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Abstract

The maintenance conducted on large-scale machinery, amount to one of the ma-
chinery’s main costs, which is why the machines are fitted with a large number
of sensors. With the rise of Machine Learning, there have been a lot of imple-
mentations trying to detect anomalies in time-series data of sensors. However,
there has been a lack of unsupervised methods used in time-series sensor anomaly
detection. In this thesis, a Long Short-Term Memory network is used to predict
the values of the sensors at the current timestep in an unsupervised manner.

The data used for this thesis is long time-series data from one of Equinor’s
turbines. As input for the network, feature selection is used with both Ran-
dom Forest Regression and Hierarchical Agglomerative Clustering (HAC), with
Random Forest Regression consistently resulting in better prediction.

In most cases, the network is able to learn correlations between the feature
selected sensors and the one we want to predict. The experiments conducted show
promising results, with an average Mean Absolute Percentage Error of 0.558 when
selecting sensors with Random Forest Regression.
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Sammendrag

Å vedlikeholde stort maskineri, er noen av de største kostnadene som fører med til
drift av store maskiner. Med den stadig økende populæriteten til Maskinlæring,
har vi de siste årene sett stadig nye metoder for å finne feil i sensor data. Likevel,
har det vært mangel p̊a ikke-veildet algoritmer som kan brukes for å finne feil
i tidsserier av sensordata. I denne avhandlingen bruker vi et Long Short-Term
Memory nettverk for å forutsi verdiene til sensorene i det n̊aværende tidstrinnet.

Dataen som er brukt i denne avhandlingen er lange tidsserier fra en av Equinor
sine turbiner. Hvilke sensorer som skal brukes som input i nettverket er testet med
b̊ade Tilfeldige Skoger for Regresjon (Random Forest Regression) og Hierarisk
Klyngeanalyse (Hierarchical Agglomerative Clustering), hvor Tilfeldige Skoger
for Regresjon konsekvent gir best forutsetninger.

Nettverket er i stand til å lære sammenhenger mellom sensorverdiene som
er valgt og den som skal sp̊as. De gjennomførte eksperimentene viser lovende
resultater, med en gjennomsnittlig Mean Absolute Percentage Error p̊a 0.558 for
sensorene valgt med Tilfeldige Skoger for Regresjon.
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Chapter 1

Introduction

This chapter introduces the thesis. Here the reader will find background infor-
mation and the motivation for conducting the project. This includes concise
information of Equinor’s previous work. The reader will also be informed of the
structure of the remainder of the thesis in section 1.5.

1.1 Motivation

Maintenance is an integral part of large-scale machinery. Most, if not all compa-
nies working with large scale machinery will tell you that it is cheaper to conduct
maintenance on a regular, scheduled basis, as opposed to a piece of machinery
breaking down, shutting down the entire production. In the case of total failure,
your maintenance costs skyrockets. You will have delays in productions, perhaps
customers who are not getting the product or service as agreed, and workers who
are unable to complete their tasks. It is a situation you want to avoid, and this is
why we conduct preventive maintenance. It is also why large-scale machinery is
usually fitted with a large number of sensors, to monitor various aspects such as
temperature and pressure. These sensors can be vital in warning the operators if
something is not as it should, and can be essential in determining when to conduct
maintenance. However, performing maintenance can be expensive and one also
has to consider that there are times when sensors are malfunctioning. A sensor
might be indicating a fault, when, in fact, the system is in perfect health. Rather
than conducting maintenance, every time a sensor gave off a warning, it would
be useful to verify that the sensor is functioning correctly, before addressing the
warning.

Equinor is an international energy company. They recently re-branded from
Statoil (direct translation is state oil), as they are focusing on more than just oil
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nowadays. They have more than 20 000 employees, operating in more than 30
countries [Equinor, 2019]. Working in energy production, Equinor maintains a
lot of large-scale machinery with complex networks of sensors, which are pivotal
in determining the machinery’s health.

Equinor are hoping to create a system which can verify the sensor values in
these machines. They operate multiple, large turbines, which generate energy.
These turbines have > 100 sensors that continuously monitor the health of the
turbine. Currently, Equinor is doing well with condition-based maintenance.
However, as described in the first meeting with Equinor (Appendix A), they
have noticed that they are conducting unnecessary maintenance. Equinor is,
therefore, looking to find ways to reduce maintenance costs. One of the ways to
reduce these costs is to verify that sensor warnings are correct.

Equinor, therefore, wants a system that can be used to verify or disprove
the results of sensor warnings. This system will keep Equinor from conducting
unnecessary maintenance, which will save cost. They also specify that the system
created has to be generalized because the various turbines do not necessarily have
the same sensors, and the sensors are often not mapped together.

1.2 Goals and Research Questions

This section showcases the research questions for this thesis. Here the goal of
the project is stated, which will be the success criteria for evaluating whether the
project has achieved the desired outcome.

Goal Can sensor values in turbines be verified?

This project aims to use time-series data of sensor values from Equinor’s
turbine to be able to determine the correct value of a sensor at a given time.

Rearch question 1 Can multivariate time-series data with missing values be
pre-processed to remove missing values while maintaining enough data time-
stamps to train and test the model(s) used in this project.

It is important that after preprocessing the data, there are still enough rows
to train a neural network.

Research question 2 Is it possible to correctly determine which sensor values
are useful for predicting each other?

These large-scale machinery have an abundance of sensors located over a
relatively large area. It, therefore, stands to reason that not all sensors will be
useful in predicting the values of a sensor x (where x is any arbitrary sensor
value). Therefore to be able to verify a sensor value x, which sensor values a, b,
c are needed?
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Research question 3 Is it possible to build a system that uses deep learning
algorithms to predict a sensor value based on n other sensor values?

The project goal of verifying the values of sensors requires building a system
that can predict the sensors’ value.

Research question 4 Is it possible to verify that the model’s prediction are
precise?

To be able to evaluate the success of the project, it is crucial that methods
are used to verify or disprove the findings.

1.3 Research Method

This thesis follows the design science research, which is a research technique,
in which the researcher better understands the system by creating new theory
by the creation of information systems or analyzing existing systems and their
utility. [Vaishnavi, V., Kuechler, W., and Petter, S., 2017].

1.4 Contributions

This thesis contributes evidence to showing that state-of-the-art Long Short-
Term Memory models are able to be used for anomaly detection of unsupervised
data. It also evaluates Random Forest Regression and Hierarchical Agglomerative
Clustering, respectively as methods for feature selection.

1.5 Thesis Structure

Next is chapter 2, where we put forward the fundamental theory and techniques
required to follow the rest of this thesis.

In chapter 3, we discuss and evaluate related work that has inspired the system
built for this project.

In chapter 4, we look at the structure of our implementation and its compo-
nents.

In chapter 5 we explain how our experiments were set up and conducted. In
section 5.4, we then showcase the results that stemmed from these experiments.

Finally in chapter 6 we evaluate our results, discuss the limitations of the
created system, discuss this thesis’ contributions, before looking at possible im-
provements and future work.
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Chapter 2

Background Theory

In this chapter, the reader is informed on the theory required to follow this paper.
In section 2.1, we explain what time-series analysis is. In section 2.2 and 2.3 we
explain clustering and feature importance respectively, as methods for feature
selection. The background theory concludes with an in-depth explanation of
Recurrent Neural Networks and specifically Long Short-Term Memory networks,
in section 2.4

2.1 Time-series analysis

Time-series data is a sequence of continuous, real-valued elements. It is a type
of dynamic data because the data values change as a function of time. Obser-
vations at different timestamps are correlated [Wei, 2013]. This makes a lot of
the statistical analysis tools ineffective, or even irrelevant. The difficulty of time-
series analysis stems from not being able to isolate data points, but to look at
the overall structure of the data.

2.2 Clustering

“Clustering is a data mining technique where similar data are placed into related
or homogeneous groups without advanced knowledge of the group’s definitions”
[Aghabozorgi et al., 2015]. What this means is that when clustering, one is trying
to group items which are most similar in the same group. Clustering is useful
for exploring data, as it can be difficult to determine patterns in unlabeled data,
and organizing it into groups can then give it more structure. Clustering is also
often used as a pre-processing stage for more advanced data analysis methods.

5
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2.2.1 Similarity measure

Similarity measure, or distance measure (as it is also known as), is the distance
between data points. In order to compare time-series with different intervals,
it is very important to figure out the correct similarity measure. Research sug-
gests that the most effective similarity measures are the ones utilizing dynamic
programming, such as Dynamic Time Warping. Dynamic Time Warping is a
non-linear elastic function that allows similar time-series shapes to match even
if the distance between the data points is large [Müller, 2007]. However these
dynamically programmed clustering algorithms are also the most computation-
ally expensive, having a cost of O(m2), where m is the length of the time-series.
The most common methods for clustering time-series is still therefore Euclidean
distance. The Euclidean distance between two data points i and j is simply the
absolute value of the difference of the two data points’ value, and can be expressed
as x(i, j) = |Xi −Xj |.

2.2.2 Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering (HAC) uses a bottom-up approach, mean-
ing each data point is considered an individual cluster, and for each iteration the
closest pairs of clusters are merged (based on the similarity measure). The Clus-
tering process stops when all clusters have been merged into a single cluster.
The clustering process can then be visualized as a dendrogram, as can be seen in
figure 2.2. The fact that the clustering process is visualized, makes it useful in
using in situations where the user has little to no domain knowledge.

Initially, when all clusters are singular data points, finding the closest pairs,
will purely be done by the similarity measure. However, as the clusters add more
and more items, several different methods can be used to calculate the pairings.
Some examples are Nearest Point algorithm, Farthest Point algorithm, Centroid
and Ward. Nearest Point and Farthest Point algorithm are simply finding the
pairing based on closest data point in the cluster and the one furthest away,
respectively. The most common methods can be found in table 2.1.

Cophentic Correlation Coefficient
Which method works best, is highly dependent on the problem you are trying to
solve. Therefore one can evaluate how well the clustering works using the Cophe-
netic Correlation Coefficient (CCC). The CCC “...is a measure of how faithfully
a dendrogram preserves the pairwise distances between the original unmodeled
data points.”[Saraçli et al., 2013]. What this means is that we are determining
the distance between the matrix of similarity measure and the dendrogrammatic
distance, where the dendrogrammatic distance is the distance between two data
items, when they were clustered. Assume you have 2 clusters, 1 and 2. Before
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Name Distance update formula Cluster dissimilarity
FORMULA for d(I ∪ J,K) between clusters A and B

single min(d(I,K), d(J,K) min
a∈A,b∈B

d[a, b]

complete max(d(I,K), d(J,K) max
a∈A,b∈B

d[a, b]

average
nId(I,K)+njd(J,K)

nI+nj

1
|A||B|

∑
a∈A

∑
b ∈ Bd[a, b]

weighted d(I,K)+nJd(IJ,K)
nI+nJ

ward
√

(nI+nK)d(I,K)+(nJ+nK)d(J,K)−nKd(I,J
nI+nJ+nK

√
2[A||B|
[A|+|B| · ||

−→c A −−→c B ||2
centroid

√
nId(I,K)+nJd(J,K)

nI+nJ
− nInJd(I,J)

(nI+nJ )2
||−→c A −−→c B ||2

media
√

d(I,K)
2 + d(J,K)

2 − d(I,J)
4 ||−→wA −−→wB ||2

Table 2.1: Formulas for clustering methods. “Let I, J be two clusters joined into
a new cluster, and let K be any other cluster. Denote by nI , nJ and nK the
sizes of (i.e. number of elements in) clusters I, J, K, respectively.” reprinted
from [Müllner, 2011].

these 2 clusters are combined (clustered), cluster 1 contains item A → 1 : {A},
while cluster 2 contains item B, C and D → 2 : {B,C,D}. The Euclidean dis-
tance (for example) between pair (A and B) and pair (A and C ) will not be the
same (unless the data points have the exact same value), but since they are in the
same cluster, their dendrogrammatic distance will be the same. Therefore, it also
means that for either one or both of B and C, the dendrogrammatic distance will
not be equal to the Euclidean distance, which means we will not get a perfect
CCC of 1. Continuing with the Euclidean distance as our choice of similarity
measure, as x(i, j) and defining the dendrogrammatic distance as t(i, j). The
cophenetic correlation coefficient is then as decribed in figure 2.1.

c =

∑
i<j(x(i, j)− x)(t(i, j)− t)√

[
∑

i<j(x(i, j)− x)2][
∑
i<j

(t(i, j)− t)2]

Figure 2.1: Formula for Cophenetic Correlation Coefficient reprinted from [Saraçli
et al., 2013]

Stopping criterion
Once the correct method is determined, the dendrogram can be used visually
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to evaluate a criterion to stop clustering. Since the HAC algorithm will keep
clustering until a single cluster remains, a stopping criterion needs to be deter-
mined. Using the dendrogram, one can determine an adequate stopping criterion,
even without having any domain knowledge. HAC always clusters by choosing
the closest clusters first, therefore one can set a max distance for the clustering.
Once the max distance is set, this can be used to form flat clusters.

A

B

C

D

E

D B E A C

Figure 2.2: Example of how Hierarchical Agglomerative Clustering works. A, B,
C, D and E are data points. This example highlights the Hierarchical Agglomer-
ative Clustering process, by showing that all the data points ends up in a single
cluster (left) and the clustering process is visualized in the dendrogram (right).
Created using [Nha and Nhat, 2019]. Notice that both (D and B) will form a
cluster and then merge with E to form cluster (B, D, E ) before A and C are
merged. This is because A and C are the data points that are furthest away from
each other. This is highlighted in the dendrogram, with A and C having longer
lines, which represent the (clustering method) distance measure from table 2.1.

2.3 Feature Importance

The feature Importance of a feature is its “discriminative power in distinguishing
a target of interest from other individuals.”[Liu et al., 2012]. Feature importance,
as the name implies is the importance a feature y is in predicting feature x. If
you change the order of the data for feature y, the prediction error will increase
for feature x if it is an important feature, meaning the feature importance is high.
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2.3.1 Random Forest

One of the most popular Feature importance methods, is Random Forest Regres-
sion. The Random Forest method can be used for both classification and regres-
sion. It is an ensemble learning method [Breiman, 2001]. What this means is that
the Random Forest method uses multiple learning algorithms. This achieves bet-
ter performance, in terms of increasing the accuracy and preventing overfitting.
The name Random Forest comes from the algorithm using a forest of decision
trees. Random Forest uses a modified version of Bootstrap Aggregation, also
known as Bagging. Bagging is used to reduce the variance, in cases where the
variance is high, which is the case with decision trees [Bühlmann and Yu, 2002].
Bagging, as the term suggests, is the process of placing sub-samples of the data
into bags with replacement. A certain amount of bags of data are used to create
sub-models from the original dataset, before the results are combined [Breiman,
1996]. Random Forest, improves on this technique. In order to avoid overfitting,
Random Forest reduces the correlation between the sub-models as much as possi-
ble. Rather than allowing the bagging to happen from the entire dataset, Random
Forest’s improved technique only allows the bagging to happen from a randomly
chosen subset of the data, that is selected at each time-step. As explained by
the creator of Random Forest, Breiman “In my experiments with random forests,
bagging is used in tandem with random feature selection.”[Breiman, 2001].

An example of a Random Forest Classifier predicting which season we are in,
can be seen in figure 2.3.

2.3.1.1 Random Forest Regression for feature selection

Unlike with Random Forest Classification, Random Forest Regression has to have
real values rather than a label. Random Forest Regression works by taking the
average real-valued output from the decision trees, using the formula {h(x, θk)},
where θ represents a random vector and k is the number of trees, and x is a
feature from the training set [Breiman, 2001].

As mentioned in [Hapfelmeier and Ulm, 2013] “Random Forests are also used
as a means to distinguish relevant from irrelevant variables in variable selection
approaches”, which means that by calculating the feature importance, one is able
to determine which features are important in predicting each other.
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Figure 2.3: A simplified example of a Random Forest Classification with 3 deci-
sion trees, working to determine if the season is summer, fall or winter. In this
example, we are experiencing a very cold summer, which means that for the
second decision tree, the outcome is fall, when in fact it should be summer. How-
ever because the majority of decision trees decide the classification, the season is
correctly classified as summer. The diagram was created using SmartDraw.
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2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are Artificial Neural Networks (ANN) that in-
corporate a memory component. “Unlike standard feedforward neural networks,
recurrent networks retain a state that can represent information from an arbi-
trarily long context window.”[Lipton, 2015].

In many situations, it is not enough for the ANN to learn a series of patterns,
it may also need to know what has happened before. Predicting hand-written
digits, is a standard starting point for learning about ANN. All you need is a
simple network and to train it on x number of training data and you are able
to predict the hand-written digits. Every single new instance is isolated. What
digit you are prediciting now, is irrelevant to what digit you will be predicting
afterwards. On the other hand, you may have a situation in which you are trying
to understand the context of a sentence. For example, take the sentence, The
car is blue. It is simple enough for a person to understand the context of what
is blue. However it is not so simple for a simple feedforward neural network to
understand context because it only generates its output based on the current
input.

In order to be able to understand the context of a word, we need to be able
to remember what came before it. RNNs generates its output for a sequence of
data, not just by its current input, but also its previous inputs and outputs. By
having a network with loops, information can persist, which makes it possible to
understand the context of an item in the sequence.

The general idea of an RNN can be seen in figure 2.4. We can see that
information is passed to itself. It becomes clear what this exactly means when
the network is unrolled, rather than just a network with a loop. Once unrolled, we
are left with what looks more similar to a series of simple ANNs, and it becomes
much clearer what is actually going on. We see that each node is connected to
the next node with direction. We have an input layer and activation layer and an
output layer, however from the activation layer, we are passing on information
to the next state.

RNNs work by using the previous hidden state to calculate the current hid-
den state. As opposed to using the previous output, this allows the network to
remember the entire history of the sequence.

Now rather than just passing on the output of the previous state, we are able
to get the entire history of the sequence by passing on the hidden layer state, as
shown by the function below.

h(t) = σ(Whxx+Whhh
(t−1) + bh)

Where “Whx is the matrix of weights between the input and hidden layers and
Whh is the matrix of recurrent weights between the hidden layers at adjacent
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time steps. The vectors bh and by are biases which allow each node to learn an
offset.”[Lipton, 2015]

Figure 2.4: An unrolled recurrent neural network reprinted from [Zhang et al.,
2018]

improve

2.4.1 The vanishing gradient problem

We explained the need for RNNs by using the simple sentence, The car is blue,
with the objective being to find out what blue was referring to. A standard RNN
would be able to do this with ease. However most sentences are not this simple,
and in many cases, understanding the context is substantially more difficult. Take
for example the two sentences Cheetahs are the fastest animal on land, and can
reach speeds of up to 120 km/h. They can also accelerate up to 100km/h in just
3 seconds. In order to be able to understand the context of cheetah, the network
needs to remember many time-steps back. If we think of each word as a time-
step, and They is xt, then we would need to recall the word at time-step xt−16,
Cheetahs to understand what They is referring to at time-step xt. However this
can be difficult to achieve, due to the vanishing gradient problem.

The vanishing gradient problem is the result of conducting BPTT using gra-
dient descent [Bengio and Pascanu, 1986]. The aim of the gradient descent is to
find the minimum of the cost function as by incrementally moving towards the
smallest derivative of the (cost) function, as demonstrated in the figure 2.5.

BPTT is used to propagate back through the network to update the weights.
Now in a shallow non-recurrent neural network, this is not a problem, because
you are just updating the weights of (maximum a couple of layers) on this one
state. However in an RNN, you are back propagating through time, because (as
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Figure 2.5: Gradient descent reprinted from [Lanham, 2018]

discussed earlier), previous time-steps are used as inputs to the current time-
step. Since you are able to calculate the cost at each time-step, this means that
the weights are updated for each time step, when propagating backwards. This
is where the problem arises. To get from time-step xt to xt−1, we would have
to multiply xt with the recurrent weight. When initializing the weights at the
beginning of training, we initialize them to a small number close to 0. This means
that when updating the weight through back propagation, for each time-step, the
gradient is going to get smaller and smaller. This is because we are multiplying
by a weight < 1, which means we have a value decreasing rapidly for each time-
step moving backwards. Since we use the gradient with respect to a weight w, to
update the weight w, it means that the update will be negligible (or vanishing). If
the weight updates are very small, the network is unable to learn. It is important
to note that this problem can also apply to weights > 1, and is known as the
exploding gradient problem, where the updates are too large to learn.

2.4.2 Long Short-Term Memory networks

The Long Short-Term Memory network (LSTM) thrives in remember long-term
dependencies. The network solves the vanishing gradient problem by introducing
three gates, forget gate, input gate and output gate[Gers, 1999].
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Forget gate
The first gate is the forget gate. This is the gate that decides what the network
will remember. It utilizes the current input xt and the previous hidden state
ht−1, and runs it through a sigmoid function. This sigmoid function will output
a result between 0 (keep nothing) and 1 (keep everything). This can be done
using the function ft = σ(Wf · [ht−1, xt] + bf where Wf and bf refer to the
weights and biases respectively. The forget gate was not in the first iteration of
the LSTM, but has recently become standard practice. The reason for its later
implementation is, without it the network would have to remember too much
information, which can lead to the network crashing. The forget gate resets the
memory of the network, once the information is no longer useful and therefore
prevents this overload of the memory cells in the LSTM [Gers, 1999].

Input gate
The input gate is what decides what new information we are going to store. It
is seperated into 2 parts, the input gate layer and the tanh layer. The input
gate layer uses a sigmoid function to determine which values to update, while
the tanh layer creates the candidate (memory) values by running the input and
previous hidden layer through a tanh function rather than the sigmoid function.
The functions to calculate these 2, are it = σ(Wi · [ht−1, xt + bi) and C̃t =
tanh(Wc · [ht−1, xt] + bc) respectively. These two layers (functions) are then
combined to create the new memory but with the sigmoid scaling how much we
should update each memory value. This is added to the function that decided
which memory to keep. This decision is done by multiplying the old memory
Ct−1 with the forget gate ft. A diagram a long with the formula for the whole
equation is shown below in figure 2.6.

Figure 2.6: How new memory is combined with old memory reprinted from [Olah,
2015]

Output gate
Finally we have the output layer which, well, is used for generating our output.
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Like all the other gates, in the output gate, the previous hidden state and current
input is put through a sigmoid function. This will determine what parts of the
hidden state, we are going to output. In order to calculate this current hidden
state, the output is combined with tanh squishing function of the candidate values
ht = ot × tanh(Ct). The final full version of the LSTM can be shown in figure
2.7.

Figure 2.7: Complete LSTM network reprinted from [Olah, 2015]
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Chapter 3

Related work

In this chapter, related work is explored to discover and evaluate the state-of-the-
art implementations for anomaly detection in sensor values for time-series data.
Although the study of anomaly detection is decades old, it is in recent years and
with the introduction of machine learning algorithms, that we have generated
the best results. Therefore all the related work will focus on machine learning
approaches.

3.1 LSTM-based Encoder-Decoder for Multi-sensor
Anomaly Detection

The paper [Malhotra et al., 2016], uses an LSTM-based Encoder-Decoder to
determine anomalies in time-series with multiple sensors. The system uses an
encoder-decoder LSTM to re-create the time-series. The time-series recreation
error is then used to detect anomalies in the data. Malhotra et al. only uses non-
anomalous time-series data for training because having anomalies in the training
data for the encoding-decoding model would make the reconstruction unreliable
in determining anomalies.

Malhotra et al.’s approach tackles the same problem as this thesis, determin-
ing anomalies in multivariate time-series data of sensor values. However in the
paper, the data used to train the encoder-decoder reconstruction is purely non-
anomalous. Only using non-anomalous data for training is not achievable in this
project, because Equinor does not specify which data points in the dataset (used
in this project), are anomalous. It is also unnecessary to create a model that
can recreate an entire time-series when, for this thesis, we only need to predict a
single sensor value at the current time-step.

17
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3.2 Learning Representations from Healthcare Time
Series Data for Unsupervised Anomaly De-
tection

[Pereira and Silveira, 2019]’s implementation is similar to the one discussed in sec-
tion 3.1. An LSTM network with an autencoder is used for time-series recreation
and the recreation error is used for determining anomalies. The main difference
between the two papers, is that Pereira and Silveira works on unsupervised data.
Instead of using a standard autoencoder, they make use of a variational autoen-
coder, which rather than recreating the data exactly as before, creates data that
is similar to the original. This allows for using the recreation error, while training
the encoder-decoder on a mixture of (anomalous and normal) unlabeled data.

Pereira and Silveira’s implementation would be suitable for this project, and
in fact may have yielded good results. However in their case, they had a labeled
version of the test dataset, so they were able to verify their results. This unsu-
pervised model show promising results, with accuracy and F-score just 3% lower
than their supervised counterparts at ∼ 95%.

3.3 Variable Selection in Time Series Forecasting
Using Random Forests

In the paper [Tyralis and Papacharalampous, 2017], Random Forest Regression is
evaluated as a method in selecting variables for time-series prediction. Specifically
this paper aims to evaluate Random Forest Regression’s performance on one-
step prediction of time-series. The study finds that Random Forest does well in
variable selection and found that using many variables for prediction, gave worse
results, because the more variables are used, the lower the importance value of
the last selected variables.

This study shows that Random Forest Regression is useful for feature selec-
tion. However, the study specifies that their tests were only conducted on short
time-series data, whereas Equinor’s data is long time-series data. However they
use both simulated and real-world data, to show that it is an effective approach.
This makes it a viable tool to test for long time-series prediction.
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3.4 A Feature Selection Method Using Hierar-
chical Clustering

The paper [Park, 2013], evaluates Hierarchical clustering as a method of unsuper-
vised feature selection. In this study, the final cluster represents variables that
are important to each other, in other words, are correlated.

The paper by Park shows that hierarchical clustering is a viable choice, for
unsupervised feature selection. However its experimentation is not very thor-
ough only showing the average accuracies using cross validation. Therefore more
experimentation needs to be done in this thesis to evaluate the approach.

3.5 Structured Literature Review Protocol

In the 90s, there were several studies in the medical field, including [Antman,
1992] that concluded that the research in systematic reviews exceeds that of ex-
perts. For years, now they have successfully used EBM, Evidence-Based Medicine.
However, it is in more recent years that similar methodology has been adopted for
software engineering. As stated in [Dyb̊aet al., 2005], Evidence-Based Software
Engineering (EBSE) tries to improve on the software development process by
incorporating practical experiences in software development with evidence from
research. One of the main components for finding evidence in the ESBE is the
Structured Literature Review (SLR). A structure (or systematic) literature re-
view is as defined by Antman, “a methodologically rigorous review of research
results”. This means that it is structured, there are steps one has to follow to
conduct SLR. The steps are as follows:

1 Research questions

The first step after identifying a goal, is to ask answerable literature research
questions. It is important to have the questions related to the goal, but
still be broad enough to not exclude any important evidence. This process
resulted in the following questions.

LRQ1 What are the state-of-the-art deep learning algorithms for anomaly
detection in time-series data?

LRQ2 What research exists for unsupervised anomaly detection in time-
series data?

LRQ3 What are the state-of-the-art algorithms for feature selection for
time-series prediction?



20 CHAPTER 3. RELATED WORK

2 Search process

It is important to uncover all the literature that is relevant to the Litera-
ture Research Questions. The process began by identifying relevant search
engines:

• Google scholar [Google, 2019a]

• Springer Link [Springer, 2019]

• ACM Digital Library [ACM, 2019]

• IEEE Xplore Digital Library [IEEE, 2019]

These search engines were then utilized with various combinations of the
following search terms:

• Time-series / Time series

• Anomaly detection

• Sensor (value) prediction

• Deep learning

• Feature/Variable selection

• Clustering

• Unsupervised

A long with the results gathered from the search engines, the snowballing
technique was used to discover more research. Snowballing is the practice of
finding literature from the citations of a paper the reader has read [Wohlin,
2014]. Using a specific piece of literature, new literature was also discovered
by reversing the snowball technique and looking at which other studies cited
the specific piece of literature.

3 Exclusion criteria

After an initial set of literature was identified, individual research was elim-
inated if it was clearly irrelevant, outdated, a duplicate or the paper was
without any cleraly defined research questions.

4 Quality assessment

After excluding papers which are unuseful, the research remaining needs to
be evaluated in terms of certain critera, mainly inclusion criteria and quality
criteria. This step is known as the quality assessment, and the criterias
which were used can be found in table 3.1. The final list of literature is
found in table 3.2
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ID Criteria

IC1 The literature adresses one or more of the literature research questions.

IC2 The literature includes at least two of the described search terms.

QC1 The findings of the literature is reproducible.

QC2 The algorithms in the literature are explained comprehensively.

QC3 Results are analyzed critically and with authenticity.

QC4 The evaluation metrics used are reasonable for the experiment types.

QC5 The conclusions aligns with the results.

Table 3.1: The criterias for quality assesment in the SLR. IC = Inclusion criteria
and QC = Quality criteria.

ID Title Citation

1
LSTM-based Encoder-Decoder
for Multi-sensor Anomaly Detection

[Malhotra et al., 2016]

2
Learning Representations from
Healthcare Time Series Data for
Unsupervised Anomaly Detection

[Pereira and Silveira, 2019]

3
Variable Selection in Time Series
Forecasting Using Random Forests

[Tyralis and Papacharalampous, 2017]

4
A Feature Selection Method
Using Hierarchical Clustering

[Park, 2013]

5
Fast Hierarchical, Agglomerative
Clustering Routines for R and Python

[Müllner, 2013]

6
Comparison of hierarchical cluster
analysis methods by cophenetic
correlation

[Saraçli et al., 2013]

Table 3.2: Final selection of literature chosen
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Chapter 4

Implementation

In this chapter we will look at how the system was implemented. We start by
looking at the tools used in this project, in section 4.1. We then describe the
pre-processing required to get the data ready for machine learning, in section
4.2. We will then look at the implementations of Random Forest Regression
and Hierarchical Agglomerative Cluster, respectively in section 4.3 and 4.4. We
then describe how the data was prepared to be used as input to the model, in
section 4.5. Before, finally we look at the implementation of our Long Short-Term
Memory (LSTM) network in section 4.6.

4.1 Tools used in this project

There are a variety of tools that were used in this project, that helped complete
the project. As a disclaimer, it should be noted that most, if not all the tools
explained below, will have alternatives that could be explored. However for the
reproducibility of this thesis, below are the tools that were used in this project.

4.1.1 Pandas

Pandas is used for data analysis and to maninpulate data structures [Pandas,
2018]. In this project it is used to interact with the comma-separated values (csv)
files, that equinor’s data was formatted in. Using Pandas DataFrame, one can
store the data in a tabular structure, that has labelled axis and can be modified.
Equinor’s data was manipulated with the use of the Pandas Dataframe, and
because you could easily get all the values in a 2D array, by calling the method
values on the DataFrame, it was simple to use it for the machine learning aspect
as well.

23
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Pandas also has a host of other useful tools, such as sampling, which can be
used to generate the training and test set based on (for example) what percentage
of the data you would like to be train and test.

4.1.2 Scikit-learn

Scikit-learn is a vast library of computational tools, which was used for tasks
such as normalizing data, and finding the importances using the Random Forest
Regression.

4.1.3 SciPy library

The SciPy library is a host of mathematical and statistical tools. It was used
to conduct Hierarchical Agglomerative Clustering. The reason this was chosen,
as opposed to [Müllner, 2013], is that SciPy’s version allows the user to use a
pre-computed similarity measure.

4.1.4 Matplotlib

Matplotlib is a graphing tool and was used to create all the graphs that are shown
in chapter 5 and 6.

4.1.5 Tensorflow

Tensorflow is a deep learning framework that uses tensors, which are multi-
dimensional arrays to create data flow graphs[Tensorflow, 2019]. In the graph,
nodes are mathematical operations, and the tensors are edges that connect them.
Tensorflow is created to be easy to deploy for computation on multiple GPUs.

4.1.6 Keras

Keras is a high level API built (in this case) on top of Tensorflow [Keras, 2019],
which makes it easy to design machine learning models. It was therefore the tool
of choice for designing, training, validating, and testing the Long Short-Term
Memory (LSTM) network models. Like Tensorflow, Keras is easy to deploy to
be used with multiple GPUs.

4.1.7 Google Colaboratory

Colaboratory is a free environment for writing and executing python code in
the cloud, without any setup [Google, 2019b]. During the period which this
project was conducted, Google gave its users access to T4 GPUs, with 15GB
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video memory. This made Colaboratory extremely useful for training the LSTM
models for this project, as this would have been a lot slower using the CPU on
consumer-grade hardware. This is also why it is important that Tensorflow and
Keras, as stated above, allows the computation to be deployed to multiple GPUs
with ease.

4.2 Pre-processing

The data received for Equinor was spread out over many csv files, and had a lot of
missing values, which meant it needed substantial pre-processing before utilzing
machine learning algorithms. The goal was to end up with a single DataFrame
that contained all the sensors (as columns) along with their values, without any
missing values.

4.2.1 Equinor’s data

Equinor delivered 34.1GB of sensor data from a Compressor Turbine in the Grane
oil field on the West coast of Norway. The data contains anomalies, but these
are not labeled and the amount of anomalies in the dataset is unknown.

The data was received in 107 folders, one for each sensor. In each sensor
folder, there were a certain amount (varying, depending on when the recordings
started, and frequency of value recordings) of csv files which all were in the format:

*Sensor* *Value of sensor* *Timestamp* *Unknown value*

The * represents the fact that these csv files did not have columns names,
they only had values. The values were of the following data types:

String Float Timestamp Integer

All the csv files had 1000s of rows (data entries). The *Unknown value* was
constant for all sensors, and all rows, so it could be an id for the turbine, as it
was an integer. Most sensors had their values recorded every 30 seconds, however
sensors in the dataset were also recorded at 60 and 270 seconds.

4.2.2 Merging the data

The first pre-processing step was to merge all the data into a single Pandas
DataFrame.

1. First, give all the columns, names - Name, Value, Timestamp and Unknown,
respectively.
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2. Merge all the files for a sensor.

3. Drop the columns Name and Unknown, as they are not needed.

4. Rename column Value to Sensor name, where Sensor name, refers to the
actual name of the sensor.

5. Timestamps are sorted by newest, to oldest, reverse this order. As this
prepares the next pre-processing step.

6. Repeat for all 106 remaining sensors.

After, we are left with 107 DataFrames, but a single DataFrame is needed.
The next step is therefore to merge all these DataFrames into one. A problem
that arises here is that the sensor values are not recorded exactly 30 seconds
apart every time, this means that it is very rare that a sensor value recording has
the exact same timestamp as another. Therefore to merge this data, we create
windows. Datas within the same window are merged on the same timestamp. A
new DataFrame is created which only has a Timstamp column with the chosen
windows. In this case, windows of 30 seconds were chosen for a period larger
than the first and last timestamp in all the dataset. 2011-01-01 and 2018-12-31
was chosen as the starting and end point, respectively. The window size of 30
seconds was chosen because this is the minimum amount of time between sensor
value recordings, and it applies to most of the sensors. After the merge process
finished, rows with all Not a Number (NaN) values were dropped, as this meant
that none of the sensor value recording in the dataset fit within that window.

4.2.3 Interpolating rows

After merging the data, our single DataFrame contained a lot of NaN values,
which we needed to remove before continuing. However, because there were a
lot of missing values in the dataset, removing rows that contained any missing
values, left us with < 10000 rows, which is far too few. Therefore, the data was
linearly interpolated. This was done in 3 iterations because the sensors were
recorded at 3 different intervals. For each iteration, all the columns recorded at
a specific interval (30, 60 or 270 seconds), were interpolated twice its interval,
both backwards and forwards. That means that a sensor recording its value every
30 seconds, with a value at 15:00:00, would fill in values at 14:59:00, 14:59:30,
15:00:30 and 15:01:00.

4.2.4 Removing irrelevant rows from merge window

Interpolation helped filling in missing data, however there were still missing values
in the DataFrame, which makes it difficult to use the data for machine learning.
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Therefore, the final step of the pre-processing was removing all rows that had any
amount of missing values (NaN). This reduces the number of timestamps with
more than 90%, leaving ≈ 700000 rows of usable data.

4.3 Random Forest Regression

For Random Forest Regression, the most important parameter that had to be
decided, was how many decision trees would be used in the forest. 100 decision
trees were used in the forest, as this allowed for accuracy, while not being too
computationally complex. Another potential important parameter for calculating
the importances using the random forest, is the criterion for evaluating the quality
of a split. Due to the unsupervised nature of the dataset, it is not possible to
evaluate which criterion would be best, but according to [Cutler et al., 2011] Mean
Squared Error is most commonly used, so this was selected. When conducting
this experiment, it is advised that the user always chooses as high, a number
of decision trees as possible, and as time will allow for. Once the importance
values are calculated, the sensors are ranked, and the 10 features with the highest
importance are selected. 10 featutes were selected, as this gave good results while
still resulting in a high dimensionality reduction.

Parameters Values
Measuring quality of split Mean Squared Error
Number of decision trees 100
Number of features chosen 10 most important

Table 4.1: Parameters used for Random Forest Regression.

4.4 Hierarchical Agglomerative Clustering

Lacking processing power, it was decided that the clustering process would be
split up, first calculating the similarity measure. As explained in 2.2, one of the
most common similarity measures for HAC, is the Euclidean distance, which was
the choice for this project. To calculate the Euclidean distance for time-series
data, we have to calculate the Euclidean distance between every set of data points
(timestamps), and combine those values into a similarity matrix of 107×107. This
means that we need to make 700000× 107× 107 ≈ 8 billion calculations.

The way the similarity matrix is calculated is by looping through all the
columns and then looping through each timestep, and for each timestep, calcu-
lating the Euclidean distance between the 2 sensor values. Then for each iteration
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that Euclidean distance, is added to the total sum of Euclidean distances between
the two columns, giving us a total distance between the data columns. The al-
gorithm is shown in Algorithm 1. Note that in order to have the values be on
the same scale, the data is normalized before calculating the Euclidean distance
between the sensors. All data normalized in this thesis, is normalized according
to the MinMaxScaler from sklearn. Where X is the entire multidimensional array
of values in the dataset, this is the formula for scaling (normalizing) the data

Xi −min(x)

max(x)−min(x)

This makes sure that the shape of the data is maintained, but that they are
on the same scale.

input : A DataFrame with normalized values of size S ×R
output: A Euclidean distance similarity matrix, M of size S × S
M ← []
for i← s0 to sS do

T ← []
for j ← s0 to sS do

for k ← r0 to rR do
E ← EuclideanDistance(sirk, sjrk)

end
Append E → T

end
Append T →M

end
Algorithm 1: Algorithm for calculating Euclidean distance similiarity matrix.
S is the number of columns and R is the number of rows, in the DataFrame,
respectively.

After the similarity matrix had been generated, the clustering process could
begin. Centroid was chosen as the clustering method, as it seemed to yield
best results, based on the cophenetic distances after clustering the data. This
aligns with the findings in [Saraçli et al., 2013], which suggest that the best
clustering method is centroid or average. As explained in section 2.2, we can use
the dendrogram generated from the clustering process to determine the maximum
distance a data point can be from the centroid of a cluster and still be added
to that cluster. Looking at the dendrogram, seen in figure 4.1, it was found
that 5× 105 was a reasonable max distance. Once this distance was determined
visually, we created the flat clusters, which are the final clusters to be used as
part of the feature selection process.
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Figure 4.1: The dendrogram created in the Hierarchical Agglomerative Clustering
implementation.
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4.5 Dataset preparation

Using either Hierarchical Agglomerative Clustering or Random Forest Regression,
a subset of sensors are selected. Their values are then normalized. The data is
then formatted, so it has 3 lag time steps, leaving us with something similar to
table 4.2, where S1 represents the sensor we wish to predict (verify).

S1(t-2) S2(t-2) S3(t-2) S1(t-1) S2(t-1) S3(t-1) S1(t) S2(t) S3(t)
0.15 0.49 0.2 0.2 0.5 0.2 0.21 0.52 0.2
0.2 0.5 0.2 0.21 0.52 0.2 0.21 0.48 0.19
0.21 0.52 0.2 0.21 0.48 0.19 0.2 0.5 0.19

Table 4.2: Table demonstrating data with lagtime.

Now our y column here (the one we want to predict), is S1(t). Therefore we
can remove S1(t− 1) and S1(t− 2) since we do not want the model to learn from
those values. We also move S1(t) to be the last column, to make it easier to split
into y and X for training and testing, leaving us with table 4.3

S2(t-2) S3(t-2) S2(t-1) S3(t-1) S2(t) S3(t) S1(t)
0.49 0.2 0.5 0.2 0.52 0.2 0.21
0.5 0.2 0.52 0.2 0.48 0.19 0.21
0.52 0.2 0.48 0.19 0.5 0.19 0.2

Table 4.3: Lag time preparation.

4.5.1 Training and testing data

The more data you use for training, the better trained the model will be, but you
will have less data items to evaluate (test) it on. Since there are only approxi-
mately 700 000 rows, a split of 90% (630 000 rows) for training was decided. This
of course left 10%, or roughly 70 000 rows for testing how well our model could
predict the data. A random seed of 178 was also used, to allow for reproducibilty.
Using the DataFrame method sample, 90% of the data was chosen randomly to
be used for training, and the remainder was selected for testing.

The dataset split selects which rows will be used for training and testing. We
still however have to format the data to work with the LSTM, which requires a
3-dimesional input. The 3 dimensions are, the batch size, the number of lagtime
steps and the number of features. This means selecting and reshaping train X,
test X, train y, test y and reshaping it to work with the LSTM. Selecting train X,
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test X, train y, test y is easy with the data formatted, as in table 4.3. Simply for
X values for train and test, choose the train rows with all the columns except
the last one, and for y do the same, but only selecting the last column.

4.6 Long Short-Term Memory network

The LSTM has 50 neurons (hidden nodes), the input shape is the tuple (trainX.shape[1],
trainX.shape[2]), that is the lag time steps and number of features used for
prediction, respectively. We add a Dense (fully connected) layer, that connects
every input to every output by a weight. We then compile the model using the
Mean Absolute Error as the loss function and it is optimized using the Adam
Optimizer. The Adam Optimizer is chosen because the hyperparameters do not
require much tuning and it is suited for large datasets [Kingma and Ba, 2014].
The Adam Optimizer, has the following parameters:

• Learning rate = 0.001

• β1 = 0.9

• β2 = 0.999

• ε = 1× 10−8

The compiled LSTM model can be seen in figure 4.2.

4.6.1 Generating predictions

After the keras LSTM model is fit, it returns a history variable, which contains
the loss function and other metrics, which the model was compiled with. These
are then plotted, and the plots are saved.

The last step, is to predict the values based on test X. This is done, of course
using the model. Once the prediction is calculated, both the prediction and
actual values are inversed, according to the MinMaxScaler, to return their actual
values.
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Figure 4.2: LSTM model architecture. None is referring to the batch size, which
is not defined when the model is compiled.



Chapter 5

Experiments and Results

This chapter explains how the experiments for this project were conducted and
what results were obtained from it.

The main aim of this experiment was to investigate whether certain sensor
values can be used to determine if another sensor value is giving off faulty read-
ings. We wanted to find, what (if any) set of sensor values 2, 3, ...n, could be
used to predict the value of sensor 1.

5.1 Experimental Plan

• Select features using either Random Forest Regression or Hierarchical Ag-
glomerative Clustering (HAC), to find subset of sensors from the dataset.

• Format subset into 3 lag time steps, t− 2, t− 1 and t.

• Split into training and test data, where 90% is selected for training and
10% for test.

• Train the Long Short-Term Memory network on the training data, leaving
10% of the training data for validation.

• Save the model, if the validation loss has decreased from one epoch, to the
next.

• Use the model to predict values from the test data.

• Evaluate prediction using the evaluation metrics, described in 5.3.

• Repeat the entire process for all 107 sensors.
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5.2 Experimental Setup

5.2.1 Specifications

All the experiments are run on Google Colaboratory. The Hardware and Software
specifications can be seen in table 5.1

Software Hardware
Ubuntu 18.04 Bionic Intel Xeon CPU 2.30GHz
Python 3.6.7 Tesla T4 2560 CUDA cores 15GB GDDR6 VRAM

12GB RAM

Table 5.1: Harware and Software setup

5.2.2 Training the model

The training is done for 200 epochs and a batch size of 72 is used.

5.3 Evaluation

In order to determine, which setup works best we need to define some metrics,
that determines how well our model fairs on our test data.

For evaluating the training phase, the Mean Absolute Error (MAE) would be
used to calculate the loss. Its formula a long with all the other mathematical
formulas used for evaluation can be found in table 5.2. The MAE is useful,
because it simply sums up the total error and divides by the number of data
point. Using the absolute value, ensures that positive error and negative error
do not lead to lower total error. It is therefore a useful measurement for the
training process. The Mean Absolute Percentage Error (MAPE) was also used
on the validation data, as this is useful in comparing data of different scales.
For evaluating the model on the test set, the Root Mean Squared Error (RMSE)
formula was used.
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Mean absolute error MAE =
1

n

n∑
t=1

| ŷt − yt |

Root mean squared error RMSE =

√√√√ 1

n

n∑
t=1

(ŷt − yt)2

Mean absolute percentage error MAPE =
1

n

n∑
t=1

∣∣∣∣ ŷt − ytyt

∣∣∣∣
Table 5.2: Mathematical formulas for computing validation metrics. n refers to
the number of data items evaluated, ŷt is the prediction and yt is the actual value
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5.4 Results

The validation and training loss for the 2 models (one using feature importance
and the other using clustering as method for feature selection) predicting the
same sensor, s1, can be seen in figures 5.1 and 5.2. Both models are trained for
the same 200 epochs, but they differ in having used different feature selection
methods. Figure 5.1 uses the Random Forest Regressor as its feature selection
method, while figure 5.2 uses Hierarchical Aggolmerative Clustering to determine
which sensors are correlated. From the loss graphs, it seems that both models
are able to learn to predict the value of sensor s1 for the 10% of validation data.
It is worth noting that the figure 5.1 has more rapidly decreasing validation and
training loss and in fact it reaches both a lower loss at 0.000573 than figure 5.2,
which only drops to 0.000865.

Figure 5.1: Training and validation loss for sensor s1, using feature importance
as the feature selection method using 10 features.

We also see that the model that uses the feature importance method has a
lower MAPE (figure 5.3) reaching a minimum MAPE of 0.269 compared to the
model using Hierarchical Agglomerative Clustering (HAC) (figure 5.4), which
only reaches 0.703.
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Figure 5.2: Training and validation loss for sensor s1, using Clustering as the
feature selection method.
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Figure 5.3: Mean Absolute Percentage Error for sensor s1, using Feature Impor-
tance as the feature selection method.
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Figure 5.4: Mean Absolute Percentage Error for sensor s1, using Clustering as
the feature selection method.
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Figure 5.5: Actual data for sensor s1

This is all highlighted by the fact that the model for sensor s1 has a lower
Root Mean Squared Error for the model using Feature Importance compared to
the model using HAC. The actual test data, prediction for feature importance
and prediction for Clustering can be seen in figures 5.5, 5.6, 5.7, respectively.
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Figure 5.6: Predicted values compared to actual data for sensor s1, using Feature
Importance as the feature selection method.
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Figure 5.7: Predicted values compared to actual data for sensor s1, using Clus-
tering as the feature selection method.
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Although both models have a very low RMSE, and are even able to predict
abrupt changes reasonably well, the model using Random Forest Regression for
feature seelction achieves better results for this sensor, by having a lower loss
for training, lower MAPE for training and lower RMSE for the test data. Even
visually from the prediction graphs (figure 5.6 and 5.7), it is possible to see that
the model trained using features selected using Random Forest Regression follows
the actual data more closely, meaning it is a better representation of the actual
data.

It is important to remember that the dataset has 107 sensors and therefore the
result of one model, is not adequate in determining how well the network predicts,
or which feature selection works best. In fact, from table 5.3, we see that the
average RMSE is quite a lot higher for both Random Forest Regression and HAC,
compared to the RMSE in figure 5.6 and 5.7, respectively. Moreover we see that
across the board, Random Forest Regression beats HAC, especially for max and
average values. This indicates that Hierarchical Agglomerative Clustering is able
to predict well on some sensors, but unable on certain others. The table shows
very low minimum RMSE but high maximum RMSE and even quite high average
RMSE. However, it is important to note RMSE is affected by scale, and their
is a huge variation in scale in the dataset. The scale ranges all the way from
10−1 to 104. Therefore the MAPE has also been included, which is unaffected
by scale. The MAPE for Random Forest Regression shows promising results,
with an average < 0.56 and a maximum of 2.3. The average MAPE for HAC,
although much higher than Random Forest, indicates it could be useful in feature
selection for prediction, however it has a very high maximum, which means it is
less stable.

RMSE MAPE
Min Max Avg Min Max Avg

Random
Forest

Regression
0.000878 43.1 4.08 0.00508 2.30 0.558

Hierachical
Agglomerative

Clustering
0.00144 1090 59.8 0.00509 25.6 3.20

Table 5.3: Min, Max and Average prediction RMSE and MAPE for Random
Forest Regression and Hierarchical Agglomerative Clustering, to 3 significant
figures.
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Chapter 6

Evaluation and Conclusion

This chapter will conclude the thesis. First, the results are evaluated in section
6.1. The merits and shortcomings of the thesis are then discussed in section
6.2. In section 6.3, the contributions of this thesis are presented and explained.
Finally in section 6.4, we look at the future work that can be done to improve
the system presented in this thesis.

6.1 Evaluation

In this thesis, a deep learning network that aims to use a subset of sensors in
a dataset to determine if another sensor in the dataset is displaying the correct
value at a time point t has been researched and implemented. Throughout this
thesis, we have tried to answer the following research questions:

1. Can multivariate time-series data with missing values be pre-processed to
remove missing values while maintaining enough data time-stamps to train
and test the model(s) used in this project.

2. Is it possible to correctly determine which sensor values are useful for pre-
dicting each other?

3. Is it possible to build a system that uses deep learning algorithms to predict
a sensor value based on n other sensor values?

4. Is it possible to verify that the model’s prediction are precise?

The dataset used in this thesis had a lot of missing values, and simply re-
moving the rows which had missing values, left ≈ 2000 rows, which is far too
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few to conduct any data analysis. In order to keep the dataset adequately large
after, preprocessing, linear interpolation was used. Even with interpolation, after
removing rows with NaN values, there was still more than a 90% reduction in the
dataset, leaving only ≈ 700000 rows of data, compared to the original ≈ 7.5 mil-
lion rows in the data that contained missing values. However, as the results show
in section 5.4, the prediction error calculated using the Root Mean Squared Error
(RMSE), are very low, and in fact, it most cases < 0.1 for the data normalized
in the range 0 to 1.

6.1.1 Feature selection

In order to choose the subset of sensors used as input to the network, two dif-
ferent methods were explored. Finding the Feature Importance using Random
Forest Regression (and selecting the 10 most important features), and clustering
the sensors using Hierarchical Agglomerative Clustering (HAC). In almost all in-
stances it was found that using the Feature Importance yielded better prediction,
than HAC. That being said, both methods achieved promising results in selecting
appropriate sensors for prediction. However, it has been specified in this thesis
that the goal of this project is to be able to use a subset of the dataset to predict a
sensor value not in said subset. If we look at table 6.1, we can see that our 9th and
final cluster only has a single value in its cluster. This means that it will not be
able to use a subset of the dataset (not including itself) to generate a prediction.
In fact, when looking at the table, we find that ≈ 50% of the sensors are placed
in cluster 1. This means that there is only half dimensionality reduction, when
creating half the models, as opposed to the constant ≈ 90% found when using
the 10 most important features in Feature Importance. Having half the sensors
in the first cluster, also means that the remaining clusters will be more sparse.
This of course is highlighted with the 9th cluster only having a single item, but
we also have cluster 8 only containing 2 sensors. This means that a single sensor
value is used to predict the other sensor in the cluster. Only being able to use
a single sensor column to predict the other, makes it much harder to predict the
value of the sensor, as demonstrated in figure 6.1, where we see that the sensor
using Random Forest Regression for features selection has a substantially lower
Root Mean Squared Error compared to the one using HAC, with them being
0.395 and 2.016, respectively.
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(a) Random Forest Regression (b) Hierarchical Agglomerative Clustering

Figure 6.1: Evaluating predicted values, where HAC only has two columns used
for prediction cluster index 8 in table 6.1.

Cluster index Number of sensors in cluster
1 56
2 7
3 3
4 5
5 14
6 16
7 3
8 2
9 1

Table 6.1: The number of sensors in each cluster that was used for feature selec-
tion.
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6.2 Discussion

It was found that Random Forest Regression consistently outperformed HAC.
However a possibile reason for the lower performance of HAC is the choice of
similarity measure. The Euclidean Distance, does not learn the time-series data
shape, and instead looks at the linear relationship. Therefore trying a different
similarity measure might result in more appropriate clusters.

Although promising results were presented in chapter 5, with regards to pre-
dicting sensor values, it is not possible to verify a sensor warning as correct or
report it as anomalous without having access to any of Equinor’s anomaly data.
However, as shown, the errors from predictions are relatively low, and the model
seems capable of learning the representation quite well, which indicates that this
model could be used for anomaly detection, if anomaly in the data were to be
labeled.

As discussed in 3.2, unsupervised anomaly detection can also be conducted
using an autoencoder, where the outliers in the recreation indicates anomalous
data. This, however may not be required for Equinor, as they only need to predict
the current time-step, when a sensor is giving off a warning.

6.3 Contributions

This thesis has showcased the state-of-the art in anomaly detection of time-
series data.

We have presented results for unsupervised feature selection of time-series
data, using both Random Forest Regression and Hierarchical Agglomerative Clus-
tering, and evaluated them with respect to their ability as input for a predictive
model.

Using Long Short-Term Memory (LSTM) networks, a deep learning approach
has been presented for predicting sensor values, using a subset of sensors, and
without requiring any domain knowledge. The prediction accuracy, suggests that
the models have good potential in detecting anomalies.

By incorporating labeled anomalies, these anomalies could for example be
averaged for each sensor and be used as thresholds in conjunction with current
models to determine anomalies when predicting the sensor values. These models
can then be used for anomaly detection by Equinor.
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6.4 Future Work

6.4.1 Testing different similarity measures for HAC

As mentioned in section 6.2, the choice of similarity measure could be the reason
for the low performance of the predictive model using HAC. Choosing a different
similarity measure, may therefore have created more appropriate clusters, which
would have reduced the prediction error. This is backuped by [Aghabozorgi et al.,
2015], which states that research suggests that dynamic programming similarity
measures, which learn the shape of the data, are the most applicaple for clustering
time-series data. This however is computationally expensive, and would require
upgraded hardware, compared to that used in this project.

6.4.2 Classification using anomaly data

Obtaining data of the labeled anomalies is essential for the importance of this
research. Having obtained anomaly data, one would be able to change the results
of this thesis from regression to classification, as it is no longer of interest (in
theory) what the actual values the network predicts are, but rather whether or
not the predicted value is anomalous.

6.4.3 Automatically selecting number of features to use for
Random Forest Regression

It was found that Random Forest Regression worked well in feature selection,
and choosing the 10 most important sensors for preciting, yielded good results,
while still obtaining > 90% dimensionality reduction. Although choosing exactly
10 features (sensors) worked well in this case, Equinor specified that the system
need to be able to generalize, and that there is not necessarily a lot of correlation
between the internals of their various turbines. Therefore it might be neccesary
to automatically determine how many sensors are needed, as explained in [Genuer
et al., 2010].

6.4.4 Testing on different datasets

Due to the fact that Equinor has a lot of different internals in their turbines,
the models created in this thesis need to be thoroughly tested on datasets from
Equinor’s other turbines, as only the dataset from a single turbine was acquired
for this thesis.
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Müllner, D. (2013). fastcluster: Fast hierarchical, agglomerative clustering rou-
tines for r and python. Journal of Statistical Software, Articles, 53(9):1–18.

Nha, B. D. and Nhat, P. T. M. (2019). Mathcha. https://www.mathcha.io/.
(Accessed on 06/03/2019).

Olah, C. (2015). Understanding lstm networks. http://colah.github.io/

posts/2015-08-Understanding-LSTMs/.

Pandas (2018). Python data analysis library. https://pandas.pydata.org/.

https://colab.research.google.com/notebooks/welcome.ipynb#scrollTo=5fCEDCU_qrC0
https://colab.research.google.com/notebooks/welcome.ipynb#scrollTo=5fCEDCU_qrC0
https://ieeexplore.ieee.org
https://keras.io/
https://www.oreilly.com/library/view/learn-arcore-/9781788830409/e24a657a-a5c6-4ff2-b9ea-9418a7a5d24c.xhtml
https://www.oreilly.com/library/view/learn-arcore-/9781788830409/e24a657a-a5c6-4ff2-b9ea-9418a7a5d24c.xhtml
https://www.mathcha.io/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://pandas.pydata.org/


BIBLIOGRAPHY 53

Park, C. H. (2013). A feature selection method using hierarchical clustering.
Mining Intelligence and Knowledge Exploration Lecture Notes in Computer
Science, page 166.

Pereira, J. and Silveira, M. (2019). Learning representations from healthcare
time series data for unsupervised anomaly detection. 2019 IEEE International
Conference on Big Data and Smart Computing (BigComp).
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Equinor’s practice 
 
Equinor have a lot of public data available on their open platform Volve Data Village 
(https://data.equinor.com/dataset/Volve) 
 
 
A problem they are experiencing is that their turbine’s do not necessarily have the same 
sensors and are not mapped together, which makes it difficult to conduct predictive 
maintenance large scale, because of the need for generalization. 
 
 
Currently, Equinor are doing well with condition based maintenance. Condition based referring 
to, if a certain threshold is crossed for a sensor value, a warning is issued. This is done for very 
critical machines, such as big pumps. The warning is issued based on a single sensor value. In 
these cases they use complex mathematical models to assess whether the threshold should be 
adjusted for the sensor. This means that threshold adjustments are done fairly frequently, which 
is not inherently bad. However this mathematical models require a lot of domain knowledge, so 
are therefore not very generalized, and therefore time consuming. 
 
 
 

Equinor’s maturity levels 
 
Equinor have 5 maturity levels, regarding maintenance. 
 
The maturity levels are: 
 

1. Condition monitoring - This is something Equinor feel they have achieved well. 
 

2. Anomaly detection of critical equipment - Equinor are working on this, but are not as 
of completely satisfied that they have reached this level.  
 

3. Probability of failure or machine degradation - This is the level they want us to help 
them reach (minimum), by using machine learning. 
 

4. Predict time failure - If we achieve this we have done very well. 
 

5. Prescriptive maintenance - Future goal 



 

Equinor’s current challenges 
1. Some key sensors may have failures themselves. When it happened, it is difficult to 

identify whether the anomaly is caused by sensors or the turbine. Therefore, it is 
important to understand which sensors are correlated to the key indicator sensors for 
cross-checking and eliminate the false positives. 
 

2. Equinor is working on some research about applying autoencoder to identify anomaly 
condition caused by sensors. However, it is difficult to determine the threshold for the 
difference between predicted and actual values. 
 

3. Equinor wants provide explanation for model output to build up user confidence. But it is 
difficult to interpret all the hidden connections inside the models. 
 

4. Equinor has collected many sensor data, how to fully understand and utilize all these 
industry big and raw data would be a challenge.  
 

5. Equinor has made some research for single or several turbines. How to transform the 
research outputs and knowledge to other equipments with totally different environment 
or in a fleet level instead of doing new research, which requires corresponding expertise 
again, would be problematic. 

Equinor’s expectations of the CIRCit WP4 team 
 
Equinor wants a system that allows for creating scalable solutions, which across machine types 
and operation patterns. As such, Equinor prefer scalability (generalizable) over domain 
knowledge (specialized). They want to achieve as much as possible balanced recall and 
precision, but with slight emphasis on recall. 
 
It is vital for Equinor that the CIRCit team deliver an end-user focused user experience. What 
this means is that for all the models we create, the system needs to clearly explain the reasons 
for the model output. It needs to have actionable recommendations for root cause analysis. 
 
The potential user of outputs of the WP4 team will be the operator in the central control center. 
There are currently only a few operators who monitor many machines. If some sensors data 
show that a certain threshold is reached, the operators will ask somebody to check the machine 
to see if anything goes wrong with the physical machine. After this project, Equinor hopes that 
our system can predict the possible outreach of the key indicator sensor from other closely 



related sensors early, i.e. before the key sensors report error, and could also help the operators 
to understand why the errors happen.  

Equinor’s data 
 
The data that has been supplied by Equinor is from a Turbine. The data is time series data from 
107 sensors stored in 107 CSV files. Equinor govern approximate 30 platforms with 2-3 turbines 
for each. The data ranges from 2011 to 2018, but Equinor emphasizes that data may be 
missing, although all data from 2013 onwards should be present. 
 
A diagram of the turbine was included with the data. It uses a standard naming convention. 
The naming convention is as follows. All conventions that begin with: 
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