
Master in Security and Mobile Computing
June 2011
Danilo Gligoroski, ITEM
Martin Gilje Jaatun, Sintef

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Securing the IaaS Service Model of
Cloud Computing Against Compromised
Components

Aryan TaheriMonfared

Master Thesis Problem Description

Aryan TaheriMonfared

June 20, 2011

Securing the IaaS Service Model of Cloud Com-

puting Against Compromised Components

According to a definition which is proposed by National Institute of Standards
and Technology (NIST), Cloud computing is a model for on-demand network
access to a shared pool of resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released. This process is done
with minimal management effort or interaction with cloud providers. Cloud
customers will have higher availability by means of this new model.

Moreover, Cloud computing is a new computing model and security is by
many ranked first among challenges of the cloud model. In order to secure a
cloud environment, it is crucial to harden the cloud infrastructure in a way that
can handle and tolerate compromised components.

This research topic is not only recommended by European Network and In-
formation Security Agency (ENISA) but also is identified as a major security
challenge in an IaaS deployment of the Cloud model in OpenStack. OpenStack
is one of the leading projects in developing opensource cloud platform. It will
also cover parts of TClouds project objectives which is the European project on
Trustworthy Clouds. This study is composed of three parts:

Possible cases of compromising a component

In this part, we will initially identify major attack scenarios in an IaaS deploy-
ment of the cloud computing model. This research is limited to those attacks
that may lead to compromising of a component. These attacks can take place in
different layers (i.e. Hardware, Operating System, Hypervisor and OS services).
We will study cloud computing characteristics and their influences on each case.
Moreover, risk analysis and building attack graphs for these scenarios will be
further steps in our study.

Detection and Analysis of the compromised component

In the second part, we will extract possible symptoms of different attacks. Symp-
toms are useful in detecting an attack. Proactive and reactive measures can be
applied so as to detect the compromised component. By analyzing the nature
of the compromised component, we gather enough information for handling the
component and mitigating corresponding risks.

Containment and Recovery of the compromised component

When compromised components are detected, they must be handled. First we

1

should secure the cloud environment so it won’t fail catastrophically due to the
compromised component. Securing the cloud can be done in several ways. As an
example, by partitioning the network and isolating the compromised component
or even shutting down the host of that component. In the second phase, the
cloud infrastructure and components should be secured to prevent that attack
from succeeding in the future.

Supervisor: Professor Danilo Gligoroski

2

Securing the IaaS Service Model of
Cloud Computing Against
Compromised Components

by

Aryan TaheriMonfared

MASTER OF SCIENCE

in

Faculty of Information Technology, Mathematics and Electrical Engineering

(Security and Mobile Computing)

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

(Trondheim)

June 2011

c© Aryan TaheriMonfared 2011

Abstract

Cloud Computing is a new computing model, and its security aspects re-
quire special considerations. New characteristics of the cloud model have
introduced new security challenges, and made some of the existing security
techniques incompatible. Moreover, existing cloud environments are closed,
operated by commercial providers, and their security mechanisms are pro-
prietary as well as confidential. In other words, there is not much chance of
observing how a real cloud environment is working, and how their providers
adapt security measures to the new model.

Therefore, we have chosen an open source cloud platform to build our
own cloud environment. The OpenStack cloud software met our require-
ments, but it was not mature enough. We have done a deep analysis of this
platform, identified potential attack targets in it, and discuss impacts of a
successful attack.

In order to secure our environment, the National Institute of Standards
and Technology (NIST) incident handling guideline has been applied to the
cloud model, and corresponding actions for each phase has been performed.
To complete our study, we have proposed a set of cloud specific approaches
that fulfill the incident handling requirements. These approaches address
challenges identified in the guideline adaptation process. Additionally, we
have studied the feasibility and compatibility of each approach against our
deployed environment.

Additionally, we also have submitted a paper to IEEE CloudCom 2011
conference, based on my thesis. A draft version of the paper is included in
Appendix A.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . vii

List of Figures . viii

Listings . x

Acknowledgements . xii

1 Introduction . 1
1.1 Brief overview of Cloud Computing 1

1.1.1 Definition . 1
1.1.2 Specifications . 2
1.1.3 Challenges . 6

1.2 Our Study Approach . 7
1.3 Thesis Contributions and Report Structure 8

1.3.1 Openstack . 9
1.3.2 Application of the Incident Handling Guideline 10
1.3.3 Proposed Approaches 10
1.3.4 Lab Setup and Configuration 11

1.4 Text Conventions . 11

2 Background . 12
2.1 Introduction to Cloud Computing Security 12

2.1.1 New Security Challenges 13
2.2 Risk Management . 15

2.2.1 Methodology . 15
2.3 Study Motivation . 18

2.3.1 IaaS Security . 18

iii

Table of Contents

2.3.2 Security of a Compromised Component 19

3 OpenStack . 21
3.1 Architecture . 22

3.1.1 Hierarchical . 22
3.1.2 Peer to Peer . 22
3.1.3 Multiple Cluster Zones 22

3.2 OpenStack Compute Project (Nova) 25
3.2.1 Cloud Controller . 26
3.2.2 Object Store (nova-objectstore) 30
3.2.3 Auth Manager . 30
3.2.4 Volume Controller (nova-volume) 30
3.2.5 Network Controller (nova-network) 31
3.2.6 Scheduler (nova-scheduler) 32
3.2.7 Compute Controller (nova-compute) 33
3.2.8 API Server (nova-api) 35
3.2.9 Compute Interfaces 35
3.2.10 RBAC model in OpenStack 35
3.2.11 Operation . 36

3.3 OpenStack Object Storage (Swift) 37
3.3.1 Components . 38

3.4 OpenStack Imaging Service (Glance) 38
3.5 Other Components . 39
3.6 Networking . 39

4 Components at Risk . 42
4.1 Virtualization Vulnerabilities 44

4.1.1 Vulnerabilities in the code 44
4.1.2 Types of vulnerabilities 45
4.1.3 Hypervisor . 46

4.2 Cloud Platform (OpenStack) 47
4.2.1 Cloud Controller . 49
4.2.2 Scheduler . 51
4.2.3 Volume Controller . 51
4.2.4 Network Controller 53
4.2.5 Compute Controller 54

5 Detection and Analysis of an Incident (Compromised Com-
ponent) . 56
5.1 Incidents . 56

iv

Table of Contents

5.2 Detection . 57
5.2.1 Challenges . 58
5.2.2 Detection Approaches 58

5.3 Analysis . 59
5.3.1 Challenges . 59

5.4 Actors’ Requirements . 60
5.4.1 Cloud Providers’ Requirements 60
5.4.2 Cloud Consumers’ Requirements 62
5.4.3 Challenges of Proposed Approaches 63

5.5 Detection and Analysis in an OpenStack Deployment 64
5.5.1 Identifying signs of an incident 65
5.5.2 Specifying precursors and indications sources 65
5.5.3 Analysis of the incident 67

6 Containment and Recovery of the Compromised Compo-
nent . 69
6.1 Existing Approaches . 70

6.1.1 Intrusion Tolerance 70
6.1.2 Deployment Models 73

6.2 Containment, Eradication, and Recovery in an OpenStack
Deployment . 74
6.2.1 Case One: A Compromised Compute Worker 76
6.2.2 Case Two: A bogus component 88

7 New Approaches . 95
7.1 Restriction of Infected Components 95

7.1.1 Filtering in the messaging server (cloud controller) . . 95
7.1.2 Filtering in each component 103
7.1.3 Disabling services . 107
7.1.4 Removing instances from the project VLAN 109
7.1.5 Locking down instances’ live migration 109
7.1.6 Quarantining instances 110

7.2 Replication of Services . 114
7.2.1 Replication Layers . 114

7.3 Disinfection of Infected Components 115
7.4 Consumer Approaches . 116

7.4.1 Reactive . 116
7.4.2 Proactive . 117

v

Table of Contents

8 Lab Setup . 118
8.1 OpenStack Compute Deployment 118

8.1.1 System Requirements 119
8.1.2 Architecture/Structure 120
8.1.3 Component Distribution 122
8.1.4 Installation . 122
8.1.5 Configuration . 125
8.1.6 Management . 129
8.1.7 Operation . 131

8.2 Performance Monitoring of the Infrastructure 132
8.2.1 Installation and Configuration 133
8.2.2 Data Sources and Graphs 133

8.3 Messaging Server Management and Monitoring 139
8.3.1 Installation . 139
8.3.2 Operating . 140

9 Conclusion . 148

References . 150

Glossary . 158

Acronyms . 160

Appendices

Appendix A - Paper . 162

vi

List of Tables

1.1 Actors activities in different service models [78] 4

2.1 Fortify Software survey at DEFCON 2010 13
2.2 Cloud Security Survey by CA Technologies [61] 20

4.1 Virtualization Vulnerabilities [64] 47
4.2 Codes . 48
4.3 Cloud Controller Specifications 50
4.4 Scheduler Specifications . 52
4.5 Volume Controller Specifications 52
4.6 Network Controller Specifications 53
4.7 Compute Controller Specifications 55

5.1 Incident detection approaches [40] 59
5.2 Incident analysis approaches [40] 60

6.1 Case One - A compromised compute worker scenario specifi-
cations . 77

6.2 Containment Strategies . 84
6.3 Case Two - A bogus component scenario specifications 89

8.1 Hardware Requirement for Cloud Controller 120
8.2 OpenStack-1 specification and services 123
8.3 OpenStack-2 specification and services 123
8.4 OpenStack-3 specification and services 123
8.5 OpenStack-4 specification and services 124
8.6 Cloud controller parameters and our deployment details [56] 127

vii

List of Figures

1.1 Cloud Computing Service Models 3
1.2 Cloud Computing Definition [59] 5
1.3 Actor hierarchy . 6

3.1 OpenStack projects and their relation [56] 21
3.2 OpenStack Hierarchical Architecture[38] 23
3.3 OpenStack Peer-to-Peer Architecture[38] 23
3.4 OpenStack Compute MultiCluster Zones[82] 24
3.5 MultiCluster Zones Implementations[82] 25
3.6 Nova components and their interaction[84] 26
3.7 RabbitMQ Internals and two modes[12] 28
3.8 OpenStack Compute basic architecture [82] 36
3.9 Swift components and their interaction[71] 37

4.1 Cloud Components . 43
4.2 OpenStack Compute basic architecture [82] 49

6.1 An example of passive replicas and failures in the CC-VIT
approach. 72

6.2 Case One - The nova-compute service in the OpenStack-4
host is compromised. 78

6.3 Blocking compromised compute communication. Red light-
ening represent disconnected communications. 80

6.4 OpenStack Nova services dependencies. 81
6.5 Stopping the compute service at the compromised host. . . . 82
6.6 Discarding messages to/from the compromised node. 83
6.7 Case Two - A physical bogus compute worker node is added

to the infrastructure. 88
6.8 Case Two - A virtual bogus compute worker is added as a

consumer’s instance. 90
6.9 Case Two - Bogus worker’s connections are established. . . . 91

viii

List of Figures

6.10 Case Two - Platform wide exchanges are binded to the bogus
worker. 91

6.11 A sample markov model for trust states of a component. . . . 93
6.12 A sample markov model for transitions between different trust

levels of a component. 94

7.1 Closing a connection using RabbitMQ management 98
7.2 Unbinding a queue from an exchange using the Queues Man-

agement page of the RabbitMQ 100
7.3 Publishing a message to a queue using RabbitMQ management101
7.4 Deleting an exchange using RabbitMQ management 102
7.5 Unbinding a queue from an exchange using RabbitMQ man-

agement . 102
7.6 Deleting or purging a queue using RabbitMQ management . 103
7.7 Overview of RabbitMQ messaging server and applicable con-

tainment approaches. 104
7.8 Overview of possible filtering points in each component . . . 106

8.1 Logical relation of entities in an OpenStack environment . . . 119
8.2 Hosts structure in our laboratory configuration 121
8.3 A compute node in our laboratory configuration 121
8.4 Running services on each physical host 122
8.5 Message flow for running an instance [46] 132
8.6 CPU Utilization . 134
8.7 NIC Traffic . 135
8.8 Memory Usage . 136
8.9 Combined Traffic statistics 136
8.10 Disk Input/Output . 137
8.11 TCP Protocol statistics . 138
8.12 Load Average . 138
8.13 RabbitMQ Management Overview 141
8.14 RabbitMQ Node rabbit@openstack-1 Overview 142
8.15 RabbitMQ Connections . 142
8.16 RabbitMQ a Connection Details 143
8.17 RabbitMQ Channels . 143
8.18 RabbitMQ a Channel Details 144
8.19 RabbitMQ Exchange . 144
8.20 RabbitMQ an Exchange Details 145
8.21 RabbitMQ Queues . 146
8.22 RabbitMQ a Queue Details 147

ix

Listings

6.1 Disabling a system user . 85
6.2 Revoking an OpenStack user’s credentials 86
6.3 Deleting an OpenStack user 86
6.4 List of services in the environment 91

7.1 Closing a connection using RabbitMQ command line interface 98
7.2 Disabling the nova-compute service 108
7.3 libvirt options for monitoring instances 110
7.4 Monitoring network interface statistics of an instance 111
7.5 virt-top sample output . 111

8.1 Adding Nova package repository 122
8.2 Installing Nova packages . 124
8.3 Installing the Glance package 124
8.4 Installing the SNMP agent . 124
8.5 Installing Nova and SNMP Agent 125
8.6 nova.conf . 125
8.7 Setting nova.conf permissions 127
8.8 Configuring mySQL for nova 127
8.9 Modified lines of snmpd.conf 128
8.10 Authorizing ICMP and SSH 128
8.11 Adding iptables rule to redirect the traffic 128
8.12 Generating credentials . 129
8.13 Sourcing novarc . 129
8.14 Uploading a VM image . 129
8.15 Creating a key pair and running an instance 130
8.16 Checking an instance status 130
8.17 Terminating an instance . 130
8.18 Deleting a bundle . 131
8.19 Installing and configuring SNMP daemon 133
8.20 Installing and configuring SNMP daemon 133
8.21 Removing the existing RabbitMQ server and Erlang package 139

x

Listings

8.22 Installing Erlang dependencies 139
8.23 Installing Erlang from its source 139
8.24 Installing RabbitMQ . 140
8.25 Installing RabbitMQ Management and Monitoring plug-in . . 140

xi

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Martin Gilje
Jaatun, whose encouragement, guidance, and support from the initial to the
final step, enabled me to develop the idea and write the thesis.

I would also like to thank Professor Danilo Gligoroski and Professor Tuo-
mas Aura for their encouragement and insightful comments.

Finally, I am immensely grateful to my family and friends, and dedicate
the thesis to them; for their understanding, support, and endless love.

Aryan TaheriMonfared
June 2011, Trondheim

xii

Chapter 1

Introduction

1.1 Brief overview of Cloud Computing

Cloud Computing is an old idea of providing computing resources as a
utility. This computing model will reduce the upfront cost for develop-
ing and deploying new services in the Internet. In such an environment,
resources can scale down and scale up quickly, thus under-provisioning and
over-provisioning will not be a major threat to services in the cloud model.

Cloud Computing is a new computing model, and its definition and spec-
ifications are not standardized yet. There have been several attempts in pro-
viding a complete description of the cloud model, but they are not widely ac-
cepted either. The National Institute of Standards and Technology (NIST)
definition of Cloud Computing [48] and the Berkeley view of Cloud Com-
puting [20] are two main contributions in this field.

1.1.1 Definition

We will use the NIST definition of Cloud Computing [48] in the rest of our
research.

”Cloud computing is a model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction.
This cloud model promotes availability and is composed of five
essential characteristics, three service models, and four deploy-
ment models.” [48]

Essential characteristics of Cloud Computing are the main items in its
definition. They emphasize new aspects of this model which discriminate it
from other computing models.

1. On-demand self-service: A cloud consumer can provision comput-
ing resources without human intervention. [48]

1

1.1. Brief overview of Cloud Computing

2. Broad network access: Cloud Computing utilizes existing network-
ing technologies to deliver services to customers and provide connec-
tivity among stakeholders [48].

3. Resource pooling: Each cloud provider has several customers. Cus-
tomers provision computing resources dynamically from a resource
pool and release them to the pool when there is no demand [48].

4. Rapid elasticity: Provisioning of resources can happen rapidly, also
the demand for resources may vary dynamically. When the demand
increases, more resources are provisioned to scale out1 and when it de-
creases, provisioned resources are released to scale in. This procedure
happens quite fast [48].

5. Measured services: A pay-per-use business model is employed to
measure the resource usage. Resource usage for different type of ser-
vices are metered based on the service type criteria. Also the provi-
sioning is managed and reported to required stakeholders [48].

1.1.2 Specifications

Service Models

Additionally, cloud services can be arranged into several service models.
Each model addresses a set of customers’ requirements. Three service models
capture multiple groups of customers.

A group of customers may only require provided applications by the
cloud provider; the mail service provided by Google is an example of such
an application. This type of services are grouped in Cloud Software as a
Service (SaaS) [48].

Another group may require more capabilities and control over provi-
sioned resources. The customer can deploy its own applications using tools
and libraries provided by the cloud provider. This type of cloud services are
Cloud Platform as a Service(PaaS) [48].

The last model is Cloud Infrastructure as a Service (IaaS). The customer
has the most access to underlying layers and resources in this service model.
The customer can choose a particular operating system and deploy any
application on it [48].

1Scaling out or horizontal scaling is referred to the application deployment on multiple
servers [49].

2

1.1. Brief overview of Cloud Computing

Figure 1.1: Cloud Computing Service Models

Cloud Computing service models and their combinations are depicted
in Figure 1.1. Table 1.1, inspired from [78], explains the consumer’s and
provider’s activities in the cloud model .

Deployment Models

The defined cloud by NIST has three main deployment models and a fourth
one which is the composition of others.

When a single organization operates the cloud infrastructure, the private
cloud deployment model is used. The infrastructure in this deployment
model can be administrated locally or by third parties, also resources may
exist on premise or off premise [48].

When several organizations, with similar goals, operate the cloud infras-
tructure, the community cloud model is used. Administration and resource
location can be handled locally or by third parties [48].

The third deployment model is the public cloud. The cloud infrastruc-
ture in this deployment model is available to the public; The responsible
organization may provide variety of cloud services using the public cloud
model [48].

2The management process may contain development, deployment, maintenance and
support.

3

1.1. Brief overview of Cloud Computing

Service
Model

Consumer Activity Provider Activity

SaaS Use provided service for
business activities

Manage2 the software application
over underlying infrastructure

PaaS Develops, integrates
and administrates
applications

Provide libraries and tools for con-
sumers; control and maintain cloud
resources and provided platforms

IaaS Creates, configures and
administrates virtual
machines

Control physical resources and pro-
vide computing infrastructure for
consumers

Table 1.1: Actors activities in different service models [78]

Hybrid cloud is a composition of several deployment models that sup-
ports the application portability.

NIST definition of Cloud Computing is depicted in Figure 1.2 [59].
Additionally, there are some similarities between Cloud Computing,

Service Oriented Computing (SOC), Grid Computing, and High Performance
Computing [32].

Stakeholders and Actors

NIST has identified five major actors in the NIST Cloud Computing Refer-
ence Architecture [78]. Each actor has a role and is responsible for a set of
activities and functions.

• Cloud Consumer
The individual or organization that uses cloud services, provided by
the cloud provider [78].

• Cloud Provider
The actor that provides and delivers cloud services to its consumers
[78].

• Cloud Auditor
The cloud auditor is responsible for auditing cloud services, system
operations, performance and security [78].

• Cloud Broker
The broker is the negotiator between the cloud consumer and provider
[78].

4

1.1. Brief overview of Cloud Computing

Figure 1.2: Cloud Computing Definition [59]

5

1.1. Brief overview of Cloud Computing

Figure 1.3: Actor hierarchy

• Cloud Carrier
The carrier is responsible for provider-consumer connectivity [78].

As depicted in Figure 1.3, the consumer-provider relation can be used
hierarchically to describe the long chain of interactions among infrastructure
providers to end users.

Different literatures use different terms for same actors, some of them
identified more actors with different roles that may expand a cloud environ-
ment. In our study we will mainly use NIST terms and taxonomy.

1.1.3 Challenges

Armbrust et al. [20]. referred to 10 challenges in the new computing model.
Challenges can be categorized into four groups [20]:

1. Adoption

• Availability

6

1.2. Our Study Approach

• Lack of common interfaces and data lock-in

• Data confidentiality and auditability

2. Growth

• Networking bottleneck

• Unpredictable VM performance

• Storage scalability

• Distributed system bugs

• Rapid elasticity

3. Marketing

• Reputation isolation

• Licensing

These are several abstract challenges; we focus more on security related
issues or security aspects of these challenges. We will introduce new security
challenges in a cloud environment in Section 2.1.1.

1.2 Our Study Approach

Generally in a distributed environment with several stakeholders, numerous
ways of attacking and compromising a component exist. Moreover, it is not
possible to stop all attacks or to ensure that the system is secure enough
against all threats, specifically in a highly distributed system.

Thus, the best approach is to understand impacts and assess the risk
of a compromised component. So, we don’t study attack methods, instead
impacts of a compromised component on the provided service and other com-
ponents will be analyzed. In order to study impacts of a successful attack,
functionalities of each component are extracted. Functionality extraction
was one of the main contributions in this part, because the documentation
provided for the cloud platform (i.e. OpenStack) was not detailed enough.
Moreover, studying impacts of an attack is not possible by simply going
through documents instead of reviewing the code and analyzing the plat-
form in a real deployment. In addition to component functionalities, inter-
acting entities with a specific component and corresponding access methods
will also be discussed. They are useful measures in recognizing impacts of a
compromised component. This part is mainly discussed in Section 4.

7

1.3. Thesis Contributions and Report Structure

After identifying impacts of a successful attack, we should find efficient
approaches to tolerate such an attack and its damages. In this process, the
incident should be detected and analyzed first. Detecting and analyzing an
incident have a standard procedure that requires knowledge about the nor-
mal behavior and operation of the system. For this purpose, we used a vari-
ety of monitoring and profiling techniques to recognize the normal behavior
of a distributed system. It should be noted that in an experimental environ-
ment the normal behavior of a system may vary from a real one with con-
sumers’ interaction. Another contribution in this part is applying the NIST
incident detection and analysis procedure to the cloud model. Each step
in the NIST guideline is mentioned and corresponding tasks has been done
in our cloud environment. In addition to the NIST guideline, we studied
other approaches which are proposed for a distributed system and discussed
their advantages and disadvantages in an Infrastructure as a Service (IaaS)
service model of a cloud environment. Finally, an abstract list of require-
ments for major actors in the cloud model is proposed that can facilitate
the detection and analysis phase.

The last step for handling an incident is to contain and eradicate the
incident and recover the system. We use the NIST guideline for incident
handling [45] to perform the last step. In the first part we review multiple
solutions and recommendations for the incident containment, eradication,
and recovery. In the second part, we use the NIST recommendations to
contain the incident in our experimental cloud environment.

We use the experience and results of this phase to propose a set of ap-
proaches for the incident containment, eradication, and recovery.

1.3 Thesis Contributions and Report Structure3

Contributions of my thesis can be divided into 4 categories, comprising:

1. Contributions to the OpenStack project and community, such as func-
tionalities extraction, code analysis, bug report (Chapters 3, 4).

2. Application of the NIST incident handling guideline to the Cloud Com-
puting model (Chapters 4 , 5, 6).

3. A set of proposed approaches to overcome challenges of the incident
handling adaptation (Chapter 7).

3We strongly recommend the reader to access the mind map file to study the report
structure and have an overview of the text flow. Mind map files can be accessed in the
following address: http://org.ntnu.no/cloudsecurity/thesis/Docs/

8

1.3. Thesis Contributions and Report Structure

4. Deployment and configuration of a real cloud environment with the
required set of tools for monitoring and analysis (Chapter 8).

Additionally, a few characteristics of our research should be mentioned
here:

• We identified, and analyzed security differences introduced by the new
computing model and major obstacles in applying existing techniques.

• Instead of diving deep into a specific solution, we studied a variety of
solutions, their advantages and disadvantages. This helps to decide
which type of solutions are more feasible in a cloud environment; and
what are their usecases.

• Approaches are tested and examined in our deployed environment to
study their effectiveness and implications.

• A few approaches were not applicable in our environment, however we
introduced them and discussed their hindering obstacles as well.

All documents and resources related to the thesis can be found in the
following address: http://org.ntnu.no/cloudsecurity/. A set of links to the
deployed environment is also provided in that page. Required credentials
are available upon your request.

More details about each category is given in the following parts.

1.3.1 Openstack

Deep analysis of the OpenStack Compute project is one of our contributions.
We identify each component in this cloud platform and study a specific set
of parameters about each of them, including: components’ functionalities,
connected components, access methods, and impacts.

These specifications are not explicitly and clearly noted in the Open-
Stack documentations, although they play important roles in the incident
handling and threat management of a component. Thus, we study the source
code, interact with the OpenStack community, and experiment on our lab
deployment to extract specifications, responsibilities and behaviors of each
component. Additionally, services dependency and communication models
are also discussed.

In this process several bugs have been identified and reported to the
community.

The OpenStack cloud platform is discussed in Chapters 3 and 4.

9

1.3. Thesis Contributions and Report Structure

1.3.2 Application of the Incident Handling Guideline

NIST has published a guideline [45] for incident handling. The guideline has
a general approach and is neither tuned nor prepared for a cloud environ-
ment. One of the main contributions of my thesis is the application of the
NIST guideline to the Cloud Computing model.

Each phase of the incident handling procedure is studied, and the corre-
sponding recommended actions have been applied to the cloud model. The
adaptation process faced major obstacles that have been introduced due to
the new characteristics of the cloud model.

It should be noted that we focus on technical aspects of the incident
handling procedure rather than the organizational and management aspects.
Moreover, in a cloud environment incident handling mechanisms can be im-
plemented in different cloud components; another contribution was identi-
fying appropriate components that can contain the mechanism. In this part
we recognized the proper component, propose the applicable approach, and
discuss their implementation details.

Finally, two attack scenarios are discussed. Each scenario consists of a
set of incidents with different targets and impacts. The incident handling
procedure is applied for them and the raising challenges are determined.

This application process is explained in Chapters 4, 5, and 6.

1.3.3 Proposed Approaches

We identify challenges of applying the NIST incident handling guideline to
the Cloud Computing model. We study these challenges and propose a set
of solutions, some of them are the combination or the modified version of
existing solutions, and some others are completely new.

For each approach following steps are performed:

1. Explaining the approach specifications.

2. Determining its advantages and disadvantages.

3. Specifying its implementation details in a cloud environment that
is powered by the OpenStack cloud platform.

4. Identifying applicable tools and design principles for the provided
solution.

Our proposed solutions are discussed in Chapter 7.

10

1.4. Text Conventions

1.3.4 Lab Setup and Configuration

Each and every step of the thesis is based on our experimental deployment of
a cloud environment using the OpenStack cloud platform. In our lab setup,
we have four physical machines that are working as our cloud infrastructure.
On top of them we have several software and tools, including: performance
monitoring software, Advanced Message Queuing Protocol (AMQP) server
management and monitoring software, cloud administration panel, etc. De-
tailed specifications of our lab setup in given in Chapter 8.

A paper based on the thesis

In order to publish our research result more effectively, and discuss their
weaknesses and challenges, we have written a paper based on it. The paper
is submitted to the IEEE CloudCom 2011 conference. A draft version of our
paper can be found in Appendix A - Paper.

1.4 Text Conventions

• When the term component is used, we are addressing a software com-
ponent or service in a cloud environment, unless explicitly stated oth-
erwise.

• The OpenStack software has a project called OpenStack Compute
project, and its code name is Nova. Nova has a component which is
again named compute, or nova-compute. The node which is running a
compute service is called compute worker node/compute node/compute
host.

• When layers in a stack are addressed throughout the text, cloud model
layers are meant, unless explicitly stated otherwise.

• In most cases instead of the long term ”virtual machine instance”, the
shorter form is used ”instance”.

11

Chapter 2

Background

2.1 Introduction to Cloud Computing Security

”By 2012, 20 percent of businesses will own no IT assets.
Several interrelated trends are driving the movement toward de-
creased IT hardware assets, such as virtualization, cloud-enabled
services, and employees running personal desktops and notebook
systems on corporate networks.”Gartner 2010 prediction report
[29].

One of the main obstacles in this movement toward Cloud Computing
is its security challenges. A new computing model brings its own security
doubts and issues to the market. Although Cloud Computing does not have
any new technologies, its characteristics, service models and deployment
models raise new security issues. As an illustration, a missing clear defini-
tion and specification of cloud perimeters, its dependability parameters and
data confidentiality and integrity in this model are parts of those security
challenges. Y. Chen et. al. [27] argued that most of security issues in Cloud
Computing are not fundamentally novel. Many of them have been discussed
in the time-sharing era. They introduced two novel security issues: ”the
complexities of multi-party trust considerations” and ”the crucial demand
for mutual auditability” [27].

We explained Cloud Computing specifications previously in Section 1.1,
thus we just refer to them and study their corresponding security challenges
here. As an example virtualization is one of the specifications of a cloud
environment, and according to a Gartner report [28]

”60% of virtual servers will be less secure than the physical
servers they replace through 2012.”

Moreover, in addition to new security challenges in this computing model,
attackers are becoming more interested in Cloud Computing. A Fortify
Software survey [36] at the DEFCON 2010 conference emphasized on this
interest and attention. The result revealed that among 100 participants of

12

2.1. Introduction to Cloud Computing Security

Percentage Claim

96% Cloud will provide more hacking opportunities

89% Cloud providers were not proactive enough

45% Already engaged in Cloud hacking

12% Hacking for financial gain

Table 2.1: Fortify Software survey at DEFCON 2010

the survey, who were all IT professionals, almost half of them claimed that
they already started intruding into cloud environments. Detailed results can
be found in Table 2.1.

2.1.1 New Security Challenges

According to the Cloud Computing definition which is proposed by NIST
[48], a cloud environment has five essential characteristics:

1. On-demand self-service

2. Broad network access

3. Resource pooling

4. Rapid elasticity

5. Measured Service

They introduce new security challenges to a cloud environment.

• An alternative for botnets. Cloud Computing offers more reliable
and trustworthy functionalities as botnets [27].

• Side channel and Covert channel vulnerabilities. A cloud envi-
ronment obviously employs resource sharing concept. Resource shar-
ing increase the vulnerability of the system to Side Channel and Covert
Channel attacks. This issue, related impacts and countermeasures are
discussed throughly by T. Ristenpart et al. [65]

• Long, sophisticated chain of trust. Complex relations between
variety of stakeholders in Cloud Computing model introduce another
challenge into a cloud environment. cloud consumers should prove
trustworthiness of provided services to their clients. It requires trust to
corresponding Cloud providers and transitivity of this trust to clients
[74].

13

2.1. Introduction to Cloud Computing Security

• Data jurisdiction and conflict of laws. Data in the cloud can
be stored in different geographical and organizational storage. This
possible location diversity may have conflicts with data protection laws
and constrains in some authorities.

These conflicts arise in different cases. First, a government may restrict
storage location of a specific type of data. As an example we can refer
to restriction by Canadian government on citizens’ data location [60]
and utilization of Cloud Computing for storing citizens’ health records.
Another case is when an agency is authorized to intercept or inspect
specific data. If data is stored in the cloud and the cloud provider is
not in the same authority domain of that agency, lawful interception
will not be not feasible. US Patriot Act [35] is an example of a law that
allows specific agencies to intercept communications for US safety, on
the other hand Data Privacy Protection Directive (DPPD) [33] of the
European Union prohibits such an interception. Thus if an American
agency demands for lawful interception of a service which is running
in the cloud that is mainly hosted in Europe, this conflict will arise
[74].

• Reputation Isolation [27] (Fate-sharing [22]). Sharing same re-
sources among a large group of customers with different use-case sce-
narios can have negative impacts on customers’ reputation. As an
example, blacklisting of innocent Amazon EC2 customers can be men-
tioned. In that incident a malicious Amazon EC2 customer had used
the provided service for spamming, as a result a range of Amazon EC2
IP addresses had been blocked and blacklisted which affected even
legitimate customers [74].

• Applying old-fashioned incident handling procedure to the
new computing model. Long chain of trust with more stakeholders
and complex interaction has made incident handling more sophisti-
cated in this model. It is crucial to handle the incident and share
enough information regarding the incident while at the same time the
isolation among each stakeholder is maintained and their specific pri-
vacy policies remain intact [74].

Cloud specific incident handling has been studied by J. Reed discussed
[42]. Research has been done on challenges and approaches toward
incident handling in the cloud by Grobauer et al. [40]

• Lack of standards and common interfaces increases data lock-

14

2.2. Risk Management

in probability. These shortcomings in the current cloud environment
disturb clouds interoperability and customers migration facilities. un-
der this circumstances after a catastrophic failure in a cloud environ-
ment, customers cannot migrate to another cloud smoothly. Thus a
failure in a specific cloud environment will affect its customers ad-
versely [48], [27].

• Deletion, destruction and disposal of customers’ data in the
cloud. Most cloud providers prefer to hide data or make them in-
accessible instead of deleting them physically. Physical data deletion
requires complex procedures and algorithms which are not worth de-
ploying in all cases. This is a major obstacle in distributed systems
with distributed storages.

• Demand for mutual auditability among stakeholders [27]. As
discussed previously, actors’ complex interactions require a framework
to ensure trustworthiness of each party to others. The framework
should provide mutual auditability in a cloud environment.

2.2 Risk Management

Risk management of a given Cloud environment helps cloud stakeholders
to balance the protection cost and security mechanisms that are utilized.
Most companies have limited budgets for security; thus it is crucial to use
appropriate risk management methodology to meet mission essential security
requirements. [72]

2.2.1 Methodology

Risk management can be done in each phase of the System Development
Life Cycle (SDLC). NIST [72] introduces five major phases in the SDLC,
comprising: Initiation, Development/Acquisition, Implementation, Opera-
tion/Maintenance, Disposal.

The first step in the risk management is called Risk Assessment. Risk
assessment determines potential threats and risks in a system [72]. The
output of risk assessment phase will be useful in the next phase (i.e. Risk
Mitigation). It helps in identifying appropriate procedures and measures
for elimination and mitigation of risks. Risk Management Guide by NIST
defines Risk as follows:

15

2.2. Risk Management

”Risk is a function of the likelihood of a given threat-source’s
exercising a particular potential vulnerability, and the result-
ing impact of that adverse event on the organization.”

Thus, we should initially study threats in the IaaS service model of Cloud
Computing against vulnerabilities in this model. Then possible impacts of
exploiting each vulnerability should be determined. The risk assessment
methodology has nine steps [72]:

1. System Characterization:
By characterizing an IT system and its corresponding resources, we
can determine boundaries for risk assessments. Cloud Computing is
a new model so you may not find a consistent definition and char-
acterization yet. There are several definitions and characterizations
articles in academia and standard institutes, we chose two articles in
our study as references for the cloud characterization: The NIST Def-
inition of Cloud Computing [48] and Above the Clouds: A Berkeley
View of Cloud Computing [20]

2. Threat Identification:
Next step is to identify threats to Cloud Computing. By definition a
threat is [72]:

”The potential for a particular threat-source to success-
fully exercise (accidentally trigger or intentionally exploit) a
particular vulnerability.”

Cloud Security Alliance (CSA) [5] did an extensive study on top threats
to Cloud Computing [30], that is useful in this phase.

3. Vulnerability Identification:
In this step flaws and weaknesses in the given service model of the cloud
are studied. These weaknesses can be in any components/layers of
the cloud environment. European Network and Information Security
Agency (ENISA) developed and maintain a list of Cloud Computing
vulnerabilities. [22]

4. Control Analysis:
In Control Analysis step, the system is studied to find out about the
accuracy and effectiveness of security controls. These controls are de-
signed to reduce threats impact or their execution probability.

16

2.2. Risk Management

Our main contribution in this thesis is to study existing control mech-
anisms and find their weaknesses. Then in Control Recommendation
step we will propose our own approach for fulfilling uncovered security
requirements. More information on this contribution can be found in
Chapter 6.

5. Likelihood Determination:
The likelihood of exercising a vulnerability is calculated with respect
to the capability of threat-source, vulnerability characteristics and ap-
plied security controls mechanisms. Likelihood can be High, Medium
or Low.

6. Impact Analysis:
In Impact Analysis, a successful exercise of a threat is studied to de-
termine its impact. These impacts are useful in our Detection and
Analysis phase in Chapter 5; In order to study and recognize a com-
promised component, its impacts and side effects.

7. Risk Determination:
Risk is a function of threat exploitation likelihood, impact magnitude
and effectiveness of security controls. The goal of this step is to study
risk level based on its different parameters. Cloud specific risks are
determined in Chapter 3 of [22].

8. Control Recommendation:
The goal of this step is to introduce controls that helps to reduce
the likelihood of successful exercise of a vulnerability. We will in-
troduce our mitigation and containment approach in Chapter 6, that
are controls which are recommended by us to reduce the likelihood of
compromising a component.

9. Results Documentation:
The outcome of this step is a risk assessment report that explains
results of all eight first step, including: threats, vulnerabilities, risk
likelihood, etc.

Complete security risk assessment of Cloud Computing Model is done
by European Network and Information Security Agency (ENISA)[1] in the
Cloud Computing Security Risk Assessment Report[22]. We will refer to
this report as one of our major references in risk management of the cloud
model.

17

2.3. Study Motivation

2.3 Study Motivation

In order to motivate and justify our study, we divide the title and discuss
the importance of each part separately. Importance of the Cloud Computing
model was discussed in Section 1.1. Also, security of a cloud environment
has been identified as the most challenging obstacle that hinders shifting
to the new computing model, in Section 2.1. In the following parts, we
explain why we chose the IaaS service model and also why we are interested
in compromised components.

2.3.1 IaaS Security

Cloud consumers will lose strong control over their data when they shift to
a cloud environment; this fact threatens their data security. In this new
computing model, a security breach in the cloud infrastructure may affect
all cloud consumers and cause a catastrophic failure [75].

Although many threats in a cloud environment have been identified in
other fields previously, new characteristics of the cloud model introduces
their own new security challenges. As an example, multi-tenancy and scal-
ability are influential properties on security mechanisms of a cloud.

When we talk about threats to a system, they can be either the most
important or the most likely threats. We focus more on the most important
threats, despite they may not be likely.

IaaS security is important from different perspectives. The IaaS service
model is one of the most used service models of Cloud Computing [61]. As
it is written in Table 2.2, IaaS is the service model for almost half of all
cloud environments. Additionally, it is used for business-critical services in
12.5 percent of cases in average. These statistics represent the importance
of security mechanisms of a cloud environment in an IaaS service model.

Moreover, two other statistics are also notable in Table 2.2. First, ac-
cording to the survey, in 34% cases of using IaaS, the cloud provider was
identified as the most responsible stakeholder for the security of the system.
It is interesting that the customers who are looking for IaaS services are
more concerned about their security comparing to customers of other ser-
vice models; thus they do the most security evaluation of cloud environment
resources before deployment.

In another part of this survey [61], the most effective security technologies
for a cloud environment are discussed. Network Intelligence Systems and
Virtual Private Networks are identified as the most effective technologies.
It is evident that these technologies should be applied in the infrastructure

18

2.3. Study Motivation

of a cloud environment to make it attack resistant.

2.3.2 Security of a Compromised Component

A cloud environment is a distributed computing model. In such an environ-
ment a variety of components are distributed physically and geographically;
they also communicate with each other to complete a task. These compo-
nents are not essentially homogeneous or as secure as each other. Moreover,
each of these components may get compromised. Thus it is important to
identify a compromised component and understand its threat to other com-
ponents in the environment. Finally, containing and recovery of such a
component is crucial for long term availability of the cloud environment.

19

2.3. Study Motivation

SaaS, IaaS and PaaS Usage

Europe US

SaaS 62% 67%

PaaS 33% 35%

IaaS 46% 53%

Business-critical applications

Europe US

SaaS 16% 22%

PaaS 9% 13%

IaaS 11% 14%

Cloud provider is most responsible for security

Combined

SaaS 42%

PaaS 21%

IaaS 34%

Prior security evaluation of service model be-
fore deployment

Europe US

SaaS 61% 45%

PaaS 52% 46%

IaaS 66% 51%

Most important technologies for securing a
cloud environment

Technology Importance

Network intelligence systems 64%

Virtual Private Networks 64%

Log management 62%

Identity federation 51%

Encryption for stored data 45%

User management and provisioning 45%

Table 2.2: Cloud Security Survey by CA Technologies [61]

20

Chapter 3

OpenStack

In our study we primarily focus on OpenStack as our cloud platform soft-
ware. OpenStack uses open source software, technologies and open source
standards to build a cloud infrastructure. It has three projects, OpenStack
Compute, OpenStack Object Store and OpenStack Imaging Service. These
projects are interrelated as depicted in Figure 3.1.

Figure 3.1: OpenStack projects and their relation [56]

More than 65 companies participate in the OpenStack [10] cloud plat-
form. Among these companies, big names reside such as: NASA, RackSpace,

21

3.1. Architecture

Citrix, Cisco, Dell, Intel, AMD. Many of them are using OpenStack as their
cloud platform to provide other service models, including: Platform as a
Service (PaaS), Software as a Service (SaaS), Network as a Service (NaaS),
etc.

3.1 Architecture

The OpenStack compute project is based on two architectures: Shared Noth-
ing (SN) and Message Oriented architecture. Most of the components can
run on multiple machines. The internal communication among scheduler,
network controller, volume controller, and compute controller is via AMQP
[56]. In such a distributed environment messaging and asynchronous method
calls are used to avoid deadlocks, livelocks and other common challenges.

Moreover, states are saved in a distributed data store to support the
Shared Nothing (SN) architecture. Caching of these states for a limited
period of time is also done to improve the environment performance and
utilization [56].

In the initial design of the OpenStack two main architecture model has
been introduced: hierarchical model and peer-to-peer model [38].

3.1.1 Hierarchical

The hierarchical architecture of an OpenStack deployment is similar to a set
of DNS servers’ structure. The cloud controller, that has the interface to
cloud consumers, routes requests to an appropriate set of clusters [38]. An
abstract drawing of this architecture is in Figure 3.2.

3.1.2 Peer to Peer

However, the peer-to-peer model is more like the model used for the inter-
action of a set of IRC servers. A zone received a request and may handle it
or forward it to another zone [38], Figure 3.3.

3.1.3 Multiple Cluster Zones

Another architecture is also proposed in a blueprint [82]. This one focuses
on a multi cluster architecture. Zones are defined to group OpenStack Com-
pute services (i.e. VM instances host). Zones can be defined hierarchically
in order to provide more flexibility for organizational structures, as shown
in Figure 3.4. It is also feasible having multiple top level zones to support

22

3.1. Architecture

Figure 3.2: OpenStack Hierarchical Architecture[38]

Figure 3.3: OpenStack Peer-to-Peer Architecture[38]

23

3.1. Architecture

Figure 3.4: OpenStack Compute MultiCluster Zones[82]

different partitioning or organizational schemes, like: geographical or func-
tional. The AMQP network is responsible for the communication among
zones [82].

This approach is proposed to overcome scalability issues. It will provide
partitioning functionality of hosts to facilitate large scale deployment, in the
order of 1 million hosts and 60 million VM instances [82].

In MultiCluster Zones, the Scheduler service should route a request be-
tween Zones before the appropriate component picks up the request. It can
be developed in several ways, as drawn in Figure 3.5 inspired from [82].
First, there can be a network of AMQP queues that are connected using
schedulers in each zone. Zone schedulers are responsible for retrieving mes-
sages from their parent zonea and put them in their local queues. A second
method is to re-use the API server in each zone for forwarding the message
to that specific zone [82].

24

3.2. OpenStack Compute Project (Nova)

Figure 3.5: MultiCluster Zones Implementations[82]

3.2 OpenStack Compute Project (Nova)

Nova is the OpenStack compute project, providing an IaaS service model.
OpenStack compute provides interfaces and utilities that interact with virtu-
alization mechanisms, and is not a virtualization software. In this section we
will explain basic concepts behind Nova. These details will help us to analyze
different security perspectives of the OpenStack compute project. We will
go through several concepts in Nova, including: administrative components
(users and projects), supported virtualization mechanisms, system architec-
ture, storage facilities, quotas, access control, supported third party inter-
faces, networking, Inter-process communication (IPC) and Remote Proce-
dure Call and security groups.

Administrative components in Nova are simple. Images are part of each
project and access to them is restricted based on corresponding project.
Quotas are also defined per project. Each user has its own access and secret

25

3.2. OpenStack Compute Project (Nova)

credentials. Key-pairs which are used to manage images/instances are per
user.

Nova supports several virtualization mechanisms, including: KVM, XEN,
and User-mode Linux (UML).

In the following, main components of OpenStack will be introduced.
It should be noted that, although these components are implemented by
OpenStack specifically, same components with almost same use-cases can be
identified in any other implementation of an IaaS service model platform.

Figure 3.6: Nova components and their interaction[84]

3.2.1 Cloud Controller

The cloud controller is the global state of the system and communicates
with all other components. In the Bexar release [31] of OpenStack, the
cloud controller is a messaging server that handles the messaging between
other components of the cloud platform. As all components communicate
in an asynchronous fashion, having a messaging server is crucial. Currently
RabbitMQ is the realization of the messaging server in OpenStack [85].

RabbitMQ is one of several implementations of AMQP. It is open-source
and the server is written in Erlang [3]. It provides communication amongst
all Nova components. The Publisher/Subscriber paradigm is used for com-

26

3.2. OpenStack Compute Project (Nova)

munication and on top of this paradigm, Remote Procedure Call (RPC) is
built. This loosely coupled communication has several benefits, including:

• Communicating components are decoupled, which means they don’t
need to know each other’s references.

• Full asynchronous communication

• Load balancing of RPC.

Both rpc.call and rpc.cast types of RPC are implemented over AMQP. Nova
has adapters that are responsible for marshaling and unmarshaling of mes-
sages into proper RPCs. Each Nova component has two separate queues.
The first queue only accepts messages with a specific form of key. The key
pattern should be as {node-type.node-id}, node-type can be compute,
network, etc; node-id is any identifier that can uniquely point to a spe-
cific node; This queue is used by the rpc.call operation. The second queue
has less restriction and accepts messages with the {node-type} pattern,
this one is used when the rpc.cast command is executed. When a command
must be redirected to a specific host (e.g. VM instance termination), the
first type of queue is useful otherwise, using second queue is useful in more
generic cases. [12]

Two roles are involved in using a queue, an Invoker and a Worker. An
Invoker is the sender of a message to the queue; It can be done by either
rpc.call or rpc.cast. Contrary, a Worker listens to the queue and receives
messages, also replies to rpc.call messages. RabbitMQ internals is quite
simple. Several players can be identified in this queuing system, including:
Topic Publisher, Topic Consumer, Topic Exchange, Direct Consumer, Direct
Publisher, Direct Exchange and Queue Element. The communication is done
in two different modes: [12]

• Topic
When rpc.call or rpc.cast is executed, a Topic Publisher is created
and pushes the corresponding message to the queue. This publisher is
connected to a particular Topic Exchange until the message delivery,
then it will be destroyed. When an instance of a Worker is created, a
Topic Consumer is also instantiated for that specific Worker. It will
listen to the queue and receive the message and behave based on what
is defined in the Worker. This Topic Consumer is also connected to the
same Topic Exchange. Each Worker has two Topic Consumer which
are responsible for {node-type.node-id} and {node-type} queues.

27

3.2. OpenStack Compute Project (Nova)

Figure 3.7: RabbitMQ Internals and two modes[12]

• Direct
Direct Publisher, Direct Consumer and Direct Exchange are main
players of this mode. When a rpc.call operation is executed, an in-
stance of Direct Consumer is created. The Direct Consumer is con-
nected to a specific Direct Exchange using a queue. This is not a
share queue. Direct Exchange and the unique queue are identified
by their Universally Unique Identifier (UUID). Direct Publisher uses
this identifier in each message. When an rpc.call is executed, a Direct
Publisher is instantiated to provide the response for Direct Consumer.
The incoming message has the UUID and Direct Publisher will use
that identifier for further communication. Each rpc.call has its own
Direct Exchange, and it works as a routing table.

The basic operation of the rpc.call and the rpc.cast is very simple. In
case of a rpc.call, a Topic Publisher is instantiated and it will send the
request to Topic Exchange. At the same time a Direct Consumer is created
to receive the response when it is ready. At the other end, Worker side,
one of those Topic Consumers will receive the request and forward it to the
Worker. Upon finishing the task, the Worker will send back the response
using a Direct Publisher. Again at the Invoker side, instantiated Direct
Consumer will receive the corresponding response.

While executing rpc.cast, the same procedure is done except sending
back the response. Thus in this case there is no need for Direct Publisher,

28

3.2. OpenStack Compute Project (Nova)

Direct Exchange and Direct Consumer.
In the current deployment of OpenStack in our lab setup only one Cloud

Controller exists (See Chapter 8). As a result, only one RabbitMQ (Messag-
ing Server) handles all communication among Invokers and Workers. Thus
RabbitMQ becomes a single point of failure, and failing of this component
will lead to a failure in the whole cloud platform. Two approaches have
been proposed to solve these issues, RabbitMQ active/passive setup and
RabbitMQ Clustering. These approaches provide high resiliency and high
availability respectively [50]. We will study these mechanisms in Chapter 6.

The Communication between RabbitMQ and OpenStack Compute is
provided using the Carrot library [41].

Functionality

The cloud controller handles the interaction between most of other com-
ponent, comprising: compute controller, volume controllers, network con-
trollers, API server, schedulers. Users’ communication with the cloud con-
troller is through the API server by means of Hypertext Transfer Protocol (HTTP).

The cloud controller routes an arrived request to a queuing engine that
is for a relevant group of workers. Workers in a specific group listen to their
own queues for new requests. After they get their requests and perform the
corresponding tasks, they send the response to the cloud controller and it
will send the response back to the originating user through the API Server.

The cloud controller uses the publisher/subscriber Paradigm. On top of
this paradigm, Nova components use RPC to communicate with each other
[12] . RabbitMQ[3] is used as the implementation of messaging server. Hav-
ing a single instance of the cloud controller makes it a single point of failure
and a risky bottleneck in the deployed cloud environment. Thus, in order
to avoid these challenges different features of RabbitMQ can be employed
(RabbitMQ Active/Passive, RabbitMQ Clustering) [50]. These features will
be studied in Chapter 6 where handling, mitigation and containment proce-
dures are explained.

The cloud controller functionalities can be enumerated as follows:

1. Queue management for inter-component messaging

2. Message routing and delivery for Cloud platform components

Connected Components

The cloud controller is at the heart of cloud platform and due to its function-
alities, it is connected to most other components in the platform; comprising:

29

3.2. OpenStack Compute Project (Nova)

1. Network Controller

2. Volume Controller

3. Compute Controller

4. Object Store

5. Auth Manager

6. Scheduler

7. API Server

Access Method

In the cloud controller most communication with other components is done
by means of the AMQP messages. In rare cases HTTP and Local meth-
ods are also used. The cloud controller retrieves VM images from Object
Store using HTTP commands. Additionally, the API server and the Auth
Manager communications are handled by local methods.

3.2.2 Object Store (nova-objectstore)

The object store is a HTTP server that provides storage and retrieval ser-
vices for VM images. It is a simple file-based storage that has most of S3
interfaces. OpenStack Imaging Service with an image manager can be used
instead of it. The other OpenStack project, OpenStack Object Storage, also
provides image storage functionality [85].

3.2.3 Auth Manager

This component is responsible for managing users, projects and roles; It can
also be connected to a database or LDAP server. It implements authentica-
tion and authorization functionalities.

3.2.4 Volume Controller (nova-volume)

The volume controller is responsible for handling dynamically attachable
volumes. A volume is a detachable block storage device (e.g. USB Hard
disk) that can be connected to only a single instance at each time.

30

3.2. OpenStack Compute Project (Nova)

Functionality

The volume controller is responsible for creating, deleting, attaching, detach-
ing and persisting block device storage. These kinds of storage is indepen-
dent of corresponding instances. They can be attached/detached to/from
any instance even with different VM images (i.e. operating system types
or configuration). Moreover, this controller sets up a remote volume on a
compute host and removes the volume when necessary.

Connected Components

The volume controller is connected to the cloud controller and uses AMQP
to communicate with it.

Access Method

Like many other components the only way to access the volume controller
is to use AMQP messages.

3.2.5 Network Controller (nova-network)

By providing virtual networks, a network controller enables the commu-
nication among compute servers and also with the public network. (i.e.
managing IP forwarding, bridges, VLANs, Fixed/floating IPs and DHCP)

Functionality

The network controller is responsible for IP address allocation and network
configuration. A detailed overview of Network Controller functionalities is
described in the following list:

1. Managing fixed IP addresses

• Allocates a fixed IP

• Deallocates a fixed IP

• Leases a fixed IP (Called by DHCP-Bridge)

• Releases a fixed IP (Called by DHCP-Bridge)

2. Managing floating IP addresses

• Allocates a floating IP (Gets it from the pool)

• Associates a floating IP to a fixed IP

31

3.2. OpenStack Compute Project (Nova)

• Disassociates a floating IP from a fixed IP

• Deallocates a floating IP (Returns it to the pool)

3. Creates virtual networks

4. Configures bridges, VLANs and forwarding rules

Connected Components

The network controller is connected to the Cloud Controller in the current
architecture of OpenStack.

Access Method

As this component is only connected to the Cloud Controller, the only access
method which exists is AMQP messages.

3.2.6 Scheduler (nova-scheduler)

The scheduler select the host that the new instance and volume should run
on. This decision can be made using different algorithms that focuses on
finding the most suitable compute controller [85]. The scheduler is also re-
sponsible for routing requests between components/services. In other words,
it is responsible for forwarding requests to the proper services [82].

The scheduler is one of the most important components of OpenStack
Compute. In a large scale 4 deployment of OpenStack, a reliable and scal-
able Scheduler is required. It will be achieved in several ways. First, the
scheduler can be used for containment of a compromised component. Sec-
ond, it should be configured to tolerate components failures that may lead
to network partitioning, node failure, higher load etc. Therefore, in a large
scale deployment it is not plausible having a single scheduler. To resolve
this issue a distributed scheduler is proposed [34].

Functionality

The scheduler is responsible for routing messages which are delivered to
the messaging server. Choosing the appropriate compute controller, volume
controller and network controller, it will send the user’s request to them.

• Choosing worker nodes

4By large scale we may mean one million hosts and 60 million virtual machines

32

3.2. OpenStack Compute Project (Nova)

• Routing users’ requests

• Reacting to incidents take place in components (e.g. component fail-
ures or security breach)

Connected Components

As it was explained, the scheduler is connected to all of controllers. Also the
scheduler should talk to the API server using a messaging server (i.e. the
cloud controller).

Access Method

The scheduler is working in a distributed environment, as a crucial require-
ment for scalability and reliability, it communicates with other components
using AMQP messages.

3.2.7 Compute Controller (nova-compute)

The compute controller manages communications between virtual machines
and the hypervisor. It exposes resources from the compute server to virtual
machines [85]. The compute controller is one of the most important compo-
nents of OpenStack Nova. It is responsible for managing VM instances.

Basic responsibilities of a compute controller can be itemized as follow:
[56]

• Run, Terminate and Reboot VM instances

• Attach and detach volumes

• Get console output

Moreover, it is possible to run multiple instances of a compute controller
on several physically distributed machines.

A compute controller may communicate with several other components.
Identifying these components and their communication specification is useful
for further analysis of security threats to each component.

Functionality

The compute controller main functionality is related to VM instances and
their volumes. The compute controller start, stop and reboot instances; also

33

3.2. OpenStack Compute Project (Nova)

it handles the attachment and detachment of volumes from instances. It can
also provide the console output of a specific instance for debug purposes.
More detailed version of some of high level functions are as follows:

• Run an instance

1. Check if the instance is already running.

2. Allocate fixed IP addresses.

3. Setup networking facilities (i.e. VLAN, Bridge).

4. Check compliance of the instance availability zone with the cur-
rent running zone.

5. Spawn the instance.

• Terminate an instance

1. Disassociating its IP address

2. Deallocating its IP address.

3. Detaching volumes

4. Destroying the instance

• Reboot an instance

1. Reinitializing network configuration

2. Rebooting the instance

Connected Components

Each instance of a compute controller is connected to a specific scheduler
and a specific cloud controller. Also it communicates with VM instances
that are running over its platform.

Access Method

Main communication method among a cloud controller, a scheduler and a
compute controller is AMQP messages. Moreover, the compute controller
uses hypervisor interfaces to communicate with its own VM instances.

34

3.2. OpenStack Compute Project (Nova)

3.2.8 API Server (nova-api)

The API server is responsible for receiving HTTP requests and in general
converting commands and communicating with other modules using the
AMQP and HTTP. [85] In other words, it is a web services front-end for
the cloud controller. The API Server supports both Amazon and Rackspace
interfaces.

One of the main design criteria behind OpenStack is a shared-nothing,
messaging-based architecture. It will allow major components to run on
multiple servers. By major components we mean Compute Controller,
Volume Controller, Network Controller and Object Store.

3.2.9 Compute Interfaces

Django-Nova and OpenStack-Dashboard are web-based consoles for the Open-
Stack Compute project.

3.2.10 RBAC model in OpenStack

Roles define users’ privileges and restrict their activities. In this model
permissions are not assigned to users directly, instead users have some roles
that provide them with the appropriate privileges. Users’ effective privileges
are derived from the intersection of user roles and a specific project roles.
Basic design entities of Role-based Access Control (RBAC) deployment in
OpenStack include the follows:

• Roles limit users’ access.

• Projects limit users’ access to a particular image.

• Resource consumption is limited based on each project

OpenStack has five predefined roles:

• Cloud Administrator (admin): This role has complete access to
different components in the system.

• IT Security (itsec): Users with this role can quarantine instances.

• Project Manager(projectmanager): Users with this role can man-
age users, images and instances of a project.

• Network Administrator (netadmin): Users with netadmin role
can manipulate public IP addresses and firewall rules.

35

3.2. OpenStack Compute Project (Nova)

• Developer (developer): This is the default role that is assigned to
users.

3.2.11 Operation

As depicted in Figure 3.8, most components in the OpenStack Compute
(Nova) project communicate together using AMQP. RabbitMQ[3] is cur-
rently used as the messaging server and each component has its own queue.
These queues will be used for sending messages in. Each component pro-
vides a service that has a specific Service API Stub. Public APIs use these
Service APIs to forward the users’ request to the appropriate queue, thus re-
sponsible service will eventually handle the request. Authentication is done
before an end user can communicate with public APIs; In this step, the
Auth Service decides that the user’s client can use which API service [82].

Figure 3.8: OpenStack Compute basic architecture [82]

36

3.3. OpenStack Object Storage (Swift)

3.3 OpenStack Object Storage (Swift)

Swift is the Object Storage project of the OpenStack. It is a highly avail-
able, consistent and distributed object store that is used for efficient and safe
storage of large amount of data. OpenStack Object Storage project has va-
riety of use-cases, like archiving data, storing multimedia content, providing
the Cloud Computing elasticity and on-demand storage access.

Although we do not focus on the Swift project, we mention their com-
ponents briefly to also become familiar with the rest of an OpenStack cloud
environment.

Figure 3.9: Swift components and their interaction[71]

37

3.4. OpenStack Imaging Service (Glance)

3.3.1 Components

Proxy Server

The proxy server routes each request to the proper handler. In order to do
this routing it has a looking up mechanism that searches for the location
of the corresponding account, container, or object. It also exposes public
interfaces. All objects are streamed through the proxy server and it can
handle failures to a certain degree.

The Ring

A ring provides the exact physical location of an entity. Accounts, containers
and objects has their own rings and other components interact with the
specific ring to find out about the exact location of that object, container
or account in the cluster.

Object Server

The Object Server can store, retrieve and delete objects from local devices.
In other words, it is a local BLOB storage server. Binary form of objects
will be stored on the filesystem. A hash value of the object name and the
timestamp for the last operation are used to generate the object path.

Container Server

The container server is responsible for managing listing of objects. It stores
list of objects in a specific container. These lists are also replicated across
the cluster. Statistical information like total number of objects and total
storage usage for the specific container are also stored by this server.

Account Server

It has same functionality as Container Server but handles lists of containers
instead of objects in a specific container.

3.4 OpenStack Imaging Service (Glance)

The imaging service provides functionalities that facilitate dealing with vir-
tual machine images. It has lookup and retrieval operations and can be inte-
grated with different storage provides, including: OpenStack Object Store,
Amazon S3 storage, S3 storage with Swift as the intermediate. [56]

38

3.5. Other Components

3.5 Other Components

Project VPN (CloudPipe)

Cloudpipe provides a connection for end users to access their project in-
stances in the VLAN networking mode. Cloudpipe uses Nova administra-
tive commands to automatically create an instance for a given project. This
instance provides a VPN service for end users so they can be connected to
the private network of their projects. Users will have a secure access to their
instances without exposing them to the public Internet.

The cloudpipe image is a simple GNU/Linux instance with OpenVPN
on it. When the cloudpipe is launched for a user the following procedure
will be done:

1. VPN keypair, for that specific project, is created and saved in the keys
directory.

2. A new security group is created, port 1194 and ICMP packets are
allowed in it.

3. Other credentials (certificate and private key) for the VPN instance is
created and saved in CA/projects/${project id}

4. All the information is zipped and encoded as base-64

5. An m1.tiny instance is launched and the given information is inserted
in it. (specific flag is also used to specify VPN image)

3.6 Networking

In OpenStack Compute, cloud resources are organized in projects. VM
instances are grouped in a Compute project. Each instance has its own
private IP address. Linux bridging, as defined below, is used to provide
connectivity between virtual interfaces among VM instances and physical
interface with outside. Currently, only Linux bridge networking is available
in Nova [56].

As defined in Linux-HowTo [81],

”A bridge is a device that separates two or more network
segments within one logical network (e.g. a single IP-subnet).”

39

3.6. Networking

A bridge is placed between groups of machines that may talk to each
other but not that frequently. The bridge checks the destination of a data
packet and either passes it to the other side of the Ethernet segment or
handles it locally. The bridging decisions are made independent of higher
layer protocol types (IP, IPX, NetBEUI) and are dependent on Media Access
Control (MAC) addresses of each Network Interface Controller (NIC). It
should be noted that a bridge is somehow like a Layer 2 switch, which is
transparent to other nodes in the network [81].

Nova has three types of network configuration, comprising: Flat, Flat-
DHCP and VLAN mode. They can exist simultaneously in a cloud envi-
ronment. Moreover, each instance in a Nova can have either Fixed IPs or
Floating IPs. As their names explain, Fixed IPs cannot be released from or
assigned to a VM instance before its termination, but Floating IPs are more
flexible and can be released from an instance and assigned to another one
at any time [56].

It is important to think about separating Host Identity (HI) from Host
IP address; Floating IPs are useful in this approach. Host Identity Protocol
(HIP) provides a method for separating host identify from its location (IP
address). It uses public keys of a host to generate its HI [52]. Using HIP will
also be useful for handling and containment of a compromised host when it is
identified. Security mechanisms can simply treat that specific compromised
host by means of its identity, without disturbing other nodes functionality.

Next, we will go through different network configuration modes briefly.

• Flat Mode
Instances are assigned fixed IP addresses from a specific subnet. This
subnet is previously specified by network administrators. Machines
with network controller and cloud controller services should have net-
working bridged. Bridge configuration should be done manually by
network administrators.

The FlatManager in the Flat mode does not have any responsibility
about bridge or VLan handling. The administrator is responsible for
creating bridges on all Compute Controller nodes. It is possible to
force Compute Controller to inject network configuration to a VM
instance.

• Flat DHCP Mode
In this configuration mode, IP addresses are assigned by means of
a Dynamic Host Configuration Protocol (DHCP) server. Similar to
Flat Mode, the bridge on the compute controller node connects all the

40

3.6. Networking

instances in that specific node together. This bridge also provides the
connectivity among instances on this compute node and other nodes.

FlatDHCPManager starts up a DHCP server to assign IP addresses.
In this mode network configurations are not injected into the VM
instance.

• VLAN Mode
This mode is the default mode for OpenStack Compute. In this con-
figuration, each project has its own VLAN, bridge and IP addresses
subnet. Instances in a specific project are accessible only from the
corresponding VLAN. Cloudpipe is a specific purpose VM instance
that provide connectivity for users which are outside of the VLAN
project. A DHCP server handles IP assigment to each instances of
a given project. OpenStack Compute is responsible for managing
all these VLANs, bridges and running/termination of Cloudpipe in-
stances. More details about Cloudpipe can be found in Section 3.5.

It should be noted that in VLAN mode, if we have more than one
compute controller, corresponding machines must be connected to each
other using a switch that supports host-managed VLAN tagging.

41

Chapter 4

Components at Risk

According to the definition by Committee on National Security Systems
(CNSS)[15], compromise means [2]:

”Disclosure of information to unauthorized persons, or a vio-
lation of the security policy of a system in which unauthorized in-
tentional or unintentional disclosure, modification, destruction,
or loss of an object may have occurred.”

When we talk about a compromised component in this document, we
mean those components in a cloud environment that are disclosed, modified,
destroyed or even lost. Finding compromised components and identifying
their impacts on a cloud environment is crucial. It is useful in risk man-
agement, specifically in System Characterization and Impact Analysis steps
of assessment methodology, you may find more details on risk management
in Section 2.2. Additionally, it will help stakeholders plan appropriate in-
cident handling strategies for their cloud environment in case of facing a
compromised component. These components can be placed in several layers
of cloud stack, as depicted in Figure 4.1.

We may identify three major elements amongst cloud components, namely
Cloud node, Network equipment and Specific purposes host. More details
about a cloud node is introduced, there exists four main layers before we
reach to VM instances on the top5 . A component can be compromised in
any of those elements. There has been extensive research on compromising
hardwares, operating systems, variety of services running above operating
systems, hypervisors and virtualization technologies. As we discussed previ-
ously, Cloud Computing is a new computing model, thus we focus on those
components in a cloud platform to identify new challenges and weaknesses.

In the first part of this chapter major components of a cloud environment
will be studied. In this part after identifying components, their importance

5It should be noted that we avoided introducing more complexity by omitting cross
layer coupling, e.g. most of virtualization technologies are tightly coupled with the host
operating system.

42

Chapter 4. Components at Risk

Figure 4.1: Cloud Components

and roles in the cloud model will be discussed. Additionally, components
relations, interactions and their subcomponents will also be reviewed.
As Cloud Computing is a new model, little research has been done on its
components’ security, previously. Therefore, we will focus more on new
components of a cloud platform in this chapter.

In the second part, components characteristics will be studied from a
security perspective. We will go through functionalities, connected compo-
nents and access methods of each component. Then impacts of compromis-
ing those components will be introduced.

43

4.1. Virtualization Vulnerabilities

4.1 Virtualization Vulnerabilities6

Virtualization is one of the crucial specifications of the Cloud Computing.
According to a 2010 IDC Report [62], more servers were virtualized during
last four months of 2009 comparing to the same period in 2008. Obviously,
Cloud Computing plays an important role in this demand. The IBM X-
Force R©team study virtualization vulnerabilities from different perspectives
in a 2010 Report [64]. Some of these viewpoints are important for our
research, and we will discuss them in the following:

As it was expected, the number of disclosed vulnerabilities has increased
during the past few years, till 2008. In the period of 2008-2009, this number
has decreased. This trend can be due to vendors’ attention to security
aspects of virtualization.

During a 10-year period (1999-2009), most of disclosed vulnerabilities
had high severity. Impacts of exploiting a severe vulnerability may not be
tolerable in a cloud environment.

4.1.1 Vulnerabilities in the code

It is important to localize the vulnerable code. Localization helps to identify
responsible stakeholder(s) faster and the containment procedure will happen
smoothly. The IBM report [64] divided vendors into two groups, Virtualiza-
tion software vendors and Third-party software vendors. From 2006 third
party components have more vulnerabilities comparing to the other type.

As a result, virtualization software developers and providers should also
be concerned about third parties possible vulnerabilities. Moreover, virtu-
alization and in general, cloud platforms should have mechanisms for miti-
gating threats that are caused by third-party components.

According to the report [64], virtualization products can be either Server
or Workstation type. Server products are software where the operating
system and the hypervisor are merged, this type is also called bare metal
virtualization. On the other hand, workstation products are installed on the
host operating system, so they are separated.

This definition is important because the trend of vulnerability location
differs in each type. In workstation products, third-party components have
less vulnerabilities than virtualization vendors’ components. In server prod-
ucts however, third-party components are much more vulnerable (i.e. only
30 percent of vulnerabilities happen in virtualization components). It should

6This section is based on an IBM report [64] that focused on vulnerabilities in the
virtualization software.

44

4.1. Virtualization Vulnerabilities

be noted that in a cloud environment, server products are used as virtual-
ization product in most cases. The reason is obviously because of the better
performance.

In the period 2005-2009, the number of disclosed server vulnerabilities
exceeded workstation vulnerabilities. Server products complexity and im-
portance can justify these statistics.

The exact numbers and statistics related to products vulnerabilities are
not available publicly. We tried to communicate with the report authors to
obtain those statistics but it was not successful.

4.1.2 Types of vulnerabilities

Eight types of virtualization vulnerabilities have been identified by IBM [64].
We will go through those vulnerabilities that are important in our study. As
shown in Table 4.1, each vulnerability type and its corresponding occurrence
percentage are given for both workstation and server products.

• Host: Vulnerabilities that threaten the operating system of the host
machine.

• Guest: Vulnerabilities that affect virtual machines that are running
on a hypervisor. The host OS and hypervisor remain safe. These
vulnerabilities have the same nature as host vulnerabilities in a non-
virtualized system.

• Escape to host: Vulnerabilities that can violate virtualization iso-
lation. These vulnerabilities let an attacker gain access to the host
machine from virtual machines running on it. This type of vulnera-
bility also affects the risk profile of the hosting machine. As a result,
virtual machine vulnerabilities will be included in host vulnerabilities
if an escape-to-host vulnerability exists.

• Escape to hypevisor: Vulnerabilities that violate the isolation by
letting an attacker to gain access to other virtual machines or the
hypervisor itself.

• Virtualization system: Vulnerabilities that threaten the virtualiza-
tion system itself and may not reach to host machine. They pose the
same type of risk as host vulnerabilities, so they may threaten guest
machines as well.

45

4.1. Virtualization Vulnerabilities

• Web application: Vulnerabilities that exist in host or virtualization
system applications which are used for management and control of the
virtualization infrastructure.

Although this type of vulnerabilities has been identified as a separate
group by IBM, we prefer to count them as either Host or Virtualization
System vulnerabilities.

There are some noteworthy points in Table 4.1. First, the corresponding
percentage for Host and Escape-to-host vulnerabilities in server products are
zeros. On the other hand, each of Escape-to-hypervisor and Virtualization
System’s percentage are more than 30.0%. This can be justified using the
fact that the hypervisor and the host operating system is the same compo-
nent in a server product.

Second, almost 75% of vulnerabilities in Server products are related to
hypervisor and virtualization system. These statistics clearly emphasize the
importance of host security hardening and its catastrophic impact in case of
a failure.

Third, in this report cloud platforms are not noted individually; We may
safely assume the cloud platform as a crucial component of the Virtualization
System in the Cloud model. Due to the high vulnerability percentage in the
virtualization system and consequently in the cloud platform, risk profile is
higher in those components7. Higher risk profile and less previous research
on cloud platform vulnerabilities made us to focus on this area.

4.1.3 Hypervisor

Hypervisor is the virtualization component that manages the
guest OSs on a host and controls the flow of instructions between
the guest OSs and the physical hardware. [44]

Several hypervisors with different specifications exist. They may differ in
functionalities and features. As an example UML does not use virtualization
technology.

In a secure deployment of a cloud platform, understanding security char-
acteristics of the utilized hypervisor is crucial. Several hypervisors are widely
used in a cloud environment: Xen, KVM, QEMU, and Microsoft Hyper-v.

7We should also consider the existence of threat-sources and their desire for exploiting
cloud platforms vulnerabilities; See Section 2.2.1 for more details.

46

4.2. Cloud Platform (OpenStack)

Type Stakeholder(s) Workstation
Percentage

Server Per-
centage

Host Cloud Provider 30.8% 0%

Guest Cloud Provider,
Cloud Consumer

26.3% 15.0%

Escape to host Cloud Provider 24.1% 0%

Escape to hypervisor Cloud Provider 3.8% 35.0%

Virtualization System Cloud Provider 4.5% 37.5%

Web Application Cloud Provider,
Cloud Consumer,
Service Customer

9.8% 10%

Table 4.1: Virtualization Vulnerabilities [64]

Analyzing security of hypervisors is out of our thesis scope, moreover
there has been large number of attempts in assessing and securing hypervi-
sors. As an example Murray et al. [53] has introduced an approach for se-
curing the Xen hypervisor using disaggregation. Security has been achieved
by moving the domain builder into a minimal trusted compartment. The
domain builder has high privileges in a hypervisor, thus making it smaller
will reduce trusted computing base.

4.2 Cloud Platform (OpenStack)

This section will introduce some specifications of components in an IaaS
service model of the OpenStack cloud platform. Knowing these specifications
let us identify impacts of exploiting a vulnerability in a component.

Most of the OpenStack components can run on the same machine or
be distributed over several machines. Initially, we will spread out processes
in a realistic manner. By realistic manner we mean that components are
distributed as it should be done in a large scale deployment of a cloud
environment. Adding more complexity is avoided in this stage.

Specific characteristics of each component will be introduced, including:
functionalities, access methods, connected components8, etc. Identifying
connected components is crucial in order to explain the impact and possible
threats of a compromised component on the environment. Then, impacts of
different incidents will be analyzed.

8We assumed all components as nodes in a graph and if they communicate with each
other they are connected in the graph

47

4.2. Cloud Platform (OpenStack)

Code Description

CC Cloud Controller

NC Network Controller

VC Volume Controller

CoC Compute Controller

OS Object Store

AM Auth Manager

Sc Scheduler

VMI Virtual Machine Instance

AS API Server

MSG Messaging

HTTP Hypertext Transfer Protocol

LM Local methods

Table 4.2: Codes

It should be noted that although we focus on the OpenStack as a specific
cloud software in our study, more or less same components and processes
may be identified in other cloud platform implementations.

Based on OpenStack references [56], [85], [84], [57] and its source code,
following components can be spread out on different boxes in the deployment
of the OpenStack Compute project (Nova):

• Cloud Controller (Messaging Server)

• Object Store

• Scheduler

• Volume Controller

• Network Controller

• Compute Controller

We will not study the Object Store component here, because it is a sim-
pler form of Imaging Service and is not utilized in a large scale deployment.

Abbreviations/codes used in this section are listed in the Table 4.2. They
will be reused in the following chapters.

We redraw the Figure 3.8 in Figure 4.2 to ease understading of this
section.

48

4.2. Cloud Platform (OpenStack)

Figure 4.2: OpenStack Compute basic architecture [82]

4.2.1 Cloud Controller

The cloud controller is connected to most of the cloud components and is
responsible for providing a messaging service to the platform. As we dis-
cussed before, the cloud controller is a single point of failure in the hierarchi-
cal architecture of the OpenStack. Including other specifications, connected
components and access methods help us to identify several vulnerabilities in
this part:

1. Impacts of DoS attacks can lead to a catastrophic failure in the cloud
platform.

2. A compromised cloud controller9 threaten a variety of information
security components, including:

9Compromised cloud controller is an ambiguous phrase. In this section, by compro-
mised cloud controller we mean that the cloud controller component has some vulnera-
bilities which have been exploited. Exploited vulnerabilities may provide attackers with
higher privileges in the Operating System layer. We consider worst case scenario in our
study to overcome this issue.

49

4.2. Cloud Platform (OpenStack)

Functionality

CC.F.1 Queue Management

CC.F.2 Message Routing

Connected Components

NC Network Controller

VC Volume Controller

CoC Compute Controller

OS Object Store

AM Auth Manager

Sc Scheduler

AS API Server

Access Methods

MSG Messaging

HTTP HTTP

LM Local methods

Impacts

CC.I.1 Decrease in availability

CC.I.2 Catastrophic failure in case of a successful Denial of Service (DoS)

CC.I.3 Threaten message confidentiality

CC.I.4 Threaten message integrity

CC.I.5 Disturb cloud platform functionalities

Table 4.3: Cloud Controller Specifications

50

4.2. Cloud Platform (OpenStack)

• Message Confidentiality: An attacker that resides in a compro-
mised Cloud Controller can access the queuing system, and check
the content of messages in the messaging server. End-to-end en-
cryption mechanisms can provide message confidentiality for mes-
sages in transit.

• Message Integrity: An attacker can alter a message in delivery
phase. Signing messages is a good technique to identify altered
messages.

• Service Availability: An attacker simply decreases system avail-
ability by corrupting messages. Redundant Cloud Controllers
and peer-to-peer architecture may improve availability. Adding
redundant Cloud Controllers should be studied precisely, because
wrong use of this technique can deteriorate system availability.

Corresponding solutions in each item are not implemented in the Open-
Stack yet. We will study their possibilities for development later in
this thesis.

4.2.2 Scheduler

The scheduler gets messages from API server through the messaging server
(RabbitMQ) and communicates with compute controllers, network controllers
and volume controllers to select the appropriate worker node to execute the
request.

Reviewing a scheduler functionalities, we can identify several disastrous
impacts of a compromised scheduler on the rest of components and the cloud
environment itself.

• Disturbing the IaaS platform availability and Quality of Service (QoS)

• Nefarious manipulation and modification of users’ requests

• Reacting to incidents take place in components (e.g. component fail-
ures or security breach)

4.2.3 Volume Controller

An attacker can use her/his escalated privileges on a Volume Controller
to not only impair system availability but also disclose customers’ data on
their volumes or even threaten customers’ instances by attaching malicious
volumes.

51

4.2. Cloud Platform (OpenStack)

Functionality

Sc.F.1 Selecting the worker node for an specific request

Sc.F.2 Isolating compromised components

Sc.F.3 Handling components failures

Connected Components

CC Cloud Controller

CoC Compute Controller

NC Network Controller

VC Volume Controller

AS API Server

Access Method

MSG Messaging

Impact

Sc.I.1 Decreasing availability and QoS

Sc.I.2 Intercepting and tampering consumers’ requests

Sc.I.3 Threatening containment mechanisms

Table 4.4: Scheduler Specifications

Functionality

VC.F.1 Creating volumes

VC.F.2 Deleting volumes

VC.F.3 Attaching volumes

VC.F.4 Detaching volumes

Connected Components

CC Cloud Controller

CoC Compute Controller

Sc Scheduler

Access Methods

MSG Messaging

Impacts

VC.I.1 Decreasing availability

VC.I.2 Attaching consumer’s volume to attacker’s instance

VC.I.3 Attaching attacker’s volume to consumer’s instance

Table 4.5: Volume Controller Specifications

52

4.2. Cloud Platform (OpenStack)

Functionality

NC.F.1 Creating virtual networks

NC.F.2 Configuring IP packets forwarding

NC.F.3 Handling bridges

NC.F.4 Managing VLANs

NC.F.5 Managing fixed IPs

NC.F.6 Managing floating IPs

Connected Components

CC Cloud Controller

Sc Scheduler

Access Methods

MSG Messaging

Impacts

NC.I.1 Decreasing availability

NC.I.2 Associating attacker’s floating IP to consumer’s fixed IP

NC.I.3 Associating consumer’s floating IP to attacker’s fixed IP

NC.I.4 Injecting a malicious instance to a project VLAN

NC.I.5 Manipulating firewall rules

Table 4.6: Network Controller Specifications

4.2.4 Network Controller

Like most of other components, a compromised network controller can af-
fect system availability and QoS in a large scale. A compromised network
controller can allocate all IP addresses in a project, preventing running of
new instances.
A compromised controller can also associate a customer’s floating IP address
to attacker’s fixed IP address. It will forward customer intended traffic to
the attacker’s instance.
The network controller has access to firewall rule sets. An attacker can mis-
use its access and change firewall rules for nefarious purposes.
As described before, a network controller is responsible for creating virtual
networks, VLANs and bridges. An attacker can make the controller to add
attacker’s instance to a specific project, so that instance will be in the same
VLAN as other instances of that project.

53

4.2. Cloud Platform (OpenStack)

4.2.5 Compute Controller

Impacts of a compromised compute controller in a cloud environment are:

1. Decrease in availability and QoS may happen in several cases:

• Decrease in the entire system availability, when the compromised
compute do not work as expected and the system do not have
enough compute workers to meet the QoS and Service Level Agreement (SLA)
requirements.

• Decrease in the availability of a specific VM instance which is the
target of an attacker. It can happen by unscheduled termination
or restarting of that instance. Detaching required volumes from
instances or attaching wrong volumes to them also lead to service
unavailability.

• A compute worker may also give fake information and statistics
to the scheduler. Thus, the scheduler selection algorithm mistak-
enly chooses the compromised compute controller and this will
help the attacker to decrease service availability even more. This
approach also signifies impacts of attacks which are described in
item 2 and 3.

• A compromised compute controller starts to allocate IP addresses.
Soon the project will run out of free IP addresses, although num-
ber of running instances is not as big as number of leased IP
addresses.

2. A compromised Compute Controller lets the attacker to start instances
without cloud consumer’s request. It will not only increase the service
cost for the customer, but also can be an initial step in intercepting
the cloud consumer’s traffic. Assuming that the exploited vulnerability
provides the attacker with high privileges in the OS layer, the attacker
can listen to the traffic on the compromised machine. Listening to an
instance traffic from host OS is a big topic which is out of scope of our
study, but it should be considered that eavesdropping can be done by
using the hypervisor administration interfaces or by stopping all other
instances and listening to the traffic which is going through host NIC
card.

3. Detaching customers’ volumes from their instances and attaching them
to attackers’ instances is a threat to data confidentiality of cloud con-
sumers.

54

4.2. Cloud Platform (OpenStack)

Functionality

CoC.F.1 Running instances

CoC.F.2 Terminating instances

CoC.F.3 Rebooting instances

CoC.F.4 Handling volumes

CoC.F.5 Providing console output

Connected Components

CC Cloud Controller

Sc Scheduler

VMI VM Instances

Access Methods

MSG Messaging

LM Local methods

Impacts

CoC.I.1 Decreased availability

CoC.I.2 Increased service cost

CoC.I.3 Volume data disclosure

CoC.I.4 Traffic interception

CoC.I.5 Fake console output

Table 4.7: Compute Controller Specifications

4. A compromised compute controller can give a fake console output of
an instance.

55

Chapter 5

Detection and Analysis of an
Incident (Compromised
Component)

Detecting an incident in general is a challenging task. The most tricky part
is reducing false positive ratio in incident detection. We try to detect and
analysis those incidents which are caused by a compromised component.

In the previous chapter we studied different characteristics of cloud com-
ponents. We have focused on cloud platform components, functionalities,
connected components, access methods and their impacts in case of being
compromised. This chapter will use the outcome of the previous one to study
detection methods and analyze compromised components. Digging impacts
of a compromised component will reveal its symptoms. These symptoms are
useful in detecting security breaches and further analysis of their details.

Moreover, traditional incident detection techniques are not enough any-
more. Incident detection by means of comparing signatures and stateful
approaches are not suitable in this model [19].

5.1 Incidents

According to the NIST guide on computer security incident handling [45],
four types of incident may happen in a system: DoS, Malicious code, Unau-
thorized access, Multiple component. The same grouping can be applied to
a cloud environment incidents.

• Denial of Service: Each component in a cloud environment can be
the target of a DoS attack. In an IaaS service model of Cloud Com-
puting, this component can be under supervision of either the cloud
consumer or the cloud provider. The cloud consumer’s responsibility
may be limited to VM instances that are running over IaaS. However,
the cloud provider has more components to protect against a DoS.

56

5.2. Detection

• Malicious Code: Existence of a malicious code in a cloud compo-
nent will make that component to behave nefariously. At the cloud
consumer’s side malicious code may resides in customer’s VM images.
At the provider’s side malfunctioning of a component due to a mali-
cious code has more symptoms, however containing such an incident
is more challenging.

• Unauthorized Access: An unauthorized access for a cloud consumer
may happen by compromising different access methods: Remote man-
agement interfaces for controlling their cloud resources and instances
(e.g. A Web-based portal provided by cloud provider for their cus-
tomers); Remote interfaces for connecting to their instances (e.g. SSH
connections to GNU/Linux instances).
The same type of incidents may happen for cloud providers. An unau-
thorized access may let the attack to access a platform component.

• Multiple Component: Such an incident includes several other inci-
dents that can be heterogeneous with respect to their types.

For each incident variety of containment and recovery approaches can be
used. These approaches will be discussed in Chapter 6.

5.2 Detection

Detecting a security breach, with a reasonable delay, requires a systematic
security monitoring. Several functionalities should be provided previously
[40]:

• Monitoring of existing event sources (e.g. the operating system and
other related services log files)

• Utilization of event sources for monitoring security related events where
necessary (e.g. Intrusion Detection System (IDS)).

• Utilization of analysis methods for identifying security incidents.

Beside these systematic monitoring mechanisms, there should be a frame-
work for gathering and analyzing users’ reports. Although relying on users’
reports for identifying security incidents is not suitable for real-time detec-
tion, having such a framework is crucial.

57

5.2. Detection

5.2.1 Challenges

Grobauer et al. [40] identified several issues for incident handling in a cloud
environment. They also introduce their approach to overcome those issues
and corresponding disadvantages of their approach.

Cloud consumers’ issues are as follows [40]:

• Event sources are not accessible for cloud consumers as they are con-
trolled by the cloud provider.

• Event sources are fixed and customers cannot add new security specific
sensors.

• Communication interfaces for exchanging incident related information
are not mature enough (if exists).

• It is hard to find the responsible stakeholder for an specific incident.
This also refers to the same challenge named as fate-sharing in Section
2.1.1.

5.2.2 Detection Approaches

Grobauer et al. [40] also have introduced possible approaches and their
corresponding challengesd:

• The cloud provider should give its customers enough access to ana-
lyze indication sources that contains relevant information to their
incidents. This approach has a major issue. Identifying relevant data
sources, publishing enough information and restricting customers to
these specific data sources is difficult. The output should be gener-
ated for a specific user and should not leak information about other
customers or the provider itself.

• Instead of giving direct access to customers, cloud providers can re-
port occurred incidents to influenced customers. Unification
of these reports is as crucial as their accuracy. Because if a customer
receives a detailed report which is not compatible with any standards
or previously negotiated format, it won’t be useful at all.

• The cloud provider should develop APIs to deliver systematic
event-monitoring for customers. The APIs have several specifica-
tions and requirement which are briefly introduced in [74].

58

5.3. Analysis

A1 Customers’ enough privileges to access and analyze data sources

A2 Cloud providers report incidents to relevant customers

A3 Cloud providers develop event-monitoring APIs for customers

A4 Providers or third parties offer Security-as-a-Service offerings to cloud consumers

Table 5.1: Incident detection approaches [40]

• Another approach is providing security services for cloud con-
sumers. ”Security as a service” offerings can be provided by either
cloud providers or third parties. This is a good approach because reg-
ularly customers have no interests in developing their own incident
detection capabilities by means of provided facilities (i.e. Analyzing
raw data from indication sources, reviewing unified reports from the
provider, utilizing the provider’s APIs).

This approach has a specific challenge due to limited knowledge of the
service provider about the customer resources and infrastructure.

5.3 Analysis

When an incident is detected or a legitimate external report has been re-
ceived, analysis of the situation should be done immediately. In an analysis
of a possible incident, initially it is required to check for false positive alarms.
Then, if there was a real incident, different characteristics of that incident
should be analyzed [40].

Immediate reaction after a confirmed incident plays a vital role in busi-
ness continuity, service QoS and its availability. A delayed reaction will let
the attacker to clear her/his traces.

5.3.1 Challenges

A cloud consumer may face several challenges in an analysis of an incident
in the cloud. As it was in detection phase, the cloud consumer has no
knowledge about the cloud provider infrastructure. This lack of knowledge
includes missing information about the underlying architecture, location of
security indication sources and sensors, exact interaction of the customer’s
resources with providers infrastructure and so forth [40].

Moreover, in an IaaS service model of a cloud environment, gathering
detailed information from firewalls, host services log files and other shared

59

5.4. Actors’ Requirements

A1 Customers’ enough privileges to access and analyze data sources

A2 Cloud providers report incidents to relevant customers

A3 Cloud providers develop event-monitoring APIs for customers

A4 Providers or third parties offer Security-as-a-Service offerings to cloud consumers

Table 5.2: Incident analysis approaches [40]

resources is challenging, because they have information about other cus-
tomers as well. Another obstacle, in the way of analysis for cloud consumers,
is about complex relationships of stakeholders in a cloud environment and
ambiguous roles of each stakeholder in case of an incident [40].

5.4 Actors’ Requirements

Studying the detection and analysis phase of the incident handling proce-
dure, and applying new characteristics of Cloud Computing model, we iden-
tified several requirements for a cloud provider and a cloud consumer. Ad-
ditionally, some influential challenges have been explained which will hinder
implementation of these requirements or adaptation of existing mechanisms.

5.4.1 Cloud Providers’ Requirements

In order to facilitate incident detection and analysis in a cloud environment,
the cloud provider plays a vital role and has a big responsibility. The cloud
provider should develop following items to play its role in the incident han-
dling. Most of these items are orthogonal. In other words, a cloud consumer
may request several items (i.e. security functionalities, services) together.
Also, different consumers may not have similar demands. Thus, it is better
developing all of them to cover a larger set of consumers.

• Security APIs
The cloud provider should develop set of APIs that deliver event moni-
toring functionalities and also provide forensic services for authorities.
Event monitoring APIs ease systematic incident detection for cloud
consumers and even third parties. Forensic services at virtualization
level can be implemented by means of a virtual machine introspec-
tion libraries. An example of a introspection library is the XenAccess
that allows a privileged domain to access live states of other virtual
machines.

60

5.4. Actors’ Requirements

A cross-layer security approach seems to be the best approach in a
distributed environment [74]. This approach should be implemented
and analyzed in a real case environment to study its advantages and
disadvantages.

• Precursor or Indication Sources
The cloud provider deploys, maintains and administrates the cloud
infrastructure. The provider also develops required security sensors,
logging and monitoring mechanisms to gather enough data for incident
detection and analysis at the infrastructure level. As an example, se-
curity agents, intrusion monitoring sensors, application log files, report
repository, firewall statistics and logs are all part of security relevant
indication sources.

In case of a security incident, the cloud provider should provide raw
data from these sources to affected customers and stakeholders. Thus
they will be capable of analyzing raw data and characterizing incident
properties.

This approach has its own challenges which will be discussed in the
next section.

• External reports
The cloud provider should provide a framework to capture external
incident reports. These incidents can be reported by cloud consumers,
end users or even third parties. This is not a new approach in han-
dling an incident, however finding the responsible stakeholders for that
specific incident and ensuring correctness of the incident10 require ex-
tensive research. An illustration, Amazon has developed ”Vulnerability
Reporting Process”[21] which delivers same functionalities as described
before.

• Cloud provider’s responsibilities
Although it might not seem very important, a timely response to an
incident requires heavy interaction of stakeholders. In order to ease
this interaction at the time of crisis, responsibilities of each stakeholder
should be described in detail.

• Security services
Cloud consumers may not be interested in developing security mech-
anisms. The cloud provider can deliver a security service to overcome

10Avoiding false positive alarms

61

5.4. Actors’ Requirements

this issue. Security services which are delivered by the provider can
be more reliable in case of an incident and less challenging in the de-
ployment and the incident detection/analysis.

When a provider delivers a security service for its customers, the
provider already knows about its own infrastructure; thus it won’t
face any problems in evidence gathering or incident analysis because
of missing information about underlying architecture or limited access
to indication sources.

• Infrastructure information
When the cloud consumer or another third party wants to develop
an incident detection and analysis mechanisms, they may need to un-
derstand the underlying infrastructure and its architecture. However,
without cloud provider cooperation that won’t be feasible. So, the
cloud provider should disclose enough information to responsible play-
ers to detect the incident in a timely fashion and study it to propose
the containment strategy.

5.4.2 Cloud Consumers’ Requirements

A cloud consumer, as well as its provider, has several responsibilities and
must fulfill requirements to ensure effectiveness of an incident detection and
analysis.

The following contains identified requirements or possible approaches for
a cloud consumer:

• Consumer’s security mechanisms
The cloud consumers might prefer to develop its own security mecha-
nisms (e.g. incident detection and analysis mechanisms). Customer’s
security mechanisms can be based on either the cloud provider’s APIs
or reports from variety of sources, including: provider’s incident re-
ports, end-users’ vulnerability reports, third parties’ reports.

• Provider’s agents in customer’s resources
By implementing provider’s agents, the cloud consumer will facilitate
approaching a cross-layer security solution. In this method, the cloud
consumer will know the exact amount and type of information that has
been disclosed. Moreover, neither the cloud consumer nor the provider
needs to know about each others’ architecture or infrastructure design.

62

5.4. Actors’ Requirements

• Standard communication protocol
In order to have a systematic incident detection and analysis mecha-
nisms, it is required to agree on a standard communication protocol
that will be used by all stakeholders. This protocol should be inde-
pendent of a specific provider/customer.

• Report to other stakeholders
If the customer cannot implement the provider’s agent in its own in-
stances, another approach to informing stakeholders about an incident
is by means of traditional reporting mechanisms.

These reports should not be limited to an incident only, customers
may also use this mechanism to announce a suspicious behavior for
more analysis.

• Cloud consumer’s responsibilities
Roles and responsibilities of a cloud consumer in case of an incident
should be defined previously; thus it will be feasible to react imme-
diately in a crisis. It should be clear that after detecting the first
symptoms of an incident, the cloud consumer must start communi-
cating with which components of a cloud and expect what kind of
responses.

5.4.3 Challenges of Proposed Approaches

As it was discussed in previous sections, proposed approaches by different au-
thors and also our own approaches have some disadvantages. Brief overview
of challenges is given in this part.

• Complexity of providing customer’s specific data from shared
precursor or indication sources
In a cloud environment indication sources, security sensors, and log
files contain information about all customers and even the provider
itself. In such a system, it is important to filter out not-relevant data,
when giving them out to a specific customer for incident analysis. This
issue is not only limited to customers’ data, but also exists when the
provider try to disclose a specific data to other stakeholders for further
analysis.

• Adaption of existing security mechanisms
Although Cloud Computing has few new technologies, applying exist-
ing security mechanisms may not happen smoothly. New character-

63

5.5. Detection and Analysis in an OpenStack Deployment

istics of a cloud environment impose several constrains on a security
mechanism.

From an incident detection and analysis perspective, real time analysis
techniques must be improved to provide timely responses. Also, these
techniques should analyze the system while it is running (live analysis
of an instance); This will ensure the service availability and promised
QoS level. Analysis of a running instance might be possible by taking
a snapshot of the instance and investigating that snapshot.

Another required improvement for a detection and analysis mecha-
nisms of a cloud environment can be achieved by changing log/re-
port generation techniques. The awareness about resource sharing and
multi-customer fashion of the environment should be added to these
techniques. As one of the outcomes, the log generation can generate
separated log files for customers or utilize labeling techniques to tag
a customer specific log record. It will also relax the first challenge in
this section.

• Lack of information about other parties
The cloud consumer requires provider’s infrastructure architecture to
understand about the nature of an incident and its threat. Security
service provider (i.e. external third parties, or cloud provider) should
know about the business logic and architecture of the cloud consumer
to deliver the suitable security service.

• Lack of standard protocols and interfaces for communication
As Cloud Computing is a new computing model, incident reports and
detection-related communications are not standardized yet. Addition-
ally, unified interfaces do not exist or used widely.

5.5 Detection and Analysis in an OpenStack

Deployment

We discussed challenges of an incident detection and analysis in a cloud
environment. Moreover, several requirements have been identified for a cloud
provider and its customers.

Despite the fact that new requirements are imposed to the incident de-
tection and analysis mechanisms, the general framework for incident de-
tection and analysis remains the same. In this section we will go through
all steps for incident detection and analysis, and apply them for a cloud

64

5.5. Detection and Analysis in an OpenStack Deployment

environment which is powered by the OpenStack. We use the incident han-
dling procedure, proposed by NIST, COMPUTER SECURITY INCIDENT
HANDLING GUIDE [45].

This procedure has six main steps: Identifying signs of an incident, Spec-
ifying sources for precursors and indications, Analysis of the incident, Doc-
umentation, Prioritization, and Notification of the incident [45].

5.5.1 Identifying signs of an incident

Signs of an incident have been identified previously in Chapter 4. Impacts of
exploiting a vulnerability are symptoms of a specific incident. These impacts
for the OpenStack cloud platform are listed in Tables 4.3, 4.7, 4.6, 4.4, and
4.5.

5.5.2 Specifying precursors and indications sources

NIST introduced several sources for Indications and Precursors. Equivalent
sources in an OpenStack deployment will be introduced in this part.

NIST proposed four types of data sources: Computer security software
alerts, Logs, Publicly available information, and people [45]. Detailed map-
ping is as follows:

Computer security software alerts

• Intrusion Detection Prevention System (IDPS):
The OpenStack has no embedded IDPS functionalities. But it is possi-
ble to setup an IDPS on host machines which are using the OpenStack
cloud platform. It is also possible to offer an IDPS service to cloud
consumers which will be discussed later.

• Antivirus, antispyware, antispam:
The OpenStack has no embedded facility for securing the cloud against
malicious software. Adding this functionality to the host machine is
feasible.

• File integrity checker:
It does not exist as a feature of the OpenStack but can be added by
using third party integrity checkers.

• Third party monitoring service:
Although no such services have been introduced yet, the modular and

65

5.5. Detection and Analysis in an OpenStack Deployment

distributed design of the OpenStack make it possible to employ a third
party monitoring service and plug it to the rest of the system.

Logs

• OS, services, and applications logs:
The current release of the OpenStack only works over GNU/Linux
OSes; In this type of OS, important system log files and relevant ser-
vices/applications logs are:

/var/log/messages : General and system related logs
/var/log/mysql* : MySQL database logs
/var/log/nova/* : OpenStack Compute project logs
/var/log/libvirt/* : libvirt [7] virtualization API logs
/var/log/apparmor/* : AppArmor [73] logs

In addition to simple textual log files, other high level tools are also
useful. As an example of these tools, top, meminfo, ipstats should be
mentioned. They audit runtime system information

• Network device logs:
Both physical and virtual network devices provide this kind of log files.

The OpenStack networking log file is located at /var/log/nova/nova-
network.log.*. The OpenStack will also support other virtual network
devices in the future (e.g. Open vSwitch [9]), in that case, their
corresponding log files should be audited as well.

Publicly available information

• Public vulnerabilities and exploits:
Publicly available bugs are reported to https://bugs.launchpad.net/openstack.
A security vulnerability can also be found among them. Publicly avail-
able exploits are listed in different web sites (e.g. www.milw0rm.com),
and are developed in variety of projects (e.g. the Metasploit project)

• Incidents at other organizations:
The kind of data sources are more dependent on organizational inter-
actions and awareness; thus it is out of the scope of our study.

People

This indication type is completely out of our research scope.

66

5.5. Detection and Analysis in an OpenStack Deployment

5.5.3 Analysis of the incident

With respect to the NIST guide on incident handling [45], analysis of an
incident may not follow any specific steps. But there are recommendations
in order to have an easier and more effective analysis. We will mention useful
recommendations, in our research, from the NIST guideline and discuss their
realization in an OpenStack deployment.

• ”Profile Networks and Systems”
Although this is not an accurate measure to determine the expected
activity of a component, profiling networks and systems is a vital tech-
nique in detection and analysis.

In an OpenStack deployment, we should profile important components
and determine their expected activities. Components are those items
which were identified in Chapter 4. An example of component activity
is its network bandwidth usage.

In our lab setup, we used a variety of monitoring and profiling tech-
niques to determine expected activities of components under different
tasks. Mainly we used the RRDTool [55] for the statistical data gath-
ering and Cacti [4] for the demonstration. Detailed information on our
measures and graphs are available in Chapter 8.

• ”Understand Normal Behavior”
In order to distinguish the malicious behavior from the normal one, the
normal behavior should be described previously. As an example, the
required steps for starting an instance should be clear to the incident
handler. We explain steps of starting an instance in Section 8.1.6 and
the corresponding internal procedure in Section 8.1.7.

Understanding the normal functionality of a highly distributed cloud
platform is not easy. Thus, systematic approaches on each component
should be utilized. When we focus on a single component, the com-
plexity of a large system is avoided. However, components interaction
is an important measure in determining the malicious behavior of a
component. So, expected interaction from a component should also be
determined and compared to the actual one.

• ”Use Centralized Logging and Create a Log Retention Pol-
icy”
In a cloud environment having centralized logging mechanism is not
feasible and effective. In a large scale deployment of the OpenStack

67

5.5. Detection and Analysis in an OpenStack Deployment

with one million hosts, providing centralized logging/analysis is a waste
of resources. Instead modern logging and notification mechanisms
should be employed. As an example, we mention two logging ap-
proaches, first one is a cloud specific logging which is proposed by
Golovinsky et al., Syslog Extension for Cloud Using Syslog Structured
Data [39]. Second approach is a more general one, named Common
Event Expression (CEE) [77], that introduces a standard log language
for event description, logging and exchange. Using the latter, cor-
relation, aggregation, auditing and incident handling become easier.
On the other hand, the former one focuses on a cloud environment
specifications 11.

• ”Keep All Host Clocks Synchronized”
To provide a meaningful analysis, events should be stamped based on
the same clocks. Using Network Time Protocol (NTP) is technique
for synchronizing clocks among several machine.

• ”Create a Diagnosis Matrix”
Creating such a matrix is useful to understand the relation between
a symptom and the associated incident category. We can also break
down each category and identify several incidents in them, then depict
the symptom-incident relations.

• ”Consider Filtering the Data”
In a highly distributed environment such as a cloud system, an enor-
mous number of events are reported per time unit. Analyzing all of
them without any prior filtering is not feasible. Thus, input data
should be abstracted and filtered before analysis.

• ”Run Packet Sniffers to Collect Additional Data”
Analysis of network traffic is also an import task in incident handling.
Virtual switches and network equipments are new components in net-
work layer of Cloud Computing. Traffic analysis and interception of a
virtualized environment, when the traffic does not pass real hardware,
should be handled at the virtualization layer12.

11The IETF approach has been criticized a lot and it is in an experimental status,
currently

12We may assume the bridge functionality of the Linux kernel as a utility for the virtual-
ization layer. This is noteworthy because we may not use virtualization specific networking
mechanisms (e.g. Open vSwitch, Open Flow) and use bridge mechanisms for the commu-
nication of instances in the same host

68

Chapter 6

Containment and Recovery
of the Compromised
Component

Current security mechanisms cannot secure cloud environments against all
attacks; they cannot even provide a timely action in response to a successful
attack [23].

Containment strategies differ in different cloud environments. Also,
cloud consumers’ allocated resources are not under their direct/physical con-
trol. Consumers control their resources using several access methods which
may get compromised as well. Specifically in the IaaS service model, the
issue is more challenging for responsible organizations (i.e. providers). One
of the main reasons is the increased control of a cloud consumer over its
allocated resources and virtual instances [63].

The cloud consumer may develop some procedures for containing its
service in case of an incident, but applying these procedures is challenging
as well. The cloud provider has to ensure that recent changes in the normal
operation of a specific service is due to an incident and not a false positive.

Another challenge in Cloud Computing containment is related to con-
flicts between cloud providers’ and cloud consumers’ containment procedures
and policies.

We identified several aspects that should be considered in this phase:

1. We should address the greatest risks and strive for sufficient risk mit-
igation at the lowest cost, with minimal impact on other mission ca-
pabilities [72].

2. The containment, eradication, and recovery should be done in a cost
effective fashion. Thus, a cost-benefit analysis of each approach should
be performed before application.

3. In a highly distributed system such as a cloud environment, we cannot
apply stateful measures, they won’t scale.

69

6.1. Existing Approaches

4. It is not feasible to stop all attacks or secure all components to avoid
exploiting any existing vulnerabilities.

5. In addition to the previous item, existing security mechanisms are not
completely applicable to the new computing model and they cannot
protect the system from all attacks and cannot provide a fast reactive
response to an incident.

6. As we cannot harden a cloud environment against all possible attacks,
containment strategies and tolerating a successful attack are required
approaches.

Our study approach is a case-based one, because:

• Several components, with different functionalities, may require a vari-
ety of containment realization mechanisms.

• Providing a single mechanism to cover all incidents, is not possible.

• A combination of mechanisms is possible, and also recommended for
covering an attack which exploits several vulnerabilities.

• In each case, we will study different ways of an incident occurrence
(e.g. malicious code can be injected in to either a cloud platform
service (nova-compute) or OS modules/services.)

6.1 Existing Approaches

This section will discuss a couple of existing approaches which are applicable
in the containment, eradication, and recovery phase of the incident handling
process. We will go though them briefly and explain why they are useful
in our deployment. Moreover, we will mention their drawbacks and weak-
nesses. We will use modified version of these approaches along our proposed
solutions (Chapter 7) to fulfill this phase requirements.

6.1.1 Intrusion Tolerance

The intrusion tolerance approach utilizes fault tolerance technology for un-
derlying hardware and software layers to provide service continuity and ac-
ceptable QoS while having compromised components.

Several approaches exist for tolerating intrusions. In this section we will
go through them, and study their advantages, disadvantages. Chapter 7
contains our own approaches that utilize these mechanisms as well.

70

6.1. Existing Approaches

A set of intrusion tolerant techniques are mentioned in the following,
that are applicable to our research:

• CC-VIT: Virtualization Intrusion Tolerance Based on Cloud Comput-
ing [76]

• SITAR: A Scalable Intrusion Tolerant Architecture for Distributed Ser-
vices [80]

• CloudFIT: A platform for deployment of Intrusion and Fault Toler-
ant applications in a cloud. This approach utilizes intrusion tolerant
systems using replicas. [6]

CC-VIT

Tan et al. proposed ”CC-VIT: Virtualization Intrusion Tolerance Based on
Cloud Computing” approach that has five main technologies, comprising:
Hybrid Fault Model, Active Replicas and Passive Replicas, State Updates
and State Transfer, Proactive Recovery and Diversity [76].

Hybrid Fault Model The Hybrid model provides features that supports
heterogeneous service replicas, by service replicas we mean operating sys-
tems, middleware platforms and top layer13 services. It can be applied in
two ways: Redundant Execution on Single Host (RESH) and
Redundant Execution on Multiple Host (REMH) [76].

In RESH, redundant replications of a same service will be executed on
the same physical machine. Each replication will run on an isolated virtual
machine. This application tolerates random faults in replicas which disrupt
the service delivery. On the other hand, in REMH, redundant replications
are utilized again but this time they can be distributed over several physical
machines. The communication among these replicas is handled by means of
Group Communication.

Active Replicas and Passive Replicas Passive replicas are introduced
in this model to reduce service cost, resource consumption and increase
resource utilization. At least F+1 active replicas is required in a working
system to detect an error. When a failure is detected in an active replica, a
passive replica will replace that instance [76]. Instead of using 3F+1 replicas
for tolerating F failure in the system as in the Byzantine Fault Tolerant

13We focus on layers in the cloud stack.

71

6.1. Existing Approaches

Figure 6.1: An example of passive replicas and failures in the CC-VIT ap-
proach.

(BFT) [51] algorithm, they propose using 2F+1 replicas to tolerate same
number of failures, Figure 6.1. The experiment results also support their
claim.

It is not clear exactly what they mean by passive replica 14. A passive
replica can be either warm or cold standby that has a significant influence
on activation time and failure probability. For more information on depend-
ability analysis check [58].

State Updates and State Transfer Handling states is another impor-
tant aspect of redundant replications. Stateless replication is faster and more
efficient because the state synchronization time (i.e. state store, state trans-
fer and state update time) and network/storage overhead is omitted. The
stateless approach may lead to data loss and lower efficiency with regards
to failure specification and timing details [76].

CC-VIT uses regular state updates to synchronize passive replicas. The
replica manager is responsible for activating passive replicas and updates
their states after a specific number of state changes.

14We contacted authors to verify the meaning but got no response from them.

72

6.1. Existing Approaches

Proactive Recovery Traditional intrusion tolerant systems can only tol-
erate finite number of replica failures. Thus, in a long run of the system it
will face catastrophic failure when the number of failed replicas exceeds the
system threshold.

CC-VIT establishes a proactive recovery plan to reinitialize failed replicas
on a regular basis. This recovery strategy has its own drawbacks as well,
including: higher resource consumption due to proactive recovery overhead,
longer downtime because of state synchronization constraints [76].

Diversity Having diversity among replicas helps the system to survive
for a longer period of time under an adversary attack. An adversary is
not able to exploit same weaknesses if there exist enough diversity in the
environment.

CloudFIT

The goal of CloudFIT project is to develop a fault and intrusion tolerant
application for the cloud model, based on Byzantine Fault Tolerance (BFT).
The main difference between CloudFIT and CC-VIT is about the number
of replicas and their management. In the CloudFIT approach they use two
characteristics of a cloud environment: resource elasticity and on demand
access to a shared pool of computing resources. Thus, they change number
of replicas in a dynamic fashion.

Additionally, trustworthiness of the virtualization infrastructure is one
of their assumptions.

6.1.2 Deployment Models

G. Zhao et al. studied five deployment models of a cloud environment to
eliminate specific security concerns from Cloud Computing [86]. They fo-
cused on the following security concerns:

• Service availability and reliability in case of a failure.

• Data lock-in concerns.

• Security of data stored in the cloud (i.e. confidentiality, integrity and
authentication).

They proposed five deployment models to address previous concerns.
They separated compute service of their cloud model from its storage ser-
vice. Application of these reference models to OpenStack is made easier and

73

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

more feasible, because OpenStack also has two projects: Nova (OpenStack
Compute) and Swift (OpenStack Storage).

These models are as follows:

1. Separation Model: Avoid excessive control of a single provider

2. Availability Model: Decrease probability of a catastrophic failure by
establishing extra Data Processing Service and Cloud Storage Service.
This model should be used with caution. It should be noticed that
adding more replication does not necessarily increase availability and
decrease probability of a catastrophic failures. For more information
and detailed discussion refer to Book [58].

3. Migration Model: This model specifically replicates the storage service
by means of Cloud Migration Service. As a result, cloud consumers’
data will not tied to a specific cloud provider.

4. Tunnel Model: This model provides level of isolation between Data
Processing and Cloud Storage. It makes the collusion of these two
services difficult.

5. Cryptography Model: It is derived from Tunnel Model and adds an-
other layer of security to the system by providing cryptography service
for data stored in Cloud Storage.

This approach has several advantages. First, they are at deployment
level, despite that most of other solutions are at implementation level. When
a solution is at the deployment level, it is easier to apply it to existing
platforms, while solutions at the implementation level require heavy code
update and implementation in the platform. Secondly, the solution can
be utilized among several clouds and it relies on inter-cloud interaction.
Thirdly, employed models are not opaque for users, thus they can trust in
their systems as they are aware of its components’ interactions (”Models are
user oriented”). Existing solutions are more development oriented so they
are opaque for users. [86]

6.2 Containment, Eradication, and Recovery in

an OpenStack Deployment

As in the previous section, we use the NIST guideline [45] for containment,
eradication, and recovery. Containment procedures are not independent of

74

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

the incident type. Thus, each incident type has its own set of containment
strategies [45].

As we mentioned in the beginning of this chapter, we will study a few
incident cases. In each case, a set of items will be either mentioned or
discussed, some other parameters should also be identified during incident
handling:

• Infrastructure description
This includes the OpenStack deployment architecture, components in-
teractions, running services on each node, etc.

• Estimated date/time when the incident started
Knowing how long the attack was ongoing is important. It will help
in determining impacts of the incident on the cloud environment.

• Incident type
Each incident requires a different set of handling techniques, thus iden-
tifying the incident type is crucial. We categorize incidents in the same
set of types as proposed by the NIST: Denial of Service, Malicious
Code, Unauthorized Access, Inappropriate Usage, and Multiple Com-
ponent incident. The incident type does not contain same information
as the incident description. It will be used to identify and apply the
set of procedures proposed by the NIST for each incident type.

• Current status of the incident
At the time of handling the incident, depending on the current status
of the the incident, handling procedures may vary.

• Incident description
The description of the detected incident should be provided. This de-
scription contains information such as, incident distribution, charac-
teristics, sources, targets, etc. As an example, the incident distribution
determines the number of affected components, their physical/virtual
locations, related compromised layers, etc.

• Affected resources description
During the incident handling procedure, affected cloud components
and their roles in a working cloud environment should be identified.

• Response actions
In each case, we will explain techniques which have been used for
mitigating and handling the incident after its detection.

75

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

• Causes of the incident
The last step in incident handling is to identify threat sources and
vulnerabilities that caused the incident and avoid same causes in other
components and future operation of the cloud environment.

In each of the following scenarios, we will enumerate recommended ac-
tions by NIST and explain their realization in a cloud environment which is
powered by the OpenStack platform.

6.2.1 Case One: A Compromised Compute Worker

The first case which we will discuss, has only one compromised component.
In this case the nova-compute service in the compute worker is compromised,
Figure 6.2. Detailed description of these components and their responsibili-
ties are explained in Chapter 3.

Two incidents have happened simultaneously in this scenario, malicious
code and unauthorized access. The malicious code is injected to the nova-
compute service and introduces some misbehavior in it, such as malfunctions
in the hosting service of virtual instances, nefarious usage of granted privi-
leges to request for more IP addresses and cause IP address exhaustion in a
specific consumer’s project.

The malicious code is injected by means of another incident, unautho-
rized access. The attacker gains access to resources on the OpenStack-4 host,
that he/she was not intended to have. Using those escalated privileges, the
attacker changed the python code of the nova-compute and restarted the
service. Thus, nova-compute started to behave maliciously.

We also discuss each incident and its cloud environment realization in
Section 5.1. Table 6.3 contains specifications of this scenario.

Recommended actions by NIST and their corresponding realization in
the OpenStack deployment are explained in the next three parts. Each of
these parts is related to a specific major task in incident handling, compris-
ing: containment, eradication, and recovery.

Containment

As we explained the case one scenario, it is a combination of two types of
incidents, malicious code and unauthorized access. The first part will discuss
our realization of recommended containment strategies for malicious code,
and the second part explains the same concept for an unauthorized access.

Four actions which are recommended responses to a malicious code in-
cident:

76

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

Infrastructure description

Architecture Simple hierarchical

Operating System Ubuntu 10.04.1 LTS

Number of compute node 4

Number of cloud controller 1

Total number of physical machines 4

Average number of running instances on each host 10

Total number of running instances 40

Incident description

Incident type Malicious code and Unauthorized access

Current status Ongoing attack, the malicious code is not patched nor
contained yet

Compromised com-
ponent(s)

One compute worker host

Physical Location OpenStack-4

Affected Layers Cloud platform layer, the OpenStack nova-compute
service

General Information Malicious code is injected into the nova-compute ser-
vice of the OpenStack-4 host

Resources at risk Running instances on OpenStack-4, Stakeholders
and resources interacting with running instance on
OpenStack-4 or the infected nova-compute service

Table 6.1: Case One - A compromised compute worker scenario specifica-
tions

77

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

Figure 6.2: Case One - The nova-compute service in the OpenStack-4 host
is compromised.

• ”Identifying and Isolating Other Infected Hosts”
Study the profile of the infected host and compare it to other worker
nodes profiles, in order to identify compromised hosts. Comparing
profiles of components is simple using provided monitoring facilities.
The incident handler should login to http://openstack-4/cacti, and
choose the List View then select those parameters that he wants to
compare. By pressing the View, the handler can compare the profile
of the infected host with other suspicious hosts.

• ”Blocking Particular Hosts”
The strategy should be analyzed in depth before its application. In
a cloud environment when the consumer’s instance is running in an
infected worker node, it is not plausible to disconnect the node without
prior notice/negotiation to affected consumers (This constraint can be
relaxed by providing the proper SLA).

In addition, blocking the compromised host can be done with different
levels of restrictions. Initially the communication with the outside of
the organization should be blocked15, assuming that the attacker is

15By the term organization, we mean all entities who are responsible for managing the
cloud infrastructure, which can be referred to as the cloud provider.

78

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

located outside of the organization infrastructure. Also, any further
attack to the outside of the organization using compromised hosts will
be mitigated.

In the second step, communication of the compromised host with other
components in the infrastructure is also restricted and the host is
marked as compromised/infected/suspicious. Thus, other nodes will
avoid non-critical communication with the compromised node. It will
help the infrastructure to communicate with the compromised node
for containment, eradication and recovery procedures and at the same
time the risk of spreading the infection is reduced.

The last step can be blocking the host completely. In this approach
staff should access the host directly for analyzing the attack as well as
assessing possible mitigation, handling strategies.

Moreover, blocking infected hosts will not contain the incident. Each
host has several consumers’ instances (VM instances) and volumes run-
ning on and attached to it. Blocking hosts will only avoid spreading
the incident to other hosts but instances are still in danger. An ap-
proach in a cloud environment is to disconnect instances and volumes
from the underlying compromised layer. Signaling the cloud software
running on the compromised host to release/terminate/shutdown/mi-
grate instances and detach volumes are our proposed approaches. A
drawing of this approach is in Figure 6.3. We should use a quarantine
compute worker node as the container for migrated instances. After
ensuring the integrity and healthiness of instances they can be moved
to a regular worker node. This quarantine compute worker will be
explained more in the following chapter.

These approaches can be implemented at the cloud infrastructure layer
for simplicity (Blocking by means of nodes firewall, routers, etc.)

• ”Soliciting User Participation”
The interaction can be implemented using different methods. Security
bulletins maintained by cloud or service providers is an example of
notifying other stakeholders about an incident. Incident or vulnera-
bility reporting mechanisms are also useful when an outsider detects
an incident or identifies a vulnerability. These two methods can be
developed and deployed independent of the cloud platform. Security
bulletins are provided by the security team who handles security re-
lated tasks. Also, reporting mechanisms are delivered by means of
ticketing and reporting tools.

79

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

Figure 6.3: Blocking compromised compute communication. Red lightening
represent disconnected communications.

80

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

Figure 6.4: OpenStack Nova services dependencies.

Direct and real-time communication among stakeholders is a comple-
ment to above mentioned methods.

• ”Disabling Services”
In order to disable a particular service, we should check the service
dependencies diagram first. An example of such a diagram is depicted
in Figure 6.4. Disabling a service can take place in two ways.

It is possible to stop the service at the compromised host Figure 6.5.
In our scenario we can stop the nova-compute service to disable the
compute service (service nova-compute stop). It will instantly discon-
nect the cloud platform from running VM instances. In the Open-
Stack platform stopping the nova-compute service will not terminate
running instances on that host. Thus, although the compute service is
not working anymore, already running instances will continue to work
even after terminating nova-compute. Additionally, it is not possible
to terminate an instance after stopping its corresponding compute ser-
vice, because the administration gateway (i.e. nova-compute) is not
listening to published messages. In order to maintain control over run-
ning instances we can migrate instances from the compromised node
to a healthy one before we terminate the compute service16.

16We should consider migrating instances to a quarantine node first, and move them to

81

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

Figure 6.5: Stopping the compute service at the compromised host.

82

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

Figure 6.6: Discarding messages to/from the compromised node.

Another approach is discarding messages published by the compro-
mised component or those destined to it, Figure 6.6. This is a central-
ized method and the cloud controller or the messaging server should
filter out messages with the source/destination of the infected host17.

We explained four actions for containing a malicious code incident now
we continue by explaining four other actions which are recommended re-
sponses to an unauthorized access incident:

a regular node after ensuring their integrity and healthiness, as explained in Section 7.1.6
17In a publisher/subscriber paradigm the destination may be eliminated or masked by

other parameters. So, we may filter messages that contain any evidence of being related
to the infected host.

83

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

NIST recom-
mended action

Brief Description

”Identifying and
Isolating Other
Infected Hosts”

Extract incident symptoms to detect other infected
hosts.

”Blocking Partic-
ular Hosts”

After identifying the compromised component and its
corresponding host (i.e. the compromised worker/-
compute host), that host should be blocked.

”Soliciting User
Participation”

Interaction among cloud stakeholders (e.g. cloud
providers, cloud consumers, third parties, end users,
etc.) is a mandatory step toward fulfilling incident
containment requirements.

”Disabling Ser-
vices”

Disabling the infected service (nova-compute in our
scenario) may reduce impacts of the compromised
host. Disabling a service can disrupt other ser-
vices and cause deviation from promised SLA by the
provider.

Table 6.2: Containment Strategies

• ”Isolate the affected systems”
The same procedures as those which have been explained for ”Identify-
ing and Isolating Other Infected Hosts” (Section 6.2.1) and ”Blocking
Particular Hosts” (Section 6.2.1) can be applied here.

• ”Disable the affected service”
The same procedure as the one which has been explained for ”Disabling
Services” (Section 6.2.1) can be applied here.

• ”Eliminate the attacker’s route into the environment”
Access methods which have been used by the attacker to access cloud
components should be blocked. Complete list of access methods to
each component, in an OpenStack deployment, has been introduced
in Chapter 3.

Implementing filtering mechanisms in the messaging server is a crucial
requirement which is highlighted in different strategies. The cloud
provider should be capable of blocking messages which are related to
the attack and blocks the attacker’s route into the cloud environment.

It should be noted that the mechanisms which we have used to fulfill
requirements imposed by âĂIJBlocking Particular HostsâĂİ, âĂIJI-

84

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

dentifying and Isolating Other Infected HostsâĂİ, âĂIJDisabling Ser-
vicesâĂİ (Section 6.2.1) are applicable in this strategy as well.

• ”Disable user accounts that may have been used in the attack”
The user account that has been used by the attacker can be in different
layers, such as system, cloud platform, or VM instances layer18. Based
on the membership layer, the disabling and containment procedure will
differ.

The user at OS layer (i.e. system user) of the worker host should be
disabled by direct access to the host or by means of directory/feder-
ation service in case they are in place. In our deployment we did not
exploit a federation service so we should disable the system user by
accessing the host.

System users’ accounts have more administrative responsibilities and
are not assigned to cloud consumers. Thus in case of a security breach
with a system user involvement, the threat to the cloud environment
will be limited to the system and hosts which have accepted the at-
tacker’s user as a legitimate one. In the operating system we have used
in the lab setup, disabling a user is as follows:

Listing 6.1: Disabling a system user

root@openstack -1:~# passwd -l <USER >

The attacker may also have escalated privileges at the OS layer, and
can inject a rootkit to modify the authentication process. Disabling
a system user through standard procedures will not cease nefarious
impacts of an authentication rootkit. Such a scenario reveals the im-
portance of monitoring and intrusion detection systems in a cloud
environment. As described previously, we assume that the attacker
will not have enough access to inject a rootkit backdoor.

Cloud platform users can be defined in two main categories: cloud
provider’s users, cloud consumers’ users. Cloud provider’s users are
responsible for administration, management, and maintenance of the
cloud environment. However, user accounts in the cloud consumer cat-
egory are assigned to consumers and are responsible for provisioning

18It should be noted, although we may use directory and federation services to unify
users among services and layers, this may not be a feasible nor plausible approach in a
cloud environment. However, federation is applicable at each layer (e.g. system, cloud
platform, VM instances).

85

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

requested services and resources, as well as administrating and man-
aging them. Moreover, one of the main issues with a hijacked platform
user is that its impacts are not limited to a specific host, thus the in-
cident handler cannot contain the incident by blocking a specific host.

Using a provider’s user account to attack the cloud environment can
cause serious damage and affect most components of the cloud model.
However, nefarious usage of a cloud consumer account will affect con-
sumers’ service and may hardly reach to underlying provider resources.

Disabling a user in the OpenStack platform can be done using the
following command:

Listing 6.2: Revoking an OpenStack user’s credentials

root@openstack -1:~# nova -manage user revoke <USER >

This will revoke the compromised user’s credentials, so after restart-
ing the VPN service that specific user cannot connect to the project
anymore. It is also possible to delete the attacker’s user:

Listing 6.3: Deleting an OpenStack user

root@openstack -1:~# nova -manage user delete <USER >

Eradication

• ”Disinfect, quarantine, delete, and replace infected files”
These strategies are applicable in two layers depending on the con-
tainer of the injected malicious code. The malicious code can be in-
jected in to either the cloud platform services (i.e. nova-compute) or
the OS modules/services.

If the injected malicious code is in OS modules/services, utilizing ex-
isting techniques are effective. By existing techniques, we refer to anti
virus software and traditional malware handling mechanisms. In this
case nothing new has happened, although side effects of the incident
may vary a lot.

However, if the malicious code is injected into a cloud platform service
(in our case nova-compute), existing anti virus products are not useful,
as they are not aware of the new context. Cleaning a cloud platform
service can be very hard, so other approaches are more plausible. In
general, we can propose several approaches for eradicating a malicious
code incident in a cloud platform:

86

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

– Updating the code to the latest stable version and apply appro-
priate patches to fix the vulnerability.

– Purging the infected service on the compromised node

– Replacing the infected service with another one that uses a dif-
ferent set of application layer resources (e.g. configuration files,
repositories, etc.)

It should be noted that in a highly distributed system such as a cloud
environment, doing complicated tasks such as fixing a single infected
node in real time fashion does not support the cost effectiveness policy.
Thus, terminating the infected service or even the compromised node
and postponing the eradication phase can be an appropriate strategy.

• ”Mitigate the exploited vulnerabilities for other hosts within
the organization”
In order to complete the task, we should also update the cloud platform
software on other nodes and patch identified vulnerabilities.

Recovery

• ”Confirm that the affected systems are functioning normally”
Profiling the system is useful in the recovery phase as well as detec-
tion and analysis phase. After containment and eradication of the
compromised component, the component profile should be the same
as a healthy component or be the same as its own profile before be-
ing infected. Using the provided tools in our deployment (i.e. Cacti)
we can specify the exact period and components which we want to
compare.

• ”If necessary, implement additional monitoring to look for
future related activity”
After identifying the attack patterns and the compromised node pro-
file, we should add proper monitoring alarms to cover those patterns
and profiles. As an example, if the compromised compute worker starts
to request for a large number of IP addresses, after its infection, this
pattern should be saved and monitored on other compute workers. So,
if we experience a compute worker with the same profile and behavior,
that worker node will become suspicious for being infected.

In our monitoring tools, the administrator can define threshold for
different parameters; if the current profile of the system violates the

87

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

Figure 6.7: Case Two - A physical bogus compute worker node is added to
the infrastructure.

threshold, graphs will be drawn with other color to notify the user.
We can also add other monitoring tools to generate the ticket in case
of a matching profile, that is not required yet.

6.2.2 Case Two: A bogus component

A bogus service is a threat for the cloud environment security. As the
OpenStack is an open source software, an attacker can access the source
code or its binaries and deploy a cloud platform service. When the attacker
is managing a service, he/she can manipulate the service in a way that
threaten the integrity and confidentiality of the environment. This section
will discuss such an incident that a bogus cloud platform component is added
to the environment. We will focus on a nova-compute service as the bogus
cloud platform component.

A bogus nova-compute service or in general any cloud platform compo-
nent can run on a physical machine or a virtual instance. Adding a physical
node to the cloud infrastructure by an attacker, is unlikely; however, for
the sake of completeness we study both the case that the bogus service is
running on a new physical machine and the one when it is running on a
virtual instance. Both cases are depicted in Figures 6.7, and 6.8.

When the bogus service is running on top of an instance, the network
connectivity may be more limited comparing to the other case (i.e. the
bogus service is running on a physical node.). Initially any given instance is
only connected to the second interface, (eth1). This connectivity is provided

88

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

Infrastructure description

Architecture Simple hierarchical

Operating System Ubuntu 10.04.1 LTS

Number of compute node 4

Number of cloud controller 1

Total number of physical machines 4

Average number of running instances on each host 10

Total number of running instances 40

Incident description

Incident type Inappropriate Usage

Current status Ongoing attack, the bogus compute worker is still up
and serving a part of requests

Physical Location OpenStack-5

Affected Layers Cloud platform layer, the OpenStack nova-compute
service, consumers’ instances

General Information A bogus compute worker node is added to the plat-
form, it is a threat to the provider’s and consumers’
data confidentiality and integrity. Also a threat for
the system availability.

Resources at risk Running instances on OpenStack-5, Stakeholders
and resources interacting with running instance on
OpenStack-5

Table 6.3: Case Two - A bogus component scenario specifications

89

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

Figure 6.8: Case Two - A virtual bogus compute worker is added as a
consumer’s instance.

by means of the bridge connection (br100) that connects virtual interfaces
(vnetX) to the rest of the environment. Thus, a running instance has no
connectivity to the SW2 by default.

However, connectivity to the outside world can be requested by any
consumer (e.g. an attacker) through a legitimate procedure. Thus, in Figure
6.8, we also connect the instance to the SW2.

Moreover, such a scenario is more applicable to a cloud environment that
is using an open source platform (e.g. OpenStack, OpenNebula, Eucalyptus,
etc.), because an attacker can find services’ source code and binaries easily.

We simulate the virtual bogus compute worker by deploying the nova-
compute service on a running instance. Details of this deployment is ex-
plained in Chapter 8. There were multiple obstacles for simulating this
scenario, including: the running instance, which turns to be also a bogus
worker, must have the hosting capabilities; the bogus worker must respond
to cloud controller requests to be recognized as a working node.

After the installation and configuration is completed, we can check to see
if the cloud controller recognized the new worker (i.e. bogus compute worker)
using the nova-manage utility as depicted in Listing 6.4. The instance ID is

90

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

Figure 6.9: Case Two - Bogus worker’s connections are established.

Figure 6.10: Case Two - Platform wide exchanges are binded to the bogus
worker.

i-00000036 19 and its IP address is 192.168.0.2.

Listing 6.4: List of services in the environment

root@openstack−1:˜# nova−manage s e r v i c e l i s t
openstack−1 nova−network enabled :−) 2011−05−30 14:56
openstack−1 nova−compute enabled :−) 2011−05−30 14:56
openstack−1 nova−s chedu l e r enabled :−) 2011−05−30 14:5
openstack−2 nova−compute d i s ab l ed XXX 2011−05−30 15:00
openstack−3 nova−compute enabled XXX 2011−05−30 14:55
openstack−4 nova−compute enabled XXX 2011−05−30 14:54
i −00000036 nova−compute enabled :−) 2011−05−30 14:56

When the bogus worker is running, its corresponding queues and bind-
ings are also created, Figures, 6.9 and 6.10.

Detection

Detecting a bogus worker node or instance is a complex task, if the infras-
tructure has not previously employed a proper set of mechanisms. However,
a few parameters can be monitored as an indication of a bogus worker.

Generally, a bogus worker is not working as well as a real one, because
its main goal is not providing a regular service. A bogus worker aims to

19In Figure 6.8 instead of i-00000036 we used OpenStack-5 ID, to make it more readable.

91

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

steal consumers’ data, intrude on the cloud infrastructure, disrupt the cloud
environment QoS, and so forth. Without any prior preparation a suspicious
worker can be identified by monitoring the service availability and QoS pa-
rameters on each worker. Moreover a suspicious virtual worker can also
be recognized because of its high traffic towards the cloud infrastructure
messaging servers.

Containment

Containing a bogus worker consists of both proactive and reactive tech-
niques. When a bogus worker is detected the containment procedure is
fairly simple (i.e. applying reactive techniques). However, deploying a set
of proactive techniques is more challenging.

• Cryptographic mechanisms
In this method each worker must have a certificate signed by a trusted
authority. This authority can be either an external one or the cloud
controller/authentication manager itself. Having a signed certificate,
the worker can communicate with other components securely. The se-
cure communication can bring us any of the following: confidentiality,
integrity, authentication, and non-reputation.

In this case, worker’s communication and authenticity is important
for us. For this purpose we can use two different schemes: message
encryption or a signature scheme. Each of these schemes can be used
for the whole communication or the handshake phase only.

When any of those schemes are applied only to the handshake phase,
any disconnection or timeout in the communication is a threat to the
trust relation. As an authenticated worker is disconnected and re-
connected, we cannot only rely on the worker’s ID or host-name to
presume it as the trusted one. Thus, the handshake phase should be
repeated to ensure the authenticity of the worker.

Although applying each scheme to all messages among cloud compo-
nents is tolerant against disruption and disconnection, its overhead for
the system and the demand for it should be studied case by case.

By applying each of those schemes to all messages, we can tolerate dis-
connection and disruption. However, using cryptographic techniques
for all messages introduce an overhead for the system which may not
be efficient or acceptable.

92

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

Figure 6.11: A sample markov model for trust states of a component.

Implementing this method in our environment is simple. The Rab-
bitMQ has features that facilitate communication encryption and client
authentication. The RabbitMQ SSL support offers encrypted commu-
nication [14].

Moreover, an authentication mechanism using the client SSL certificate
is offered by the rabbitmq-auth-mechanism-ssl plugin [47].

• Manual confirmation
In this method, recently added workers are not used for serving con-
sumers’ requests until their authenticity is confirmed by the cloud
provider. This method requires human intervention; thus, it can be-
come a bottleneck in the cloud infrastructure. Techniques, explained
in the next part, can relax the bottleneck issue.

• Trust levels and timeouts
Introducing a set of trust levels, a new worker can be labeled as a
not trusted worker. Workers which are not trusted yet, can be used
for hosting non-critical instances, or can offer a cheaper service to
consumers.

In order to ensure the system trustworthiness in a long run, a not-
trusted worker will be disabled after a timeout. A simple Markov
model of those transitions are depicted in Figure 6.11.

Assuming we have only two trust levels, Figure 6.12 depicts transitions
between them. As an example, T0 can be achieved by the human in-
tervention; and the second level of trust T1 is gained by cryptographic
techniques or trusted computing mechanisms.

• No new worker policy
In addition to all those technical approaches, a set of management

93

6.2. Containment, Eradication, and Recovery in an OpenStack Deployment

Figure 6.12: A sample markov model for transitions between different trust
levels of a component.

policies can also relax the issue. As an example, no new worker should
be added unless there is a demand for it. The demand for a new worker
can be determined when the resource utilization for each zone is above
a given threshold.

94

Chapter 7

New Approaches

This section introduces our proposed approaches for containment, eradica-
tion and recovery. Proposed strategies are grouped based on two criteria,
the responsible stakeholder for developing and deploying the strategy, and
the target layer for that strategy.

Based on the first criterion we may have either cloud provider or cloud
consumer as the responsible stakeholder. And based on the second criterion,
the target layer can be either infrastructure/hardware layer or service/ap-
plication layer.

7.1 Restriction of Infected Components

A general technique for containing an incident is restricting the infected
component. The restriction can be applied in different layers, with a vari-
ety of approaches, such as: filtering in the AMQP server, filtering in other
components, disabling the infected service or the communicator service (i.e.
the service that handles the communication among a set of components).
Additional measures can also be employed to support the restriction, like:
removing infected instances from the project VLAN, disabling live migra-
tion, or quarantining infected instances.

We explain each of these approaches in the following sections.

7.1.1 Filtering in the messaging server (cloud controller)

We will propose several filtering mechanisms in the messaging server in order
to contain and eradicate an incident in a cloud environment. The OpenStack
platform has been used to build our experimental cloud environment. This
approach is a responsibility of the cloud provider and the target layer in the
cloud platform application layer.

The filtering in the messaging server has its own advantages and disad-
vantages, which will be discussed next.

95

7.1. Restriction of Infected Components

Advantages

• The filtering task at the messaging server level can be done without im-
plementation of new functionalities. We can use existing management
interfaces of the RabbitMQ (either Command Line Interface (CLI) or
web interface) to filter the compromised component.

However, in a large scale deployment of the platform, the situation
may vary. When automation and real-time responses are crucial, we
have to avoid mechanisms which require human intervention. Even in
this case we should only implement a set of functionalities that uses
management interfaces for filtering. Thus, instead of an operator who
terminates a connection manually, the cloud controller will do that
when it is required.

• The filtering task can be done in a centralized fashion by means of the
management plug-in, although we may have multiple instances of the
messaging server.

• Implementing this approach is completely transparent for other stake-
holders, such as cloud consumers.

• We can scale out20 the messaging capability by running multiple in-
stance of the RabbitMQ on different nodes. Scaling out the messaging
server will also scale out the filtering mechanism21.

• This approach is at the application layer, and it is independent of
network architecture and employed hardware.

• The implementation at the messaging server level helps in having a
fine-grained filtering, based on the message content.

Disadvantages

• A centralized approach has its own disadvantages as well, such as being
a single point of failure or becoming the system bottleneck.

• Implementing the filtering mechanism at the messaging server and/or
the cloud controller adds an extra complexity to these components.

20Scaling out or horizontal scaling is referred to the application deployment on multiple
servers [49].

21But it may require a correlation entity to handle the filtering tasks among all messaging
servers.

96

7.1. Restriction of Infected Components

• When messages are filtered at the application layer in the RabbitMQ
server, the network bandwidth is already wasted for the message that
has an infected source, destination, or even context. Thus, this ap-
proach is less efficient compared to the one that may filter the message
sooner (e.g. at its source host, or in the source cluster)

• Most of the time application layer approaches are not as fast as hard-
ware layer one. In a large scale and distributed environment the oper-
ation speed plays a vital role in the system availability and QoS.

It is possible to use the zFilter technique as a more efficient implemen-
tation of the message delivery technique. It can be implemented on
either software or hardware. The zFilter is based on the bloom-filter
data structure. Each message contains its state; thus this technique is
stateless [43]. It also utilizes source routing. zFilter implementations
are available for the BSD family operating systems and the NetFPGA
boards in the following address, http://www.psirp.org.

• Filtering a message without notifying upper layers, may lead to time-
out trigger and resend requests from waiting entities. It can also cause
more wasted bandwidth.

A variety of filtering mechanisms can be utilized in the messaging server;
each of these mechanisms focuses on a specific component/concept in the
RabbitMQ messaging server. We can enforce the filtering in messaging
server connection, exchange, and queue that will be discussed next.

Connection

A connection is created to connect a client to an AMQP broker [13]. A con-
nection is a long-lasting communication capability and may contain multiple
channels [79]. By closing the connection all of its channels will be closed as
well. The list of connections in our OpenStack deployment is available in
Figure 8.15. Details of each connection and its corresponding channels are
also available using the management interface, as depicted in Figure 8.16.

First approach to block the compromised component is closing its client
connection. Closing the connection will stop all channels in that connection.

In order to close a connection we do the following steps:

1. Browse management page (i.e. http://openstack-1:55672/mgmt/).

2. Go to ”Connections”.

97

7.1. Restriction of Infected Components

Figure 7.1: Closing a connection using RabbitMQ management

3. Select the target connection using its peer address.

4. Choose ”Close This Connection” from the connection details page and
press ”Force Close”. (Check Figure 7.1)

We can also use either the CLI interface or HTTP API for this purpose.
The CLI command is as follow:

Listing 7.1: Closing a connection using RabbitMQ command line interface

rabbitmqadmin close connection \

name=<CONNECTION NAME >

Channel

A channel is created using a connection, and it can be used to send and
receive messages [13]. However, we can not manipulate a single channel,
instead we can close the container connection of that specific channel.

98

7.1. Restriction of Infected Components

Exchange

An exchange is a message routing agent which can be durable, temporary,
or auto-deleted. Messages are routed to qualified queues by the exchange.
A Binding is a link between an exchange and a queue. An exchange type
can be one of direct, topic, headers, or fanout. [66]

1. direct: If the message routing key was equal to the binded queue
routing key, the message is passed to the message queue [79].

2. topic: This exchange has the same behavior as the direct one with
a small difference. The message key should match the queue routing
pattern to be passed to that queue.

3. headers: In this exchange the header properties of the arrived mes-
sage should match the queue properties. It is not used in our environ-
ment, so we skip more details. (Check [17] for more information.)

4. fanout: This exchange broadcasts incoming messages to all queues
that are interested in this specific exchange (i.e. Queues that are
binded to this exchange).

An exchange can be manipulated in different ways in order to provide a
filter mechanisms for our cloud environment.

• Unbinding a queue from the exchange
The compromised component queue won’t receive messages from the
unbinded exchange.

As an example, we assume that the compute service of the OpenStack-
4 host is compromised. Now, we want to block nova traffic to and
from the compromised compute service; so, we unbind the nova topic
exchange from the queue compute.openstack-4.

1. Browse management page (i.e. http://openstack-1:55672/mgmt/).

2. Go to ”Exchanges”.

3. Select the target exchange based on its name and type.

4. In the ”Bindings”section, unbind the target queue (e.g. compute.openstack-
4). (Check Figure 7.2)

99

7.1. Restriction of Infected Components

Figure 7.2: Unbinding a queue from an exchange using the Queues Manage-
ment page of the RabbitMQ

• Publishing a warning message
Publishing an alert message to that exchange, so all clients using that
exchange will be informed about the compromised component. Thus,
by specifying the compromised component, other clients can avoid
communicating with it. The main obstacle in this technique is the
requirement for implementing new functionalities in clients.

Publishing a new message to the exchange contains following steps:

1. Browse management page (i.e. http://openstack-1:55672/mgmt/).

2. Go to ”Exchanges”.

3. Select the target exchange based on its name and type.

4. In the ”Publish Message” section, enter the same routing key a
(e.g. compute.openstack-1), fill other fields and publish the
message. Then repeat the same procedure for the rest of related
queues (e.g. compute.openstack-2, compute.openstack-3)(Check
Figure 7.3)

• Deleting the exchange
Deleting an exchange will stop routing of messages related to it. It

100

7.1. Restriction of Infected Components

Figure 7.3: Publishing a message to a queue using RabbitMQ management

may have multiple side effects, such as memory overflow and queue
exhaustion.

In the ”Delete This Exchange” section, click ”Delete”(Check Figure
7.4).

Queue

A queue is called a ”weak First In First Out (FIFO)” buffer, that each mes-
sage in it can be delivered only to a single client unless re-queuing the mes-
sage [66].

• Unbinding
Unbinding a queue from an exchange avoids further routing of mes-
sages from that exchange to the unbind-ed queue. We can unbind the
queue which is connected to the compromised component and stop
receiving messages by the infected client. (Check Figure 7.5)

• Deleting
Deleting a queue not only removes the queue itself, but also remove all

101

7.1. Restriction of Infected Components

Figure 7.4: Deleting an exchange using RabbitMQ management

Figure 7.5: Unbinding a queue from an exchange using RabbitMQ manage-
ment

102

7.1. Restriction of Infected Components

Figure 7.6: Deleting or purging a queue using RabbitMQ management

messages in the queue and cancel all consumers on that queue. (Check
Figure 7.6)

• Purging
Purging a queue removes all messages in the queue that do not need
acknowledgment. Although it may be useful in some cases, it may not
be as effective as required in occurrence of an incident. (Check Figure
7.6)

Figure 7.722 depicts an overview of a messaging server internal entities
and the application points of our approaches.

It should be noted that each of previously mentioned procedures can
also be done using either the CLI or HTTP API interfaces. You can find
more information about them on our management server, http://openstack-
1:55672.

7.1.2 Filtering in each component

Applicable filtering mechanisms in the messaging server have been studied
in the previous section. This section discusses mechanisms that are appro-
priate for other components. These components are not essentially aware of
messaging technique details and specifications.

Advantages

• The implementation of the filtering mechanism in each component
avoids added complexity to the messaging server and cloud controller.

• This approach is a distributed solution without a single point of failure
in contrast to the previous one with a centralized filtering mechanism.

22Multiple details have been avoided in this figure to make it more readable, such as
Virtual Host.

103

7.1. Restriction of Infected Components

Figure 7.7: Overview of RabbitMQ messaging server and applicable con-
tainment approaches.

104

7.1. Restriction of Infected Components

• Assuming locality principle in the cloud, wasted bandwidth is lim-
ited into a cluster/rack which host the infected components. Network
connections have much higher speed in a rack or cluster.

• This approach does not require a correlation/coordination entity for
filtering messages. Each component behaves independently and au-
tonomously upon receiving an alarm message, that announces a com-
promised node.

As there is no boundary in the cloud, performing security enforcement
at each component is a more reliable approach. Traditionally, most
security mechanisms have been employed at the organization/system
boundaries. However, as the realization of boundaries is becoming
weaker in a cloud environment, this approach is a reasonable one to
fulfill the new requirements.

Disadvantages

• When the filtering must be performed in each component, all interact-
ing components must be modified to support the filtering mechanism.
However, this issue can be relaxed by using a unified version of mes-
saging client (e.g. pika python client) and modifying the client in case
of new requirements.

• The message which should be discarded traverses all the way down to
the destination, and wastes the link bandwidth on its route.

• Dropping a message without notifying upper layers, may lead to time-
out trigger and resend requests from waiting entities. It can also cause
more wasted bandwidth.

Implementation

This approach can be implemented at two different levels: blocking at either
the messaging client level (e.g. AMQP messaging client) or the OpenStack
component/service level, Figure 7.8.

First, the responsible client can be modified to drop messages with spe-
cific properties (e.g. infected source/destination). As an example, the re-
sponsible client for AMQP messaging in the OpenStack is amqplib/pika; we
must implement the mechanism in this AMQP client (or its wrapper in the
OpenStack) to filter malicious AMQP messages. Using this method, more
interaction between the OpenStack and clients may be required to avoid

105

7.1. Restriction of Infected Components

Figure 7.8: Overview of possible filtering points in each component

resend requests. Because of using the same AMQP client in all components,
the implementation is easier and its modification process needs less effort.

The second method is to develop the filtering in each of the OpenStack
components, such as nova-compute, nova-network, nova-scheduler, etc. This
method adds more complexity to those components and it may not be part
of their responsibilities.

We propose a combination of these methods. Implementing the filtering
mechanism in the carrot/amqplib wrapper of the OpenStack has advantages
of both methods and avoids unnecessary complexity. The OpenStack wrap-
per for managing AMQP messaging is implemented in src/nova/rpc.py. In
order to identify the malicious message, we use the message address which
is part of its context. Then, the actual dropping happens in the Adapter-
Consumer method. Assuming that the source address is set in the context
variable, filtering is straight forward. By checking the message address and
avoiding the method call, most of the task is done. The only remaining
part is to inform the sender about the problem, that can be implemented
by means of the existing message reply functionality.

In addition to this modification another feature should be added to han-
dle the list of compromised components.

106

7.1. Restriction of Infected Components

7.1.3 Disabling services

Disabling services is a strategy for containing the incident. The disabled ser-
vice can be either the infected or the communicator one. The communicator
service handles tasks distribution and delegation.

This method can be used only by the cloud provider, and is at the
application layer.

Disabling an infected service

An incident can be contained by disabling the infected service. It has several
advantages, including:

• After stopping the nova-compute service, running instances will con-
tinue to work. Thus, as a result consumers’ instances will not be
terminated nor disrupted.

• All communications to and from the compromised node will be stopped.
So, the wasted bandwidth will be reduced massively.

• Shutting down a service gracefully, avoids an extra set of failures.
When the service is stopped by Nova interfaces, all other components
will be notified and the compromised node will be removed from the
list of available compute workers.

Like any other solution, it has multiple drawbacks as well, including:

• Keeping instances in the running status can threaten cloud consumers.
The attacker may gain access to running instances on the compromised
node.

• The live migration feature will not work anymore. Thus, the threat-
ened consumers cannot migrate running instances to a safe or quaran-
tine compute worker node.

• Neither the cloud provider nor consumers can manage running in-
stances through the OpenStack platform.

In order to stop the nova-compute service, we must have an interface
to the compromised node operating system (i.e. either a ssh connection
or access to the physical node). Then we can stop the service using the
following command (Listing 7.2) :

107

7.1. Restriction of Infected Components

Listing 7.2: Disabling the nova-compute service

root@ <COMPROMISED NODE >:~# service nova -compute stop

This approach requires no further implementation, although we may like
to add a mechanisms to turn services on and off remotely.

Disabling a communicator service

An incident can be contained by disabling or modifying its corresponding
communicator service. An example of a communicator service in an Open-
Stack deployment nova-scheduler service. The nova-scheduler decides that
which worker should handle the newly arrived request, such as running an
instance.

By adding new features to the scheduler service, the platform can avoid
forwarding request to the compromised node.

Advantages of this approach are:

• No more requests will be forwarded to the compromised node.

• Consumers’ instances remain in the running status on the compro-
mised node. So, consumers will have enough time to migrate their
instances to a quarantine worker node or dispose their critical data.
Even estimate impacts of the incident.

• This approach can be used to identify the attackers, hidden system
vulnerabilities, and the set of employed exploits. In other words, it
can be used for forensic purposes.

And its disadvantages are:

• New features should be implemented. These new features are more
focused on the decision algorithm of the scheduler service.

• This approach will not secure the rest of our cloud environment, but
it avoids forwarding new requests to the compromised node. How-
ever, this drawback can be seen as an opportunity. We can apply this
approach and also move the compromised node to a HoneyCloud.
In the HoneyCloud we don’t restrict the compromised node, instead
analyze the attack and attacker’s behavior. But even by moving the
compromised node to a HoneyCloud, hosted instances on that node
are still in danger.

It is possible that consumers’ instances are all interconnected. Thus,
those running instances, on the compromised node in the HoneyCloud,

108

7.1. Restriction of Infected Components

threaten the rest of consumers’ instances. The rest of instances may
even be hosted on a secure worker node. The next proposed approach
is a solution for this issue.

7.1.4 Removing instances from the project VLAN

This approach does not contain the compromised node, instead focuses on
containing instances hosted by the compromised worker node. This is im-
portant because those instances may have been compromised as well. The
first step toward securing the consumer’s service is to disconnect potentially
infected instances.

The main usecase of this approach is when the attacker disrupts other
solutions (i.e. disabling nova-compute management functionalities, escalated
privileges at the OS layer), or when instances and the consumer’s service
security is very important (e.g. eGovernment services).

It can be done by either the cloud provider or cloud consumers. Although
it can also be done at the network layer, we focus on the cloud platform
VLAN management capabilities.

It has several advantages specifically for cloud consumers, including:

• Disconnect potentially infected instances from the rest of consumer’s
instance.

• It does not require implementation of new features.

• The attacker cannot disrupt this method.

And its disadvantages are as follows:

• This method only works in a specific OpenStack networking mode (i.e.
VLANManager networking mode).

• The consumer completely loses control over isolated instances, that
may lead to data loss or disclosure, service unavailability, etc.

7.1.5 Locking down instances’ live migration

Live migration can cause wide-spread infection, or can be a mechanism for
further intrusion to a cloud environment. It may take place intentionally or
unintentionally (e.g. an affected consumer may migrate instances to resolve
the attack side effects, or the attacker that has the consumer privileges
migrates instances to use a hypervisor vulnerability and gain control over
more nodes).

109

7.1. Restriction of Infected Components

Disabling this feature helps the cloud provider to contain the incident
more easily, and keep the rest of the environment safer.

7.1.6 Quarantining instances

When we migrate instances from a compromised node, we cannot accept the
risk of spreading infection along instance migration. Thus, we should move
them to a quarantine worker node first. The quarantine worker node has
specific functionalities and tasks, including:

• This worker node limits instances connectivity with the rest of cloud
environment. As an example, only cloud management requests/re-
sponses are delivered by the quarantine host.

• It has a set of mechanisms to check instances’ integrity and healthiness.
These mechanisms can be provided by the underlying hypervisor, cloud
platform, or third parties’ services.

In order to deploy a quarantine node, we should study and employ a set
of mechanisms. In most cases, we will introduce the appropriate tool that
has implemented the mechanism.

1. Virtual Machine Introspection
This mechanism simplifies introspecting the memory space of a virtual
machine from another virtual machine. The task is fairly complex
because of the semantic gap between the memory space of those two
virtual machines.

The XenAccess is an example of introspection library. Using XenAc-
cess the privileged domain can monitor another Xen domain.

2. Domain Monitoring
One of the basic methods to identify a compromised instance is by
means of profiling and monitoring the instance behavior. Domain mon-
itoring techniques provide an abstract set of data, comparing to the
detailed, low level output of a VM introspection tool.

For a virtual machine running over a Linux box we can use the libvirt
[7] library to access the suspicious instance and study its behavior. We
will mention a set of commands that uses libvirt and provide informa-
tion about instances and their statistics:

Listing 7.3: libvirt options for monitoring instances

110

7.1. Restriction of Infected Components

virsh help monitor

Domain Monitoring (help keyword ’monitor ’):

domblkinfo domain block device size information

domblkstat get device block stats for a domain

domifstat get network interface stats

dominfo domain information

dommemstat get memory statistics for a domain

domstate domain state

list list domains

Listing 7.4: Monitoring network interface statistics of an instance

virsh domifstat instance -00000017 vnet0

vnet0 rx_bytes 146252399

vnet0 rx_packets 483266

vnet0 rx_errs 0

vnet0 rx_drop 0

vnet0 tx_bytes 15022675

vnet0 tx_packets 60770

vnet0 tx_errs 0

vnet0 tx_drop 0

Another tool provided by the libvirt library is virt-top, that is a top
like utility for virtualization stats in a GNU/Linux environment. An
illustration of this tool is given in the following list.

Listing 7.5: virt-top sample output

virt -top

virt -top 18:57:05 - x86_64 4/4CPU 1600MHz 3877MB

6 domains , 5 active , 5 running , 0 sleeping , 0 paused

1 inactive D:0 O:0 X:0

CPU: 0.0% Mem: 2560 MB (2560 MB by guests)

ID S RDRQ WRRQ RXBY TXBY %CPU %MEM TIME NAME

5 R 0 0 0 0 0.0 13.0 8:39.37 i-17

6 R 0 0 0 0 0.0 13.0 5:43.32 i-1b

7 R 0 0 0 0 0.0 13.0 5:47.03 i-1c

8 R 0 0 0 0 0.0 13.0 5:47.97 i-1e

9 R 0 0 0 0 0.0 13.0 5:49.40 i-1f

- (i-03)

111

7.1. Restriction of Infected Components

ID S RXBY TXBY RXPK TXPK DOMAIN INTERFACE

5 R 86 0 1 0 instance -000 vnet0

6 R 86 0 1 0 instance -000 vnet1

7 R 86 0 1 0 instance -000 vnet2

8 R 86 0 1 0 instance -000 vnet3

9 R 86 0 1 0 instance -000 vnet4

3. Intrusion Detection
Having an intrusion detection system in the hypervisor or cloud plat-
form layer not only provide better visibility for security mechanisms
but also is more resistant against a targeted attack from an unautho-
rized access to an instance. Livewire [37] is a prototype implementation
of an intrusion detection system in a hypervisor.

Another way to benefit from intrusion detection system is the same
Amazon’s approach. They offer you a standalone Amazon Machine Image (AMI)
that contains Snort and Sourcefire Vulnerability Research Team rules.
Then the consumer can forward its instances traffic to the virtual ma-
chine with intrusion detection capabilities. Same approach can be uti-
lized in our deployment. The main issue is the approach performace
and utilization.

4. Utilizing trusted computing concepts

Trusted computing is a technology for ensuring the confidentiality and
integrity of a computation. Moreover it is useful for remote attestation.
Thus, we can use the technology not only for securing our deployment
but also to build a better quarantine and infection analysis mechanism.

There are several debates about its implications. The technology can
be used against software and hardware owners. Richard M. Stallman
says:

”Trusted computing is the proponents’ name for a scheme
to redesign computers so that application developers can trust
your computer to obey them instead of you. From their point
of view, it is trusted; from your point of view, it is treach-
erous.”

There is a Frequently Asked Questions page [18] by Ross Anderson
that covers most issues about trusted computing.

112

7.1. Restriction of Infected Components

In the following we will introduce multiple techniques that uses the
trusted computing as their core technology and are useful for our en-
vironment.

vTPM: Virtualizing the Trusted Platform Module [25]
Berger et al. propose the idea of a virtual trusted platform module.
The vTPM not only provides trusted computing services for an unlim-
ited number of instances, but also deliver extra security services such
as remote attestation of an instance integrity [25].

”In this context, attestation means to affirm that some
software or hardware is genuine or correct.”

The vTPM idea has been implemented in the Xen hypervisor by the
same team and IBM researchers23. Nguyen Anh Quynh has been work-
ing on the KVM implementation and integration of vTPM, but it is
not released yet. Thus, using the Xen hypervisor, we can check an
instance in the quarantine node to ensure its integrity.

TCCP: Trusted Cloud Computing Platform [67]
Santos et al. introduce the Trusted Cloud Computing Platform (TCCP).
The initial purpose of TCCP is to ensure the confidentiality and in-
tegrity of a cloud consumer’s computations. It is also possible to do
the remote attestation procedure using this technique, thus it is use-
ful to be considered as an effective method for ensuring an instance
integrity [67]. However, it has severe drawbacks that make the appli-
cation absurd, including: it is based on a trusted hypervisor (Terra
is used in their prototype implementation); and an external trusted
entity is required. Clearly, these obstacles can be relaxed by imple-
menting a Trusted Virtual Machine Monitor (TVMM) and using a CA
as the external trusted entity.

TVDc: IBM Trusted Virtual Datacenter [26]
The research of Berger et al. on trusted virtual datacenters are also
worth noting. Its main feature for a cloud environment is the strong
isolation among resources and instances. This isolation is realized
by means of the Trusted Virtual Domain (TVD) [26]. It can be used
not only for isolating consumers’ projects from each other but also to
implement a reliable HoneyCloud.

23They are also authors of the original paper [25].

113

7.2. Replication of Services

Implementing this approach in our cloud environment requires an ex-
tensive work. Moreover, the performance of this technique should be
studied in a large scale cloud environment to understand its implica-
tions.

It should be noted that although cloud providers or third party service
providers can offer an IDS agent service inside each instance, they cannot
force the consumer for accepting it. It is a reasonable argument due to
consumer’s organization internal security policies and resource overhead be-
cause of the security agent. Thus, applying security services to underlying
layer (i.e. hypervisor, cloud platform) is a preferred solution.

Detailed specifications of such a compute worker node is a great oppor-
tunity for future work.

7.2 Replication of Services

An approach to overcome the implications of an incident is replicating ser-
vices. A service in this section is a service which is delivered and maintained
by the cloud provider. It can be a cloud platform service (e.g nova-compute)
or any other services that concerns other stakeholders. The replication can
be done passively or actively, and that is due to new characteristics of the
cloud model.

7.2.1 Replication Layers

The replication of a cloud service can be done either at the physical or virtual
machine layer.

Replicate services on physical machines

Replicating service on physical machines is already done in a platform such
as the OpenStack. The provider can replicate cloud services either passively
or actively when facing an issue in the environment.

Replicate services on virtual machines

Replication of service on virtual machines has multiple benefits, including:

1. Virtual machines can be migrated while running (i.e. live migration),
this is a practical mechanism for stateful services that use memory.

114

7.3. Disinfection of Infected Components

2. Replication at the instance layer is helpful for forensics purposes. It
is also possible to move the compromised service in conjunction with
the underlying instance to a HoneyCloud. This is done instead of
moving the physical node, ceasing all services on it, and changing
the network configuration in order to restrict the compromised node
communication.

3. Using virtual machines in a cloud environment we can also benefit
from the cloud model elasticity and on demand access to computing
resources.

This approach is also the main idea behind the CC-VIT (Section 6.1.1).
By applying the CC-VIT to our environment, the preferred hybrid fault
model will be REMH, and the group communication is handle using the
AMQP messaging.

We can use physical-to-virtual converters to have the advantages of both
approaches. These tools convert a physical machine to a virtual machine
image/instance that can be run on top of a hypervisor.

Moreover, each of these replicas can be either active or passive. This will
have a great impact on the system availability.

7.3 Disinfection of Infected Components

Disinfecting an infected component is a crucial task in handling an incident
and securing the system. It can be accomplished with multiple methods
having a variety of specifications.

None of the following approaches will be used for cleaning the infected
binary files, instead less complex techniques are employed that can be ap-
plied in a highly distributed environment. Cleaning a binary file can be
offered by a third party security service provider, that has focused on large
scale antivirus software.

1. Updating the code
The service code can be updated to the latest, patched version. This
process should be done in a smooth way so all components will be ei-
ther updated or remain compatible with each other after partial com-
ponents update.

Several tools has been developed with this purpose. One of the best
examples is the Puppet project [11].

115

7.4. Consumer Approaches

2. Purging the infected service
Assuming that the attacker has stopped at the cloud platform layer,
by removing the service completely we can assure containment of the
incident.

3. Replacing the service
Another method which is not as strong as others, is achieved by re-
placing the infected service with another one that uses a different set
of application layer resources, such as configuration files, binaries, etc.
Thus, we can be sure that the infected resources have no effect on the
new service.

7.4 Consumer Approaches

This section will introduce a couple of approaches that can be used by a
consumer in case of an incident. They are categorized in two groups, reactive
and proactive approaches.

7.4.1 Reactive

Reactive approaches are applied when the consumer become aware of an
incident, and they don’t require a previous action. The instance migration
and component disinfection are two reactive methods that will be discussed.

Migration

The affected consumer can migrate an specific instance or a set of instances
to another compute worker or even another cloud environment. The migra-
tion among different provider is an open challenge nowadays, because of the
weak interoperability of cloud systems and lack of standard interfaces for
cloud services.

In our deployment, both Amazon Elastic Compute Cloud (EC2) APIs
and RackSpace APIs are supported. Thus, in theory a consumer can move
between any cloud environment provided by the Amazon EC2, RackSpace,
and any open deployment of OpenStack without any problem.

Disinfection

The same methods as discussed in Section 7.3 can be applied here.

116

7.4. Consumer Approaches

7.4.2 Proactive

Proactive approaches require a set of previously done actions. Two proactive
methods are mentioned in the following, comprising: services replication and
application of trusted computing technology.

Replicate services

As discussed in Section 7.2, a consumer can also replicate its services. This
replication may be done in either a single cloud environment or among sev-
eral cloud providers’ environments.

Trusted Computing

Assuming that the underlying platform support trusted computing, a con-
sumer can uses an external trusted entity to ensure the confidentiality and
integrity of computation, as explained in [67] and [25] (Section 7.1.6).

117

Chapter 8

Lab Setup

As we discussed before, we have found the OpenStack cloud platform as the
best choice for a real case study in our research. But choosing the OpenStack
has its own disadvantages as well. The fact that our first experience was
only six months after its first release, and lack of documentation, introduces
several challenges in our study.

Installation, configuration and administration of the OpenStack in a use-
ful way for our research is a part of our thesis contributions. It should be
noted while experimenting with the OpenStack, several bugs and issues have
been identified in the platform and reported to the community. Addition-
ally, many other design improvements have been discussed in the community
which are direct outcomes of our deep study in the OpenStack platform and
previous identification of a cloud platform requirements.

8.1 OpenStack Compute Deployment

This section will study installation and configuration of OpenStack Compute
project (Nova). We will use a variety of references, including: OpenStack
Compute Administration Manual [56], OpenStack Wiki page[85] and expe-
riences from communicating with OpenStack community at IRC channel
#openstack (irc.freenode.org).

We explain a few terms that are going to be used in the rest of our report
and may be ambiguous for readers:

In the OpenStack cloud environment each cloud consumer has its own
project. Access to VM images is restricted by these projects. A project
defines the territory of a cloud consumer which can be file system quota,
bandwidth quota, etc. A project can have several users with different roles.
A role restricts users’ activity and define her/his privileges. Key-pairs are
assigned to each user and facilitate the user’s access to the cloud resources.
A VM image can have a kernel and a ramdisk (optional); this image con-
tains the operating system and applications which will be used or have been
requested by the cloud consumer. The VM image is required to start its

118

8.1. OpenStack Compute Deployment

Figure 8.1: Logical relation of entities in an OpenStack environment

corresponding VM instance. Bucket is a container for images. Their logical
relation is depicted in Figure 8.1.

8.1.1 System Requirements

The hardware requirements of a cloud controller in an experimental deploy-
ment of the OpenStack is shown in Table 8.1. We will use same configuration
for all host machines. These host machines will run the compute controller,
network controller, volume controller, scheduler, and object store services.

MySQL is recommended as the database, because it is easier to do high
availability with it. Moreover, Master/Slave replication of MySQL is rec-
ommended for high availability setup. The more slaves, the better it would
be, also we should consider heartbeat to change a slave to master in case of
a master failure.

Heartbeat manages the configuration of different resources to
manage the switching between two servers in the event of a fail-
ure. The resource configuration defines the individual services
that should be brought up (or taken down) in the event of a fail-
ure. [16]

119

8.1. OpenStack Compute Deployment

Cloud Controller Minimum Suggested Actual

CPU 1GHz Two 2GHz Four 2.80GHz

HVM Support Not essential Recommended Available

Memory 1GB 8GB 8GB

Disk Space 40GB 200GB 1TB

Networking 100Mbps 1Gbps 1Gbps ToR,
100Mbps Uplink

Operating System Ubuntu, CentOS,
RHEL

Ubuntu 10.04
LTS

Ubuntu 10.04.1
LTS

Database SQLAlchemy
Compatible

MySQL, Post-
greSQL

MySQL

Table 8.1: Hardware Requirement for Cloud Controller

Using MySQL proxy will even improve the performance more, by split-
ting read/write requests.

There exists a variety of methods for scaling out OpenStack, one way is
to add more compute nodes, under nova-compute service name. We have a
single cloud controller and four compute nodes.

8.1.2 Architecture/Structure

In our laboratory configuration, we used the simple flat structure. This will
avoid further complexity which is caused by the hierarchical or peer to peer
architecture. We have four physical machines, one of them will be the cloud
controller and eight services will run on it. Services are nova-api, nova-
network, nova-scheduler, nova-objectstore, nova-compute, glance, dnsmasq,
and mysql server. The other three nodes are compute workers which have
only the nova-compute service. The abstract diagram of our lab setup is
depicted in Figure 8.2.

Each machine has two network interfaces, which are connected to differ-
ent switches (i.e. SW1 and SW2). The first interface is for communicating
with the outside world and is used mainly for the platform management. The
second interface is used to inter-connect virtual machines. A Linux bridge
is created using the second interface on each machine. Virtual interfaces for
instances are added to the bridge on the physical machine. Thus, the bridge
in each host works as a layer 2 switch. All these bridges are connected to
each other using another switch (i.e. SW1). Figure 8.3 gives an abstract
view of the inner structure of a compute node.

120

8.1. OpenStack Compute Deployment

Figure 8.2: Hosts structure in our laboratory configuration

Figure 8.3: A compute node in our laboratory configuration

121

8.1. OpenStack Compute Deployment

Figure 8.4: Running services on each physical host

8.1.3 Component Distribution

We have four compute nodes that run the nova-compute service. The host
with nova-compute service can host virtual machine instances. Thus, all four
physical machines in our configuration are capable of hosting VM instances.

The first host (i.e. OpenStack-1) is also working as the cloud controller.
The cloud controller is responsible for running the messaging service (i.e.
RabbitMQ). Additionally, our cloud controller node handles the networking
service, database functionality, task scheduling, and provide storage service.

Moreover, a Simple Network Management Protocol (SNMP) agent is in-
stalled on each host for monitoring purposes. The monitoring server is run-
ning on OpenStack-4. A detailed figure of the lab deployment is in Figure
8.4, also running services on each host are listed in Tables 8.2, 8.3, 8.4, 8.5.

8.1.4 Installation

Cloud Controller Node

Initially we need to add the Nova and Glance Personal Package Archives (PPA)
repository, and update the local list of packages to include nova files.

Listing 8.1: Adding Nova package repository

122

8.1. OpenStack Compute Deployment

Specification

IP 129.241.252.119

OS Linux openstack-1 2.6.32-24-server #39-Ubuntu SMP Wed
Jul 28 06:21:40 UTC 2010 x86 64 GNU/Linux

HW 4 * (Intel(R) Core(TM) i5-2300 CPU), 8GB RAM, 1 TB
HDD, 2 * 1 GB NIC

Services

Cloud Controller RabbitMQ

Networking nova-network, Dnsmasq

Scheduling nova-scheduler

Storage nova-objectstore, glance

Computing nova-compute

Database MySQL, SQLite (glance)

Monitoring SNMP Agent

Table 8.2: OpenStack-1 specification and services

Specification

IP 129.241.252.118

OS Linux openstack-1 2.6.32-24-server #39-Ubuntu SMP Wed
Jul 28 06:21:40 UTC 2010 x86 64 GNU/Linux

HW 4 * (Intel(R) Core(TM) i5-2300 CPU), 8GB RAM, 1 TB
HDD, 2 * 1 GB NIC

Services

Computing nova-compute

Monitoring SNMP Agent

Table 8.3: OpenStack-2 specification and services

Specification

IP 129.241.252.117

OS Linux openstack-1 2.6.32-24-server #39-Ubuntu SMP Wed
Jul 28 06:21:40 UTC 2010 x86 64 GNU/Linux

HW 4 * (Intel(R) Core(TM) i5-2300 CPU), 8GB RAM, 1 TB
HDD, 2 * 1 GB NIC

Services

Computing nova-compute

Monitoring SNMP Agent

Table 8.4: OpenStack-3 specification and services

123

8.1. OpenStack Compute Deployment

Specification

IP 129.241.252.116

OS Linux openstack-1 2.6.32-24-server #39-Ubuntu SMP Wed
Jul 28 06:21:40 UTC 2010 x86 64 GNU/Linux

HW 4 * (Intel(R) Core(TM) i5-2300 CPU), 8GB RAM, 1 TB
HDD, 2 * 1 GB NIC

Services

Computing nova-compute

Monitoring Cacti server, SNMP Agent

Web Server Apache

Table 8.5: OpenStack-4 specification and services

root@openstack -1:~# add -apt -repository \

ppa:nova -core/trunk

root@openstack -1:~# add -apt -repository \

ppa:glance -core/trunk

root@openstack -1:~# apt -get update

Then we continue to install nova packages and their dependencies.

Listing 8.2: Installing Nova packages

root@openstack -1:~# apt -get install python -greenlet\

python -mysqldb python -nova nova -common\

nova -doc nova -api nova -network \

nova -objectstore nova -scheduler \

nova -compute rabbitmq-server euca2ools unzip

Now we should add the Glance project which provides the Imaging Ser-
vice.

Listing 8.3: Installing the Glance package

root@openstack -1:~# apt -get install glance

Finally we install the SNMP Agent and mySQL database server.

Listing 8.4: Installing the SNMP agent

root@openstack -1:~# apt -get install snmpd \

mysql -server

124

8.1. OpenStack Compute Deployment

Compute Node

In each of worker node (i.e. OpenStack-2, OpenStack-3, OpenStack-4), the
nova-compute and the SNMP Agent should be installed.

Listing 8.5: Installing Nova and SNMP Agent

root@openstack -2:~# add -apt -repository \

ppa:nova -core/trunk

root@openstack -2:~# apt -get update

root@openstack -2:~# apt -get install nova -compute

root@openstack -2:~# apt -get install snmpd

We also need to install the Cacti monitoring server on OpenStack-4 using
apt-get command.

8.1.5 Configuration

Cloud Controller

We start by configuring our cloud controller. The database, S3 host, rab-
bitmq server, and EC2 host are all installed and running on OpenStack-1.
Moreover, the network range for all instances in the cloud is 192.168.0.0/12
and we limit number of IP addresses in the cloud to 5000. The networking
mode which has been used in the deployment is FlatDHCP which will be
explained later. Thus, the /etc/nova/nova.conf configuration file will be as
follows:

Listing 8.6: nova.conf

−−d h c p b r i d g e f l a g f i l e=/etc /nova/nova . con f
−−dhcpbr idge=/usr / bin /nova−dhcpbr idge
−− l o gd i r=/var / log /nova
−−s ta te path=/var/ l i b /nova
−−l ock path=/var / lock /nova
−−verbose
−−s q l c onn ec t i on=mysql : // root : nova@129 . 241 . 252 . 119/ nova
−−s3 hos t =129.241 .252 .119
−−r abb i t h o s t =129.241 .252 .119
−−ec2 hos t =129.241 .252 .119
−−e c 2 u r l=http : //129 . 241 . 252 . 119 : 8773/ s e r v i c e s /Cloud
−−network manager=nova . network . manager . FlatDHCPManager
−−f l a t n e twork dh cp s t a r t =192.168 .0 .2
−− f l a t i n t e r f a c e=eth1

125

8.1. OpenStack Compute Deployment

−− f l a t i n j e c t e d=False
−−p u b l i c i n t e r f a c e=eth0
−−f i x ed r ange =192.168 .0 .0/12
−−network s i z e=5000
−−g lance hos t =129.241 .252 .119
−−image s e r v i c e=nova . image . g lance . GlanceImageService

In the following you may find the description of some useful configura-
tion parameters in nova.conf ; also the exact value of each parameter in our
installation is in Table 8.6:

• sql connection: URI of OpenStack Compute SQL database

• s3 host: Location of OpenStack ObjectStore service that has VM
images and buckets

• rabbit host: Location of OpenStack Compute database

• cc host: Location of OpenStack nova-api service

• ec2 url: nova-api URL

• network manager: Specifies network configuration for communica-
tion of Cloud Controller with its Compute nodes and VM instances

• flat network dhcp start: The starting IP address for the our flat
network

• flat interface: The host interface which is used for bridging

• public interface: The host interface that is accessible publicly and
mainly used for management.

• fixed range: IP block that will be used for VM instances in the
cloud. This block is shared between all customers’ projects in the
cloud. While defining a new project, a subnet of this block can be
assigned specifically to a project in the cloud.

• network size: Number of all IP addresses that may be assigned to
instances across all projects

• glance host: Location of glance imaging service

• imaging service: The type of imaging service which is used, can be
either local or glance image service.

126

8.1. OpenStack Compute Deployment

Parameter Type Value

sql connection URI mysql://root:nova@129.241.252.119/nova

s3 host IP 129.241.252.119

rabbit host IP 129.241.252.119

cc host IP 129.241.252.119

ec2 url HTTP URL http://129.241.252.119:8773/services/Cloud

network manager String nova.network.manager.FlatDHCPManager

flat network dhcp start IP 192.168.0.2

flat interface String eth1

public interface String eth0

fixed range Net prefix 192.168.0.0/12

network size Integer 5000

glance host IP 129.241.252.119

imaging service String nova.image.glance.GlanceImageService

Table 8.6: Cloud controller parameters and our deployment details [56]

As the nova.conf file contains the database administrator’s password, we
should limit the access to it.

Listing 8.7: Setting nova.conf permissions

root@openstack -1:~# chown -R root:nova /etc/nova

root@openstack -1:~# chmod 644 /etc/nova/nova.conf

Now we should configure the previously installed mySQL server. The
mySQL server should be configured in such a way that will be accessible
from required machines. Also, we should create nova database by ourselves
and grant all privileges to the administrator user.

Listing 8.8: Configuring mySQL for nova

root@openstack -1:~# sed -i ’s/127.0.0.1/0.0.0.0/g’\

/etc/mysql/my.cnf

root@openstack -1:~# mysql -uroot -pnova

mysql > CREATE DATABASE nova;

mysql > GRANT ALL PRIVILEGES ON *.* TO\

’root ’@0 ’%’ WITH GRANT OPTION;

After finishing with the nova components and the database, we should
configure the SNMP agent as well. So it will be accessible by the monitoring

127

8.1. OpenStack Compute Deployment

server. We add/modify few lines to /etc/snmp/snmpd.conf configuration
file to grant the access to the monitoring server and unify the SNMPv2c
community.

Listing 8.9: Modified lines of snmpd.conf

rwuser : a SNMPv3 read−wr i t e user
rwuser c a c t i

rwcommunity : a SNMPv1/SNMPv2c read−wr i t e a c c e s s
community name
rwcommunity opencommunity openstack−4

com2sec r eadwr i t e openstack−4 opencommunity

Our Network Configuration

We have used FlatDHCP mode for network configuration. The IP block
of 192.168.0.0/12 is used for all the projects and 5000 IP addresses are
available for use in this range. We authorized ICMP and SSH packets to all
VM instances by default, using the following commands:

Listing 8.10: Authorizing ICMP and SSH

euca -authorize -P icmp -t -1:-1 default

euca -authorize -P tcp -p 22 default

Finally we should add the following rule to ensure destination natting of
the traffic heading towards 169.254.169.254.

Listing 8.11: Adding iptables rule to redirect the traffic

iptables -t nat -A PREROUTING \

-d 169.254.169.254/32 \

-p tcp -m tcp --dport 80 -j DNAT \

--to-destination 129.241.252.119:8773

Compute Node

In order to scale out our cloud platform, we installed several compute nodes
as explained previously. We should ensure that nova.conf has the proper
parameters/values on each compute node. Parameters should point to the
right IP address of the cloud controller, object store, compute database,
nova-api service and imaging service.

128

8.1. OpenStack Compute Deployment

8.1.6 Management

This part contains basic management functionalities of the OpenStack Com-
pute including: loading and deleting a VM image, starting and terminating
an instance.

In order to execute all the following commands, appropriate credentials
should be exported beforehand. Nova provides a set of credentials for a user
in an specific project.

So, we should start by add a new user and creating a new project and
assigning the user to that project. Finally we need to create the required
network and extract user credentials.

Listing 8.12: Generating credentials

nova -manage user admin aryan

nova -manage project create myproject aryan

nova -manage network create 192.168.0.0/24 1 255

nova -manage project zipfile myproject aryan

The output of the last command is a zip file named nova.zip. It contains
credentials and a novarc file. Sourcing the novarc will export appropriate
variables to the current shell environment.

Listing 8.13: Sourcing novarc

source /root/creds/novarc

VM Images

OpenStack provides some basic VM images for testing the installation. But
we can create our own images as well. This procedure becomes easier by
means of the following code: https://code.launchpad.net/ smoser/+junk/ttylinux-
uec.

Starting an Instance

We loaded our image using Ubuntu Enterprise Cloud utilities.

Listing 8.14: Uploading a VM image

uec-publish -tarball ${img}.tar.gz mybucket x86_64

When the image is loaded correctly, we will get three references, Eucalyptus Machine Image (emi),
Eucalyptus Ramdisk Image (eri), Eucalyptus Kernel Image (eki) namely. These

129

8.1. OpenStack Compute Deployment

references will be useful for further management/manipulation of VM in-
stances.

When image extraction is completed and the image status changed from
”untarring” to ”available”, we can run the instance using our newly loaded
image. emi is needed for this step. A key pair should be created first,
and will be injected to the instance, so it will be possible to connect to the
launched instance using generated key.

Listing 8.15: Creating a key pair and running an instance

euca -add-keypair mykey > mykey.priv

euca -run-instances <EMI_VALUE > -k mykey -t m1.tiny

mykey is the user’s key for a specific project and m1.tiny describes the
instance type, which is the smallest one.

We check the status of started instance using:

Listing 8.16: Checking an instance status

euca -describe-instances

RESERVATION r-a8a9ekp8 myproj default

INSTANCE i -00000001 ami -00000003

192.168.0.2 192.168.0.2 running mykey

(myproj , openstack -1) 0m1.tiny

2011 -04 -13T09:37:42Z nova

and when it becomes ”running”, it would be possible to SSH to its IP address
that is extracted from the previous command.

Terminating an Instance

In order to terminate an instance we use the instance ID from the instance
description.

Listing 8.17: Terminating an instance

euca -terminate -instances <INSTANCE_ID >

Deleting an Image

A bucket can be deleted using euca utilities. Bucket is a container for an
image.

130

8.1. OpenStack Compute Deployment

Listing 8.18: Deleting a bundle

euca -delete -bundle -b mybucket

8.1.7 Operation

Instance launching [46]

Starting a new instance requires cooperation of several components, includ-
ing: API Server, Cloud Controller, Scheduler, Compute Controller and Net-
work Controller. Their functionalities have been explained previously in
Section 3.2. As it is depicted in Figure 8.5, the abstract communication of
major components, for starting an instance, can be represented in 8 steps.
It is assumed that only one Cloud Controller (i.e. Messaging server) exists.
Details of each step is as follows: [46]

1. The API server forwards the user request for running an instance to
the cloud controller.

• Check number of running instances for this particular type and
avoid hitting the threshold.

• Check existence of corresponding security group, otherwise create
one.

• Generate networking parameters (i.e. Media Access Control (MAC)
Address and Hostname).

• Communicating with the scheduler to find the proper compute
worker.

2. The scheduler chooses a compute worker and sends it the request to
start a new instance.

The message delivery type which is used for sending the request to
the scheduler is called RPC Casting. Contrary to a call, in a cast, no
response is expected. In this delivery mode, the API server publishes
the request and a scheduler worker consumes and retrieves it from the
queue.

3. A compute worker receives the request. Compute checks if the instance
is already started, if not it will request for a fixed IP address and setup
the VLAN and bridge configurations. [46].

The compute controller uses a RPC call to ask for a fixed IP address.
In this technique a specific host is targeted and a response is expected.
The target for this request is the network controller component.

131

8.2. Performance Monitoring of the Infrastructure

Figure 8.5: Message flow for running an instance [46]

4. The compute spawns the requested VM instance by means of a virtu-
alization driver. In this step proper firewall rules will also be applied.

8.2 Performance Monitoring of the Infrastructure

As we discussed in Chapter 5, detecting an incident and explaining its spec-
ifications, requires the knowledge about the normal operation of a system.
Using system monitoring technique we understand the expected behavior of
a cloud environment and its components.

We have used several tools for monitoring the cloud components, includ-
ing: RRDTool, Simple Network Management Protocol Daemon (SNMPD),
sFlow, collectd, Cacti.

• RRDTool
The RRDTool is a package for logging and graphing system charac-
teristics based on time series data [55].

132

8.2. Performance Monitoring of the Infrastructure

• SNMPD
SNMPD is a daemon that responds to SNMP requests. It is a SNMP
agent that listen for SNMP request from management software [54].

• sFlow
The sFlow [70] is a standard technology which is used for monitoring
networks and hosts. The scalability and metrics integration are two
important characteristics of sFlow standard [69].

• Cacti
Cacti uses the RRDTool package for data storage and data graphing.
Cacti has a poller functionality to gather data from different sources.
It uses multiple data acquisition methods [4].

8.2.1 Installation and Configuration

SNMPD

Listing 8.19: Installing and configuring SNMP daemon

apt-get install snmpd

snmpconf -g basic_setup

First command will install the SNMPD and all required packages. snm-
pconf will do the basic configuration for the SNMP agent.

Cacti

Listing 8.20: Installing and configuring SNMP daemon

apt-get install cacti cacti -cactid cacti -spine

This will install Cacti and all its dependencies. To complete the instal-
lation, we should check the following address and proceed the procedure.

Host sFlow

8.2.2 Data Sources and Graphs

We measure and draw corresponding graphs for the following resources/en-
tities:

• CPU utilization (Figure 8.6)

133

8.2. Performance Monitoring of the Infrastructure

Figure 8.6: CPU Utilization

• Network traffic and protocol statistics (Figures 8.7, 8.9, 8.11)

• Disk input/output (Figure 8.10)

• Load (Figure 8.12)

• Memory (Figure 8.8)

• Number of processes

• Number of logged in users

Each of these statistics are gathered and represented for five different
period (i.e. one minute, five minute, 30 minute, two hour, one day)

134

8.2. Performance Monitoring of the Infrastructure

Figure 8.7: NIC Traffic

135

8.2. Performance Monitoring of the Infrastructure

Figure 8.8: Memory Usage

Figure 8.9: Combined Traffic statistics

136

8.2. Performance Monitoring of the Infrastructure

Figure 8.10: Disk Input/Output

137

8.2. Performance Monitoring of the Infrastructure

Figure 8.11: TCP Protocol statistics

Figure 8.12: Load Average

138

8.3. Messaging Server Management and Monitoring

8.3 Messaging Server Management and

Monitoring

The OpenStack uses RabbitMQ as the messaging server in the cloud con-
troller machine. One of the main approaches which we have proposed for
containment and eradication was blocking the compromised node at the
messaging server. This section will explain how we changed the messag-
ing server and its dependencies so it will be capable of having the monitoring
and management plug-in.

8.3.1 Installation

The RabbitMQ server which has been installed by default during the Open-
Stack installation will not work with RabbitMQ management plug-in. Thus,
you have to make sure that the latest version of RabbitMQ and Erlang is
installed. We start by removing the already installed RabbitMQ server and
Erlang package24.

Listing 8.21: Removing the existing RabbitMQ server and Erlang package

apt-get remove --purge rabbitmq -server

apt-get remove --purge erlang

Installing Erlang from source requires two libraries which will be installed
first.

Listing 8.22: Installing Erlang dependencies

apt-get install libncurses5 -dev xmlto

Listing 8.23: Installing Erlang from its source

wget http://www.erlang.org/download/\

otp_src_R14B02.tar.gz

tar xvfz otp_src_R14B02.tar.gz

cd otp_src_R14B02

./ configure && make && make install

Now we continue by installing the RabbitMQ server from its source

24Nova services must be stopped before removing the messaging server, otherwise you
will see lots of error messages in log files.

139

8.3. Messaging Server Management and Monitoring

Listing 8.24: Installing RabbitMQ

wget http://www.rabbitmq.com/releases/\

rabbitmq -server/v2.4.1/rabbitmq -\

server -2.4.1. tar.gz

tar xvfz rabbitmq -server -2.4.1. tar.gz

cd rabbitmq -server -2.4.1

make && sudo make install \

SBIN_DIR=/usr/local/sbin \

MAN_DIR =/usr/local/man/ \

TARGET_DIR=/usr/local/lib/rabbitmq

Finally we should install the RabbitMQ management plug-in with its
dependencies.

Listing 8.25: Installing RabbitMQ Management and Monitoring plug-in

cd /usr/local/lib/rabbitmq/plugins

wget http://www.rabbitmq.com/releases/plugins /\

v2 .4.1/rabbitmq-management -2.4.1. ez

wget http://www.rabbitmq.com/releases/plugins /\

v2 .4.1/rabbitmq-management -agent -2.4.1

wget http://www.rabbitmq.com/releases/plugins /\

v2 .4.1/rabbitmq-mochiweb -2.4.1.ez

wget http://www.rabbitmq.com/releases/plugins /\

v2 .4.1/amqp_client -2.4.1.ez

wget http://www.rabbitmq.com/releases/plugins /\

v2 .4.1/webmachine -2.4.1. ez

wget http://www.rabbitmq.com/releases/plugins /\

v2 .4.1/mochiweb -2.4.1. ez

killall -9 rabbitmq -server

rabbitmq -server -detach

8.3.2 Operating

After installing the plug-in, we can start managing and monitoring the mes-
saging server by browsing http://openstack-1:55672/mgmt/

140

8.3. Messaging Server Management and Monitoring

Figure 8.13: RabbitMQ Management Overview

141

8.3. Messaging Server Management and Monitoring

Figure 8.14: RabbitMQ Node rabbit@openstack-1 Overview

Figure 8.15: RabbitMQ Connections

142

8.3. Messaging Server Management and Monitoring

Figure 8.16: RabbitMQ a Connection Details

Figure 8.17: RabbitMQ Channels

143

8.3. Messaging Server Management and Monitoring

Figure 8.18: RabbitMQ a Channel Details

Figure 8.19: RabbitMQ Exchange

144

8.3. Messaging Server Management and Monitoring

Figure 8.20: RabbitMQ an Exchange Details

145

8.3. Messaging Server Management and Monitoring

Figure 8.21: RabbitMQ Queues

146

8.3. Messaging Server Management and Monitoring

Figure 8.22: RabbitMQ a Queue Details

147

Chapter 9

Conclusion

Cloud computing is a new computing model. Its definitions and realizations
have new characteristics compared to other computing models. New char-
acteristics hinder the application process of existing mechanisms. In some
cases, existing approaches are not applicable and in other cases adaptation
is required.

Initially, we studied different aspects of a real cloud environment. We
have been working on a deployed environment instead of focusing on an
imaginary computing model. Experimenting on a deployed environment
is helpful in reducing the gap between academic research and industrial
deployment/requirements. We should understand that many questions that
are discussed in an academic environment are already solved in industry or
are not the right questions at all. A good blog post on this issue can be
found in [83].

Although our lab setup was not big enough to be realistic, it was useful
for understanding the ecosystem of the cloud model, and observing possible
weaknesses in it. Obviously, deploying a larger infrastructure reveals more
information about the exact behavior of the environment and the result will
be more accurate. However, that may not be feasible as a university project
unless big players in the cloud are willing to contribute. Some of those efforts
are as follows: OpenCirrus [8] (supported by HP, Intel, and Yahoo!), Google
Exacycle [24] program, and Amazon grants for educators, researchers and
students [68].

In our thesis we have decided to use the OpenStack cloud software. There
were multiple reasons behind this decision, such as:

• Working on an open source project helps its community, and pushes
the open source paradigm forward.

• Analysis of the platform and experimenting different approaches are
easier and more efficient when we can access the source code.

• Big companies are involved in the OpenStack project, and many of
them are using the platform in their own infrastructure. Thus, Open-

148

Chapter 9. Conclusion

Stack can become a leading open source cloud platform in the near
future.

When we started our thesis, it was only 4 months after the first release of
OpenStack; documentations were not good enough even if they were avail-
able. We studied its components and identified their functionalities and
other specifications. Moreover, working with a platform which is under
heavy development, has its own challenges.

In order to secure the environment against a compromised component,
we have to handle the corresponding incident. The NIST incident handling
guideline has been studied and applied to our experimental cloud environ-
ment. During the application process we did not limit ourselves to the
lab setup, because it was not large/distributed enough. So, in propose ap-
proaches we considered a large scale, highly distributed target environment;
and made those approaches compatible with such an environment.

Moreover, the NIST guideline recommends a set of actions for each han-
dling phase. These actions can be realized using a variety of mechanisms.
We have studied several mechanisms and discussed their compatibilities with
the cloud model. Additionally, we have proposed new approaches that are
helpful in fulfilling incident handling requirements.

Furthermore, in this process multiple questions and challenges were raised
that can be interesting topics for future work in cloud incident handling and
in general security of a cloud environment. We itemize a few of them in the
following:

• Statistical measurement and analysis of each approach and study of
the exact performance overhead.

• Large scale deployment of OpenStack with its latest release.

• Implementation of proposed approaches as a set of security services,
and study their effectiveness for a cloud consumer and the cloud envi-
ronment in general.

• Study the compatibility of approaches and guidelines to other cloud
environments, specifically with those operated by industry or commer-
cial cloud providers (e.g. Amazon, Rackspace, Google App Engine,
Azure).

149

References

[1] European Network and Information Security Agency. www.enisa.

europa.eu/about-enisa, Visited: 15 Feb 2011.

[2] National information assurance (ia) glossary. CNSS Instruction 4009,
Committee on National Security Systems, April 2010.

[3] About RabbitMQ. http://www.rabbitmq.com/about.html, February
2011.

[4] Cacti, the Complete RRDTool-based graphing solution. http://www.

cacti.net/, April 2011.

[5] Cloud Security Alliance. http://www.cloudsecurityalliance.org/,
February 2011.

[6] Cloudfit project summary. http://cloudfit.di.fc.ul.pt/index.

php?title=Public:About, March 2011.

[7] libvirt Wiki. http://wiki.libvirt.org/page/Main_Page#libvirt_

Wiki, March 2011.

[8] Open cirrus. https://opencirrus.org/, June 2011.

[9] Open vSwitch, An Open Virtual Switch. http://openvswitch.org/,
March 2011.

[10] Openstack community. http://www.openstack.org/community/,
May 2011.

[11] Puppet labs. http://www.puppetlabs.com/, May 2011.

[12] RabbitMQ and Nova. http://nova.openstack.org/devref/rabbit.
html, February 2011.

[13] Rabbitmq core api guide. http://www.rabbitmq.com/api-guide.

html, May 2011.

150

www.enisa.europa.eu/about-enisa
www.enisa.europa.eu/about-enisa
http://www.rabbitmq.com/about.html
http://www.cacti.net/
http://www.cacti.net/
http://www.cloudsecurityalliance.org/
http://cloudfit.di.fc.ul.pt/index.php?title=Public:About
http://cloudfit.di.fc.ul.pt/index.php?title=Public:About
http://wiki.libvirt.org/page/Main_Page#libvirt_Wiki
http://wiki.libvirt.org/page/Main_Page#libvirt_Wiki
https://opencirrus.org/
http://openvswitch.org/
http://www.openstack.org/community/
http://www.puppetlabs.com/
http://nova.openstack.org/devref/rabbit.html
http://nova.openstack.org/devref/rabbit.html
http://www.rabbitmq.com/api-guide.html
http://www.rabbitmq.com/api-guide.html

References

[14] Rabbitmq ssl. http://www.rabbitmq.com/ssl.html, May 2011.

[15] The Committee on National Security Systems. http://www.cnss.

gov/, March 2011.

[16] Using heartbeat with mysql and drbd. http://dev.mysql.com/doc/

refman/5.0/en/ha-heartbeat-drbd.html, March 2011.

[17] Sanjay Aiyagari, Shahrokh Sadjadi, Matthew Arrot, Rafael Schlom-
ing, Mark Atwell, Steven Shaw, Jason Brome, Gordon Sim, Alan Con-
way, Martin Sustrik, Robert Greig, Carl Trieloff, Pieter Hintjens, Kim
van der Riet, John O’Hara, Steve Vinoski, and Martin Ritchie. Ad-
vanced message queuing protocol protocol specification. amq-spec,
AMQP.org, December 2006. Version 0.9.

[18] Ross Anderson. ’trusted computing’ frequently asked questions.
http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html, August 2003.

[19] Ruo Ando, Kang Byung, and Youki Kadobayashi. Log analysis of ex-
ploitation in cloud computing environment using automated reasoning.
In Proceedings of the 17th international conference on Neural informa-
tion processing: models and applications - Volume Part II, ICONIP’10,
pages 337–343, Berlin, Heidelberg, 2010. Springer-Verlag.

[20] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson,
Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the Clouds: A
Berkeley View of Cloud Computing. Technical Report UCB/EECS-
2009-28, EECS Department, University of California, Berkeley, Feb
2009.

[21] AWS Security Team. Vulnerability Reporting. http://aws.amazon.

com/security/vulnerability-reporting/, March 2011.

[22] Paolo Balboni, Kieran McCorry, and W. David Snead. Cloud Com-
puting – Benefits, risks and recommendations for information secu-
rity. Technical report, European Network and Information Secu-
rity Agency, November 2009. http://www.enisa.europa.eu/act/rm/
files/deliverables/cloud-computing-risk-assessment/.

[23] Stephen G. Batsell, Nageswara S. Rao, and Mallikarjun Shankar.
Distributed Intrusion Detection and Attack Containment for Or-
ganizational Cyber Security. http://www.ioc.ornl.gov/projects/

documents/containment.pdf.

151

http://www.rabbitmq.com/ssl.html
http://www.cnss.gov/
http://www.cnss.gov/
http://dev.mysql.com/doc/refman/5.0/en/ha-heartbeat-drbd.html
http://dev.mysql.com/doc/refman/5.0/en/ha-heartbeat-drbd.html
http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
http://aws.amazon.com/security/vulnerability-reporting/
http://aws.amazon.com/security/vulnerability-reporting/
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/
http://www.ioc.ornl.gov/projects/documents/containment.pdf
http://www.ioc.ornl.gov/projects/documents/containment.pdf

References

[24] Dan Belov. 1 billion core-hours of computational capacity
for researchers. http://googleresearch.blogspot.com/2011/04/

1-billion-core-hours-of-computational.html, June 2011.

[25] Stefan Berger, Ramon Caceres, Kenneth A. Goldman, Ronald Perez,
Reiner Sailer, and Leendert van Doorn. vtpm: Virtualizing the trusted
platform module. Research Report RC23879, IBM Research Division,
February 2006.

[26] Stefan Berger, Ramon Caceres, Dimitrios Pendarakis, Reiner Sailer,
Enriquillo Valdez, Ronald Perez, Wayne Schildhauer, and Deepa Srini-
vasan. Tvdc: Managing security in the trusted virtual datacenter. Re-
search Report RC24441, IBM Research Division, November 2007.

[27] Yanpei Chen, Vern Paxson, and Randy H. Katz. What’s New About
Cloud Computing Security? Technical Report UCB/EECS-2010-5,
EECS Department, University of California, Berkeley, Jan 2010.

[28] Ben Tudor Christy Pettey. Gartner Says 60 Percent of Virtualized
Servers Will Be Less Secure Than the Physical Servers They Replace
Through 2012. http://www.gartner.com/it/page.jsp?id=1322414,
March 2010.

[29] Holly Stevens Christy Pettey. Gartner highlights key predictions for
it organizations and users in 2010 and beyond. http://www.gartner.
com/it/page.jsp?id=1278413, January 2010.

[30] Cloud Security Alliance. Top Threats to Cloud Computing V1.0. Tech-
nical report, March 2010. http://www.cloudsecurityalliance.org/
topthreats/.

[31] OpenStack Community. Bexar, Release Notes. http://wiki.

openstack.org/ReleaseNotes/Bexar, March 2011.

[32] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud Computing:
Issues and Challenges. Advanced Information Networking and Applica-
tions, International Conference on, 0:27–33, 2010.

[33] Data Privacy Protection Directive. http://ec.europa.eu/justice/

policies/privacy/index_en.htm.

[34] Vish Ishaya Eric Day, Paul Voccio. Distributed scheduler. http://

wiki.openstack.org/DistributedScheduler, February 2011.

152

http://googleresearch.blogspot.com/2011/04/1-billion-core-hours-of-computational.html
http://googleresearch.blogspot.com/2011/04/1-billion-core-hours-of-computational.html
http://www.gartner.com/it/page.jsp?id=1322414
http://www.gartner.com/it/page.jsp?id=1278413
http://www.gartner.com/it/page.jsp?id=1278413
http://www.cloudsecurityalliance.org/topthreats/
http://www.cloudsecurityalliance.org/topthreats/
http://wiki.openstack.org/ReleaseNotes/Bexar
http://wiki.openstack.org/ReleaseNotes/Bexar
http://ec.europa.eu/justice/policies/privacy/index_en.htm
http://ec.europa.eu/justice/policies/privacy/index_en.htm
http://wiki.openstack.org/DistributedScheduler
http://wiki.openstack.org/DistributedScheduler

References

[35] FinCEN. USA PATRIOT Act. http://www.fincen.gov/statutes_

regs/patriot/index.html.

[36] Fortify Software. DEFCON survey reveals vast scale of cloud
hacking - and the need to bolster security to counter the problem.
https://www.fortify.com/news-and-events/press-releases/

2010/2010-08-24.html, August 2010.

[37] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspec-
tion based architecture for intrusion detection. In Proc. Network and
Distributed Systems Security Symposium, February 2003.

[38] Anne Gentle. Clustering, globalization, and scale-out architecture
overview. http://wiki.openstack.org/Overview, May 2011.

[39] G. Golovinsky, S. Johnston, and D. Birk. Syslog Extension for Cloud
Using Syslog Structured Data. Internet-Draft, March 2011.

[40] Bernd Grobauer and Thomas Schreck. Towards incident handling in
the cloud: challenges and approaches. In Proceedings of the 2010 ACM
workshop on Cloud computing security workshop, CCSW ’10, pages 77–
86, New York, NY, USA, 2010. ACM.

[41] Ask Solem Hoel. Carrot - AMQP Messaging Framework for Python.
https://github.com/ask/carrot/, February 2011.

[42] Adam Kliarsky Jeff Reed. Following Incidents into the Cloud. Reading
room, The SANS Institute, September 2010.

[43] Petri Jokela, András Zahemszky, Christian Esteve Rothenberg, Somaya
Arianfar, and Pekka Nikander. Lipsin: line speed publish/subscribe
inter-networking. In Proceedings of the ACM SIGCOMM 2009 con-
ference on Data communication, SIGCOMM ’09, pages 195–206, New
York, NY, USA, 2009. ACM.

[44] Paul Hoffman Karen Scarfone, Murugiah Souppaya. Guide to Secu-
rity for Full Virtualization Technologies. Special Publications SP 800-
125, NIST, January 2011. http://csrc.nist.gov/publications/

nistpubs/800-125/SP800-125-final.pdf.

[45] Tim Grance Karen Scarfone and Kelly Masone. Computer Se-
curity Incident Handling Guide. Special Publications SP 800-61
Rev. 1, NIST, March 2008. http://csrc.nist.gov/publications/

nistpubs/800-61-rev1/SP800-61rev1.pdf.

153

http://www.fincen.gov/statutes_regs/patriot/index.html
http://www.fincen.gov/statutes_regs/patriot/index.html
https://www.fortify.com/news-and-events/press-releases/2010/2010-08-24.html
https://www.fortify.com/news-and-events/press-releases/2010/2010-08-24.html
http://wiki.openstack.org/Overview
https://github.com/ask/carrot/
http://csrc.nist.gov/publications/nistpubs/800-125/SP800-125-final.pdf
http://csrc.nist.gov/publications/nistpubs/800-125/SP800-125-final.pdf
http://csrc.nist.gov/publications/nistpubs/800-61-rev1/SP800-61rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-61-rev1/SP800-61rev1.pdf

References

[46] Laurent Luce. OpenStack Nova internals of instance launching.
http://www.laurentluce.com/?p=227, January 2011.

[47] Simon MacMullen. Who are you? authentication and authorisa-
tion in rabbitmq. http://www.rabbitmq.com/blog/2011/02/07/

who-are-you-authentication-and-authorisation-in-rabbitmq-231/,
May 2011.

[48] Peter Mell and Timothy Grance. The NIST Definition of Cloud Com-
puting. Technical Report SP 800-145 Draft, National Institute of Stan-
dards and Technology, Information Technology Laboratory, January
2011.

[49] M. Michael, J.E. Moreira, D. Shiloach, and R.W. Wisniewski. Scale-
up x scale-out: A case study using nutch/lucene. In Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE Interna-
tional, pages 1 –8, march 2007.

[50] Armando Migliaccio. RabbitMQ High Availability. http://wiki.

openstack.org/RabbitmqHA, February 2011.

[51] Barbara Liskov Miguel Castro. Byzantine Fault Tolerance. http://

www.google.no/patents/about?id=6EYPAAAAEBAJ, 12 2003. US
Patent 6671821 B1.

[52] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) Architec-
ture. RFC 4423 (Informational), May 2006.

[53] Derek Gordon Murray, Grzegorz Milos, and Steven Hand. Improving
xen security through disaggregation. In Proceedings of the fourth ACM
SIGPLAN/SIGOPS international conference on Virtual execution en-
vironments, VEE ’08, pages 151–160, New York, NY, USA, 2008. ACM.

[54] NetSNMP. SNMPD. http://www.net-snmp.org/docs/man/snmpd.

html, June 2005.

[55] Tobias Oetiker. Round-Robin Database Tool. http://www.mrtg.org/
rrdtool, April 2011.

[56] OpenStack. OpenStack Compute Administration Manual, bexar release
edition, Feb 2011. docs.openstack.org.

[57] OpenStack. OpenStack Object Storage Administration Manual, bexar
release edition, Feb 2011. docs.openstack.org.

154

http://www.laurentluce.com/?p=227
http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authentication-and-authorisation-in-rabbitmq-231/
http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authentication-and-authorisation-in-rabbitmq-231/
http://wiki.openstack.org/RabbitmqHA
http://wiki.openstack.org/RabbitmqHA
http://www.google.no/patents/about?id=6EYPAAAAEBAJ
http://www.google.no/patents/about?id=6EYPAAAAEBAJ
http://www.net-snmp.org/docs/man/snmpd.html
http://www.net-snmp.org/docs/man/snmpd.html
http://www.mrtg.org/rrdtool
http://www.mrtg.org/rrdtool
docs.openstack.org
docs.openstack.org

References

[58] Bjarne E. Helvik Peder J. Emstad, Poul E. Heegaard and Laurent Pa-
quereau. Dependability and performance in information and communi-
cation systems - Fundamentals. Tapir akademisk forlag, 2010.

[59] Tim Grance Peter Mell. Effectively and securely using the cloud com-
puting paradigm, July 2009.

[60] Personal Information Protection and Electronic Documents Act.
http://laws.justice.gc.ca/en/P-8.6/.

[61] Larry Ponemon. Security of Cloud Computing Users: A Study
of U.S. and Europe IT Practitioners. Industry research, CA
Technologies, May 2010. http://www.ca.com/us/collateral/

industry-research/na/security-of-cloud-computing-users/

a-study-of-us-and-europe-it-practitioners.aspx.

[62] IDC Press. Virtualization Market Accelerates Out of the Recession
as Users Adopt ”Virtualize First” Mentality. http://www.idc.com/

getdoc.jsp?containerId=prUS22316610, Apr 2010.

[63] Jeff Reed. Following Incidents into the Cloud. Security reading
room, SANS Institute, 2011. http://www.sans.org/reading_room/

whitepapers/incident/incidents-cloud_33619.

[64] IBM X-ForceÂő research and development teams. IBM X-ForceÂő 2010
Mid-Year Trend and Risk Report. Technical report, IBM, August 2010.

[65] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds. In Proceedings of the 16th ACM conference on
Computer and communications security, CCS ’09, pages 199–212, New
York, NY, USA, 2009. ACM.

[66] Dmitriy Samovskiy. Introduction to amqp messaging with rabbitmq,
July 2008.

[67] Nuno Santos, Krishna P. Gummadi, and Rodrigo Rodrigues. Towards
trusted cloud computing. In HOTCLOUD. USENIX, 2009.

[68] Amazon Web Services. AWS in Education. http://aws.amazon.com/
education/, June 2011.

[69] SFlow. Cloud-scale Performance Monitoring. http://blog.

sflow.com/2010/09/cloud-scale-performance-monitoring.html,
September 2010.

155

http://laws.justice.gc.ca/en/P-8.6/
http://www.ca.com/us/collateral/industry-research/na/security-of-cloud-computing-users/a-study-of-us-and-europe-it-practitioners.aspx
http://www.ca.com/us/collateral/industry-research/na/security-of-cloud-computing-users/a-study-of-us-and-europe-it-practitioners.aspx
http://www.ca.com/us/collateral/industry-research/na/security-of-cloud-computing-users/a-study-of-us-and-europe-it-practitioners.aspx
http://www.idc.com/getdoc.jsp?containerId=prUS22316610
http://www.idc.com/getdoc.jsp?containerId=prUS22316610
http://www.sans.org/reading_room/whitepapers/incident/incidents-cloud_33619
http://www.sans.org/reading_room/whitepapers/incident/incidents-cloud_33619
http://aws.amazon.com/education/
http://aws.amazon.com/education/
http://blog.sflow.com/2010/09/cloud-scale-performance-monitoring.html
http://blog.sflow.com/2010/09/cloud-scale-performance-monitoring.html

References

[70] sFlow. sFlow. http://www.sflow.org/, April 2011.

[71] Andrew Clay Shafer. ”OpenStack: Philosophy & Implementation”. Pre-
sented as the Cloud Services SIG: An overview of OpenStack by Andrew
Shafer of CloudScaling, 2010.

[72] Gary Stoneburner, Alice Goguen, and Alexis Feringa. Risk Management
Guide for Information Technology Systems. Special publication 800-30,
National Institute of Standards and Technology, July 2002.

[73] Jamie Strandboge. AppArmor. https://wiki.ubuntu.com/AppArmor,
March 2011.

[74] Aryan TaheriMonfared. Monitoring Intrusions and Security Breaches
in Highly Distributed Cloud Environments. March 2011.

[75] Takabi, H. and Joshi, J.B.D. and Gail-Joon Ahn. SecureCloud: Towards
a Comprehensive Security Framework for Cloud Computing Environ-
ments. In Computer Software and Applications Conference Workshops
(COMPSACW), 2010 IEEE 34th Annual, pages 393 –398, July 2010.

[76] Yuesheng Tan, Dengliang Luo, and Jingyu Wang. Cc-vit: Virtual-
ization intrusion tolerance based on cloud computing. In Information
Engineering and Computer Science (ICIECS), 2010 2nd International
Conference on, pages 1 –6, December 2010.

[77] The MITRE Corporation. Common Event Expression. http://cee.

mitre.org/, April 2011.

[78] Fang Liu Tong, Jian Mao, Robert Bohn, John Messina, and
Dawn Leaf. Nist cloud computing reference architecture.
http://collaborate.nist.gov/twiki-cloud-computing/pub/

CloudComputing/ReferenceArchitectureTaxonomy/NIST_CC_

Reference_Architecture_v1_March_30_2011.pdf, March 2011.
Version 1.

[79] Carl Trieloff, Ciaran McHale, Gordon Sim, Harold Piskiel, John
O’Hara, Jason Brome, Kim van der Riet, Mark Atwell, Martin Lu-
cina, Pieter Hintjens, Robert Greig, Sam Joyce, and Sanjay Shrivastava.
Advanced message queuing protocol protocol specification. amq-spec,
AMQP.org, July 2006. Version 0.8.

156

http://www.sflow.org/
https://wiki.ubuntu.com/AppArmor
http://cee.mitre.org/
http://cee.mitre.org/
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_CC_Reference_Architecture_v1_March_30_2011.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_CC_Reference_Architecture_v1_March_30_2011.pdf
http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/NIST_CC_Reference_Architecture_v1_March_30_2011.pdf

References

[80] Toshikazu Uemura, Tadashi Dohi, and Naoto Kaio. Availability anal-
ysis of a scalable intrusion tolerant architecture with two detection
modes. In Martin Gilje Jaatun, Gansen Zhao, and Chunming Rong,
editors, Cloud Computing, First International Conference, CloudCom
2009, Beijing, China, December 1-4, 2009. Proceedings, volume 5931 of
Lecture Notes in Computer Science, pages 178–189. Springer, 2009.

[81] Lennert Buytenhenk Uwe BÃűhme. Linux BRIDGE-STP-HOWTO.
http://www.faqs.org/docs/Linux-HOWTO/BRIDGE-STP-HOWTO.html,
January 2001.

[82] Sandy Walsh. Multiple cluster zones. http://wiki.openstack.org/

MultiClusterZones, February 2011.

[83] Matt Welsh. How can academics do research on cloud
computing? http://matt-welsh.blogspot.com/2011/05/

how-can-academics-do-research-on-cloud.html, May 2011.

[84] OpenStack Wiki. ”Architectural Overview”, 2010. [Online; accessed
08-Feb-2010].

[85] OpenStack Wiki. ”Nova System Architecture”, 2010. [Online; accessed
08-Feb-2010].

[86] Gansen Zhao, Chunming Rong, Martin Jaatun, and Frode Sandnes.
Reference deployment models for eliminating user concerns on
cloud security. The Journal of Supercomputing, pages 1–16, 2010.
10.1007/s11227-010-0460-9.

157

http://www.faqs.org/docs/Linux-HOWTO/BRIDGE-STP-HOWTO.html
http://wiki.openstack.org/MultiClusterZones
http://wiki.openstack.org/MultiClusterZones
http://matt-welsh.blogspot.com/2011/05/how-can-academics-do-research-on-cloud.html
http://matt-welsh.blogspot.com/2011/05/how-can-academics-do-research-on-cloud.html

Glossary

AppArmor AppArmor is a Mandatory Access Control (MAC) system which
is a kernel (LSM) enhancement to confine programs to a limited set
of resources. AppArmor’s security model is to bind access control at-
tributes to programs rather than to users.
SOURCE: wiki.ubuntu.com/AppArmor. 66

BLOB binary large object, ”a collection of binary data stored as a single en-
tity in a database management system. Blobs are typically images, au-
dio or other multimedia objects, though sometimes binary executable
code is stored as a blob.” SOURCE: Wikipedia. 38

Cacti Cacti is a complete network graphing solution designed to harness the
power of RRDTool’s data storage and graphing functionality. SOURCE:
www.cacti.net. 67, 132

HoneyCloud We have used this term to address a cloud specific trap for
detecting, deflecting and counteracting an attack. 108, 113, 115

Indication A sign that an incident may have occurred or may be currently
occurring. SOURCE: SP 800-61. 65

KVM Kernel-based Virtual Machine, a full virtualization solution for Linux
on x86 hardware containing virtualization extensions (Intel VT or
AMD-V). SOURCE: www.linux-kvm.org. 26, 46

libvirt Libvirt is collection of software that provides a convenient way to
manage virtual machines and other virtualization functionality, such
as storage and network interface management. These software pieces
include an API library, a daemon (libvirtd), and a command line utility
(virsh). SOURCE: wiki.libvirt.org. 66

Precursor A sign that an attacker may be preparing to cause an incident.
SOURCE: SP 800-61. 65

158

Glossary

QEMU A generic and open source machine emulator and virtualizer. SOURCE:
wiki.qemu.org. 46

rpc.call Request-Response implementation of the RPC. 27, 28

rpc.cast One-way implementation of the RPC. 27, 28

RRDTool (Round-Robin Database Tool) RRDtool is the OpenSource in-
dustry standard, high performance data logging and graphing system
for time series data. RRDtool can be easily integrated in shell scripts,
perl, python, ruby, lua or tcl applications.
SOURCE: www.mrtg.org/rrdtool. 67, 132

S3 (Simple Storage Service) S3 provides a simple web services interface that
can be used to store and retrieve any amount of data, at any time,
from anywhere on the web. It gives any developer access to the same
highly scalable, reliable, secure, fast, inexpensive infrastructure that
Amazon uses to run its own global network of web sites. SOURCE:
aws.amazon.com. 38, 125

Side Channel A specific type of covert channels that passively observing
information and is based on timing channels.. 13

159

Acronyms

AMI Amazon Machine Image. 112

AMQP Advanced Message Queuing Protocol. 11, 22, 24, 26, 27, 30–36,
95, 97, 105, 106, 115

BFT Byzantine Fault Tolerance. 73

CLI Command Line Interface. 96, 103

DHCP Dynamic Host Configuration Protocol. 40, 41

DoS Denial of Service. 49, 50, 56

EC2 Elastic Compute Cloud. 116, 125

eki Eucalyptus Kernel Image. 129

emi Eucalyptus Machine Image. 129, 130

ENISA European Network and Information Security Agency. 17

eri Eucalyptus Ramdisk Image. 129

FIFO First In First Out. 101

HI Host Identity. 40

HTTP Hypertext Transfer Protocol. 29, 30

IaaS Infrastructure as a Service. 8, 18, 25, 26, 47, 51, 56, 59, 69

IDPS Intrusion Detection Prevention System. 65

IDS Intrusion Detection System. 57, 114

160

IPC Inter-process communication. 25

MAC Media Access Control. 131

NaaS Network as a Service. 22

NIC Network Interface Controller. 40, 54

NIST National Institute of Standards and Technology. 1, 3, 4, 6, 8, 10, 13,
56, 65, 74–76, 149

NTP Network Time Protocol. 68

PPA Personal Package Archives. 122

QoS Quality of Service. 51–54, 59, 64, 70, 92, 97

RBAC Role-based Access Control. 35

REMH Redundant Execution on Multiple Host. 71, 115

RESH Redundant Execution on Single Host. 71

RPC Remote Procedure Call. 27, 29, 131

SaaS Software as a Service. 22

SLA Service Level Agreement. 54, 78

SN Shared Nothing. 22

SNMP Simple Network Management Protocol. 122, 124, 133

SNMPD Simple Network Management Protocol Daemon. 132

SOC Service Oriented Computing. 4

TCCP Trusted Cloud Computing Platform. 113

TVD Trusted Virtual Domain. 113

TVMM Trusted Virtual Machine Monitor. 113

UML User-mode Linux. 26, 46

UUID Universally Unique Identifier. 28

161

Appendix A - Paper

162

As strong as the weakest link: Handling

compromised components in OpenStack

Aryan TaheriMonfared

Department of Telematics

Norwegian University of Science and Technology

taherimo@stud.ntnu.no

Martin Gilje Jaatun

SINTEF ICT

Trondheim, Norway

Martin.G.Jaatun@sintef.no

Abstract—This paper presents an approach to handle com-
promised components in an Infrastructure-as-a-Service Cloud
Computing platform. Our experiments show that traditional
incident handling procedures are applicable for cloud computing,
but need some modification to function optimally.

I. INTRODUCTION

One of the main obstacles in the movement toward Cloud

Computing is its security challenges. Although it has been

argued [1] that most of the security issues in Cloud Com-

puting are not fundamentally novel, a new computing model

invariably brings its own security doubts and issues to the

market.

In a distributed environment with several stakeholders, there

will always be numerous ways of attacking and compromising

a component, and it is not possible to stop all attacks or to

ensure that the system is secure against all threats.

Thus, the best approach is to understand impacts and assess

the risk of a compromised component. So, we don’t study

attack methods, instead impacts of a compromised component

on the provided service and other components will be ana-

lyzed. In order to study impacts of a successful attack, exact

functionalities of each component are extracted.

After identifying impacts of a successful attack, we should

find efficient approaches to tolerate such an attack and its

damages. In this process, the incident should be detected and

analyzed first. Detecting and analyzing an incident have a

standard procedure that requires knowledge about the normal

behavior and operation of the system. The next step is con-

taining the incident. ...

There are currently several public cloud providers, however

none of them disclose their security mechanisms. Thus, we

should study applicable mechanisms and introduce new ones

to fulfill security requirements of our experimental cloud

environment. Publishing these approaches, other researchers

can also analyze them and make them more robust.

When we talk about a compromised component in this

document, we mean those components in a cloud environment

that are disclosed, modified, destroyed or even lost. Finding

compromised components and identifying their impacts on a

cloud environment is crucial.

We have found the OpenStack cloud platform as the best

choice for a real case study in our research. In our laboratory

configuration, we used the simple flat structure. This will avoid

Fig. 1. Lab setup

further complexity which is caused by the hierarchical or peer

to peer architecture. We have four physical machines, one of

them will be the cloud controller, and other three are compute

worker nodes. The abstract diagram of our lab setup is depicted

in Figure 1.

It should be noted that although we focus on the OpenStack

as a specific cloud software in our study, more or less same

components and processes may be identified in other cloud

platform implementations.

II. INCIDENT HANDLING

We will in the following focus on cloud platform compo-

nents, functionalities, connected components, access methods

and their impacts in case of being compromised. The symp-

toms of a compromised component are useful in detecting

security breaches and must be considered when performing

further analysis.

A. Actors’ Requirements

Studying the detection and analysis phase of the NIST inci-

dent handling guideline [2], and applying new characteristics

of Cloud Computing model, we identified several requirements

for a cloud provider and a cloud consumer.

1) Cloud providers’ requirements:

• Security APIs: The cloud provider should develop set

of APIs that deliver event monitoring functionalities

and also provide forensic services for authorities. Event

monitoring APIs ease systematic incident detection for

cloud consumers and even third parties. Forensic services

at virtualization level can be implemented by means

of virtual machine introspection libraries. An example

of an introspection library is XenAccess that allows a

privileged domain to access live states of other virtual

machines. A cross-layer security approach seems to be

the best approach in a distributed environment [3].

• Precursor or Indication Sources: The cloud provider

deploys, maintains and administrates the cloud infras-

tructure. The provider also develops required security

sensors, logging and monitoring mechanisms to gather

enough data for incident detection and analysis at the

infrastructure level. As an example, security agents, in-

trusion monitoring sensors, application log files, report

repository, firewall statistics and logs are all part of

security relevant indication sources. In case of a security

incident, the cloud provider should provide raw data from

these sources to affected customers and stakeholders.

Thus they will be capable of analyzing raw data and

characterizing incident properties.

• External reports: The cloud provider should provide

a framework to capture external incident reports. These

incidents can be reported by cloud consumers, end users

or even third parties. This is not a new approach in

handling an incident, however finding the responsible

stakeholders for that specific incident and ensuring cor-

rectness of the incident1 require extensive research. An

illustration, Amazon has developed ”Vulnerability Re-

porting Process”[4] which delivers same functionalities

as described before.

• Stakeholder interaction: A timely response to an inci-

dent requires heavy interaction of stakeholders. In order

to ease this interaction at the time of crisis, responsibili-

ties of each stakeholder should be described in detail.

• Security services: Cloud consumers may not be in-

terested in developing security mechanisms. The cloud

provider can deliver a security service to overcome

this issue. Security services which are delivered by the

provider can be more reliable in case of an incident

and less challenging in the deployment and the incident

detection/analysis.

• Infrastructure information: When the cloud consumer

or another third party wants to develop an incident

detection and analysis mechanisms, they may need to

understand the underlying infrastructure and its architec-

ture. However, without cloud provider cooperation that

won’t be feasible. So, the cloud provider should disclose

enough information to responsible players to detect the

incident in a timely fashion and study it to propose the

containment strategy.

2) Cloud consumers’ requirements: A cloud consumer

must fulfill requirements to ensure effectiveness of the incident

detection and analysis process.

• Consumer’s security mechanisms: The cloud consumer

might prefer to develop its own security mechanisms

1Avoiding false positive alarms

(e.g. incident detection and analysis mechanisms). The

customer’s security mechanisms can be based on either

the cloud provider’s APIs or reports from a variety of

sources, including: provider’s incident reports, end-users’

vulnerability reports, third parties’ reports.

• Provider’s agents in customer’s resources: By im-

plementing provider’s agents, the cloud consumer will

facilitate approaching a cross-layer security solution. In

this method, the cloud consumer will know the exact

amount and type of information that has been disclosed.

Moreover, neither the cloud consumer nor the provider

needs to know about each others’ architecture or infras-

tructure design.

• Standard communication protocol: In order to have a

systematic incident detection and analysis mechanisms, it

is required to agree on a standard communication protocol

that will be used by all stakeholders. This protocol should

be independent of a specific provider/customer.

• Report to other stakeholders: If the customer cannot

implement the provider’s agent in its own instances,

another approach to informing stakeholders about an

incident is by means of traditional reporting mechanisms.

These reports should not be limited to an incident only,

customers may also use this mechanism to announce a

suspicious behavior for more analysis.

• Cloud consumer’s responsibilities: Roles and responsi-

bilities of a cloud consumer in case of an incident should

be defined previously, facilitating immediate reaction in

a crisis.

B. Containment of the compromised component

Cloud consumers’ allocated resources are not under their

direct/physical control. Consumers control their resources us-

ing several access methods which may get compromised as

well. Specifically in the IaaS service model, the issue is

more challenging for responsible organizations (i.e. providers).

One of the main reasons is the increased control of a cloud

consumer over its allocated resources and virtual instances

[5]. The cloud consumer may develop some procedures for

containing its service in case of an incident, but applying these

procedures is challenging as well. The cloud provider has to

ensure that recent changes in the normal operation of a specific

service is due to an incident and not a false positive.

We have identified several aspects that should be considered

in this phase:

1) We should address the greatest risks and strive for suf-

ficient risk mitigation at the lowest cost, with minimal

impact on other mission capabilities [6].

2) The containment, eradication, and recovery should be

done in a cost effective fashion. Thus, a cost-benefit

analysis of each approach should be performed before

application.

3) In a highly distributed system such as a cloud envi-

ronment, we cannot apply stateful measures, they won’t

scale.

4) It is not feasible to stop all attacks or secure all compo-

nents to avoid exploiting any existing vulnerabilities.

5) In addition to the previous item, existing security mecha-

nisms are not completely applicable to the new computing

model and they cannot protect the system from all attacks

and cannot provide a fast reactive response to an incident.

6) As we cannot harden a cloud environment against all

possible attacks, containment strategies and tolerating a

successful attack are required approaches.

Our study approach is a case-based one, because:

• Several components, with different functionalities, may

require a variety of containment realization mechanisms.

• Providing a single mechanism to cover all incidents, is

not possible.

• A combination of mechanisms is possible, and also rec-

ommended for covering an attack which exploits several

vulnerabilities.

• In each case, we will study different ways of an incident

occurrence (e.g. malicious code can be injected in to

either a cloud platform service (nova-compute) or OS

modules/services.)

C. Case studies

1) Case One: A Compromised Compute Worker: The first

case which we will discuss, has only one compromised com-

ponent. In this case the nova-compute service in the compute

worker is compromised, Figure 2.

Two incidents have happened simultaneously in this sce-

nario, malicious code and unauthorized access. The malicious

code is injected to the nova-compute service and introduces

some misbehavior in it, such as malfunctions in the hosting

service of virtual instances, nefarious usage of granted privi-

leges to request for more IP addresses and cause IP address

exhaustion in a specific consumer’s project.

The malicious code is injected by means of another incident,

unauthorized access. The attacker gains access to resources

on the OpenStack-4 host, that he/she was not intended to

have. Using those escalated privileges, the attacker changed

the python code of the nova-compute and restarted the service.

Thus, nova-compute started to behave maliciously.

2) Case Two: A bogus component: A bogus service is a

threat for the cloud environment security. As the OpenStack

is an open source software, an attacker can access the source

code or its binaries and deploy a cloud platform service. When

the attacker is managing a service, he/she can manipulate the

service in a way that threaten the integrity and confidentiality

of the environment. This section will discuss such an incident

that a bogus cloud platform component is added to the

environment. We will focus on a nova-compute service as the

bogus cloud platform component.

A bogus nova-compute service or in general any cloud

platform component can run on a physical machine or a virtual

instance. Adding a physical node to the cloud infrastructure by

an attacker, is unlikely; however, for the sake of completeness

we study both the case that the bogus service is running on

Fig. 2. Case One - The nova-compute service in the OpenStack-4 host is
compromised.

Fig. 3. Case Two - A physical bogus compute worker node is added to the
infrastructure.

a new physical machine and the one when it is running on a

virtual instance. Both cases are depicted in Figures 3, and 4.

III. APPROACHES

We have devised a set of approaches which will be explained

in detail in the following.

A. Restricting infected components

A general technique for containing an incident is restricting

the infected component. The restriction can be applied in

different layers, with a variety of approaches, such as: filtering

in the AMQP server, filtering in other components, disabling

Fig. 4. Case Two - A virtual bogus compute worker is added as a consumer’s
instance.

the infected service or the communicator one. Additional

measures can also be employed to support the restriction, like:

removing infected instances from the project VLAN, disabling

live migration, or quarantining infected instances.

We explain each of these approaches in the following

sections.

1) Filtering in the messaging server (cloud controller): We

will propose several filtering mechanisms in the messaging

server in order to contain and eradicate an incident in a

cloud environment. The OpenStack platform has been used

to build our experimental cloud environment. This approach

is a responsibility of the cloud provider and the target layer

in the cloud platform application layer.

a) Advantages:

• The filtering task at the messaging server level can be

done without implementation of new functionalities. We

can use existing management interfaces of the RabbitMQ

(either CLI or web interface) to filter the compromised

component.

• The filtering task can be done in a centralized fashion

by means of the management plug-in, although we may

have multiple instances of the messaging server.

• Implementing this approach is completely transparent for

other stakeholders, such as cloud consumers.

• We can scale out2 the messaging capability by running

multiple instance of the RabbitMQ on different nodes.

Scaling out the messaging server will also scale out the

filtering mechanism3.

• This approach is at the application layer, and it is inde-

pendent of network architecture and employed hardware.

• The implementation at the messaging server level helps

in having a fine-grained filtering, based on the message

content.

b) Disadvantages:

• A centralized approach has its own disadvantages as well,

such as being a single point of failure or becoming the

system bottleneck.

• Implementing the filtering mechanism at the messaging

server and/or the cloud controller adds an extra complex-

ity to these components.

• When messages are filtered at the application layer in

the RabbitMQ server, the network bandwidth is already

wasted for the message that has an infected source,

destination, or even context. Thus, this approach is less

efficient comparing to the one that may filter the message

sooner (e.g. at its source host, or in the source cluster)

• Most of the time application layer approaches are not as

fast as hardware layer one. In a large scale and distributed

environment the operation speed plays a vital role in the

system availability and QoS.

It is possible to use the zFilter technique as a more effi-

cient implementation of the message delivery technique.

2Scaling out or horizontal scaling is referred to the application deployment
on multiple servers [7].

3But it may require a correlation entity to handle the filtering tasks among
all messaging servers.

It can be implemented on either software or hardware.

The zFilter is based on the bloom-filter data structure.

Each message contains its state; thus this technique

is stateless [8]. It also utilizes source routing. zFilter

implementations are available for the BSD family oper-

ating systems and the NetFPGA boards in the following

address, http://www.psirp.org.

• Filtering a message without notifying upper layers, may

lead to timeout trigger and resend requests from waiting

entities. It can also cause more wasted bandwidth.

c) Realization: A variety of filtering mechanisms can be

utilized in the messaging server; each of these mechanisms

focuses on a specific component/concept in the RabbitMQ

messaging server. We can enforce the filtering in messaging

server connection, exchange, and queue that will be discussed

next.

• Connection: A connection is created to connect a client

to an AMQP broker [9]. A connection is a long-

lasting communication capability and may contain mul-

tiple channels [10]. By closing the connection all of its

channels will be closed as well.

• Exchange: An exchange is a message routing agent

which can be durable, temporary, or auto-deleted. Mes-

sages are routed to qualified queues by the exchange. A

Binding is a link between an exchange and a queue. An

exchange type can be one of direct, topic, headers, or

fanout. [11]

An exchange can be manipulated in different ways in

order to provide a filter mechanisms for our cloud envi-

ronment:

– Unbinding a queue from the exchange: The com-

promised component queue won’t receive messages

from the unbinded exchange.

– Publishing a warning message: Publishing an alert

message to that exchange, so all clients using that

exchange will be informed about the compromised

component. Thus, by specifying the compromised

component, other clients can avoid communicating

with it. The main obstacle in this technique is the

requirement for implementing new functionalities in

clients.

– Deleting the exchange: Deleting an exchange will

stop routing of messages related to it. It may have

multiple side effects, such as memory overflow and

queue exhaustion.

• Queue: Queue is called as a ”weak FIFO” buffer, that

each message in it can be delivered only to a single client

unless re-queuing the message [11].

– Unbinding a queue from an exchange avoids fur-

ther routing of messages from that exchange to the

unbind-ed queue. We can unbind the queue which is

connected to the compromised component and stop

receiving messages by the infected client.

– Deleting a queue not only removes the queue itself,

but also remove all messages in the queue and cancel

Fig. 5. Overview of RabbitMQ messaging server and applicable containment
approaches.

all consumers on that queue.

– Purging a queue removes all messages in the queue

that do not need acknowledgment. Although it may

be useful in some cases, it may not be as effective

as required in occurrence of an incident.

Figure 5 depicts a simplified overview of messaging

server internal entities and the application points of our

approaches.

2) Filtering in each component: Applicable filtering mech-

anisms in the messaging server have been studied in the

previous section. This section discusses mechanisms that are

appropriate for other components. These components are not

essentially aware of messaging technique details and specifi-

cations.

a) Advantages:

• The implementation of the filtering mechanism in each

component avoids added complexity to the messaging

server and cloud controller.

• This approach is a distributed solution without a single

point of failure in contrast to the previous one with a

centralized filtering mechanism.

• Assuming locality principle in the cloud, wasted band-

width is limited into a cluster/rack which host the infected

components. Network connections have much higher

speed in a rack or cluster.

• This approach does not require a correlation/coordination

entity for filtering messages. Each component behaves

independently and autonomously upon receiving an alarm

message, that announces a compromised node.

As there is no boundary in the cloud, performing secu-

rity enforcement at each component is a more reliable

approach. Traditionally, most security mechanisms have

been employed at the organization/system boundaries.

However, as the realization of boundaries is becoming

weaker in a cloud environment, this approach is a rea-

sonable one to fulfill the new requirements.

b) Disadvantages:

• When the filtering must be performed in each component,

all interacting components must be modified to support

the filtering mechanism. However, this issue can be

relaxed by using a unified version of messaging client

(e.g. pika python client) and modifying the client in case

of new requirements.

• The message which should be discarded traverses all

the way down to the destination, and wastes the link

bandwidth on its route.

• Dropping a message without notifying upper layers, may

lead to timeout trigger and resend requests from waiting

entities. It can also cause more wasted bandwidth.

c) Realization: This approach can be implemented at

two different levels: blocking at either the messaging client

level (e.g. AMQP messaging client) or the OpenStack compo-

nent/service level.

First, the responsible client can be modified to

drop messages with specific properties (e.g. infected

source/destination). As an example, the responsible client

for AMQP messaging in the OpenStack is amqplib/pika;

we must implement the mechanism in this AMQP client

(or its wrapper in the OpenStack) to filter malicious AMQP

messages. Using this method, more interaction between the

OpenStack and clients may be required to avoid resend

requests. Because of using the same AMQP client in all

components, the implementation is easier and its modification

process needs less effort.

The second method is to develop the filtering in each of the

OpenStack components, such as nova-compute, nova-network,

nova-scheduler, etc. This method adds more complexity to

those components and it may not be part of their responsi-

bilities.

We propose a combination of these methods. Implementing

the filtering mechanism in the carrot/amqplib wrapper of the

OpenStack has advantages of both methods and avoids un-

necessary complexity. The OpenStack wrapper for managing

AMQP messaging is implemented in src/nova/rpc.py. In order

to identify the malicious message, we use the message address

which is part of its context. Then, the actual dropping happens

in the AdapterConsumer method. Assuming that the source

address is set in the context variable, filtering is straight

forward. By checking the message address and avoiding the

method call, most of the task is done. The only remaining

part is to inform the sender about the problem, that can

be implemented by means of the existing message reply

functionality.

3) Disabling services: Disabling services is a strategy for

containing the incident. The disabled service can be either the

infected or the communicator one. The communicator service

handles tasks distribution and delegation. This method can be

used only by the cloud provider, and is at the application layer.

a) Disabling an infected service: An incident can be

contained by disabling the infected service. It has several

advantages, including:

• After stopping the nova-compute service, running in-

stances will continue to work. Thus, as a result con-

sumers’ instances will not be terminated nor disrupted.

• All communications to and from the compromised node

will be stopped. So, the wasted bandwidth will reduce

massively.

• Shutting down a service gracefully, avoids an extra set of

failures. When the service is stopped by Nova interfaces,

all other components will be notified and the compro-

mised node will be removed from the list of available

compute workers.

Like any other solution, it has multiple drawback as well,

including:

• Keeping instances in the running status can threaten cloud

consumers. The attacker may gain an access to running

instances on the compromised node.

• The live migration feature will not work anymore. Thus,

the threatened consumers cannot migrate running in-

stances to a safe or quarantine compute worker node.

• Neither the cloud provider nor consumers can manage

running instances through the OpenStack platform.

This approach requires no further implementation, although

we may like to add a mechanisms to turn services on and off

remotely.

b) Disabling a communicator service: An incident can

be contained by disabling or modifying its corresponding

communicator service. An example of a communicator service

in an OpenStack deployment nova-scheduler service. The

nova-scheduler decides that which worker should handle the

newly arrived request, such as running an instance.

By adding new features to the scheduler service, the plat-

form can avoid forwarding request to the compromised node.

Advantages of this approach are:

• No more requests will be forwarded to the compromised

node.

• Consumers’ instances remain in the running status on the

compromised node. So, consumers will have enough time

to migrate their instances to a quarantine worker node or

dispose their critical data. Even estimate impacts of the

incident.

• This approach can be used to identify the attackers,

hidden system vulnerabilities, and the set of employed

exploits. In other words, it can be used for forensic

purposes.

And its disadvantages are:

• New features should be implemented. These new features

are more focused on the decision algorithm of the sched-

uler service.

• This approach will not secure the rest of our cloud

environment, but it avoids forwarding new requests to

the compromised node. However, this drawback can be

seen as an opportunity. We can apply this approach and

also move the compromised node to a HoneyCloud. In

the HoneyCloud we don’t restrict the compromised node,

instead analyze the attack and attacker’s behavior. But

even by moving the compromised node to a HoneyCloud,

hosted instances on that node are still in danger.

It is possible that consumers’ instances are all inter-

connected. Thus, those running instances, on the com-

promised node in the HoneyCloud, threaten the rest of

consumers’ instances. The rest of instances may even

be hosted on a secure worker node. The next proposed

approach is a solution for this issue.

4) Removing instances from the project VLAN: This ap-

proach does not contain the compromised node, instead fo-

cuses on containing instances hosted by the compromised

worker node. This is important because those instances may

have been compromised as well. The first step toward securing

the consumer’s service is to disconnect potentially infected

instances.

The main usecase of this approach is when the attacker dis-

rupts other solutions (i.e. disabling nova-compute management

functionalities, escalated privileges at the OS layer), or when

instances and the consumer’s service security is very important

(e.g. eGovernment services).

It has several advantages specifically for cloud consumers,

including:

• Disconnect potentially infected instances from the rest of

consumer’s instance.

• It does not require new features implementation.

• The attacker cannot disrupt this method.

And its disadvantages are as follows:

• This method only works in a specific OpenStack network-

ing mode (i.e. VLANManager networking mode).

• The consumer completely loses control over isolated

instances, that may lead to data loss or disclosure, service

unavailability, etc.

5) Disabling live migration: Live migration can cause

wide-spread infection, or can be a mechanism for further in-

trusion to a cloud environment. It may take place intentionally

or unintentionally (e.g. an affected consumer may migrate

instances to resolve the attack side effects, or the attacker

that has the consumer privileges migrates instances to use a

hypervisor vulnerability and gain control over more nodes).

Disabling this feature helps the cloud provider to contain the

incident more easily, and keep the rest of the environment

safer.

6) Quarantining instances: When we migrate instances

from a compromised node, we cannot accept the risk of

spreading infection along instance migration. Thus, we should

move them to a quarantine worker node first. The quarantine

worker node has specific functionalities and tasks, including:

• This worker node limits instances connectivity with the

rest of cloud environment. As an example, only cloud

management requests/responses are delivered by the quar-

antine host.

• It has a set of mechanisms to check instances’ integrity

and healthiness. These mechanisms can be provided by

the underlying hypervisor, cloud platform, or third par-

ties’ services.

B. Replicating services

An approach to overcome the implications of an incident

is replicating services. A service in this section is a service

which is delivered and maintained by the cloud provider. It

can be a cloud platform service (e.g nova-compute) or any

other services that concerns other stakeholders. The replication

can be done passively or actively, and that is due to new

characteristics of the cloud model. The replication of a cloud

service can be done either at the physical or virtual machine

layer.

1) Replicate services on physical machines: Replicating

service on physical machines is already done in a platform

such as the OpenStack. The provider can replicate cloud

services either passively or actively when facing an issue in

the environment.

2) Replicate services on virtual machines: Replication of

service on virtual machines has multiple benefits, including:

• Virtual machines can be migrated while running (i.e.

live migration), this is a practical mechanism for stateful

services that use memory.

• Replication at the instance layer is helpful for forensics

purposes. It is also possible to move the compromised

service in conjunction with the underlying instance to a

HoneyCloud. This is done instead of moving the physical

node, ceasing all services on it, and changing the network

configuration in order to restrict the compromised node

communication.

• Using virtual machines in a cloud environment we can

also benefit from the cloud model elasticity and on

demand access to computing resources.

This approach is also the main idea behind the CC-VIT [17].

By applying the CC-VIT to our environment, the preferred hy-

brid fault model will be REMH, and the group communication

is handle using the AMQP messaging.

We can use physical-to-virtual converters to have the ad-

vantages of both approaches. These tools convert a physical

machine to a virtual machine image/instance that can be run

on top of a hypervisor.

Moreover, each of these replicas can be either active or pas-

sive. This will have a great impact on the system availability.

C. Disinfecting infected components

Disinfecting an infected component is a crucial task in

handling an incident and securing the system. It can be

accomplished with multiple methods having a variety of

specifications.

None of the following approaches will be used for cleaning

the infected binary files, instead less complex techniques

are employed that can be applied in a highly distributed

environment. Cleaning a binary file can be offered by a third

party security service provider, that has focused on large scale

antivirus software.

1) Updating the code

The service code can be updated to the latest, patched

version. This process should be done in a smooth way so

all components will be either updated or remain compat-

ible with each other after partial components update.

Several tools has been developed with this purpose. One

of the best examples is the Puppet project [18].

2) Purging the infected service

Assuming that the attacker has stopped at the cloud

platform layer, by removing the service completely we

can assure containment of the incident.

3) Replacing the service

Another method which is not as strong as others, is

achieved by replacing the infected service with another

one that uses a different set of application layer resources,

such as configuration files, binaries, etc. Thus, we can be

sure that the infected resources have no effect on the new

service.

D. Migrating instances

The affected consumer can migrate an specific instance or

a set of instances to another compute worker or even another

cloud environment. The migration among different provider is

an open challenge nowadays, because of the weak interoper-

ability of cloud systems and lack of standard interfaces for

cloud services.

In our deployment, both Amazon EC2 APIs and RackSpace

APIs are supported. Thus, in theory a consumer can move

between any cloud environment provided by the Amazon EC2,

RackSpace, and any open deployment of OpenStack without

any problem.

E. Node authentication

In this method each worker must have a certificate signed by

a trusted authority. This authority can be either an external one

or the cloud controller/authentication manager itself. Having

a signed certificate, the worker can communicate with other

components securely. The secure communication can bring us

any of the following: confidentiality, integrity, authentication,

and non-reputation.

In this case, worker’s communication and authenticity is

important for us. For this purpose we can use two different

schemes: message encryption or a signature scheme. Each of

these schemes can be used for the whole communication or

the handshake phase only.

When any of those schemes are applied only to the hand-

shake phase, any disconnection or timeout in the communica-

tion is a threat to the trust relation. As an authenticated worker

is disconnected and reconnected, we cannot only rely on the

worker’s ID or host-name to presume it as the trusted one.

Thus, the handshake phase should be repeated to ensure the

authenticity of the worker.

Although applying each scheme to all messages among

cloud components is tolerant against disruption and discon-

nection, its overhead for the system and the demand for it

should be studied case by case.

By applying each of those schemes to all messages, we can

tolerate disconnection and disruption. However, using crypto-

graphic techniques for all messages introduce an overhead for

the system which may not be efficient or acceptable.

Fig. 6. A sample markov model for trust states of a component.

Fig. 7. A sample markov model for transitions between different trust levels
of a component.

F. Policies

1) No new worker policy: In addition to all those technical

approaches, a set of management policies can also relax the

issue. As an example, no new worker should be added unless

there is a demand for it. The demand for a new worker can

be determined when the resource utilization for each zone is

above a given threshold.

2) Trust levels and timeouts: Introducing a set of trust

levels, a new worker can be labeled as a not trusted worker.

Workers which are not trusted yet, can be used for hosting non-

critical instances, or can offer a cheaper service to consumers.

In order to ensure the system trustworthiness in a long run,

a not-trusted worker will be disabled after a timeout. A simple

Markov model of those transitions are depicted in Figure 6.

Assuming we have only two trust levels, Figure 7 depicts

transitions between them. As an example, T0 can be achieved

by the human intervention; and the second level of trust T1

is gained by cryptographic techniques or trusted computing

mechanisms.

3) Manual confirmation: In this method, recently added

workers are not used for serving consumers’ requests until

their authenticity is confirmed by the cloud provider. This

method requires human intervention; thus, it can become a

bottleneck in the cloud infrastructure. Techniques, explained

in the next part, can relax the bottleneck issue.

IV. CONCLUSION

We have presented an approach to handling compromised

components in an OpenStack IaaS configuration. Cloud Com-

puting present some unique challenges to incident handling,

but our experience shows that with proper adaptation, tradi-

tional indcident management approaches can also be employed

in a Cloud Computing environment.

REFERENCES

[1] Y. Chen, V. Paxson, and R. H. Katz, “What’s New About Cloud
Computing Security?” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2010-5, Jan 2010. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html

[2] T. G. Karen Scarfone and K. Masone, “Computer Security In-
cident Handling Guide,” NIST, Special Publications SP 800-61
Rev. 1, March 2008, http://csrc.nist.gov/publications/nistpubs/800-61-
rev1/SP800-61rev1.pdf.

[3] A. TaheriMonfared, “Monitoring Intrusions and Security Breaches in
Highly Distributed Cloud Environments,” March 2011.

[4] AWS Security Team, “Vulnerability Reporting,”
http://aws.amazon.com/security/vulnerability-reporting/, March 2011.

[5] J. Reed, “Following Incidents into the Cloud,”
SANS Institute, Security Reading Room, 2011,
http://www.sans.org/reading room/whitepapers/incident/incidents-
cloud 33619.

[6] G. Stoneburner, A. Goguen, and A. Feringa, “Risk Management Guide
for Information Technology Systems,” National Institute of Standards
and Technology, Special Publications, July 2002.

[7] M. Michael, J. Moreira, D. Shiloach, and R. Wisniewski, “Scale-up x
scale-out: A case study using nutch/lucene,” in Parallel and Distributed

Processing Symposium, 2007. IPDPS 2007. IEEE International, march
2007, pp. 1 –8.

[8] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar,
and P. Nikander, “Lipsin: line speed publish/subscribe inter-
networking,” in Proceedings of the ACM SIGCOMM 2009

conference on Data communication, ser. SIGCOMM ’09. New
York, NY, USA: ACM, 2009, pp. 195–206. [Online]. Available:
http://doi.acm.org/10.1145/1592568.1592592

[9] “Rabbitmq core api guide,” http://www.rabbitmq.com/api-guide.html,
May 2011.

[10] C. Trieloff, C. McHale, G. Sim, H. Piskiel, J. O’Hara, J. Brome,
K. van der Riet, M. Atwell, M. Lucina, P. Hintjens, R. Greig, S. Joyce,
and S. Shrivastava, “Advanced message queuing protocol protocol
specification,” AMQP.org, amq-spec, July 2006, version 0.8.

[11] D. Samovskiy, “Introduction to amqp messaging with rabbitmq,” July
2008.

[12] “libvirt Wiki,” http://wiki.libvirt.org/page/Main Page#libvirt Wiki,
March 2011.

[13] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection,” in Proc. Network and Distributed

Systems Security Symposium, February 2003.
[14] S. Berger, R. Cceres, K. A. Goldman, R. Perez, R. Sailer, and L. van

Doorn, “vtpm: Virtualizing the trusted platform module,” IBM Research
Division, Research Report RC23879, February 2006.

[15] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards trusted cloud
computing,” in HOTCLOUD. USENIX, 2009.

[16] S. Berger, R. Cceres, D. Pendarakis, R. Sailer, E. Valdez, R. Perez,
W. Schildhauer, and D. Srinivasan, “Tvdc: Managing security in the
trusted virtual datacenter,” IBM Research Division, Research Report
RC24441, November 2007.

[17] Y. Tan, D. Luo, and J. Wang, “Cc-vit: Virtualization intrusion tolerance
based on cloud computing,” in Information Engineering and Computer

Science (ICIECS), 2010 2nd International Conference on, December
2010, pp. 1 –6.

[18] “Puppet labs,” http://www.puppetlabs.com/, May 2011.

	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Listings
	Acknowledgements
	Introduction
	Brief overview of Cloud Computing
	Definition
	Specifications
	Challenges

	Our Study Approach
	Thesis Contributions and Report Structure
	Openstack
	Application of the Incident Handling Guideline
	Proposed Approaches
	Lab Setup and Configuration

	Text Conventions

	Background
	Introduction to Cloud Computing Security
	New Security Challenges

	Risk Management
	Methodology

	Study Motivation
	IaaS Security
	Security of a Compromised Component

	OpenStack
	Architecture
	Hierarchical
	Peer to Peer
	Multiple Cluster Zones

	OpenStack Compute Project (Nova)
	Cloud Controller
	Object Store (nova-objectstore)
	Auth Manager
	Volume Controller (nova-volume)
	Network Controller (nova-network)
	Scheduler (nova-scheduler)
	Compute Controller (nova-compute)
	API Server (nova-api)
	Compute Interfaces
	RBAC model in OpenStack
	Operation

	OpenStack Object Storage (Swift)
	Components

	OpenStack Imaging Service (Glance)
	Other Components
	Networking

	Components at Risk
	Virtualization Vulnerabilities
	Vulnerabilities in the code
	Types of vulnerabilities
	Hypervisor

	Cloud Platform (OpenStack)
	Cloud Controller
	Scheduler
	Volume Controller
	Network Controller
	Compute Controller

	Detection and Analysis of an Incident (Compromised Component)
	Incidents
	Detection
	Challenges
	Detection Approaches

	Analysis
	Challenges

	Actors' Requirements
	Cloud Providers' Requirements
	Cloud Consumers' Requirements
	Challenges of Proposed Approaches

	Detection and Analysis in an OpenStack Deployment
	Identifying signs of an incident
	Specifying precursors and indications sources
	Analysis of the incident

	Containment and Recovery of the Compromised Component
	Existing Approaches
	Intrusion Tolerance
	Deployment Models

	Containment, Eradication, and Recovery in an OpenStack Deployment
	Case One: A Compromised Compute Worker
	Case Two: A bogus component

	New Approaches
	Restriction of Infected Components
	Filtering in the messaging server (cloud controller)
	Filtering in each component
	Disabling services
	Removing instances from the project VLAN
	Locking down instances' live migration
	Quarantining instances

	Replication of Services
	Replication Layers

	Disinfection of Infected Components
	Consumer Approaches
	Reactive
	Proactive

	Lab Setup
	OpenStack Compute Deployment
	System Requirements
	Architecture/Structure
	Component Distribution
	Installation
	Configuration
	Management
	Operation

	Performance Monitoring of the Infrastructure
	Installation and Configuration
	Data Sources and Graphs

	Messaging Server Management and Monitoring
	Installation
	Operating

	Conclusion
	References
	Glossary
	Acronyms
	Appendix A - Paper

