S
S∗

)a (2.1)

where F is fuel consumption in tons/day, F ∗ is fuel consumption when cruising
speed is used, S is chosen speed, S∗ is cruising speed, and a is usually 2 for steam
turbines and 3 for diesel engines. Thus, increasing speed by 10 % may increase
fuel consumption for a given leg by 20 %. Additionally, it is common to express
a vessel’s fuel consumption as a function of speed S and payload W , F (S,W).
Psaraftis and Kontovas (2013) presents for instance the following approximation

F (S,W) = k(p+ Sq)(W +A)(2/3)

where A is the lightship weight which is the weight of the vessel’s structure, propul-
sion and engine, k, p and q are constants such that k > 0, p ≥ 0 and q ≥ 3.

16

3. Related Literature Review

In this Chapter, we present an overview of the relevant literature for our problem.
In Section 3.1, an extensive survey on routing problems within the LNG industry is
conducted. As the LNG literature is relatively young and limited in size, a survey
on relevant literature that is closely related to the LNG routing and scheduling
problem is presented in Section 3.2. The surveyed literature is summarized in
Section 3.3.

3.1 LNG Delivery Planning

The LNG delivery planning problems are problems concerned with the routing
and scheduling of transportation of LNG by vessels between liquefaction plants
and regasification terminals. The majority of these problems are tactical planning
problems with planning horizons between three months and one year. Some of
these problems also include operational decision elements. We focus on this part
of the LNG literature. A strategic LNG planning problem can be found in Koza
et al. (2017), and a more general study of the LNG supply chain is presented
in Andersson, Christiansen, and Fagerholt (2010). All the problem formulations
reviewed in this section are modeled with discrete time.

3.1.1 LNG Inventory Routing Problems

The LNG inventory routing problem (LNG-IRP) can be considered a special case
of the MIRP. To our knowledge, the LNG-IRP was first introduced in Grønhaug
and Christiansen (2009). This problem seeks to maximize the profit of the operator
by deciding the routing and scheduling of a heterogeneous fleet of LNG vessels,
transporting one type of LNG between several liquefaction plants and regasification
terminals, as well as determining the production quantity at the liquefaction plants
and demand fulfillment at the regasification terminals. The problem also involves

17

18

inventory management at all plants and terminals, ensuring that the solution does
not exceed the limits of the respective storages.

Moreover, each tank of the LNG vessels is modeled and managed. All vessels
have to be fully loaded at a liquefaction plant, and partial unloading is allowed,
as long as a whole number of tanks are completely unloaded. The problem adds
complexity by considering boil-off, so completely unloaded means that some gas is
still left in the tank to prevent the need for cool-down. The problem differs from
pickup and delivery vehicle routing problems in that the number of visits to a port
and the loading and unloading quantities are unknown. Also, there are no pickup
and delivery pairs.

Grønhaug and Christiansen (2009) formulate both an arc-flow and a path-flow
model to solve the LNG-IRP problem with a time horizon of two to four months.
The path-flow model is studied further in Grønhaug, Christiansen, et al. (2010). A
branch-and-price method is proposed to solve the problem. The solution method
consists of a master problem that handles inventory management and ensures
that the port capacity constraints are satisfied, while a set of subproblems gener-
ate columns representing vessel routes. Andersson, Christiansen, and Desaulniers
(2016) reformulates the problem by splitting the routes and schedules into duties,
where a duty is defined by the authors to be a sequence of ports starting in a load-
ing port, visiting one or two unloading ports, before returning to a loading port.
The authors propose a branch-and-bound algorithm where duties are generated a
priori.

Fodstad et al. (2010) and Uggen et al. (2013) look at a richer LNG-IRP model,
which includes a larger part of the LNG supply chain, both upstream and down-
stream, and considers contract management and sales in the spot market. The
last-mentioned authors use a fix-and-relax time decomposition heuristic to con-
struct a solution and then improve it. This is done by dividing the planning
horizon into shorter intervals and solve a subproblem for each interval. This is
done iteratively in a rolling horizon basis.

Goel et al. (2012) also add to the LNG-IRP introduced by Grønhaug and Chris-
tiansen (2009) by including the spot market. However, in this problem, the storage
and contractual demand constraints are considered soft constraints, and the model
seeks to minimize the total penalties from production loss, stockouts, and unsatis-
fied contractual demands at regasification terminals. Moreover, Goel et al. (2012)
makes some simplifications by not allowing partial unloading and assuming that
the boil-off quantities can be represented by the average boil-off loss on a typi-
cal voyage between two ports since the boil-off is usually a small fraction of the
total vessel cargo. The authors propose a greedy construction heuristic and an

19

improvement heuristic based on a large neighborhood search method.

3.1.2 Annual Delivery Program

A second common type of LNG planning problem is the development of an annual
delivery plan (ADP). Rakke, St̊alhane, et al. (2011), St̊alhane et al. (2012) and
Rakke, Andersson, et al. (2014) all study essentially the same problem; develop-
ing an ADP for one of the largest LNG producers in the world. This producer
operates only one liquefaction plant but can transport LNG to multiple regasi-
fication terminals, making this problem’s structure simpler than the LNG-IRP.
The producer must satisfy a set of long-term contracts but can also service LNG
spot contracts. The producer is responsible for the LNG inventories at the single
liquefaction plant, so the problem only includes inventory management at the liq-
uefaction plant. It also manages a limited number of berths at the loading port
and has to determine the routing and scheduling of a fleet of heterogeneous LNG
vessels, with the possibility of chartering in extra vessel capacity. Vessels can also
be unavailable due to certain pre-allocated activities such as maintenance. The
vessels are assumed to always be fully loaded and unloaded, so boil-off does not
need to be considered. The problem allows for the transportation of different types
of LNG on distinct voyages. Another important distinction from the LNG-IRP is
the longer planning horizon of one year and typically larger size of the problem.
The objective of the ADP problem is to minimize the cost related to fulfilling the
long-term contract and maximizing the revenue from spot sales.

In Rakke, St̊alhane, et al. (2011), the authors use a RHH heuristic to solve an
LNG inventory routing problem. This is done by dividing the planning horizon
into shorter periods. In the proposed RHH, three periods are used, a frozen period,
a central period and a forecast period. In iteration k of the procedure, the variables
of the central period are determined, the variables of the frozen period are fixed
and inherited from the central period in the previous iteration k − 1, while the
binary variables of the forecast period are relaxed and have a guiding role to avoid
sub-optimal solutions. In the next iteration, the variables of the central period are
frozen and the forecasting period becomes the new central period. St̊alhane et al.
(2012) propose a multi-start construction heuristic to generate a set of solutions.
In order to improve these solutions, the search is intensified by solving a restricted
version of the original mathematical model. In Rakke, Andersson, et al. (2014), the
authors reformulate the same problem to a maritime inventory problem (MIRP)
based on delivery patterns. The problem is then solved by an exact branch-price-
and-cut algorithm.

Andersson, Christiansen, Desaulniers, and Rakke (2017) complements the previous

20

studies of the ADP problem by introducing four groups of inequalities to improve
the lower bounds on the optimal value of the problem. The groups target the
pricing of over- and under-deliveries, the quantities delivered, the timing of the
deliveries and symmetry breaking.

Halvorsen-Weare and Fagerholt (2013) study a simplified version of the problem
where the average cargo size is derived based on the loading capacities of the ves-
sels, and time windows (both hard and soft) for the cargoes are assigned based on
contractual agreements, without the possibility of optional (spot) cargoes. There-
fore, the cargoes that should be delivered to specific regasification ports and time
windows for deliveries will be known. Also, Halvorsen-Weare and Fagerholt (ibid.)
assume that the fleet can be divided into disjoint groups. Despite the problem’s
complicating side constraints (inventory and berth capacity constraints), the au-
thors solve the problem by separating the routing decisions from the scheduling
decisions. In the first phase, the routing decisions are determined by local search
heuristics. These decisions consist of deciding which cargoes should be served by
which vessel and in what sequence. In the second phase, the scheduling problem is
solved as a MILP and consists of deciding the start service time of each cargo such
that the berth and inventory capacity constraints are satisfied. Halvorsen-Weare,
Fagerholt, and Rönnqvist (2013) extends this problem by taking uncertainty in
sailing times and daily LNG production into account. The paper develops robust-
ness strategies and the resulting solutions are evaluated with a simulation model
with a recourse optimization procedure.

Halvorsen-Weare and Fagerholt (2013) only consider time windows for delivery
and penalty costs for deviations from these time windows. It also has bounds on
delivery volumes but does not account for deviations in deliveries. Rakke, St̊alhane,
et al. (2011) include a penalty for both under and over delivery, while St̊alhane et
al. (2012) only have penalty for under delivery. Rakke, St̊alhane, et al. (2011) and
St̊alhane et al. (2012) do not consider early or late delivery penalties. Furthermore,
these formulations do not impose any bounds on the contract delivery volumes.

Mutlu et al. (2016) stands out as the most comprehensive among the existing
formulations in terms of contract specifications. It includes both hard and soft
time windows for delivery, lower and upper limits on delivery volumes, and penalty
costs on deviations from expected delivery times and volumes. The paper is also,
to our knowledge, the only one that allows split deliveries. Furthermore, this paper
does not take the production rate at the loading port as a given parameter but
models it as a decision variable that can be changed on a monthly basis. This
allows the model to manage excess production after satisfying demand from long-
term contracts, instead of assuming that the excess production is sold in the spot

21

market. The authors propose a vessel routing heuristic that iteratively constructs
vessel routes such that the volume requirements and the delivery times of each
contract are satisfied.

Al-Haidous et al. (2016) study a special case of the ADP problem where the fleet
is homogeneous in capacity and speed but can have different cost structure, and
where the objective is to minimize the number of vessels. This paper also intro-
duces bunkering restrictions. The authors solve the problem to optimality by a
MILP model and propose a fix-and-relax heuristic where the planning horizon is
divided into four periods. For each period, all integrality constraints corresponding
to future periods are relaxed while variables originating from previous periods are
fixed.

3.2 Relevant Literature Related to the LNG Rout-
ing and Scheduling Problem

In this section, an extensive survey on related literature to the LNG routing and
scheduling problem (LNG-RSP) is presented. The reasoning behind conducting
this study is two-folded. First, the LNG literature is relatively young and is lim-
ited in size to the papers described in Section 3.1. Second, the LNG routing
and scheduling problem has many structural elements in common with other well-
studied routing problems like the multi vehicle pickup and delivery problem with
time windows (m-VRPTW). Additionally, the LNG-RSP is tightly related to the
maritime cargo routing and scheduling problem, which is extensively studied com-
pared to the LNG-RSP. Since the literature on routing problems is vast in extent
and scope, we consider only the part of the routing literature that utilizes solution
methods that are variations of, or closely related to the solution methods applied
to the LNG problems described above. Although we mainly focus on solution
methods applied to maritime problems, other relevant applications with a related
structure to our problem are included in the study.

As it may be observed by the reader, most of the solutions methods applied to the
LNG problems described in Section 3.1 incorporate a MILP as part of the solution
procedure. Such solution methods are called matheuristics.

Note that the only solution method discussed in Section 3.1 that does not in-
corporate a MILP in the search procedure is a large neighborhood search (LNS)
proposed by Goel et al. (2012) to solve an LNG-IRP. However, many of the LNS
algorithms in the routing literature use often a MILP as a local search operator.
For this reason, LNS is discussed below in the context of matheuristics.

22

Boschetti et al. (2009) defines matheuristics as ”heuristic algorithms made by the
interoperation of metaheuristics and mathematical programming techniques”. The
improvement of the capabilities of general-purpose solvers in recent years has led to
an increasing interest in designing algorithms where mathematical programs (MP)
are incorporated in one or many phases of the solution procedure. Archetti and
Speranza (2014) classify matheuristics used to solve routing problems into three
classes; decomposition approaches, improvement heuristics, Branch-and-price ap-
proaches. The structure of the rest of this section is inspired by the same literature
survey.

3.2.1 Decomposition-Based Matheuristics

In the decomposition-based matheuristics, the main problem is divided into smaller
sub-problems, which then are solved independently to optimality or near-optimality
by a MILP model.

Cluster first-route second approaches

In addition to application-specific decisions, decisions taken in routing problems
can be divided into two categories: 1) clustering customers and assigning each
cluster to a vehicle 2) deciding the sequence of customers to be visited in each
route. This division of decisions makes decomposition-based matheuristics conve-
nient to solve routing problems. The first paper that uses a cluster first - route
second approach is written by Fisher and Jaikumar (1981). The authors solve
a VRP by using a two-phase approach. In the first phase, ”seed customers” are
heuristically selected. Then, the problem of assigning the rest of customers to the
seed customers is formulated and solved as a generalized assignment problem. In
the second phase, the authors use TSP to determine the sequence of customers
on each route. Bramel and Simchi-Levi (1995) solves the same problem in a sim-
ilar approach, however, they determine the clustering of customers by solving a
capacitated concentrator location problem (CCLP). In addition to VRP, the au-
thors apply the same method to an IRP and show that it performs well on both
problems.

Two-phase approaches

Cluster first - route second is not the only two-phase approach used to solve rout-
ing problems. For instance, a typical tramp routing and scheduling problem can
be shown as a generalization of a traveling salesman problem which is NP-hard
(Hemmati et al., 2014). For that reason, these problems are often reformulated
as a set partitioning problem where columns represent feasible vessel schedules.

23

This strategy reduces the computation time considerably since all columns (or at
least a subset if an approximation is needed) that satisfy a set of hard constraints
can be generated a priori. This approach is followed by, among others, Brown
et al. (1987) who generate all feasible schedules for a fleet of crude oil tankers
and solve the problem with thousands of binary variables to optimality in less
than a minute. Similarly, the set partitioning approach is also used by Bausch
et al. (1998) to design an optimization-based decision support system for a multi-
national company with a fleet of coastal tankers; Fagerholt (2001) for solving the
aforementioned multi-ship pickup and delivery problem (m-PDP) with soft time
windows and fixed cargo sizes; and recently Brønmo, Christiansen, et al. (2007) for
solving a m-PDP with flexible cargo sizes. In order to generate feasible columns a
priori, Fagerholt (2001) formulate the problem of finding the optimal schedule for
each cargo-ship set as a Traveling Salesman Problem with Capacity constraints,
Soft Time Windows, and Precedence constraints (TSP - CSTWPC). Similarly,
Brønmo, Christiansen, et al. (2007) use the same approach, but modify Fagerholt
(2001) to account for hard time windows and flexible cargoes.

Rolling Horizon

While all the approaches described above are known as ”one-shot” approaches,
referring to solving two phases one time, more advanced algorithms that apply the
cluster first - route second idea in an iterative manner have been developed and
often used to solve inventory routing problems (IRP). Such an iterative approach is
used in two of the LNG problems described in Section 3.1; Rakke, St̊alhane, et al.
(2011), and Uggen et al. (2013). Agra et al. (2014) propose a similar approach to
Rakke, St̊alhane, et al. (2011) to solve a short sea routing and scheduling problem
for an oil company where inventory constraints have to be satisfied at the demand
side, however the authors combine RHH with local branching to efficiently solve
the problem of each sub-horizon and feasibility pump to speed up the process
of finding an initial feasible solution. In Campbell and Savelsbergh (2004), the
authors solve an IRP with a long time horizon by decomposing the problem into
two problems. In the first problem, the authors use an integer program to assign
customer deliveries to days and determine how much to deliver to these customers.
The output of the first problem is a delivery schedule for the next k days. In the
second problem, the time horizon is shortened and only a few days of the original k
days are considered. At this phase, the decision process is focused on constructing
routes and schedules, which is done by insertion heuristics. The output of the
second problem is then used to revise the input of the first problem. The algorithm
is repeated on a rolling-horizon base.

24

Partial Optimization approaches

In certain routing problems, heuristic operators are used to solve a part of the
problem. Then, all decision related to this part is fixed and one or more MILP
models are used to solve the remaining part of the problem. Usually, a MILP is
used to solve the part that does not include the routing decision in the problem
as these are typically the most difficult for the heuristic operators to handle.

This approach is used in Coelho et al. (2011) to solve an IRP with transshipment.
The authors propose an adaptive large neighborhood search (ALNS) comprised of
several heuristics operators used to manipulate the vehicle routes, while a network
flow algorithm is used to solve the remaining problem of determining transshipment
moves and quantities delivered to customers.

In Coelho et al. (2012), the authors apply the same methodology as in Coelho
et al. (2011) to solve an IRP with multiple vehicles and different consistency
requirements. A similar methodology is applied in Adulyasak et al. (2012) for
the solution of a production routing problem (PRP). The authors use heuristic
operators to determine vehicle routes and delivery days, while a network flow
model is optimally solved to determine production and delivery quantities. Demir
et al. (2012) suggest an ALNS for the solution of the pollution routing problem
(PLR). This is an extension of the VRPTW that includes the optimization of the
speed on each route to minimize an objective function that takes fuel, emission
and driver costs into account. Standard heuristic operators are used to search the
solution space while a MILP model is solved to determine the optimal speed for
each route segment.

The ALNS paradigm was introduced by Ropke and Pisinger (2006) as an exten-
sion of the principle of large neighborhood search (LNS) (Shaw, 1997) in which a
solution is repeatedly destroyed and repaired through the application of various
heuristic operators. The ALNS heuristic adds to this mechanism by selecting the
operators in a probabilistic and adaptive fashion, based on the prior performance
of the operators. This method was initially applied to the pickup and delivery
problem with time windows (Ropke and Pisinger 2006) and to the vehicle rout-
ing problem (Pisinger and Ropke 2007), and has later been successfully adapted
to a wide variety of routing problems, including inventory-routing (Coelho 2012a,
Coelho 2012b), production-routing (Adulyasak 2014), stochastic arc routing (La-
porte 2010) and cumulative vehicle routing (Ribeiro and Laporte, 2012).

Several hybrid extensions of the ALNS can be found in the literature. In Belhaiza
(2019) a hybrid ALNS is used to solve a dial-a-ride problem with time windows
(DARPTW). The heuristic combines an ALNS search procedure with a genetic

25

crossover of a pool of found solutions that take effect if the ALNS cannot improve
the solution during a certain number of iterations. Gu (2018) propose a hybridiza-
tion of ALNS and local search. In each iteration of the algorithm, a destroy and
repair method is used to generate a new solution. Seven local search moves are ap-
plied iteratively on the solution until no improvement achieved. A similar method
is used in Mahdi (2018) to solve a multi-depot, multi-compartment vehicle routing
problem. After a large neighborhood search is used to find a new solution, a vari-
able neighborhood search is applied if the new solutions is better than the current
solution.

3.2.2 Improvement Based Matheuristics

In improvement based matheuristics, a MILP is utilized to improve a solution
obtained by a heuristic. The purpose of using MILP as an improvement method
is two-divided. First, MILP can be used once to improve the best solution found
by another heuristic. Second, it can be employed as an intensification operator or
a local optimizer inside a searching procedure. From the LNG literature, St̊alhane
et al. (2012) is classified as an improvement based matheuristic (Archetti and
Speranza, 2014).

In some of the improvement based matheuristics, MILP is used for local optimiza-
tion. In Yıldırım and Çatay (2014), the authors solve VRP by first generating
a set of routes by using ant colony optimization (ACO) and second using a set
partitioning program to choose the best routes. These routes are then fed back to
ACO and used to update the pheromone trails. Another example of improvement
based matheurisitc is presented in Rodrıguez-Martın and Salazar-González (2011).
The authors solve the multi-Commodity one-to-one pickup-and-delivery traveling
salesman problem by first constructing a feasible solution by a greedy randomized
adaptive search heuristic (GRASP). The solution is then improved by fixing only
a subset of the variables and then improved by using a branch-and-cut approach.
The solution method is developed further by the same authors in Rodrıguez-Martın
and Salazar-González (2012). The new solution method consists of a construction
phase similar to the previous solution method, however, they propose a variable
neighborhood Descent scheme (VND) consisting of among others a MILP operator
similar to the one presented in Rodrıguez-Martın and Salazar-González (2011).

3.2.3 Branch-and-Price and Column Generation-Based Ap-
proaches

In column generation-based matheuristics, a problem is decomposed into a master
problem and a sub-problem called the pricing problem. Reformulating a problem

26

to a column generation form (Dantzig-Wolfe decomposition) often incurs the gen-
eration of a huge number of columns. For this reason, a restricted master problem
with only a subset of all columns is often used. The pricing problem has the role
of generating columns that may improve the objective function value in the mas-
ter problem. A branch-and-price is considered an exact solution algorithm only
if the pricing problem is solved to optimality in each iteration. This is to ensure
that all improving columns are included in the master problem. As described in
Section 3.1, both Grønhaug, Christiansen, et al. (2010) and Rakke, Andersson,
et al. (2014) apply a branch-and-price/column generation based approach to solve
a LNG-IRP.

A similar approach is utilized in Brønmo, Nygreen, et al. (2010). The authors
solve the same problem as Brønmo, Christiansen, et al. (2007) by using a Dantzig-
Wolfe approach. The problem is decomposed into a master- and subproblem. The
master problem is a set partitioning problem with the most promising schedules
for all vessels and the subproblem that finds these schedules is formulated as a
shortest path problem and solved by dynamic programming. When the algorithm
converges and gives a fractional solution, a branch-and-price procedure is used to
find the optimal solution. Wen et al. (2016) follow the same strategy but combines
the aforementioned problem with speed optimization.

3.3 Summary of Literature Review

In this Chapter, a literature review on LNG problems with a focus on the applied
solution methods is presented. Additionally, the literature review covers also a
segment of the literature on routing problems that are considered tightly related
to the LNG routing and scheduling problem.

The recent research on optimization of LNG transportation is two-fold and con-
sists of LNG-IRP and the problem of developing an annual delivery plan. While
the majority of papers studying LNG-IRP focus on operational decisions within a
planning horizon of 2-4 months, many of the papers that study the development
of an annual delivery plan focus on the longer planning horizon of one year and
larger size of the problem. Moreover, the level of detail that is included in de-
cision modeling is varying. For instance, Halvorsen-Weare and Fagerholt (2013),
Goel et al. (2012) and Rakke, St̊alhane, et al. (2011) make some simplifications in
modelling quantity and BOG.

A general challenge with the LNG problems discussed in Section 3.1, compared to
the standard maritime cargo routing problems and m-VRPTW, is the unknown
loading and unloading cargo due to quantity flexibility in deliveries and its depen-

27

dency on factors like heel-out, cool-down, speed, boil-off, cool-down and sailing
time. In addition to their combinatorial complexity, the dependency between a
large number of different decisions that are continuous makes these problems chal-
lenging to model with a sufficient level of detail and solve within a reasonable
time. Many of the surveyed papers address this problem by either decomposing
the problem and solving it in two phases or on a rolling horizon basis. Our hy-
pothesis is that utilizing a decomposition based approach might be essential to
obtain high-quality solutions within a reasonable time. However, the success of
such an approach is highly dependent on the ability to find the right decomposition
for our problem. It is worth mentioning that the problem studied in this Thesis
has a relatively short planning horizon and long sailing times, hence using rolling
horizon based methods may result in a high degree of fragmentation with few deci-
sions to be determined in each sub-horizon. When it comes to partial optimization
approaches like ALNS, they are rarely used as solution methods in the LNG liter-
ature, despite their success on routing problems like VRP. Our hypothesis is that
the ability of an algorithm like ALNS to move around in the search space makes
it suitable for highly constrained problems like the one studied in this Thesis.

Another popular approach among the surveyed papers, especially inventory rout-
ing problems, is the branch-and-price and column generation-based approach. Al-
though these approaches seem appropriate for the LNG-RSP at first glance, the
restriction of allocated volume at the liquefaction ports and its impact on the fea-
sibility of the vessels’ routes make it difficult to efficiently separate the problem
into a master problem and a sub-problem.

The aim of this thesis is to develop a solution method that is able to solve a
large-scale LNG routing and scheduling problem as described in 4. It is crucial
that the proposed solution method is able to find high-quality solutions with low
computational time.

28

4. Problem Description

This report addresses a short-term planning problem for LNG producers. The
problem includes routing and scheduling of a fleet of LNG vessels between lique-
faction and regasification facilities.

The producer can produce multiple types of LNG in its liquefaction plants and
is obliged to service a set of customers with long-term contracts. The amount to
deliver and pick up, delivery and pickup locations, type of LNG and corresponding
time windows for each cargo are known in advance, according to the annual delivery
program. There is some flexibility concerning each load delivered to a customer;
however, the accumulated volume depleted from a liquefaction plant in a period of
time cannot exceed an allocated volume of LNG in that period. If a liquefaction
plant’s allocated volume exceeds the LNG amount depleted in a period of time,
the deviant amount is either sold as spot cargoes on the market or transferred to
the next period. A spot cargo may be delivered with the producer’s own vessel
if there is any idle (DES) or may be picked up by the customer if there is any
empty pickup slot at the liquefaction plant (FOB). Furthermore, the producer has
also the ability to charter vessels for one-off delivery if the producer does not have
enough vessels to serve long-term contracts.

The producer operates a fleet of LNG vessels and is responsible for the routing
and scheduling of the vessels. Each vessel can be owned by one or a group of
customers, the producer, or a combination of both. As a result, some vessels
are restricted to only visit ports agreed upon by the owners. The customers can
also set such restrictions as they can require LNG from certain pickup ports.
Moreover, vessels are heterogeneous in terms of capacity, speed, fuel and propulsion
characteristics, boil-off technology and the different ports they can visit. Although
a vessel can carry all types of LNG, it can only carry one type on board during a
single voyage. Furthermore, the vessels are always filled close to their full capacities
at the liquefaction plant.

29

30

The LNG vessels are allowed to visit one loading port and 1-2 unloading ports
on the same voyage. On the return leg from unloading port to loading port, the
vessel’s tanks are kept cool by a small amount of LNG left in the tanks. For this
reason, the tanks have to contain enough LNG to keep the boil-off process going
until a new loading operation begins. The producer can also choose to empty the
vessel’s tanks at an unloading port completely. However, in that case, the vessel
will be unavailable for some time to undergo a cool-down process at the next
loading port before a loading operation can take place. Also, vessels that usually
use BOG as fuel will have to switch to another fuel type. This might represent an
economic loss or opportunity.

Consequently, the amount delivered to the customer depends on the duration of
the voyage from loading to unloading port and the producer’s decision to keep
either the vessel’s tanks cool on the return leg or perform a complete depletion of
LNG.

Since the vessels do not have a depot they can return to, the availability of the
vessels at the start of the planning horizon depends on the vessels’ schedule at that
time. If the planning horizon starts while a vessel performs a loading/unloading
operation at a port, it first becomes available when it is done with the operation.
However, one can choose to redirect a vessel that is en route to some destination
if this is appropriate.

This problem aims to determine how customers should be serviced. That is, decid-
ing which vessels that service which customers, in what sequence and when they
are serviced. This provides the producer with information about the sequence of
customers associated with each vessel, which spot customers to service and which
customers with fixed contracts to satisfy through chartering. The decisions should
also include how much to load/unload at pickup and delivery ports, sailing speed
between ports, and how much to sell as FOB at the producer’s ports.

These decisions should be determined based on the producer’s objective. This
objective consists of sales due to the LNG delivered to long-term contracts and
the LNG sold to the spot market. The producer’s costs in the short term are
related to cool-down and transportation. Costs related to completely emptying
the tanks include the cost difference between fuel mix with and without BOG
and a one-time cool-down charge in the loading port. Additionally, transportation
costs include variable costs like bunker oil, port, and canal fees. Both components
are dependent on the vessel size, capacity, ports to be visited and the duration of
the voyage. The producer may also charter vessels to serve long-term contracts.
This may induce a financial profit or loss. Additionally, the producer is charged a
penalty cost if a long-term contract is breached.

5. Mathematical Model

In the following we introduce an arc-flow model for the problem introduced, the
short-term routing and scheduling of liquefied natural gas transportation. We also
have dedicated sections for linearization of non-linear constraints as well as for
initiatives relating to variable reduction. An important distinction in our models
is that node and port have separate meanings (e.g. there are many nodes belonging
to a single port).

Solution Requirements

The solution needs to satisfy (1) routing constraints, (2) stopover routing con-
straints (visiting two subsequent gasification ports where the LNG has to come
from liquefaction ports that are allowed to deliver to both of the gasification ports,
(3) time constraints, (4) quantity balance constraints for vessel legs, (5) heel man-
agement constraints, (6) quantity windows at both types of ports, (7) inventory
constraints for liquefaction ports and FOB sale. Furthermore, the solution also
need to satisfy constraints relating to vessel speeds.
The solution also needs to maximize the estimated profit for the LNG supplier,
and it thus needs to sum all the relevant revenues and costs into the search for the
optimal solution.

Solution Elements

The solution, or the model output, needs to provide information on the scheduling
and routing of mandatory contracts and select the subset of optional contracts
that should be delivered. More specifically, the solution needs to include where
the vessels are sailing, how fast they will be sailing and when they are departing
and arriving. The solution should also provide information on FOB sales.
The solution will automatically provide information on the cargoes which are ex-
ecuted with partial unloading (i.e. stopover), and it will also indirectly provide

31

32

information on when/if cool down is needed and breached contracts.

5.1 Mathematical Model

Sets

V : Vessels
NP : Pickup nodes
ND : Delivery nodes
N : NP ∪ND, all nodes

NC : Fixed contracts
NO : Optional contracts
ND : NC ∪NO

NP
v : Pickup nodes vessel v may visit

NP
iv : Pickup nodes which may deliver gas to i and which may be visited by vessel v

NP
i : Pickup nodes which may deliver gas to i

ND
v : Delivery nodes vessel v may visit
Nv : NP

v ∪ND
v ∪ (o(v),d(v)), where o(v) and d(v) is the artificial origin and destination

A : Arcs between nodes N ×N
Av : Arcs for vessel v, corresponding to x-variables created in optimization engine for vessel v
P : Pickup ports
M : Periods

NPO
pm : Pickup nodes corresponding to port p in month m

H : Speed modes

Parameters

Ri : Revenue per unit for contract i
Bv : Boil-off loss/consumption for vessel v per day

BCHi : Boil-off loss/consumption if contract i is serviced by a chartered vessel
TSijv : Sailing time from node i to j using vessel v
TCHij : Sailing time from node i to j using a chartered vessel

33

TQiv : Loading/unloading quantity per time unit at node i using vessel v
Dv : Difference in cost for vessel v by using only bunker oil instead of the predetermined fuel mix

(can be zero if the vessel never uses boil-off as fuel)
CCHij : One-time cost if delivery node j is serviced from node i by a chartered vessel
CCDiv : One-time charge related to cool-down in loading port i for vessel v
COPijv : Operation cost from i to j using vessel v

(Could be any predetermined fuel mix of bunker oil and boil-off gas)
Πi : Penalty if contract i is breached
QSv : Required fixed buffer in order to avoid cool-down for vessel v
QFv : Quantity factor (0-1) when leaving liquefaction port for vessel v

QCHi : Quantity delivered to customer if contract i is serviced by a chartered vessel
TCDiv : Required cool-down time in loading port i for vessel v

QMIN
i : Lower quantity limit when servicing contract i

QMAX
i : Upper quantity limit when servicing contract i
TMIN
i : Lower time limit for start of operation at node i

TMAX
i : Upper time limit for start of operation at node i
V CAPv : Cargo capacity of vessel v
QApm : Allocated volume at port p in period m

QIp : Volume transferred from last month in previous planning period at port p
QCDv : Gas volume required to cool down vessel v
QCDC : Gas volume required to cool down chartered vessel
FMIN
i : Minimum gas volume for FOB sale at pick-up node i

FMAX
i : Maximum gas volume for FOB sale at pick-up node i
RFOBi : Revenue per unit for FOB sale at pick-up node i
TSijvh : Sailing time from node i to j using vessel v with speed mode h
Dvh : Difference in cost for vessel v with speed h by using only bunker oil instead of the

predetermined fuel mix (can be zero if the vessel never uses boil-off as fuel)
COPijvh : Operation cost from i to j using vessel v with speed mode h

34

Variables

xijv : Equal to 1 if vessel v sails from i to j, 0 otherwise
zij : Equal to 1 if a chartered vessel service delivery node j from pick-up nodei
qiv : Quantity loaded/unloaded at node i by vessel v
liv : Quantity on board when vessel v is leaving node i
yijv : Equal to 1 if vessel v sails from i to j with no LNG left,

0 otherwise or if the vessel does not sail the given route at all
tSiv : Service time start at node i for vessel v
tEiv : Service time end at node i for vessel v
si : Equal to 1 if contract i is breached, 0 otherwise
ai : Equal to 1 if contract i is served directly from liquefaction port

or by charter (without stopover) at gasification port), 0 otherwise
qFOBi : FOB quantity sold at pick-up node i

fi : 1 if FOB cargo is sold at node i, 0 otherwise
qTpm : Quantity transferred at port p from month m to month m+ 1

wijvh : Weight of speed mode h for vessel v sailing from node i to j
dijvh : Equal to 1 if speed is weighted by speed mode wijvh and wijv(h+1), 0 otherwise

35

Objective Function

max
∑
v∈V

∑
i∈ND

v

Ri qiv −
∑
v∈V

∑
(i,j)∈Av

∑
h∈Hv

COPijvh wijvh +
∑
v∈V

∑
(i,j)∈Av|i∈ND

v

∑
h∈Hv

Dvh T
S
ijvhwijvh yijv

−
∑
v∈V

∑
(i,j)∈Av|i∈ND

v

CCDjv yijv −
∑
i∈ND

Πi si +
∑
i∈NP

RFOBi qFOBi

+
∑
i∈NP

∑
j∈ND

(RiQCHi − CCHij) zij (5.1)

The objective function (5.1) maximizes the profit gained from operating a fleet of
LNG vessels. The first term is revenues from LNG sales to long term contracts
and spot market. The second term is sailing costs according to the chosen speeds
including port and canal fees. The third and fourth terms are fuel switching
costs and one-time charge in case of cool-down in ports, respectively. The fifth
term represents penalty/loss in case of breaching a long term contract. The sixth
term is profit from FOB sales. The seventh term is the total profit from chartering
activities. It consists of revenues from servicing delivery nodes by chartered vessels,
and sailing and chartering costs for chartered vessels.

Constraints

Routing Constraints∑
v∈V

∑
i∈Nv

xijv +
∑
i∈N

zij ≤ 1 ∀ j ∈ NO (5.2)

∑
v∈V

∑
i∈{ND

v ,o(v)}

xijv ≤ 1 ∀ j ∈ NP (5.3)

∑
j∈Nv \ {o(v)}

xo(v)jv = 1 ∀ v ∈ V (5.4)

∑
i∈ND

v ∪ {o(v)}

xid(v)v = 1 ∀ v ∈ V (5.5)

36

∑
j∈Nv

xijv −
∑
j∈Nv

xjiv = 0 ∀ v ∈ V, i ∈ Nv \ {o(v), d(v)}

(5.6)

Constraints (5.2) enable but don’t oblige vessels to serve contracts in the spot
market. In addition, they ensures also that each spot contract is served at most
once. Constraints (5.3) ensures that each pickup node is departed from at most
once. Constraints 5.4-5.6 represent the flow conservation constraints and describe
the flow of vessels through each node. (5.4) and (5.5) ensure that each vessel leaves
the artificial origin node and visits the artificial destination node once. In addition,
constraints (5.6) make sure that all vessels that visit a node, also leave the node
except the artificial origin and destination nodes.

Stopover Routing Constraints∑
v∈V

∑
i∈NP

jv

xijv + sj +
∑
i∈Np

j

zij = aj ∀ j ∈ NC (5.7)

∑
v∈V

∑
i∈NP

jv

∑
k∈ND

v

xikv xkjv = (1− aj) ∀ j ∈ NC (5.8)

Constraints (5.7) and (5.8) require that fixed contracts are either serviced directly
from a feasible pickup node (or the origin), or after a stopover at a delivery node.
In the latter case, the vessel visiting the stopover node must leave from a pickup
port which is feasible for both delivery nodes.

Time Constraints

tEiv = tSiv + qiv

TQiv
∀ v ∈ V, i ∈ Nv \ {o(v), d(v)}

(5.9)

xijv(tEiv +
∑
h∈Hv

TSijvhwijvh + TCDjv yijv) ≤ tSjv ∀ v ∈ V, (i, j) ∈ Av | j ∈ NP
v

(5.10)

xijv(tEiv +
∑
h∈Hv

TSijvhwijvh) ≤ tSjv ∀ v ∈ V, (i, j) ∈ Av | j ∈ ND
v

(5.11)

37

TMIN
i

∑
j∈Nv ∪ {d(v)}

xijv ≤ tSiv ≤ TMAX
i

∑
j∈Nv ∪ {d(v)}

xijv ∀ v ∈ V, i ∈ Nv \ {o(v), d(v)}

(5.12)

Constraints 5.9-5.11 ensure time compatibility at and between nodes. Constraints
(5.9) defines the relationship between the time of service start time and service
end time in each node. In constraints (5.10), the service start time at a loading
node, node j, is greater than or equal to the sum of end service time at the un-
loading node, node i, sailing time from i to j, and time required to run a cool-down
process if the vessel’s tanks are totally emptied at delivery node. (5.11) ensure
that the time of service start at an unloading node is at greater than or equal to
the sum of the service end time at the previous node and sailing time between
them. The time compatibility constraints in (5.10) and (5.11) are modelled as
inequalities to allow for waiting time and enable vessels to arrive at port earlier
than start of time window. However, vessels cannot dock at the assigned slot or
start loading/unloading operation before the start of time window. Constraints
(5.12) represent time windows at the pickup and delivery nodes.

Quantity Balance Constraints for Vessel Legs

xijv(liv −Bv (tSjv − tEiv) (1− yijv) + qjv − ljv) = 0 ∀ v ∈ V, (i, j) ∈ Av | j ∈ NP
v

(5.13)
xijv(liv −Bv (tSjv − tEiv)− qjv − ljv) = 0 ∀ v ∈ V, (i, j) ∈ Av | j ∈ ND

v

(5.14)

Constraints (5.13) and (5.14) represent the load management on board the vessel.
(5.13) represent the situation when the end node is a pickup node. It ensures
that quantity on board when leaving a pickup node is equal to the sum of the
quantity on board when leaving previous node minus the loss due to boil-off (if the
vessel is non-empty when leaving the delivery node) plus the loaded quantity at
the delivery node. Constraints (5.14) represent the situation when the end node
is a delivery node. It ensures that quantity on board when leaving a delivery node
is equal to the sum of the quantity on board when leaving previous node minus
the loss due to boil-off and unloaded quantity at the delivery node. Note that
constraints (5.14) apply for vessels at delivery nodes that come from pick-up or
delivery nodes. Additionally, if a vessel has a re-liquefaction technology on board,
Bv can easily be set to zero to reflect the fact that no boil-off is produced

38

Heel Management

liv
∑
j∈NP

v

yijv ≤ 0 ∀ v ∈ V, i ∈ {ND
v , o(v)}

(5.15)
yijv ≤ xijv ∀ v ∈ V, (i, j) ∈ Av | j ∈ NP

v

(5.16)

(1−
∑
j∈NP

v

yijv)
∑
j∈NP

v

xijv((tSjv − tEiv)Bv +QSv) ≤ liv ∀ v ∈ V, i ∈ ND
v (5.17)

Constraints (5.15) make sure that the leaving quantity at a delivery port is zero
if there is no heel on board.Constraints (5.16) make sure that if vessel v does not
sail from i to j the heel variable is set to zero.

Constraints (5.17) ensure that the quantity of LNG on board before arriving at a
pick-up node (leaving a delivery node) consists of a buffer and enough quantity to
maintain the tanks cool by boil-off, if cool-down is to be avoid on the given sailing
leg.

Other Quantity Constraints

QMIN
i

∑
j∈Nv ∪ {d(v)}

xijv ≤ qiv ≤ QMAX
i

∑
j∈Nv ∪ {d(v)}

xijv ∀ v ∈ V, i ∈ ND
v (5.18)

QFv V
CAP
v

∑
j∈Nv ∪ {d(v)}

xijv ≤ liv ≤ V CAPv

∑
j∈Nv ∪ {d(v)}

xijv ∀ v ∈ V, i ∈ NP
v (5.19)

qiv ≤ liv ∀ v ∈ V, i ∈ NP
v (5.20)

liv(1−
∑
j∈Nv

xijv) ≤ 0 ∀ v ∈ V, i ∈ Nv \ {d(v)}

(5.21)

39

Constraints (5.18) ensure that the quantity unloaded is within the quantity window
for delivery nodes, similarly, constraints (5.19) impose quantity windows at the
pick-up nodes. These quantity windows are relating to vessel stability and capacity.
In addition, we have quantity windows (or balance) constraint relating to a pickup
port (consisting of many pickup nodes).

Constraints (5.20) make sure that the leaving quantity at a pickup port is greater
than or equal to the pickup quantity.Constraints (5.21) make sure that liv is zero
if vessel v does not sail from i.

Quantity Balance for Ports and FOB Sale∑
i∈NP O

pm

∑
v∈V

qiv +
∑
v∈V

∑
i∈ND

v ∪ {o(v)}

∑
j∈NP O

pm

yijvQ
CD
v +

∑
i∈NP O

pm

∑
j∈ND

(Qj +BCHj TCHij +QCDC)zij

+
∑

i∈NP O
pm

qFOBi = QApm + qTp,m−1 − qTpm ∀ p ∈ P, m ∈M (5.22)

FMIN
i fi ≤ qFOBi ≤ FMAX

i fi ∀ i ∈ NP (5.23)∑
j∈ND

v ∪ {d(v)}

xijv ≤ 1− fi ∀ i ∈ NP (5.24)

QIp ≤ qTp,0 ≤ QIp ∀ p ∈ P (5.25)

Constraints (5.22) must hold for every port and every month. It states that the sum
of pickup quantities picked up by own vessels and chartered ones, the quantities
spent during cool-down processes and quantities sold as FOB must equal the net
supply.

Constraints (5.23) must hold for every pickup node. It states that a spot sale must
satisfy a given quantity window.

Constraints (5.24) must hold for every pickup node. It states that a spot sale can
only take place if there are no outgoing arcs from the given node.

Constraints (5.25) assign the correct value for the input transfer quantity (from
the last period of the previous planning horizon).

Speed Constraints and Speed Interpolating Constraints∑
h∈Hv

wijvh = xijv ∀ v ∈ V, (i, j) ∈ Av (5.26)

40

wijv1 ≤ dijv1 ∀ v ∈ V, (i, j) ∈ Av (5.27)
wijvh ≤ dijv(h−1) + dijvh ∀ v ∈ V, (i, j) ∈ Av, h ∈ Hv \ {1, |Hv|}

(5.28)
wijv|Hv| ≤ dijv(|Hv|−1) ∀ v ∈ V, (i, j) ∈ Av (5.29)∑
h∈Hv\{|Hv|}

dijvh = 1 ∀ v ∈ V, (i, j) ∈ Av (5.30)

Constraints (5.26) - (5.30) makes sure that the model is able to choose speeds
with corresponding fuel cost which are close to the actual speed-fuel curve. This is
achieved by linear interpolation between actual points on the curve, these points
correspond to the speed modes H and their corresponding sailing times TSijvh and
operating costs COPijvh. Furthermore, wijvh are the corresponding weights between
to adjacent points. Lastly, using the variables dijvh we restrict the weights to in
fact be a linear combination of no less and no more than two points and that the
points need to be adjacent to each other.

Non-Negativity and Binary Constraints

xijv ∈ {0, 1} ∀ v ∈ V, (i, j) ∈ Av (5.31)
yijv ∈ {0, 1} ∀ v ∈ V, i ∈ ND

v , j ∈ NP
jv

(5.32)
si ∈ {0, 1} ∀ i ∈ NC (5.33)
aj ∈ {0, 1} ∀ j ∈ ND

v (5.34)
tSiv ≥ 0 ∀ v ∈ V, i ∈ Nv \ {o(v)}

(5.35)
tEiv ≥ 0 ∀ v ∈ V, i ∈ Nv \ {d(v)}

(5.36)
qiv ≥ 0 ∀ v ∈ V, i ∈ Nv \ {o(v), d(v)}

(5.37)
liv ≥ 0 ∀ v ∈ V, i ∈ Nv \ {d(v)}

(5.38)
qFOBi ≥ 0 ∀ v ∈ V, i ∈ NP (5.39)
qTpm ≥ 0 ∀ p ∈ P, m ∈M (5.40)
fi ∈ {0, 1} ∀ i ∈ NP (5.41)

41

zij ∈ {0, 1} ∀ i ∈ NP , j ∈ ND (5.42)
dijvh ∈ {0, 1} ∀ v ∈ V, (i, j) ∈ Av, h ∈ Hv \ {|Hv|}

(5.43)
wijvh ≥ 0 ∀ v ∈ V, (i, j) ∈ Av, h ∈ Hv

(5.44)

Binary requirements on the flow variables are imposed by constraints 5.31-5.34.
Constraints 5.35-5.40 impose non-negativity requirements on time and quantity
variables. Constraints 5.41 puts binary restrictions on the binary FOB variable.
Constraints (5.43) impose binary restrictions on the dijvh variables, while (5.44)
impose non-negativity restrictions on the wijvh

5.2 Linearization

Linearization of objective function (5.1)

The following term in the objective function needs to be linearized:∑
h∈Hv

Dvh T
S
ijvhwijvh yijv

This is done by introducing the variable

zijvh = wijvh yijv ∀ v ∈ V, (i, j) ∈ Av, h ∈ Hv

and adding the following constraints to the model:

zijvh ≤ yijv ∀ v ∈ V, (i, j) ∈ Av, h ∈ Hv

0 ≤ wijvh − zijvh ≤ (1− yijv) ∀ v ∈ V, (i, j) ∈ Av, h ∈ Hv

Linearization of time balance constraints where end node is a pickup
node (5.10)

xijv(tEiv +
∑
h∈Hv

TSijvhwijvh + TCDjv yijv) ≤ tSjv ∀ v ∈ V, (i, j) ∈ Av | j ∈ NP
v

42

The constraint can be linearized by using a big M coefficient as follows

tEiv +
∑
h∈Hv

TSijvhwijvh + TCDjv yijv ≤ tSjv +M5.10
ijv (1− xijv) ∀ v ∈ V, (i, j) ∈ Av | j ∈ NP

v

(5.45)

When xijv is equal to zero, yijv will be forced to be zero. tEiv is at most equal to
the sum of the upper time limit for operation start at the delivery node and the
time it takes to unload a quantity equal to the the upper limit for delivery at the
node. Hence,

M5.10
ijv = TMAX

i + QMAX
i

TQiv
+ max
h∈Hv

{TSijvh} ∀ v ∈ V, (i, j) ∈ Av | i ∈ ND
v (5.46)

, j ∈ NP
v

M5.10
ijv = max

h∈Hv

{TSijvh} ∀ v ∈ V, (i, j) ∈ Av | i ∈ {o(v)} (5.47)

, j ∈ NP
v

We add 5.45 to our model instead of 5.10

Linearization of time balance constraints where end node is a delivery
node (5.11)

xijv(tEiv +
∑
h∈Hv

TSijvhwijvh) ≤ tSjv ∀ v ∈ V, (i, j) ∈ Av | j ∈ ND
v

By using a big M coefficient, we can linearize (5.11) as follows

tEiv +
∑
h∈Hv

TSijvhwijvh ≤ tSjv +M5.11
ijv (1− xijv) ∀ v ∈ V, (i, j) ∈ Av | j ∈ ND

v

(5.48)
The time of operation end at node i is at most equal to the sum of the upper time
limit of operation start and the time it takes to load/unload maximum allowed
quantity at the same node.

M5.11
ijv = TMAX

i +QMAX
i TQiv + max

h∈Hv

{TSijvh} ∀ v ∈ V, (5.49)

(i, j) ∈ Av | j ∈ ND
v , i ∈ Nv \ {o(v)}

M5.11
ijv = max

h∈Hv

{TSijvh} ∀ v ∈ V, (5.50)

(i, j) ∈ Av | j ∈ ND
v , i ∈ {o(v)}

We add 5.48 to our model instead of 5.11

43

Linearization of load management constraint where end node is a pickup
node (5.13)

xijv(liv −Bv (tSjv − tEiv) (1− yijv) + qjv − ljv) = 0 ∀ v ∈ V, (i, j) ∈ Av | j ∈ NP
v

Implicitly we want that:

tSjv (1− yijv) = cSijv ∀ v ∈ V, (5.51)
(i, j) ∈ Av | j ∈ NP

v

tEiv (1− yijv) = cEijv ∀ v ∈ V, (5.52)
(i, j) ∈ Av | j ∈ NP

v

liv −Bv (cSijv − cEijv) + qjv − ljv ≤M5.13,1
ijv (1− xijv) ∀ v ∈ V, (5.53)

(i, j) ∈ Av | j ∈ NP
v

− liv +Bv (cSijv − cEijv)− qjv + ljv ≤M5.13,2
ijv (1− xijv) ∀ v ∈ V, (5.54)

(i, j) ∈ Av | j ∈ NP
v

We achieve this by adding 5.54 and 5.55 to the model, and by bounding the new
variables cSijv and cEijv correctly by requiring that:

cSijv ≤ TMAX
j (1− yijv) ∀ v ∈ V, (5.55)

(i, j) ∈ Av | j ∈ NP
v

0 ≤ tSjv − cSijv ∀ v ∈ V, (5.56)
(i, j) ∈ Av | j ∈ NP

v

tSjv − cSijv ≤ TMAX
j yijv ∀ v ∈ V, (5.57)

(i, j) ∈ Av | j ∈ NP
v

cEijv ≤ (TMAX
i + QMAX

i

TQiv
) (1− yijv) ∀ v ∈ V, (5.58)

(i, j) ∈ Av | j ∈ NP
v

0 ≤ tEiv − cEijv ∀ v ∈ V, (5.59)
(i, j) ∈ Av | j ∈ NP

v

tEiv − cEijv ≤ (TMAX
i + QMAX

i

TQiv
) yijv ∀ v ∈ V, (5.60)

44

(i, j) ∈ Av | j ∈ NP
v

Now, we need to set the values for big M coefficients:

For M5.13,1
ijv we have that liv ≤ max{0, V CAPv −QMIN

i } and the rest of the terms
are non-positive as qjv ≤ ljv. Thus M5.13,1

ijv becomes:

M5.13,1
ijv = max{0, V CAPv −QMIN

i }+Bv(TMAX
i + QMAX

i

TQiv
) ∀ v ∈ V, (i, j) ∈ Av

| j ∈ NP
v , i ∈ Nv \ {o(v)}

(5.61)
M5.13,1
ijv = V CAPv ∀ v ∈ V, (i, j) ∈ Av

| j ∈ NP
v , i ∈ {o(v)}

(5.62)

For M5.13,2
jv we have that the second term is always less than Bv T

MAX
j , and we

also have that ljv ≤ V CAPv . Thus M5.13,2
jv becomes:

M5.13,2
jv = V CAPv +Bv T

MAX
j ∀ v ∈ V, (i, j) ∈ Av

| j ∈ NP
v (5.63)

We add 5.54 - 5.60 to our model instead of 5.13

Linearization of load management constraint where end node is a de-
livery node (5.14)

xijv(liv −Bv (tSjv − tEiv)− qjv − ljv) = 0 ∀ v ∈ V, (i, j) ∈ Av | j ∈ ND
v

This constraint is linearized by adding the following two constraints:

liv −Bv (tSjv − tEiv)− qjv − ljv ≤M
5.14,1
iv (1− xijv) ∀ v ∈ V, (i, j) ∈ Av | j ∈ ND

v

(5.64)
− liv +Bv (tSjv − tEiv) + qjv + ljv ≤M5.14,2

jv (1− xijv) ∀ v ∈ V, (i, j) ∈ Av | j ∈ ND
v

(5.65)

45

To determine M5.14,1
iv we use that liv ≤ V CAPv and tEiv ≤ TMAX

i + QMAX
i

TQ
iv

. The rest
of the variables on the left side of (5.64) show up with negative signs and have 0
as lower bound.

The big M coefficients are calculated as:

M5.14,1
iv = V CAPv +Bv(TMAX

i + QMAX
i

TQiv
) ∀ v ∈ V, (i, j) ∈ Av (5.66)

| j ∈ ND
v , i ∈ Nv \ {o(v)}

M5.14,1
iv = V CAPv ∀ v ∈ V, (i, j) ∈ Av (5.67)

| j ∈ ND
v , i ∈ {o(v)}

For (5.65) we have that the sum of the delivered quantity and the leaving quantity
cannot exceed the vessel’s capacity. Also, the vessel will have had to boil off some
gas on its way to the delivery port. So qjv + ljv ≤ V CAPv − Bv min

i∈Nv,h∈Hv

{TSijvh}

and tSjv ≤ TMAX
j .

The big M coefficients are calculated as:

M5.14,2
jv = V CAPv −Bv min

i∈Nv,h∈Hv

{TSijvh}+Bv T
MAX
j ∀ v ∈ V, j ∈ ND

v (5.68)

We add 5.64 and 5.65 to our model instead of 5.14

Linearization of stopover constraint (5.8)

∑
v∈V

∑
i∈NP

jv

∑
k∈ND

v

xikv xkjv = (1− aj) ∀ j ∈ ND

Implicitly we want that:∑
i∈NP

jv
∩NP

kv

xikv xkjv = bkjv ∀ v ∈ V, k ∈ ND
v , j ∈ ND

v (5.69)

∑
v∈V

∑
k∈ND

v

bkjv = (1− aj) ∀ j ∈ ND (5.70)

We accomplish this by by adding 5.70 to the model, and by bounding the new
variables bkjv correctly by requiring that:

bkjv ≤
∑

i∈NP
jv
∩NP

kv

xikv ∀ v ∈ V, k ∈ ND
v , j ∈ ND

v (5.71)

46

bkjv ≤ xkjv ∀ v ∈ V, k ∈ ND
v , j ∈ ND

v (5.72)

bkjv ≥
∑

i∈NP
jv
∩NP

kv

xikv + xkjv − 1 ∀ v ∈ V, k ∈ ND
v , j ∈ ND

v (5.73)

We add 5.70 - 5.73 to our model instead of 5.8

Linearization of the constraint making sure that leaving quantity is zero
if there is no heel on-board (5.15)

liv
∑
j∈NP

v

yijv ≤ 0 ∀ v ∈ V, i ∈ {ND
v , o(v)}

liv ≤M5.15
iv (1−

∑
j∈NP

v

yijv) ∀ v ∈ V, i ∈ {ND
v , o(v)} (5.74)

The big M coefficient is chosen as small as possible without constraining liv if∑
j∈NP

v
yijv is equal to one. When leaving a delivery node i, a vessel v will at most

contain maximum capacity minus unloaded quantity at the same node. However,
vessel v does not have unloaded quantity at the origin node and the vessel can
thus at most contain maximum vessel capacity. Hence, the big M coefficient can
be calculated as,

M5.15
iv = max{0, V Capv −QMin

i } ∀ v ∈ V, i ∈ ND
v (5.75)

M5.15
iv = V Capv ∀ v ∈ V, i ∈ {o(v)} (5.76)

We add 5.74 to our model instead of 5.15

Linearization of the constraint making sure that leaving quantity is zero
if there is no leg (5.21)

liv(1−
∑
j∈Nv

xijv) ≤ 0 ∀ v ∈ V, i ∈ Nv \ {d(v), o(v)}

liv ≤M5.21
i

∑
j∈Nv

xijv ∀ v ∈ V, i ∈ Nv \ {d(v), o(v)} (5.77)

The big M’s become

M5.21
i = max{0, V Capv −QMin

i } ∀ v ∈ V, i ∈ ND
v (5.78)

M5.21
i = V Capv ∀ v ∈ V, i ∈ NP

v (5.79)

We add 5.77 to our model instead of 5.21

47

Linearization of heel management constraint (5.17)

(1−
∑
j∈NP

v

yijv)
∑
j∈NP

v

xijv((tSjv − tEiv)Bv +QSv) ≤ liv ∀ v ∈ V, i ∈ {ND
v , o(v)}

We may reformulate this to:

Bv
∑
j∈NP

v

(tSjvxijv − tEivxijv) +
∑
j∈NP

v

QSv xijv ≤ liv +M5.17
i

∑
j∈NP

v

yijv

∀ v ∈ V, i ∈ {ND
v , o(v)}

(5.80)

Implicitly we want that:

tSjvxijv = dSijv ∀ v ∈ V, i ∈ {ND
v , o(v)}, j ∈ NP

v

(5.81)
tEivxijv = dEijv ∀ v ∈ V, i ∈ {ND

v , o(v)}, j ∈ NP
v

(5.82)

Bv
∑
j∈NP

v

(dSijv − dEijv) +
∑
j∈NP

v

QSv xijv ≤ liv +M5.17
i

∑
j∈NP

v

yijv

∀ v ∈ V, i ∈ {ND
v , o(v)}

(5.83)

We accomplish this by adding 5.83 to the model, and by bounding the new variables
dSijv and dEijv correctly by requiring that:

dSijv ≤ TMAX
j xijv ∀ v ∈ V, i ∈ {ND

v , o(v)}, j ∈ NP
v

(5.84)
0 ≤ tSjv − dSijv ∀ v ∈ V, i ∈ {ND

v , o(v)}, j ∈ NP
v

(5.85)
tSjv − dSijv ≤ TMAX

j (1− xijv) ∀ v ∈ V, i ∈ {ND
v , o(v)}, j ∈ NP

v

(5.86)

dEijv = 0 ∀ v ∈ V, i ∈ {o(v)}, j ∈ NP
v

(5.87)

48

dEijv ≤ (TMAX
i + QMAX

i

TQiv
)xijv ∀ v ∈ V, i ∈ {ND

v , o(v)}, j ∈ NP
v

(5.88)
0 ≤ tEiv − dEijv ∀ v ∈ V, i ∈ {ND

v , o(v)}, j ∈ NP
v

(5.89)

tEiv − dEijv ≤ (TMAX
i + QMAX

i

TQiv
)(1− xijv) ∀ v ∈ V, i ∈ {ND

v , o(v)}, j ∈ NP
v

(5.90)

In order to determine M5.17
i we use that tSjv ≤ TMAX

j .

Hence, the big M coefficient becomes:

M5.17
i = Bv max

j∈NP
v

{TMAX
j }+QSv ∀ v ∈ V, i ∈ {ND

v , o(v)}

(5.91)

We add 5.83 - 5.90 to our model instead of 5.17

5.3 Variable Reduction
As the model’s complexity increases, it is important to tighten and reduce the
problem size. This can be done by omitting variables that, if they are assigned
other values than zero, produce solutions that are either infeasible or dominated
by other solutions. Some of these reductions are listed below.

• Arcs between i and j are not created if i = j, since it is never beneficial to
pick up a cargo from one node and deliver it to the same node. A node here
can be a pick-up or delivery node. This reduction applies for the variables
xijv, wijvh and dijvh.

• Assume vessel v leaves pick-up node i at time TMIN
i and sails to delivery node

j at shortest possible sailing time, hence using the vessel’s maximum speed
mode. If vessel v cannot arrive at node j within TMAX

j , it will never satisfy
the time window for node j. Consequently, all arcs between these two nodes
that belong to that vessel cannot be included in an optimal, neither feasible,
solution. This applies for arcs from a pick-up node to delivery node, delivery
node to pick-up node, and between two different delivery nodes. Hence, if
either 5.92 or 5.94 is satisfied, the associated arcs represented by the variables
xijv, qiv, liv, tSiv, tEiv and ∀h ∈ H wijvh and dijvh can be omitted. However,
if 5.93 is satisfied, one has to include yijv in addition to the aforementioned

49

variables.

TMIN
i + min

h∈H
{TSijvh} > TMAX

j ∀ i ∈ NP , j ∈ ND, v ∈ V (5.92)

TMIN
i + min

h∈H
{TSijvh} > TMAX

j ∀ i ∈ ND, j ∈ NP , v ∈ V (5.93)

TMIN
i + min

h∈H
{TSijvh} > TMAX

j ∀ i ∈ ND, j ∈ ND, v ∈ V (5.94)

• Assume a vessel v with capacity V CAPv , pick-up node i and delivery node
j with quantity window [QMIN

j ,QMAX
j]. In order to satisfy the quantity

constraints for node j, represented in Constraints 5.18, the vessel must have
at least QMIN

j and enough quantity to be boiled off during the voyage from
i to j. Hence, variables representing the arcs between i and j by vessel v
that satisfy 5.95, can be discarded. These variables are xijv, qiv, liv, tSiv, tEiv
and ∀h ∈ H wijvh and dijvh

Vcap −Bvmin
h∈H
{TSijvh} < QMIN

j (5.95)

• The same capacity condition as in 5.95 applies also between two delivery
nodes; however, the condition has to be modified to account for the quantity
window of two delivery nodes instead of only one. The condition for discard-
ing arcs between delivery node j and k for vessel v due to the constraint of
quantity windows becomes

Vcap − (QMIN
j +QMIN

k +Bvmin
h∈H
{TSijvh}+Bvmin

h∈H
{TSjkvh}) < QMIN

j (5.96)

• Let j ands k denote two delivery nodes. A vessel v can only deliver a quantity
to j and k on the same voyage (stopover) if this quantity is picked up from a
node and by a vessel that is approved by both customers in j and k. Hence,
if

NP
jv ∩NP

kv = ∅ (5.97)

all arcs between node j and k for vessel v can be discarded as well.

• Assume that vessel v has five speed modes and it has to sail at least at the
second highest speed mode from node i to j in order to satisfy the time
window of node j, i.e. arrive between TMIN

j and TMAX
j . In this case,

50

variables representing the three lowest speed modes, wijvh∀h ∈ 1, 2, 3 are
redundant and can be discarded since they will never be part of a feasible
solution. Additionally, the variables which connect the first three speed
modes, dijv1 and dijv2, become unnecessary. If the speed needed to satisfy
the time window of j is a linear combination of, for instance, wijv3 and wijv4,
only wijv1, wijv2 and dijv1 can be discarded.

• The precedence requirement between node i and j is usually taken care of by
the time constraints 5.10 and 5.11. However, the variable zij is not covered by
these constraints, hence zij should not be created if the precedence constraint
between the associated pair of nodes is violated. This is handled by setting
the sailing time TCHij of a chartered vessel to zero where the precedence
constraint is violated. When the variable is created, it is then only created
if TCHij > 0.

6. Adaptive Large Neighborhood
Search

This chapter introduces an adaptive large neighborhood search heuristic applied to
the short term LNG routing and scheduling problem. The ALNS methodology was
first presented by Ropke and Pisinger (2006), extending the large neighborhood
search framework proposed by Shaw (1997). The ALNS uses a set of destroy and
repair operators to repeatedly break down parts of a solution and re-build them.
The method is adaptive in the sense that the probability of selecting an operator
is based on its prior performance. ALNS has proven to be successful for a wide
range of routing problems.

The solutions method described in this chapter is a partial optimization method
that uses an ALNS framework in the first part and solves a MIP in the second part
with the routes from a solution in the first part fixed. In the first part, decisions
related to heel-out, FOB-sale, vessel speed and delivered quantity to customers are
fixed. These are the decisions that are not directly related to the routing of the
vessels, but to the delivered quantity and speed decisions along the routes, which
are difficult to handle in a neighborhood search based heuristic. This approach
is inspired by Coelho et al. (2012), Korsvik and Fagerholt (2010) and Demir et
al. (2012). The assumptions in the first part of the solution method about the
decisions that are postponed to the second part are listed below:

• Never do a heel-out

• No FOB-sale

• Always deliver the minimum possible quantity (lower limit of quantity win-
dow) to customers

• Always sail with maximum speed

Computational testing and rationale behind these assumptions are described in

51

52

Section 10.1.

Figure 6.1 shows a simple flow chart of the ALNS heuristic. The first part of the
heuristic consist of the ALNS framework that stores all new best feasible solutions
found. When a stopping criteria is met, the routes of each of the best feasible
solutions from the first part are fixed, and the MIP model in Section 5.1 is solved
with fixed xij variables corresponding to the routes from the solutions from the
first part.

Since the second part of the ALNS heuristic is straight forward, the following sec-
tions are devoted to explaining the first part. Section 6.1 describes the framework
used in the first part of the heuristic, and section 6.2 - 6.11 go into more detail on
each element of the framework.

Initialize solution

ALNS fremwork

Terminate?

MILP w/ fixed
routes

New best feasible
solution

Store solution

Yes

NO

NO

Yes

Part 1

Part 2

Output best solution

Figure 6.1: A schematic overview of the ALNS heuristic

6.1 The Adaptive Large Neighborhood Search Frame-
work

An algorithmic overview of the ALNS framework is given in Algorithm 1. The
input to the heuristic is an initial feasible solution. The representation of the

53

solution is described in Section 6.2, and the two methods used to find an initial
feasible solution are presented in Section 6.3. The iterative search loop in the
ALNS is defined in lines 13-45. The search continues until either the number of
performed iterations reaches the iteration limit, IMAX , or the running time of the
heuristic exceeds the time limit, TMAX . The algorithm iterates between perform-
ing local search (LS) operations and large neighborhood search (LNS) operations
on the current solution. The algorithm starts by doing a local search on the initial
feasible solution to quickly probe if there are better solutions close to the initial
solution. The LS component is described in detail in Section 6.8. If the LS com-
ponent performs IN iterations without improving the best solution, the algorithm
switches to LNS. This components serves to diversify the search, ensuring that the
heuristic readily explores the solution space, even if the problem is tightly con-
strained. If the LNS finds a new best solutions, it is likely that the algorithm has
reached a promising region of the solution space, so local search is performed on
the solution to ensure an intensified search around the found solution. Moreover,
if no improvement is made on the best solution during IS iterations of LNS, the
algorithm switches to doing local search.

The LNS component finds new solutions by exploring large neighborhoods around
the current solution through repeatedly destroying and repairing the solution.
The destruction and repairing process, and therefore the choice of neighborhood,
is controlled dynamically based on the prior performance of the neighborhood,
making the search process adaptive. First, a destroy operator, d, is selected from
the set of destroy operators, Q−, and a repair operator, r, is selected from the
set of repair operators, Q+, based on the weights wd,j and wr,j , and applied to
the current solution S. A detailed explanation of the different destroy and repair
methods is given in Section 6.6 and 6.7 respectively, and how the weights are
used to select operators is described in Section 6.9. The weights are updated
in lines 36-42 based on scores awarded to the operators used in each iteration
(line 35) depending on the performance of the operators. The weight adjustment
mechanisms are detailed in Section 6.10. The evaluation of a temporary solution,
St, is done in lines 18-24 for the LS component and in lines 28-34 for the LNS
component. Here, F(·) denotes the evaluation function, which is elaborated in
Section 6.5. If a new best solution is found, the solution is added to the list of
best solutions. The heuristic can accept non-improving solutions (lines 22 and 32)
based on a simulated annealing scheme presented in Section 6.11.

54

Algorithm 1 Adaptive Large Neighborhood Search
Input: initial solution, S0

Output: final solution, Sf

1: Initialize: wd,0, wr,0 . Weights
2: Assign: IMAX , TMAX . Max number of iterations, max running time
3: Assign: M . Segment size
4: Assign: IR . Number of iterations before weights are reset
5: Assign: U INIT , c . Initial temperature, cooling factor in simulated

annealing

6: i = 0, t = 0 . Iteration counter, timer
7: U = U INIT . Temperature in simulated annealing
8: S = S0, Sb = S . Current solution, best solution

9: while i < IMAX , t < TMAX do
10: Select operator type
11: if Local Search then
12: Randomly select local search operator L
13: St ← L(S)
14: if F (St) < F (Sb) and St is feasible then
15: Sb = St

16: S = St

17: Add St to list of best solutions
18: else if accept(St, S) then
19: S = St

20: end if
21: else if Large Neighborhood Search then
22: Select destroy and repair operators d ∈ Q−, r ∈ Q+ using wd,j , wr,j
23: St = r(d(S))
24: if F (St) < F (Sb) and St is feasible then
25: Sb = St

26: S = St

27: Add St to list of best solutions
28: else if accept(St, S) then
29: S = St

30: end if
31: Award scores σ1, σ2, σ3, σ4
32: if i%M = 0 then j = j + 1
33: if i%IR = 0 then
34: Reset weights wd,j , wr,j
35: else
36: Update weights wd,j , wr,j . Section 6.10
37: end if
38: end if
39: end if
40: U = cU, i = i+ 1, update t
41: end while
42: return Sb

55

6.2 Solution Representation
This section introduces the solution representation used in the ALNS heuristic.
Notation from Chapter 5 is used.

A solution consists of two parts: a list of routes, r, and a list of unserviced nodes,
u. The list of routes contains routes rv for each vessel v ∈ V . Each route rv is
comprised of an chronologically ordered sequence of nodes, ni, visited by vessel
v. As in Chapter 5, the nodes are divided into pickup nodes, NP , and delivery
nodes, ND, and the delivery nodes are further categorized as either fixed contract
nodes, NC , or optional contract nodes, NO. The list of unserviced nodes contains
all nodes, both pickup and delivery nodes, that are not included in any of the
vessels routes rv. The first node in each route rv is an artificial origin node, n0

v,
corresponding to the origin position of vessel v. The artificial destination node is
not included in the node sequence. An illustration of the solution representation
is presented in Figure 6.2. .

:�1

:�2

Routes

� :

→ →�1 �2 �7

→ →�4 �8 �6

Unserviced	nodes

�3 �5 �9

Figure 6.2: Solution representation

6.3 Initial solution
Two different methods of generating an initial solution is used in this thesis. One
is based on the original ADP plan, while the other create the initial solution from
scratch using a construction heuristic. Both of these methods are explained in
detail in Section 7.1.

6.4 Search Space and Feasibility
The ALNS is allowed to restrictively search in the infeasible space. Although this
expands the search space and entails the risk of wasting resources on blind alleys or
being trapped in an infeasible optimum, there are some theoretical and empirical

56

studies that indicate improvement in the search performance, e.g., Yan et al. (2005)
show that combining feasible solutions and a restricted set of infeasible solutions
offers a significant improvement in the performance of a traditional local search
algorithm solving a transportation project evaluation problem. In (Glover and
Hao, 2011), the authors study a hard 1-0 optimization problem and show that a
search strategy that alternates between feasible and infeasible solutions performs
better than neighborhoods that don’t. Generally, the global optima lies on the edge
of the feasible space, or nearby in case of integer linear problems. Allowing search
in the infeasible space enables the algorithm to attack the target region (where the
global optima lies) both from the inside and the outside of feasibility. Additionally,
this might improve the algorithm’s diversification capabilities in case of disjoint
feasible regions where infeasible solutions might act like a bridging mechanism that
allows jumps and shortcuts to the target region.

There are two feasibility criteria which are allowed to be broken during the search.
In the model in Section 5.1 constraints (5.7) and (5.8) allows a vessel to visit two
consecutive delivery nodes if is has sufficient capacity to serve both nodes, and
if both nodes are allowed to receive gas from the preceding pickup node. In the
ALNS, a vessel route rv is allowed to contain consecutive delivery nodes even if
the vessel cannot serve both nodes consecutively and regardless of the origin of the
gas. Moreover, a route is allowed to contain consecutive pickup nodes. Consecutive
delivery nodes that violate constraints (5.7) and (5.8) and consecutive pickup nodes
are penalized as described in Section 6.5.

Initial testing indicated that allowing the vessels to pick up more gas than the
allocated volume or allowing vessels to arrive after the time window of a node
were detrimental to the performance of the ALNS as it had trouble finding feasible
solutions, even when adaptively adjusting the infeasibility penalties.

6.5 Evaluation Function

This section describes the evaluation function F (S) used to assess the quality of a
solution S. Some notation from Chapter 5 is used. The evaluation function used
in the ALNS is different from the objective function in Section 5.1 with regards
to a couple of aspects. First of all, the evaluation function is a cost function, so
all revenue related terms have negative values, while cost and penalty terms have
positive values. Thus, the lower the value of the evaluation function, the better the
solution. Second, some changes occur due to the assumptions outlined in Section
6.1; the terms related to FOB-sale and heel-out are omitted, and the terms related
to speed and quantity are simplified as all vessels sail at maximum speed and
deliver quantities equal to the lower bound of the quantity window in each node.

57

Moreover, a penalty term is added to the evaluation function to penalize infeasible
solutions, and a scaling factor is included in the penalty for breaching contracts
to better control the trade-off between inserting nodes that causes the solution to
become infeasible and breaching contracts.

6.5.1 Route Cost

The cost CRv related to a vessel route rv is the difference between the operating
costs and the total revenue of the route. Let ni be the node at position i in the
node sequence rv, where i ∈ {1, . . . , lv} and lv is the number of nodes in route rv.
Vessel v is sailing in the maximum speed mode denoted h. The route cost is then
defined as

CRv =
lv−1∑
i=1

COP
nini+1h

−
∑

i|ni∈ND∩rv

Rni
QMIN
ni

(6.1)

where COP
nini+1h

is the operating cost of sailing from ni to ni+1 with speed mode
h, Rni is the revenue per unit for node ni and QMIN

ni
is the lower bound for the

quantity window of ni.

6.5.2 Cost of Unserviced Nodes

Fixed contract nodes that are in the list of unused nodes u can either be chartered
or breached. A fixed contract node uf inu can only be chartered if there exists a
pickup node in u that is a feasible pickup node upinu for uf . Let PCH be the set
of pairs (uf , up), where uf ∈ NC ∩u and up ∈ NP ∩u, that are used in chartering.
The chartering cost, CH , can then be calculated as

CH =
∑

(uf ,up)∈PCH

CCHuf ,up
−Ruf

QCHuf
(6.2)

where CCHuf ,up
is the cost of servicing uf from node up by a chartered vessel, Ruf

and QCHuf
is respectively the unit revenue and the the chartered volume for node

uf .

If a fixed contract node cannot be serviced by any pickup node in the unused node
list by a charter vessel, the contract corresponding to the node is breached. Let B
be the set of all nodes ui ∈ u that cannot be chartered. The total breaching cost
is then

58

CB =
∑
ui∈B

βΠui
(6.3)

where Πui
is the penalty cost of breaching node ui, introduced in Section 5.1, and

β > 0 is the scaling factor mentioned in the introduction of this section.

6.5.3 Penalty Cost

As stated in Section 6.4, a solution having routes with consecutive pickup nodes
or an infeasble consecution of delivery nodes is penalized. Let kPv and kDv be the
number of consecutive pickup nodes and infeasble consecutions of delivery nodes,
respectively, in the route rv for vessel v. The penalty cost for vessel v, CPv is
defined as

CPv = α R V CAP (kPv + kDv) (6.4)

where R is the average unit revenue of all fixed contracts, V CAP is the average
vessel capacity of vessels v ∈ V , and α > 0 is a scaling factor.

6.5.4 Total Evaluation Function

Based on Equation 6.1 - 6.4, the total value of the evaluation function F (S) of a
solution S containing routes rv for vessels v ∈ V and list of unserviced nodes u is
calculated as

F (S) = CH + CB +
∑
v∈V

CRv + CPv (6.5)

6.5.5 Feasibility

The evaluation function will also check the following feasibility criteria:

1. All nodes ni in route rv must be in the set of nodes that can be visited by
vessel v, Nv, for all vessels v

2. All vessels v must have sufficient capacity to deliver the minimum quantity
to all nodes ni in route rv, when boil-off is accounted for.

3. All vessels must be able to arrive before the end of the time window of all
nodes ni in route rv.

59

4. The total volume picked up by all vessels in each port in each period must be
less than or equal to the corresponding allocated volume, taken into account
that allocated volume at a port can be transferred from one period to the
subsequent one.

If any of the criteria above is broken in a solution S, the value of the evaluation
function is set to ∞. A solution is feasible if it satisfies (1-4) above and has a
penalty cost

∑
v∈V C

P
v = 0

6.6 Destroy Operators

This section presents the different destroy operators used in the ALNS heuristic.
All the destroy operators take a solution as input, remove nodes from the routes
in the list of routes and adds them to the unserviced nodes list. The main purpose
of including several different destroy methods is to be able to destroy a solution in
many different ways, thereby potentially explore a variety of large neighborhoods
around the solution.

The destroy operators are controlled by the degree of destruction, γ, representing
the share of nodes in the solution which is removed in an iteration of the ALNS
heuristic. Every iteration y is selected randomly between a minimum and a max-
imum value, denoted ΓMIN and ΓMAX respectively. As explained in Ropke and
Pisinger (2006), the degree of destruction will intuitively have a large impact on
the performance of the ALNS. A too small γ can make the ALNS lose the ad-
vantage of the large neighborhood search and might render the heuristic unable to
sufficiently explore the solution space. An excessively large γ effectively reduce the
repair operators to re-construct the solution from scratch in each iteration, which
may be time consuming and produce poor results. The number of nodes, q, to
be removed by the destroy operators are calculated from the degree of destruction
and passed to the operator as input.

Four different destroy operators are presented. The first three are generic destroy
operators inspired by Ropke and Pisinger (ibid.). The last one is a problem specific
destroy operator that seeks to exploit general knowledge of the problem structure
to find promising neighborhoods.

6.6.1 Random Removal

The Random Removal operator removes q randomly selected nodes from routes
in the solution and adds them to the list of unserviced nodes. This operator is
a special case of the Shaw Removal operator (Section 6.6.2) with p = 1, but is

60

implemented as a separate operator for speed purposes.

6.6.2 Shaw Removal

This removal operator was first introduced by Shaw (1997). The operator is here
slightly modified to fit the problem in this thesis. The idea behind the operator
is to remove nodes that are related to each other, as this makes it more likely
that the nodes can be inserted in new positions when the solution is repaired, thus
constructing new, possibly better, solutions. To quantify the similarity between
two nodes, n and m, a relatedness measure R(n,m) is defined:

R(n,m) = ν1

(
|TMIN
n − TMIN

m |
max
i∈N

TMIN
i −min

i∈N
TMIN
i

+ |TMAX
n − TMAX

m |
max
i∈N

TMAX
i −min

i∈N
TMAX
i

)

+ ν2
Dnm

max
i,j∈N

Dnm
+ ν3

(
1− |Vn ∩ Vm|

min{|Vn|, |Vm|}

)
(6.6)

where TMIN
i and TMAX

i is the lower and upper limit of the time window for node
i, Dij is the distance between node i and j, Vi is the set of vessel that can visit
node i and N is the set of all nodes in the solution. The relatedness measure
consist of three normalized terms, weighted by ν1, ν2, ν3 ∈ (0, 1]. The first term
measures the relatedness in time, the second term measures the distance between
the nodes and the third term ensures that nodes get a high relatedness of only a
few vessels can visit them. A lower value of R(n,m) means that two nodes are
more related.

Algorithm 2 shows the removal procedure of the Shaw Removal operator. q nodes
are removed from the list of routes r in solution S based in their relatedness
measure. A determinism parameter p ≥ 1 is used to introduce randomness into
the removal process. A larger value of p means less randomization.

61

Algorithm 2 Shaw Removal
Input: solution S with routes r and unserviced nodes list u, q nodes to remove,

parameter p ≥ 1
1: n = randomly selected node from r
2: D = {r}
3: while |D| < q do
4: m = randomly selected node from D
5: L = set of nodes ∈ r \D
6: sort L such that i < j =⇒ R(n,L[i]) < R(n,L[j])
7: y = random number ∈ [0, 1)
8: D = D ∩ {L[yp|L|]}
9: end while

10: remove all nodes in D from r

6.6.3 Worst Removal

The Worst Removal operator removes the nodes that appears to be the worst parts
of the solutions, seemingly placed in the wrong position. The cost C(n, S) of a
node n in a solution S is defined as:

C(n, S) = F (S)− F (S−n) (6.7)

where F is the evaluation function (Section 6.5) and S−n is defined as the solution
S without node n. Note that in S−n, the node is not removed to the unserviced
nodes list, so the node is not breached if it is a fixed contract node. The operator
seeks to remove the nodes with the highest cost C(n, S). As in the Shaw Removal,
a parameter p ≥ 1 introduces randomness to the removal procedure, as shown in
Algorithm 3

62

Algorithm 3 Worst Removal
Input: solution S with routes r and unserviced nodes list u, q nodes to remove,

parameter p ≥ 1
1: i = 0 . counter
2: while i < q do
3: L = set of nodes ∈ r
4: sort L such that i < j =⇒ C(L[i], S) > C(L[j], S)
5: y = random number ∈ [0, 1)
6: n = L[yp|L|]
7: remove node n from r
8: i = i+ 1
9: end while

6.6.4 Vessel Removal

The Vessel Removal operator removes nodes in similar positions in the routes of
vessels with similar capacities. This removal operator is motivated by the ob-
servation that the difference between the routes of good and excellent solutions
are often shuffles of segments of routes between vessels. Given the degree of de-
struction Gamma and number of nodes to be destroyed q, the operators starts by
selecting a random vessel v (with corresponding route rv with lv number of nodes)
and removes a segment consisting of m = ceil(lvΓ) nodes from a random position
in the node sequence rv before position lv−m. The vessel not yet selected with the
closest capacity to vessel v is then selected and a segment of up to (less if the end
of the route is reached) m nodes are removed from the vessel at the same position
as in rv. This process is repeated until q nodes are removed from the solution.

6.7 Repair Operators
In this section, the repair heuristics used to repair a destroyed solution in the ALNS
are presented. These heuristics try to insert nodes from the unserviced nodes list
into the routes, rv. Insertion heuristics in vehicle routing related problems are
typically categorized as either sequential or parallel (Ropke and Pisinger, 2006).
Sequential insertion heuristics construct one route at a time, while parallel insertion
heuristics build several routes simultaneously. The insertion heuristics presented
in this section are inspired by Ropke and Pisinger (ibid.) and are classified as
parallel. The repair operators in them self are relatively simple and fast heuristics,
and as shown in Ropke and Pisinger (ibid.), they do not necessarily produce good
solutions when used to construct a solution from scratch. Still, the results in

63

Ropke and Pisinger (ibid.) indicate that these inherently imprecise heuristics can
find very promising solutions when incorporated in an ALNS framework.

The possibility of serving contracts with chartered vessels is handled by the repair
operators. All fixed contract nodes in the list of unserviced nodes, u, that can
be serviced by a chartered vessel from any of the pickup nodes in u are paired
up. If more than one pairing is possible for a fixed node, the one with the lowest
chartering cost is chosen. The repair heuristics insert all nodes in such pairs last.

6.7.1 Basic Greedy Insertion

The simplest repair operator is the Basic Greedy Insertion. This heuristic iterates
over all nodes in the list of unserviced nodes and tries to insert them at the cheapest
possible position in any vessel route. For diversification, the list of unserviced
nodes is shuffled before the start of the insertion process. The best insertion of
an unserviced node is determined as follows. Let ∆Fiv be the cost added to the
evaluation function value of inserting unserviced node i in the set of unserviced
nodes u at the position in the route of vessel v that increases the cost the least.
If no insertion is possible, set ∆Fiv = ∞. Iterating through all vessel routes, the
best insertion is determined by

argmin
v∈V

∆Fiv ∀i ∈ u (6.8)

If the best possible insertion cost is ∞, no insertion is possible and the node
remains in the unserviced nodes list until the next iteration of the ALNS.

6.7.2 Deep Greedy Insertion

The Deep Greedy Insertion is an extension of the Basic Greedy Insertion. Instead
of trying to insert each unserviced node before moving on to the next, the Deep
Greedy Insertion evaluates the insertion cost of every unserviced node in each it-
eration and inserts the unserviced node with the best insertion cost. After an
insertion is performed, all remaining nodes in the unserviced nodes list is looped
through again to find the next insertion. This makes the search deeper, which
should lead to better insertions, but also makes the algorithm more computation-
ally heavy than the Basic Greedy Insertion.

Let ∆Fiv be the cost added to the evaluation function value of inserting unserviced
node i in the set of unserviced nodes u at the position in the route of vessel v that

64

increases the cost the least. If no insertion is possible, set ∆Fiv = ∞. Iterating
through all unserviced nodes and vessel routes, the best insertion is determined by

argmin
i∈u, v∈V

∆Fiv (6.9)

If no feasible solution is found in an iteration of the operator, we break out of the
algorithm and start a new iteration of destroy and repair.

6.7.3 Regret-k Insertion

The previously described repair operators insert the node with the lowest insertion
cost first, which means that the insertion of more troublesome nodes, i.e nodes with
high insertion costs, are postponed. However, when the high cost nodes are to be
inserted, most of the routes are filled up so possible insertions are far less likely.
Regret heuristics aim improve on the greedy insertion operators by considering
the effect of not inserting a node at the position with the lowest insertion cost
when selecting which node to insert first. Let ∆F kiv denote the change in the
objective value by inserting unserviced node i in the set of unserviced nodes u at
its k-th cheapest possible insertion in the vessel v’s route. ∆F 2

iv is by this notation
the second cheapest possible insertion of node i in vessel route v. If no possible
insertions are found, ∆F kiv = ∞. For k = 2, the node to be inserted is decided
based on

argmax
i∈u, v∈V

(∆F 2
iv −∆F 1

iv) (6.10)

Equation 6.10 calculates the difference between the cost of inserting a node at the
position with the second lowest insertion cost and the lowest insertion cost. For
a node with several viable insertion possibilities, this value is low, so the node is
inserted later. A node with a large value of this difference have limited insertion
possibilities, so it is better to insert the node early. The generalization of the regret
heuristic to consider the k lowest cost insertions of node i is shown below:

argmax
i∈u, v∈V

k∑
c=2

∆F civ −∆F 1
iv (6.11)

Compared to a regret heuristic with k = 2, Regret-k heuristics take more look-
ahead information into account and are therefore better at avoiding problems with

65

inserting high cost nodes, or ending up with no possible insertions a node. However,
for large ks, the heuristic can become too conservative and overlook good insertion
possibilities. A larger k will also make the operator more computationally heavy.
The regret operators used in this thesis is Regret-2 and Regret-3.

6.8 Local Search Operators

This section presents the local search operators used in the LS component in the
ALNS framework. The component uses tabu seach as its overall search strategy,
with full enumeration of the neighborhood of one LS operator in each iteration.
The list of unused nodes is shuffled before the use of an LS operator.

6.8.1 Ejection Swap

The Ejection Swap intends to swap a node from the unserviced nodes list with a
node in a vessel route. Pickup nodes and delivery nodes can only be swapped with
a node of similar type, as this was proven most effective during testing.

:�1

Routes

→ →�1 �2 �3

:�1

Routes

→ →�1 �2 �5

� : � :
�6 �5 �9 �6 �3 �9

Figure 6.3: Illustration of Ejection Swap operator

6.8.2 Inter Swap

The Inter Swap operator tries to swap two nodes between the routes of two ran-
domly selected vessels. Pickup nodes and delivery nodes can only be swapped with
a node of similar type, as this was proven most effective during initial testing.

66

:�1

:�2

Routes

→ →�1 �2

→�4

�7

�8 → �6

:�1

:�2

Routes

→ →�1 �2 �8

→ →�4 �7 �6

Figure 6.4: An illustration of Inter Swap operator

6.8.3 Re-assign

The Reassign operator is inspired by a local search operator used in Korsvik,
Fagerholt, and Laporte (2011). The Reassign algorithm consists of two steps for
each vessel route. The first step is to try to swap any of the nodes in the vessel
route with any of the nodes in the unserviced nodes list. If such a swap is possible,
the algorithm performs the best swap and tries to insert the node that was removed
from the vessel route into a route of another vessel, i.e re-assigning the node. If an
insertion is possible, the node is inserted into the best possible position in any of
the other vessel’s routes. If no insertion is possible, but the solution was improved
by doing the swap in the first step, this swap is done so that the node is added to
the unserviced nodes list. This case is the same as the Ejection Swap.

:�1

:�2

→ →�1 �2 �3

→ →�4 �5 �6

:�1

:�2

→ → →�1 �2 �5 �3

→ →�4 �8 �6

� :
�7 �8 �9

� :
�7 �9

Figure 6.5: An illustration of Re-assign operator

67

6.8.4 Tabu list

To prevent the local search from cycling and getting trapped in local minima, a
tabu list included in the search. The tabu list includes the L last swap moves done
by the local search component. The tabu list only applies to the Ejection Swap
and the Inter Swap operators, or to the Re-assign operator if it ends up doing an
ejection swap. A neighbor that is reached during the use of any of these operators
by a move in the tabu list, is considered infeasible.

6.8.5 Neighbor Selection Strategy

Two strategies for selecting a neighbor is considered. The best improvement strat-
egy select the neighbor that improved the evaluation function of a solution the
most. If no neighbor improves the solution, the one that worsen the evaluation
function the least is chosen. The other selection strategy is the first improvement
strategy. With this strategy the first neighbor that is found to improve the eval-
uation function is selected. Again, if no neighbor improves the solution, the one
that worsen the evaluation function the least is chosen.

6.9 Selecting a Destroy and a Repair Operator

To choose which repair and destroy operator to use in each iteration of the ALNS,
the roulette wheel selection principle is used, based on weights assigned to each
operator. As proposed by Ropke and Pisinger (2006), Equation 6.12 is used to
make the selection. By alternating between different destroy and repair methods,
a more extensive search of the solution space might be explored, and the heuristic is
believed to be more robust overall. The probability of selection a specific operator
in a given segment is calculated as:

wq,j∑
q̂∈Q wq̂,j

(6.12)

Where wq,j is the weight assigned to operator q in the set of operators Q in
segment j. A destroy and repair operator is selected independently of each other.
The process of assigning weights to the operators is described in the following
section.

68

6.10 Adaptive Weight Adjustment

The weight assigned to each operator is adjusted during the run of the ALNS
based in the recent performance of the operator. The entire search is divided
into segments, where one segment is a number of iterations of the overall ALNS
heuristic. To measure how well an operator has performed in a given segment,
a score is given to the operator. The higher the score, the better the operator
has performed. The score of all operators are set to zero at the beginning of each
segment and is subsequently increased by a score adjustment parameter for each
iteration in which a specific operator is used. Table 6.1 describes the scoring criteria
used to evaluate an operator. These criteria are inspired by Ropke and Pisinger
(2006). The values of the score adjustment parameters satisfy the inequalities
σ1 > σ2 > σ3 > σ4 ≥ 0. In each iteration both a destroy and repair operator is
used. As there is no way to determine whether the cause of the performance in a
single iteration was the destroy operator, the repair operator or the combination
of the two, both operators are given the same score adjustment parameter. The
score adjustment parameter is then normalized based on the computational time
of the operator, before it is added to the overall segment score. The weights of all

Table 6.1: Score adjustment parameters

Score adjustment parame-
ter

Description

σ1 New global best solution is ob-
tained during the iteration

σ2 New solution is better than cur-
rent solution

σ3 New solution is worse than cur-
rent, but accepted by SA

σ4 New solution is worse than cur-
rent and not accepted by SA

operators are initialized to 1. After each segment of iterations, the weigh of each
operator for the next segment is calculated as a weighted average of the weight for
the previous segment and the average normalized score in that segment:

69

wq,j+1 = wq,j(1− λ) + λ
πq,j
aq,j

(6.13)

wq,j+1 is the weight in segment j + 1, wq,j is the weight in segment j, πq,j is the
accumulated normalized score for segment j, aq,j is the number of times operator
q was used in segment j and λ is the decay parameter, λ ∈ [0, 1]. The decay
parameter controls how sensitive the weights are to variations in performance from
segment to segment. If λ is 0, the weights are not affected by the performance of
the operators. If λ is 1, the weights for the next segment is only affected by the
score in the previous one.

The weights are reset to their initial value every IR iterations to make sure that
operators that perform poorly in early segments are not given too small probability
of being selected later in the search, where they might perform better.

6.11 Acceptance Criteria - Simulated Annealing
The acceptance criteria used in the ALNS are from simulated annealing. This
allows the algorithm to accept non-improving solutions, which can help the ALNS
escape local optima. There are numerous different acceptance criteria with this
property, but simulated annealing based criteria has been widely used in the ALNS
literature, showing good results. In simulated annealing, a solution St is accepted
with probability

e−(F (St)−F (S))/Ti (6.14)

where S is the current solution and Ti > 0 is the temperature in iteration i.
An improving solution is always accepted with this criterion. The probability of
accepting a non-improving solution is controlled by the temperature parameter,
where a higher value of Ti increases the chance of acceptance. The temperature is
initially set to U INIT and is decreased in each iteration following an exponential
cooling scheme, i.e Ti+1 = c · Ti, where 0 < c < 1 is the cooling rate. This way
the acceptance criteria get stricter as the search progresses. Setting the initial
temperature too high, will help the heuristic with early exploration of the solution
space, but if the cool down is too slow, the heuristic might not get a sufficient
amount of time to intensify the search in promising areas of the search space,
harming the performance. Having a too small initial temperature or cooling down
too fast will essentially reduce the heuristic to a descent heuristic, increasing the
chance of getting trapped in a local optima.

70

7. Fix and Optimize Large Neigh-
borhood Search

A natural way of searching for solutions to a problem is to start with an initial
solution before improving it iteratively. As discussed earlier, this can generally be
achieved by searching through a neighborhood around the current solution, and it
is known in the literature as a Large Neighborhood Search (LNS). When such a
method is applied using a MIP-solver it is categorized as a matheuristic.
The main purpose of this chapter is to introduce a MIP-based Fix and Optimize
(hereby FO) matheuristic, which works by guiding a MIP towards good, feasible
solutions through destroying and repairing limited areas of the solution space.
First, in Section 7.1 two options for providing heuristics with initial solutions are
presented. Second, Section 7.2 starts off with a general overview of the Fix and
Optimize heuristic. Third, a detailed description of the heuristic is presented in
section 7.2.3. A summary of the related literature within this field of research
which can be found in Chapter 3.

7.1 Constructing Initial Solutions

Many heuristics require an initial solution in order to function properly. In this
thesis, two heuristics are presented. One of them need to start from an initial
solution (the Fix and Optimize, introduced later in this chapter). Later, in Chapter
6 an ALNS will be presented, and for this heuristic starting from an initial solution
is optional. In this thesis when the term initial solution is used, it only concerns
vessel legs, or routes. Other variable values are not considered important, as long
as there exists values for these which are feasible for the complete problem.

Fix and Optimize LNS and the ALNS may start by having a feasible solution as
input. Then, the heuristics continue by iterating their way to better solutions.
Below, different alternatives of creating feasible initial solutions are described.

71

72

7.1.1 Destroying Infeasibilities From ADP Plan

The first alternative is to create an initial solution from an ADP plan, after running
a specialised destroy heuristic in order to make it feasible, while changing the
input solution as little as possible. The destroy heuristic works by evaluating the
sequence of nodes in each route and correcting infeasibilities when they occur.
If a given leg is infeasible, the “to-node” is removed from the ADP-plan. If the
“to-node” is a pickup node, then the delivery node following this pickup node is
also removed to ensure feasibility, as there may not be any other alternative of
serving this customer if the pickup node before it is infeasible. In other words,
the incoming arc to this delivery node is already removed when the pickup node
was removed, but in addition, the heuristic must remove the outgoing arc from
the delivery node, making it possible for the vessel to not visit that delivery node.
The main benefits of this starting alternative is that it makes it possible to make
use of the ADP plan which is believed to have a high probability of being close to
the optimal solution. At the same time the heuristic accommodate any disruption
in input data by removing legs leading to the infeasibilities. This is believed to
be the most time-efficient alternative (i.e. finding good solutions fast). This first
approach is quite similar to the second approach in how feasibility calculations
are made, but in the second approach the solutions are constructed from scratch.
Therefore, only the pseudo-code for the second alternative is included here.

7.1.2 Constructing an Initial Solution

The second alternative is to create an initial solution using a construction heuristic.
The construction heuristic is greedy in the sense that it tries to serve the nodes
which has the earliest time windows first, without considering those that come
later. Also, it chooses a random vessel and constructs a route for the given vessel
without considering other vessels which are yet to be given a route, and in this sense
it is greedy. It starts by considering the initial state of the first vessel: if it is able to
go to a delivery node, the heuristic add the delivery node to the vessel route which
has the earliest time window and which is also a feasible destination for the given
vessel. The heuristic ignores stopover possibilities (i.e. visiting two delivery nodes
in a row) and continues by looking for a new feasible pickup node destination, and
so on. The heuristic assumes minimum delivery quantities, maximum sailing speed
and no FOB sale and makes exact feasibility feasibility calculations thereafter.
Considerations with respect to boil-off calculations, quantity balance at ports,
time constraints etc. are included. It is thus easy to satisfy allocated volume
constraints at liquefaction ports and heel-out decisions.

The pseudo-code for this heuristic is presented in Algorithm 4. In line 1-3, global

73

lists and sets are initialized. In line 4, the potential allocated volume is calculated
for each port-period combination. Here, ”potential” mean that it is assumed that
for every period, all quantity left in the given port at an earlier period is transferred
to the current period (i.e. an element in this list is a cumulative sum of the volumes
in previous periods for the given port). In line 5-30, a vessel is chosen and the
route for the given vessel is constructed. Line 6-8 initialize the vessel state at the
origin. Line 9 initiates a search for new voyages which continues until a stopping
criteria is met. In lines 11-20 and 21-30, the heuristic search for feasible voyages
to delivery nodes and pickup nodes, respectively. The search consists of making
a list of feasible voyages (lines 12-13 and 22-23). Here, the heuristic takes in an
external function called ”checkFeas”, and the pseudo-code is found in Algorithm
5), before choosing the voyage closest w.r.t time windows (lines 16 and 26). In
lines 17 and 27, then decision has been made and the state variables are updated.
If there are no feasible voyages (lines 19 and 29), then the while-loop is exited and
the current route is added to the solution (line 33). After this has been performed
for every vessel, the complete solution is returned (line 35).

The pseudo-code for the ”checkFeas” function is found in Algorithm 5. In lines
1-7 the function receives input variables. Lines 8-11 represent the function output,
which is later used in the ADP-heuristic in order to destroy infeasible vessel legs,
or used in the Construction Heuristic in order to add nodes to a vessel route and
in order to make quantity/time calculations. Note that if the output is used in
the ADP-heuristic then only the value of BF is relevant. The rest of the heuristic
(lines 12-29) is self-explaining. Here, various feasibility calculations are made in
correspondence to the mathematical model in Chapter 5.

7.1.3 Ignoring Infeasibilities

The third alternative is to start from an ADP plan, and ignore any infeasibilities.
In other words, the heuristic commences as normal and hopefully a future destruc-
tion will lead to a feasible solution. For instance, if an iteration fails to produce a
feasible solution after destroying the ADP-plan, then the next iteration will start
over by destroying the ADP-plan again.

Testing of these alternatives is included in section 10.4.3

74

Algorithm 4 Construction heuristic
Input: Problem data
Output: Feasible initial solution (S0)

1: Lv = [] . List of nodes visited - empty
2: S0 = { } . Solution, set of vessel routes - empty
3: V . List of vessels - shuffled

4: Calculate Vp,m . Volume left in all port-period combinations
5: for v in V do
6: Initialize: R = [0] . Current route for vessel
7: Initialize: T c, Qc and N c . Current time, cargo and node for vessel
8: Calculate Bd . Boolean - True if next node is a delivery node
9: while True do

10: DfeasibleDest = { } . Set of current feasible destinations for vessel

11: if Bd then . Going to a delivery node
12: for Nd in delivery nodes do
13: DfeasibleDest ← checkFeas(Bd, N c, T c, Qc, Nd) . See Alg. 5
14: end for
15: if DfeasibleDest is not empty then
16: N c ← Find closest node w.r.t time windows in DfeasibleDest

17: Update: Lv, Vp,m, R,Bd, T c, Qc, N c

18: else
19: Exit loop (and remove previous pickup-node)
20: end if
21: else . Going to a pickup node
22: for Nd in delivery nodes do
23: DfeasibleDest ← checkFeas(Bd, N c, T c, Qc, Nd) . See Alg. 5
24: end for
25: if DfeasibleDest is not empty then
26: N c ← Find closest node w.r.t time windows in DfeasibleDest

27: Update: Lv, Vp,m, R,Bd, T c, Qc, N c

28: else
29: Exit loop
30: end if
31: end if

32: end while
33: S0 ← R . Add vessel route to solution
34: end for
35: return S0

75

Algorithm 5 Check feasibility of a specific vessel leg (checkFeas)
Input:

1: Bd . Boolean - True if next node is a delivery node
2: N c . Current vessel position
3: T c . Current time for vessel at current position
4: Qc . Current load on board vessel
5: Nd . Potential vessel destination
6: v . Vessel
7: V Port . Volume left in port for a given month

Output: . Output from this function are needed if it is later decided that the
vessel should go to the given node. If node is infeasible, output is ”False”

8: BF . Boolean - True if next node is feasible
9: T d . Current time for vessel after visiting N t

10: Qd . Current cargo for vessel after visiting N t

11: V d . Volume depleted from port - only relevant for pickup port visits

12: if Bd then . Going to a delivery node
13: Calculate vessel-port compatibility
14: Calculate time compatibility w.r.t time windows
15: Calculate vessel unloading quantity-port compatibility
16: Calculate T d and Qd

17: else . Going to a pickup node
18: if Heel-out required then
19: Calculate vessel-port compatibility
20: Calculate time compatibility w.r.t time windows
21: Calculate vessel loading quantity-port compatibility
22: else
23: Calculate vessel-port compatibility
24: Calculate time compatibility w.r.t time windows
25: Calculate vessel loading quantity-port compatibility
26: Calculate T d, Qd and V d

27: end if
28: end if
29: return T d, Qd, V d

76

7.2 Model and Framework

The remaining part of this chapter is concerned with the formulation of a Fix
and Optimize (FO) matheuristic. This heuristic works by guiding a MIP-solver
in an iterative manner in order to find feasible solutions in a large neighborhood.
The neighborhood is defined by fixing a subset of the variables. Parts of the
solution space are then restricted while the remaining unfixed variables opens up
for exploring a neighborhood. The heuristic repeats these steps in an iterative
manner, and seeks to include the benefits of both low computational times and
the ability to find new, improving, solutions frequently.

The FO needs to be both fast and effective in searching the solution space. Similar
to many other heuristics, the model should have the ability to search large parts
of the solution space fast. As pointed out in Lindahl et al. (2018), a crucial aspect
of the implementation phase of the FO is that the base model has to be built
from scratch only once by the MIP-solver. It is common sense that any changes
needed later on during the iterative phase need to be added or removed much
more efficiently. One possible way of achieving this is mentioned in Chapter 10.
Furthermore, it is important that the repair phase in each iteration is warm-started
from the previously found solution. Often, this is automatically being taken care
of by the MIP-solver if the solver is not called from an external program.

7.2.1 Model Overview

Before decision variables can be fixed, an initial feasible solution is needed. There-
fore, the FO assumes a feasible solution populated with vessel legs at hand. It then
searches the solution space by destroying parts of the vessel routes (how much is
controlled by a parameter specifying the degree of destruction). It then applies a
MIP-solver, attempting to repair the solution for a pre-specified amount of time.
During the repair phase, the model works by fixing the remaining vessel legs that
were not destroyed. If a new improving solution is found, then this solution is
accepted as the current solution. These steps are then repeated iteratively, while
destroy and repair parameters are being dynamically adjusted. This continues un-
til a stopping criteria is met. In the following sections, the details of this heuristic
is presented. A simple pseudo-code of the start phase of the heuristic is presented
in Algorithm 6, while a description of the proposed pseudo-code for the FO is
shown in Algorithm 7.

77

7.2.2 Modeling Decisions and Similarities with an ALNS

Although the Fix and Optimize LNS shares some ideas and methodology with
the ALNS, it is named a “Fix and Optimize Large Neighbourhood Search” as
there is only a single repair method, the MIP. In the development of a Fix and
Optimize LNS model, the work on the ALNS and the work on the extensive MIP is
combined into a new model, and the result corresponds to a large neighbourhood
search algorithm which works by simply using the MIP as the only repair method.
Multiple options for destroy methods are available, but in this thesis, only the
Shaw destruction method introduced in section 6.6.2 is included. There are two
reasons for this. First, initial testing indicates that the Shaw destruction method
is the most suitable destruction method when it comes to choosing a single destroy
method. Second, in general, other fix and optimize heuristics are characterized by
longer iteration times than for ALNS-methods; therefore, the statistical effect of
including multiple destroy methods is expected to be small compared to including
it in an ALNS, as the number of iterations for the FO is expected to be much
lower. Therefore, introducing an adaptive framework seems to not make sense in
this case.

7.2.3 Model Details

The pseudo-code of the FO is presented in Algorithm 7. It starts with a feasible
initial solution where all the decision variables are fixed. In lines 1-5 static param-
eters are assigned values and dynamic parameters are initialized. Then, in lines
6-13 the heuristic initializes internal internal variables, sets and counters. The
destroy and repair phases repeats at lines 14-37 in a while-loop as long as a stop-
ping criteria is not met. First, the current solution is destroyed in line 15, before
being repaired in line 16. If the new candidate solution is strictly better than the
existing solution, the candidate solution is accepted (line 18-20). If the solution
is not better, and criteria for tuning the parameters are met, then the parameters
are changed in lines 23-28. In line 31, if criteria for guiding the model is met, then
the node in the current set of routes which has been destroyed least frequent is
chosen. Potential tuning and/or guiding actions are implemented when the while
loop returns to line 15. When a stopping criteria is met then the heuristic finishes
of and returns a solution in line 39.

For a given iteration, fixation of legs shrinks down the solution space, but it may
also speed up the MIP-solving procedure significantly. Whether the the FO is
allowed to move relatively freely around in the solution space while still being able
to close iteration gaps fast are key to its success. As each iteration corresponds
to fixing parts of the previously found solution, each iteration will not produce

78

a worse solution than the one already found, as long as the solver is allowed to
run until optimality. The time budget allocated for each model iteration will not
always suffice in order for the MIP to close the gap at each iteration; however,
only strictly improving candidate solutions are accepted (for FO) throughout this
thesis.

Destroy Method

Although the destroy procedure is not adaptive in the sense of learning which
destroy methods to use, it is still possible to apply smart destroy procedures. In
the model presented here, the FO periodically deviate from the Shaw destruction
method by guiding the model to start the destroy procedure by destroying a node
which is both included in the current solution and which also has a low rate of
destruction. After destroying the root node, the Shaw destruction method destroys
other parts of the solution space as normal, before repairing the solution again.

Parameters

The Fix and Optimize LNS has two main parameters in addition to some indirect
parameters (which may be thought of as parameters guiding the two main param-
eters). The two parameters are the degree of destruction and the max iteration
time. As the names suggest, they control the degree of destruction at each itera-
tion and the time allocated for repairing the destroyed solutions, respectively. By
varying these parameters, the intensification and the diversification of the search
is controlled. For instance, by increasing the destruction rate the diversification
is increased, allowing the model to access larger areas of the solution space in a
given iteration. These parameters are adjusted dynamically. The parameters may
or may not be monotonously increasing (e.g fluctuating up and down from itera-
tion to iteration). In the model presented here, the degree of destruction and the
max iteration time are monotonously increasing. Testing related to tuning of the
FO are found in Section 10.4.2.

79

Algorithm 6 Initial solution for FO or ALNS
Input: Problem instance
Output: Feasible initial solution, S0

1: S0 = None . initial solution (vessel legs)
2: if startup using ADP-plan is preferred then
3: if SADP feasible then
4: S0 = SADP
5: else
6: S0 ← Destroy infeasibility(SADP)
7: end if
8: else
9: S0 ← Construction heuristic()

10: end if
11: return S0

80

Algorithm 7 Fix and Optimize
Input: initial feasible solution, S0 (vessel legs only)
Output: final solution, Sf (complete solution)

1: assign: pmax iter . max # of non-improving iterations before self-tuning
2: assign: pmax iter gap . max gap: tuning based on iteration gaps
3: assign: pfreq . guiding frequency
4: initialize: pd rate . current destruction rate
5: initialize: pt max . current max time budget for each iteration

6: Sd = [] . destroyed solution (vessel legs only)
7: St = None . candidate solution
8: Sc = S0 . current solution
9: niter = 0 . current iteration number

10: nnon = 0 . current number of subsequent non-improving iterations
11: dguide = None . guide / start node for destruction method
12: dfreq = [] . list of destroy frequency for each node in data set
13: gavg = None . mean gap for recent iterations

14: while time < max running time do
15: Sd ← Destroy solution(Sc, pd rate, dguide)
16: St ← Solve(Sd, pt max) . solve a restricted MIP imposing Sd
17: update gavg
18: if eval(St) > eval(Sc) then . compare with prev. best solution
19: Sc = St

20: nnon = 0
21: else
22: nnon = nnon + 1
23: if nnon > pmax iter then . if solution is not improving, tune model
24: if gavg < pmax iter gap then
25: increase pd rate . destroy more
26: else
27: increase pt max . solve longer
28: end if
29: end if
30: end if
31: if mod(niter, pfreq) = 0 then . guide algorithm every dfreq iteration
32: dguide ← Find node(Sc, dfreq) . node with low destroy frequency
33: else
34: dguide = None
35: end if
36: niter = niter + 1
37: end while
38: Sf = Sc

39: return Sf

81

7.3 Robustness Strategies

In this section, we propose three robustness strategies to guide the proposed solu-
tion methods to find more robust and reliable solutions. The proposed strategies
are chosen based on considerations of what is realistic to implement in a planning
horizon of 45-90 days. The three strategies are 1) penalizing arrival after the start
of time windows 2) increasing buffer quantity 3) increasing sailing time between
ports.

The proposed strategies are motivated by the work of Halvorsen-Weare, Fagerholt,
and Rönnqvist (2013) and Fischer et al. (2016). In the first paper, the authors
propose three robustness strategies for a routing and scheduling problem belonging
to a producer with one production port and a planning horizon of 3-12 months.
The three proposed strategies are increasing sailing time, targeting inventory to
a certain level to avoid hitting a minimum or maximum level and penalizing ac-
cumulated berth use if it deviates from a target level. Due to a shorter planning
horizon, a lower degree of flexibility, and berth control exercised by the producer
in the problem studies in this thesis, the last two strategies are considered unre-
alistic. In the second paper, the authors study disruption management in roll-on
roll-off liner shipping. In addition to adding extra sailing time, the authors pro-
pose rewarding early arrivals and penalizing start times that are close to the end
of time windows.

7.3.1 Penalizing Late Arrivals

To penalize late arrival after the start of time windows, the following term is added
to the objective function.

−α
∑
v∈V

∑
i∈N

(tsiv −
∑
j∈N

TMIN
i) (7.1)

where α is the penalty parameter. One drawback of this strategy is estimat-
ing/tuning the parameter α. On one hand, A small penalty will barely have an
impact on an objective function consisting of, among others, revenues worth many
million dollars. On the other hand, a very big α might have an opposite impact
and render an optimal and reliable solution sub-optimal. For these reasons, α
should be deliberately chosen.

82

7.3.2 Increasing Sailing Time

As proposed by Halvorsen-Weare, Fagerholt, and Rönnqvist (2013), adding extra
time to the actual sailing time is easy to implement and a straight-forward way
of adding slack in vessel schedules. Embedding this strategy is usually done by
manipulating the input to the solution model or by multiplying the sailing time
parameter TSijv with a scaling parameter ω. Similarly to the penalty α, the amount
of extra time added to sailing time has to be carefully chosen. For a vessel with
a tight and unrealistic schedule, an increase of ω might prevent the vessel from
sailing the same node sequence as in the original solution. However, this strategy
has a drawback as pointed out by Halvorsen-Weare, Fagerholt, and Rönnqvist
(ibid.). This drawback becomes visible when a fleet is fully utilized. Increasing
sailing times will render some customers unvisitable with own fleet and have to
be either breached or chartered which incur higher costs. For this reason, it is
recommended to show caution when using this strategy. This can be done by
comparing the solutions obtained by using this strategy with a solution obtained
by other strategies or the original solution.

7.3.3 Increasing Buffer Quantity

Buffer quantity is often used to avoid cool-down, and it constitutes a tiny amount
of the LNG on board (typically 3% of the vessel’s capacity). Whenever the amount
of LNG on board is below this quantity, the vessel has to be cooled down which
often takes around 24 hours. This usually happens when a vessel uses BOG as
fuel between a delivery and production port and gets delayed during sailing. For
an LNG vessel with a tight schedule, violating the buffer quantity constraint may
render the rest of the route infeasible as it has to undergo an emergency cool-down
which may cause an unbearable delay in.

Similar to the strategy of increasing sailing time, this strategy is straight-forward
and easy to implement. This is done by either adjusting the buffer quantity in the
input or by multiplying the buffer quantity parameter with a scaling parameter,
β.

8. Simulation Model

This chapter presents a stochastic dynamic discrete-event simulation framework
developed to 1) evaluate the robustness of a solution in a realistic setting 2) eval-
uate robustness strategies that help to guide a solution method to more robust
solutions. First, the aim and motivation behind implementing this framework are
presented in Section 8.1. Second, a general overview is presented in Section 8.2.
Third, all the components of the framework are described in detail in Section 8.3.
Fourth, three robustness strategies are presented in Section 7.3.

8.1 Aim and Motivation
As described in 1, the LNG supply chain sets apart from other industries with its
highly integrated supply chain both legally and economically through long-term
contracts. However, its logistic part consists of an expensive and relatively small
fleet compared to other industries and is subject to strict operational constraints
like tight time windows, low flexibility in rerouting options and high penalties in
case of violating these restrictions. All these factors place a massive demand for
delivery reliability and robustness.

As the model presented in 5, it assumes deterministic input, solving it to optimality
or near optimality does not stress the impact of the real-world uncertainties on
the solution’s delivery reliability. Hence, an optimal solution for a given input is
only optimal for that input, and a small deviation from that input may render it
to be infeasible in the real world. This fact is known as the knife-edge property in
Stochastic Optimization describing how optimal solutions based on deterministic
input often fail to generalize to small changes in the input data.

The purpose of this simulation model is to evaluate solutions in an environment
that mimics a real-world setting. They may be obtained by solving a MIP to
optimality or near-optimality by FO or ALNS. A solution in this context contains
all the decisions made in the chosen solution method and refers to 1) which loading

83

84

and unloading nodes to be visited by each vessel 2) in which sequence and speed
3) at what time 4)how much to load/unload at each node 4) which fixed contracts
to satisfy through chartering 5) how much LNG to sell as FOB at which node and
period. Note that instance hereby is used to refer to all information needed to
describe entities like nodes, ports, vessels and to solve the routing and scheduling
problem, while a configuration is used to refer to a combination of an instance and
solution which means all required input to define an instance, route, and schedule
for each vessel and all other decisions related to the instance.

8.2 General Overview
Figure 8.1 shows a flow chart of the simulation framework. The arrows indicate the
information flow between its components. The framework starts by reading input
data about a given instance. The instance data is passed to a solution method that
produces a set of solutions. For each solution, an environment where a simulation
is processed and tracked is initialized.

The simulation starts at time t = 0 and iterates through all events that are planned
during the planning horizon. Different types of disruptions are introduced and
contingency strategies are performed if possible. At each event, global variables like
profit, quantity in each vessel, and few others are updated. As an example, a vessel
v starts sailing from the origin at t = 0 to the next port in the planned route. Let’s
assume that the next port is a loading port. Now, an event representing the arrival
of the vessel at the next port is scheduled and added to a queue of events. The
time of arrival at the next port is determined by the distance between ports, speed
and unforeseen disruptions like bad weather conditions which might increase the
sailing time. Since sailing is an event that incurs an operational cost, profit is now
updated. Right before arrival, an event representing loading is scheduled. Once
the vessel arrives at a port, the simulator activates the loading event and schedules
a new sailing event to the next port in the route. In the same fashion, the simulator
continues to track the planned route by generating and processing events. Note
that vessels are not simulated independently since they are connected together
by the total amount of LNG available at loading ports. When the simulator is
done with iterating through the planning horizon, and all events are processed,
the simulation is completed, and output and statistical measures are generated.
Simulating one configuration one time represents only one possible outcome of the
disruptions. Hence, it is crucial to simulate each configuration many times to be
able to make reasonable conclusions when comparing different solutions.

85

Read input data

Initialize environment:
time, event list, initial events

Find next event

Process event:
update global time, update

system states, schedule new
event

Ending condition satisfied?
is event list = { } ?

Yes

No

Generate output

Generate solution
with FO/ALNS

Start

End

Figure 8.1: Flow chart of the simulation model

86

8.3 Simulation Components

In the section, the components of the simulation framework are presented.

8.3.1 System States

System states in this context refer to all variables needed to describe the system at
any time. The system states used in this framework are the profit of the producer,
total allocated volume at each loading port and period, and LNG quantity at each
vessel.

Profit

Profit, u, is calculated sequentially and updated whenever an event has an impact
on costs or revenues. In general, an increase in profit is caused by either delivering
LNG to a customer or selling excessive LNG as FOB at loading port. Contrary,
profit is reduced due to operational costs, cost of breaching fixed contracts, and
costs related to chartering vessels.

Allocated Volume

Allocated volume, qp, represents the available LNG at port p. qp is updated when
LNG is loaded into a vessel or used to cool down a vessel at a port which happens
whenever the quantity level on board is less than a required buffer to avoid cool-
down.

Vessel Quantities

Vessel quantity, qv describes the amount of LNG on board vessel v. It is updated
when LNG is loaded or unloaded into the vessel. Furthermore, a small amount of
the LNG quantity on board fades out during sailing between ports due to boil-off.
For this reason, qv is also updated right before arriving a port where an amount
equivalent to the vessel’s BOG is subtracted from qv.

8.3.2 Entities

Entities are all the objects that are explicitly represented in the simulation. Each
entity usually has attributes that make it different from its counterparts. Vessel,
node, and port are the different entities used in this model.

87

Vessels

The entity vessel is described by the attributes capacity, boil-off rate, the required
amount of LNG used in cooling down the vessel, speed modes, a buffer quantity
required to avoid cool-down at the next loading port.

Nodes

A node is described by which port it belongs to, its time window and (un)loading
rate. If a node is a delivery node, it has an attribute to describe its quantity
window and potential revenue per unit LNG.

Ports

The port entity is an umbrella for all the nodes that belong to it. It is essential to
track the change in the system state allocated volume qp.

8.3.3 Environment

Environment refers to the world where events are created, processed and stored.
It also keeps track of time, current event, and events to be processed.

Clock

The environment contains the simulator’s clock is represented by a global and dy-
namic variable in TGlobal which keeps track of time during the simulation. TGlobal
is event-based and is updated whenever a new event is processed. The time variable
is initially set to 0.

Tracking Events

The environment keeps also track of the state of each event. An event has three
possible states in the simulation, planned, triggered and processed. Apparently,
an event is planned when it is decided on by the solution method, yet, it is not
known for the event queue, which we denote by Events List. An event is triggered
when it is scheduled and is added to the events list. Finally, an event gets the state
processed when it has happened and all the relevant system states are updated.

Scheduling and Processing an Event

When an event is triggered, the event, its ID and occurrence time, (time, ID,
event), are added to the events list. When processing an event, the event with the

88

earliest occurrence time is removed from the events list and processed further in
the simulation. If two events have equal occurrence time, the simulator chooses
the event which was added first to the events list.

In order to schedule and process events efficiently, the events list is stored as a
heap or a binary tree where each parent node has a value less or equal than its
child nodes. This data structure allows using the heap queue algorithm with two
operators INSERT and EXTRACT-MIN. The operator EXTRACT-MIN is called
to find the next event to simulate, while the operator INSERT is called when a
new event is scheduled. The running time of both operators is O(lgn).

89

8.4 Process-Related Events

In this section, the process events are described in detail. The flow chart in figure
8.2 shows which the sequence of events a vessel undergoes during one route. The
main events are sailing, arrival, loading, unloading, cool-down. Also, an instance
may include FOB-sale and chartering. The latter one is considered as a vessel with
a route consisting of two nodes; origin and destination.

Start

Is next node in
a loading port?

Yes No

Is quantity in vessel
below buffer quantity?

Yes

Perform cool-down

Perform loading

No

Perform
unloading

Is current node last in
route?

Sail from
origin/current port

No Yes

Terminate

Figure 8.2: Flow chart of a vessel’s journey in the simulator

90

8.4.1 Sailing

Sailing is an activity that constitutes a large part of a vessel’s life and is the
part where disruptions may cause significant delays and accelerate costs. Rough
weather conditions, mechanical failure during sailing in open water or congestion
in passageways are not unusual disruptions that a vessel’s operating crew has to
handle very often. As an illustration, figure 8.3 shows a realization of a probability
density function fitted to sailing times between Rome (Italy) and Bergen (Norway)
by Halvorsen-Weare, Fagerholt, and Rönnqvist (2013). Even though the voyage
Rome - Bergen is considered relatively short with an average sailing time of 148
hours, the figure shows how sailing time could be spread out. Assuming the same
probability density function as the authors, the theoretical probability of using
more than 148 hours is calculated to be around 32%. With this in mind, a tight
schedule of an LNG vessel is likely vulnerable to the uncertainty in sailing time.

150 200 250 300 350 400 450
0

2

4

6

·10−2

Figure 8.3: A realization of fitted probability density function to sailing time data
between Rome (Italy) and Bergen (Norway). Source: Halvorsen-Weare, Fagerholt,
and Rönnqvist (2013).

Modeling Weather States and Their Impact on Vessel Speed

To mimic the real world, four different weather states are used. Each state causes
a certain speed reduction proportional to the prevailing wave height in the state.

91

Even though this assumption is a simplification of the real world, it resembles the
relationship between wave height, the efficiency of a propeller and a vessel’s forward
thrust. This relationship can be shown in table 8.1 with four states representing
different weather conditions, different wave height intervals and possible speed
reduction for supply vessel operating in the North Sea as presented in Halvorsen-
Weare and Fagerholt (2011).

Table 8.1: Weather states with the associated wave height interval and speed
reduction. Source: Halvorsen-Weare and Fagerholt (2011)

Weather state Wave heigh [m] Sailing Reduction
1 <2.5 0 kn
2 <2.5,3.5] 0 kn
3 <3.5, 4.5] -2 kn
4 ≥4.5 -3 kn

In order to simulate the four states, the Markov chain is used with starting state
probabilities for each state and a transition matrix that describes the transition
probability from one state to another. Weather conditions in a period of time
are simulated by first dividing the period into small sub-periods. In the first sub-
period, an initial state is drawn based on the start probabilities. The weather
state in the next sub-period is then dependent only on the weather state in the
current sub-period and can be drawn based on the probabilities of transition from
the current state to the others. Table 8.4 and 8.3 show starting state probabilities
and transition matrix for the four states in table 8.1.

Table 8.2: Starting state probabilities. Source: Halvorsen-Weare and Fagerholt
(2011)

State 1 2 3 4
Probability 22.7% 27.1% 28.2% 22.0%

92

Table 8.3: Transition probability matrix. Source: Halvorsen-Weare and Fagerholt
(2011)

State 1 2 3 4
1 82.5% 16.9% 0.6% 0.0%
2 14.0% 60.6% 20.7% 4.7%
3 0.5% 23.9% 57.7% 17.9%
4 0.0% 0.6% 27.9% 71.5%

Implementation

In the simulation framework, the event sailing is generated whenever a vessel is
done with a loading or unloading operation. Sailing distance is estimated based on
the location of the current port and the location of the next port in the route. Once
the sailing distance is found, the sailing time is estimated based on planned speed
and distance, sailing disruption and contingency measures which are triggered
whenever the vessel risks violating time window constraints in the remaining part
of the route. The planned speed, h, is determined by a linear combination of speed
modes and the binary variables wijvh as described in Chapter 5.

Algorithm 0 describes how sailing is simulated between a pair of nodes (i, j). The
algorithm is inspired by the paper of Halvorsen-Weare, Fagerholt, and Rönnqvist
(2013) which focuses on routing and scheduling of supply vessels in the North Sea.
The states, start probabilities and transition matrix are also reused from the same
paper due to lack of weather and vessel data. Note that the vessels studied in the
thesis operate in a higher speed range than supply vessels and in different areas
in the world, yet the weather states and the impact of wave heights on speed are
assumed equally applicable on LNG vessels.

The input of the algorithm of simulating a voyage is the voyage origin i, voyage
destination j, distance dij , the transition matrix P and the probabilities of starting
states P0, the duration of period with fixed weather condition ∆, maximum speed
hMAX
v and speed h. The output is a simulated sailing time TSijv.

The algorithm starts by calculating planned sailing time Tijv, the number of peri-
ods with fixed weather state in the planned sailing time N , the distance that could
be sailed in one period dij∆ and initializing a starting state ξ0 by Generate-Start-
State. Sailing is then simulated for that period by Calculate-Simulated-Period.
This is done by sailing the distance dij∆ with a speed reduction equivalent to the

93

current speed. If the cumulative sailing time so far deviates from the planned
sailing time, the contingency measure Speed-Up is carried out, the distance dij∆
is then sailed with the speed hMAX

v − speed reduction(xi). The cumulative sailing
time so far is then updated. A new weather state is generated, and the same
procedure is carried out. The contingency measure Speed-Up(dij∆, hMAX

v) is im-
plemented to reflect the fact that the vessel’s manager/crew is likely to speed up
in case of delay.

Algorithm 8 Simulating sailing between node i and j by vessel v
Input: v, i, j, hv, hMAX

v , dij , P , P0, ∆
Output: TSijv

1: Tijv = dij

hv
. Calculate planned sailing time

2: N = Tijv

∆ . nT is number of periods in Tijv
3: dij∆ = hv∆ . Distance sailed in period ∆ with speed hv
4: TSijv ← 0
5: ξ0 ← Generate-Start-State(P0)
6: n← 1
7: for each t in 0 to N do
8: Tt = Calculate-Simulated-Period(ξt, T)
9: if TSijv + Tt < n∆ then . If TSijv so far deviate from plan

10: Tt = Speed-Up(dij∆, hMAX
v)

11: TSijv = TSijv + Tt
12: else
13: TSijv = TSijv + Tt
14: end if
15: ξt+1 ← Generate-Next-State(ξt, P)
16: n = n+ 1
17: end for
18: return TSijv

8.4.2 Arrival

The event arrival is scheduled whenever a sailing event is triggered. The arrival
time is determined based on TGlobal and the time of simulated sailing before arrival.
The event is responsible for updating global variables affected during sailing. Ad-
ditionally, it generates the next event occurring in port, which typically is loading,
unloading, or cool-down.

94

8.4.3 Cool-Down

The event cool-down is triggered whenever a vessel arrives at a pickup node j and
the variable yijv is fixed to 1 by the solution method. The event has an impact on
global time since a cool-down operation requires a period of time equal to TCDjv .
Additionally, it incurs a cost of CCDjv .

8.4.4 Loading

The event Loading is generated by either the event arrival or cool-down. Since a
vessel may speed up during a leg if it risks delays in the future, it may use less
sailing time than planned. Hence it may waste less BOG and contain more LNG
than what is planned. For this reason, one has to check if the sum of the planned
quantity to load at port, qiv, and the total quantity at the vessel prior to arrival,
γSiv, does not exceed the vessel’s capacity, V CAPv . If so, a contingency measure is
carried out as seen in Algorithm 9. The new quantity to be loaded is then reduced
to (liv - γSiv).

Algorithm 9 Simulating the Event Loading
Input: Planned quantity to be loaded at node i qiv, leaving quantity liv, simulated

incoming quantity γSiv, vessel capacity V CAPv

Output: Simulated quantity to load qSiv
1: if γSiv + qiv > V CAPv then . If loading quantity violated capacity constraint
2: qSiv ← (liv - γSiv)
3: else
4: qSiv ← qiv
5: end if
6: return qSiv

8.4.5 Unloading

Similarly to the event loading, contingency measures have to be carried out in case
of deviance from the plan obtained from the used solution method. This concerns
the case where the quantity at a vessel prior to arrival is less than what is planned.
There are three scenarios:

• Scenario 1: The vessel contains less LNG than an adequate quantity to cover
the planned quantity to unload and heel to avoid cool-down at next port (if
heel-out is not planned)

95

• Scenario 2: The vessel contains less than what is planned to unload, but
it is possible to unload more than the minimum quantity required by the
customer.

• Scenario 3: The vessel contains less than the minimum quantity required by
the customer.

The inputs of the algorithm are Planned quantity to unload at node i, qiv, min-
imum and maximum quantity window of node i, (QMIN

i , QMAX
i), planned and

simulated quantity at the vessel before arrival, γiv and γSiv, estimated time of ser-
vice start at next node tSSjv , estimated time of service end at current node tESiv ,
heel-out variable yijv, and finally the vessel’s boil-off rate Bv. The output is the
simulated quantity to unload after performed contingency measures, qSiv

Algorithm 10 Simulating the event unloading
Input: qiv, QMIN

i , QMAX
i , γiv, γSiv, tSSjv , tESiv , yijv, Bv

Output: qSiv
if γSiv < γiv then . Quantity on board less than planned

if γSiv > qiv + yijv Bv(tSSjv - tESiv) then
qSiv ← qiv

else
if γSiv > qiv then . Scenario 1

qSiv ← min(γSiv, QMAX
i

end if
if γSiv < qiv ∧ γSiv > QMIN

i then . Scenario 2
qSiv ← γSiv

end if
if γSiv < QMIN

i then . Scenario 3
qSiv ← γSiv

end if
end if

end if
return qSiv

8.4.6 FOB Sale

FOB sale is an event that is not connected to any of the producer’s vessels. Hence
it is scheduled during the initialization stage of the simulation. Note that the
quantity to be sold is initially determined by the solution method. In many cases,
the planned quantity to sell is more than what is available of inventory at the

96

event time. This happens as a result of longer voyages between ports which cause
vessels to load more than what’s planned and in many cases perform emergency
cool-downs. For this reason, the quantity sold as FOB is limited to available
inventory.

8.4.7 Disruption-Related events

In addition to longer sail times due to rough weather conditions, loading/unloading
less than what is planned, the following events are included in the framework.

Emergency Cool-Down

This event is similar to the event cool-down, however, it is considered disruptive
as it incurs unintended delay and costs. The event is triggered whenever a vessel
arrives at a loading port and the quantity on board is less than a buffer quantity
QSv . It incurs a delay equivalent to TCivD, an additional cost of CCDiv and reduces
the LNG inventory at port with an amount of QCDv which is used to cool down
the vessel.

Disruptive Events at Ports

Port congestion was the main contributor to schedule unreliability in line shipping,
according to Notteboom (2006). In another paper by Berle et al. (2013), the
authors identify the most critical sources of disruption in the LNG transportation
in collaboration with practitioners from the LNG industry. Seven of the nine
identified sources are related to port disruption. Four of the seven events are
found relevant for our problem and are included in the simulation framework. The
events and their probabilities, as identified by the authors are shown below.

8.4.8 Output

When a simulation is done, the output is generated and statistical measures are
collected. This includes an estimate of the objective function and the total time
violation in all nodes visited by the fleet. Additionally, all events are printed out
for a quality check.

97

Table 8.4: Disruptive events related to ports. Source: Berle et al., 2013

Events Description Probability per day
Unavailable loading port Loading port is unavailable for

48 hours
0.002

Unavailable unloading
port

Unloading port is unavailable for
96 hours

0.002

Loading rate down Loading rate is reduced by 50%
for seven days

0.001

Unloading rate down Unloading rate is reduced by
50% for 14 days

0.001

98

9. Data Research & Generation

This Chapter serves to give a walk-through on how data instances are created.
In order to test and to keep developing the model, it is vital to have input data
sets which represent the problem environment well. In the absence of real data
from the industry, various techniques have been used in order to mimic a real data
set. The data sets are used in subsequent chapters to evaluate and to test the
different versions (e.g. fixed vs. variable speed) of the model described in previous
chapters. In an attempt to create realistic input instances, input data, although
non-verified, is based on written research and expert interviews (more specifically,
university professors within operations research at NTNU and industry experts
from Tieto Oil & Gas).

9.1 Input Data

In this Section, we present the information used as input to the instance generator.

9.1.1 Case Description

The case studied in this thesis is a set of fictitious agreements of LNG transporta-
tion between a producer and several customers located in Australia and East Asia,
based on long-term contracts. The producer operates three liquefaction ports in
Australia and one in Indonesia. The producer is responsible for delivering LNG to
customers at five different ports located in Japan, China and South Korea, con-
nected to regasification plants operated by the respective customers. The ports
used in the case are inspired by real LNG projects found in GIIGNL (2018). The
contract/project specifications for the long-term contract between the producer
and each customer will vary for each test instance since the size of the instances
changes number of deliveries, as described in Section 9.5.

The distances between each port is shown in Table 9.1 and 9.2. Sea routes and

99

100

distances (n.d.) was used to find the distances. Compared to other free online tools
for finding sailing distances between ports, it includes a large number of ports,
however, the accuracy is lower than for other tools studied. Still, the accuracy was
assumed sufficient for the test case.

Table 9.1: Distances in nautical miles between liquefaction and regasification ports

Sodegura Hibiki Senboku II Hainan Pyeong-Taek
Withnell Bay 3682 3905 3554 3301 4035
Barrow Island 3730 4027 3602 3271 4159
Curtis Island 4248 4614 4844 4878 4974
Bontang 3141 2695 3393 1897 2790

Table 9.2: Distances in nautical miles between regasification ports

Sodegura Hibiki Senboku II Hainan Pyeong-Taek
Sodegura - 664 777 2475 1149
Hibiki 664 - 715 1947 497
Senboku II 777 715 - 2646 1195
Hainan 2475 1947 2646 - 1939
Pyeong-Taek 1149 497 1195 1939 -

9.1.2 Vessel Characteristics

The producer operates a fleet of heterogeneous vessels, however, for simplicity the
vessels are assumed to be of one of three vessel types. Characteristics for each
vessel type is summarized in Table 9.3.

Table 9.3: Vessel type characteristics

Vessel Type Capacity
[m3]

Loading Rate
[m3/h]

Design Speed
[kn]

Engine Type

A 120.000 11.000 18 Dual-Fuel
B 150.000 13.000 18 Dual-Fuel
C 260.000 11.000 18 Slow-Speed Diesel

Vessel type A and B have sizes within the standard size of vessel before the intro-
duction of the Q-class vessels. Both of these vessel types have dual-fuel engines that

101

can run on both BOG and fuel oil. The boil-off rate is assumed to be 0.15% of the
total vessel capacity each day (see 2.1.1). Vessel C resembles the Q-max vessel type,
and although none of these vessels currently operates between Australia/Indonesia
and East Asia, this vessel type is included to open up the possibility of a vessel
doing two consecutive deliveries that are not planned in the ADP. This vessel type
is assumed to be equipped with a reliquefaction system, so the boil-off rate is set
to 0. The loading rates for all the vessel type are selected within the normal range
(for more details about loading rates, see Section 2.1.1), and the unloading rate
is assumed to be equal to the loading rate. In reality, the loading and unloading
rates may vary from port to port, depending on the facilities and equipment in
the ports, but they are here assumed to be independent of the port visited. Each
vessel is only loaded to 95% of its capacity to prevent liquid from entering into
the ventilation pipeline and spilling into the hull structure of the vessels. If one of
the vessels has to undergo a cool down process, the required gas volume to cool
down the tanks are assumed to be 3% of the the vessel’s tank capacity, based on
the studies in Moon et al. (2005) and Iversen and Sørensen (2005). The cool down
time is 24 hours, as described in Section 2.1.1.

Speed modes and fuel consumption

LNG vessels usually operate between 15 and 22 knots (GIIGNL, 2018). Vessel
type A-C are all assumed to have similar speed characteristics, with 18 kn as the
design speed (used in fixed speed model) and five speed modes corresponding to 15
kn, 18 kn, 18 kn, 20 kn and 22 kn respectively (see Section A.2.1 for the reasoning
behind duplicate speed mode at design speed).

Vessel type A and B are assumed to be able to run completely on BOG at vessel
speeds up to the design speed. At higher speeds, a switch to fuel oil is required.
The consumption of fuel oil at the design speed for each vessel type is estimated
based on Toth and Vigo (2014) and IGU (2018) as 95.3 ton/day, 104.8 ton/day and
115.3 ton/day for vessel type A, B and C respectively. The fuel consumption at
the other speed modes are calculated using Equation 2.1. We neglect the difference
in fuel consumption on laden and ballast sailing legs.

The fuel oil used in the transportation case is IFO 380 for all vessel types. The
fuel price was set equal to the average price of IFO 380 in Singapore in 2017 - 329
USD/ton (Ship & Bunker, 2018).

102

9.1.3 Revenue and Costs

The LNG contracts that we have based our case on were negotiated in 2013-
2014. The average long-term contract price of LNG in those years were around
15 USD/MMBtu in Asia (Drawn-out ball game: Asian spot LNG prices to stay
below long-term n.d.). The LNG price has dropped significantly since then; the
Ministry of Economy, Trade and Industry in Japan report a spot price (pure spot
contracts) in Japan in November 2018 of 11.5 USD/MMBtu (Spot LNG Price
Statistics 2018). As indicated by Drawn-out ball game: Asian spot LNG prices to
stay below long-term (n.d.), it is likely that the contracts initiated around 2014 have
been renegotiatied to reflect the current price trends in the Asian LNG market.
We therefore assume that the price of LNG in the long-term contracts are 10
UDS/MMBtu, equaling 240 USD/m3 when applying a conversion factor of 24
MMBtu/m3 LNG (IGU, 2012). The spot price is set to 11.5 UDS/MMBtu. Due
to lack of available data on LNG FOB prices in Asia, the FOB price is assumed to
be 5.7 UDS/MMBtu, based on a 15% increase of the Henry Hub spot price and a
liquefaction charge of USD 2.25 (Pedersen, 2017).

Operating costs are omitted in the model as it is assumed fixed for the planning
horizon. For simplicity we have also neglected port costs, as these is likely to
not vary significantly for port to port and therefore not have a large effect on the
solution. The only component included in the cost parameter is therefore the fuel
cost, discussed above. The cost of undergoing a cool down process is estimated
to be USD 55,000 from DESFA price indications (DESFA, n.d.). The cost of cool
down might depend on port and vessel, but is here assumed to be the same for all.

9.2 ADP Generation

The model requires input on reserved slot times in delivery and pickup ports, in
the form of time windows, as well as contract specification on quantities and cargo
flexibility. This would ideally come from an ADP or another planning problem.
Since this data was not available, time and quantity windows were generated by
giving each vessel a predefined path. Moreover, information on port limitations
and contract requirement of LNG origin is needed. We assume that all vessels can
visit all ports, and that each regasification terminal is indifferent to the origin of
the LNG delivered.

For simplicity the origin of each vessel is set to a random port. Each vessel can
either be empty or (almost) full, which decides if the first port in the path of a
vessel is a liquefaction or regasification port. A disruption is added to the origin of
the vessel to reflect delays and updated information, as discussed in Section 9.4.3.

103

For each node in the path of a vessel, the sailing time at design speed is used
to calculate the expected arrival time of the vessel. A time window of 48 hours
is added to the expected arrival time. For delivery ports, the contract volume is
calculated from the maximum volume the assigned vessel can carry, subtracted
the expected boil-off from the previous node in the path. A quantity window of
±15% of this value is then allowed. If the number of pickup nodes is greater than
the number of delivery nodes, the time windows for the excess pickup nodes are
evenly distributed over the planning horizon, again with a length of 48 hours.

9.2.1 Allocated Volume

The planning period is the divided into four periods (where the last period rep-
resents the first period of the next planning period), and the three first periods
are given a ”planned” allocated volume based on the volume necessary to serve
all planned pickups with the beginning of its time window in that time period.
This allocated volume is then disrupted as explained in Section 9.4.2 to reflect
production changes and updated production data from the ADP.

All LNG not committed to long-term or spot contracts are either transferred to the
next time period or sold as FOB. The available vessel capacities for FOB pickup
are assumed to be between 100,000m3 and 150,000m3, giving the boundaries for
the FOB sale quantity at a specific node. The volume transferred from last month
in previous planning period is set to 10,000m3 for all liquefaction ports.

9.3 Chartering

The vessels that can be chartered are not specified directly, but there is a cost
related to servicing a given long-term contract by a chartered vessel, picking up
LNG at a specific pickup node. The volume delivered by the chartered vessel is
assumed to be the middle of the quantity window for a contract, and the vessel
capacity for the chartered ship is assumed to be 5% larger than this volume. The
boil-off volume and volume required for cool down are then calculated as in Section
9.1.2. Charter rates are for simplicity assumed to be equal for all vessel capacities,
using the average charter rate in 2017 for a 160,000m3 LNG carrier according to
GIIGNL (2018) of 46,058 USD/day. Even though the chartering can be both time
charter or voyage charter, we assume that the chartering cost is the product of
the charter rate and the charter time. The charter time is an estimation of the
time it takes to load and unload the chartered volume (added expected boil-off
to the loading volume), sail from pickup to delivery port at an assumed design
speed of 18 knots, and potentially wait outside a regasification terminal due to

104

time windows. The time for pickup and delivery for a chartered vessel is so that
the charter time is as low as possible.

9.4 Disruption and Randomization

9.4.1 Spot

Spot contracts that were not planed in the ADP are added to the problem. These
are assumed to be ”pure spot”-contracts, as defined in Section 2.1.2. We set the
number of spot contracts to be 20% of the number of fixed contracts, as this
somewhat reflects that approximately 20% of the total LNG volumes delivered
in 2017 was on pure spot contracts (GIIGNL, 2018). The time windows for the
spot contracts is assumed to be 48 hours, randomly distributed over the planning
horizon.

9.4.2 Randomization of Allocated Volumes

The ”planned” allocated volume described in Section 9.2.1 is disrupted to take
production changes and updated production data from the ADP into account.
We have assumed that the allocated volume is normally distributed around its
”planned volume”, with a standard deviation of σ of this volume. Values tested
for σ are specified in Chapter 10.

9.4.3 Uncertainty in Origin

To account for delays and changes in the previous planning period, the sailing time
from origin to its planned destination according to the ADP is disrupted. This
is here done by assuming that the delay from origin to all nodes is exponentially
distributed with an expected value, µ hours. Values tested for µ are specified in
Chapter 10. However, in reality this would be done more accurately by assuming
a new position for the origin and recalculating all sailing times to the different
nodes.

9.5 Instance Sizes and Combination of Vessels and
Nodes

When making several input data sets it is either for the purpose of increasing
the statistical strength of the test results (sampling) or for the purpose of testing
different sizes of problem instances. When the term “problem size” is used in this

105

thesis, it refers to the combination of vessels and pickup and delivery nodes. We
mainly talk about fixed contract delivery nodes, even though the number of spot
contracts also increase with problem size. For the test instances the ratio of pickup
and delivery nodes is not 1:1. This is due to the assumption of a greater number of
pickup nodes than delivery nodes, and also for making it possible for the model to
choose FOB solutions. Table 9.4 shows the different problem instances. It is based
on the assumption of each vessel completing on average 8 trips during a 90-day
period (including the artificial origin but excluding the artificial destination). For
each number of vessels, there are 4 different problem sizes (e.g. for one vessel there
are problem instances with 6, 8, 10 and 12 nodes); however, it is also possible to
make as many problem instances for a given problem size as needed because of
the randomization when the input file is created. These vessel-node combinations
may need to be updated when dealing with a specific case where for instance the
sailing times are different from the ones chosen in the examples used in this thesis.

Table 9.4: Problem sizes

Instance name # of
vessels

of pickup
nodes

of spot
contracts

of fixed
contracts

Total # of
delivery nodes

Total # of
nodes

1 V1P5F3 1 5 1 3 4 9
2 V1P6F4 1 6 1 4 5 11
3 V1P8F5 1 8 1 5 6 14
4 V1P9F6 1 9 2 6 8 17
5 V2P10F7 2 10 2 7 9 19
6 V2P11F8 2 11 2 8 10 21
7 V2P12F9 2 12 2 9 11 23
8 V2P14F10 2 14 2 10 12 26
9 V3P15F11 3 15 3 11 14 29
10 V3P16F12 3 16 3 12 15 31
11 V3P17F13 3 17 3 13 16 33
12 V3P18F14 3 18 3 14 17 35
13 V4P20F15 4 20 3 15 18 38
14 V4P21F16 4 21 4 16 20 41
15 V4P22F17 4 22 4 17 21 43
16 V4P23F18 4 23 4 18 22 45
17 V5P24F19 5 24 4 19 23 47
18 V5P25F20 5 25 4 20 24 49
19 V5P27F22 5 27 5 22 27 52
20 V6P28F23 6 28 5 23 28 56
21 V6P29F24 6 29 5 24 29 58
22 V6P30F25 6 30 5 25 30 60
23 V6P31F26 6 31 6 26 32 63
24 V7P32F27 7 32 6 27 33 65

106

10. Computational Study

In this Chapter a computational study for the proposed solutions methods in
6 andn 7 is presented. Addtionally, we present a computational study of the
simulation framework and the robustness strategies proposed in Section 7.3.

The models are written in Python1 programming language on a standard computer
with Intel Core i7-7700 3.6 GHz processor and RAM of 32 GB.

In Section 10.1 tests regarding opportunities of postponing certain decisions are
presented. Section 10.2 introduces a set of selected problem instances of different
sizes used for further testing. Here, problem instances are divided into blocks
of which different realistic disruptions are applied. In Sections 10.3 and 10.4 a
computational study of the two solution methods introduced in Chapter 6 and
in Chapter 7 are presented. Finally, we present a computational study of the
robustness strategies proposed in Section 7.3.

10.1 Sequential Decision Making

In this section, different configurations of the MIP program introduced in Chapter
5 are presented and tested. First, the concept of and motivation for postpon-
ing decisions is discussed briefly. Second, different options for excluding decision
variables and potential values they can take on are discussed and tested. Third,
selected configurations are presented (a configuration corresponds to a set of deci-
sions to postpone). Lastly, the different configurations are tested using a MIP.

The tests performed in this section consists of two steps: For the first step, the
MIP is simplified by fixing a subset of the variables, and the goal is to find vessel

1The methods presented in this Chapter are written in Python and the MIP program is
written using the Pyomo package. Various MIP-solvers are supported, and Gurobi was chosen
since it supports a so called “persistent solver”. A persistent solver serves the purpose of efficiently
informing the solver of incremental changes to a MIP model.

107

108

routes. The second step type corresponds to solving the complete problem while
imposing the routes already found. The goal is to analyze whether it is possible
to decrease the computational time while still being able to find good solutions
(vessel routes). Initial testing has shown that after fixing vessel legs, the rest of
the problem is easy to solve, and the computational time for this step is thus
not included. The test procedure is fairly straightforward and details will not be
discussed in further detail.

The problem considered in this thesis is a variant of the pickup and delivery prob-
lem; however, the problem considered here contains a number of complicating
side-constraints (e.g. boil-off, heel-out, quantity dependent loading time). The
rationale for postponing decisions is to discover side-constraints which show little
importance in simultaneous decision making. These decision components might
at the same time add significant complexity in the model. If this is the case, then
it may be a good idea to make these decisions after other decisions have already
been made.

10.1.1 Variables Considered for Sequential Decision Making

In the following, various simplifications, as well as potential benefits and limita-
tions, are described.

Vessel Speed

To the best of our knowledge, simplifying the problem by setting vessel speed to
maximum does not affect the solution quality. Initial testing with generated data
sets show that the optimal solution are found in every case when using maximum
speed for vessels when searching for the vessel legs, and then solving again later
on with variable speed and while imposing the path already found. It is believed
that this is a safe assumption for this specific problem type, as sailing costs are
very small compared to revenue for this problem type, as opposed to many other
maritime routing and scheduling problems.

Delivery quantity

Next, it is possible to require that vessels deliver only the minimum quantity
required by customers. As discussed earlier in section 6.1 this is an important
assumption for the ALNS to work efficiently. By choosing the minimum quantity,
the feasible region should allow finding paths corresponding to any feasible solu-
tion in step 2.
Furthermore, imposing anything more than the lowest possible quantity is prob-

109

lematic, as it may exclude certain solutions completely. Enforcing delivery of max
quantity resulted in a large increase in chartered cargoes and breach quantities for
most of the test instances, which yielded very poor objective values. Similar al-
though not as severe results were obtained when forcing a delivery in the middle of
the quantity window. This highlights the importance of quantity flexibility when
modelling allocated volume, boil-off, cool-down, FOB and other quantity and time
related decisions with the detail used in this thesis. This also argues that fixing
the quantity to any other value than the minimum of the quantity window in the
first part of the ALNS is unfavorable.
However, a vessel route found using a method assuming minimum delivery quan-
tity may end up finding a route which is heavily constrained with respect to time.
While the route may be feasible with respect to arrival times using the lowest
possible delivery quantities, this does not need to hold for other delivery quan-
tities, as larger delivery quantities lead to longer loading/unloading duration at
ports. This scenario is depicted in figure 10.1. Here one can observe that it is not
possible to increase the quantity delivered to D1 because this will lead to longer
unloading/loading times at D1 and at P1, which again leads to the vessel arriving
after the time window at P2. As a side comment, it should be noted that such
solutions with tight constraints with respect to arrival times are often not robust.
In Chapter 8 different robustness strategies aiming to avoid such routes av those
described above are discussed.
Another less frequent observed shortcoming of the minimum delivery quantity re-
quirement is that it might lead to stopover decisions being made in step one which
is far away from being optimal in step 2. In step 2 the minimum quantity require-
ment is relaxed again, but a potential issue is that stopover decisions automatically
puts strict restrictions on the range of delivery quantities it is possible to achieve.
For these reasons, the only quantity-related configurations included in the tests
presented here are for minimum delivery quantity. Numerical results for other
quantity configurations are not included.

110

P1 D2 P2P2

time

Unloading time with minimum quantity Unloading time with increased quantity

D1

Sailing with minimum quantity Sailing with increased quantity

Time window D1 P1Deliver node Pickup node

Figure 10.1: Illustratation of how tight time-windows can constrain possible de-
livery quantities

FOB Sale

Another possible simplification is to require that no FOB sale is allowed during step
one in order to decrease computational times. This may be problematic as FOB
opportunities may be limited in a real life setting and revenue per unit may also
vary. Therefore, ignoring FOB early on and then later impose strict requirement
on vessel legs may make it impossible to reach the optimal solution; however, it
might still serve as a method to find decent paths for the vessels which can then
later be improved by local search or destroy + MIP repair methods. As for all
simplifications considered, there is a speed/quality trade-off.

Heel-out

Finally, it is possible to postpone the decisions concerning vessel heel-out. This
may lead to sub-optimal paths in some cases (e.g. a vessel with fill capacity just
large enough to serve a customer, but only if the tank is emptied completely).

To sum up, several simplifications have been considered: constraining the vessel
speed, FOB sale, delivery quantity and heel-out decisions. Testing of these simpli-
fications are presented in section 10.1.3. These tests are the basis for some of the
modelling decisions made for the ALNS and for the FO.

111

Table 10.1: Sequential decision making - Assessing different options for simplifying
decisions in step one

Configurations Maximum speed Minimum quantity No heel-out No FOB sale
Configuration 0 - - - -
Configuration 1 Yes - - -
Configuration 2 Yes Yes - -
Configuration 3 Yes - Yes -
Configuration 4 Yes - Yes Yes
Configuration 5 Yes Yes Yes Yes

10.1.2 Configurations of Decisions

The different configurations are listed in Table 10.1. Configuration 1 corresponds
to the assumptions made for the FO and Configuration 5 corresponds to the as-
sumptions made for the ALNS.

In Table 10.1 the different configurations of the aforementioned alternatives are
presented. As already have been discussed, only the options of ”maximum speed”
and ”minimum delivery quantity” are included for vessel speed and cargo quantity
variables. Testing shows that using a lower value for vessel speed gives poor
solutions, while when using maximum speed the MIP is able to find the optimal
solution for all problem instances tested.

10.1.3 Results and Conclusion

In Table 10.2 computational tests with respect to running time performance and
solution quality for different configurations of the MIP is presented. In essence,
the purpose of this section is to analyze trade-off between objective value and
computational time for the different configurations.

Making decisions sequentially could potentially be a stand-alone model, but, as
can be observed from Table 10.2, using a only MIP to solve decisions sequentially is
not fast or accurate enough. It still serves as an important study of which decisions
which may be postponed, and which decisions may not be postponed. For instance,
we observe that by finding vessel routes while assuming maximum vessel speed
(Configuration 1) makes it possible to solve the problem a little bit faster while
not sacrificing solution quality at all. Therefore, in the rest of this thesis, speed
decisions have been postponed until after finding vessel routes. From the Table 10.2
one can observe that the minimum quantity requirement is somewhat problematic,
and even more so when combined with the no heel-out and no FOB sale restrictions

112

Table 10.2: Sequential decision making - effect of postponing decisions

Configurations

Problem
instance

C0 C1 C2 C3 C4 C5

Gap
[%]

Comp.
time [s]

Gap
[%]

Comp.
time [s]

Gap
[%]

Comp.
time [s]

Gap
[%]

Comp.
time [s]

Gap
[%]

Comp.
time [s]

Gap
[%]

Comp.
time [s]

N19V2 0.0 0.5 0.0 0.3 6.0 0.2 0.0 0.3 0.0 0.3 6.0 0.2
N21V2 0.0 0.6 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.2
N24V2 0.0 0.7 0.0 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.3
N26V3 0.0 2.1 0.0 1.2 8.5 0.8 0.0 1.0 1.2 1.1 8.5 0.7
N28V3 0.0 1.9 0.0 1.3 2.1 1.0 0.0 1.4 0.2 1.7 6.0 1.1
N30V3 0.0 2.0 0.0 1.4 3.0 1.2 0.0 1.7 1.5 1.3 2.1 1.0
N32V3 0.0 3.1 0.0 1.5 0.9 1.3 0.0 1.7 1.2 1.9 3.0 1.1
N35V4 0.0 6.6 0.0 4.8 5.7 2.5 0.1 4.4 1.6 3.3 5.3 2.4
N37V4 0.0 7.0 0.0 4.4 2.7 2.9 0.1 5.9 0.1 3.8 2.8 2.9
N39V4 0.0 7.9 0.0 7.0 4.5 3.4 0.1 3.7 1.3 3.8 5.6 3.2
N41V4 0.0 24 0.0 14 8.9 5.7 0.0 10 0.0 8.9 7.3 4.6
N43V5 0.0 128 0.0 12 0.2 5.8 0.2 86 0.7 198 4.4 4.9
N45V5 0.0 224 0.0 90 5.9 18 0.1 192 1.3 179 9.7 22
N47V5 1.8 3600 1.8 3600 7.0 115 0.3 3600 2.6 2964 9.1 89
N49V5 0.1 3600 0.1 104 7.8 96 0.1 990 0.1 1364 7.7 26
N51V6 1.2 3600 1.2 129 2.9 52 1.7 1145 1.8 884 5.4 45
N53V6 1.0 3600 1.0 3600 3.3 126 1.0 3600 1.4 3600 7.3 81
N55V6 0.4 3600 0.4 3600 10.2 306 0.5 3600 1.5 3600 15.1 75
N57V6 2.4 3600 2.4 3600 5.6 3600 2.5 3600 3.1 3600 8.0 34

from configuration 4. However, this does not rule out the ALNS as a method for
this problem type. Again, these constraints speed up the computational time and
might serve as a method to find good paths, although sub-optimal when applied
in a MIP setting.

10.2 Description of Problem Instances
For the remaining computational study presented in the following sections, the
problem instances presented in table 10.3 will be used.

Table 10.3: Problem instances used for testing

Problem instance Nodes VesselsPickup nodes Fixed nodes Spot nodes
N32 V3 18 14 3 3
N41 V4 23 18 4 4
N71 V8 38 33 7 8
N87 V10 46 41 9 10
N105 V12 55 50 10 12

113

10.2.1 Disruption of Problem Instances

Disruptions are categorized into blocks and are applied to all problem instances
introduced in table 10.3. That is, each study in the following sections corresponds
to one or several model runs for each of the five problem instance sizes, and for
each block included. Disruptions considered in this thesis are starting positions for
vessel and/or allocated volume at liquefaction ports. Disruptions are classified as
either low, medium or high. For initial vessel position, low, medium and high dis-
ruption corresponds to µ-values of 48 hours, 96 hours and 144 hours, respectively.
For allocated volume, low, medium and high disruption corresponds to σ-values of
5%, 10% and 15%, respectively. The disruption characteristics for different blocks
are shown in table 10.4.

Table 10.4: Disruption categorization - initial position and allocated volume (AV)

Instances
in block X Block 1 (B1) Block 2 (B2) Block 3 (B3) Block 4 (B4) Block 5 (B5)

Disruption Disruption Disruption Disruption Disruption
Init.
pos. AV Init.

pos. AV Init.
pos. AV Init.

pos. AV Init.
pos. AV

BX N32 V3
 MED - - MED LOW LOW MED MED HIGH HIGH

BX N41 V4
BX N71 V8
BX N87 V10
BX N105 V12

10.3 ALNS

10.3.1 Tuning of the ALNS Parameters

The ALNS heuristic includes a considerable amount of parameters that might
affect the performance of the algorithm. Testing all the possible parameter con-
figurations in order to determine the optimal parameter values is not practicable.
Instead, a sequential calibration strategy of the most important parameters is used;
first, initial values for the parameters are decided based on Ropke and Pisinger
(2006) and preliminary testing during the development phase of the algorithm.
The preliminary testing indicated that some parameters affected solution quality
and computational time more than others. These parameters are tuned sequen-
tially, in pairs using grid search, in order of their deemed relative importance. For
each parameter, the value is varied within a predefined range, while all other pa-
rameters are kept fixed. Once a parameters is tuned, its value is fixed for the rest

114

of the calibration procedure. The tuning is deliberately not performed on the same
instances used in the study in Section 10.3.2 to avoid over-fitting the parameters
to the instances used in these studies. All problem instances were solved five times
for each variation of the parameters, with a maximum running time, TMAX , of
3600 seconds and maximum number of iterations, IMAX , of 10 000. The criterion
for deciding the best parameter setting is primarily the average objective value
gap. This gap is calculated based on the optimal objective value found by solving
the MIP model for instances where the MIP is able to find optimal values within
3600 seconds. For problem instances where the MIP is unable to find optimal
solutions, the gap is calculated based on the best upper bound from the MIP after
an hour of running. This way, the larger instances are likely to be credited the
most, as their gaps are likely to be larger than the gaps of the smaller instances.
If a parameter setting has a substantial effect on the computational time of the
ALNS, a trade-off evaluation of solution quality and computational time is used
as decision criterion.

As described in Section 6.1, the ALNS contains a local search component. Since the
LS components can have various configurations, the inclusion of this components
adds several parameters to the overall ALNS algorithm. The ALNS mechanism is
considered the main component and the LS is an improvement procedure. There-
fore, the ALNS is first calibrated without the LS component. Next, testing is
done on the ALNS with local search to determine the best configuration of the
local search parameters. The ALNS is initialized using the construction heuristic
described in Section 6.3.

The initial values of the parameters are presented in Table 10.5. λ, M , IR, σ1, σ2,
σ3 and σ4 are based on values used in Ropke and Pisinger (2006). These values were
suitable for the heuristic, and preliminary testing indicated that changing them
did not significantly impact the performance of the ALNS. The initial weights of
the destroy and repair operators, ωd,0 and ωr,0, were all set to 1. With these
initial weights, in combination with the score and decay parameters chosen above,
the ALNS was able to adequately adjust the probability of choosing an operator
according to its prior performance. ρ, ν1, ν2 and ν3 are set based on preliminary
testing. α, β, ΓMIN , ΓMAX , U INIT and c, as well as the local search configuration,
are calibrated using the strategy described above. The initial values of α and β are
derived from preliminary testing and general knowledge about the problem. The
initial values of the simulated annealing parameters, U INIT and c, are obtained
from Ropke and Pisinger (ibid.). ΓMIN and ΓMAX are the first parameters to be
calibrated, so no initial values are set.

115

Table 10.5: Overview of ALNS parameters and their initial values

Parameter Description Value Subject for tuning

Imax Maximum number of iterations 10 000 -

Tmax Maximum running time [s] 3 600 -

α Scaling factor for cost of infeasible node pair 1.5 Yes

β Breach cost scaling factor 1 Yes

Γmax Upper limit of degree of destruction - Yes

Γmin Lower limit of degree of destruction - Yes

p Determinism parameter 3 -

ν1, ν2, ν3 Weights used in Shaw Removal 0.3, 0.4, 0.3 -

λ Decay parameter for operator weight adjustment 0,1 -

wo Initial weights for destory operators {1,1,1,1} -

wo Initial weights for repair operators {1,1,1,1} -

M Segment size 100 -

Ireset Number of iterations before weights are reset 1000 -

σ1 Score when new global best solution is found 33 -

σ2 Score when new solution is better than current solution 13 -

σ3 Score when new solution is worse than current, but accepted by SA 9 -

σ4 Score when solution is worse than current and not accepted by SA 0 -

U init Initial temperature in simulated annealing 0.05 Yes

c Cooling factor in simulated annealing 0.99975 Yes

Degree of Destruction

The degree of destruction will intuitively have a large impact on the performance
of the ALNS. If it is too small, the ALNS will lose the advantage of the large neigh-
borhood search and might not be able to sufficiently explore the solution space.
An excessively large degree of destruction will more or less be a re-construction of
the solution from scratch in each iteration, which may be time consuming and pro-
duce poor results (depending on the repair operator used to re-build the solution).
As described in Section 6.6, the degree of destruction is chosen randomly within a
range between ΓMIN and ΓMAX in each iteration. The results from the tuning of
these parameters are presented in Table 10.6. As the degree of destruction is likely
have a significant impact on the computational time of the ALNS, both average
gap and average computational time is evaluated.

As expected, the degree of destruction has a large impact on the performance of
the algorithm. The results indicate that both choosing between too large values
and too small values yield poor results in terms of optimality gap. Having a large
range of the degree of destruction is neither favorable. A clear trend of decreasing
computational times when either bound of the degree of destruction is decreased

116

Table 10.6: Simulated annealing - overview of parameter combinations subject for
tuning

Γmin = 0.1 Γmin = 0.15 Γmin = 0.2 Γmin = 0.25

Gap [%] Comp.

time
Gap [%] Comp.

time
Gap [%] Comp.

time
Gap [%] Comp.

time

Γmax = 0.2 8.8 413.3 7.3 421.7 5.7 427.3 - -

Γmax = 0.3 9.0 484.5 5.3 450.1 6.4 490.1 6.2 474

Γmax = 0.4 5.9 457.1 10 428.9 6.5 454.5 11.6 502.2

Γmax = 0.5 5.9 712.6 8.9 678.7 11.2 690 14.4 703.7

is also revealed. The exceptions to this trend can be explained by the fact that
more feasible solutions are found during the ALNS when ΓMIN and ΓMAX are
incrementally decreased, which means that the MIP in the second part of the
ALNS is run more times, resulting in higher computational time. The best gap
is found for ΓMIN = 0.15 and ΓMAX = 0.3. ΓMIN = 0.2 and ΓMAX = 0.2
give a slightly larger gap, but lower computational time. Still, the difference in
computational time is not large, and having a varying degree of destruction is
considered favorable, so the former parameter setting is selected.

Penalty Costs

Next, the penalty cost scaling factors, α and β, are tuned. The trade-off between
these parameters will have a large influence on how the search is guided, which
might result in a substantial impact on the performance in the second part of the
ALNS. If for instance the breach cost is too high compared to the cost of having an
infeasible pair of nodes, the algorithm might have trouble with guiding the search
back to the feasible region. A too large α compared to β restricts the search too
much, which can make it difficult for the repair methods to reach a wide variety of
solutions and sufficiently explore the solution space. Therefore, these parameters
are tuned using a grid search. The absolute values of the two parameters are also
important as they determine the trade-off between the penalty costs and the non-
penalty costs in the ALNS. These parameters do not have a noteworthy impact on
computational time, so only the average gap is used as criterion in the calibration.
Table 10.7 shows that no single combinations of the parameters is an evident
selection, but indicates that setting α to 1/10 of β could be a reasonable choice. α
is set to 0.1 and β to 1, as this parameter combination yielded, however slightly,
the lowest average gap in the tuning study.

117

Table 10.7: Penalty costs - overview of parameter combinations subject for tuning

Gap [%]

α = 0.1 α = 0.5 α = 1 α = 1.5 α = 2.5 α = 4

β = 1 4.6 5.2 4.8 5.7 6.8 6.3

β = 10 6.5 6.6 4.8 6.4 6.7 7.3

Simulated Annealing

The acceptance criterion in the ALNS is calibrated by doing a grid search for
different values of the simulated annealing parameters U INIT and c. Setting the
U INIT too high, will help the ALNS with diversifying the search, but if the cool
down is too slow, the heuristic may have trouble intensifying the search, harming
the performance. Having a too small initial temperature or cooling down too fast
will essentially reduce the heuristic to a descent heuristic, increasing the chance
of getting trapped in a local optima. Note that U INIT = 0 means that only
improving solutions are accepted in the ALNS. This setting of U INIT is obviously
independent of the cooling factor, c. The results presented in Table 10.8 shos that
having no simulated annealing (U INIT = 0) or rapid cooling (c = 0.996) gives a
higher average gap than the other parameter combinations. This is likely because
the ALNS gets stuck in local optima. Based on Table 10.8, U INIT = 0.01 and
c = 0.99975, giving the lowest average gap of 3.6, is selected.

Table 10.8: Simulated annealing - overview of parameter combinations subject for
tuning

c = 0.996 c = 0.99975 c = 0.9999

Gap [%] Comp. time Gap [%] Comp. time Gap [%] Comp. time

U init = 0 5.9 417.7 5.9 417.7 5.9 417.7

U init = 0.01 8.4 467.3 3.6 429.7 3.7 412.4

U init = 0.025 6.6 421.8 3.7 428.4 4 397.3

U init = 0.05 6.5 427.1 3.9 425 5.1 394

Local Search

Finally, the local seach component of the ALNS is configured. The different con-
figuration settings for the local search involve neighbor selection, as described in

118

Section 6.8, as well as the parameters IN (maximum number of iterations with-
out improving the best solution in local search before switching to ALNS), IS
(maximum number of iterations without improving the best solution in the ALNS
before switching to local search) and the length of the tabu list, L. Initial testing
indicated that the performance of the ALNS was not significantly dependent on
L, as long as it was not too small, so L = 8 is selected. Table 10.9 shows that the
first improvement strategy performs slightly better than the best improvement.
IN = 50 and IS = 400 gave the lowest average gap using the first improvement
strategy, so this parameter setting is chosen.

Table 10.9: Local search - tuning of maximum number of iterations before recourse

Gap [%]

Best improvement First improvement

IN = 50 IN = 100 IN = 200 IN = 50 IN = 100 IN = 200

IS = 100 3.5 3.5 3.9 3.1 3.5 4.5

IS = 200 3.7 3.7 3.5 3.6 3.7 3.5

IS = 400 4.0 3.3 3.7 3.0 3.5 3.7

Final ALNS Parameter Configuration

The final setting for the ALNS parameters, including the parameters related to
the local search component, after the tuning is completed is presented in Table
10.10. The local search component uses the first improvement strategy. For the
remaining parts of the computational study, the ALNS is run in this configuration.

119

Table 10.10: Final ALNS parameter values

Parameter Description Value

Imax Maximum number of iterations 10 000

Tmax Maximum running time [s] 3 600

α Scaling factor for cost of infeasible node pair 1.5

β Breach cost scaling factor 1

Γmax Upper limit of degree of destruction -

Γmin Lower limit of degree of destruction -

p Determinism parameter 3

ν1, ν2, ν3 Weights used in Shaw Removal 0.3, 0.4, 0.3

λ Decay parameter for operator weight adjustment 0,1

wo Initial weights for destroy operators {1,1,1,1}

wo Initial weights for repair operators {1,1,1,1}

M Segment size 100

Ireset Number of iterations before weights are reset 1000

σ1 Score when new global best solution is found 33

σ2 Score when new solution is better than current solution 13

σ3 Score when new solution is worse than current, but accepted by SA 9

σ4 Score when solution is worse than current and not accepted by SA 0

U init Initial temperature in simulated annealing 0.05

c Cooling factor in simulated annealing 0.99975

IN Max # of non-improving iterations in LS before switching to ALNS 400

IS Max # of non-improving iterations in ALNS before switching to LS 100

L Length of tabu list 8

10.3.2 Results and Discussion

The results from solving the problem instances described in Section 10.2 is pre-
sented in this section. All problem instances were solved five times with a time
limit of 3600 s and an iteration limit of 10 000. Table 10.11 reports the best and
average optimality gaps, as well as the average computational time, for both of
the initialization methods described in Section 6.3. The ALNS heuristic initial-
ized with the ADP and the construction heurisitc will be denoted ALNS-ADP and
ALNS-CH, respectively, for the rest of this chapter. The first two columns of Table
10.11 show the optimality gap and computational time of solving the MIP model,
as a reference. The gaps are calculated as in Section 10.3.1. Table 10.12 shows the
average gap of the MIP and the ALNS with both initialization methods after 250

120

s and 1000 s, as well as the final gap as a reference.

Table 10.11: Overall ALNS Performance after 1 hour

Problem instances
MIP

ALNS
Initialization method

ADP Construction heuristic
Gap

(MIP) [%]
Comp.
time [s]

Gap
(avg.) [%]

Gap
(best) [%]

Comp.
time [s]

Gap
(avg.) [%]

Gap
(best) [%]

Comp.
time [s]

B1 N32 V3 0.0 1 0.1 0.1 194 0.6 0.0 200
B1 N41 V4 0.0 3 2.0 2.0 330 1.7 1.0 344
B1 N71 V8 7.6 3600 9.1 8.3 982 11.7 10.1 1214
B1 N87 V10 17.2 3600 17.0 16.1 1830 25.6 16.2 2022
B1 N105 V12 11.4 3600 17.9 17.2 1919 19.0 18.6 2007

B2 N32 V3 0.0 1 1.8 1.0 215 0.9 0.3 220
B2 N41 V4 0.0 5 1.1 0.0 351 0.8 0.0 368
B2 N71 V8 12.3 3600 11.8 10.2 1152 19.4 12.1 1348
B2 N87 V10 19.3 3600 21.9 13.5 2080 26.1 22.0 2222
B2 N105 V12 8.0 3600 9.4 9.3 2011 14.3 13.5 2128

B3 N32 V3 0.0 1 1.2 0.5 214 1.4 0.5 235
B3 N41 V4 0.0 5 1.9 0.6 343 1.4 0.3 381
B3 N71 V8 2.7 3600 23.5 19.8 1324 18.9 9.2 1350
B3 N87 V10 15.8 3600 37.6 25.6 1980 27.8 25.5 2324
B3 N105 V12 13.0 3600 17.1 16.4 2014 28.1 23.5 1873

B4 N32 V3 0.0 1 1.3 0.2 224 1.6 0.4 243
B4 N41 V4 0.0 4 0.0 0.0 341 0.1 0.0 380
B4 N71 V8 8.8 3600 27.3 24.8 1232 20.3 17.2 1210
B4 N87 V10 6.6 3600 24 16.1 2015 29.4 21.6 2268
B4 N105 V12 21.4 3600 19.9 19.9 1916 24.6 23.7 2035

B5 N32 V3 0.0 1 0.0 0.0 240 0.0 0.0 244
B5 N41 V4 0.0 5 0.9 0.5 345 0.8 0.0 361
B5 N71 V8 5.6 3600 14.9 10.7 1345 13.1 9.1 1380
B5 N87 V10 16.1 3600 31.1 24.2 2118 33.3 26.7 2113
B5 N105 V12 14.2 3600 10.9 9.8 2222 16.7 14.5 2099

Table 10.11 indicates that using the original ADP plan to initialize the first solution
yields better results in terms of optimality gap than using the construction heuristic
in most of the large problem instances, both considering the average and best
solutions. The ADP-CH gave the best results on the smaller instances, although
the difference in gaps between the ALNS-ADP and ALNS-CH are not large. The
ALNS-ADP and ALNS-CH are fairly consistent, without large differences between
the best and average solutions in many of the problem instances. Still, in some
cases the difference is large, as for in instance B2 N87 V10 with an average gap of

121

21.9 and best gap of 13.5. The ALNS-ADP seems to be more consistent than the
ALNS-CH. Table 10.12 shows that the average gap after 250 s is usually lower for
the ALNS-ADP than for the ALNS-CH, especially for the larger instances. The
difference is not as striking after 1000 s and at the end. Both the results concerning
consistency and time to find decent solutions are not that surprising considering
that the original ADP is likely to be close to a fairly good solution, with only a
few modifications needed to handle the disruptions.

Table 10.12: ALNS performance for selected comp. times

Problem
instances

Gap after 250s [%] Gap after 1000s [%] Final gap [%]
MIP ALNS-ADP ALNS-CH MIP ALNS-ADP ALNS-CH MIP ALNS-ADP ALNS-CH

B1 N32 V3 0.0 0.1 0.6 0.0 0.1 0.6 0.0 0.1 0.6
B1 N41 V4 0.0 2.0 1.7 0.0 2.0 1.7 0.0 2.0 1.7
B1 N71 V8 10.4 9.1 15.7 10.4 9.1 11.7 7.6 9.1 11.7
B1 N87 V10 76.9 22.5 36.4 17.2 18.8 26.4 17.2 17.0 25.6
B1 N105 V12 n/a 23.2 19.0 17.3 17.9 19.0 11.4 17.9 19.0

B2 N32 V3 0.0 1.8 0.9 0.0 1.8 0.9 0.0 1.8 0.9
B2 N41 V4 0.0 1.1 0.8 0.0 1.1 0.8 0.0 1.1 0.8
B2 N71 V8 12.3 18.3 23.4 12.3 11.8 19.7 12.3 11.8 19.4
B2 N87 V10 318 32.2 37.6 27.0 26.7 28.1 19.3 21.9 26.1
B2 N105 V12 165 9.4 14.9 32.0 9.4 14.3 8.0 9.4 14.3

B3 N32 V3 0.0 1.2 1.4 0.0 1.2 1.4 0.0 1.2 1.4
B3 N41 V4 0.0 1.9 1.4 0.0 1.9 1.4 0.0 1.9 1.4
B3 N71 V8 4.2 34.9 21.7 4.2 23.6 19.8 2.7 23.5 18.9
B3 N87 V10 n/a 41.2 48.6 15.7 39.5 32.9 15.8 37.6 27.8
B3 N105 V12 158 17.1 28.2 31.6 17.1 28.2 13.0 17.1 28.1

B4 N32 V3 0.0 1.3 1.6 0.0 1.3 1.6 0.0 1.3 1.6
B4 N41 V4 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1
B4 N71 V8 8.8 38.8 25.6 8.8 27.4 20.4 8.8 27.3 20.3
B4 N87 V10 184 36.3 39.3 6.8 24.5 30.6 6.6 24.0 29.4
B4 N105 V12 173 19.9 30.9 801.2 19.9 24.6 21.4 19.9 24.6

B5 N32 V3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B5 N41 V4 0.0 0.9 0.8 0.0 0.9 0.8 0.0 0.9 0.8
B5 N71 V8 6.5 17.0 15.5 6.5 15.2 13.3 5.6 14.9 13.1
B5 N87 V10 284 52.7 45.6 17.4 32.7 33.5 16.1 31.1 33.3
B5 N105 V12 142 15.8 21.9 19.2 10.9 16.8 14.2 10.9 16.7

Computational time for the ALNS-ADP and ALNS-CH are fairly similar, however,
the using the construction heuristic as initialization method gives slightly higher
computational times a almost all cases. This might be because the ALNS with this
initialization will find more feasible solutions, thus increasing the time used in the
second part of the heuristic, solving a MIP model with fixed routes. Computational
time increases drastically with increasing size of the problem instance. This is

122

mostly due to the repair methods in the ALNS increasing the time per iteration.

The last three columns of Table 10.12 show that the ALNS has trouble finding
better solutions than the MIP. For the smaller instances, where the MIP model
is solved to optimality, both versions of the ALNS are close to optimal, but not
consistently able to find the optimal solutions. The ALNS-ADP is able to outper-
form the MIP on average for the two largest instances in some of the blocks, still,
in some cases even the best solutions found by the ALNS is far worse than the
solutions found by solving the MIP model. For example for instance B3 N87 V10,
the MIP gap is 15.8 % while the average and best gap of the ALNS-ADP are 37.6
% and 25.6 %, respectively.

There are three likely reasons for these results. First, the ALNS might not get to
run for a sufficient amount of time, and therefore not able to adequately explore
the solution space. The results show that the computational time of the ALNS
are only around 2000 s for the largest instances, while the MIP model is run for
3600 s. However, Table 10.12 shows that the improvements after 1000 s are small
for the ALNS, and initial testing indicated that further increasing the number of
iterations of the ALNS did not significantly impact its performance. A second
reason could be that the ALNS gets trapped in local minima. The fact that the
ALNS in most cases quickly finds gap values close to its final gap value could
indicate that the diversification strategies used in the ALNS are not sufficient,
leading the heuristic to have trouble escaping a local minimum once a fairly good
solution is found. The third reason can be inferred from the results presented in
Section 10.1. These results show that by making the same assumptions about heel-
out, FOB-sale, delivered quantity and vessel speed as are made in the ALNS, and
using the same partitioning of the problem as is used in the ALNS in a MIP model
(Configuration 5 in Section 10.1), can for some instances give large gaps in the
original problem, even though the sequential MIP model is solved to optimality.
This puts an innate bias on the ALNS model in the sense that even though the
ALNS has found an optimal or close to optimal solution, given its assumptions,
the routes in this solution might not be performing well in the original problem.
The large difference in the final optimality gap between the ALNS and the MIP
model for some of the instances could be explained by this bias.

An interesting way of assessing the performance of the ALNS is therefore to com-
pare its results to the MIP model with the same assumptions and partitioning as
the ALNS (Configuration 5 in Section 10.1). Table 10.13 shows the optimality
gaps (calculated as before) from Configuration 5 and the ALNS on the problem
instances used in Section 10.3.1. Configuration 5 is solved to optimality. The table
shows that the ALNS outperforms Configuration 5 on all instances, even though

123

the ALNS is a heuristic version of it. This can be explained by the fact that the
ALNS stores the best feasible solutions it finds, and one of the solutions that did
not perform the best in the first part of the heuristic gets a higher objective value
in the second part of the problem. This corroborate the hypothesis that was be-
hind this modelling choice of the ALNS, and could indicate that the reason for the
MIP (in Table 10.11 and 10.12) to outperform the ALNS is more likely due to the
bias and not the ALNS getting trapped in local minima.

Table 10.13: Comparison of ALNS and the MIP, where the MIP makes similar
assumptions as the ALNS (C5)

Problem
instance

Gap [%]
MIP - C5 ALNS

N17 V2 5.1 0.2
N28 V3 6.0 0.6
N37 V4 2.8 0.9
N43 V5 4.4 2.9
N53 V6 7.3 2.7
N59 V7 16.3 11.1
N69 V8 14.6 7.0

Even though the ALNS has trouble finding better solutions than the MIP, the
time to find decent solutions for large instances is significantly lower for the ALNS
(both ALNS-ADP and ALNS-CH), as can be seen from Table 10.12. The MIP
is outperformed by the ALNS methods on the two largest instances in all blocks
when considering the average gap after 250 s. In many of the cases, the objective
value found by the ALNS-ADP after 250 s is not very far from the best objective
value found by the MIP after 3600 s. However, in some cases the solution found by
the ALNS methods after 250 s is still poor compared to the best known solution.

The type and degree of disruption in the problem instances does not seem to
significantly impact the performance of the ALNS, as there are no clear trends
across the blocks for neither the ALNS-ADP nor the ALNS-CH.

10.4 Fix and Optimize
In this section, testing for the Fix and Optimize matheuristic is presented. First,
preliminary studies are presented in Section 10.4.1. Second, a study on parameter
tuning is presented in Section 10.4.2. Third, FO model performance compared to
MIP performance is presented in 10.4.3.

124

10.4.1 Preliminary studies

Fixed Speed

In Section 10.1 it was shown that simplifying the MIP by postponing some of
the decisions better computational speed can be achieved. It was shown that
assuming maximum vessel speed when finding vessel routes, before re-introducing
variable speed later is seems to be effective for the problem type considered in
this thesis. In all cases tested, it is possible to make this simplification while still
guiding the model to the same optimal vessel routes as found using the extensive
MIP. For this reason, the FO imposes maximum vessel speed in the iterative phase
before re-optimizing with variable speed later on. When solving the FO using fixed
speed, the number of iterations performed increased on average by ∼ 40% for large
problem instances. The results are presented in Table 10.14. Although stability
of the percentage improvement for larger problem instances are very sensitive to
changes in the data, one must remember that the data presented here is the mean
value of 10 model runs and that the results are consistent. Furthermore, iterations
for large problem instances takes more time than for small problem instances, and
if we are able to increase the number of iterations incrementally, without making
sacrifices with respect to solution quality, this brings significant value to the FO.
On average, the solutions found at the end with FO was equally good using both
fixed and variable speed, similarly as we observed for the MIP.

Table 10.14: FO with and without simplifying using maximum vessel speed

Variable speed Fixed speed
Avg. total time spent [s] Avg. # of iterations Avg. # of iterations % improvement

B1 N32 V3 1000 596 831 39 %
B1 N41 V4 1000 248 335 35 %
B1 N71 V8 1000 16 22 38 %
B1 N87 V10 1000 10 14 40 %
B1 N105 V12 1000 8 11 38 %

Neighborhood Testing

One alternative to the FO is to fix some of the vessel legs found through a con-
struction heuristic or a simplified MIP without telling the heuristic exactly which
legs to fix. Adding a new constraint to the MIP which sums all the legs that make
up the routes and then requiring that they sum up to the number of legs is the
same as requiring that they should all be equal to one. Instead, flexibility can
be added by requiring that the vessel legs sum up to for instance x% of the total

125

number of legs without telling the model which legs to include and which to not
include. By using this constraint, the final solution is required to be very close to
the path found already, but at the same time the model is allowed to make some
changes with respect to the routing decisions. This approach is somewhat simi-
lar to local branching techniques. It turns out that the constraint proposed does
not constrain the model as much as believed beforehand, and the computational
times are scale badly. The results are not included. However, the solutions, when
found, were excellent. These findings indicate that this type neighborhood work
well, although it is not exactly the same neighborhood as the one used for the FO.
This may indicate that using a MIP to search around an existing solution might
be effective, and that maybe a fix and optimize heuristic will solve the problem
effectively.

10.4.2 Model Tuning

In this section, parameter tuning for the FO is considered. Parameter values are
chosen prior to model execution; however, when the term ”real-time parameter
tuning” is used, it concerns the dynamicity of the model and the feature of self-
tuning in during the neighborhood search.

Sending Instructions During the Destroy Phase

As described in Chapter 7 the model presented in this thesis makes use of the Shaw
destroy method, while during some iterations instructing the model to initiate the
destroy phase by starting at a specific node (hereby referred to as the root node)
in the vessel routes. This root node has the lowest destruction count up until
the current time. Parameter settings include that this feature is applied every x
iteration, but only after the first y iterations have been performed such that some
statistics may be generated for the first y iterations before regularly instructing
the destroy method afterwards. Initial testing indicates that parameter values
x = 3 and y = 10 works well. Performance testing shows that the ”instruction”
feature is often successful for two reasons. First, it often leads to new, improving
solutions. Further testing shows that when analyzing the node sequence before
and after this instruction has been applied, the node sequence around the root
node has often been altered. This again strengthens the belief that instructing the
destroy procedure contributes to the model performance. A performance test also
confirms this, as the results were significantly better, and faster, when instructing
or guiding the destroy procedure regularly. The instructions sent to the destroy
method is believed to not adversely affect the nature and the randomness of the
Shaw destroy method. The complete destroy procedure destroys large parts of

126

a solution, while the instructions sent to the procedure only affect a few nodes.
In essence, the instruction feature is making sure that the time it takes until
the heuristic has destroyed incoming and outgoing legs for all nodes is not too
long. One counter argument is that sooner or later the destroy method will, due
to the randomness, destroy all nodes in the set of vessel routes. However, the
FO is not performing as many iterations as many other iterative heuristics, and
because of this it does not make sense to rely on such statistics and the law of
large numbers in this case. A summary of the test results can be found in 10.15.
For the two problem sizes included, N87 V10 and N105 V12, the average number
of iterations are 25 and 40, and the average total number of iterations where
instructions are given to the destroy procedure are 6 and 8. Initial testing indicates
that an instruction frequency of 1

3 is appropriate, meaning that an instruction will
be sent to the destroy procedure every third iteration after the first 10 iterations
have been performed. The model is believed not to be very sensitive with respect
to the exact value of this frequency parameter, but lower frequencies (or excluding
the instruction feature) are found to perform worse.

Table 10.15: Percentage of successful instructions sent to the destroy method in
FO

Problem instance % effective
instructions

B1 N87 V10 0 %
B2 N87 V10 20 %
B3 N87 V10 13 %
B4 N87 V10 0 %
B5 N87 V10 20 %
B1 N105 V12 13 %
B2 N105 V12 0 %
B3 N105 V12 14 %
B4 N105 V12 25 %
B5 N105 V12 38 %

Search Aggressiveness and Maximum Allowed Iteration Gaps

The implemented FO aggressively increases the destruction rate, guiding the pro-
gram towards timeouts. The rationale for doing this is that timeouts are believed
to be OK, and initial testing shows that the optimal parameter settings include
frequent timeouts.

127

It is believed that there are three reasons for why the model should allow some
timeouts. The first reason is that the model often an unnecessary large amount
of time on closing the gap at the end of each iteration. The second reason is that
even when the model face timeouts, it is often still able to find good, improving
solutions. The third and probably most important reason is that the computation
time might average on a fairly low level; however, one may observe large peaks for
some iterations. These large peaks are a problem as they are both time-consuming
and a potential source of over-fitting if not dealt with correctly. Time-consuming
in the sense that the extra time spent on completing the iterations where these
peaks occur does not seem to improve the model performance (i.e. just because
a given iteration is complex and difficult to complete, it does not need to mean
that this iteration is likely to lead to a, new, improving solution). By over-fitting
it is meant that if the built-in tuning is too sensitive and the model observes a few
timeouts, it might immediately respond by lowering the destruction rate or even
increasing the maximum time limit for iterations. For this reason, if the iterations
in general are very fast then having the model responding like this might not be
a good thing. In these situations it might even be a good idea to increase the
destruction rate while keeping the maximum time limit for iterations low.

Although it is found effective to allow timeouts, testing shows that it does not
add additional benefit by increasing the threshold parameter beyond ∼ 1%. As
described previously in 7, the threshold parameter controls whether the model
should be tuned such that it destroys larger parts of the solution, or such that it
increases the time budget for each iteration. The reason for ∼ 1% being a suitable
value for this parameter is perhaps that much of the time spent (and perhaps often
wasted) at the end of each iteration is to close the final ∼ 1% of the gap. When
assessing the current status of the heuristic, whether the degree of destruction or
the time budget needs to be changed, a gap is needed in order to compare the
current status to this threshold. Therefore, the average of the 5 last iterations
are used. Additionally, if there are gap values which are abnormally high, then
these values are moderated in order to avoid having the heuristic overly sensitive,
in correspondence with the discussion in the previous paragraph.

As described in Chapter 7, the degree of destruction and the max iteration time
parameters are adjusted dynamically. For the heuristic implemented in this thesis,
the degree of destruction and the iteration time budget are monotonously increas-
ing. Other alternatives have been considered where for instance these parameters
fluctuate up and down from iteration to iteration. By fluctuating, it is meant that
for instance, the degree of destruction may be adjusted up because new solutions
have not been found for a given number of iterations, but then it may be pushed
down again due to timeouts while keeping the max iteration time parameter fixed.

128

The parameter tuning is supposed to change when, for instance, iterations are fre-
quently stopped due to timeouts and the heuristic has not found new, improving
solutions for a long time, then one possible option is to respond by increasing the
max iteration time instead of lowering the destruction rate. Testing was performed
on the use of non-monotonously changing parameters for real-time tuning, but as
it shown little importance while at the same time adding complexity to the model
and the tuning process, this feature was excluded from the model. Real-time pa-
rameter tuning is based on the two secondary parameters, the number of iterations
since the last improving solution was found, and the gaps observed for recent it-
erations. Additionally, a minimum number of iterations are required in between
two sessions of real-time tuning of parameters.

In the following, various tables including the results from parameter testing are
presented. The testing is based on similar, although not the exact same, prob-
lem instances as the larger ones presented in Section 10.2. In Table 10.16 initial
values for the degree of destruction and time budget are tested. As shown in the
table, all the values presented here performs decent, indicating that the model is
relatively in-sensitive of these parameter values; however, lower values than 15%
and larger values than 30% are found less effective. Lower values still performs
decent, because of the real-time tuning of the heuristic. However, larger values for
the degree of destruction gives poor results, as the computational times explode
and unless these initial values are quickly lowered during real-time tuning then FO
performance becomes poor. Similar conclusions are made from Tables 10.17 and
10.18. Also here the heuristic has proven relatively in-sensitive to the values of
this parameters within the ranges presented here. Gap threshold values up to 10%
works fine in most cases, and most values for the maximum # of non-improving
iterations also works fine in most cases (as long as the initial values for the de-
gree of destruction and the time budget are reasonable. In essence, this indicates
that real-time tuning is not very important. An implication from this is that it
probably is a good alternative to only include a simple model with only two static
parameters, the degree of destruction and the time budget. As long as the initial
values for these are OK, then the results should be fine. Testing also suggests that
this is the case. However, in some cases the dynamic model performs better and
is able to find new solutions after long periods of only non-improving iterations,
and these solutions are probably found due to the real-time tuning.

Tuning the FO is a cumbersome and complex task, and there is probably some
improvement potential. As a disclaimer, it must be said that further tuning and
testing might lead to other optimal values for these parameters. Testing on mul-
tiple real data sets might add additional value. However, testing shows that the
model components themselves are very important (like for instance instructing the

129

Table 10.16: Initial values for degree of destruction and time budget for each
iteration

(Degree of destruction, time) Gap [%]
1000s 2000s 3000s

(0.15, 30) 9.6, 7.5, 7.3
(0.2, 30) 7.8, 7.3, 7.1
(0.25, 30) 9.7, 8.2, 7.3
(0.3, 45) 9.5 8.2 7.3

Table 10.17: Destroy more compared to solving longer - gap thresholds. Less than
1% was also tested, but it was found to not perform as well and the model became
unstable

Gap threshold
[%] Gap [%]

1000s 2000s 3000s
1 8.5 7.2 7.2
2 8.5 7.3 7.3
3 8.5 7.5 7.3

Table 10.18: Maximum # of non-improving iterations before parameter tuning

Max. # of
iterations Gap [%]

1000s 2000s 3000s
2 8.1 7.6 7.2
4 8.5 7.4 7.2
6 8.7 8.0 7.2

130

Table 10.19: FO key parameter values

Parameter name Initial value Static or dynamic
Degree of destruction 20% Dynamic
Allocated time budget for each iteration 30s Dynamic
Degree of destruction - increment 5% Static
Time budget - increment 20s Static
Max # of non-improving iterations without tuning 5 Static
Number of look-back iterations 5 Static
Guiding frequency 1

3 Static
of iterations until guiding commences 10 Static

destroy procedure regularly, and restricting model over-fitting when timeouts are
observed), while the exact parameter values for the corresponding parameters are
believed to be less important and also to some extent problem size specific.

Conclusion and Parameter Values

In conclusion, it is believed that searching the solution space aggressively despite
facing a few timeouts is a good idea, supported by the aforementioned arguments.
Initial testing shows that this is key in order for the model to succeed. Furthermore,
initial testing shows that it is difficult to find optimal parameter values. The
various tuning settings presented here are often equally good; however, for some
of these tests the reasons for this is believed to be that the model is making real-
time adjustments to the parameters when it believes that the search is unable to
escape a local optima. If, on the other hand, the feature of self-tuning is turned
off and all parameters values are considered to be static, then the initial values
for the parameters are found to be much more important. Tests show that when
keeping the parameter values static the model perform almost as good as when the
parameters are dynamic. This of course, depends on the right static values being
used. It was found that around 20-30% degree of destruction and a time budget
of around 30-40s.

10.4.3 Model Performance - Results and Discussion

The overall goal for the LNS is that it is able to find the optimal solution in
most cases. Of course, this is a desirable achievement, but if the LNS (only)
outperforms the other alternatives, although not always being able to solve the
problem instances to optimality, this is also desirable achievement.

131

The number of iterations spent for each model run of the FO are not included in
the tables in this chapter. For the largest files, the FO completes ∼ 100 iterations
per 3 600 seconds when relatively a small degree of destruction is applied, while it
completes ∼ 40 iterations when a large degree of destruction (> 25%) is applied.
Even though the LNS is far away from performing as many iterations as most
of the other destroy and repair methods, including the ALNS, it might still be
effective if the program is both fairly quick while at the same time being to find
improving solutions frequently.

For the remaining parts of this chapter, test results for the Fix and Optimize
heuristic are summarised in tables. Each problem instance for each block has been
solved ten times and all statistics for gaps and computational times presented in
this section are based on mean values, except for the table columns marked as
”best”. Furthermore, gaps presented here are based on the upper bound obtained
after 3600s for the MIP and not real-time gaps, and the gaps are calculated from
UB−OBJ
OBJ · 100%. In the following, three tables summarizing the performance of

the FO and the MIP are presented. Cells in the tables are marked with a green
color when the given value is a top performer. First, Table 10.20 displays the av-
erage and best performance within 3 600 seconds for the different solution method
alternatives is presented. Second, Table 10.21 focuses on the solution performance
relative to time elapsed. Third, Table 10.22 presents information regarding when
best solutions are found and when the models introduced in this thesis outperforms
a MIP-solver, on average.

From Table 10.20 it can be observed that the Fix and Optimize heuristic is superior
to the MIP both in terms of best recorded performance and average performance.
The consistency of the FO is not explicitly proven here, but in general, a single
run of the FO has been shown to outperform the MIP. As indicated by the average
gaps in the table, the FO shows strong consistency. The fact that the average gaps
and the best gaps for the FO is often very close to each other also indicates a low
spread with regards to final gap after 3600s.

For the problem instances which the MIP is not able to solve to optimality, the
FO almost finds a solution which is considerably better than the ones found by the
MIP in all cases except one, problem instance B3 N71 V 8 where the MIP and the
FO perform equally good. As both the FO with an initial solution from an ADP
and the FO with an initial solution from a construction heuristic seems to hit the
exact same gap (2.7%) both on average and for the best iteration, this gap may
correspond to the optimal solution. This is somewhat speculative, but it certainly
sounds plausible.

There are cases (depicted in Figure 10.3) where the FO gets trapped in what

132

seems like local optima. Such local optima may also be observed for small problem
instances. For example, for problem instance B2 N32 V 3 the FO often miss the
optimal solution by ∼ 1% (shown as avg. 0.7% in the table, and further testing
shows that the gaps for the specific situations when this happens are ∼ 1%). This
observation is very interesting, as it means that even for a simple problem instance
as the one considered here, together with a degree of destruction of ∼ 30 − 40%
and >1000 iterations, it is possible that the FO is unable to find the optimal
solution. Such cases seems to be rare, but they indicate that when using a MIP-
solver to search the neighborhood defined by the destroy procedure in the FO, this
neighborhood does not always connect the feasible region completely.

One final observation from Table 10.20 is that the two options for providing the
FO with initial solutions seems to both give decent results, and it is difficult to
conclude that one of them is better than the other.

As discussed already, the FO assumes a feasible solution as input. One alternative
is to start the LNS from an ADP plan, and ignore any infeasibilities. The FO
proceeds as if the solution is feasible and hope that a future destruction will lead
to a feasible solution. For instance, if an iteration fails to produce a feasible solution
after destroying the ADP-plan, then the next iteration will start over by destroying
the ADP-plan. Initial testing shows that this alternative is poor compared to the
other starting methods, and sometimes completely useless. Hence, this is not a
viable alternative without destroying the ADP more intelligently. For this reason,
it option is not included when testing the FO.
From Table 10.21 it can be observed that the ADP-start leads to faster results than
when using the construction heuristic, with the ADP-start often outperforming
the MIP even during the first iteration in the FO. Moreover, we observe that it is
difficult to say that one single way of starting the FO is better than the other. At
first, it seems like the ADP is the better option, especially if the model is only to be
solved a single time. If multi-start options and multiple computers are available,
then we believe that it is better to include the construction heuristic for two
reasons. The first reason is that the solution is then more likely to be further away
from any local optimum, and thus the search for a local optimum will take more
iterations than if the ADP was used, which again might lead to the FO searching
larger parts of the solution space. The second reason is that the construction
heuristic includes a random component, while the ADP does not. If the ADP is
very close to a local optimum, then this local optimum might be difficult to escape
from. This discussion is supported by the previous table, Table 10.20 where the
”Gap (best) [%]” column seems to be in favour of the Construction Heuristic.
Although there are many green (positive) cell markings for the ADP-start in the
table, the ADP only barely outperforms the Construction Heuristic once, while

133

Table 10.20: Overall Fix and Optimize Performance after 1 hour

Problem
instances

MIP Fix and Optimize
Initialization method

ADP Construction heuristic
Gap

(MIP) [%]
Comp.
time [s]

Gap
(avg.) [%]

Gap
(best) [%]

Comp.
time [s]

Gap
(avg.) [%]

Gap
(best) [%]

Comp.
time [s]

B1 N32 V3 0.0 1 0.0 0.0 20 0.0 0.0 17
B1 N41 V4 0.0 3 0.0 0.0 34 0.0 0.0 36
B1 N71 V8 7.6 3600 6.5 6.4 3600 6.9 6.5 3600
B1 N87 V10 17.2 3600 7.3 7.1 3600 7.3 7.1 3600
B1 N105 V12 11.4 3600 9.9 9.5 3600 8.8 7.8 3600

B2 N32 V3 0.0 1 0.7 0.0 1264 0.7 0.0 20
B2 N41 V4 0.0 5 0.0 0.0 30 0.0 0.0 31
B2 N71 V8 12.3 3600 5.6 5.6 3600 5.7 5.6 3600
B2 N87 V10 19.3 3600 4.9 4.8 3600 4.9 4.7 3600
B2 N105 V12 8.0 3600 4.0 3.8 3600 4.0 3.6 3600

B3 N32 V3 0.0 1 0.0 0.0 31 0.0 0.0 20
B3 N41 V4 0.0 5 0.0 0.0 30 0.0 0.0 65
B3 N71 V8 2.7 3600 2.7 2.7 3600 2.7 2.7 3600
B3 N87 V10 15.8 3600 9.2 9.2 3600 9.9 9.0 3600
B3 N105 V12 13.0 3600 9.7 9.5 3600 9.9 9.4 3600

B4 N32 V3 0.0 1 0.0 0.0 13 0.0 0.0 20
B4 N41 V4 0.0 4 0.0 0.0 31 0.0 0.0 47
B4 N71 V8 8.8 3600 7.0 6.9 3600 6.7 6.6 3600
B4 N87 V10 6.6 3600 4.5 4.5 3600 4.6 4.5 3600
B4 N105 V12 21.4 3600 11.0 10.6 3600 13.7 11.3 3600

B5 N32 V3 0.0 1 0.0 0.0 18 0.0 0.0 14
B5 N41 V4 0.0 5 0.0 0.0 35 0.0 0.0 37
B5 N71 V8 5.6 3600 4.7 4.3 3600 4.5 4.3 3600
B5 N87 V10 16.1 3600 7.2 7.0 3600 7.5 7.0 3600
B5 N105 V12 14.2 3600 6.1 5.7 3600 8.8 6.3 3600

134

for many problem instances the best found gap for the CH-start is significantly
outperforming the ADP-start. Testing with longer computation times than what
have been presented here also favours the CH-start when the model is allowed to
run many times.

If however, the data set is highly disrupted (e.g. vessel breakdown) then the
construction heuristic might work well or even better, since we build a new solution
rather than destroying infeasibilities. If we have to destroy a lot in order to make
the ADP plan feasible, then there are many variables which need to be included
in the MIP, thus increasing the required computational time.

135

Table 10.21: Fix and Optimize performance for selected comp. times

Problem
instances

Gap after 500s [%] Gap after 1000s [%] Final gap [%]
MIP FO-ADP FO-CH MIP FO-ADP FO-CH MIP FO-ADP FO-CH

B1 N32 V3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B1 N41 V4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B1 N71 V8 10.4 6.9 14.0 10.4 6.7 12.5 7.6 6.5 6.9
B1 N87 V10 19.8 8.8 12.0 17.2 8.1 7.4 17.2 7.3 7.3
B1 N105 V12 n/a 12.9 45.5 17.3 12.2 17.2 11.4 9.9 8.8

B2 N32 V3 0.0 0.7 0.7 0.0 0.7 0.7 0.0 0.7 0.7
B2 N41 V4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B2 N71 V8 12.3 5.7 5.7 12.3 5.6 5.7 12.3 5.6 5.7
B2 N87 V10 27.1 5.2 5.1 27.0 5.2 5.0 19.3 4.9 4.9
B2 N105 V12 n/a 5.4 5.7 32.0 4.8 4.6 8.0 4.0 4.0

B3 N32 V3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B3 N41 V4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B3 N71 V8 4.2 2.8 6.3 4.2 2.7 2.7 2.7 2.7 2.7
B3 N87 V10 56.1 15.1 17.2 15.7 9.5 11.1 15.8 9.2 9.9
B3 N105 V12 51.1 10.3 65.9 31.6 10.2 20.2 13.0 9.7 9.9

B4 N32 V3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B4 N41 V4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B4 N71 V8 8.8 10.1 10.2 8.8 7.3 7.6 8.8 7.0 6.7
B4 N87 V10 8.4 6.1 17.9 6.8 5.5 8.8 6.6 4.5 4.6
B4 N105 V12 n/a 13.1 49.9 n/a 12.9 37.3 21.4 11.0 13.7

B5 N32 V3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B5 N41 V4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B5 N71 V8 6.5 9.2 6.7 6.5 5.0 4.7 5.6 4.7 4.5
B5 N87 V10 21.2 11.8 20.1 17.4 10.5 10.1 16.1 7.2 7.5
B5 N105 V12 81.8 9.7 54.4 19.2 8.4 29.2 14.2 6.1 8.8

Tests not included here shows that the Construction Heuristic often produces
initial solutions far away from the optimal solution, both in terms of objective
value and variable values. Table 10.21 indicates that even if the initial solution is
relatively poor compared to starting from an initial solution from an ADP plan, it
is still be easy for the FO to iterate its way to better solutions, instead of trying to
solve everything simultaneously with a MIP. Figures 10.2 and 10.3 are presented
later also supports this argument.

136

Table 10.22: Fix and Optimize time to outperform MIP

Problem instances Time when best solution is found [s] Time to outperform MIP [s]
MIP FO-ADP FO-CH FO-ADP FO-CH

B1 N32 V3 1 17 18 - -
B1 N41 V4 3 42 45 - -
B1 N71 V8 3591 1811 2926 93 1144
B1 N87 V10 893 3342 2545 0 316
B1 N105 V12 3572 3172 3252 1178 1563

B2 N32 V3 1 19 19 - -
B2 N41 V4 5 29 28 - -
B2 N71 V8 2597 1295 1709 0 0
B2 N87 V10 3545 2088 2805 0 0
B2 N105 V12 3584 3131 3186 0 0

B3 N32 V3 1 24 22 - -
B3 N41 V4 5 29 52 - -
B3 N71 V8 3507 1674 1020 594 761
B3 N87 V10 3587 3165 3467 562 427
B3 N105 V12 1554 3566 3553 0 1355

B4 N32 V3 1 14 22 - -
B4 N41 V4 4 30 51 - -
B4 N71 V8 2474 2885 2896 519 482
B4 N87 V10 3117 2780 3448 370 1114
B4 N105 V12 1885 3402 3605 0 1676

B5 N32 V3 1 14 19 - -
B5 N41 V4 5 31 35 - -
B5 N71 V8 3594 1991 1733 547 428
B5 N87 V10 2851 2221 3435 88 709
B5 N105 V12 3556 3076 3331 0 1721

From Table 10.22 two main observations can be made. First, we observe that
for large problem instances, both the MIP and the FO often finds new improving
solutions throughout computation time budget. Second, it can again be observed
that the FO starting from an ADP often outperforms the best solution found using
the MIP early or even immediately. Note: setup-times are the same for both the

137

MIP and the FO, and they are excluded from the analysis. Therefore, computation
times down to 0 seconds are observed.

Visual Analysis - Plotting of Solution Gap and Time Spent

In Figures 10.2 and 10.3 solution method performance with respect to gap is plotted
against time spent for each method. The plots depicted in Figure 10.2 are randomly
chosen and should represent the typical situation well, while Figure 10.3 depicts
selected model runs in order be able to comment on specific interesting findings.

As previously seen from Table 10.21, it can again be observed strong FO perfor-
mance despite slow starts. In 10.2a and 10.2d it can be observed that a point
in time the FO using a constructed feasible initial solution is actually performing
worse than the MIP; however, after some time the FO effectively searches and
finds new, improving solutions.

From the plots in Figure 10.2 it appears that the greater the total disruption
(10.2b to 10.2d), the further away the (destroyed) ADP-start is from the optimal
solution, as expected. In general, the ADP-start seems to lead to finding good,
feasible solutions faster than for the construction heuristic. Similar to what has
been observed earlier from Table 10.21. Furthermore, the figure underpins FO as
a method regardless of how the initial solution is found. This is not to say that
the initial solution is not important, but the method seems to often perform well
also when the initial solution is very different from the optimal solution. This
difference is difficult to show graphically, but in the Appendix Section A.1 then
Table A.1 shows an example of this happening for a large problem instance. This
is not to say that the local optima found by the FO are always good solutions, and
shortly Figure 10.3a depicts this occurrence.

138

0 1,000 2,000 3,000

5

10

15

20

25

Total time [Seconds]

G
ap

[%
]

new solution from FO-ADP
new solution from FO-CH
Extensive MIP
FO-ADP
FO-CH

(a) Test runs for file B1 N105 V12

0 1,000 2,000 3,000

5

10

15

20

25

Total time [Seconds]

G
ap

[%
]

new solution from FO-ADP
new solution from FO-CH
Extensive MIP
FO-ADP
FO-CH

(b) Test runs for file B3 N105 V12

0 1,000 2,000 3,000

10

20

30

Total time [Seconds]

G
ap

[%
]

new sol. FO-ADP
new sol. FO-CH
Extensive MIP
FO-ADP
FO-CH

(c) Test runs for file B4 N105 V12

0 1,000 2,000 3,000

5

10

15

20

25

Total time [Seconds]

G
ap

[%
]

new solution from FO-ADP
new solution from FO-CH
Extensive MIP
FO-ADP
FO-CH

(d) Test runs for file B5 N105 V12

Figure 10.2: Test results for randomly selected model runs for problem size N105 -
V12 for blocks 1, 3, 4, 5.

Local optima can be observed for both the ADP and the Construction Heuristic.
Figure 10.3a depict this for the Construction Heuristic. In general, starting the
FO from the Construction Heuristic seems to provide better diversification than
ADP start. An example of this feature is presented in figure 10.3b.

139

0 1,000 2,000 3,000

5

10

15

20

25

30

Total time [Seconds]

G
ap

[%
]

new solution from FO-ADP
new solution from FO-CH
Extensive MIP
FO-ADP
FO-CH

(a) Multiple runs for file B4 N87 V10
showing a local optimum from FO
outperformed by the MIP

0 1,000 2,000 3,000

10

20

30

40

50

Total time [Seconds]

G
ap

[%
]

new solution from FO-ADP
new solution from FO-CH
Extensive MIP
FO-ADP
FO-CH

(b) Three selected test runs for
both ADP-start and CH-start for
file B2 N87 V10

Figure 10.3: Selected gap vs. time developments for the FO heuristic

10.5 Comparison of the ALNS and the Fix and
Optimize Heuristics

In this section a final comparisons of the two methods for solving the short-term
LNG routing and scheduling problem is presented. The average gaps at various
computational times for the two heuristics are shown in Table 10.23. The numbers
presented here are using the ADP-start for both heuristics. It was not found
necessary to also include the construction heuristic as it tells the same story. The
results are clearly in favor of the FO. The reason for choosing the ADP-start was
that perhaps the ALNS was able to outperform the FO at 250 and 500 seconds,
but this is not the case.

It is believed that there are two main reasons for the FO outperforming the ALNS.
The first reason is that the ALNS is biased as discussed in Section 10.3.2, and based
on postponing decisions. Although the performance of the ALNS is better than
the a MIP having the same assumptions (configuration 5 in Section 10.1), it is
still a source of poor guidance in the search. The second reason is that the FO is
performing very good. Many FO heuristics struggle since the repair procedure is
relatively expensive, compared to other large neighborhood search methods. The

140

FO presented in this thesis is fast, and even when the initial solution is far away
from any good solutions (in the solution space) the heuristic is able to iterate its
way to good solutions in a reasonable amount of time (< 1000s). The FO performs
a relatively low amount of iterations, but since the heuristics allow for large values
for the degree of destruction parameter even for large problem instances, then for
each iteration it is more likely to observe a new ”best” solution than observing a
non-improving solution. In addition, the novel destruction procedure used by the
FO where the destruction phase is guided, has shown to be very effective.

Table 10.23: Comparison of ALNS and Fix and Optimize - initial solution from
ADP has been used

Problem instance Gap after 250s [%] Gap after 500s [%] Gap after 1000s [%] Final gap [%]
FO ALNS FO ALNS FO ALNS FO ALNS

B1 N32 V3 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1
B1 N41 V4 0.0 2.0 0.0 2.0 0.0 2.0 0.0 2.0
B1 N71 V8 7.4 9.1 6.9 9.1 6.7 9.1 6.5 9.1
B1 N87 V10 12.0 22.5 8.8 22.5 8.1 18.8 7.3 17.0
B1 N105 V12 16.2 23.2 12.9 21.7 12.2 17.9 9.9 17.9

B2 N32 V3 0.7 1.8 0.7 1.8 0.7 1.8 0.7 1.8
B2 N41 V4 0.0 1.1 0.0 1.1 0.0 1.1 0.0 1.1
B2 N71 V8 5.8 18.3 5.7 15.6 5.6 11.8 5.6 11.8
B2 N87 V10 5.3 32.2 5.2 31.3 5.2 26.7 4.9 21.9
B2 N105 V12 5.6 9.4 5.4 9.4 4.8 9.4 4.0 9.4

B3 N32 V3 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2
B3 N41 V4 0.0 1.9 0.0 1.9 0.0 1.9 0.0 1.9
B3 N71 V8 7.3 34.9 2.8 31.2 2.7 23.6 2.7 23.5
B3 N87 V10 19.7 41.2 15.1 41.2 9.5 39.5 9.2 37.6
B3 N105 V12 10.6 17.1 10.3 17.1 10.2 17.1 9.7 17.1

B4 N32 V3 0.0 1.3 0.0 1.3 0.0 1.3 0.0 1.3
B4 N41 V4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B4 N71 V8 15.7 38.8 10.1 29.6 7.3 27.4 7.0 27.3
B4 N87 V10 14.0 36.3 6.1 28.7 5.5 24.5 4.5 24.0
B4 N105 V12 18.3 19.9 13.1 19.9 12.9 19.9 11.0 19.9

B5 N32 V3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B5 N41 V4 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9
B5 N71 V8 12.5 17.0 9.2 15.2 5.0 15.2 4.7 14.9
B5 N87 V10 16.2 52.7 11.8 40.9 10.5 32.7 7.2 31.1
B5 N105 V12 11.7 15.8 9.7 11.8 8.4 10.9 6.1 10.9

141

10.6 Simulation and Robustness Strategies
In this section, we present a computational study of the proposed robustness strate-
gies presented in Section 7.3. First, a short description of the chosen problem
instance and a schematic overview of the testing procedure are given. Second, two
different aspects of evaluating different solutions are discussed. Third, the three
robustness strategies are tested with different values. Finally, two approximations
of the Pareto Frontier for the given instance are presented and compared.

The aim of this study is two-fold. The first one is to assess how exogenous events
and activities like delay in sailing time and port unavailability may influence profit
and violation of time constraints. The second one is to test if any of the robustness
strategies proposed in Section 7.3 are able to enforce/guide the solution method
to find more robust solutions compared with a base case where no robustness
strategies are used.

10.6.1 Test Settings and Problem Instance

The framework has been programmed in Python 3.6. The part of the input of the
framework which represents a solution is an output of an FO model programmed
in Python and uses Gurobi as a solver. The tests were performed on a standard
computer with a processor of Intel Core i7-7700 3.6 GHz and RAM of 32 GB.

Problem Instance

The problem instance used in this computational study is the instance B3 N73 V8
introduced in Section 10.2 as a part of block three which indicates a low level of
disruption in origin and in allocated volume. The problem instance has been chosen
based on what is considered realistic in terms of number of vessels, deliveries, and
level of disruption. The main characteristics of the instance are described in Table
10.24.

Table 10.24: Problem instance characteristics

Instance Nodes Vessels BlockPickup nodes Fixed nodes Spot nodes
B3 N81 V8 40 34 7 8 3

Figure 10.4 shows a schematic overview of the testing procedure. The problem
instance B3 N73 V8 is the input of the solution method FO, which produces a set of
solutions in a deterministic setting. The problem instance and a solution constitute

142

a configuration which is the input to the simulation model. The configuration is
simulated for 1000 times and performance estimates such as the mean of profit,
mean of total time violation and confidence intervals are calculated. In the last
step, solutions are evaluated based on the Pareto dominance relation and the
bounding box test as described in Algorithm 11. Note that all evaluations and
comparisons of profit and total time violations done in this section are based on
simulated values.

Fix & OptimizeN73V8

Candidate
solutions Simulation

model
Evaluation

 of solutions

Pareto optimal
 set

Performance
estimates

Figure 10.4: Schematic overview of the testing procedure

Solution Evaluation In this section, two different techniques are introduced to
ensure a fair and efficient comparison of different solutions.

10.6.2 Variance Reduction

To obtain estimates of the objective value and the total time violations that are
statistically representative of the true values, a solution is simulated 1000 times.
The Mean is then used to provide an estimate of the true values. These estimates
usually have an error variance of σ2

n where σ2 is the sample variance, and n is the
number of iterations. Hence, in order to increase the precision of these estimates,
one has either to increase n or reduce σ. Considering a simulation ”budget” with
limited computing time, increasing n is undesired since a confidence interval is
only reduced by a rate of 1√

n
when n is increased. For this reason, the variance

reduction technique Common Random Numbers is used. This technique is widely
used in Monte Carlo simulations and is useful when two uncertain estimates, say
for instance X1 and X2 are compared. An estimator of the difference between X1
and X2 is apparently E(X1−X2) = X̄1− X̄2. The intuition behind this technique

143

can be explained by the variance of the difference between the two variables

Var(X1 −X2) = Var(1
n

n∑
i=1

X1,i −
1
n

n∑
i=1

X2,i) (10.1)

= 1
n

Var(X1) + 1
n

Var(X2)− 1
n2

n∑
i=1

n∑
j=1

Cov(X1,i, X2,j) (10.2)

= 1
n

Var(X1) + 1
n

Var(X2)− Cov(X1, X2). (10.3)

As seen from the third term in the Equation 10.3, the variance is reduced if the two
estimators are positively correlated. In practice, a positive correlation is introduced
by using the same sequence of random numbers when two systems are simulated.
However, a drawback of this method is known as the problem of synchronization,
that is, how to assign random numbers when the two systems do not have the
same structure or elements. This problem is present in our case since two different
solutions are likely to have different arrangements of nodes and vessels. This
problem is solved by generating the same random number seed for each pair of
nodes and iteration, i.e. the random number generator is now a function of the
node pair (i, j) and the iteration number. For instance, let’s assume that two
solutions, SOLUTION1 and SOLUTION2, are obtained from the FO algorithm
and the solutions are simulated 1000 times. Then when a vessel v is assigned the
same voyage in both solutions, the generated sequence of random numbers needed
to simulate the voyage will be the same during iteration 1 in both solutions. In
iteration 2, a new sequence is generated and is used in simulating the voyage in
both solutions. This continues until iteration 1000 is carried out.

10.6.3 Ranking and Selection

In this part of the thesis, we discuss the issue of ranking a finite set of solutions and
selecting the best of them, where best is defined with respect to the highest mean
of profit and the lowest mean of total time violation, and where the performance
of each solution is estimated by simulation. Accordingly, profit and total time
violation constitute a multi-objective problem where both objectives apparently
are in conflict since minimizing the total time violation incurs costs which reduces
profit. Profit and total time violation are also expressed in different measurement
units that are difficult to convert into one common unit. For these reasons, ranking
and selection are not straight-forward in this case.

144

Pareto Dominance

For comparing solutions, we use the Pareto dominance relation, which results in a
set of solutions that represent different trade-offs between the objectives. Hence,
the ranking and selection procedure can be divided into two steps: 1) selecting a set
of non-dominated solutions 2) choose a solution according to a set of preferences.
The last step is left to the decision-maker. A solution x is said to dominate solution
y if x is strictly better than y in one of the objectives and is no worse than y in the
other objectives. For a maximization problem, this is mathematically expressed as

x � y iff

{
∀i ∈ 1, 2, . . . , k fi(x) ≥ fi(y)
∃j ∈ 1, 2, . . . , k fj(x) > fj(y).

(10.4)

Additionally, a Pareto optimal solution x is defined such that there does not exist
another solution y that dominates it. However, a solution x is called a weakly
Pareto optimal if there is no other solution y such that fi(y) > fi(x)∀1, 2, . . . k.
Accordingly, the set of non-dominated solutions is defined as

℘∗ = {xi ∈ X | @y ∈ X : y � x} (10.5)

as given by Jaimes et al. (2009).

Uncertainty in Selection

Since the performance of solutions is uncertain, it is not possible to infer if solution
A dominates solution B without using a probability of correct selection. For this
reason, confidence interval (CI) with a confidence level of 95 % is used. CI is
constructed such that the unknown true value we want to estimate may be within
this range with a probability of 95%.

Figure 10.5 shows the profit mean and the associated confidence interval for four
solutions. Using only the estimated means, it is easy to rank the solutions, how-
ever, this is statically invalid since the confidence intervals of these solutions are
overlapping which makes it impossible to infer which solution is the best in absolute
term.

Considering the performance of a solution estimated by two measures (profit and
total time violation), we get a two-dimensional confidence interval for each solution.
Such a representation of uncertainty is called Bounding Box (BB) (Mlakar et al.,
2014). Figure 10.6 shows the mean of solutions represented by S1 and S2 and the
associated BB. For the S1, the uncertainty in total time violation is bounded by
[S1x−ε1, S1x+ε1], given a confidence interval of 95%. Similarly, the uncertainty of

145

Solutions

Profit

1 2 3 4

Figure 10.5: 99 % confidence interval of four different solutions

profit is bounded by [S1y− ε2, S1y + ε2]. Note that neither S1 nor S2 is dominated
since their bounding boxes are overlapping.

�1

�2

�1

�2

Profit

Total time violation

S1

S2

Figure 10.6: Two-dimensional confidence interval represented by a bounding box

The algorithm below describes how the Pareto optimal set is decided when com-
bining the concept of bounding box (or confidence intervals) and the Pareto dom-
inance relation. The input of the algorithm is a set of solutions {x1, x2, . . . } with
the associated total time violation {f1(x1), f1(x2), . . . }, profit {f2(x1), f2(x2), . . . }
and the confidence vector {(ε11, ε12), (ε21, ε22), . . . }. The output is the Pareto op-

146

timal set ℘∗ and the set of dominated solutions S. The algorithm loops over each
solution and checks if it is dominated by an other solution. If yes, the solution is
added to S, otherwise, the solution is added to ℘∗.

Algorithm 11 Deciding the Pareto Optimal set
Input: X = {x1, x2, . . . }, {f1(x1), f1(x2), . . . }, {f2(x1), f2(x2), . . . },
{(ε11, ε12), (ε21, ε22), . . . }

Output: ℘∗, S
℘∗ ← {}
S ← {}
for xi ∈ X do

is dominated← 0
for xj ∈ X | i 6= j do

if (f1(xj) + εj1 <f1(xi)− εi1) & (f2(xj)− εj2>f2(xi) + εi2) then
is dominated = 1
Add xi to S
Break inner loop

else
Do nothing

end if
end for
if is dominated = 0 then

Add xi to ℘∗
end if

end for
return ℘∗, S

147

10.6.4 Robustness Strategies

Three different robustness strategies for the problem studied in this thesis are
evaluated by the simulation framework proposed in 8. The three strategies are
described in detail in Section 7.3. In addition, each strategy is evaluated with three
different parameter values and benchmarked against a base case where no strategies
are used. The evaluation is done based on the strategy’s ability to generate robust
and high-quality solutions in terms of minimum total time violation and maximum
profit.

The parameters associated with each strategy are described in Table 10.25. The
parameter values used in the testing procedure are presented in Table 10.26.

Table 10.25: Parameters of robustness strategies

Robustness Strategy Parameter Description
Penalizing late arrivals α Penalizing arrivals occurring after

TMIN

Increasing buffer quantity β Percentage increase in buffer quantities
Increasing sailing time ω Percentage increase in sailing times

Table 10.26: Parameter values used in testing robustness strategies

Parameter Values Denoted as
α {0, 1000, 10000, 100000} {α0, α1, α2, α3}
β { 0%, 10%, 20%, 30%} {β0, β1, β2, β3}
ω {0%, 3%, 5%, 7%} {ω0, ω1, ω2, ω3}

148

10.6.5 Penalizing Late Arrivals

Figure 10.7a shows all the solutions generated with the various values of α. Figure
10.7b shows two-dimensional box plots of the solutions obtained by the different
parameter values. Each box represents the interquartile range (IQR) indicating
the range of the middle 50% of simulated profits and total time violations. The
interquartile range is represented by the length and width of the box. The whiskers
represent solutions with profit and total time violation outside the middle 50%.
The whiskers and outliers in the figures below are toned down to improve read-
ability. Note that we could only show the range for profit and total time violation
of solutions, however, range as a statistical measure is too easily influenced by
extreme values which may render any conclusion to be baseless.

In general, the results resemble what is excepted when a penalty is added to the
objective function. From Figure 10.7b, we observe that the obtained solutions
depend on the α value used such that the greater α, the less total time violation.
It is worth mentioning that the simulated profit of each solution does not include
the penalty term.

The median of the solutions obtained with α2 and α3 in terms of total time viola-
tions is clearly less than the median of total time violation associated with solutions
obtained by lower values of α (1000 and 0). Both the interquartile ranges and the
whiskers follow the same pattern. When it comes to profit, no pattern is observed.
However, the profit median of solutions obtained with α2 and α3 are surprisingly
greater than the median of the base case which indicates that higher values of α
may find robust solutions with a lower degree of time violation while performing
well in term of profit. This observation can also be confirmed by studying the ap-
proximation of the Pareto frontier defined by 16 solutions. All these solutions are
exclusively found by α2 and α3. Note that some solutions on the approximation
of the Pareto frontier may seem dominated at first glance. This is true if a de-
terministic Pareto relation is used, however since the two-dimensional confidence
interval is considered, many of these solutions cannot be declared as dominated.

Comparing α2 and α3, we observe that the area of interquartile range and the
whiskers associated with α3 are greater than the whiskers and the interquar-
tile range associated with α2. This indicates that the solutions found by alpha3
are more diversified and have higher variance. Additionally, we observe that the
whiskers and the blue area are evenly distributed around the center (median of
profit and time violation of solutions for α3), while the solutions obtained with
α2 are skewed toward lower profit and lower total time violation since the median
(green point) lies in the left lower quadrant in the green box. This observation
manifests itself through the greater share of solutions obtained by α3 in the optimal

149

Pareto set than solutions obtained by α2

200 400 600 800 1,000 1,200

1.2

1.3

1.4

·109

Total time violation [Hours]

Pr
ofi

t

Approximation of Pareto frontier
α = 0, β = 0%, ω =0%
α = 1000, β = 0%, ω =0%
α = 10000, β = 0%, ω =0%
α = 100000, β = 0%, ω =0%

(a) Solutions found for different α

200 400 600 800 1,000 1,200

1.2

1.3

1.4

·109

Total time violation [Hours]

Pr
ofi

t
α = 0, β = 0%, ω =0%

α = 1000, β = 0%, ω =0%

α = 10000, β = 0%, ω =0%

α = 100000, β = 0%, ω =0%

(b) Box plot of solutions for different α

Figure 10.7: Profit and total time violation when penalizing late arrivals

10.6.6 Increasing Buffer Quantity to Avoid Cool-Down

Similar to penalizing late arrivals, the same test procedure is carried out to evaluate
the strategy of increasing buffer quantity. The main hypothesis behind implement-
ing this strategy is that increasing buffer quantity may lead to fewer emergency
cool-downs. Additionally, the buffer quantity is often too small compared to the
vessel’s capacity (usually around 3% of a vessel’s capacity) which might have a
little impact on the profit.

All solutions with their own profit and total violation are shown in Figure 10.8a.
The solutions are discriminated based on the buffer quantity increment used when
solutions are generated. Comparing the solutions obtained by base case and the
other buffer quantity increments, we observe that increasing buffer quantity with
10%, 20% or 30% has a negligible impact on the solutions found as no pattern
stands out. Likewise, the optimal Pareto set consists of 20 solutions originating
from the four different parameter values. These solutions are almost equally dis-
tributed among the four parameter values. This resembles the observation made
previously; the impact of this strategy is limited at least for the values used in this
study. However, the strategy may have an impact if higher increments are used.

150

Similarly to Figure 10.7a, some solutions on the approximation Pareto frontier
may seem dominated by other solutions at first glance, however, these solutions
are not dominated when the two-dimensional confidence interval of the solutions
are considered.

200 300 400 500 600 700 800

1.1

1.2

1.3

1.4

1.5
·109

Total time violation [Hours]

Pr
ofi

t

Approximation of Pareto frontier
α = 0, β = 0%, ω =0%
α = 0, β = 10%, ω =0%
α = 0, β = 20%, ω =0%
α = 0, β = 30%, ω =0%

(a) Solutions found for different
buffer quantity increments

200 300 400 500 600 700 800

1.1

1.2

1.3

1.4

1.5
·109

Total time violation [Hours]

Pr
ofi

t

α = 0, β = 0%, ω =0%

α = 0, β = 10%, ω =0%

α = 0, β = 20%, ω =0%

α = 0, β = 30%, ω =0%

(b) Box plot of solutions for different
buffer quantity increments

Figure 10.8: Profit and total time violation when increasing buffer quantity

151

10.6.7 Increasing Sailing Time

Figure 10.9a shows all the solutions found when the strategy of increasing time is
applied and benchmarked against a base case. Figure 10.9b shows the distribu-
tional characteristics of each group of solutions. Our first notice is that increasing
sailing time has a significant impact on the solutions generated compared to the
base case. As expected and discussed in Section 7.3, the solutions found with
ω > 0 generate in general less profit and less total time violation. However, it is
deserving notice that an increase in sailing time with as little as 3% also has a high
impact on the produced solutions. A comparison of the solution with the highest
profit associated with ω1 (SOL1) and the solution with the lowest total time vio-
lation associated with ω0 (SOL0) may illustrate how different these solutions are.
SOL1 has 20% less time violation than SOL0 while SOL0 has 10% more profit
than SOL1. The high level of difference between solutions generated with base
case and ω > 0 indicates that many legs between nodes do not tolerate as little
as 3% increase in sailing time, even though a recovery measure like speeding up
is carried out. This may be attributed to a combination of narrow time windows
and a near to or fully utilized fleet in the solutions associated with ω0.

A second notice is the difference in variability in profit and total time violation
between solutions associated with ω0 and ω > 0. While the first group of solutions
shows high variability in time violation and low variability in profit, the second
group exhibits a different pattern with relatively low variability in time violation
and high variability in profit. This indicates that adding extra sailing time does
not only eliminate risky legs, but it contributes to eliminating combinations of legs
that cause extreme values in time violation.

Comparing the solutions associated with ω1, ω2, ω3, we observe that ω1 and ω2
produce a set of solutions with almost the same median, both in profit and time
violation. While ω3 stands out with less time violation and higher profit than ω1
and ω2. This is a surprising result since one may expect that increasing sailing
time may render many high-profit solutions (as seen by the base case) infeasible.
Although this behavior may seem strange and unexpected at first glance, the
reasoning behind it is related to BOG and emergency cool-downs. On the one
hand, increasing sailing time with 3% or 7% appears to eliminate the riskiest legs.
However, many legs are still sailed with BOG between delivery ports and pickup
ports. This makes the solutions vulnerable for emergency cool-downs.

Additionally, when an emergency cool-down is implemented, the vessel is often
forced to empty the tanks at the last delivery port visited before cooling down.
This introduces randomness in gained income. On the other hand, increasing
sailing time with 7%, few legs can now be sailed with design speed and with BOG.

152

Hence, vessels are often totally emptied at delivery ports, and cool-downs are
scheduled. This makes solutions with ω3 less vulnerable to disruption in sailing
time and emergency cool-downs.

0 200 400 600 800
0.2

0.4

0.6

0.8

1

1.2

1.4

·109

Total time violation [Hours]

Pr
ofi

t

Approximation of Pareto frontier
α= 0, β = 0%, ω =0%
α= 0, β = 0%, ω =3%
α= 0, β = 0%, ω =5%
α= 0, β = 0%, ω =7%

(a) Solutions found for different
sailing time increments

0 200 400 600 800
0.2

0.4

0.6

0.8

1

1.2

1.4

·109

Total time violation [Hours]

Pr
ofi

t

α = 0, β = 0%, ω =0%

α = 0, β = 0%, ω =3%

α = 0, β = 0%, ω =5%

α = 0, β = 0%, ω =7%

(b) Box plot of solutions for different
sailing time increments

Figure 10.9: Profit and total time violation when increasing sailing time

10.6.8 Approximation of Pareto Frontier

In this part of the computational study, we study the ability of robustness strategies
to guide the solution method, FO in this case, toward more robust solutions and
compares these solutions with the case base. This test is carried out by running
FO with each robustness strategy and proposed parameter value five times, in
total 45 times. The set of solutions obtained during this stage is denoted S1. As a
benchmark, we generate solutions with no robustness. To give the solution method
a fair chance to find high-quality solutions, FO is then run 45 times with the base
case. The solutions obtained based on the base case are denoted S2. In addition
to a box plot for each set’s profit and total time violation, Figure 10.10 shows the
approximation of the Pareto frontier based on S1 and S2.

Comparing the box plots, we observe that the median of profit and time violation
of set S1 is less than these of S2. However, S1 has, in general, a higher level
of diversification and variance than the set S2. This applies both in terms of
profit and time violation and can be seen both from the interquartile range of S1

153

represented by the red box and the upper and lower quartiles represented by the
whiskers as they cover larger area than these associated with S2. We observe also
that the IQR of S2 represented by the blue box is near-to-symmetric around its
center, while the IQR, upper and lower quartiles of S1 are asymmetric and show
that the profit and time violation of S1 are skewed left. This indicates that the
solutions in the northeast quadrant of the red box have close but height profit
and time violation together compared to solutions in the other quadrants. Given
the asymmetry and the high variance of S1, we may infer that the robustness
strategies are likely to diversify the search and guide FO toward extreme solutions
both in a positive and negative manner.

In order to assess if some of the solutions in S1 pulls in a positive direction, i.e.,
higher profit and lower total time violation, the Pareto frontier for all solutions
obtained in the 90 runs, denoted as ℘∗ is approximated and compared with the one
obtained by S1 and S2. It turns out that ℘∗ is identical to the approximation of
Pareto frontier associated with S1. For this reason and to increase the readability,
℘∗ is not shown in 10.10. In total, there are 57 solutions that define ℘∗. Only 7
of them originate from the runs done with the base case. This demonstrates that
robustness strategies have the potential to guide the search toward more robust
and reliable solutions.

154

0 200 400 600 800 1,000 1,200
0.2

0.4

0.6

0.8

1

1.2

1.4

·109

Total time violation

Pr
ofi

t

Interquartile range of solutions - robustness strategies

Interquantile range of solutions - base case

Approximation of Pareto Frontier - robustness strategies

Approximation of Pareto Frontier - base case

Figure 10.10: An approximation of Pareto frontier based on base case and robust-
ness strategies

11. Concluding Remarks

In this Chapter, we conclude this master’s thesis and present future research oppor-
tunities. Section 11.1 presents the conclusion, while Section 11.2 discusses future
research.

11.1 Concluding Remarks
This thesis presents two solution methods for the short-term ship routing and
scheduling problem for an LNG producer with a heterogeneous fleet of vessels.
The proposed solution methods are an adaptive large neighborhood search (ALNS)
and large neighborhood fix and optimize (FO). The objective when solving this
problem is to maximize the producer’s profit while satisfying the customer’s time
and quantity requirements. The problem is solved by deciding which vessel ser-
vicing which customers, in what sequence, when they are serviced and how much
to load and unload in each port. The input of this problem is based on an annual
delivery program that is inefficient in the face of disruptions and emergence of
opportunities in the spot market.

Realistic test instances of the problem considered in this thesis are not possible
to solve to optimality through the use of a general-purpose commercial solver.
Reviewing related literature led to the hypothesis that heuristic approaches that
incorporate a MILP as a part of the search procedure performs well in solving
problems with combinatorial complexity and dependency between a large number
of different decisions. For this reason, the FO and ALNS were developed.

The adaptive large neighborhood search heuristic presented in the thesis is a partial
optimization method that uses an ALNS framework in the first part and solves
a MIP in the second part with the routes from a solution in the first part fixed.
Decisions that are difficult to handle in a neighborhood search based heuristic are
postponed to the second part of the heuristic. This was shown to introduce a bias
in the heuristic, in the sense that solutions that were the best in the first part of

155

156

the heuristic were not necessarily the best in the second part. This bias seems to
have a significant impact on the performance of the ALNS heuristic. Even though
the ALNS tends to use significantly less time to reach decent solutions than a the
solved MIP model for large instances, the final solutions found by the ALNS when
run for 10 000 iterations and time limit of 3600 s were not able to consistently
outperform the solution found by running the MIP model for 3600 s. The ALNS
was tested using both the original ADP plan and a construction heuristic as initial
solution. Using the original plan yielded slightly better solutions on large instances
and marginally more consistent performance. Still, the added value of starting from
the ADP plan was not remarkable.

The fix and optimize heuristic searches for good solutions using a MIP-solver
iteratively and fixing a subset of the variables. The FO outperforms both the MIP
solvers tested and the ALNS. Within 3600 seconds the FO is much better than
the alternatives. The FO is often although not always able to find good solutions
in a relatively short period of time (< 500 seconds), especially when started from
an initial solution from an ADP plan. Unfortunately, even when starting from
an initial solution corresponding to an ADP the heuristic does not provide good
solutions in a very short time (< 60 seconds). This is especially true when the
problem instance is highly disrupted, as can be seen from Figure 10.2. The FO
was found to outperform the ALNS in terms of both solutions quality and time to
find good solutions.

Additionally, a simulation model has been developed to assess the robustness of
solutions obtained. The simulation model serves the purpose of evaluating the
solutions in an environment that mimics a real-world setting. The evaluation is
done with respect to robustness (e.g. ability to handle realistic, problem-specific,
disruptions such as delays and production volume fluctuations). Approximations of
Pareto frontiers are presented, and three robustness strategies have been developed
and tested. A benchmark between solutions found with robustness strategies and
solutions found without applying robustness strategies show the strategies’ ability
to guide a solution method like FO toward more robust solutions.

11.2 Future Research Opportunities

In this section we present potential areas of future work that may improve the
models and solution approaches presented in this thisis.

Several improvements to the ALNS heuristic were identified during the develop-
ment and testing of the heuristic. More destory and repair operators, as well as
local search operators can be developed, and the local search can also be made

157

adaptive. New partitionings of the problem could be developed, where more de-
cisions are included in the first part of the heuristic. Different acceptance criteria
could be implemented, or the simulated annealing approach used in the thesis
could be analyzed further, for instance by adding Re-heat strategies or different
temperature schedules.

For the Fix and Optimize heuristic, we did not find it necessary to accept non-
improving solutions, but it might be good to do further research on whether this
should be done and also how it should be done, as there might be certain types
of non-improving solutions which are interesting and certain types which are not;
however, it seems most relevant to do this for other repair alternatives than the
MIP.
Tuning the Fix and Optimize LNS is as discussed earlier a complex task, and fur-
ther tuning and testing of the model might be worth the effort.
Heuristic methods are often iterative, not only by their nature, like for the FO, but
perhaps also through the use of multi-start methods and parallel solving. Thus,
a heuristic does not necessarily need to consistently outperform other alternatives
for every single model run, but for the Fix and Optimize heuristic presented in
this thesis, the results on these particular data sets which we have tested on are
promising. Still, options for improving the Fix and Optimize LNS include paral-
lelisation and multi-start solving. These approaches should probably be combined
with the development of additional methods for creating initial paths and a tabu
list, so that it is possible to avoid repeatedly search of the same local solution
spaces. However, to the best of our knowledge from testing on our data, multiple
starts from the same initial solution may lead to different final solutions. So far
we have only one repair method and one destroy method (although having some
dynamically adjusted parameters). Therefore, it might be good to develop addi-
tional methods for repair/destroy for the Fix and Optimize LNS.
Future work may also include work on improving the co-contributions from the
Fix and Optimize LNS and the simulations. As an example, the Fix and Optimize
LNS might find the 1st, 3rd, 5th and 10th deterministic best integer solutions;
however, the 2nd best solution (which has not been found) might prove itself as
an overall superior solution after introducing realistic disruption and simulating
the solutions and their performance. This concept of fetching additional solution
candidates from the Fix and Optimize LNS (maybe especially those being close to
the optimal objective value) has been addressed implicitly in section 7.3; however,
this feature can be developed further.

For the model presented in this thesis, the scope have been confined an it is not
found necessary to include the modeling and testing of accepting non-improving
solutions between iterations. However, it might be good to perform future research

on whether this should be done and how it should be done, as there might be certain
types of non-improving solutions which are interesting and certain types which are
not. It is possible, that if the model is combined with multi-start solution program
or if additional repair methods are introduced then this becomes more relevant.

The simulation framework could be improved upon by including more robustness
strategies, or combining several of the existing strategies. In addition, one may
combine the simulation framework into the solutions methods to solve the problem
by a simulation-optimization approach.

158

Bibliography

Agra, Agostinho, Marielle Christiansen, Alexandrino Delgado, and Luidi Simon-
etti (2014). “Hybrid heuristics for a short sea inventory routing problem”. In:
European Journal of Operational Research 236.3, pp. 924–935.

Andersson, Henrik, Marielle Christiansen, and Guy Desaulniers (2016). “A new
decomposition algorithm for a liquefied natural gas inventory routing problem”.
In: International Journal of Production Research 54.2, pp. 564–578.

Andersson, Henrik, Marielle Christiansen, Guy Desaulniers, and Jørgen Glomvik
Rakke (2017). “Creating annual delivery programs of liquefied natural gas”. In:
Optimization and Engineering 18.1, pp. 299–316.

Andersson, Henrik, Marielle Christiansen, and Kjetil Fagerholt (2010). “Trans-
portation planning and inventory management in the LNG supply chain”. In:
Energy, natural resources and environmental economics. Springer, pp. 427–439.

Archetti, Claudia and M Grazia Speranza (2014). “A survey on matheuristics
for routing problems”. In: EURO Journal on Computational Optimization 2.4,
pp. 223–246.

Bausch, Dan O, Gerald G Brown, and David Ronen (1998). “Scheduling short-
term marine transport of bulk products”. In: Maritime Policy & Management
25.4, pp. 335–348.

Berle, Øyvind, Inge Norstad, and Bjorn E Asbjørnslett (2013). “Optimization, risk
assessment and resilience in LNG transportation systems”. In: Supply Chain
Management: An International Journal 18.3, pp. 253–264.

Boschetti, Marco A, Vittorio Maniezzo, Matteo Roffilli, and Antonio Bolufé Röhler
(2009). “Matheuristics: Optimization, simulation and control”. In: Interna-
tional Workshop on Hybrid Metaheuristics. Springer, pp. 171–177.

Bramel, Julien and David Simchi-Levi (1995). “A location based heuristic for gen-
eral routing problems”. In: Operations research 43.4, pp. 649–660.

Brønmo, Geir, M Christiansen, and Bjørn Nygreen (2007). “Ship routing and
scheduling with flexible cargo sizes”. In: Journal of the Operational Research
Society 58.9, pp. 1167–1177.

159

Brønmo, Geir, Bjørn Nygreen, and Jens Lysgaard (2010). “Column generation
approaches to ship scheduling with flexible cargo sizes”. In: European Journal
of Operational Research 200.1, pp. 139–150.

Brown, Gerald G, Glenn W Graves, and David Ronen (1987). “Scheduling ocean
transportation of crude oil”. In: Management Science 33.3, pp. 335–346.

Campbell, Ann Melissa and Martin WP Savelsbergh (2004). “A decomposition
approach for the inventory-routing problem”. In: Transportation science 38.4,
pp. 488–502.

Chandra, Vivek (2017). Fundamentals of natural gas: an international perspective.
PennWell Corporation.

Coelho, Leandro C, Jean-François Cordeau, and Gilbert Laporte (2012). “The
inventory-routing problem with transshipment”. In: Computers & Operations
Research 39.11, pp. 2537–2548.

Demir, Emrah, Tolga Bektaş, and Gilbert Laporte (2012). “An adaptive large
neighborhood search heuristic for the pollution-routing problem”. In: European
Journal of Operational Research 223.2, pp. 346–359.

DESFA (n.d.). List of additional LNG services. url: http://www.desfa.gr/
userfiles/pdf/List-of-LNG-Additional-Services2.pdf.

Dobrota, ore, Branko Lalić, and Ivan Komar (2013). “Problem of boil-off in LNG
supply chain”. In: Transactions on maritime science 2.02, pp. 91–100.

Drawn-out ball game: Asian spot LNG prices to stay below long-term (n.d.). url:
http://www.gasstrategies.com/blogs/drawn-out-ball-game-asian-
spot-lng-prices-stay-below-long-term-contract-prices.

Exxon Mobil Corporation (2018). “2018 Outlook for Energy: A view to 2040”. In:
url: https://cdn.exxonmobil.com/˜/media/global/files/outlook-for-
energy/2018/2018-outlook-for-energy.pdf.

Fagerholt, Kjetil (2001). “Ship scheduling with soft time windows: An optimisation
based approach”. In: European Journal of Operational Research 131.3, pp. 559–
571.

Fischer, Andreas, H̊akon Nokhart, Henrik Olsen, Kjetil Fagerholt, Jørgen Glomvik
Rakke, and Magnus St̊alhane (2016). “Robust planning and disruption man-
agement in roll-on roll-off liner shipping”. In: Transportation Research Part E:
Logistics and Transportation Review 91, pp. 51–67.

Fisher, Marshall L and Ramchandran Jaikumar (1981). “A generalized assignment
heuristic for vehicle routing”. In: Networks 11.2, pp. 109–124.

Fodstad, Marte, Kristin Tolstad Uggen, Frode Rømo, Arnt-Gunnar Lium, Geert
Stremersch, and Stéphane Hecq (2010). “LNGScheduler: a rich model for coor-
dinating vessel routing, inventories and trade in the liquefied natural gas supply
chain”. In: The journal of energy markets 3.4, pp. 31–64.

160

GIIGNL (2018). The LNG industry GIIGNL ANNUAL REPORT 2018. url:
https://giignl.org/sites/default/files/PUBLIC_AREA/About_LNG/
5_LNG_Markets_And_Trade/giignl_2018_annual_report.pdf.

Glover, Fred and Jin-Kao Hao (2011). “The case for strategic oscillation”. eng. In:
Annals of Operations Research 183.1, pp. 163–173. issn: 0254-5330.

Goel, Vikas, Kevin C Furman, Jin-Hwa Song, and Amr S El-Bakry (2012). “Large
neighborhood search for LNG inventory routing”. In: Journal of Heuristics
18.6, pp. 821–848.

Grasmair, Markus (2018). “BASIC PROPERTIES OF CONVEX FUNCTIONS”.
In: url: https://wiki.math.ntnu.no/_media/tma4180/2016v/note2.pdf
(visited on 12/21/2018).

Grønhaug, Roar and Marielle Christiansen (2009). “Supply chain optimization for
the liquefied natural gas business”. In: Innovations in distribution logistics.
Springer, pp. 195–218.

Grønhaug, Roar, Marielle Christiansen, Guy Desaulniers, and Jacques Desrosiers
(2010). “A branch-and-price method for a liquefied natural gas inventory rout-
ing problem”. In: Transportation Science 44.3, pp. 400–415.

Al-Haidous, Sara, Mohamed Kais Msakni, and Mohamed Haouari (2016). “Opti-
mal planning of liquefied natural gas deliveries”. In: Transportation Research
Part C: Emerging Technologies 69, pp. 79–90.

Halvorsen-Weare, Elin E and Kjetil Fagerholt (2011). “Robust supply vessel plan-
ning”. In: International Conference on Network Optimization. Springer, pp. 559–
573.

— (2013). “Routing and scheduling in a liquefied natural gas shipping problem
with inventory and berth constraints”. In: Annals of Operations Research 203.1,
pp. 167–186.

Halvorsen-Weare, Elin E., Kjetil Fagerholt, and Mikael Rönnqvist (2013). “Vessel
routing and scheduling under uncertainty in the liquefied natural gas business”.
eng. In: Computers Industrial Engineering 64.1, pp. 290–301. issn: 0360-8352.

Hemmati, Ahmad, Lars Magnus Hvattum, Kjetil Fagerholt, and Inge Norstad
(2014). “Benchmark suite for industrial and tramp ship routing and scheduling
problems”. In: INFOR: Information Systems and Operational Research 52.1,
pp. 28–38.

IGU (2012). Natural Gas Conversion Pocketbook. url: http://http://members.
igu.org/old/IGU%5C%20Events/wgc/wgc-2012/wgc-2012-proceedings/
publications/igu-publications (visited on 10/24/2018).

— (2018). 2018 World LNG Report. url: https : / / www . igu . org / sites /
default/files/node-document-field_file/IGU_LNG_2018_0.pdf.

Iversen, øivin Iversen and Roy-Inge Sørensen Sørensen (2005). Advances in design
and layout of Moss LNG carriers. url: http://www.ivt.ntnu.no/ept/

161

fag/tep4215/innhold/LNG%5C%20Conferences/2005/SDS_TIF/050208.pdf
(visited on 11/14/2018).

Jaimes, Antonio López, Saúl Zapotecas Martınez, and Carlos A Coello Coello
(2009). “An introduction to multiobjective optimization techniques”. In: Opti-
mization in Polymer Processing, pp. 29–57.

King, Alan J and Stein W Wallace (2012). Modeling with stochastic programming.
Springer Science & Business Media.

Korsvik, Jarl Eirik and Kjetil Fagerholt (2010). “A tabu search heuristic for ship
routing and scheduling with flexible cargo quantities”. In: Journal of Heuristics
16.2, pp. 117–137.

Korsvik, Jarl Eirik, Kjetil Fagerholt, and Gilbert Laporte (2011). “A large neigh-
bourhood search heuristic for ship routing and scheduling with split loads”. In:
Computers & Operations Research 38.2, pp. 474–483.

Koza, David Franz, Stefan Ropke, and Anna Boleda Molas (2017). “The liquefied
natural gas infrastructure and tanker fleet sizing problem”. In: Transportation
Research Part E: Logistics and Transportation Review 99, pp. 96–114.

Lindahl, Michael, Matias Sørensen, and Thomas R. Stidsen (2018). “A fix-and-
optimize matheuristic for university timetabling”. In: Journal of Heuristics
24.4, pp. 645–665. doi: 10.1007/s10732-018-9371-3.

Liquefied Gas Carrier (n.d.). Gassing-up tanks procedure for loading LNG cargo
on board. url: http://www.liquefiedgascarrier.com/gassing-up-tanks.
html.

Liquefied natural gas: understanding the basic facts (2005). U.S. Department of
Energy, Office of Fossil Energy.

Mlakar, Miha, Tea Tušar, and Bogdan Filipič (2014). “Comparing solutions un-
der uncertainty in multiobjective optimization”. In: Mathematical Problems in
Engineering 2014.

Moon, Kiho, Daejun Chang, Donghun Lee, Myung-Bae Kim, Ho-Jong Ahn, and
Jong-Pil Ha (2005). “Comparison of spherical and membrane large lng carriers
in terms of cargo handling”. In: Hyundai Heavy Industries, Co., Ltd, pp. 1–11.

Msakni, Mohamed Kais and Mohamed Haouari (2018). “Short-term planning of
liquefied natural gas deliveries”. In: Transportation Research Part C: Emerging
Technologies 90, pp. 393–410.

Mutlu, Fatih, Mohamed K Msakni, Hakan Yildiz, Erkut Sönmez, and Shaligram
Pokharel (2016). “A comprehensive annual delivery program for upstream liq-
uefied natural gas supply chain”. In: European Journal of Operational Research
250.1, pp. 120–130.

National Energy Technology Laboratory (2013). Cost and Performance Baseline
for Fossil Energy Plants.

162

Notteboom, Theo E (2006). “The time factor in liner shipping services”. In: Mar-
itime Economics & Logistics 8.1, pp. 19–39.

Pedersen, Chris (2017). LNG Prices Pricing Mechanisms. url: https://www.
platts.com/IM.Platts.Content/ProductsServices/ConferenceandEvents/
americas/liquefied-natural-gas/presentations2017/Chris_Pederson.
pdf (visited on 10/30/2018).

Psaraftis, Harilaos N and Christos A Kontovas (2013). “Speed models for energy-
efficient maritime transportation: A taxonomy and survey”. In: Transportation
Research Part C: Emerging Technologies 26, pp. 331–351.

Rakke, Jørgen G (2012). “Optimization Models and Methods for Maritime Routing
and Scheduling Problems”. In:

Rakke, Jørgen Glomvik, Henrik Andersson, Marielle Christiansen, and Guy De-
saulniers (2014). “A new formulation based on customer delivery patterns for a
maritime inventory routing problem”. In: Transportation Science 49.2, pp. 384–
401.

Rakke, Jørgen Glomvik, Magnus St̊alhane, Christian Rørholt Moe, Marielle Chris-
tiansen, Henrik Andersson, Kjetil Fagerholt, and Inge Norstad (2011). “A
rolling horizon heuristic for creating a liquefied natural gas annual delivery
program”. In: Transportation Research Part C: Emerging Technologies 19.5,
pp. 896–911.

Rodrıguez-Martın, I and Juan José Salazar-González (2011). “The multi-commodity
one-to-one pickup-and-delivery traveling salesman problem: a matheuristic”.
In: International Conference on Network Optimization. Springer, pp. 401–405.

Rodrıguez-Martın, Inmaculada and Juan José Salazar-González (2012). “A hybrid
heuristic approach for the multi-commodity one-to-one pickup-and-delivery
traveling salesman problem”. In: Journal of Heuristics 18.6, pp. 849–867.

Ropke, Stefan and David Pisinger (2006). “An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows”. In: Trans-
portation science 40.4, pp. 455–472.

Sea routes and distances (n.d.). url: http://ports.com/sea-route/.
Shaw, Paul (1997). “A new local search algorithm providing high quality solutions

to vehicle routing problems”. In: APES Group, Dept of Computer Science,
University of Strathclyde, Glasgow, Scotland, UK.

Ship & Bunker (2018). Rotterdam Bunker Prices. url: https://shipandbunker.
com/prices/emea/nwe/nl-rtm-rotterdam (visited on 10/15/2018).

Spot LNG Price Statistics (2018). url: http://www.meti.go.jp/english/
statistics/sho/slng/index.html.

St̊alhane, Magnus, Jørgen Glomvik Rakke, Christian Rørholt Moe, Henrik Ander-
sson, Marielle Christiansen, and Kjetil Fagerholt (2012). “A construction and

163

improvement heuristic for a liquefied natural gas inventory routing problem”.
In: Computers & Industrial Engineering 62.1, pp. 245–255.

Stopford, Martin (2013). Maritime economics. Routledge.
Toth, Paolo and Daniele Vigo (2014). Vehicle routing: problems, methods, and

applications. SIAM.
Tusiani, Michael D. and Gordon Shearer (2007). LNG: A Nontechnical Guide.

Tulsa, Okla: PennWell Books. isbn: 9780878148851.
Uggen, Kristin Tolstad, Marte Fodstad, and Vibeke Stærkebye Nørstebø (2013).

“Using and extending fix-and-relax to solve maritime inventory routing prob-
lems”. In: Top 21.2, pp. 355–377.

Wen, Min, Stefan Ropke, Hanne L Petersen, Rune Larsen, and Oli BG Madsen
(2016). “Full-shipload tramp ship routing and scheduling with variable speeds”.
In: Computers & Operations Research 70, pp. 1–8.

World Energy Outlook (2018). eng. OECD Publishing.
Yan, Shangyao, Rong-Chang Jou, Chia-Hung Chen, and Chyi-Feng Lee (2005).

“Neighborhood search algorithms with restricted infeasible solution sets–application
to a transportation project evaluation problem”. In: Journal of the Chinese In-
stitute of Engineers 28.3, pp. 545–550. issn: 0253-3839.

Yıldırım, Umman Mahir and Bülent Çatay (2014). “A parallel matheuristic for
solving the vehicle routing problems”. In: Computer-based Modelling and Op-
timization in Transportation. Springer, pp. 477–489.

164

A. Appendices

A.1 Figures

I

P1

P2

P6

P7

P11

P12

P3

P4

P8

P9

P5 FOB sale

P10 FOB sale

P15

P16

P19

P20

P23

P24

P13 FOB sale

P14

P17

P18

P21

P22

P27

P31

P35

P25

P28

P29

P32

P36

P26

P30

P33

P34 FOB sale

P39

P40

P43

P46

P47

P37

P41 FOB sale

P42

P44

P45

P38

F1

F2

F6

F7

S1Spot

F3

F4

F8

S2Spot visit

F5

F11

F12

F15

F16

S4Spot

F9

F13

F14

S3Spot

F10

F19

F20

F23

F24

S5Spot

S6Spot

F17

F18

F21

F22

F25

F27

F31

S7Spot

F28

F29

F32

S8Spot visit

F26

F30

F33

F34

F35

F39

F40

F36

F37

F41

F42

S9Spot

F38

O

D

(a) Fix and optimize, ADP start, benchmark

P1

P2

P6

P7

P11

P12

P3

P4

P8

P9

P5

P10 FOB sale

P15

P16

P19

P20

P23

P24

P13

P14

P17

P18

P21

P22

P27

P31

P35

P25

P28

P29

P32

P36 FOB sale

P26 FOB sale

P30

P33

P34 FOB sale

P39

P40

P43

P46

P47

P37

P41

P42

P44

P45

P38

F1

F2

F6

F7

S1Spot

F3

F4

F8

S2Spot visit

F5

F11

F12

F15

Stopover F16

S4Spot

F9

F13

F14

S3Spot

F10

F19

F20

F23

F24

S5Spot

S6Spot

F17

F18

F21

F22

F25

F27

F31

S7Spot

F28

F29

F32

S8Spot visit

F26

F30

F33

F34

F35

F39

F40

F36

F37

F41

F42

S9Spot

F38

O

D

(b) Fix and optimize, CH start, 0.7% away
from the solution found with ADP start

Figure A.1: Example of two competing solutions being close to each other
in objective value but far away from each other in the solution space

II

A.2 Introducing Variable Speed to the Mathe-
matical Model

So far we have assumed that each vessel’s speed is an implicit input to the model
since it is only used to compute explicit inputs like voyage costs (VOYEX) and
sailing time between ports. Although fixed speed is traditionally used in long term
planning by shipping companies and LNG operators, each vessel has in reality a
range of speeds which it can sail at. An optimal solution of the model for a given
speed is only optimal for that speed and might be infeasible or a bad solution for
other speeds. This is especially important in short term LNG planning as time
windows tend to be very narrow which makes an optimal solution very sensitive
to small changes in speed-related inputs like sailing time. This property is often
called a knife edge to describe how an optimal solution of a deterministic problem
perfectly fits a set of given inputs but might fail to generalize to small changes
in these inputs (King and Wallace, 2012). Additionally, modeling speed as an
implicit input might render the solution sub-optimal as the degree of flexibility in
the overall decision making process is reduced (Psaraftis and Kontovas, 2013).

As mentioned in Chapter 2, changes in speed have a considerable impact on the
voyage costs. Furthermore, a solution where a vessel v with a prescribed speed
is scheduled to arrive at a certain port before the opening hours of that port is
a more expensive solution than allowing the vessel to lower its speed and arrive
after the lower limit of the port’s time window. One way to deal with this problem
is to perform sensitivity analysis on speed for each leg and each vessel. However,
this approach can be cumbersome and computationally heavy since the model has
to be solved for each single change in speed for each vessel. Given these points,
speed is henceforth treated as a decision variable.

A.2.1 Modelling Fuel Consumption Functions

To include speed as a decision variable it is of vital importance to carefully esti-
mate fuel consumption as it is an important item in the voyage costs of a vessel.
Considering a heterogeneous fleet of vessels adds some complexity to the problem
since each vessel might have a unique and different engine configuration and boil-off
handling technology (e.g., re-liquefaction). Consequently, each vessel might have a
different relationship between speed and fuel consumption. For instance, a vessel
with re-liquefaction technology transforms BOG to a liquefied form, hence, 100 %
of the picked up cargo is delivered to the customer. Such a vessel might have one
or several diesel engines running on Heavy Fuel Oil or the more environmentally
friendly type Intermediate Fuel Oil (IFO 380). For a vessel that can sail at speeds

III

between 15 and 22 Knots, a typical curve of the fuel consumption per time unit as
function of speed can be shown in fig:speed curve1. Note that the curve is convex
and incorporates a cost to be minimized, a Special Ordered Sets of type 2 (SOS2)
can be used to linearize the curve as shown by the red lines.

12 14 16 18 20 22 24

Speed [Knots]

F
u
e
l
c
o
s
t
p
e
r

ti
m

e
 u

n
it

Figure A.2: Fuel Consumption ton/time unit as a function of speed for a LNG
vessel with re-liquefaction technology

Differently, a vessel without re-liquefaction technology and a traditional steam
engine uses a blend of fuel oil and BOG. Assuming that the produced BOG is
enough to run the vessel at cruising speed, the fuel cost can be assumed equal to
zero at all speeds below the vessel’s cruising speed. This is reasonable since BOG
is inevitable in this case. However, sailing with speeds above the assumed cruising
speed requires additional fuel oil at a cost similar to the vessel with re-liquefaction
technology. fig:speed curve2 shows how such a curve looks like.

IV

12 14 16 18 20 22 24

Speed [Knots]

F
u
e
l
c
o
s
t
p
e
r

ti
m

e
 u

n
it

Figure A.3: Fuel Consumption ton/time unit as a function of speed for a LNG
vessel with steam engine

Note that this curve is not convex. Although this can be proven mathematically,
we will confine ourselves to show this fact graphically. Recall that a function is
convex if all points on or above the function’s graph is a convex set. This means
that the connecting line segment between any two points on the function’s graph
remains above or on the graph of the function (Grasmair, 2018). Denoting speed
for s and the fuel cost per time unit at speed s for f(s), it is easy to show,
for instance, the line connecting (18, f(18)) and (20, f(20) lies below the graph,
hence, f(s) for steam engines is non-convex. This is illustrated by the dashed line
in fig:speed curve non convex 1.

V

12 14 16 18 20 22 24

Speed [Knots]

F
u
e
l
c
o
s
t
p
e
r

ti
m

e
 u

n
it

 Not allowed

Figure A.4: Non-convex fuel consumption curve

An important consequence of f(s) being discontinuous and non-convex is that
using SOS2 to linearize f(s) does not hold anymore. The convex combination
model offers an appropriate modelling for our problem. The formulation requires
f(s) to be a linear combination of at most two ends of one section/piece on the
graph. Hence, in addition to the weight variables used in SOS2, a set of binary
variables are needed to require that the weight variables representing the linear
combination of two points are actually two ends of one section.

VI

