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Preface 

This document contains a literature study into some of the currently available methods of 

predicting the excess pore pressure developed due to pile driving in clay, and correspondence 

of the predictions to measurements. The results produced by the Cavity Expansion Method 

coupled with the Modified Cam Clay and the Tresca material models have been studied and 

empirical data gathered in the literature study has been used to do regression analyses. The 

study is performed as a master thesis in geotechnics as part of the Master of Science in Civil 

and Environmental Engineering at the Norwegian University of Technology and Science 

(NTNU). It is part of the course TBA4900 lead by the Department of Civil and Transport 

Engineering and was written during the spring semester of 2019. 

The main supervisor of the study has been Prof. Steinar Nordal at NTNU, while the co-

supervisor has been Ph.D. student Yeganeh Attari. I express my gratitude to them both for the 

guidance and help I have received.  

The study is connected to the research and development project REMEDY by the Norwegian 

Geotechnical Institute (NGI). The aim of the REMEDY project is to reduce the risk of 

damage in connection to groundwork during and after execution of a building project. One of 

the activities in REMEDY is to study the effects that pile driving have on slope stability. This 

is the scope of Yeganeh Attari’s PhD. The aim of the study reported here is to contribute to 

this activity in REMEDY, by looking into analytical, numerical and empirical methods of 

estimating the pore pressure build-up due to pile driving in clay.  

 

Trondheim, 05/06/2019 

 

Per-Anders Mortensen  
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Summary 

The study presents some general information on the effects of pile driving based on 

measurements and the current understanding of the problem. Some basic geotechnical 

background on how excess pore pressure is generated is gone through. Then two ways of 

modelling the installation of piles, namely the Strain Path Method (SPM) and the Cavity 

Expansion Method (CEM), are discussed. These methods are coupled with different material 

models. The material models that are mainly discussed is the elastic-perfectly plastic material 

model with a Tresca yield criterion (EP), the Modified Cam Clay model (MCC), and other 

types of Critical State Soil models that include the anisotropy of the material through a rotated 

yield ellipse, and the structure of the material by adding a notional intrinsic yield ellipse (i.e. 

S-CLAY1, S-CLAY1S, MIT-E1,-E2 and -E3). The MCC, S-CLAY1 and S-CLAY1S models 

are gone through in detail so that the discussion and evaluation of the results produced when 

using these, or similar, material models can be as precise as possible. Some empirical 

prediction methods are introduced and most of the presented prediction methods are 

compared to measurements.  

A numerical model of CEM is presented, and the results produced when using the MCC and 

the EP material models is studied closer. The effects of introducing an inner remoulded zone 

with a lower undrained shear strength is studied with the CEM-EP model. 12 sites where the 

pore pressure was measured at the pile shaft, directly after pile driving, is presented with soil 

conditions and other relevant information. This data is further used in regression analyses, and 

to assess some of the presented prediction methods. 

The measurements of the excess pore pressure at the pile shaft display a large scatter for the 

heavily overconsolidated clays. For the slightly over- and normally consolidated clays the 

scatter is much smaller. SPM is believed to give the most correct stress state compared to 

CEM. CEM is shown to grossly over-predict the radial effective stress, however the recorded 

excess pore pressure sometimes correspond better to CEM, and sometimes it fits best with the 

SPM prediction. The radial extent of the excess pore pressure seems to correspond relatively 

good with what CEM-EP predicts. 

The measurements show that the main parameters influencing the excess pore pressure are the 

undrained shear strength (𝑠𝑢), the undrained shear modulus (𝐺𝑢), the overconsolidation ratio 

(𝑂𝐶𝑅) and whether the pile is open- or closed-ended. In addition, the plasticity index (𝐼𝑃), 
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sensitivity (𝑆𝑡), and coefficient of lateral earth pressure (𝐾0) is shown to have an effect in 

some of the numerical studies, but a trend in the measured data with 𝐼𝑃 and 𝐾0 is not found. 

The sensitivity of the soil is in the presented dataset very correlated to the 𝑂𝐶𝑅, and therefore 

the magnitude and effect of 𝑆𝑡 is uncertain.  

When driving piles in a group, the effect seems to be that a somewhat constant maximum 

excess pore pressure level is reached. This harmonizes with the critical state soil theory, 

which say that the inner remoulded zone of an already installed pile is unaffected by the 

driving of a new pile as the soil is already at critical state. However, the extent of the excess 

pore pressure is shown to increase somewhat compared to what CEM-EP predicts. 

The effect on slope stability is only briefly discussed. The pile is shown to have a stabilizing 

effect if it is driven through the critical slip surface. The main negative effects of pile driving 

in a slope is a decrease in strength due to remoulding, and due to a reduction of the vertical 

effective stress. However, CEM only predicts decreasing vertical effective stress when the 

material contracts. Johansson and Jendeby (1998) found that the radial total stress decrease 

faster than the excess pore pressure due to stress relaxation. It could be that the increase in 

vertical total stress found when using CEM also reduce faster than the excess pore pressure. 

Karlsrud, Kalsnes et al. (1993) reports vertical silo effects occurring in lean clays during the 

reconsolidation phase, which causes lower vertical effective stress close to the pile. If this is 

the case then introducing the full excess pore pressure without increasing the total vertical 

stress may be necessary in order to avoid failure. 
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1 

1 Introduction 

1.1 Background 

Installation of a pile causes large strains and remoulding of the soil around the pile. Large 

strains leads to large changes in the total stress state. The effective stress principle gives the 

total stress as the sum of the pore pressure and the total stress. Clay have a low permeability, 

this causes the large change in total stress to initially be carried by the pore water. As the 

excess pore pressure dissipates the soil skeleton will gradually increase the effective stresses 

between the grains.  

Driven piles are often used in geotechnical engineering to transfer loads to deeper layers. Due 

to urbanization and the following densification, more buildings are being built in slopes than 

before. The stabilizing and destabilizing effects piles have on slope stability is therefore an 

important issue. In addition to the soil remoulding and disturbance, there is a destabilizing 

effect due to the excess pore pressure. The exact influence that excess pore pressure has on 

slope stability is however somewhat unclear.  

Piles are almost always driven in groups. The combined effect of a pile group is therefore 

important. Understanding the soil behavior of a single pile is in the author’s view fundamental 

in order to further evaluate the combined effect of a pile group, and the effect on slope 

stability. The excess pore pressure is also important for understanding how the pile bearing 

capacity increases with time. In fact, most of the reports cited are interested in the exact 

prediction of the excess pore pressure solely for this reason. The effects of pile driving are 

also closely related to other deep penetration problems such as the Cone Penetration Test 

(CPT). This report will focus on pile driving, but hopefully it will also be useful in other 

settings and give the reader some insight to some of the currently available methods for 

predicting the stresses, and the difficulties that are faced, in deep penetration problems. 
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1.2 Objective 

The main objective of this study is: 

 To present and evaluate analytical, empirical and numerical methods of predicting the 

pore pressure build-up due to the driving of a single pile in clay. 

Secondary objectives are: 

 Getting a better understanding of the effects that causes the pore pressure build-up. 

 Evaluate the prediction of the final stress state produced by the prediction method. 

Specifically the radial and vertical effective stresses, in addition to the excess pore 

pressure. 

 To assess the prediction methods based on our understanding of the soil’s behavior 

during and after pile driving, in addition to its correspondence to measurements. 

 The effect on slope stability due to the driving of piles. 

 Prediction of the excess pore pressure due to the driving of multiple piles in a group. 

1.3 Approach 

This report contains a literature study on the stress condition after the driving of a pile in clay. 

The first ten chapters are mainly based on data found in the literature, and most of the figures 

have been collected from other authors. If something is unclear or seems wrong I encourage 

you to check the original source. Analytical and numerical solutions have been given the most 

weight as they give a better understanding of the mechanisms causing pore pressure build-up.  

The effect on slope stability are only shortly discussed, however the main goal of predicting 

the excess pore pressure correctly is to be able to look further into this. The prediction 

methods and material models presented are gone through in detail. This is done so that the 

reader is given the required background information that is needed to understand the 

discussion of the faults and imperfections in the methods and material models. A study of the 

Cavity Expansion Method (CEM) in a Modified Cam Clay (MCC) and a linear elastic-

perfectly plastic (EP) material is performed. In addition, softening is studied by introducing a 

remoulded zone with lower undrained shear strength in the CEM-EP model. Measurements of 

the excess pore pressure at the pile shaft from 12 sites are used in the evaluation of some of 
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the prediction methods. This data is also used to study whether trends can be found with 

respect to different soil parameters, and to present some new empirical prediction methods. 

1.4 Limitations 

This report only considers saturated clay loaded under undrained conditions. The predicted 

excess pore pressure is the main focus, but the pore pressure is part of the stress state in the 

soil so a discussion of the principal or Cartesian stresses is also included. For slope stability 

the vertical stress is of interest, and for pile bearing capacity the radial stress is of importance.  

Many aspects of the soil behavior are discussed closely, including the assumed impact it will 

have on the prediction of the excess pore pressure. Not all topics are discussed in detail, and I 

refer to the original source for more information on a specific topic. Whenever triaxial testing 

is mentioned, it may be assumed that the test has been conducted under undrained conditions 

in the conventional way unless otherwise stated. 

The figures are gathered from multiple sources, so the use of symbols is not consistent. I 

apologize for this, however the figure text should clarify when different symbols are used. 

This is done in the end of the figure text by setting the symbol used in the graph equal to the 

symbol used in this study. There are other ways to model this problem, and there are 

prediction methods that have not been included. This study should therefore not be considered 

as a complete list of methods for predicting the excess pore pressure due to pile driving. 

1.5 Structure of Report 

This report consists of a literature study, numerical simulations and empirical data. Chapter 1 

to 10 is mainly based on findings from the literature, but is occasionally supplemented with 

results from the numerical and empirical work presented in the later chapters. The numerical 

simulations are presented in Chapter 11 and 12, while the empirical work is presented in 

Chapter 13 and 14. 

The study presents some general information on the effects of pile driving based on 

measurements and the current understanding of the problem in Chapter 2. In addition, some of 

the effects of installing a pile group, and the effects on slope stability when installing piles, 

are shortly discussed. Chapter 2 requires some understanding of the methods and contains 
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therefore some reference to later chapters. Some basic geotechnical background on how 

excess pore pressure is generated is gone through in Chapter 3. 

In Chapter 4 and 5, the Cavity Expansion Method (CEM) is presented. Chapter 4 presents the 

derivation of an analytical solution using CEM and an elastic material, while Chapter 5 looks 

at the analytical elastic-perfectly plastic solution with the Tresca yield criterion (EP). Chapter 

5 also contains a discussion about the input parameters, and a short description of how to 

model open-ended piles. 

The Modified Cam Clay (MCC), the S-CLAY1 and the S-CLAY1S models are described in 

Chapter 6. Some numerical predictions using these material models with CEM is presented. In 

addition, the mesh dependency introduced when using a softening material model is shortly 

explained. Chapter 7 presents the Strain Path Method (SPM) and the difference between CEM 

and SPM are discussed.  

Chapter 8 contains some of the empirical prediction methods that exist, together with a short 

description. Comparison of results obtained by the discussed prediction methods and 

measurements is presented in Chapter 9. In Chapter 10 the results gathered in the literature 

study is discussed and summarized. 

A Plaxis model of CEM is presented and checked against results presented by other authors in 

Chapter 11. The same model is used in Chapter 12, in order to study the stresses predicted 

when using a linear elastic-perfectly plastic (EP) material model with a Tresca failure 

criterion, as well as the Modified Cam Clay (MCC) material model. Differences in the 

obtained results between the two material models are discussed, and especially the 

overconsolidation ratio (𝑂𝐶𝑅) and the coefficient of lateral earth pressure (𝐾0) is studied 

closely. The chapter is concluded by investigating strain softening. This is modeled by 

introducing an inner remoulded zone with lower undrained shear strength in the CEM-EP 

model, and the result is compared to more complex Critical State Soil models that include 

softening.  

Chapter 13 presents the soil conditions at the 12 sites where pore pressure has been measured 

at the pile shaft. This chapter is mainly based on the data gathered by Karlsrud (2012), but the 

soil parameters have been cross-checked and additional soil parameters such as the sensitivity 

(𝑆𝑡) and the undrained shear modulus (𝐺𝑢) has been gathered/derived to supplement the 
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dataset. This data is further used in Chapter 14 to evaluate the CEM-EP solution, two 

expressions based on the study of the CEM-MCC model, and a trend line suggested by 

Karlsrud (2012). In addition, the data is used in a couple of multivariate linear regressions.  

The report is ended with a conclusion, and proposals for specific topics which need further 

work. Lastly, the Appendix contains plots which are not essential for the discussion, but either 

proves a statement or shows something in a different way than the plots included in the text. 
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2 Effects of pile installation 

2.1 Pile installation 

Piles are most commonly used when either one or more of the points below are problematic: 

 The top layer has insufficient bearing capacity and replacement of the masses are not 

economically doable. This is often the case in Norway due to large instances of 

sensitive clays. 

 When differential settlements exceed a tolerable limit. This is often the case in slopes 

or for unfavorable layering. 

 When there are large horizontal loads on the fundament. Piles can either take these 

forces as bending moment, or the piles can be installed with an angle and take the 

forces as axial loads. 

 When there is tension or uplift forces, which often is the case for slim structures. Piles 

can carry the load by side friction. 

 When a fundament is installed in water that is flowing. Piles are then favorable as one 

can dimension with respect to erosion. 

When using piles, the loads from the structure are distributed to deeper soil layers. Piles carry 

the load through side friction and tip resistance, where one effect often is dominant. Piles can 

be made of steel, concrete, timber and plastic. The choice of pile material is determined by 

load size, and economic and environmental considerations. (Group 2016) 

Piles are most commonly categorized based on the installation process or the load transferring 

method. Two main categories based on the installation process are driven and bored piles. The 

driving of piles creates excessive noise and ground vibration which can damage structures in 

the vicinity. Bored piles create less noise, but are more costly. The driving of piles will also 

create larger excess pore pressure than bored piles. The choice of installation method is 

therefore based on whether the above presented problems can be tolerated, and are of course 

weighted against the economic costs. 

The driven piles can be further divided into displacement and non-displacement piles. 

Displacement piles displaces a large volume of soil, which is the case for closed-ended piles. 
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Non-displacement piles displace less than ten percent of the external pile volume, which often 

is the case for open-ended piles. This study looks at excess pore pressure generated by the 

driving of a pile. Bored piles are normally installed by first drilling a hole in the soil and then 

the pile is either casted in or lowered into the hole. Excess pore pressure will then mainly be 

produced due to the drilling process. To calculate this one must use a fundamentally different 

model, and the pore pressure build-up that is created will be of a much lower magnitude than 

for a driven pile. The installation process is therefore crucial to the pore pressure build-up that 

is generated. Closed-ended piles will be the focus as they displace more soil and thus create 

larger pore pressure build-up. In Chapter 5.4 the modifications of the Cavity Expansion 

Method (CEM) to model open-ended piles is briefly discussed as later chapters show results 

for both open- and closed-ended piles. (Budhu 2008) 

2.2 General effect on soil 

When a pile is penetrating the soil it punches a hole forcing the soil to flow both downwards 

and radially outwards. The pressure required to do this produce large increases in total 

stresses both under the tip and alongside the pile wall. The clay reacts to the pile volume by 

shearing to large strains. As the pile tip advance to greater depths the soil alongside the pile 

wall is unloaded in shear and the mean effective stress developed may decrease due to the 

effect of driving or jacking load cycles. One could say that the stresses required to form a 

cylindrical cavity are smaller than the stresses required to keep the cavity open. A network of 

shear surfaces form and become a permanent feature of the soil. This allows the pile to further 

advance without causing large distortion to the soil above the shear surface. These shear 

surfaces depend on soil type, rate of installation, and the piles surface roughness. (Bond and 

Jardine 1991) 

Clay has a very low permeability, and the time used to drive a pile is in relation to the 

permeability short. The pile driving should therefore be considered as rapid loading, and 

undrained conditions are assumed. Under undrained conditions, excess pore pressure will 

occur due to change in total stresses. This is further explained in the beginning of Chapter 3. 

Unless the pile is pushed down into the soil at a steady rate, pile driving will cause repeated 

unloading and reloading cycles. This will generate positive cyclic pore pressure within the 

unloading/reloading cycles that the models presented in this study do not account for.  



Chapter 2. Effects of pile installation  Per-Anders Mortensen 

 

8 

The expansion of a cylindrical cavity causes large radial strains, but the effect of the 

downward drag when installing a pile will cause very large vertical shear strains close to the 

pile wall. These vertical shear strains will be of a much larger magnitude than the radial 

strains close to the pile wall according to Baligh (1985). The large deformations also cause 

extensive remoulding and disturbance around the pile. (Karlsrud 2012) 

When the shear stresses surpass the undrained shear strength of an intact clay, failure will 

occur and lead to deformations. These deformations will lead to a lower shear strength called 

the remoulded shear strength (𝑠𝑢𝑟). Karlsrud and Haugen (1984) defined three zones close to 

the pile wall. From results of falling cone tests, water content and x-ray photographs from the 

Haga test site they describe the zones. Figure 2.1 illustrates the results. 

 

Figure 2.1: Impact of pile installation on the undrained shear strength (𝑠𝑢) as a function of the radial extent from the pile 

wall (𝑟). (Karlsrud and Nadim 1990) 

In Zone A there is RR-clay which stands for remoulded and reconstituted clay. This zone 

extend to about 0,22 𝑟
𝑟0⁄  from the pile wall, and has gone through severe remoulding. The 

clay has lost all memory of aging effects and preconsolidation stress. The reconsolidation 

causes a reduction in water content and corresponding volume change, which also leads to a 

higher undrained shear strength determined from the falling cone test. 

Zone B appears to have undergone a more uniform shear distortion. The water content 

gradually goes back to its initial values at the transition between Zone B and C. However, 
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falling cone tests show a reduction in undrained shear strength from 0,22 𝑟
𝑟0⁄  to about 

0,9 𝑟
𝑟0⁄ , and then an increase to the initial values in Zone C. 

Zone C is intact clay which shows no impact of the pile driving in the x-ray photos, water 

content and undrained shear strength. The interface between Zone B and C is about 3,6 𝑟
𝑟0⁄  

from the pile wall. The distances described are only results from the Haga test site and does 

not hold for other sites. Figure 2.2 shows the results that these descriptions are based on. 

 

Figure 2.2: Measured shear strain (𝛾𝑟𝑧), water content (𝑤) and undrained shear strength (𝑠𝑢) from falling cone tests as 

function of the radial distance from the pile wall. Based on data from the Haga test site. (Karlsrud and Haugen 1985) 

Karlsrud, Kalsnes et al. (1993) suggest that vertical silo effects and cylindrical arching may 

occur in lean clays in the reconsolidation phase. As the pile is driven a remoulded zone is 

created close to the pile (i.e. zone A). The remoulded zone have a decreased stiffness which 

increase the volumetric compressibility. The circumferential stress will increase at the edge 

between the inner remoulded zone and the outer plasticized zone due to the difference in 

stiffness. Since the inner remoulded zone have a low stiffness the stiffer outer zone attracts 

the stresses and create an arching effect around the remoulded zone. The inner remoulded 
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zone is then experiencing lower pressure due to the large circumferential stress around the 

inner zone. Vertical silo effect is when the vertical effective stress is relieved due to friction 

on the “silo” wall. The “silo” wall is located at the transition between the inner remoulded and 

the outer plasticized zone. This could cause even lower vertical effective stress than what is 

predicted with SPM-MITE3 according to Karlsrud (2012). 

With time the excess pore pressure will dissipate causing an increase of the effective stresses. 

This increase the friction against the pile wall, thereby further increasing the piles bearing 

capacity. The decay of the excess pore pressure depends on the relative size of the zone A and 

the zone B, the magnitude of the excess pore pressure in each zone, and the permeability and 

compressibility of the soil. According to Bond and Jardine (1991) and Karlsrud (2012), 

among others, simple linear radial consolidation theory can be used to estimate the magnitude 

of the pore pressures in the soil as it decay with time. The consolidation process is not 

discussed in detail in this study. 

2.3 Effect of overconsolidation 

Field measurements of the excess pore pressure have shown that for heavily overconsolidated 

clays, suction may develop. This is due to strong dilation of heavily overconsolidated clays 

when sheared. Dilation means that the volume of the material expands, and that the excess 

pore pressure reduces, when sheared. Heavily overconsolidated clays have experienced a 

higher mean stress causing the soil to compact plastically. When the soil is then unloaded it 

will unload elastically, but it will not go back to its original state due to the plastic 

deformations. If we then shear the soil it will expand in volume, just as sand grains in a 

compacted state would climb over each other thus expanding the volume. Under the pile tip, 

the mean stress dominates the excess pore pressure. However, for points above the pile tip 

shear induced pore pressure is large and often negative for heavily overconsolidated clays. 

(Bond and Jardine 1991) 

Coop and Wroth (1989) found that for normally consolidated clays the CEM-EP model gives 

reasonable results. For heavily overconsolidated clays however, the measured normal stress is 

almost half of what is calculated as the cylindrical limit pressure. Karlsrud (2012) found that 

the measured excess pore pressure at the pile shaft for heavily overconsolidated clays shows a 

very large scatter. This could be due to the presence of sand seams, desaturation of the pore 
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pressure measurement equipement or other unknown effects. The result is anyway that 

predictions obtained for heavily overconsolidated clays are very uncertain. 

2.4 Effect of soil structure 

Soil structure refers to bonding between particles, which can arise from many causes. It is a 

general term for soil behavior that cannot be explained by stress history or initial porosity. 

Leroueil and Vaughan (1990) say that the soil structure can arise from “cold welding at 

interparticle contacts under high pressure, from the deposition of carbonates, hydroxides and 

organic matter from solution, from recrystallization of minerals during weathering, and from 

the modification of the adsorbed water layer and interparticle attractive forces in clayey 

soils.” The processes in themselves can be rather complex, however the conclusion is the 

same: soil particles are bonded together through chemical processes over time. This creates 

structure in the clay with planes of weakness and planes of strength. This soil structure is the 

reason clay behavior is anisotropic. When a clay has been loaded in a certain direction over 

many years bonding between the particles can occur. The clay has a higher strength and 

stiffness when loaded in the same direction as previously loaded, than if the clay is loaded in a 

new direction. 

 

Figure 2.3: The effects of secondary compression and structure on (a) void ratio, (b) undrained strength and (c) yield.  

(Leroueil and Vaughan 1990)  
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Figure 2.3 (a) shows this increased stiffness when loaded in the vertical direction. If the soil is 

previously loaded to point B, then unloaded to A, reloading should take us back to point B 

and then straight to point C. However, the soil structure gives us an increased strength as seen 

in Figure 2.3 (b) (point P). The structure gives an apparent preconsolidation pressure 

coinciding with point P. When sufficient volume deformation has occurred, the soil will again 

follow the normal compression line (after point C). When the soil has been loaded to point C 

we say that it is destructurated. 

A destructurated state is produced when the soil structure is partially broken by volume or 

shear deformations. In a remoulded sample all soil structure is lost and the strength of the clay 

is reduced to a minimum. When doing sampling some disturbance will always occur and the 

true soil structure is hard to determine.  

Terzaghi (1944) defined sensitivity (𝑆𝑡) as the ratio between the undrained strength of 

undisturbed clay (𝑠𝑢) and the undrained strength of the remoulded clay (𝑠𝑢𝑟) at the same 

water content. The sensitivity is generally regarded as the parameter embodying the 

differences of the microstructures of the natural and the remoulded clay. The softening of a 

clay is thus governed by the sensitivity. There are material models that include strain 

softening. The Modified Cam Clay model introduce some softening when the 

overconsolidation ratio is higher than two. This softening can however not be controlled so 

that both the peak undrained shear strength equals 𝑠𝑢 and the undrained shear strength at large 

strains equals 𝑠𝑢𝑟. 

The effects of using a strain softening material model is discussed in Chapter 12.8. The 

conclusion is that the excess pore pressure increases when including strain softening. 

However, if the radial extent of the remoulded zone is chosen to be very large, a decrease in 

excess pore pressure can be produced when using simple Tresca based material models. If one 

uses a critical state soil model then softening will give some contraction of the soil. This 

causes the effective mean stress to decrease, which will give an additional increase in excess 

pore pressure.  
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2.5 Pile groups 

This study mainly focuses on the excess pore pressure produced due to a single driven pile. 

However, in practical problems a single pile is seldom driven alone. Therefore the effect of 

multiple driven piles in a pile group is of great practical importance. To understand how the 

soil reacts to a pile group one must understand how a single pile influences the soil. This is 

the reason single piles are the focus of this study. Some general behavior of pile groups, as 

described in the literature, will however be rendered in this chapter due to the importance of 

the combined effect in practical engineering. 

Figure 2.4 shows how the pore pressure increased as each pile in a pile group was driven. The 

excess pore pressure peaks were reduced by 20 − 40% in some few hours after the pile 

driving. After this the excess pore pressure decreased much slower.  

 

Figure 2.4: Excess pore pressure plotted against time when driving multiple piles measured at two depths (15m and 25m). 

(Croce, Calabresi et al. 1973) 

Figure 2.5 shows a principal sketch of how the pore pressure builds up after each new pile 

installed. The decrease is similar for each new pile added, however the excess pore pressure 

goes towards an upper boundary. This means that the excess pore pressure calculated for a 

single pile cannot simply be multiplied with the number of piles in the pile group. 
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Figure 2.5: Principal sketch of excess pore pressure normalized with the initial pore pressure against time, when driving 

multiple piles with equal length of time between the driving of each pile. (övre grense=upper boundary) (Hoem 1975) 

Poulos (1994) finds that the installation of a pile adjacent to an already installed pile will give 

axial forces and bending moments in the pile that have already been installed. This is due to 

the horizontal and vertical displacements that are developed in the soil when a pile is driven. 

Possible consequences in the already installed pile are structural damage or cracking, tensile 

failure or that the pile tip lifts off the bearing stratum.  

However, the impact on the excess pore pressure at the pile wall seems to be small. Bozozuk, 

Fellenius et al. (1978) presented data for a pile group containing 116 piles. They found that 

the excess pore pressure was relatively constant in the pile group and that the radial extent 

was only slightly higher than that predicted for a single pile.  

McCabe and Lehane (2006) make the same observation and explain that the soil close to an 

already driven pile is at the critical state condition. This means that the maximum pore 

pressure is reached for a single pile at the pile surface and installing further piles will not 

increase the pore pressure at the pile shaft of the already installed pile. If a pile group is 

installed sufficiently close, so that the remoulded zone of each pile overlap, then the excess 

pore pressure would be constant between the piles if McCabe and Lehane (2006) are right. 

The installation of a new pile will then only cause accumulation of the excess pore pressure 

beyond the plastic zone. However, some decrease in excess pore pressure between the piles is 

to be expected as the radial extent of the soil which is in critical state condition is quite small.  

Figure 2.6 shows measured pore pressure from Bozozuk, Fellenius et al. (1978) at three 

different locations. The scatter before the maximum pore pressure is reached is due to the 

installation time of different piles and their distance to the piezometer. The main result is that 

there seem to be a peak value that is reached at the different piezometers. This is also shown 

in Figure 2.5, this upper boundary is believed to be reached for a single pile if the piezometer 
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is located at the pile shaft. The only reason Figure 2.5 shows an increase for each new pile 

installed is then believed to be because the piezometer is often placed between the piles where 

the soil is not at critical state. As more piles are installed the soil between the piles become 

more plasticized and the upper boundary is reached. Since the soil between the piles is not at 

critical state, this upper boundary will probably not equal the maximum excess pore pressure 

at the pile shaft for a single pile, but should in theory be somewhat lower. The same applies 

for Figure 2.6 as the piezometers are placed between or outside the pile group. 

 

Figure 2.6: Measured total pore pressure (𝑢) against time at three different locations close to the pile group. (Bozozuk, 

Fellenius et al. 1978) 
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2.6 Effect on slope stability 

Pile installation causes remoulding and generates excess pore pressure, which leads to a 

reduction in the factor of safety of a slope. If the end of the pile is driven past the critical slip 

surface then the pile also have a stabilizing effect, increasing the factor of safety. As seen in 

Figure 2.7, the driving force of the upper sliding soil mass is transmitted to the underlying 

stable soil through the pile, giving a stabilizing effect.  

 

Figure 2.7: Stabilizing effect of a pile, where the sliding soil mass is stopped due to the transmission of the driving force 

through the pile to underlying stable soil. (Ashour and Ardalan 2012) 

The effect of excess pore pressure on slope stability is difficult to include in the calculations, 

and the overall effect is discussable. If one looks at the simple Ordinary Method of Slices 

(OMS) then the factor of safety is given by: 

 𝐹 =
𝑅 ∫ 𝜏𝑓𝑑𝐿

𝑊 ∗ 𝑋 + 𝑄 ∗ 𝑒
 (2.1) 

which is found by applying moment equilibrium around the circular slip surface’s center as 

seen in Figure 2.8. 𝐹 is the safety factor, W is the weight of the soil prism, R is the radius of 

the slip surface, X is the horizontal distance between the soil prisms center of gravity and the 

circle center, Q is the external force, e is the momentum arm between the force Q and the 

circle center, L is the length of the slip surface, and 𝜏𝑓 is the shear strength where failure 

occurs. 
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Figure 2.8: Slope equilibrium of a circular slip surface. Where 𝐵 is the width of the slope, 𝑆 is the force resultant of the shear 

stresses along the slip surface and 𝑁 is the resultant force of the normal stresses between the soil prism and the underlying 

soil and the rest of the parameters are described above. (Group 2016) 

For an undrained analysis the excess pore pressure is not included and the soil’s shear strength 

at failure (𝜏𝑓) is taken as the constant undrained shear strength (𝑠𝑢). The installation of a pile 

causes remoulding of the inner zone and disturbance of the plastic zone, which will decrease 

the undrained shear strength as seen in Figure 2.1. If an effective stress based model is used 

then the effect of excess pore pressure can be included. Using the Mohr-Coulomb failure 

criterion, the shear strength is given as:  

 𝜏𝑓 = (𝜎𝑁
′ + 𝑎) tan 𝜑 =

(𝜎𝑣
′ + 𝑎) tan 𝜑

1 +
1
𝐹 tan 𝜑 tan 𝛼

 (2.2) 

where the symbols are explained in Figure 2.9, and the second equality comes from vertical 

equilibrium as shown in Figure 2.9, where 𝜏 =
𝜏𝑓

𝐹⁄   is the mobilized shear friction. This 

makes the equation iterative as the safety factor (𝐹) is on both sides of the equation. Notice 

also that we neglect the vertical shear forces between the slices. This means that we assume 

the vertical shear forces (𝑇) to be equal between all the slices (∆𝑇 = 0), which is often 

assumed for circular failure surfaces. 
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Figure 2.9: Equilibrium of a single slice. Where ∆𝑊 is the weight of the slice, ∆𝑄𝑣 and ∆𝑄ℎ is the external vertical and 

horizontal forces on the slice respectively, 𝑇 is the force resultant of the vertical shear stresses (𝑡) between the slices and ∆𝑇 

is the change in the vertical shear force, 𝐸 is the normal force between the slices and ∆𝐸 is the change in the normal force, 𝑆 

is the force resultant of the shear stresses (𝜏) working along the slip surface of the slice, 𝑁 is the force resultant of the normal 

stresses (𝜎𝑁) working on the slip surface from the underlying soil, ∆𝑋 is the horizontal length of the slice, 𝛼 is the angle 

between the slip surface of the slice and the horizontal axis, 𝜎𝑣 is the total vertical stress, ∆𝐿 is the length of the slip surface 

of the slice. (Group 2016) 

The effect of excess pore pressure is not directly seen in the effective stress approach either, 

but it is there. It is accounted for through the effective vertical stress (𝜎𝑣
′). The effective stress 

principle gives us: 𝜎𝑣
′ = 𝜎𝑣 − 𝑢, where 𝑢 = 𝑢0 + ∆𝑢 is the total pore pressure, equal to the 

sum of the initial pore pressure (𝑢0) and the excess pore pressure (∆𝑢). The excess pore 

pressure is due to two effects: an increase in total mean stress and dilation or contraction due 

to shear. This is further explained in Chapter 3.  

According to Johansson and Jendeby (1998) reduction in slope stability due to pile driving 

can in an undrained analysis be checked by including strength reduction due to remoulding, as 

previously mentioned, but one must also include a reduction in strength due to high pore 

pressure. 

Ladd (1977) have shown that the undrained shear strength reduce if the vertical effective 

stress is reduced following a trend line described by: 
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 𝜏𝑟 = 𝑠𝑢 ∗ (
𝜎𝑣0

′

𝜎𝑣1
′ )

−0,25

 (2.3) 

where 𝜏𝑟 is the reduced shear strength due to reduction of vertical effective stress, 𝜎𝑣0
′  is the 

vertical effective stress before pile driving, and 𝜎𝑣1
′  is the final vertical effective stress after 

pile driving. Equation 2.3 is only valid when 𝜎𝑣0
′ ≤ 𝜎𝑣1

′ . The Mohr-Coulomb strength can also 

be used to describe a reduction in shear strength due to a reduction in vertical effective stress 

(here assuming 𝜎𝑁
′ = 𝜎𝑣1

′ ): 

 𝜏𝑟 = (𝑎 + 𝜎𝑣1
′ ) ∗ tan (𝜑′) < 𝑠𝑢 (2.4) 

For comparison between Equation 2.3 and Equation 2.4, Johansson and Jendeby (1998) used 

the empirical relation proposed by Hansbo (1954) based on a Swedish high plasticity clay:  

 𝑠𝑢 = 0,45 ∗ 𝜎𝑣0
′ ∗ 𝑤𝐿 (2.5) 

Figure 2.10 shows the reduction in shear strength normalized with the initial shear strength 

against the initial vertical effective stress over the final vertical effective stress, based on 

Equation 2.3, and the combination of Equation 2.4 and 2.5.  
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Figure 2.10: Reduced over initial shear strength versus final over initial vertical effective stress based on Equation 2.3 and 

the combination of Equation 2.4 and 2.5 with 𝑤𝐿 = 70%, 𝑎 = 0 and 𝜑′ = 30°. Based on an older figure by Johansson and 

Jendeby (1998). 

In a drained analysis failure cannot really happen due to excess pore pressure in theory. 

However, permeable layers may lose it strength according to Johansson and Jendeby (1998). 

If the vertical and radial total stress is assumed to be unchanged while the excess pore 

pressure increases, failure, according to the Mohr-Coulomb failure criterion, will occur when: 

 
∆𝑢

𝜎𝑣0
′ =

1

2
∗ (1 −

1

sin(𝜑′)
+ 𝐾0 (1 +

1

sin(𝜑′)
)) (2.6) 

where 𝐾0 is the coefficient of lateral earth pressure. This is derived from the Mohr circle seen 

in Figure 2.11. 
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Figure 2.11: Plot of Mohr’s circle with no change in vertical and horizontal total stress (i.e. ∆𝜎ℎ = ∆𝜎𝑣 = 0 and ∆𝜎ℎ
′ =

∆𝜎𝑣
′ = ∆𝑢). The subindex h and v indicates horizontal and vertical stress respectively. While 1 and 0 indicates after and 

before pile driving respectively. (Johansson and Jendeby 1998) 

We do however know that pile driving causes the radial total stress to increase. If the vertical 

total stress is assumed to be unchanged while the radial total stress increase, failure will occur 

when: 

 
∆𝑢

𝜎𝑣0
′ =

𝐴 ∗ (1 +
1

sin(𝜑′)
+ 𝐾0 (1 −

1
sin(𝜑′)

))

2𝐴 −
1

sin(𝜑′)

 (2.7) 

according to the Mohr Coulomb failure criterion, given that the radial stress becomes larger 

than the vertical stress. Where 𝐴 is Skempton’s pore pressure parameter (see Chapter 3.2). 

This is illustrated in Figure 2.12. 
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Figure 2.12: Plot of Mohr’s circle with no change in vertical total stress (i.e. ∆𝜎𝑣 = 0 and ∆𝜎𝑣
′ = ∆𝑢), while the total 

horizontal stress increase equally much as the excess pore pressure (i.e. ∆𝜎ℎ = ∆𝑢 and ∆𝜎ℎ
′ = 0). The subindex h and v 

indicates horizontal and vertical stress respectively. While 1 and 0 indicates after and before pile driving respectively. 

(Johansson and Jendeby 1998) 

The easiest and most common assumption used in practice, is to assume no change in 

Cartesian total stresses and then introduce the excess pore pressure in a slope stability 

calculation with the Mohr-Coulomb failure criterion. This does however seem overly 

conservative based on the fact that the total stresses will increase.  

There are different ways of modeling the pile driving. The installation of the pile gives large 

radial deformations, which again causes a large radial total stress increase. This means that 

the total mean stress increases and thus creates a positive excess pore pressure. However, the 

total vertical stress also increase when using the Cavity Expansion Method (CEM) to model 

the pile driving. Using CEM will therefore give no decrease or increase in vertical effective 

stress due to the increase in total mean stress. 

The second part of the excess pore pressure is due to shearing. A clay can either dilate or 

contract. Normally consolidated clays are known to contract, while overconsolidated clays are 

known to dilate. If the clay contracts then we will get an additional increase of the pore 

pressure, causing a decrease in the effective vertical stress and then the safety factor will 

decrease as well. If the clay dilates then the excess pore pressure decreases and the factor of 
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safety goes up. If the clay is heavily overconsolidated then suction or negative excess pore 

pressure may occur. This will then, in theory, increase the factor of safety of the slope.  

The different prediction methods explained in the following chapters produce different 

effective vertical stresses. However, the Cavity Expansion Method coupled with the Tresca 

material model never predicts any change in vertical effective stress when plane strain is 

assumed (i.e. ∆𝜀𝑣 = 0 → ∆𝜎𝑣
′ = 0). Close to the terrain, CEM can cause some heave and then 

also a reduction in vertical effective stress. However, plane strain is usually assumed when 

CEM is used and the results herhein are gathered from models that assumes plane strain or 

from sufficient depth so that ∆𝜀𝑣 ≈ 0. If softening is included in the Tresca material model as 

done in Chapter 12.7, there is still no change in effective vertical stress. If the Modified Cam 

Clay (MCC) model is used with CEM then a reduction in vertical effective stress is only 

predicted when the material is contracting (𝑂𝐶𝑅 < 2 in MCC). If the material dilates (𝑂𝐶𝑅 >

2 in MCC) then CEM actually predicts an increase in vertical effective stress (see Chapter 

12), and thus an increase in the safety of the slope.  

Figure 2.13 shows the vertical effective stress produced with CEM and the Strain Path 

Method (SPM) and different material models (PLB, MIT-E1 and MCC, see Chapter 6 and 7). 

The soil parameters are based on Boston Blue Clay (BBC) with an overconsolidation ratio 

(𝑂𝐶𝑅) of one (i.e. a contracting material). The SPM method predicts a decrease in stresses as 

the pile tip has passed (see Figure 7.2). The major difference between CEM and SPM, is that 

SPM introduce the downward motion induced by the pile installation giving vertical 

deformations. While CEM introduce no vertical deformations. Differences between these two 

models are discussed in Chapter 7.3. Based on Figure 2.13 we see that CEM coupled with a 

critical state soil (CSS) model that includes strain softening (MIT-E1 and PLB) gives no 

further decrease in vertical effective stress than what the CEM-MCC produce due to 

contraction.  

In the results produced with SPM we see a larger decrease in vertical effective stress for the 

strain softening material models (MIT-E1 and PLB). However, if SPM is used together with 

the MCC material model we see an increase in vertical effective stress compared to CEM-

MCC. This leads to the conclusion that SPM predicts larger decrease in effective vertical 

stress than CEM when a CSS model which includes softening is used. 
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Figure 2.13: Normalized effective vertical stress and excess pore pressure predicted by CEM (upper graph) and SPM (lower 

graph) coupled with the MIT-E1 (solid line), PLB (dotted line) and MCC (dash-dot line) material models. Predictions are 

based on Boston Blue Clay (BBC) soil parameters with an overconsolidation ratio (𝑂𝐶𝑅) of one. Where �̅�𝑧 = 𝜎𝑣
′, �̅�𝑣0 = 𝜎𝑣0

′  

and 𝑝 − 𝑝0 = ∆𝑢. (Kavvadas 1982) 

The excess pore pressure could also dissipate to other, more critical, parts of the slope. We 

will then have a reduction in effective stress in this initially unaffected area combined with the 

effect of remoulding of the area close to the pile. In addition, the shear strength will increase 

in the remoulded area with time giving an increase in safety. Combining all these effects is 

quite difficult. 

In a slope calculation, piles can be introduced by cavity expansion in a 3D model. However, 

the largest decrease in vertical effective stress is found when using SPM and a CSS model 

that includes strain softening. We see that when using CEM the vertical effective stress is 

only reduced due to contraction. No empirical data on the vertical effective stress after pile 

driving has been found. It is therefore difficult to say which method predicts the most correct 

vertical effective stress. However, if the method predicts the correct excess pore pressure, 

which is more easily measured, it could be an indication that the method also produce the best 

prediction of the other stress components after pile driving. 

Johansson and Jendeby (1998) finds that the radial total stress decrease much more rapidly 

than the excess pore pressure with time. This was observed at Tibble Ängar where there is a 

dry crust of 0,5 − 1𝑚 thickness and then a muddy clay down to 5𝑚 depth. Below this is a 
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homogenous clay down to bedrock at 20𝑚 depth. Figure 2.14 shows the U-shaped stress path 

found when combining the radial total stress and the pore pressure measurements. They 

assume that this is because of relaxation of the soil skeleton, while the excess pore pressure 

prevails due to the low permeability of the clay. 

 

Figure 2.14: Stress path from Johansson and Jendeby (1998) found by combining measurements of horizontal total stress 

and pore pressure. The x-axis shows the mean effective stress (𝑝′) found by assuming ∆𝜎𝑣 = 0 against the deviatoric stress 

(𝑞) on the y-axis. The darker lines are from measurements at 9,5𝑚 depth, while the barely visible lines are from 

measurements done at 5𝑚 depth. (Johansson and Jendeby 1998) 

To verify this result Johansson and Jendeby (1998) performed undrained triaxial tests on the 

same clay. The tests were ran in the conventional way, except the tests were stopped at 2% 

vertical strain by locking the loading device. Then the vertical total stress and excess pore 

pressure were measured with time before the loading continued. The same tendency was 

observed, the total vertical stress reduced quicker than the pore pressure, causing the effective 

stress to reduce with time. This is not seen in the CEM-MCC model. Appendix C.2 contains 

plots of the dissipation process with time. Figure C.2.1, C.2.2 and C.2.3 shows the excess 

pore pressure, total and effective radial stress respectively. From these we see that the 

reduction in excess pore pressure happens simoultaneously as the total radial stress decrease 

and the radial effective stress increase.  
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Figure 2.15: Results from one of the four triaxial tests performed. Showing the change in stress on the y-axis and the time on 

the x-axis, where the black line is the change in total stress, the grey line is the change in pore pressure and the barely visible 

line is the change in effective stress. The first peak is when 2% vertical deformation is reached and the second peak shows 

the reloading to 10% vertical strain. (Johansson and Jendeby 1998) 

It could be that the stress relaxation observed in the radial total stress also happens to the 

vertical total stress after driving a pile. Karlsrud (2012) mention vertical silo effects occurring 

in the reconsolidation phase in lean clays (explained in Chapter 2.2), which would reduce the 

vertical effective stress. Whether it is stress relaxation causing the total stress to decrease 

faster than the excess pore pressure or if it is vertical silo effects, the conclusion is that even 

the largest reduction in vertical effective stress found, when using SPM and a CSS model that 

includes softening, could in fact be too small.  

As a conservative estimate it may then be necessary to introduce the excess pore pressure 

without any increase in vertical total stress. We will in the following chapters look more into 

the stresses produced with different installation and material models. The excess pore pressure 

produced due to pile driving will be the main focus as this can readily be checked with 

measurements. 
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3 Pore pressure equations 

3.1 General 

For completely saturated soil, rapid loading leads to a build-up of the pore pressure. The 

water, located in the pores of the clay, is trapped under rapid loading due to low permeability. 

If assuming water is incompressible, then applying a uniform pressure rapidly will cause the 

pore pressure to increase, causing no change in effective stresses. Excess pore pressure is then 

the only result. This excess pore pressure will dissipate with time leading to an increase in the 

effective mean stress. Under undrained conditions we assume that the dissipation of the 

excess pore pressure has not yet started (i.e. we assume the pore water to be completely 

trapped). This means that a uniform stress increase will be accompanied by an equivalent 

increase in excess pore pressure. Similarly, reducing the pressure in the soil uniformly leads 

to a reduction in pore pressure, and maybe even suction. When increasing or reducing the 

shear stresses in the soil, experiments have shown that the excess pore pressure produced 

changes as well. So the excess pore pressure is related to changes in both the total mean 

pressure and the shear stress. The following chapter present different suggestions on the 

relation between stress change and excess pore pressure under undrained conditions. (Emdal 

2014, Nordal 2018) 

3.2 Skempton’s pore pressure equation 

Skempton (1954) found from triaxial testing that the change in pore pressure was related to 

the change in the minor principle stress (∆𝜎3) and the deviatoric stress (∆𝑞 = ∆𝜎1 − ∆𝜎3).  

 

Figure 3.1: Excess pore pressure (∆𝑢) divided into two separate parts; ∆𝑢𝑎 and ∆𝑢𝑑. Related respectively to the change in 

the minor principle stress (∆𝜎3) and the change in deviatoric stress (∆𝑞). (Skempton 1954) 

He defined 𝐵 as the saturation parameter given by: 
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𝐵 =

∆𝑢𝑎

∆𝜎3
=

1

1 +
𝑛𝐶𝑤

𝐶𝑠

 
(3.1) 

where 𝐶𝑤 is the compressibility of the fluids (water and air), 𝐶𝑠 is the compressibility of the 

solid material and 𝑛 is the porosity of the soil.  

For a fully saturated soil there are zero air voids. This means 𝐶𝑤 is the compressibility of 

water. 
𝐶𝑤

𝐶𝑠
⁄  is then approximately zero since the compressibility of water is negligible 

compared to the compressibility of the soil, so 𝐵 = 1. For an unsaturated clay, 𝐶𝑤 equals the 

compressibility of air which is far greater than the compressibility of the soil. 
𝐶𝑤

𝐶𝑠
⁄  is then 

approaching infinity and 𝐵 = 0. 

Using isotropic elasticity theory Skempton found that: 

 ∆𝑢𝑑 =
𝐵

3
(∆𝜎1 − ∆𝜎3) (3.2) 

The behavior of soil is however generally not in accordance with isotropic elasticity and 

Skempton proposed: 

 ∆𝑢𝑑 = 𝐴 ∗ 𝐵(∆𝜎1 − ∆𝜎3) (3.3) 

where 𝐴 is Skempton’s pore pressure parameter which can be found experimentally. Using 

this, the final form of Skempton’s pore pressure equation becomes: 

 ∆𝑢 = 𝐵(∆𝜎3 + 𝐴(∆𝜎1 − ∆𝜎3)) (3.4) 

(Skempton 1954) 

𝐴 is found from a conventional undrained triaxial test, but depends on the way the test is 

conducted. Conventional undrained active triaxial testing means that the cell pressure is held 
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constant during the shearing process (i.e. ∆𝜎3 = 0). If the sample is fully saturated then 𝐵 = 1 

and Equation 3.4 reduces to: 

 ∆𝑢 = 𝐴𝑎∆𝜎1 (3.5) 

where the subindex a is used to specify that this is Skempton’s pore pressure parameter found 

from an active triaxial test. The excess pore pressure is the difference between the total stress 

path (TSP) and the effective stress path (ESP). In Figure 3.2, the TSP goes straight up, and is 

determined by the test conducter. While the ESP is based on the test result, and is determined 

by the soil reaction. 

 

Figure 3.2: Determination of the classical pore pressure parameters, 𝐴 = �̅� (Skempton) and 𝐵𝑏 = �̅� (Bishop). (Sandven, 

Senneset et al. 2017) 

From the geometry seen in Figure 3.2, use of the effective stress principle (𝜎 = 𝜎′ + 𝑢), and 

knowing that the excess pore pressure equals the difference between the TSP and ESP, 

Equation 3.5 can be rewritten into: 

 𝐴𝑎 =
∆𝑢

∆𝜎1
=

∆𝜎3 − ∆𝜎3
′

∆𝜎1
′ + ∆𝑢

=
∆𝜎3 − ∆𝜎3

′

∆𝜎1
′ + ∆𝜎3 − ∆𝜎3

′ =
−∆𝜎3

′

∆𝜎1
′ − ∆𝜎3

′ (3.6) 
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The first equality is the simplest to use as we measure the pore pressure and the vertical 

additional load, while the cell pressure is known and constant. For a passive undrained triaxial 

test the axial load is held constant while the cell pressure is increased. This means 𝜎1 = 𝜎2 =

𝜎𝑐𝑒𝑙𝑙 and ∆𝜎3 = ∆𝜎𝑎𝑥𝑖𝑎𝑙 = 0. Since Equation 3.4 does not depend on 𝜎2, Equation 3.5 and 3.6 

are unchanged for a passive triaxial test.  

However, the soil behavior is not the same. 𝐴 determined from an active triaxial test will not 

be equal to 𝐴 determined from a passive triaxial test (i.e. 𝐴𝑎 ≠ 𝐴𝑝). This is due to the 

anisotropy of the material. A normal Norwegian clay will show a smaller undrained shear 

strength from a passive triaxial test than from an active triaxial test (𝑠𝑢𝐴 > 𝑠𝑢𝑃). The same 

anisotropy can be explained by the angle between the horizontal axis and the failure line being 

smaller in a passive triaxial test, which gives a smaller slope than in the active test (𝑆𝑓,𝑎 >

𝑆𝑓,𝑝). Anisotropy is larger in lean clays, which is normal in Norway, and some further 

explanation is given Chapter 5.3. Figure 3.3 shows an illustrative example of what we can 

observe in a passive and an active triaxial test on an anisotropic clay.  

 

Figure 3.3: Pore pressure parameter from passive and active triaxial testing. Example of the Effective Stress Path drawn as 

a stippled line. 

Figure 3.3 shows that the secant values of the pore pressure parameter. That is when 𝐴 is 

determined by the start point and the point where the effective stress path hits the failure line. 
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The pore pressure parameter can also be determined for small increments along the effective 

stress path. This is called the tangential value of 𝐴. Figure 3.3 shows that the tangential value 

of 𝐴 depends on the degree of mobilization. 𝐴 starts as a small value and increases as the 

mobilization increases.  

Typical values of A at failure are given by Massarsch (1976) and are listed in Table 3.1. 

Table 3.1: Typical values of Skempton’s pore pressure parameter A at failure according to Massarsch (1976) 

Sensitive clay 1,5 − 2,5 

Normally consolidated clay 0,7 − 1,3 

Lightly overconsolidated clay 0,3 − 0,7 

Heavily overconsolidated clay -0,5 − 0 

Similar result is obtained by Bishop and Henkel (1957), but not showing the same range as 

Massarsch (1976) found. Skempton’s pore pressure parameter shows a clear relation to the 

overconsolidation ratio at failure, as seen in Figure 3.4. 

 

Figure 3.4: The variation of the pore pressure parameter A at failure (𝐴𝑓) with overconsolidation ratio for Weald clay. 

(Bishop and Henkel 1957) 
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3.3 Bishop’s pore pressure equation 

In the same journal as Skempton presented his solution, Bishop (1954) presented practical 

applications of the solution. Bishop (1954) looked at the effective stresses in an earth dam 

during construction and during rapid draw down. Due to the complexity, accurate 

determination of ∆𝜎3 required a detailed analysis. Bishop (1954) conveniently expressed the 

excess pore pressure as an equation of ∆𝜎1, and looked at the influence of variations in the 

principle stress ratio. 

 ∆𝑢 = 𝐵 ∗ ∆𝜎1 (1 − (1 − 𝐴) (1 −
∆𝜎3

∆𝜎1
)) ≈ 𝐵𝑏 ∗ ∆𝜎1 (3.7) 

where 𝐵𝑏 is the overall pore pressure coefficient, later named Bishop’s pore pressure 

parameter. Bishop (1954) found that the principle stress ratio had an influence. This means 

that the approximately equal sign is of importance. We see that Equation 3.7 is the same as 

Skempton proposed for a conventional undrained triaxial compression test where the cell 

pressure is kept constant and the sample is fully saturated. Then ∆𝜎3 = 0 and 𝐵 = 1, so 𝐵𝑏 =

𝐴. Since the principle stress ratio is of importance, Equation 3.7 is not normally used for other 

stress states than that of the triaxial test. 

3.4 Janbu’s pore pressure equation 

Because Skempton’s pore pressure equation does not depend on ∆𝜎2, Skempton’s pore 

pressure parameter 𝐴 will depend on the type of test conducted. The same applies for 

Bishop’s pore pressure parameter. Janbu (1976) and Henkel (1960) therefore suggested an 

alternative formulation based on the three dimensional stress state, to make a more consistent 

and generally applicable expression for the excess pore pressure. The solution by Janbu 

(1976) and Henkel (1960) is practically equal. The one difference is that Henkel (1960) used 

the octahedral shear stress defined by: 

 ∆𝜏𝑜𝑐𝑡 =
1

3
√(∆𝜎1 − ∆𝜎3)2 + (∆𝜎2 − ∆𝜎3)2 + (∆𝜎1 − ∆𝜎2)2 (3.8) 
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Janbu (1976) instead used the deviatoric stress, which in a triaxial test is equal to the double 

of the maximum shear stress. The octahedral shear stress in both passive and active triaxial 

testing is equal to the deviatoric stress, but with a factor of √2
3

⁄  in front. This means that the 

pore pressure parameter determined from triaxial tests are proportional to each other by a 

factor of √2
3

⁄ . This also holds for plane strain conditions under undrained loading. This can 

easily be checked by inserting Equation 4.5 into Equation 3.8 with Poisson’s ratio equal to 

0,5. In conclusion, there is a difference when we do not have plane strain or triaxial 

conditions. The details of this difference are not discussed further in this study. From here on 

out, only Janbu’s equation will be discussed as it is more commonly used in Norway. 

In isotropic elasticity there is no coupling between change of size and change of shape. This 

means that for an undrained triaxial test we will have a pure change of shape as ∆𝑝′ = 0. This 

is generally not the result found from actual triaxial tests. Janbu (1976) used that in 

anisotropic elasticity the volumetric strain is related to both the deviatoric and the mean stress 

through: 

 ∆𝜀𝑣 =
1

𝐾
∆𝑝′ +

1

𝐻
∆𝑞 (3.9) 

where 𝐾 is the bulk modulus, 𝐻 is a temporary variable called the dilatancy modulus, 𝑝 and 𝑞 

denotes the mean and the deviatoric stress respectively, defined by: 

 𝑝 =
1

3
(𝜎1 + 𝜎2 + 𝜎3) (3.10) 

For undrained conditions it is generally assumed that ∆𝜀𝑣 = 0. Equation 3.9 then gives: 

 ∆𝑝′ = −
𝐾

𝐻
∆𝑞 = 𝐷∆𝑞 → 𝐷 =

∆𝑝′

∆𝑞
 (3.12) 

 𝑞 = 𝜎1 − 𝜎3 (3.11) 
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where 𝐷 is Janbu’s pore pressure parameter, often simply called the Dilatancy parameter. 

Utilizing the effective stress principle (𝜎 = 𝜎′ + 𝑢), Equation 3.12 can be rewritten into: 

 ∆𝑢 = ∆𝑝 − 𝐷∆𝑞 (3.13) 

Equation 3.13 is known as Janbu’s pore pressure equation. Notice that when assuming the 

change of the volumetric strain to be equal to zero, one assumes that the material is 

completely saturated. 

The upper and lower limits of the Dilatancy parameter, based on experience, are as shown in 

Table 3.2. From Equation 3.12 it can be seen that the material dilates, this means that the 

volume expands, when 𝐷 is positive. This again causes the excess pore pressure to be smaller, 

as seen in Equation 3.13. This effect can be observed in dense sand and overconsolidated 

clay. When 𝐷 is negative, the material contracts. This means that the volume reduces, and that 

the excess pore pressure increases. This effect can be seen in loose sand and normally 

consolidated clay. When 𝐷 = 0, the material follows elastic isotropy and we have no volume 

change. 

Table 3.2: Definition, limits and effect on volume change of the Dilatancy parameter (Nordal 2018) 

Contracting material −0,5 < 𝐷 < 0 Volume reduction 

Dilatancy neutral material 

(isotropic elastic material) 
𝐷 = 0 

No volume change 

Dilating material 0 < 𝐷 < 0,5 Volume expansion 

The Dilatancy parameter is normally determined by triaxial testing. In an active triaxial test 

𝜎2 = 𝜎3, and under shearing ∆𝜎3 = 0. Inserting this into Equation 3.13 and solving for 𝐷 

gives:  
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 𝐷 −
1

3
=

∆𝜎3
′

∆𝜎1
′ − ∆𝜎3

′ (3.14) 

We can see the similarities to Skempton’s pore pressure parameter. Utilizing Equation 3.6, the 

relationship between the parameters found from active triaxial testing is given by: 

 𝐷𝑎 =
1

3
− 𝐴𝑎 (3.15) 

Doing the same for a passive undrained triaxial test (𝜎1 = 𝜎2 = 𝜎𝑐𝑒𝑙𝑙 and ∆𝜎3 = ∆𝜎𝑎𝑥𝑖𝑎𝑙 = 0) 

gives: 

 𝐷 −
2

3
=

∆𝜎3
′

∆𝜎1
′ − ∆𝜎3

′ (3.16) 

Equation 3.6 then gives the relationship to Skempton’s pore pressure parameter as: 

 𝐷𝑝 =
2

3
− 𝐴𝑝 (3.17) 

When the stress changes are arbitrary in three directions there are no one-to-one relation 

between the two equations. So the above relations only holds for triaxial testing.  

In the above equations the subindex a and p has been used to mark the active and the passive 

triaxial test. The reason for this is that both Skempton’s and Janbu’s pore pressure parameter 

changes depending on the type of test conducted. This is shown in Figure 3.3. The pore 

pressure parameters also change depending on the degree of mobilization. Figure 3.5 shows 

that the value of the Dilatancy parameter is smaller for passive triaxial tests compared to 

active for different values of the consolidation stress. This means that 𝐴𝑎 must be smaller than 

𝐴𝑝 − 1
3⁄ , utilizing Equation 3.15 and 3.17. From Figure 3.3 we see that 𝐴𝑎 is smaller than 

𝐴𝑝, but how much is not shown. 
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Figure 3.5: Tangential values of the Dilatancy parameter from active and passive triaxial testing for different values of the 

consolidation stress. (Svanø 1981) 

Svanø (1981) used tangential values when comparing 𝐷𝑎 and 𝐷𝑝. The difference will become 

smaller if the secant value is used, but the true material behavior is best described by the 

tangential values. The conclusion is however that some difference in 𝐷𝑎 and 𝐷𝑝 is to be 

expected, especially if tangential values are used. 
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3.5 Excess pore pressure in finite element codes 

In finite element codes, the dilatancy angle 𝜓 is commonly used. The dilatancy angle 

describes the volume expansion during plastic yielding. In Plaxis 2D the excess pore pressure 

is calculated by: 

 ∆�̇� =
𝛼𝜀�̇�

𝑛𝐶𝑤 + (𝛼 − 𝑛)𝐶𝑠
 (3.18) 

where 𝛼 is Biot’s pore pressure coefficient, 𝐶𝑤 is the compressibility of water, 𝐶𝑠 is the 

compressibility of the solid material and 𝑛 is the soil porosity. Biot’s pore pressure coefficient 

is a value between zero and one, describing the compressibility of the soil skeleton. Usually it 

can be set equal to one, however at very large pressure the stiffness of the soil matrix comes 

close to the stiffness of the solid material, and the compressibility of the grains must be taken 

into account. Notice that ∆�̇� is the rate of the excess pore pressure and 𝜀�̇� is the rate of the 

volumetric strain. The dilatancy angle, which describes the volume expansion during plastic 

yielding, is therefore very important in determining the excess pore pressure. (Brinkgreve, 

Kumarswamy et al. 2018) 

The Dilatancy parameter describes the dilatancy up until failure, while for an elastic-perfectly 

plastic material the dilatancy angle is only connected to the plastic failure. For a more 

complex elasto-plastic material model, plastic strains occur before failure. The dilatancy angle 

is therefore relevant before failure and can be related to the Dilatancy parameter. This relation 

will involve the materials volumetric stiffness and is therefore not one-to-one. (Nordal 2018) 

For the critical state soil models (i.e. MCC, S-CLAY1/1S and MIT-E1/2/3) the volume 

expansion during plastic yielding is given by associated flow. The dilatancy of the material is 

then given by the yield surface of the material model. In Chapter 6.2 determination of the 

excess pore pressure in the MCC material model is explained. The S-CLAY1/1S and MIT-

E1/2/3 follows the basic principle explained there as well. 
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4 Cavity expansion in an elastic material 

4.1 General 

Chapter 4 presents the fundamental solution of the Cavity Expansion Method (CEM) in an 

elastic material. CEM is widely applied in geotechnics, for example in assessing in-situ soil 

tests, deep foundations, tunnels, underground excavations and pile driving. In the literature we 

can find many reports comparing measured field data with predicted results from the Cavity 

Expansion Method coupled with different material models. Some of the results from such 

reports are presented in Chapter 9, while in this chapter only the method itself will be 

presented. Chapter 9 shows that the theory gives relatively good results when modeling Zone 

B in Figure 4.1 as a cylindrical expansion. CEM does however not fully model the behavior in 

Zone A and Zone C. Clark and Meyerhof (1972) finds that for Zone C, the displacement 

pattern is somewhere between what is found by the expansion of a cylindrical cavity and the 

expansion of a spherical cavity.  

 

Figure 4.1: Different zones characterized by what affects the displacement due to pile installation. (Yu 2000) 

The biggest fault of the cavity expansion method, when applying it to the installation of piles, 

is that we do not include the downward motion of pile installation. CEM is expanding a 

cylinder from an initial (in pile driving zero) radius to a given radius. However, pile driving is 

pushing a pile into the soil, not expanding a pile from zero radius. The model has in other 

words some fundamental flaws. However, field measurements of the pore pressure show that 

for Zone B one can obtain reasonable answers using CEM. Similar solutions as those 

presented here can also be found for a spherical cavity expansion.
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The expansion of a cavity is a one-dimensional boundary value problem, solved by using 

continuum mechanics and a mathematical material model relating the stresses to the strains. 

This means that cavity expansion can be described by an ordinary differential equation of the 

unknown function of either the circumferential or the radial stress. The radial stress is used in 

this derivation. Described by one variable, here the distance from the cavity center 𝑟, and the 

boundary conditions of the stress when 𝑟 is at its maxima and minima. Solving this 

differential equation will give us the radial stress as a function of 𝑟. Continuum mechanics 

will then give the relations between the different stresses and the relation between different 

strains and displacements. While the material model relates the stresses to the strains. (Yu 

2000) 

This elastic solution is a necessary introduction to the development of the solution for an 

elasto-plastic material presented in Chapter 5. Only the isotropic case with uniform external 

pressure and both uniform internal and external pressure is presented. In 1898, Kirsch found 

the general solution for an isotropic far field stress, which is used throughout this chapter.  

 

Figure 4.2: Definition of parameters used in the presentation of the Cavity Expansion Method. From Nordal (2018) slightly 

edited by the author. 

In the following chapters the definitions from Figure 4.2 is used. Where 𝑟𝑝 is the plastic 

radius, 𝑟0 is the radius of the cavity/pile, 𝑟 is the distance from the cavity center out to the 

considered soil element, ∆𝜎𝑟 is the change of the radial total stress, ∆𝜎𝜃 is the change of the 

circumferential total stress, and ∆𝜎𝑧 is the change of the vertical total stress. Other parameters 

will be defined as they are presented.  
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The solutions presented all have an outer radius of the material going towards infinite. This is 

just a choice, and the solutions can be presented with a finite outer radius. In geotechnics 

letting the outer radius go to infinite is a common assumption. This is a fair assumption for 

the pile driving problem as long as multiple piles are not installed closely in a group. We 

would then need to consider the combined effect of the pile group as explained in Chapter 2.5.  

Cavity expansion in an elastic material have been solved for biaxial external pressure, cross-

anisotropic material and so on. For the pile driving problem biaxial external pressure is not 

very relevant as we often assume equal horizontal pressure in all directions at a given depth. 

Cross-anisotropic material is more relevant, but pile driving causes large strains and plasticity 

is therefore a necessity. As the analytical plastic solution is not solved for cross-anisotropy, 

the analytical elastic solution for this is not rendered here. The solution for biaxial external 

pressure was found by Kirsch and is rendered in Terzaghi and Richart (1952). The solution 

for a cross-anisotropic material is found in Lekhnitskii (1963). Pile driving is, as mentioned, a 

large strain problem. For soils, the displacements are dominated by plasticity. However, the 

elastic solution is important for correctly representing the stresses and thus in establishing the 

elasto-plastic solution. (Yu 2000) 

4.2 Cylindrical expansion with uniform external pressure 

Kirsch looked at an elastic, infinitely long, thick-walled cylinder, where the outer diameter of 

the cylinder is approaching infinity. For simplicity isotropic external pressure is used, and it is 

assumed that the external pressure is applied from initial values equal to zero. The current 

stress is then equal to the change of the stress. Delta (𝛥), from Figure 4.2, is therefore skipped 

in the derivation of the elastic solution. 
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Figure 4.3: Equilibrium of an infinitesimal element in a thick-walled pipe. (Nordal 2018) 

Equilibrium of Figure 4.3 gives: 

 𝑟
𝜕𝜎𝑟

𝜕𝑟
+ 𝜎𝑟 − 𝜎𝜃 = 0 (4.1) 

Isotropic elasticity yields: 

 𝜀𝑟 =
1

𝐸
(𝜎𝑟 − 𝜈𝜎𝜃 − 𝜈𝜎𝑧) (4.2) 

 𝜀𝑧 =
1

𝐸
(−𝜈𝜎𝑟 − 𝜈𝜎𝜃 + 𝜎𝑧) (4.4) 

where 𝐸 is Young’s modulus, 𝜈 is Poisson’s ratio, and 𝜀 is the strain in the radial, 

circumferential and vertical direction depending on the subtext. 

Due to the infinite length of the pipe, plane strain conditions are assumed (i.e. 𝜀𝑧 = 0). 

Equation 4.4 then gives: 

 𝜀𝜃 =
1

𝐸
(−𝜈𝜎𝑟 + 𝜎𝜃 − 𝜈𝜎𝑧) (4.3) 
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 𝜎𝑧 = 𝜈(𝜎𝑟 + 𝜎𝜃) (4.5) 

By inserting Equation 4.5 back into Equation 4.2 and 4.3, can 𝜎𝑧 be eliminated. The strains 

are then given by: 

 𝜀𝑟 =
1 − 𝜈2

𝐸
(𝜎𝑟 −

𝜈

1 − 𝜈
𝜎𝜃) (4.6) 

 𝜀𝜃 =
1 − 𝜈2

𝐸
(−

𝜈

1 − 𝜈
𝜎𝑟 + 𝜎𝜃) (4.7) 

Compatibility requirements are given by: 

 𝜀𝑟 = −
𝜕𝑢

𝜕𝑟
 (4.8) 

 𝜀𝜃 = −
𝑢

𝑟
 (4.9) 

where the circumferential strain is found by considering Figure 4.4: 

 

Figure 4.4: Strains in the circumferential direction are given by 𝑢 𝑟⁄ , where 𝑢 is the radial displacement which vary along 

the radial extent from the pile center, 𝑟. (Nordal 2018) 

Equation 4.8 and 4.9 can be combined to eliminate 𝑢: 
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 𝜀𝑟 =
𝜕

𝜕𝑟
(𝑟𝜀𝜃) (4.10) 

By using Equation 4.6, 4.9 and 4.10, can the circumferential stress be eliminated, and a 

differential equation for the radial stress can be established as: 

 𝑟
𝜕2𝜎𝑟

𝜕𝑟2
+ 3

𝜕𝜎𝑟

𝜕𝑟
= 0 (4.11) 

The solution of this differential equation is known as Kirsch solution for isotropic far-field 

stress: 

 𝜎𝑟 = 𝐶1 +
𝐶2

𝑟2
 (4.12) 

where 𝐶1 and 𝐶2 are constants that are determined by the boundary conditions. 

Inserting 4.12 into 4.1 gives the circumferential stress as: 

 𝜎𝜃 = 𝐶1 −
𝐶2

𝑟2
 (4.13) 

For the boundary conditions of Figure 4.3 we have: 

 𝜎𝑟|𝑟→∞ = 𝑝0  →  𝐶1 = 𝑝0 (4.14) 

 𝜎𝑟|𝑟→𝑟0
= 0 →  𝐶2 = −𝑝0𝑟0

2 (4.15) 

where 𝑝0 is the uniform external pressure. Utilizing these boundary conditions gives: 

 𝜎𝑟 = 𝑝0 (1 − (
𝑟0

𝑟
)

2

) (4.16) 
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𝜎𝜃 = 𝑝0 (1 + (

𝑟0

𝑟
)

2

) 
(4.17) 

From Equation 4.5 we find the vertical stress, and the second equality comes from assuming 

undrained conditions (i.e. 𝜈 = 0,5): 

 𝜎𝑧 = 2𝜈𝑝0 = 𝑝0 (4.18) 

 

Figure 4.5: Kirsch solution for the total stresses against the radial extent from the pile center normalized with the pile radius 

given that only an isotropic external pressure is applied. Made by the author utilizing Equation 4.16, 4.17 and 4.18. 

From Figure 4.5 we can see that at the cavity surface, the circumferential stress is equal to 

2𝑝0. It can be seen from Figure 4.5 or from Equation 4.16, 4.17 and 4.18 that 𝜎1 = 𝜎𝜃, 𝜎2 =

𝜎𝑧, and 𝜎3 = 𝜎𝑟. The maximum shear stress is then 𝜏𝑚𝑎𝑥 =
𝜎1−𝜎3

2
= 𝑝𝑜. If we apply the 

Tresca yield criterion and use a yield stress equal to 2𝑠𝑢, where 𝑠𝑢 is the undrained shear 

strength of the material, then initial yielding will occur at the cavity surface when 𝑝0 = 𝑠𝑢. 

(Yu 2000, Nordal 2018)  
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4.3 Cylindrical expansion with isotropic internal and external pressure 

When using CEM to model pile installation an internal pressure, that increase until the cavity 

expand, is applied. Kirsch solution for a far field stress can also give us the solution for both 

external and internal pressure by using the boundary conditions of Figure 4.6. 

 

Figure 4.6: Cavity with radius 𝑟0 under uniform internal (𝑝) and external pressure (𝑝0). From Nordal (2018) slightly edited 

by the author. 

 𝜎𝑟|𝑟→∞ = 𝑝0  →  𝐶1 = 𝑝0 (4.19) 

 𝜎𝑟|𝑟→𝑟0
= 𝑝 →  𝐶2 = (𝑝 − 𝑝0)𝑟0

2 (4.20) 

which gives the stresses: 

 𝜎𝑟 = 𝑝0 + (𝑝 − 𝑝0) (
𝑟0

𝑟
)

2

 (4.21) 

 
𝜎𝜃 = 𝑝0 − (𝑝 − 𝑝0) (

𝑟0

𝑟
)

2

 
(4.22) 

As before we have from Equation 4.5: 
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 𝜎𝑧 = 2𝜈𝑝0 = 𝑝0 (4.23) 

 

Figure 4.7: Kirsch solution for the total stresses against the radial extent from the pile center normalized with the pile radius 

when both an external (𝑝0) and an internal (𝑝) pressure is applied. Four different values of  
𝑝

𝑝0
⁄  is used, all assuming 𝑝 ≥

𝑝0. Made by the author utilizing Equation 4.21 and 4.22. 

From Figure 4.7 we can see similarities to the solution presented in Figure 4.5. The main 

difference is that in Figure 4.5 we had no internal pressure. This caused the radial stress to be 

equal to zero at the cavity surface, due to equilibrium of stresses. In Figure 4.7 we have an 

internal pressure and it is assumed larger or equal to 𝑝0. This causes a change in the major and 

minor principle stress. As in Figure 4.5, we can see that initial yielding is occurring at the 

cavity wall. Because of the internal pressure we now have 𝜎1 = 𝜎𝑟 and 𝜎3 = 𝜎𝜃, knowing that 

𝜎2 = 𝜎𝑧 = 𝑝0 for undrained conditions. Initial yielding will then occur when: 

 𝑌 = 2𝑠𝑢 = 𝜎1 − 𝜎3 = 𝜎𝑟 − 𝜎𝜃 = 2(𝑝 − 𝑝0) (
𝑟0

𝑟
)

𝑚𝑎𝑥

2

→ 𝑠𝑢 = 𝑝 − 𝑝0 (4.24) 

The different ratios of 𝑝/𝑝0 in Figure 4.7 can therefore be viewed as steadily increasing the 

internal pressure from an initial value of 𝑝0. At some point, we will get yielding because of 

the difference in radial and circumferential stress at the cavity wall, or internal and external 

pressure, as Equation 4.24 indicates. (Yu 2000) 
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5 Cavity expansion in an elastic-perfectly plastic material 

5.1 General 

Bishop, Hill et al. (1945) researched the indentation of work-hardened and annealed copper 

by penetration of a conical punch with a cut-back shank. Assuming plane strain and no 

volume change, they found a solution for a frictionless medium using the Tresca yield 

criterion. Hill (1950) present a complete solution for large strains, but only for a case with 

external pressure equal to zero. This solution also contained some simplifying assumptions for 

a cylindrical cavity expanding from zero initial radius. Gibson and Anderson (1961) found a 

large strain solution for a cylindrical cavity in an infinite, incompressible undrained clay. A 

large strain solution uses the true or logarithmic strains, and not the engineering strains. This 

solution is also known from Vesic (1972). In Yu (2000) a solution for any value of Poisson’s 

ratio is given. Notice also that the elastic solution derived in the previous chapter was found 

using the small strain definition (i.e. engineering strains). 

Some of the solutions mentioned above use the von Mises yield criterion. For a spherical 

cavity the Tresca and the von Mises yield criterions produce the same solution. For a 

cylindrical cavity, the von Mises criterion can be approximated by increasing the yield stress 

in the Tresca criterion by 15% according to Hill (1950). The analytical solution for a Mohr-

Coulomb criterion with non-associated flow in an infinite medium was found by Yu and 

Houlsby (1991), but only the solution for the Tresca criterion will be presented in this study. 

This is because the Tresca criterion, with an yield stress of 𝑌 = 2𝑠𝑢, is more relevant for clay 

experiencing undrained loading. (Yu 2000) 

5.2 Solution with the Tresca yield criterion 

We will here present the large strain solution of the undrained case with Poisson’s ratio equal 

to 0,5, found by Gibson and Anderson (1961), as this is the most relevant case for modelling 

pile driving in clay. 

Knowing that at the cavity surface the major principle stress is equal to the radial stress (𝜎1 =

𝜎𝑟), and that the minor principle stress is equal to the radial stress (𝜎3 = 𝜎𝜃), we assume that 

the internal pressure (𝑝) is increased monotonically from its initial value (𝑝0). 
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The material will then behave elastic until the internal pressure causes yielding, as discussed 

in Chapter 4.3. Further increase of the internal pressure after initial yielding causes a plastic 

region to spread. In this study, only the solution is presented, as the derivation of the 

expressions are quite long and are mostly a mathematical exercise. However, the derivation 

can be followed in Yu (2000). The solution presented is for a cylindrical cavity expansion 

from zero initial radius in an infinite medium using the Tresca yield criterion 𝑌 = 𝜎1 − 𝜎3, 

with an yield stress of 𝑌 = 2𝑠𝑢. When assuming an initial radius of zero, the stresses become 

a function of the ratio between the point 𝑟 over the current cavity size. This causes the ratio of 

the plastic region over the current cavity radius to be constant. We therefore assume a 

constant internal pressure of such a size that the final radius of the cavity equals the radius of 

the pile: 

 𝑝𝑙𝑖𝑚 = 𝑠𝑢 (1 + ln (
𝐺

𝑠𝑢
)) + 𝑝0 (5.1) 

The plastic boundary is then given by: 

 
𝑟𝑝

𝑟0
= √

𝐸

2(1 + 𝜈)𝑠𝑢
= √

𝐺

𝑠𝑢
 (5.2) 

Stresses in the elastic zone are given by: 

 
∆𝜎𝑟

𝑠𝑢
= (

𝑟𝑝

𝑟
)

2

 (5.3) 

 ∆𝜎𝜃

𝑠𝑢
= − (

𝑟𝑝

𝑟
)

2

 
(5.4) 

 ∆𝜎𝑧 = 0 (5.5) 

While stresses in the plastic zone are given by: 
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∆𝜎𝑟

𝑠𝑢
= 2 ln (

𝑟𝑝

𝑟
) + 1 (5.6) 

 ∆𝜎𝜃

𝑠𝑢
= 2 ln (

𝑟𝑝

𝑟
) − 1 

(5.7) 

 ∆𝜎𝑧

𝑠𝑢
= 2 ln (

𝑟𝑝

𝑟
) 

(5.8) 

(Yu 2000) 

 

Figure 5.1: The analytical solution of Gibson and Anderson (1961) for the change in total stresses against the radial extent 

from the pile center normalized with the plastic radius for cavity expansion in an undrained Tresca material. Made by the 

author utilizing Equation 5.6, 5.7 and 5.8. 

Figure 5.1 shows the linear elastic-perfectly plastic solution for the stress changes in an 

undrained Tresca material (EP). When 𝑟 𝑟𝑝⁄  goes towards zero, the stress changes go towards 

infinity. A lower limit of 𝑟 𝑟𝑝⁄  is given by Equation 5.2, and gives a non-infinite maximum 

stress change at the pile surface. Notice that the difference between the change of the radial 
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total stress (∆𝜎𝑟) and the circumferential total stress (∆𝜎𝜃) is constant for 𝑟 𝑟𝑝⁄ ≤ 1, and equals 

2. This means that the entire region where 𝑟 𝑟𝑝⁄ ≤ 1 is fulfilling the Tresca yield criterion (i.e. 

𝜎𝑟 − 𝜎𝜃 = 2𝑠𝑢) as one would expect from a perfectly plastic soil model.  

From Figure 5.1 it is easily verified that: ∆𝜎𝑟 = ∆𝜎1, ∆𝜎𝑧 = ∆𝜎2, ∆𝜎𝜃 = ∆𝜎3, both in the 

elastic and the plastic zone, when the initial soil stress is isotropic (𝑝0). Using Janbu’s pore 

pressure equation and the expressions in Chapter 3.4, we can estimate the pore pressure build-

up as:  

For the plastic zone 𝑟 ≤ 𝑟𝑝: 

 
∆𝑢

𝑠𝑢
= 2 ln (

𝑟𝑝

𝑟
) − 2𝐷 (5.9) 

For the elastic zone 𝑟 ≥ 𝑟𝑝: 

 
∆𝑢

𝑠𝑢
= −2𝐷 ∗ (

𝑟𝑝

𝑟
)

2

  (5.10) 

The maximum excess pore pressure is obtained at the pile shaft (i.e. 𝑟 = 𝑟0), and if Equation 

5.2 is inserted with 𝑟 = 𝑟0 into Equation 5.9 we get:  

 
∆𝑢𝑚𝑎𝑥

𝑠𝑢
= ln (

𝐺

𝑠𝑢
) − 2𝐷 (5.11) 
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Figure 5.2: Normalized excess pore pressure estimated by using Janbu’s pore pressure equation with the stress changes 

found by Gibson and Anderson (1961) for five different values of the Dilatancy parameter (𝐷) against the radial extent from 

the pile center normalized with the plastic radius. Made by the author utilizing Equation 5.9 and 5.10. 

Figure 5.2 shows the excess pore pressure predicted by CEM-EP over the undrained shear 

strength against 𝑟 𝑟𝑝⁄  for different values of the Dilatancy parameter (𝐷) between the limits 

presented in Table 3.2. As for Figure 5.1 the excess pore pressure goes towards infinity as 

𝑟
𝑟𝑝⁄  goes towards zero. The minimum value of 𝑟 is the pile radius 𝑟0, and thus the maximum 

excess pore pressure is found at the pile surface. Janbu’s pore pressure equation is normally 

not used (and not Henkel’s either) in the literature when using CEM-EP. The change in excess 

pore pressure is usually set equal to the change of the total mean stress. This is the same as 

setting 𝐷 = 0 in Equation 5.9 and 5.10, which gives the following: 

For the plastic zone 𝑟 ≤ 𝑟𝑝: 

 
∆𝑢

𝑠𝑢
= 2 ln (

𝑟𝑝

𝑟
) (5.12) 

For the elastic zone 𝑟 ≥ 𝑟𝑝: 

 
∆𝑢

𝑠𝑢
= 0  (5.13) 
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Notice that this assumption will give zero excess pore pressure in the elastic region. The 

maximum excess pore pressure is still at the pile shaft, and using Equation 5.2 with 𝑟 = 𝑟0 we 

get: 

 
∆𝑢𝑚𝑎𝑥

𝑠𝑢
= ln (

𝐺

𝑠𝑢
)  (5.14) 

The results presented in Chapter 9 shows that for heavily overconsolidated clays, negative 

excess pore pressure can occur. As described in Chapter 3.4 the Dilatancy is often positive for 

overconsolidated clays. From Figure 5.2 we see that for positive Dilatancy, negative excess 

pore pressure is indeed produced. The accuracy of this prediction was not found as Dilatancy 

equal to zero is usually used. In Figure 5.3 the same results are presented as in Figure 5.2, but 

with the radial extent from the pile center in a logarithmic scale. It is then clear that for the 

plastic region the solution gives a linear decrease of the excess pore pressure with the 

logarithm of 𝑟. 

 

Figure 5.3: Normalized excess pore pressure estimated by using Janbu’s pore pressure equation with the stress changes 

found by Gibson and Anderson (1961) for five different values of the Dilatancy parameter (𝐷) against the radial extent from 

the pile center normalized with the plastic radius in a logarithmic scale. Made by the author utilizing Equation 5.9 and 5.10. 
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5.3 Choice of input parameters and effect of OCR 

In the analytical solution of CEM, with an elastic-perfectly plastic Tresca material (CEM-EP), 

there is only three soil parameters needed: the shear modulus (𝐺), the undrained shear 

strength, (𝑠𝑢) and the Dilatancy parameter (𝐷) (which can be neglected).  

In isotropic elasticity it can readily be shown that the drained shear modulus equals the 

undrained shear modulus (i.e. 𝐺′ = 𝐺𝑢). However, for clays, the shear modulus found from 

drained triaxial testing does not equal that which is found from undrained testing. This is 

discussed more in Chapter 13.2, as we there try to find the undrained shear modulus from the 

modulus number (𝑚0), found from oedometer testing. Since the CEM-EP solution assumes 

undrained loading it is natural to use the undrained shear modulus (𝐺𝑢) in the above 

equations.  

Generally we have a non-linear relationship between the shear strain and the shear stress. This 

means that the shear modulus is not constant. A much used method for approximating a 

decreasing shear modulus with increasing strains and stresses, is to use the shear modulus at 

50% mobilization of the undrained shear strength (𝐺𝑢
50). Figure 5.4 shows the principal for 

determining 𝐺𝑢
50 from an undrained triaxial test. This is the most commonly used method 

when fitting a linear-elastic perfectly plastic soil model to the non-linear soil behavior, and we 

often call 𝐺𝑢
50 the undrained average shear modulus. 

 

Figure 5.4: Undrained shear modulus taken at 50% mobilization of the undrained shear strength from an undrained triaxial 

test. (Nordal 2018) 
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The undrained shear strength of the soil may also vary depending on the test used. In general 

clays show anisotropy, and the undrained shear strength of the clay varies depending on the 

loading direction. One way of describing this anisotropy is to divide the undrained shear 

strength into three categories: the undrained active/compression shear strength (𝑠𝑢𝐴 or 𝑠𝑢𝐶), 

the direct undrained shear strength (𝑠𝑢𝐷) and the undrained passive/extension shear strength, 

(𝑠𝑢𝑃 or 𝑠𝑢𝐸). The undrained compression shear strength is commonly determined by an 

undrained triaxial compression test, the direct undrained shear strength is determined by a 

direct simple shear test, and the undrained extension shear strength is determined by an 

undrained triaxial extension test. 

When modeling this numerically one can for example use the NGI-ADP soil model or another 

model including anisotropy. However, for the analytical CEM-EP solution one can only insert 

a constant undrained shear strength. Figure 5.5 shows how the different shear strengths 

depend on the plasticity index (𝐼𝑃). We see that the anisotropy is larger for lean clays than fat 

clays. The discussion of which undrained shear strength to use is therefore mainly a problem 

in lean clays. The green line in Figure 5.5 shows the typical range of the plasticity index 

found in Norwegian clays. 

In international practice one often use the direct undrained shear strength and simply call it 

𝑠𝑢. All the tests of the CEM-EP model done internationally is therefore assumed, unless 

otherwise stated, to have used the direct undrained shear strength. This is something to be 

aware of when reading the literature.  

 

Figure 5.5: Normalized undrained shear strength found from different test as a function of the plasticity index. The green line 

shows typical values of the plasticity index for Norwegian clays. (Jostad 2018) 
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In CEM we see that the radial stress increase while the circumferential stress decrease, and 

the vertical stress is constant before failure. This compares to the shearing process seen in the 

direct simple shear test (DSS), and one should therefore use the direct undrained shear 

strength (𝑠𝑢𝐷) in CEM-EP. In Chapter 14.3 we have looked at the empirical data and used 

both the 𝑠𝑢𝐷, 𝑠𝑢𝐶 and 𝑠𝑢𝐸. Due to the scatter of the high 𝑂𝐶𝑅 clays 𝑠𝑢𝐸 gives the lowest sum 

of errors. However, the data shows that 𝑠𝑢𝐷 gives the best approximation for most of the sites, 

when ignoring the outliers.  

To summarize, the recommendation is to use the direct undrained shear strength (𝑠𝑢𝐷) and the 

undrained average shear modulus (𝐺𝑢
50) in CEM-EP. This means that Equation 5.14 can be 

written more specifically as: 

 
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
= ln (

𝐺𝑢
50

𝑠𝑢𝐷
)  (5.15) 

In the following chapters 𝐺𝑢 can be assumed to be equal to 𝐺𝑢
50 unless otherwise stated. 

Increasing the overconsolidation ratio (𝑂𝐶𝑅) leads to an increase of the undrained shear 

strength, and an increase of the undrained shear modulus. Figure 5.6 shows the undrained 

average shear modulus normalized with the undrained compression shear strength against 

𝑂𝐶𝑅. The data has been obtained using conventional undrained triaxial compression test on 

high quality block samples. The lower range is for more plastic clays, while the upper range is 

observed in marine clays with a low plasticity index in the range of 12 − 20%. 

 

Figure 5.6: Typical range of the undrained shear modulus taken at 50% mobilization of the undrained shear strength 

normalized with the undrained compression shear strength against the overconsolidation ratio in a logarithmic scale. Values 

obtained from CAUC triaxial tests on high quality block samples (based on data from Karlsrud and Hernandez (2011) made 

by Karlsrud (2012))  
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From Equation 5.11 the effects of 𝑂𝐶𝑅 become quite obvious: as 𝑂𝐶𝑅 increase 𝐺𝑢
50, 𝑠𝑢𝐷, and 

𝐷 also increase (see Chapter 3.4, Figure 5.6 and Figure 5.7). Figure 5.7 shows the dependency 

between the undrained compression shear strength normalized with the initial vertical 

effective stress and 𝑂𝐶𝑅, and we see that the undrained shear strength indeed do increase with 

𝑂𝐶𝑅. 𝑠𝑢𝐶 increase more rapidly with 𝑂𝐶𝑅 than 𝐺𝑢
50 meaning 

𝐺𝑢
50

𝑠𝑢𝐶
⁄  decrease with 𝑂𝐶𝑅. 

Since an increase in 𝑠𝑢𝐶 also means an increase in 𝑠𝑢𝐷 according to Figure 5.5, 
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
⁄  

will decrease as 
𝐺𝑢

50

𝑠𝑢𝐷
⁄  decrease, and 𝐷 increase.  

 

Figure 5.7: Normalized undrained compression shear strength against the overconsolidation ratio in a logarithmic scale. 

Based on measurements from Norwegian clays. (Jostad 2018) 

Figure 5.8 shows the effect of 
𝐺𝑢

50

𝑠𝑢𝐷
⁄  decreasing using the data from Figure 5.6 and the 

CEM-EP model. However, Figure 5.8 sets the excess pore pressure equal to the change in 

mean stress and does not include the added effect that the Dilatancy parameter would give. 
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Figure 5.8: Typical normalized excess pore pressure at the pile shaft against the overconsolidation ratio based on 

predictions of the CEM-EP model with data from Figure 5.6. Where ∆𝑢𝑖 = ∆𝑢𝑚𝑎𝑥. (Karlsrud 2012) 

In addition to this, we have some change with depth as neither the shear modulus, 𝑂𝐶𝑅 nor 

the undrained shear strength is constant with depth.  

 

Figure 5.9: Measured excess pore pressure (∆𝑢) normalized with the direct undrained shear strength (𝑠𝑢𝐷) and the initial 

effective vertical stress (𝜎𝑣0
′ ) against depth at the Haga site. (Karlsrud 2012) 

Figure 5.9 shows an increase of the measured normalized excess pore pressure with depth. 

This increase is close to linear when the measured excess pore pressure is normalized with the 

direct undrained shear strength. Neglecting the dry crust, clay often show an increase of the 

undrained shear strength and shear modulus with depth due to the increase in vertical stress, 

while the 𝑂𝐶𝑅 normally decrease with depth.  
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According to Figure 5.6, decreasing 𝑂𝐶𝑅 with depth means increasing 
𝐺𝑢

50

𝑠𝑢𝐶
⁄ , which again 

yields increasing 
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
⁄ . This can be seen directly from Figure 5.8, and gives us the 

general trend we see in the measured results.  

It is useful to remember these results as things tend to become more complicated when using 

more advanced soil model. The CEM-EP model display similar behavior as the more 

advanced models, even though it only needs two/three input parameters for the soil (𝐺𝑢
50, 𝑠𝑢𝐷 

(and 𝐷)). As shown, all three parameters depend on the clay type and the strain history, and 

the model behave according to the general trends that we see in measurements. However, the 

accuracy in the predictions is yet to be shown, and the CEM-EP solution does not include the 

sensitivity of the material. 
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5.4 Open-ended piles 

When using CEM, the pile radius is the only input in the model of the pile. When a closed-

ended pile is used, then the pile radius is quite obviously the outer radius of the pile, but when 

an open-ended pile is used then the input pile radius cannot be taken as the outer radius. The 

most intuitive approach is to expand the cylinder from the inner radius to the outer. The 

displaced volume is then the same as for a closed-ended pile with radius given by:  

 𝑟0 = √𝑟𝑜𝑢𝑡𝑒𝑟
2 − 𝑟𝑖𝑒

2  (5.16) 

where 𝑟𝑖𝑒 is the equivalent inner radius. For an idealized open-ended pile, the equivalent inner 

radius equals the inner radius. However, open-ended piles are usually only partially plugged, 

that means that the inner volume of the pile is not completely filled with soil. The equivalent 

inner radius can then be found from the following expression: 

 
∆𝑉

𝑉0
=

𝑟𝑜𝑢𝑡𝑒𝑟
2 − 𝑟𝑖𝑒

2

𝑟𝑖𝑒
2  (5.17) 

where ∆𝑉 is the actual volume of the pile minus the volume of the plug, and 𝑉0 is the inner 

volume of the pile. Establishing an input radius for CEM therefore require that the volume of 

the plug or the volume of soil going into the pile is estimated. 

  



             Per-Anders Mortensen 

60 

6 Cavity expansion in a Critical State Soil 

6.1 General 

In perfect plasticity, the strength remains constant during loading and unloading. In clay, the 

strength of the soil may vary considerably due to the deformation history of the material. For 

normally consolidated and lightly overconsolidated clays the linear elastic-perfectly plastic 

model (EP) may give reasonable results. For heavily overconsolidated clays, the stress history 

of the material causes the stress estimates to be larger than what we measure (Karlsrud 2012). 

These effects may be included using a strain-hardening/softening plasticity model. Many of 

such models, and perhaps the most widely used, are based on the Critical State Soil 

Mechanics (CSSM) developed at the University of Cambridge by Schofield and Wroth 

(1968), and Roscoe and Burland (1968). (Yu 2000) 

In this chapter the Modified Cam Clay (MCC) model will be explained, and the results from a 

semi-analytical exact solution is presented. A more complete description of the MCC material 

model is given by Wood (1990). Lastly, a short description and some numerical results of the 

material models S-CLAY1 and S-CLAY1S will be presented. These are critical state material 

models which include anisotropy, and both anisotropy and destructuration of the material, 

respectively.  

Some criticism has been directed at the MCC model. The essence of that criticism is that for 

heavily overconsolidated clays the MCC may give unrealistically large ratios of shear stress 

over mean stress. Randolph, Carter et al. (1979) argues that if the excess pore pressure is 

normalized by the initial undrained shear strength, and not the overburden pressure, then this 

difficulty is avoided. The MCC model is interesting since it does include some of the main 

features of a heavily overconsolidated clay: A large pseudo-elastic region, and the increase of 

the mean stress if the soil under undrained conditions is sheared to failure.
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6.2 Critical State Soil Mechanics and the Modified Cam Clay model 

The hardening process of a material is most commonly controlled by either the development 

of plastic shear strains or volumetric deformation. In principle, this is not important as the 

shear and volume strains are related. However, when measuring the hardening of a soil it is 

favorable to have large response in the parameter measured. The MCC model is mainly a clay 

model, and clay has large volumetric deformations. The MCC is therefore based on 

volumetric hardening. The preconsolidation stress is used as the hardening parameter in 

MCC. 

The principle of the CSSM is based on experimental results from Roscoe, Schofield et al. 

(1958) on small steel balls and Weald clay. 

 

Figure 6.1: Measured void ratio (𝑒) against the horizontal displacement of the shear box, where the results are obtained 

from shear box tests on 1mm steel balls with a normal stress of 20 lb./sq.in. (Roscoe, Schofield et al. 1958) 

Figure 6.1 shows that initial void ratio (𝑒0) is insignificant when a certain level of shear strain 

is reached. This then also holds for the porosity (𝑛 =
𝑒

1+𝑒
) and the specific volume (𝑣 = 1 +

𝑒). The void ratio (𝑒) goes, independent of initial void ratio, towards a critical state void ratio. 

Experimental data on sand and clay, both remolded and reconstituted, show the same 

tendency. So for a given normal stress there is a unique critical void ratio, which is reached at 

large strains. The definition is: “A critical state is a state where unlimited shear strains may 

occur without any change in effective stress, volume or shear stress.”  
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In the MCC model a linear dependency between the specific volume and the natural logarithm 

of the mean stress (𝑝) is assumed. If the clay is loaded in the normally consolidated (NC) 

range the inclination 𝜆 (i.e. the swelling index) is used, and if the clay is loaded in the 

overconsolidated (OC) range the inclination 𝜅 (i.e. the compression index) is used. The curves 

these assumptions construct are shown in Figure 6.2. 

 

Figure 6.2: Specific volume (𝑣) against effective mean stress (𝑝′) using the flexibility parameter 𝜆 in the normally 

consolidated area (𝑝′ < 𝑝𝑐
′ ) and 𝜅 in the overconsolidated area (𝑝′ > 𝑝𝑐

′ ), where 𝑝𝑐
′ = 𝑝𝑝 is the isotropic preconsolidation 

pressure. (Nordal 2018) 

In the MCC model an elliptic yield surface in the 𝑞 − 𝑝’-plane is used. (The shape of the yield 

surface is the main difference between the Original Cam Clay (OCC) model and the MCC 

model). The yield surface of the MCC model is given by: 

 𝐹 = 𝑞2 − 𝑀2[𝑝′(𝑝𝑝 − 𝑝′)] (6.1) 

where 𝑝’ is the effective mean stress, 𝑝𝑝 is the isotropic preconsolidation pressure, and 𝑀 is 

the slope of the Coulomb line in the 𝑞 − 𝑝’-plane, given by: 

 𝑀 =
6sin𝜑

3 ± 𝑠𝑖𝑛𝜑
 (6.2) 

(minus for triaxial compression, plus for triaxial extension). The ellipse will differ about 

the 𝑝’-axis since 𝑀 differ.  

 



Chapter 6. Cavity expansion in a Critical State Soil           Per-Anders Mortensen  

63 

Lastly 𝑞 is the deviatoric stress defined by: 

 𝑞 = √
1

2
[(𝜎1

′ − 𝜎2
′)2 + (𝜎2

′ − 𝜎3
′)2 + (𝜎1

′ − 𝜎3
′)2] (6.3) 

As discussed in Chapter 3, Equation 6.3 will give the same results as Equation 3.9 under 

triaxial conditions.  

Figure 6.3 shows experimental data that substantiates a sort of elliptic yield surface in the 𝑞 −

𝑝’-plane.  

 

Figure 6.3: Cam clay type of yield surfaces found from experimental studies (data from Leroueil (1990), (1994), made by 

Lansivaara (1996), obtained from Nordal (2018))  

Figure 6.3 also shows that the ellipse seems to be somewhat tilted. This will be introduced in 

the S-CLAY1 material model, but for now, we assume an ellipse with center on the 𝑝′-axis. 

In the MCC model associated flow is assumed. This means that the gradient of the plastic 

flow is perpendicular to the elliptic yield surface.  
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Figure 6.4: Vectors of plastic strain increments plotted at yield points deduced from triaxial tests on undisturbed Winnipeg 

clay (data from Graham, Noonan, and Lew (1983), made by Wood (1990), obtained from Nordal (2018)) 

Figure 6.4 shows experimental data of the plastic strain increment, which substantiate the 

assumption of associated plastic flow. 

The Mohr-Coulomb line is used to define the Critical State Line (CSL) and is defined by: 

 𝑞 = 𝑀𝑝′ (6.4) 

When we are on the CSL we have no change in effective stresses, shear stress nor volume, 

while unlimited shear strains can develope. The stiffness of the soil is in the MCC model 

represented by the bulk modulus (𝐾) and the shear modulus (𝐺), given by: 

 𝐾 =
(1 + 𝑒) ∗ 𝑝′

𝜅
 (6.5) 

 
𝐺 =

3(1 − 2𝜈𝑢𝑟)

2(1 + 𝜈𝑢𝑟)
𝐾 

(6.6) 

where 𝜈𝑢𝑟 is the Poisson’s ratio for unloading and reloading (Chen and Abousleiman 2012). 
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The most important input parameters in the MCC model is hence: 𝜆, 𝜅, 𝑀, 𝑒0, 𝑂𝐶𝑅 and 𝜈𝑢𝑟. 

All other parameters can be determined or estimated from these parameters. 

To summarize the method we have Figure 6.5 and Figure 6.6, which give a graphical 

explanation of a strain softening (𝑂𝐶𝑅 > 2) and a strain hardening (𝑂𝐶𝑅 < 2) material in a 

conventional undrained triaxial compression test. 

For undrained loading it is assumed that the volumetric strains are zero. This also means that 

the specific volume is unchanged. For a triaxial compression test done with constant cell 

pressure the change in deviatoric stress is ∆𝑞 = ∆𝜎1, and the change in total mean stress is 

∆𝑝 =
∆𝜎1

3⁄ . This then defines the total stress path (TSP). In the MCC model the elastic 

volumetric strains are defined by: 

 ∆𝜀𝑣𝑜𝑙
𝑒 =

∆𝑝′

𝐾
 (6.7) 

This means that for undrained conditions, the change in effective mean stress is equal to zero 

within the elastic region. Meaning that within the ellipse, the effective stress path (ESP) goes 

straight up in the 𝑞 − 𝑝′-plane, with only the deviatoric stress changing. This can be seen in 

Figure 6.5 from point A to B and in Figure 6.6 from point P to Q. In point B, the yield 

function is fulfilled and plastic strains will develop. MCC assumes associated flow which 

means that the strain increment is perpendicular to the yield surface. The hardening rule 

relates the isotropic preconsolidation pressure to the volumetric strain on incremental form 

through: 

 ∆𝜀𝑣𝑜𝑙
𝑝 =

𝜆 − 𝜅

𝜈
ln (

𝑝𝑝 + ∆𝑝𝑝

𝑝𝑝
) (6.8) 

The strain increment can be decomposed into a volumetric strain increment and a deviatoric 

strain increment that corresponds to the effective mean stress axis and the deviatoric stress 

axis respectively. In point B, the volumetric strain increment is positive and thus the yield 

ellipse must expand according to Equation 6.8. The sum of elastic and plastic volumetric 

strain must be equal to zero, so an increase in isotropic overconsolidation pressure must be 

matched by a decrease in the effective mean stress. Geometrically this is shown in Figure 6.5, 
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when the yield ellipse expands one needs to move upwards on the isotropic normal 

compression line (iso-ncl), but the specific volume must be constant. This means one moves 

back to the constant specific volume on the unloading reloading line (url). As the mean stress 

decrease one moves towards the critical state and the plastic volumetric strain increment 

decreases monotonically. In point F we are on the critical state line and the plastic strain 

increment is vertical, meaning there is only plastic deviatoric strain and no plastic volumetric 

strain developing. When the plastic volumetric strain increment is zero there is no hardening, 

and then also no change in effective stress. We are stuck in point F while plastic deviatoric 

strains can develop towards infinity, without change in effective stress, shear stress nor 

volume. 

The deviatoric strain is linked to the volumetric strain through the flow condition: 

 𝑑𝜀𝑞
𝑝 =

2𝑞

𝑀2(2𝑝′ − 𝑝𝑝)
𝑑𝜀𝑣𝑜𝑙

𝑝
 (6.9) 

The pore pressure is the difference between the ESP and the TSP. Based on this one can make 

the plots presented in Figure 6.5 (d) and Figure 6.6 (d). 

 

Figure 6.5: Conventional undrained triaxial compression test on lightly overconsolidated soil: (a) 𝑝′: 𝑞 effective stress plane; 

(b) 𝜈: 𝑝′compression plane; (c) 𝑞: 𝜀𝑞 stress strain plot; (d) 𝑢: 𝜀𝑞 pore pressure strain plot. (Wood 1990) 
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Figure 6.6 shows an undrained triaxial compression test of a high 𝑂𝐶𝑅 clay and it shows 

some interesting effects. When the yield criterion is fulfilled (point Q), associated flow gives 

a plastic volumetric strain increment in negative direction. This means that the yield ellipse 

will decrease according to Equation 6.8. The sum of the volumetric strain still needs to be 

zero, so the effective mean stress increase until the critical state line is met. From point P to Q 

the pore pressure will build up, but as the effective mean stress increase the ESP goes towards 

the TSP, and the pore pressure becomes negative when the ESP crosses the TSP. Accordingly, 

in point T, one has suction in the test sample. This is the effect that is seen in the measured 

excess pore pressure in heavily overconsolidated clays after pile driving. For undrained 

loading we see that the TSP goes straight up in the elastic area. This means that for 𝑂𝐶𝑅 less 

than two the material will contract, and something similar to what we see in Figure 6.5 will 

happen. While the material will dilate for 𝑂𝐶𝑅 above two, and something similar to what we 

see in Figure 6.6 will happen. For 𝑂𝐶𝑅 equal to two neither dilation nor contraction will 

happen, the ESP will go straight up until it meets the critical state (i.e. elastic-perfectly 

plastic). 

 

Figure 6.6: Conventional undrained triaxial compression test on heavily overconsolidated soil: (a) 𝑝′: 𝑞 effective stress 

plane; (b) 𝜈: 𝑝′compression plane; (c) 𝑞: 𝜀𝑞 stress strain plot; (d) 𝑢: 𝜀𝑞 pore pressure strain plot. (Wood 1990) 
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The MCC model has some deficiencies. When determining the slope of the critical state line 

(𝑀) based on the friction angle one also determines the stress ratio in the normally 

consolidated state (𝐾0
𝑁𝐶). This is problematic as experiments show that 𝑀 based on the 

friction angle gives too high 𝐾0
𝑁𝐶, and thus also too high horizontal stresses. The softening 

behavior in Figure 6.6 is also problematic. Point Q has been shown to be too high in some 

cases, which means one overestimates the peak undrained shear strength. In addition, the 

softening from the peak is not always a good fit to experimental data. The problem is simply 

that the softening is based on 𝑀 and cannot be controlled. In addition there is no strain 

softening in the NC range although this may very well happen in a real clay. 

6.3 Semi-analytical solution of MCC in CEM 

In this section we will look at the solution presented by Chen and Abousleiman (2012). Semi-

analytical is referring to the fact that the solution is presented as a one-dimensional boundary 

value problem, which can be solved by for example an ordinary differential equation system 

solver. Collins and Yu (1996) presented a simpler semi-analytical solution. Cao, Teh et al. 

(2001) followed a similar procedure to make an approximate closed form solution. The 

assumption made by Collins and Yu (1996), and Cao, Teh et al. (2001) is that the effective 

mean stress equals: 𝑝′ =
1

2
(𝜎𝑟

′ + 𝜎𝜃
′ ), and that the deviatoric stress equals: 𝑞 = 𝜎𝑟

′ − 𝜎𝜃
′ , 

instead of the full 3D definitions previously presented. In addition, they used constant shear 

modulus rather than one which varies in proportion to the mean stress. Chen and Abousleiman 

(2012) finds that for the special case of isotropic initial stresses the solution in Cao, Teh et al. 

(2001) happens to be correct.  

A general assumption used in all the above solutions is that the small strain formulation (i.e. 

engineering strains) is applicable for the elastic strains, and that the large strain formulation 

(i.e. logarithmic strains) is applicable for the plastic strains. Chen and Abousleiman (2012) 

finds that the overconsolidation ratio (𝑂𝐶𝑅) has a large influence on the results. The equations 

used to establish the one-dimensional boundary value problem is not repeated in this study, 

but can readily be found in Chen and Abousleiman (2012). 

In contrast to the analytical elastic-perfectly plastic solution, an initial cavity radius of zero is 

problematic when solving CEM numerically. Carter, Randolph et al. (1979) says that for 

numerical simulations there is need of a non-zero initial radius to avoid infinite 
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circumferential strains. Carter, Randolph et al. (1979) argues that for an outer region the 

stresses and strains of the deforming soil body has no connection to the inner material other 

than the total radial pressure transmitted. So instead of using 0 to 𝑟0, we can use 𝑎0 to 𝑎 as 

long as the same amount of volume is displaced. Carter, Randolph et al. (1979) recommend 

using 𝑎0 to 2𝑎0. 𝑎0 is then found by:  

 ∆𝑉 = 𝜋(𝑟0
2 − 02) ∗ 𝐿 = 𝜋((2𝑎0)2 − 𝑎0

2) ∗ 𝐿 → 𝑎0 =
𝑟0

√3
 (6.10) 

 

Figure 6.7: Change of cavity expansion from 0 to the pile radius (𝑟0), into cavity expansion from 𝑎0 to 2𝑎0.(Carter, 

Randolph et al. 1979) 

Figure 6.7 shows the principle, and that this way of avoiding numerical troubles have some 

drawback. From 𝑟0 to 2𝑎0 =
2

√3
𝑟0 ≈ 1.15𝑟0, we have no information on the stress 

components or the excess pore pressure. These values will have to be extrapolated from the 

values we do know.  

Some of the results obtained by Chen and Abousleiman (2012) is presented in Figure 6.8 to 

Figure 6.11.  
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Figure 6.8: Effective mean stress (𝑝′), deviatoric stress (𝑞) and excess pore pressure (∆𝑢) predicted by CEM-MCC for a 

normally consolidated soil, 𝑂𝐶𝑅 = 1. (Chen and Abousleiman 2012) 

 

Figure 6.9: Effective mean stress (𝑝′), deviatoric stress (𝑞) and excess pore pressure (∆𝑢) predicted by CEM-MCC for a 

lightly overconsolidated soil, 𝑂𝐶𝑅 = 2. (Chen and Abousleiman 2012) 
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Figure 6.10: Effective mean stress (𝑝′), deviatoric stress (𝑞) and excess pore pressure (∆𝑢) predicted by CEM-MCC for a 

moderately overconsolidated soil, 𝑂𝐶𝑅 = 3. (Chen and Abousleiman 2012) 

 

 

Figure 6.11: Effective mean stress (𝑝′), deviatoric stress (𝑞) and excess pore pressure (∆𝑢) predicted by CEM-MCC for a 

heavily overconsolidated soil, 𝑂𝐶𝑅 = 10. (Chen and Abousleiman 2012) 

In the critical state region the effective stresses are constant and on the CSL. In the plastic 

region, the stresses are outside the initial yield surface, while in the elastic region the stresses 

are inside the initial yield surface. 

From Figure 6.8 to Figure 6.11 it is seen that the excess pore pressure decreases linearly with 

the logarithm of 𝑟 in the critical state region. In the elastic region, there is no change in pore 

pressure due to constant total and effective mean stress. We see that an increase of the 𝑂𝐶𝑅 

leads to a decrease of the maximum excess pore pressure and that the critical state, and plastic 

region shrinks, while the elastic region expands. For the heavily overconsolidated case, we 
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see that negative excess pore pressure is generated. This was also found by Collins and Yu 

(1996). Notice also that for 𝑂𝐶𝑅 = 1 we have no elastic region as the initial stress condition 

is at the yield surface, and loading will then give plastic strains from the start. Chen and 

Abousleiman (2012) also found that the vertical stress in the critical state region is equal to 

the mean of the radial and circumferential stress. This means that the excess pore pressure 

change due to the coefficient of lateral earth pressure (𝐾0) as seen in Chapter 12.5. 

Randolph, Carter et al. (1979) did a parametric study of 𝑂𝐶𝑅. Figure 6.12 shows the log-

linear decrease of the excess pore pressure normalized with the undrained shear strength with 

increasing 𝑂𝐶𝑅 found by Randolph, Carter et al. (1979) using CEM-MCC. Randolph, Carter 

et al. (1979) chose the input parameters so that the initial plane strain undrained shear strength 

is constant with 𝑂𝐶𝑅. 𝐺 𝑠𝑢
⁄  increase with 𝑂𝐶𝑅 since 𝑠𝑢 is constant giving a larger excess pore 

pressure. For 𝑂𝐶𝑅 > 2 the soil dilates giving lower excess pore pressure. These two effects 

seem to almost cancel each other out, giving only a slight reduction in the normalized excess 

pore pressure with increasing 𝑂𝐶𝑅.  

 

Figure 6.12: Excess pore pressure (𝑢 = ∆𝑢) near the pile surface (𝑟 = 1,15𝑟0) normalized to (a) the undrained shear 

strength (𝑐𝑢 = 𝑠𝑢) and (b) the initial vertical effective stress (𝜎𝑧
′(0) = 𝜎𝑣0

′ ) as a function of the overconsolidation ratio 

(𝑂𝐶𝑅) computed with CEM-MCC. (Randolph, Carter et al. 1979) 

Randolph, Carter et al. (1979) uses the results of Figure 6.12 to argue that if the excess pore 

pressure is normalized with the undrained shear strength of the material then the effect of 



Chapter 6. Cavity expansion in a Critical State Soil           Per-Anders Mortensen  

73 

increasing 𝑂𝐶𝑅 only give a very slight reduction in excess pore pressure. The stiffness was 

chosen based on typical trends with 𝑂𝐶𝑅 similar to that of Figure 5.6. However, the empirical 

data shows a much larger decrease with 𝑂𝐶𝑅 than what Figure 6.12 suggests, as seen in 

Figure 6.13. Figure 6.13 is based on the empirical data found in Table 13.6. The reason CEM-

MCC predicts too high excess pore pressure for the high 𝑂𝐶𝑅 sites might be due to the 

unrealistically large ratios of shear stress over mean stress for 𝑂𝐶𝑅 > 2, as previously 

mentioned. 

 

Figure 6.13: Measured excess pore pressure normalized over the direct undrained shear strength against the 

overconsolidation ratio in a logarithmic scale using the data from Table 13.6. 
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6.4 Numerical solution of S-CLAY1 and S-CLAY1S in CEM 

S-CLAY1 is a critical state soil model that is based on many of the same assumptions as the 

MCC model. The difference between the MCC model and the S-CLAY1 model is mainly that 

the yield ellipse in the S-CLAY1 model is tilted to account for the anisotropy of the material. 

This also calls for a rotational hardening law, which gives the change of the parameter 𝛼, in 

addition to the hardening law describing the change of the size of the yield ellipse. Figure 6.3 

shows the background for using a rotated ellipse as yield surface. The model is based on 

triaxial results of Otaniemi clay from Finland, which is a soft clay. 

 

Figure 6.14: The tilted yield surface of the S-CLAY1 model. (Wheeler, Näätänen et al. 2003) 

Figure 6.14 shows the tilted yield surface of the S-CLAY1. If 𝛼 = 0 we have the MCC yield 

surface. In the simplified stress space of the triaxial test, Equation 6.11 can be used with 

degree of the plastic anisotropy (𝛼) as the only new variable. This yield surface was proposed 

by Dafalias (1987) and Korhonen and Lojander (1987) as: 

 𝐹 = (𝑞 − 𝛼𝑝′)2 − (𝑀2 − 𝛼2)(𝑝𝑚
′ − 𝑝′)𝑝′ = 0 (6.11) 

When switching the 𝑀, depending on the sign of 𝜂 − 𝛼, as we go from triaxial compression to 

extension, we will get a discontinuity in the yield surface. Here 𝜂 is the stress ratio equal to 

𝜂 =
𝑞

𝑝′. This problemed is solved by Wheeler, Näätänen et al. (2003) through making 𝑀 a 

function of the lode angle 𝜃𝜎𝛼 of the deviatoric tensor. The general formulation used in the S-

CLAY1 model, which gives the yield surface in Figure 6.14, can be found in Wheeler, 
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Näätänen et al. (2003). Wheeler, Näätänen et al. (2003) say that the S-CLAY1 model is not 

intended to be used if the majority of the soil is on the dry side of critical state, and the results 

will be inaccurate in this region. They have however ensured that the model stays stable if 

local regions yield on the dry side of the critical state line. While ensuring this they have 

made 𝛼 so that when the soil goes towards critical state, 𝛼 also goes towards a critical state 

value. 𝛼 is then a constant for a definite stress state and is independent of the initial 

conditions. If 𝛼 and 𝜇 is set equal to zero then the S-CLAY1 model reduces to the MCC 

model. Where 𝜇 is a constant that is used in the rotational hardening law and describes the 

absolute rate at which 𝛼 heads toward its current target value. (Karstunen, Krenn et al. 2005) 

The S-CLAY1S model is presented by Koskinen, Karstunen et al. (2002) and is made so that 

one can account for bonding and destructuration of the soil. The way these effects are 

introduced is through a notional yield surface, called the intrinsic yield surface, and an 

additional hardening law describing the degradation of the bonding. The intrinsic yield 

surface represents how the yield surface of the material would have been without the bonding 

effect. Figure 6.15 shows the principle. Where 𝑝𝑚
′  defines the real yield surface, including the 

bonding effect, and 𝑝𝑚𝑖
′  defines the intrinsic yield surface.  

 

Figure 6.15: S-CLAY1S yield surface in triaxial stress space. (Koskinen, Karstunen et al. 2002) 

𝑝𝑚
′  is related to 𝑝𝑚𝑖

′  through: 

 𝑝𝑚
′ = (1 − 𝑥)𝑝𝑚𝑖

′  (6.12) 
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where 𝑥 is the amount of bonding, going towards zero as plastic strains increase. In addition, 

𝜆𝑖 is needed for the hardening law describing the change of the size of the intrinsic yield 

surface, which again through Equation 6.12 describes the actual yield surface. In contrast, the 

MCC and the S-CLAY1 model uses the same hardening law, but with 𝜆 as described for the 

MCC model. 𝜆𝑖 is the inclination of the intrinsic normal compression line in the 𝜈 − ln 𝑝′-

plane. 𝜆𝑖 can be determined from an oedometer test on a reconstituted sample. The initial 

amount of bonding 𝑥0 can be estimated by the sensitivity as described by Koskinen, 

Karstunen et al. (2002). If 𝑥0 is set equal to zero, and the apparent value 𝜆, based on natural 

clay, is used instead of the intrinsic (𝜆𝑖), based on reconstituted clay, then S-CLAY1S reduces 

to S-CLAY1.  

To summarize, in addition to the soil parameters needed in the MCC model, the S-CLAY1 

needs the initial value of the degree of plastic anisotropy (𝛼0), and the material constants 𝛽 

and 𝜇 for the rotational hardening law determining the change of 𝛼. The S-CLAY1S also 

needs the initial value of the amount of bonding (𝑥0) and the material constants 𝑎 and 𝑏 for 

the hardening law describing the degradation of the bonding as well as 𝜆𝑖. So in short, an 

extensive laboratory program needs to be implemented to use these material models. 

Castro and Karstunen (2010) looked at the installation effects of stone columns in a natural 

soft clay. They modelled the problem as an undrained expansion of a cylindrical cavity 

(CEM) using two soil models: the S-CLAY1 and S-CLAY1S. They looked at installation of a 

single column and used an axisymmetric model with a large displacement formulation. 

 

Figure 6.16: Normalized excess pore pressure computed with CEM coupled with MCC (grey solid line), S-CLAY1 (blue 

dotted line), and S-CLAY1S (black solid line). Where 𝑐𝑢 = 𝑠𝑢 and 𝑟𝑐 = 𝑟0. (Castro and Karstunen 2010) 
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Figure 6.16 shows the excess pore pressure modelled by the MCC, S-CLAY1 and S-CLAY1S 

material models. The difference in the predicted excess pore pressure is quite small. For the S-

CLAY1S model the excess pore pressure close to the column surface is slightly larger. This is 

then due to the destructuration, or remoulding, of the soil close to the column. 

Unfortunately, measurements of the excess pore pressure was not presented, but lateral earth 

pressure coefficient and destructuration (ratio between undrained shear strength after and 

undrained shear strength before installation) are presented in Figure 6.17 and Figure 6.18 

respectively.  

 

Figure 6.17: Comparison of lateral earth pressure coefficient after column installation (𝐾) normalized with its initial value 

(𝐾0) computed numerically with CEM and the discussed material models. Compared to measurements. Where 𝑟𝑐 = 𝑟0 and 

𝐾 = 𝐾𝑖 . (Castro and Karstunen 2010) 

 

Figure 6.18: Destructuration computed numerically using the S-CLAY1S model, compared with field measurements after pile 

driving. Where 𝑐𝑢 = 𝑠𝑢 and 𝑟𝑐 = 𝑟0. (Castro and Karstunen 2010) 
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From Figure 6.17 we can see that the S-CLAY1S model gives a slightly better fit to the final 

radial effective stress. However, there are no measurements close to the pile wall. Figure 6.18 

shows that the S-CLAY1S model captures the destructuration pretty well. Destructuration is 

not included in any of the other material models mentioned up until now in this study, and 

from Figure 6.16 we can see that the destructuration/remoulding leads to an increase of the 

excess pore pressure for this specific case. A discussion on strain softening of the soil, and 

different ways of modeling this, can be found in Chapter 12.8. 

6.5 Mesh dependency 

The material models MCC, S-CLAY1 and S-CLAY1S all have a dry side to the left of the 

Coulomb line or the Critical state line. This means that the material models can give softening 

due to high 𝑂𝐶𝑅 (S-CLAY1S gives softening due to destructuration as well), however 

softening generally leads to mesh dependency. This is an important side effect of using these 

material models, and it means that the solution depend on the mesh and that there is no unique 

solution found from finite element method (FEM). The reason for the mesh dependency 

comes from the fact that a thinner shear band dissipates less energy. Thus, the FEM solution 

will try to make the shear band as thin as possible. The thickness of the shear band then 

depends on the mesh, and with a finer mesh, the shear band becomes thinner and the failure 

load or safety decrease.  

 

Figure 6.19: Effect of softening on shear band thickness and corresponding work. Where 1 represents a thicker shear band 

than 2. (Nordal 2018) 
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Figure 6.19 gives a graphical explanation of how the thinner shear band does less work and 

thus dissipates less energy. A thinner shear band (𝑡) give the same deformation (𝑢) as reaction 

to the shear force (𝑇) by a larger shear strain (𝛾). In the bottom left plot we can see that for 

larger shear strains the material has less shear strength (𝜏) due to the softening effect. 

Therefore, by creating a thinner shear band with larger shear strain the material gives the 

same deformation, but does less work (𝑊, (area in bottom right plot)). The shear band will 

therefore become infinitely thin due to the fact that the solution that requires the minimum 

amount of work always is chosen. In numerical software, the shear band becomes thinner with 

a finer mesh, and the solution will not converge. In nature, this is not the case. The real soil 

manages to take some advantage of the peak strength, and the shear band does not become 

infinitely thin. There are some different modeling solutions existing where you decide the 

minimum thickness of the shear band so that the solution converge, however there is no 

consensus in the geotechnical society on how thick this shear band should be.  
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7 The Strain Path Method 

7.1 General 

The Strain Path Method (SPM) was presented by Baligh (1985), and is an approximate 

analytical method to determine displacements when installing rigid objects in the ground. It 

was developed to solve deep penetration problems with the assumption that the shearing 

resistance has no influence due to the severe kinematic constrains in such problems. This 

means that the problem is strain controlled, and the error by estimating deformations using 

relatively “simple” soil properties is expected to be small.  

Similarly, shallow problems are stress controlled and estimating the stress increments with 

simple soil models leads to small errors neglected by engineers, especially since there are 

major uncertainties regarding the in situ soil behavior. The deformations and strains are 

determined based on kinematic considerations and boundary conditions. Stresses and pore 

pressure is then approximated by the strains through a soil model which uses more 

“advanced” soil properties. The stresses would be exact if the problem is fully strain 

controlled, or if the “simple” soil properties give the exact displacement pattern of the actual 

problem.  

Use of SPM for modelling driven piles in clay assumes undrained conditions, and that the 

strains can be determined based on the steady irrotational flow of an incompressible inviscid 

fluid. Inviscid means that the viscosity of the fluid is equal to zero, in other words the fluid 

has no shear resistance. Irrotational means that there is no swirls in the flow. This happens 

when the cross gradient of the velocity (i.e. shear strength) is zero. If inertial effects are 

neglected and assuming steady state, meaning for an observer moving with the penetrating 

object strains do not vary, then the penetration problem reduces to a flow problem where soil 

particles move along streamlines around a fixed rigid body. (Baligh 1985) 

Table 7.1 compares the stress path method (i.e. stress controlled problems) and the strain path 

method (i.e. strain controlled problems). 



Chapter 7. The Strain Path Method             Per-Anders Mortensen 

81 

Table 7.1: Comparison of the Stress Path Method and the Strain Path Method. (Baligh 1985) 

 

In Step 2 in Table 7.1, one must estimate a velocity field that satisfy the conservation of 

volume requirement and the boundary conditions. From this, the soil deformations can be 

computed by integration along streamlines. Strain rates can then be computed along the 

streamlines by differentiating the velocities with respect to the spatial coordinates. Integrating 

the strain rates along the streamlines then gives the strain path of a soil element. 
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Figure 7.1: Deformation of a Square Grid in Saturated Clays: (a) During Deep Spherical Cavity Expansion (or Single 

Source); (b) During Penetration of "Simple Pile". (Baligh 1975) 

When obtaining the solution presented in Figure 7.1 a), Baligh (1985) looked at a spherical 

cavity expanding in an infinite, incompressible (i.e. undrained), isotropic and homogeneous 

material with isotropic initial stresses. The velocity field is then given by: 

 𝑣𝑟 =
𝑉

4𝜋

𝑟

(𝑟2 + 𝑧2)
3

2⁄
 , 𝑣𝜃 = 0 𝑎𝑛𝑑 𝑣𝑧 =

𝑉

4𝜋

𝑧

(𝑟2 + 𝑧2)
3

2⁄
  (7.1) 
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where 𝑣 is the velocity in the radial, circumferential and vertical direction based on the 

subindex, 𝑉 is the volume of the pile, and 𝑟, 𝜃 and 𝑧 is the cylindrical coordinates of the soil 

element investigated. In Figure 7.1 b) Baligh (1985) uses Equation 7.1, and assumes an 

constant uniform flow with velocity 𝑈 giving: 

 𝑣𝑟 =
𝑉

4𝜋

𝑟

(𝑟2 + 𝑧2)
3

2⁄
 , 𝑣𝜃 = 0 𝑎𝑛𝑑 𝑣𝑧 =

𝑉

4𝜋

𝑧

(𝑟2 + 𝑧2)
3

2⁄
+ 𝑈 (7.2) 

So quite simple assumptions involving the velocity fields are done, and these can be used to 

solve for different shapes of the tip. It is also worth noting that the SPM method includes the 

downward motion induced by the pile installation giving vertical deformations, which are not 

included when CEM is used. (Baligh 1985) 

 

Figure 7.2: Deviatoric strain paths during penetration of a “Simple Pile”. (Baligh 1985) 
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Figure 7.2 shows the deviatoric strains 𝐸1,2,3 defined in the figure for different soil elements, 

and at different depths during penetration of a “simple pile”. The “simple pile” has rounded 

tip to ensure smooth laminar flow around the tip, avoiding singularities and enabling a 

mathematical formulation of the displacements.  

𝐸1 is imposed in a conventional triaxial test, 𝐸2 is imposed when using a pressure meter or for 

a cylindrical cavity expansion, and 𝐸3 is imposed in the direct simple shear test. The figure 

also shows the corresponding maximum strain these tests normally impose. Figure 7.2 shows 

us that the strain levels encountered in pile installation are much larger than what we apply in 

the laboratory. The post peak behavior of the clay can therefore be expected to have large 

influence on the resulting stresses and pore pressure.  

Soil elements A, F and G represents different streamlines where the horizontal distance to the 

pile differ. The different symbols represents different vertical positions on the streamlines. 

The different vertical positions give an aspect of what happens with time. The soil element 

goes from the triangle with no fill to the tilted square with no fill as the pile is penetrated. We 

see from the figure a reversal of the strain as the tip has passed. This is an unloading 

procedure that could have a large influence on the final stresses. Figure 7.2 indicate that the 

soil will fail due to vertical compression mainly (i.e. 𝐸1 strain).  

In SPM the strains does not need to be monotonic. From Figure 7.2 one can see reversals of 

strains 𝐸1 and 𝐸3. 𝐸2 does not reverse, but that is due to the tip geometry according to Baligh 

(1985). Strain reversal is very important when estimating the stresses and the pore pressure, 

some have neglected it due to the fact that if the last strain increment is of a certain magnitude 

then the history of the material is “erased”. Baligh (1985) does however empathize the 

importance of strain history even for large deformation problems. The shaded area in Figure 

7.2 shows the soil that experience a strain rate higher than 14000 times that applied in a 

conventional undrained triaxial test. High strain rate has shown to increase the peak strength, 

reduce the strain to peak and increase the softening behavior. (Baligh 1985) 
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Figure 7.3: Strain and Strain Rate Contours during penetration of a “Simple Pile”. (Baligh 1985) 

Figure 7.3 indicate that the strains far behind the tip correspond to that of the cylindrical 

cavity expansion method. Baligh (1985) concretizes that this does not mean the same solution 

for stresses and pore pressure is obtained, as previously discussed. In addition, the vertical 

deformations that are neglected in CEM has an effect on the octahedral strains close to the 

pile wall. Figure 7.3 has been constructed using the von Mises yield criterion, which yields 

for two percent octahedral shear strain. The shape of the inner plastic zone (i.e. from 2%𝛾𝑜𝑐𝑡 

and inwards) will change somewhat using a different yield criterion. (Baligh 1985) 
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7.2 The MIT-E3 model 

CEM has been combined with anisotropic, non-linear, strain softening material models. The 

same has also been done with SPM, but since the method was developed at MIT most results 

obtained by using SPM is coupled with the MIT-E1/2/3 material models. A few years before 

Baligh (1985) presented SPM, Baligh and Levadoux (1980) presented a total stress based 

material model called Prévost-Levadoux-Baligh (PLB), based on the model presented by 

Prévost (1977). Two years after this Kavvadas (1982) presented an effective stress based 

material model called MIT-E1, which could reasonably well simulate results from triaxial 

extension and compression test as well as the direct simple shear tests for lightly 

overconsolidated clays. Baligh (1985) further refined the effective stress based model to better 

fit results for overconsolidated clays. This model was named the MIT-E2 model. Lastly, 

Whittle (1987), (1992) presented the MIT-E3 model, which was a modification of the MIT-E2 

model to enhance the fit to triaxial compression, direct simple shear tests and 

unloading/reloading in oedometer tests. The MIT-E3 model is quite similar to the S-CLAY1S 

model. The principles of the models are the same, but the formulation differ. The rotational 

hardening law is for example slightly different in the two models. We will not go into detail 

of the differences in the models, as it is quite theoretical and not that relevant for this study. 

7.3 Comparison between CEM and SPM 

In the following are predictions obtained with CEM and SPM, coupled with various material 

models presented. Figure 7.4 shows the predictions produced by CEM in the top two plots 

and by SPM in the two plots below. The predictions have been produced using MCC (dash-

dot line), MIT-E1 (solid line) and PLB (dotted line), as material models for normally 

consolidated Boston Blue Clay (BBC). Comparing SPM to CEM, we see that SPM predicts 

much lower radial stress and excess pore pressure at the pile shaft than CEM does using the 

same material model. This is due to the unloading as the pile tip has passed, which can be 

seen in Figure 7.2, while CEM only apply increasing radial and circumferential strain. At a 

normalized radius of approximately ten, the results using SPM and CEM follow each other 

quite closely. The effect of using SPM is thus a reduction of stresses at the pile surface and in 

the close vicinity of the pile. Comparing MCC to the MIT-E1 model we see that the predicted 

excess pore pressure is approximately 30% lower for the MIT-E1 model than for the MCC 
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model. The MIT-E1 model also predicts lower radial stress than the MCC model, more or less 

equal to the initial condition at the pile shaft. 

  

Figure 7.4: Comparison of effects of soil models (MIT-E1 solid line, PLB dotted line and MCC dash-dot line) and 

installation models (Cavity Expansion Method top two plots, Strain Path Method bottom two plots) on radial stresses (plots 

to the left) and excess pore pressures (plots to the right) surrounding a closed-ended pile. Input parameters are based on 

Boston Blue Clay (BBC) with 𝑂𝐶𝑅 = 1. Where �̅�𝑟 = 𝜎𝑟
′ , �̅�𝑣𝑜 = 𝜎𝑣𝑜

′  and (𝑝 − 𝑝0) = ∆𝑢. (Kavvadas 1982) 

The effect of reduced stresses using the MIT-E1 model is most likely due to strain softening 

according to Karlsrud (2012). However, Figure 7.5 shows that the parameters of the MCC 

model is chosen so that higher shear stresses are allowed, compared to that of the PLB and 

MIT-E1. The decrease in excess pore pressure compared to what CEM-MCC predicts can 

then solely be due to lower shear stresses and not softening. The effect of softening when 

included in CEM is discussed in more detail in Chapter 12.8. The conclusion is that softening 

causes higher excess pore pressure when included in CEM, not a decrease. Due to the 

difference in allowed shear stress, Figure 7.4 must mainly be used to compare CEM and SPM 

for the same soil model. 
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Figure 7.5: Comparison of effects of soil models (MIT-E1 solid line, PLB dotted line and MCC dash-dot line) and 

installation models (Cavity Expansion Method top two plots, Strain Path Method bottom two plots) on radial stresses (plots 

to the left) and excess pore pressures (plots to the right) surrounding a closed-ended pile. Input parameters are based on 

Boston Blue Clay (BBC) with 𝑂𝐶𝑅 = 1. Where  �̅�𝑣𝑜 = 𝜎𝑣𝑜
′ . (Kavvadas 1982) 

Figure 7.6 shows the predicted stresses by SPM and CEM in the same plot. Input parameters 

are based on a normally consolidated Boston Blue Clay (BBC). We see the same tendency as 

in Figure 7.4, SPM gives lower predictions than CEM at the pile surface and at a radial 

distance of ten times the pile radius the solutions give approximately the same answer. 
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Figure 7.6: Comparison between stresses predicted with the Cavity Expansion Method and the Strain Path Method coupled 

with the MIT-E3 material model for Boston Blue Clay (BBC). Where ∆𝑢𝑖 = ∆𝑢𝑚𝑎𝑥, 𝑞ℎ = 𝑞, 𝜎′ = 𝑝′. (Whittle 1992) 

Table 7.2 summarizes some key parameters gathered from different sources. This gives an 

easy comparison of SPM and CEM for different clays, 𝑂𝐶𝑅, and the resulting effect on the 

predicted excess pore pressure at the pile shaft. The data from Table 7.2 has also been used by 

Karlsrud (2012) to create plots showing the effect of 𝑂𝐶𝑅 on predicted excess pore pressure 

(Figure 7.7) and radial stress (Figure 7.8), with different material models and modeling 

methods. Table 7.2 shows that SPM leads to lower excess pore pressure and effective stresses 

than CEM in all the cases. We also see that MIT-E3 gives somewhat higher stresses than the 

previous versions of the model. Based on Figure 7.5, one should however be careful 

comparing different material models to each other as the allowed maximum shear stress is not 

constant. 
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Table 7.2: Predictions of normalized stresses against the pile shaft predicted with different installation models (i.e. modeling 

methods) and material models for different types of clays and 𝑂𝐶𝑅. Where 𝐾𝑖 =
𝜎𝑟𝑖

′

𝜎𝑧0
′⁄  and 𝐾𝑐 =

𝜎𝑟𝑐
′

𝜎𝑧0
′⁄ (i.e. the radial 

effective stress directly after installation and after consolidation respectively, over the initial vertical effective stress. 

(Karlsrud 2012) 

 

 

Figure 7.7: Comparison of normalized excess pore pressure at the pile shaft versus OCR for CEM and SPM with different 

material models based on the data from Table 7.2. Where ∆𝑢𝑖= ∆𝑢𝑚𝑎𝑥. (Karlsrud 2012) 

Figure 7.7 shows that the ratio between the predicted excess pore pressures found by CEM 

and SPM are increasing with 𝑂𝐶𝑅 when normalized with the initial effective vertical stress. 

SPM gives a lower estimate of the excess pore pressure independent of the material model 

compared to CEM, and the difference increase with 𝑂𝐶𝑅.  
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Figure 7.8: Comparison of normalized radial effective stresses at the pile shaft versus OCR for CEM and SPM with different 

material models based on the data from Table 7.2. (Karlsrud 2012) 

Figure 7.8 shows the quite large difference in normalized radial stress after pile driving 

produced by SPM and CEM. The difference between the predictions is also here increasing 

with 𝑂𝐶𝑅, and SPM produces lower radial effective stress compared to CEM, independent of 

the material model. 

 

Figure 7.9: Distribution of excess pore pressure predicted by CEM and SPM for BBC with 𝑂𝐶𝑅 = 1,5. Where ∆𝑢𝑖= ∆𝑢 and 

∆𝑢𝑖0= ∆𝑢𝑚𝑎𝑥. Based on results from Whittle (1987), plotted by Karlsrud (2012). 

Figure 7.9 shows the difference in the predicted radial distribution of the excess pore pressure 

with 𝑂𝐶𝑅 = 1,5. The excess pore pressure is normalized to the prediction at the pile surface, 

thus giving the maximum value one, at the pile shaft. The elastic-perfectly plastic (EP) Tresca 

solution gives a shorter tail, meaning that the excess pore pressure has a shorter radial extent. 
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CEM coupled with MIT-E3 give almost a log-linear decrease, but curves slightly in the end. 

SPM together with MIT-E3 has an entirely different appearance. It is quite similar to CEM 

after about ten times the pile radius as previously mentioned, but before that the excess pore 

pressure is at a higher level than for CEM. Comparing Figure 7.9 to Figure 7.6 we see that the 

SPM predicts a lower value of the excess pore pressure at the pile shaft, but then it decreases 

much more slowly close to the pile than what CEM predicts. After about three times the pile 

radius, the decrease speeds up until eight times the pile radius, where the results of SPM and 

CEM become quite similar.  

The conclusion is therefore that CEM and SPM predicts quite similar radial strains, but SPM 

also introduce vertical strains. This causes an unloading procedure as the pile tip passes. This 

unloading procedure do not affect the stresses far away from the pile, but close to the pile the 

stresses obtained with SPM are of a lower magnitude than CEM. The radial distribution is 

then also different, where SPM predicts a close to constant level, while CEM predicts a 

decrease close to the pile. Far away from the pile the distributions, as well as the predicted 

stresses, become quite similar. 
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8 Empirical and semi-empirical methods 

8.1 General 

In this chapter, some empirical and semi-empirical methods are presented and discussed 

briefly. Most of the methods are quite old, more recent estimates seem to be based on 

measurements from similar places instead of an empirical formula. Most of the methods 

presented are based on an assumption of no change in vertical pressure. Some of the methods 

are modifications of the analytical elastic-perfectly plastic (EP) solution presented by Gibson 

and Anderson (1961) to a more realistic stress state.  

8.2 Nishida (1963) 

Nishida (1963) used the CEM-EP solution presented in Chapter 5. However, the solution 

assumes plane strain, and introducing a different initial pressure in the vertical direction is 

impossible in the analytical solution. It has been solved for different stresses in the plane, but 

out of the plane stress is not considered when assuming plane strain, other than through 

Equation 4.5 where the change is set equal to the sum of the in plane stress multiplied with 

poisons ratio, as continuum mechanics dictate. Nishida (1963) assumed no change in the 

vertical stress, and changed the initial stresses to a more relevant case as seen in Figure 8.2. 

He further assumed the change of the in plane stresses to be equal to the change found in the 

analytical solution, and also kept the plastic radius equal. He set the excess pore pressure 

equal to zero in the elastic zone and equal to the change in mean stress in the plastic zone (i.e. 

𝐷 = 0). 
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Figure 8.1: Stress conditions from the analytical solution of a cavity expansion in an elastic-perfectly plastic Tresca material 

(CEM-EP). Initial stress conditions to the left and the stress changes after pile driving to the right. Where 𝜎𝑡 = 𝜎𝜃. (Berg-

Knutsen 1986) 

 

Figure 8.2: Stress conditions assumed by Nishida (1963). Initial stress conditions to the left and changes of stress after pile 

driving to the right. Where 𝜎𝑡 = 𝜎𝜃 and 𝛾𝑧 = 𝜎𝑣0. (Berg-Knutsen 1986) 

The excess pore pressure is set equal to the change of the mean stress in the plastic zone. 

Using the stresses seen in Figure 8.2 this gives: 

 
∆𝑢

𝑠𝑢
=

4

3
𝑙𝑛

𝑟𝑝

𝑟
 (8.1) 

If Janbu’s pore pressure equation (Chapter 3.4, Equation 3.13) is used then the excess pore 

pressure is given by: 
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∆𝑢

𝑠𝑢
=

4

3
𝑙𝑛

𝑟𝑝

𝑟
− 𝐷(2 −

𝜎𝑣0

𝑠𝑢

(1 − 𝐾0)) (8.2) 

In the elastic zone, the excess pore pressure is assumed equal to zero. Inserting Equation 5.2 

and 𝑟 = 𝑟0 into Equation 8.1, gives a maximum excess pore pressure equal to: 

 
∆𝑢

𝑠𝑢
=

2

3
𝑙𝑛

𝐺𝑢

𝑠𝑢
 (8.3) 

This means that the method of Nishida (1963) is simply reducing the maximum excess pore 

pressure by 33%, if the excess pore pressure is assumed equal to the change in total mean 

stress. Appendix B.1 shows residual plots of the prediction based on Equation 8.3 compared 

to the measured data presented in Chapter 13 and Table 13.6. 

Comparing the residual plot obtained by using the method of Nishida (1963) (i.e. Figure B.1.1 

and B.1.2) to the residual plot obtained when using CEM-EP (i.e. Equation 14.6, Figure 14.1 

and Figure 14.2) we see that CEM-EP have a better fit for the low 𝑂𝐶𝑅 clays. The high OCR 

clays are not captured by any of the methods, but due to dilation, the excess pore pressure is 

low and hence the method of Nishida (1963) fits better as he reduce the predicted excess pore 

pressure of CEM-EP by 33%. 

Using CEM and numerical software makes it possible to introduce the initial stress condition 

that Nishida (1963) describes. This will then be solved for the given material model and the 

assumptions Nishida (1963) makes become unnecessary. However, it shows the implicit 

assumptions that Gibson and Anderson (1961) makes in order to develop the analytical 

solution of a Tresca material (i.e. plane strain 𝜀𝑧 = 0 and ∆𝜎𝑣 = 0,5(∆𝜎𝑟 + ∆𝜎𝜃) in the plastic 

zone). 
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8.3 Lo and Stermac (1965) 

Lo and Stermac (1965) proposed a semi-empirical expression for the maximum pore pressure 

at the pile shaft. The initial conditions are assumed equal to the ones described by Nishida 

(1963) in Figure 8.2. When the pile is driven, the direction of the maximum strain is assumed 

to be radial. The vertical stress is after piling assumed as the minor principal stress, while the 

radial becomes the major. The excess pore pressure is assumed to be composed of two parts. 

The first part is a result of an increase of the total ambient pressure (∆𝜎3). The second part is a 

result of the shearing. 

 ∆𝑢𝑎 = ∆𝜎3 = (1 − 𝐾0)𝜎𝑣0
′  (8.4) 

where the second equality assumes that the vertical total stress is unchanged after pile driving. 

The proposed solution can be written as: 

 ∆𝑢𝑚𝑎𝑥 = ∆𝑢𝑎 + ∆𝑢𝑠 = ((1 − 𝐾0) + (
∆𝑢

𝜎𝑐
′
)

𝑚𝑎𝑥

)𝜎𝑣0
′  (8.5) 

where (
∆𝑢

𝜎𝑐
′ )

𝑚𝑎𝑥
is the maximum pore pressure ratio that is measured in a conventional 

undrained triaxial test, and 𝜎𝑐
′ is the consolidation pressure used in the test. The pore pressure 

ratio is increasing with the applied stress until it reaches its maximum and remains constant 

after a certain strain is achieved. Lo and Stermac (1965) argues that the pore pressure ratio is 

independent of the direction of the stress path, time of the sustained load, and the 

consolidation pressure for normally consolidated clays. This is also the reason for using the 

pore pressure ratio. The proposed formula was checked with measurements, as seen in Figure 

8.3. In Figure 8.3 the estimations are the dotted lines close to the vertical axis, and show a 

reasonable estimate given the data. However, there were no measurements on the pile shaft, 

and an empirical method to estimate the pore pressure at the pile surface should include, and 

be compared to, measurements at the pile wall. 
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Figure 8.3: (a) Layout of piles and piezometers; (b) distribution of excess pore pressures, Wabi river. (Lo and Stermac 1965) 

8.4 Blanchet (1976) 

Blanchet (1976) did some modifications to the solution presented by Lo and Stermac (1965). 

He found that the pore pressure ratio became constant when the consolidation pressure in the 

triaxial test was equal to the preconsolidation pressure (𝑝𝑐
′ ) of the soil. Blanchet (1976) then 

proposed the modification: 

 ∆𝑢𝑚𝑎𝑥 = (1 − 𝐾0)𝜎𝑣0
′ + (

∆𝑢

𝜎𝑐
′
)

𝑚𝑎𝑥

𝑝𝑐
′  (8.6) 

(Bozozuk, Fellenius et al. 1978). The method of Blanchet (1976) and Lo and Stermac (1965) 

have not been checked against the empirical data presented in Table 13.6, as we do not have 

data on the ratio (
∆𝑢

𝜎𝑐
′ )

𝑚𝑎𝑥
. However, Berg-Knutsen (1986) have included these two methods 

in a comparison with CEM-EP, the expansion of a spherical cavity, and the methods of 

Nishida (1963) and Svanø (1978), as seen in Figure 9.2 and Figure 9.3. From these figures we 

see that the method of Lo and Stermac (1965) gives a lower estimate of the excess pore 

pressure than the method of Blanchet (1976). Both methods are however below the prediction 

obtained by using the method of Nishida (1963), which is shown to under-predict the data 

presented in Table 13.6. 
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8.5 Svanø (1978) 

Svanø (1978) argued that the modifications applied by Nishida (1963) is not correct since the 

minor principle stress is equal to the vertical stress after pile driving close to the pile surface. 

Svanø (1978) assumes that the passive earth pressure model for undrained analysis can be 

applied. If the roughness ratio (𝑟) is assumed equal to zero, then the increase of the horizontal 

stresses become 2𝑠𝑢. Figure 8.4 shows the initial stress condition to the left, and the stress 

conditions after pile driving given the assumptions above. 

 

Figure 8.4: Stress conditions assumed by Svanø (1978). Initial stress conditions to the left and changes of stress after pile 

driving to the right. Where 𝜎𝑡 = 𝜎𝜃 𝑎𝑛𝑑 𝛾𝑧 = 𝜎𝑣0. (Berg-Knutsen 1986) 

If Janbu’s pore pressure equation (Chapter 3.4, Equation 3.13) is used together with the stress 

condition shown in Figure 8.4, then the maximum excess pore pressure at the pile surface is 

given by: 

 
∆𝑢𝑚𝑎𝑥

𝑠𝑢
= 2 (

2

3
− 𝐷) +

𝜎𝑣0

𝑠𝑢
(
2

3
+ 𝐷)(1 − 𝐾0) (8.7) 

(Berg-Knutsen 1986). If one assumes the excess pore pressure to be equal to the change in 

total mean stress then Figure 8.4 gives: 

 
∆𝑢𝑚𝑎𝑥

𝑠𝑢
=

2

3
((1 − 𝐾0) ∗

𝜎𝑣0

𝑠𝑢
+ 2) (8.8) 
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Equation 8.8 has been checked against the data of Table 13.6, and residual plots are presented 

in Appendix B.2. Figure B.2.1 and B.2.2 shows an interesting fit to the data. The adjusted 

coefficient of determination is �̅�2 = 0,285, which is higher than what CEM-EP predicts (i.e. 

�̅�2 = −4,21 see Chapter 14.3). However, if only the data with 𝑂𝐶𝑅 ≤ 2 is included CEM-EP 

gives �̅�2 = 0,689 while Equation 8.8 gives �̅�2 = 0,225. As discussed in Chapter 14.3 CEM-

EP gives a relatively good fit to the low 𝑂𝐶𝑅 data, but over-predicts the high 𝑂𝐶𝑅 clays 

grossly. Equation 8.8 gives a better fit when including the high 𝑂𝐶𝑅 clays than CEM-EP, but 

the fit is not satisfactory, including or excluding the high 𝑂𝐶𝑅 clays. 

8.6 Hagerty and Garlanger (1972) 

Hagerty and Garlanger (1972) used the geometry of the total stress path of an earth element 

close to the pile wall to estimate the maximal pore pressure. If the vertical pressure is assumed 

constant, then the pile driving only leads to an increase of the horizontal pressure. A passive 

triaxial test is conducted in a similar manner. The axial stress (𝜎𝑎𝑥𝑖𝑎𝑙) is kept constant, while 

the cell pressure (𝜎𝑐𝑒𝑙𝑙) is increased. The difference between the total stress path and the 

effective stress path then gives the excess pore pressure, and the maximum is reached at 

failure. Figure 8.5 shows the principle of the passive triaxial test, and using the figure one can 

find the expression of the maximum excess pore pressure as: 

 
∆𝑢𝑚𝑎𝑥

𝜎𝑣0
′ = 1 − (

1 − sin(𝜑𝑝)

sin(𝜑𝑝)
) (

𝑠𝑢

𝜎𝑣0
′ )

𝑝

 (8.9) 

where the parameters should all be determined from a passive undrained triaxial test, hence 

the subtext 𝑝. The parameters needed to use Equation 8.9 is not included in the dataset of 

Table 13.6, therefore the fit of this approximation have not been checked. (Berg-Knutsen 

1986) 
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Figure 8.5: Maximal pore pressure ratio in a passive triaxial test. Where; Aktiv bruddlinje = Active failure line, Passiv 

bruddlinje = Passive failure line, Effektivspenningssti = Effective stress path, Totalspenningssti = Total stress path and 𝑝0 =
𝜎𝑣0. (Berg-Knutsen 1986) 

8.7 Broms and Massarch (1979) 

Broms and Massarch proposed an estimation close to the pile wall in normally consolidated 

clay based on empirical data. The formula is rendered by Berg-Knutsen (1986) as: 

 
∆𝑢𝑚𝑎𝑥

𝑠𝑢
= 2𝑙𝑛√

𝐸𝑢

4,5𝑠𝑢
+ 0,8 (8.10) 

The prediction obtained by using Equation 8.10 is checked against the empirical data 

presented in Chapter 13 and Table 13.6, and the resulting residual plots are presented in 

Appendix B.3. Looking at the residual plots (i.e. Figure B.3.1 and B.3.2) we see that Equation 

8.10 over-predicts the excess pore pressure grossly for all but one measurement done at the 

Empire site.
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9 Comparison of prediction methods to measurements 

From the previous chapters it has been shown that the solution for the excess pore pressure 

found by the Cavity Expansion Method (CEM) is close to a linear curve in the ∆𝑢 − ln(𝑟) 

plane regardless of the material model. This linear relationship occurs in the plastic zone for 

the elastic-perfectly plastic Tresca material (EP), and in the critical state region for the 

Modified Cam Clay (MCC) model. In other words, the excess pore pressure is assumed to be 

decaying logarithmic with 𝑟 close to the pile wall. Figure 9.1 shows field measurements on 

low 𝑂𝐶𝑅 clays together with a least square fit line based on the assumption of a linear decay 

of the excess pore pressure with a slope of 2𝑠𝑢 against ln(𝑟). This decrease of 2𝑠𝑢 with ln(𝑟), 

is found when using the CEM-EP model as seen in Chapter 5. However, the maximum pore 

pressure at the pile shaft is not found with CEM-EP, but have been calibrated to fit the data.  

Figure 9.1 shows that the radial extent of the pore pressure field is captured with a simple 

model such as CEM-EP given that the maximum excess pore pressure at the pile shaft is 

known. The pore pressure distribution in the two upper graphs seems to correspond well to a 

linear decrease with the logarithm of 𝑟. The bottom graph does however seem to be closer to 

the shape obtained with the Strain Path Method (SPM), seen in Figure 9.6. 
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Figure 9.1: Field measurements of excess pore pressures resulting from pile driving. Broken line is the best fit straight line 

with a slope of 2𝑠𝑢. Where 𝑢0 = 𝑢. (Randolph and Wroth 1979) 

Figure 9.2 and Figure 9.3 show data obtained by Roy, Blanchet et al. (1981). They conducted 

full scale tests on instrumented piles in St. Alban clay. Berg-Knutsen (1986) compared the 

measured excess pore pressure to predictions obtained by CEM-EP (called Vesic, syl.), 

spherical cavity expansion in an elastic-perfectly plastic material (called Vesic, sf.), and some 

of the empirical methods presented in Chapter 8. “Passivt j.” refers to the method of Svanø 

(1978) from Chapter 8.5. The other methods are referring to the name of the engineer/scientist 

that proposed the solution (see Chapter 8). From Figure 9.2 we see that CEM-EP over-

predicts the excess pore pressure at the pile surface, but the radial extent of the pore pressure 

field is predicted correctly.  
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Figure 9.2: Excess pore pressure measured at 3m, 6m depth and at the pile wall (=pelevegg) from Roy, Blanchet et al. 

(1981). Compared to CEM-EP and some of the empirical methods presented in Chapter 9. (Berg-Knutsen 1986) 

Figure 9.3 shows us that the measurements at the pile tip is somewhere between the 

cylindrical and the spherical cavity expansion as proposed by Clark and Meyerhof (1972), and 

previously discussed in Chapter 4.1. The CEM-EP grossly over-predicts the excess pore 

pressure at the pile shaft, while the method of Nishida (1963) and Blanchet (1976) give a 

much better correspondence to the data. Berg-Knutsen (1986) found, from the data on low 

𝑂𝐶𝑅 clays, that CEM-EP was an upper limit to the measured data and the minimum value 

obtained when using both the method of Svanø (1978) and Nishida (1963) was a lower limit 

to the measured data. After looking at the empirical data from 12 different sites we know now 

that these bounds do not hold. CEM-EP is not an upper boundary as seen in Chapter 14.3 and 

Figure 14.2.  

For the high 𝑂𝐶𝑅 clays we see very low excess pore pressure compared to the stiffness and 

strength of the soil, most likely due to dilation, and these pore pressures are lower than what 

the method of Nishida (1963) predicts. Based on the empirical data in Table 13.6 the CEM-EP 

method is the best fit to the data with 𝑂𝐶𝑅 ≤ 2. For the data with 𝑂𝐶𝑅 > 2, none of the 

methods presented in Chapter 8 seems to predict low enough pore pressures. However, the 

method of Lo and Stermac (1965) and Blanchet (1976) has not been checked against the data 

in Table 13.6 itself, as the ratio (
∆𝑢

𝜎𝑐
′ )

𝑚𝑎𝑥
 is not determined for each site specifically. The 

above conclusion is then only based on Figure 9.2 and Figure 9.3 for these methods.  
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Figure 9.3: Measurements of pore pressure at the pile tip (=pelespiss) and the pile wall (=pelevegg) from Roy, Blanchet et 

al. (1981). Compared to CEM-EP and some of the empirical methods presented in Chapter 9. (Berg-Knutsen 1986) 

Randolph, Carter et al. (1979) used the CEM-MCC model and compared the radial 

displacement at the midpoint of the pile with field measurements done by Cooke and Price 

(1973) as well as from model test done by Randolph, Steenfeld et al. (1979). Randolph, Carter 

et al. (1979) used the assumption of plane strain under constant volume in their model. The 

result is presented in Figure 9.4, and show great correspondence between the model and field 

measurements. As discussed in Chapter 7.1, SPM and CEM predicts the same radial strain far 

behind the tip. 

 

 

Figure 9.4: Comparison of measured and theoretical soil displacement in the radial direction. (Randolph, Carter et al. 1979) 
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However, Baligh and Levadoux (1980) argue that Randolph, Carter et al. (1979) neglect the 

importance of the strain path followed by the soil element to reach the final strain. Figure 7.2 

shows that even though soil particles move monotonically away from the pile, the radial strain 

decrease slightly behind the tip. An unloading procedure such as this can have a large 

influence on the change of the stresses.  

 

Figure 9.5: Measurements of excess pore pressure due to pile driving from four studies; a) Bjerrum and Johannessen (1960) 

NC marine clay, b) Lo and Stermac (1965) NC soft to firm silty clay, c) Koizumi and Ito (1967) OCR=3-4 very sensitive 

slightly organic silty clay, d) Roy et al (1979) OCR=2-2.3 very sensitive marine soft silty clay. Where 𝑅 = 𝑟0 and �̅�𝑣0 = 𝜎𝑣0
′ . 

(Baligh and Levadoux 1980) 

Figure 9.5 shows measurements from four different sites. The measurements seems to agree 

somewhat regardless of the fact that the clays differ in type (𝐼𝑃) and stress history (𝑂𝐶𝑅). We 

also see that the excess pore pressure at the pile shaft is much lower than what a linear trend 

of the data suggests. 
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Figure 9.6: Predictions from SPM coupled with the PLB material model for normally consolidated BBC. Using two different 

cones and data from a distance of 14 times the pile radius behind the tip. Compared to measurements of cone penetration in 

Champlain clay (OCR=2). Where (𝛥𝑢)𝑆𝐻 =  𝛥𝑢𝑚𝑎𝑥 and 𝑅 = 𝑟0. (Baligh and Levadoux 1980) 

Figure 9.6 shows predictions for a BBC clay with 𝑂𝐶𝑅 equal to one using the SPM-PLB 

model. The predictions are compared to measurements from a Champlain clay with an 𝑂𝐶𝑅 

of two, and shows a very good fit to the measurements. Baligh and Levadoux (1980) uses this 

result, together with the measurements from Figure 9.5 to argue that the normalized excess 

pore pressure due to pile driving is not very sensitive to soil type or stress history.  



Chapter 9. Comparison of prediction methods to measurements         Per-Anders Mortensen 

107 

 

Figure 9.7: Measurements of excess pore pressure at the pile shaft and predictions from both CEM and SPM using the MIT-

E3 material model with BBC parameters. Where 𝛥𝑢𝑖 = 𝛥𝑢𝑚𝑎𝑥. (Whittle 1992) 

Figure 9.7 shows predictions obtained with CEM and SPM coupled with the material model 

MIT-E3 using BBC input parameters, and measurements at the pile shaft from different 

studies. The measured data is very consistent at low 𝑂𝐶𝑅, but for the more heavily 

overconsolidated clays, it shows more scatter. This is deemed to probably be due to the 

presence of sand seams. SPM and CEM both underestimates the measured data from the BBC 

clay, however CEM shows a slightly better fit to the measured pore pressure at the pile shaft 

than SPM. 
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Figure 9.8: Predictions with both CEM and SPM with MIT-E3 as material model and BBC parameters and different 𝑂𝐶𝑅’s. 

Compared to measured data from two sites. Where 𝛥𝑢𝑖 = 𝛥𝑢𝑚𝑎𝑥 and 𝑅 = 𝑟0. (Whittle 1992) 

Figure 9.8 is similar to Figure 9.7, but Figure 9.8 only looks at two of the sites and include the 

radial distribution. SPM with 𝑂𝐶𝑅 equal to one compares well to measurements of Kaolin 

clay. However, the predictions from SPM at 𝑂𝐶𝑅 equal to two underestimates both the 

magnitude and the radial extent of the excess pore pressure when compared to the 

measurements done in St. Alban Clay. Whittle (1992) uses the results from Figure 9.8 to 

argue that the CEM analysis does not describe the shape of the excess pore pressure 

accurately, thus overestimating the maximum excess pore pressure at the pile shaft, while 

under-predicting the pore pressure measured in the far field. Whittle (1992) further interprets 

the results and argue that the main source of discrepancy in the SPM solution is due to the 

effective stresses in the far field, which are affected by small strain properties of the clay. If 

this is the case then it can be fixed through further refinement of the material model.  

Figure 9.9 shows the fit between the measured data and the predictions obtained by SPM and 

CEM when normalized to the maximum excess pore pressure at the pile shaft. The figure 

shows a great fit between the SPM predicted radial distribution and the measured radial 

distribution of the excess pore pressure. Karlsrud (2012) find that the numerical solutions 

often give a fair assessment of the radial extent of the excess pore pressure field. However, 

the exact shape of the excess pore pressure field does not always agree. The SPM method 

seems to fit in some cases, and CEM in other cases. There seems to be more cases where the 

SPM method fit than CEM however. 
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Figure 9.9: Measured excess pore pressure field at St. Alban compared to CEM-and SPM-MITE3 predictions, when 

normalized to the maximum excess pore pressure at the pile shaft. Where ∆𝑢𝑖= ∆𝑢 and ∆𝑢𝑖0= ∆𝑢𝑚𝑎𝑥. (Karlsrud 2012) 

Karlsrud (2012) studied twelve sites in his PhD-thesis where pore pressure was measured at 

the pile shaft. These measurements was used to propose the 𝛼- and 𝛽- methods for 

determining the pile bearing capacity. Figure 9.10 and Figure 9.11 shows measurements of 

the pore pressure at the pile shaft against 𝑂𝐶𝑅. The pore pressure is normalized with the 

initial vertical effective stress in Figure 9.10 and with the direct undrained shear strength in 

Figure 9.11. Figure 9.10 and Figure 9.11, made by Karlsrud (2012), only include clays where 

undrained conditions can be assumed and exclude measurements done closer than about four 

pile diameters to the tip due to possible effects of geometry.  

The dataset gathered by Karlsrud (2012) is used in Chapter 13 and 14, with some minor 

modifications. We will there use similar plots so a detailed description of the plot is presented 

here. The filled symbols represent the closed-ended piles, while the non-filled symbols 

represent the open-ended piles. The size of the symbol represents the size of the pile diameter. 

Ha represents the measurements from Haga, On from Onsøy, Li from Lierstranda, Ti from 

Tilbrook Grange, WD from West Delta, CP from Canons Park, BK from Bothkennar, Co 

from Cowden, Em from Empire, BBC from Saugus, Ham from Hamilton and St.Al from 

St.Alban. The name/letter behind the hyphen represents the type of pile used. The sites, with 

soil conditions and information on the piles used, is presented in Chapter 13.1. 
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Figure 9.10: Measured normalized excess pore pressure against the pile shaft versus OCR. Where 𝛥𝑢𝑖 = 𝛥𝑢𝑚𝑎𝑥. (Karlsrud 

2012) 

Figure 9.10 is as mentioned normalized according to the initial vertical effective pressure. The 

measurements are plotted together with predictions from CEM coupled with the MCC 

material model (CEM-MCC) and SPM coupled with the MIT-E3 material model (SPM-

MITE3), the parameter input are based on idealized BBC, and is not site specific. The CEM-

MCC line lies on the high side of the measured values, while the SPM-MITE3 lies on the low 

side. Use of site specific data would slightly improve the comparison to the corresponding 

measurements, but will not change the broad picture according to Karlsrud (2012). The trend 

lines are stopped at 𝑂𝐶𝑅 larger than ten as the scatter in the data becomes quite large. The 

trend lines are a least square fit of a linear line in a logarithmic scale of 𝑂𝐶𝑅. 

In Figure 9.11, the data is normalized with the direct undrained shear strength. The plot also 

contains predictions made by CEM with an elastic-perfectly plastic Tresca material model 

(CEM-EP). The input parameters in the CEM-EP model has been chosen as the average of the 

data from all the sites. For both the closed- and open-ended piles the CEM-EP appears to be 

under-predicting the excess pore pressure at the pile surface for low 𝑂𝐶𝑅 and over-predicting 

for high 𝑂𝐶𝑅.  
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The data from Figure 9.11 shows a clear trend of decreasing normalized excess pore pressure 

at the pile shaft with increasing 𝑂𝐶𝑅 according to Karlsrud (2012). Baligh and Levadoux 

(1980) found that there is no well-defined correlation between excess pore pressure at the 

shaft and clay type, stress history, undrained shear strength or sensitivity. However, Baligh 

and Levadoux (1980) only looked at data from four sites with 𝑂𝐶𝑅 less than four.  

Notice that the excess pore pressure at the pile shaft normalized with the initial vertical 

effective stress increase with increasing 𝑂𝐶𝑅. This is because as 𝑂𝐶𝑅 increase, 𝐺𝑢 and 𝑠𝑢 

increase. However, 
𝐺𝑢

𝑠𝑢
⁄  decrease, meaning 𝑠𝑢 increase faster with 𝑂𝐶𝑅 than 𝐺𝑢. 𝜎𝑣0

′  is 

constant so that from CEM-EP we have ∆𝑢𝑚𝑎𝑥 = 𝑠𝑢𝑙𝑛
𝐺𝑢

𝑠𝑢
 increasing. This correspond to the 

general trend found in CEM-MCC as well. 

For 𝑂𝐶𝑅 less than three it seems that the measurements of the open-ended piles lies about 

25% lower than the closed-ended piles. For higher degrees of 𝑂𝐶𝑅, no such relationship can 

be argued. All the small-scale model piles/probes, except Cannons Park (CP-IC), seems to 

give larger excess pore pressure than the full-scale piles. This could be because small-scale 

model piles are driven at a faster rate than the real size piles. However, the consolidation time 

is proportional to the square of the pile radius, and this should counteract such an effect to 

some extent according to Karlsrud (2012). The MIT probe in BBC clay (BBC-MIT) measured 

pore pressure while driving the probe, whereas the other data was collected after installation. 

This could explain the high values of the normalized excess pore pressure at the pile shaft 

reported from the BBC-MIT experiment. 
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Figure 9.11: Measured normalized excess pore pressure against the pile shaft versus OCR. Where 𝛥𝑢𝑖 = 𝛥𝑢𝑚𝑎𝑥. (Karlsrud 

2012) 

According to Karlsrud (2012), the scatter of the data seen in Figure 9.10 and Figure 9.11, is 

most likely due to the difference in pile size, pile type, time used for installation and 

inaccuracy in the instrumentation system used. Some of the scatter is probably due to the 

different stress-strain behavior of the clays, including the post-peak large strain behavior. 

Karlsrud (2012) believes that very little of the scatter comes from the assessment of the direct 

undrained shear strength and 𝑂𝐶𝑅, as the uncertainty in these values are approximately 10 −

15% and 20 − 30%, respectively.  

Trustworthy measurements of pore pressure requires that the piezometer filter is de-aired and 

fully saturated, before they enter the ground. In heavily overconsolidated clays negative pore 

pressure or suction may develop. This can de-saturate the piezometer even if the piezometer 

filter was carefully prepped before entering the ground. This would lead to too low pore 

pressure measurements shortly after pile installation, and cause an increase in readings with 

time. This was observed at the Hamilton site (Ham), and could be an influencing factor at 

other sites as well.  

In Figure 7.8 we see that CEM predicts much higher normalized effective stress ratio (𝐾𝑖 =

σr
′ σv0

′⁄ ) at the end of pile installation than SPM. Figure 9.12 shows measurements of 𝐾𝑖 

plotted against 𝑂𝐶𝑅. Since the generated total radial earth pressure and pore pressure is 
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relatively large compared to the initial stress state, small errors in total earth pressure or pore 

pressure can give a large error in effective stress. Figure 9.12 shows therefore an even larger 

scatter than the previous plots. Negative values of 𝐾𝑖 is incorrect since tension in the radial 

effective stress is very unlikely. If the results from Figure 7.8 is compared to the data in 

Figure 9.12, we see that SPM-MITE3 seems to correctly assess the low radial effective 

stresses after installation for low 𝑂𝐶𝑅 clays. While CEM-EP and CEM-MCC over-predicts 𝐾𝑖 

quite substantially for low 𝑂𝐶𝑅 clays. The lower estimate produced by SPM is due to the 

unloading procedure as the pile tip passes, as discussed in Chapter 7.1. For high 𝑂𝐶𝑅 clays 𝐾𝑖 

seems to approach 𝐾0, but the scatter is quite large and no definitive conclusion can be drawn. 

 

Figure 9.12: Normalized effective stress ratio, 𝐾𝑖 = 𝜎𝑟
′ 𝜎𝑣0

′⁄ , at end of installation against OCR. (Karlsrud 2012) 

Figure 9.13 shows the measured results of excess pore pressure at the pile shaft normalized 

with the direct undrained shear strength against the plasticity index, at the sites with 𝑂𝐶𝑅 less 

than two. If the measurements on full scale, closed-ended piles (large filled symbols) are 

looked at separately then the data suggest an increase of normalized excess pore pressure at 

the pile shaft with increasing plasticity index. The same tendency is observed if only looking 

at the full scale open-ended piles (large non-filled symbols). This is interesting since Figure 

5.6 shows that if the plasticity index increase, then the ratio between the shear modulus over 

the undrained shear strength decrease. This means that the measurements do not show the 

same tendency as the CEM-EP model for an increasing plasticity index. 
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𝐺𝑢
50

𝑠𝑢𝐶
⁄  decrease with increasing plasticity index according to triaxial tests done on block 

samples. CEM-EP only depends on 
𝐺𝑢

𝑠𝑢𝐷
⁄  (if the Dilatancy is neglected), and the normalized 

excess pore pressure decrease if 
𝐺𝑢

𝑠𝑢𝐷
⁄  decrease.  

Bergset (2015) looked at the CEM-MCC model and found in his parametric study that the 

normalized excess pore pressure at the pile shaft decrease with increasing plasticity index for 

this model as well. However, the increase in normalized excess pore pressure with plasticity 

index seen in Figure 9.13 is very small. The uncertainties in the measurements combined with 

the influence of other material parameters makes this small increase with plasticity index very 

uncertain.  

 

Figure 9.13: Measured normalized excess pore pressure against the pile shaft versus plasticity index (𝐼𝑝) for 𝑂𝐶𝑅 < 2. 

Where 𝛥𝑢𝑖 = 𝛥𝑢𝑚𝑎𝑥. (Karlsrud 2012) 

Karlsrud (2012) concludes that no single numerical or analytical solution fully capture the 

trends found in the measured data, and that the trend curves may be the most reliable 

approach for estimating the excess pore pressure at the pile shaft.  

Figure 9.14 is a proposed empirical way of estimating the excess pore pressure against the 

pile shaft based on trend curves seen in Figure 9.11. For heavily overconsolidated clays, the 
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trend curves are very uncertain since the amount of reliable data is small, and the scatter in the 

data that exist is quite large. Karlsrud (2012) propose to use these trend curves and get the 

radial extent using the CEM-EP model, and check the value of 
𝐺𝑢

𝑠𝑢𝐷
⁄  with Figure 5.6. If the 

shape of the distribution is of importance, SPM-MITE3 has shown better correspondence to 

the measured results than CEM, in most of the cases. However, there is no guarantee that this 

will be a good fit for a single randomly chosen case.  

 

Figure 9.14: Proposed empirical correlation for predicting excess pore pressure against the pile shaft at end of pile 

installation by Karlsrud (2012). Where 𝛥𝑢𝑖 = 𝛥𝑢𝑚𝑎𝑥. (Karlsrud 2012) 
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10  Conclusions from the literature study 

Based on the predictions and measurements presented up until now we will draw some 

conclusions. In the remaining chapters we will mainly look closer at the Cavity Expansion 

Method (CEM) coupled with a linear elastic-perfectly plastic (EP) material model, and the 

Modified Cam Clay (MCC) material model. We will also study the effect of including strain 

softening, and compare some of the prediction methods to measurements done at the pile shaft 

(i.e. Table 13.6). 

The radial extent of the excess pore pressure field is seen to be predicted quite well (Figure 

9.2 and Figure 9.8) by both CEM and SPM. The differences between CEM and SPM, coupled 

with different material models, are quite small far away from the pile, as seen in Figure 7.4, 

7.9 and 9.9. Using the analytical CEM-EP solution (i.e. Equation 5.2) with the direct 

undrained shear strength (𝑠𝑢𝐷) and the undrained shear modulus (𝐺𝑢
50), taken at 50% of the 

mobilized shear strength as input parameters, is therefore a good approximation. This is 

supported by Karlsrud (2012), but is something that could be looked further into. 

The empirical and semi-empirical methods presented in Chapter 8 is seen to give a worse fit 

to the measured data presented in Chapter 13 than CEM-EP (see Appendix B, Figure 9.2, 

Figure 9.3 and Figure 12.2). These methods will therefore not be discussed further. The trend 

lines proposed by Karlsrud (2012) in Figure 9.14 will be looked further into as they are based 

on a quite large amount of empirical data, and is seen to give a relatively good estimate of the 

excess pore pressure at the pile shaft. 

Based on what we see in Figure 9.11, we conclude that 𝑂𝐶𝑅 have an important role in the 

resulting excess pore pressure, contrary to what some authors conclude. The excess pore 

pressure is decreasing with 𝑂𝐶𝑅 more rapidly than what CEM-EP suggests, probably due to 

dilation. This will be looked further into in Chapter 12, where CEM-EP and CEM-MCC is 

compared, and in Chapter 14 where predicton methods are compared to measurements.  

CEM have been shown to grossly over-predict the effective radial stress after installation (see 

Figure 9.12 and Figure 7.8). This is due to the unloading of the radial stress after the pile tip 

has passed. Since the Strain Path Method (SPM) include the downward motion of installing a 
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pile it captures this unloading procedure. Comparing Figure 7.8 and Figure 9.12, we see that 

the radial effective stress is much better predicted by SPM than CEM. SPM is shown not only 

to give lower radial stress, but lower excess pore pressure as well. However, Figure 9.8 shows 

that the SPM prediction is lower than what is measured in a clay with 𝑂𝐶𝑅 = 2, and that the 

CEM prediction is more correct in this case. It is difficult to say whether CEM or SPM gives 

the most correct prediction of the excess pore pressure. The prediction also varies with the 

soil model chosen.  

In Chapter 14.3, we see that CEM-EP does not grossly over-predict the excess pore pressure 

at the pile shaft for the clays with 𝑂𝐶𝑅 ≤ 2, but rather under-predicts this, for these sites, on 

average. Based on this observation, SPM would give too low excess pore pressure for the sites 

with 𝑂𝐶𝑅 ≤ 2. However, SPM is not modeled in this study with site specific data, this 

conclusion is therefore purely based on the fact that SPM is shown to give lower excess pore 

pressure than CEM, when compared.  

Johansson and Jendeby (1998) find that the radial total stress relaxes, and that this happens 

faster than the excess pore pressure dissipates (see Figure 2.14). This could very well be the 

reason as to why the measured radial effective stress is very low as seen in Figure 9.12, and it 

also explains why the pore pressure predicted by SPM could be somewhat low. 

The difference in the predictions obtained by SPM and measurements, can come from errors 

in the measurements (described in Chapter 9), but are just as likely to come from the 

estimated deformation field or the material model. However, errors from the latter are 

believed to be of a smaller magnitude. The strain rate found by Baligh (1985) is shown to be 

higher than 14000 times that applied in an conventional undrained triaxial test, close to the 

pile (Figure 7.2). A high strain rate has been shown to increase the peak strength, reduce the 

strain to peak, and increase the softening behavior. This means that the input parameters 

determined from triaxial testing will not be accurate, and that the material model will 

therefore be unable to reproduce the exact stresses measured. This would affect the results of 

both CEM and SPM. In addition, SPM is much more complex to implement than CEM 

making it less available. 

The shape of the radial distribution is shown to be sometimes close to a log-linear decrease of 

2𝑠𝑢 (Figure 9.1). However, there are limited measurements close to the pile shaft. The Strain 

Path Method (SPM) coupled with the strain softening MIT-E3 model gives a more constant 
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value in the closest remoulded zone and then a log-linear decrease. In Figure 9.2, 9.5, 9.6, 9.8 

and 9.9, this kind of distribution has been measured. All the measurements are done at sites 

with 𝑂𝐶𝑅 ≤ 4 so the distribution when the clay has an 𝑂𝐶𝑅 higher than this is unknown. 

The vertical effective stress is found to only increase or decrease due to contraction and 

dilation respectively in CEM. SPM gives a lower estimate of the vertical effective stress if a 

strain softening material model is used (see Figure 2.13). The vertical effective stress is rarely 

measured, and it is therefore hard to draw definitive conclusions. Karlsrud (2012) mention 

vertical silo effects occurring in the reconsolidation phase in lean clays (explained in Chapter 

2.2), which would reduce the vertical effective stress. In addition, the stress relaxation 

observed in the radial total stress by Johansson and Jendeby (1998) could very well occur in 

the vertical total stress as well. Due to this, it might be necessary to assume no change in 

vertical total stress when checking the stability of a slope to avoid failure. 
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11  Cavity Expansion Method in Plaxis 

11.1  The Model 

The Cavity Expansion Method (CEM) is modeled in Plaxis 2D 2018, using an axisymmetric 

model and 15-noded triangular elements. The model is created following the descriptions of 

the model used by Bergset (2015). He did a parametric study of the effect of 

overconsolidation ratio (𝑂𝐶𝑅) and plasticity index (𝐼𝑃) on stresses, directly after expansion 

and after dissipation of the excess pore pressure, utilizing the Cavity Expansion Method 

(CEM) coupled with the Modified Cam Clay (MCC) material model. Figure 11.1 shows the 

model in the initial phase with boundary conditions. The model is ten by ten meters in size 

and is normally fixed at 𝑥 = 0,029𝑚, 𝑥 = 10𝑚 and 𝑦 = −10𝑚. The global ground water 

table is located at the terrain level. Figure 11.2 shows the flow conditions, and the model is 

closed for groundwater flow at 𝑦 = −10𝑚 𝑎𝑛𝑑 𝑥 = 0,029𝑚. 

  

Figure 11.1: Boundary conditions in the initial phase.
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Figure 11.2: Groundwater flow boundary conditions during all phases. 

As discussed in Chapter 6.3 one have need of a non-zero initial radius when modelling CEM 

numerically. So instead of using 0 to 𝑟0, we use 𝑎0 to 2𝑎0, as explained by Carter, Randolph 

et al. (1979). Bergset (2015) used a pile with radius equal to 50,5𝑚𝑚, Equation 6.10 then 

gives: 

 𝑎0 =
𝑟0

√3
=

50,5𝑚𝑚

√3
= 29𝑚𝑚 (11.1) 

Notice that from 𝑟0 to 2𝑎0 =
2

√3
𝑟0 ≈ 1.15𝑟0, we have no information of the stress components 

or the excess pore pressure. Figure 11.3 shows the initial cavity radius, and this is then also 

the reason for the model being normally fixed and closed for groundwater flow at 𝑥 =

0,029𝑚. 
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Figure 11.3: Initial cavity radius of 𝑎0 = 29𝑚𝑚. 

After the initial phase utilizing the K0 procedure, an expansion phase is added. This is a 

plastic staged construction phase where a prescribed displacement is applied. Figure 11.4 

shows the boundary conditions of the expansion phase. The prescribed displacement is 𝑎0 =

29𝑚𝑚 since 𝑎𝑓 = 2𝑎0. The default numerical control parameters is used, however the 

“updated mesh” future, under “deformation control parameters”, is utilized. This is done due 

to the fact that the Cavity Expansion Method generates large strains, and it is therefore 

necessary to account for large displacements. The “updated mesh” future takes the influence 

of changes in mesh geometry on the equilibrium equations into account.  
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Figure 11.4: Boundary conditions and prescribed displacement of 𝑎𝑓 − 𝑎0 = 29𝑚𝑚 in the expansion phase. 

The modeled is meshed using the automatic meshing future in Plaxis with a very fine element 

distribution and a constant coarseness factor of one over the entire model, except for a 

coarseness factor of 0,1 between 𝑥 = 0 and 𝑥 = 0,2𝑚 (see Figure 11.5). The reason for this 

choice of coarseness factor is explained later. This generates the mesh viewed in Figure 11.6.  

 

Figure 11.5: Plot of coarseness factor chosen to generate the mesh in Figure 11.6. 
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Figure 11.6: View of the mesh used in the Plaxis2D calculations. Number of soil elements: 11360. Number of nodes: 91657. 

Average element size: 0,1103m. Maximum element size: 0,593m. Minimum element size: 0,0248m. 

11.2  Verification of the Model 

In order to validate the model, the results produced and presented in Bergset (2015), and 

Randolph, Carter et al. (1979) are reproduced. The data is extracted at the bottom of the 

model along 𝑦 = −10𝑚 from 𝑥 = 0,058𝑚 to 𝑥 = 10𝑚. Table 11.1 shows the material 

properties used by Randolph, Carter et al. (1979) for their Case A. Figure 11.7 shows the 

stresses produced by the model presented above, and Figure 11.8 shows the results presented 

by Randolph, Carter et al. (1979). 

  



Chapter 11. Cavity Expansion Method in Plaxis           Per-Anders Mortensen 

124 

Table 11.1: Material properties used to reproduce results obtained by Randolph, Carter et al. (1979) Case A. 

Material Model Modified Cam-Clay 

Drainage type Undrained (A) 

Unit weight, 𝛾, [𝑘𝑁
𝑚3⁄ ] 18 

Compression index, 𝜆, [-] 0,15 

Swelling index, 𝜅, [-] 0,03 

Unloading/reloading Poisson’s ratio, 𝜈𝑢𝑟
′ , [-] 0,2 

Initial void ratio, 𝑒0, [-] 1,2 

Strength (inclination of CSL), 𝑀, [-] 1,2 

Coefficient of lateral earth pressure, 𝐾0, [-] 0,55 

Overconsolidation ratio, 𝑂𝐶𝑅, [-] 1 

Undrained shear strength, 𝑠𝑢, [kPa] 27,8 

The undrained shear strength is based on the maximum shear stress obtained in the model 

(that is at the pile shaft unless one have a very large 𝑂𝐶𝑅). In Plaxis 2D this is found as the 

mobilized shear strength (𝜏𝑚𝑜𝑏) defined as the maximum value of shear stress (i.e. the radius 

of the Mohr stress circle (1
2⁄ (𝜎1 − 𝜎3))). Bergset (2015) and Randolph, Carter et al. (1979) 

seems to have used this mobilized shear strength as the undrained shear strength when 

normalizing their results. The undrained shear strength, found from an undrained compression 

triaxial test performed from the in-situ stress conditions, is with the material properties from 
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Randolph, Carter et al. (1979) (given in Table 11.1) equal to 29,55𝑘𝑃𝑎. With the material 

properties from Bergset (2015), given in Table 11.2, the undrained shear strength from 

conventional undrained triaxial testing is 27,4𝑘𝑃𝑎. Using these gives too low and too high 

stress over undrained shear strength, respectively, when compared to the results presented by 

Randolph, Carter et al. (1979) and Bergset (2015). The presented model gives however a very 

good fit in both cases, if the mobilized shear strength is used to normalize the results. 

 

Figure 11.7: Stresses after expansion normalized with the undrained shear strength against distance from pile center 

normalized with the pile radius in a logarithmic scale. Found by using the material set given in Table 11.1 and the model 

described above. 
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Figure 11.8: Stresses after expansion normalized with the undrained shear strength against distance from the pile center 

normalized with the pile radius in a logarithmic scale. From Randolph, Carter et al. (1979) and their case A. 

From Figure 11.7 and Figure 11.8, we see that the presented model reproduces the results of 

Randolph, Carter et al. (1979) to a reasonable degree of accuracy when stresses are 

normalized with the mobilized shear strength. 

In addition to the results presented by Randolph, Carter et al. (1979), the model have been 

checked with results presented by Bergset (2015). Table 11.2 presents the material properties 

used by Bergset (2015) for his case a).  
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Table 11.2: Material properties used to reproduce results obtained by Bergset (2015) case a). 

Material Model Modified Cam-Clay 

Drainage type Undrained (A) 

Unit weight, 𝛾, [𝑘𝑁
𝑚3⁄ ] 20 

Compression index, 𝜆, [-] 0,0875 

Swelling index, 𝜅, [-] 0,0087 

Unloading/reloading Poisson’s ratio, 𝜈𝑢𝑟
′ , [-] 0,2 

Initial void ratio, 𝑒0, [-] 1,2 

Strength (inclination of CSL), 𝑀, [-] 1,2 

Permeability, 𝑘, [𝑚
𝑑𝑎𝑦⁄ ] 8,64 ∗ 10−6 

Change of permeability, 𝑐𝑘, [-] 0,6 

Coefficient of lateral earth pressure, 𝐾0, [-] 0,656 

Overconsolidation ratio, 𝑂𝐶𝑅, [-] 1 

Undrained shear strength, 𝑠𝑢, [kPa] 32,3 
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The undrained shear strength is as before based on the mobilized shear strength (𝜏𝑚𝑜𝑏 =

1
2⁄ (𝜎1 − 𝜎3)) found when running the model. Figure 11.9 shows the results generated and 

Figure 11.10 shows the results presented by Bergset (2015). 

 

Figure 11.9: Stresses after expansion normalized with the undrained shear strength against distance from pile center 

normalized with the pile radius in a logarithmic scale. Found by using the material set given in Table 11.2 and the model 

described above but with a mesh generated using a constant coarseness factor of one over the entire model. 
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Figure 11.10: Stresses after expansion normalized with the undrained shear strength against distance from the pile center 

normalized with the pile radius in a logarithmic scale. From Bergset (2015) for his case a). 

We see that the stress point closest to the pile shows slightly higher excess pore pressure than 

what Bergset (2015) reports. This is studied closer in Chapter 11.3, but is probably due to the 

combined effect of the geometry of the mesh, and numerical uncertainties because of the 

singularity of the closest stress point. 

In addition to checking results obtained by using the Modified Cam Clay (MCC) material 

model, the results from using a linear elastic-perfectly plastic Tresca material model has been 

compared to the analytical solution presented in Chapter 5. Table 11.3 shows the input 

material data used in the Plaxis simulation. The analytical solution (Equation 5.2-5.10) uses 

Janbu’s Dilatancy parameter equal to zero, as well as the undrained shear strength and the 

undrained shear modulus reported in the table as input. Figure 11.11 shows the results where 

the Plaxis results are represented by dots and the analytical solution is represented by solid 

lines. 
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Table 11.3: Material properties used to check with the analytical solution of a linear elastic-perfectly plastic Tresca material 

presented in Chapter 5. 

Material Model Mohr-Coulomb 

Drainage type Undrained (B) 

Unit weight, 𝛾, [𝑘𝑁
𝑚3⁄ ] 20 

Undrained shear modulus, 𝐺𝑢, [kPa] 6000 

Drained Poisson’s ratio, 𝜈′, [-] 0,33 

Coefficient of lateral earth pressure, 𝐾0, [-] 1 

Undrained shear strength, 𝑠𝑢, [kPa] 20 
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Figure 11.11: Results from Plaxis using the material properties from Table 11.3 compared to the analytical solution 

presented in Chapter 5 for a linear elastic-perfectly plastic Tresca material. 

Figure 11.11 shows a good fit between the analytical solution and the numerical simulation. 

The three stress points closest to the pile wall are slightly lower than the analytical solution. 

There could be many reasons for the reduction, one is that the numerical model is free to 

displace vertically again causing a reduction in stiffness due to the reduced vertical support. 

This also fits the fact that the vertical displacement is largest close to the pile, and quite 

rapidly decrease following a sort of logarithmic decay as seen in Figure 11.12. Other factors 

influencing the results could be the “updated mesh” future and numerical uncertainties due to 

the large strains close to the pile wall. 
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Figure 11.12: Vertical displacement after expansion in a Tresca material with soil properties as described in Table 11.3. 

11.3  Some testing of the boundary conditions 

In addition to verifying that the model functions by reproducing results, different boundary 

conditions have been tested. The boundary conditions chosen in Chapter 11.1 are in 

accordance with what the physical problem implies. If the terrain is fixed so that it cannot 

displace vertically the results from the expansion phase are close to unchanged in many cases, 

but for some cases there seem to be slightly more numerical disturbance when having the 

terrain free. In reality the terrain is free, however the results obtained by having the terrain 

free seems to sometimes cause the stress points nearest the pile wall to deviate from what we 

expect. Figure 11.13 shows the normalized stresses after expansion for Randolph, Carter et al. 

(1979) case A, with both the terrain fixed and the terrain free to displace vertically. 



Chapter 11. Cavity Expansion Method in Plaxis           Per-Anders Mortensen 

133 

 

Figure 11.13: Stresses after expansion normalized with the undrained shear strength against distance from pile center 

normalized with the pile radius in a logarithmic scale. Found by using the material set given in Table 11.1 and the model 

described above with the terrain both fixed and free to displace vertically (𝑦 = 0𝑚). 

Figure 11.13 shows that the Cartesian effective stresses are unchanged. However, the excess 

pore pressure changes slightly. With the terrain fixed the excess pore pressure does not go 

towards zero but 0,06
∆𝑢𝑚𝑎𝑥

𝑠𝑢
⁄ . This is because when the terrain is fixed the soil have 

nowhere to displace causing an increase in excess pore pressure in the entire model. This is 

not in accordance with the elastic analytical solution saying that the excess pore pressure 

should be zero in the elastic range.  

Figure 11.14 shows similar results but for Bergset (2015) case a). Here we also see that the 

closest stress points are slightly more disturbed with the terrain free. The difference in the 

excess pore pressure from having the terrain fixed and free are close to constant if the stress 

points close to the pile are neglected. One way of avoiding numerical uncertainties due to the 

singular point between the terrain and the pile could then be to fix the terrain and subtract a 

constant value equal to the value of the excess pore pressure far away from the pile, where it 

should be zero. Fixing only a meter or two from the pile (instead of the full length of the 

model) causes the excess pore pressure difference to be smaller. This procedure have however 

not been tested and is solely based on Figure 11.13 and Figure 11.14. 
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Figure 11.14: Stresses after expansion normalized with the undrained shear strength against distance from pile center 

normalized with the pile radius in a logarithmic scale. Found by using the material set given in Table 11.2 and the model 

described above with the terrain both fixed and free to displace vertically (𝑦 = 0𝑚). 

Due to the disturbance of the results from the closest stress points, and the differences 

between what Bergset (2015) reports and what the model presented here gives, the effect of 

mesh geometry has been studied.  

Figure 11.15 shows the excess pore pressure produced after the expansion phase using the 

material properties from Table 11.2 together with three different meshes. The blue line have a 

constant coarseness factor of one, while the green and orange line use a coarseness factor of 

0,25 and 0,1 respectively, from 𝑥 = 0 to 𝑥 = 0,2𝑚.  
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Figure 11.15: Influence of mesh on excess pore pressure using the material properties from Table 11.2. 

Figure 11.15 shows that the differences in excess pore pressure in the two stress points closest 

to the pile wall may very well come from the mesh geometry. From Chapter 6.3 and the semi-

analytical solution of CEM-MCC of Chen and Abousleiman (2012) we know that in the 

critical state region, the excess pore pressure is a straight line in a log-plot. Knowing this the 

best results seem to be obtained by using a coarseness factor of 0,1 between 𝑥 = 0 and 𝑥 =

0,2𝑚. However, the results using a coarseness factor of 0,25 between 𝑥 = 0 and 𝑥 = 0,2𝑚 

are worse than using a constant coarseness factor of 1. This is believed to be caused by the 

irregularity of the mesh as seen in Figure 11.16. Due to these results, it is recommended to 

view the mesh and to try to achieve as regular a mesh as possible close to the pile. 
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Figure 11.16: Different meshes, from the left: constant coarseness factor of 1, coarseness factor of 0,25 from 𝑥 = 0 to 𝑥 =
0,2𝑚 and coarseness factor of 0,1 from 𝑥 = 0 to 𝑥 = 0,2𝑚. 

The groundwater flow boundary condition at terrain (i.e. 𝑦 = 0𝑚) have also been tested. The 

boundary have been both closed and open for groundwater flow. This did nothing to change 

the excess pore pressure after expansion. The groundwater flow boundary has therefore been 

left open as this is what the real physical problem implies. Setting the vertical permeability 

equal to zero have also been tested. This was done since both Bond and Jardine (1991) and 

Karlsrud (2012) find that a one dimensional radial consolidation process fit experimental data 

quite well. The difference in the obtained stresses directly after expansion are as expected 

unchanged by this. The time to reach a minimum excess pore pressure of 1𝑘𝑃𝑎 was also 

checked. When the vertical permeability is zero the time increase by 7% compared to having 

the vertical permeability equal to the horizontal, when using the material properties in Table 

11.2. The dissipation is mainly radial even when the vertical permeability equals the 

horizontal, and the change in time is so small that the fit to experimental data is probably still 

quite good. Whether this improves or weakens the fit of the consolidation time to 

experimental data has not been checked.
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12  Study of the Cavity Expansion Method 

12.1  General 

In this chapter we will look closer at the results generated with the Cavity Expansion Method 

(CEM), and explain the produced results with respect to the material models. The intention is 

to better understand what may be lacking in the material models or in the modelling procedure 

(i.e. CEM). The model presented in Chapter 11 is used, and the results are not normalized 

with the undrained shear strength as often done in the literature. This was chosen since it may 

confuse the reader when normalizing the stresses. As seen in Figure 7.5 the undrained shear 

strength is not always chosen to be equal, and the results presented in Figure 7.4 is then easily 

misinterpreted. We will however choose the input parameters so that the maximum mobilized 

shear strength of the model always equal 37𝑘𝑃𝑎. It may therefore be noteworthy that the 

initial stresses are: 𝜎𝑣0 = 200𝑘𝑃𝑎, 𝑢0 = 100𝑘𝑃𝑎 and 𝜎𝑣0
′ = 100𝑘𝑃𝑎. 

12.2  Tresca material model 

Table 12.1 shows the chosen parameters for the linear elastic-perfectly plastic Tresca (EP) 

material. These parameters are chosen so that they fit the parameters in Table 12.2 for the 

Modified Cam Clay (MCC) material. Figure 12.1 shows a deviatoric stress-strain plot 

generated in Plaxis SoilTest using the material parameters in Table 12.1 and 12.2. The plot 

shows the results from an undrained triaxial compression test isotropically consolidated to 

100𝑘𝑃𝑎, and the parameters in Table 12.1 were adjusted to give a reasonable fit. Later it was 

found that the results from CEM-MCC are equivalent to CEM-EP, if the slope of the critical 

state line (𝑀) in the MCC model is modified until the maximum mobilized shear strength 

(𝜏𝑚𝑜𝑏) obtained from the model equals the undrained shear strength (𝑠𝑢) of the Tresca 

material (i.e. 37𝑘𝑃𝑎), given that the overconsolidation ratio (𝑂𝐶𝑅) equals two.
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Table 12.1: Material properties of the linear elastic-perfectly plastic Tresca material used to look at differences in produced 

results when using different material models. 

Material Model Mohr-Coulomb 

Drainage type Undrained (B) 

Unit weight, 𝛾, [𝑘𝑁
𝑚3⁄ ] 20 

Shear modulus, 𝐺𝑢, [kPa] 7500 

Drained Poisson’s ratio, 𝜈′, [-] 0,30 

Coefficient of lateral earth pressure, 𝐾0, [-] 1 (unless otherwise stated) 

Undrained shear strength, 𝑠𝑢, [kPa] 37 (unless otherwise stated) 

 

Figure 12.1: Plot of deviatoric stress and strain to show the fit of the stiffness and strength between the Modified Cam Clay 

and the Tresca material. Results from an undrained triaxial compression test isotropically consolidated to 100𝑘𝑃𝑎 in Plaxis 

SoilTest. 
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Figure 12.2 shows the stresses after the cavity expansion phase in a Tresca material with the 

properties from Table 12.1 and coefficient of lateral earth pressure (𝐾0) equal to one.  

Similar plots have been shown previously, but in the following many plots similar to that of 

Figure 12.2 will be presented so some extra description is included here. On the x-axis is the 

distance from the center of the pile (𝑟) normalized with the pile radius (𝑟0) in a logarithmic 

scale. At the pile wall we then have 𝑟 𝑟0⁄ = 1 and the plot is limited to 𝑟 𝑟0⁄ = 100. Figure 

12.3 shows the same results with a linear scale, and it becomes clear why a logarithmic scale 

is used. The data close to the pile wall, which is the data we are mostly interested in, becomes 

easier to interpret. It is however important not to forget the real scale of things.  

On the y-axis the stress is presented in kilopascals (𝑘𝑃𝑎) in a linear scale. The legend shows 

which line that corresponds to which stress component. The plot shows the Cartesian total and 

effective stresses together with the total and effective mean stress, deviatoric stress, and 

mobilized shear strength directly after the prescribed displacement has developed completely 

(i.e. without any dissipation). The vertical red line shows the location of the plastic limit. The 

plastic limit, described in Chapter 5, shows where the excess pore pressure will start to 

develop when using the Tresca and Modified Cam Clay (MCC) material models. To the left 

of this limit the yield criterion of the soil model is fulfilled and plastic strains develop, while 

to the right of the limit, the yield criterion is not fulfilled, and only elastic strains have 

developed.  

The results shown in Figure 12.2 compare to the analytical solution (given in Chapter 5) 

giving a maximum excess pore pressure of ∆𝑢𝑚𝑎𝑥 = 𝑠𝑢 ln (
𝐺𝑢

𝑠𝑢
⁄ ) = 196𝑘𝑃𝑎. Which shows 

that the numerical results are slightly lower than the analytical as discussed for Figure 11.11. 

The plastic limit is found by examining the plastic points, called failure points in Plaxis for 

the Tresca material model (see Figure 12.4). Analytically the limit is found by: 
𝑟𝑝

𝑟0
⁄ =

√𝐺
𝑠𝑢

⁄ = 14,24. Which coincides very well with the numerical results. 
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Figure 12.2: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Tresca material with parameters as in Table 12.1. 
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Figure 12.3: Stresses after the cavity expansion phase against the normalized distance from the pile center in a linear scale 

in a Tresca material with parameters as in Table 12.1. 

To the right of the plastic limit is the elastic range. The analytical solution for this was 

presented in Chapter. 4. A less formal description is given below. In the elastic range Hooke’s 

law applies, and under undrained conditions the volume change is assumed to be zero. 

 ∆𝜀𝑣𝑜𝑙 =
∆𝑝′

𝐾
= 0 (12.1) 

Equation 12.1 then yields that the change in effective mean stress must be zero in the elastic 

range. CEM is applying a radial displacement, which again means applying positive radial 

strains and negative circumferential strains (see Figure 4.4). The vertical displacement is zero, 

and the radial stresses increase due to the applied radial displacement. Circumferential stress 

decrease due to the negative circumferential strains. Radial stresses increase equally much as 
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the circumferential stresses decrease because the vertical strain, and then also the stress is 

unchanged, and the effective mean stress must be constant (following Equation 12.1). 

The shear stress equals the difference between the radial (major) and the circumferential 

(minor) stress, and increase until the yield criterion is fulfilled. For a Tresca material this is: 

2𝑠𝑢 = 𝜎1 − 𝜎3. This means that the plastic limit (i.e. red line) is located where the difference 

between the radial and circumferential stress (both effective (orange and yellow) and total 

(blue and dark blue)) is 2𝑠𝑢 = 74𝑘𝑃𝑎. Within the plastic region, the yield criterion is 

fulfilled. That means the difference between radial and circumferential stress is constant and 

equal to 2𝑠𝑢 left of the plastic limit. Within the plastic region the radial displacement is still 

increasing. This causes the total radial stress to increase, but the difference between the total 

radial stress and the total circumferential stress must be constantly equal to 2𝑠𝑢, meaning the 

total circumferential stress also must increase. This increase in total stress cannot be 

compensated for by increasing the effective stresses, as the change in mean effective stress 

must be zero. The excess pore pressure is therefore increasing equally much as the total stress. 

In other words, the radial total stress must increase to compensate increasing radial 

displacement. The radial effective stress cannot change since 2𝑠𝑢 = 𝜎1
′ − 𝜎3

′  and ∆𝑝′ = 0. 

The excess pore pressure must hence increase to account for the increase in total radial stress, 

while the vertical total stress will increase as the excess pore pressure increase. 

 

Figure 12.4: Plastic points after cavity expansion in a Tresca material with parameters as in Table 12.1. 
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12.3  Modified Cam Clay material model and effect of OCR 

In addition to the Tresca material model, the Modified Cam Clay (MCC) material model have 

been studied. As mentioned previously the Tresca material parameters were chosen so that it 

gave a reasonable fit to the MCC material properties. The MCC material properties are listed 

in Table 12.2, and were chosen so that they represent a medium stiff Norwegian clay as 

presented by Nordal (2018). Later it was decided to change the slope of the critical state line 

(𝑀) so that the obtained maximum mobilized shear strength (𝜏𝑚𝑜𝑏) equals the undrained 

shear strength of 37𝑘𝑃𝑎. 

Table 12.2: Material properties of the Modified Cam Clay material used to look at differences in produced results when 

using different material models. 

Material Model Modified Cam-Clay 

Drainage type Undrained (A) 

Unit weight, 𝛾, [𝑘𝑁
𝑚3⁄ ] 20 

Compression index, 𝜆, [-] 0,1 

Swelling index, 𝜅, [-] 0,02 

Unloading/reloading Poisson’s ratio, 𝜈𝑢𝑟
′ , [-] 0,2 

Initial void ratio, 𝑒0, [-] 1 

Strength (inclination of CSL), 𝑀, [-] Changed so that 𝑠𝑢 = 𝜏𝑚𝑜𝑏 = 37𝑘𝑃𝑎 

Coefficient of lateral earth pressure, 𝐾0, [-] 1 (unless otherwise stated) 

Overconsolidation ratio, 𝑂𝐶𝑅, [-] 1,4 (unless otherwise stated) 
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Figure 12.5: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Modified Cam Clay material with parameters as in Table 12.2 and 𝑀 = 1,07. 

Figure 12.5 shows the stresses after expanding the cavity using the material properties listed 

in Table 12.2, and the initial choice of M = 1,07. Figure 12.5 include one more line, namely 

the critical state limit. To the left of this line, the soil is in critical state, as discussed in 

Chapter 6, and unlimited shear strains can develop without any change in effective stress, 

volume or shear stress. Between the critical state limit and the plastic limit, the soil develops 

plastic strains. While to the left of the plastic limit the soil only develop elastic strains as 

previously explained. 

Comparing Figure 12.5 to Figure 12.2 we can see some of the differences between using the 

MCC and the EP material models. Firstly we see that the mobilized shear strength is about 

43𝑘𝑃𝑎. This causes the total stresses to also be slightly higher than observed in Figure 12.2.  

The best fit between MCC and EP is obtained when matching the resulting mobilized shear 

strength from the MCC model to the undrained shear strength used in the Tresca model. This 

was checked by changing the slope of the critical state line until the obtained mobilized shear 
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strength equaled 37𝑘𝑃𝑎. Figure 12.6 shows that if the maximum mobilized shear strength is 

matched between the MCC and the EP material models then the total stresses are principally 

equal. 

To the right of the plastic limit we have the elastic range and the results are quite similar 

regardless of the material model. Since the overconsolidation ratio (𝑂𝐶𝑅) is less than two, the 

effective mean stress will reduce when expanding the ellipse of the MCC model until critical 

state is reached, as described in Chapter 6. In other words, the effective mean stress will be 

reduced in the plastic range (i.e. between the plastic limit and the critical state limit), and be 

constant within the critical state region and the elastic region. The reduction in effective 

stresses is accompanied by an increase in excess pore pressure so that the total stresses are left 

unchanged. The MCC model then only introduce a reduction in effective stresses (due to 

𝑂𝐶𝑅 < 2), which again results in an increase in excess pore pressure.  

 

Figure 12.6: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Modified Cam Clay material with parameters as in Table 12.2 but with 𝑀 = 0,91 so that 𝜏𝑚𝑜𝑏 = 𝑠𝑢 = 37𝑘𝑃𝑎. 
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If the overconsolidation ratio (𝑂𝐶𝑅) is higher than two then the mean effective stress will 

increase as plastic strains develops. Figure 12.7 shows the results from the cavity expansion 

using the material parameters from Table 12.2, but now with 𝑂𝐶𝑅 equal to three. In order to 

obtain a maximum mobilized shear strength of 37𝑘𝑃𝑎 the inclination of the critical state line 

is reduced to 𝑀 = 0,46, which again compares to a frictional angle of 12,3°. This is 

unnaturally low and not very realistic. However, the response of the material model is the 

same regardless of 𝑀 being small, and for comparison it is favorable that the maximum 

mobilized shear strength is constant. 

 

Figure 12.7: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Modified Cam Clay material with parameters as in Table 12.2 but with 𝑂𝐶𝑅 = 3 and 𝑀 = 0,46 so that 𝜏𝑚𝑜𝑏 = 𝑠𝑢 =
37𝑘𝑃𝑎. 

Figure 12.6 and Figure 12.7 shows us that the MCC model mainly differ from the EP model 

due to the dilation/contraction of the material. When the material dilates (i.e. 𝑂𝐶𝑅 > 2 in the 

MCC material model) then the excess pore pressure decrease, while the effective stresses 
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increase. If the material contracts (i.e. 𝑂𝐶𝑅 < 2 in the MCC model) then the excess pore 

pressure increase, while the effective stresses decrease. For the chosen material properties, the 

excess pore pressure equals 1,21 times the Tresca solution when 𝑂𝐶𝑅 = 1,4, and the excess 

pore pressure equals 0,91 times the Tresca solution when 𝑂𝐶𝑅 = 3. 

In Appendix A.1 figures showing the stress paths, both effective and total, of CEM-MCC with 

𝑂𝐶𝑅 equal to 1, 2 and 10 are presented. Appendix A.2 shows stress paths of CEM-EP with 

changing coefficient of lateral earth pressure (𝐾0). While Appendix C.1 shows the stresses as 

the displacement evolve in CEM-MCC, and C.2 shows them during the dissipation process as 

time evolve. The results are not presented here as they are not nessecary for the discussion, 

but has been included in the Appendix so that they can be checked. 

This dilation, when the clay is overconsolidated, and contraction, when the clay is normally 

consolidated, could also be modelled using the analytical solution presented in Chapter 5 with 

Janbu’s Dilatancy parameter (𝐷) to produce similar results at the pile shaft as the ones 

obtained using the MCC model.  

If there is no dilation nor contraction then the MCC model is equivalent to a linear elastic-

perfectly plastic model (i.e. equal to the analytical solution with 𝐷 = 0). Meaning that the 

CEM-MCC model reproduces the stresses found by using the analytical solution quite 

precisely given 𝑂𝐶𝑅 = 2 and 𝐾0 = 1. Figure 12.8 shows both the stresses produced by the 

CEM-MCC model with 𝑂𝐶𝑅 = 2 and 𝐾0 = 1, and the analytical solution with 𝐺𝑢 =

7500𝑘𝑃𝑎 and 𝑠𝑢 = 37𝑘𝑃𝑎. The correspondence is just as good, or even better than when 

using the Tresca material (see Figure 11.11).  

This is not surprising as the MCC material model becomes linear elastic-perfectly plastic 

when the isotropic preconsolidation pressure (𝑝𝑝) equals two times the effective mean stress 

(i.e. 𝑝𝑝 = 2𝑝′). Also CEM monotonically increases the radial strain, giving monotonically 

increasing total stress. This means that we do not have any unloading, and if then the 

flexibility parameters of the MCC model (𝜅 and 𝜆) is fitted, as described in Chapter 11, to the 

shear modulus (𝐺𝑢), and the slope of the critical state line (𝑀) is fitted so that the maximal 

mobilized shear strength (𝜏𝑚𝑜𝑏) equals the undrained shear strength (𝑠𝑢) used in the analytical 

solution, then it is seen that the CEM-MCC model equals the analytical solution given 𝑂𝐶𝑅 =

2 and 𝐾0 = 1.  
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Because the input in Plaxis is the vertical overconsolidation ratio, and the isotropic 

preconsolidation pressure does not equal the vertical overconsolidation ratio times the initial 

effective stress (𝑝𝑝 ≠ 𝑂𝐶𝑅 ∗ 𝑝′), it is a little problematic to get no dilation/contraction in the 

Plaxis model. The next chapter discuss this further, and shows that it is not as simple as to say 

𝑂𝐶𝑅 = 2 (even with 𝐾0 = 1) in the Plaxis input to get 𝑝𝑝 = 2𝑝′.  

 

Figure 12.8: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center. 

The dots are stresses found by using the Modified Cam Clay material with parameters as in Table 12.2 but with 𝑂𝐶𝑅 = 2 

and 𝑀 = 0,66 so that 𝜏𝑚𝑜𝑏 = 𝑠𝑢 = 37𝑘𝑃𝑎. The lines are the analytical solution found in Chapter 5 using Janbu’s pore 

pressure parameter 𝐷 = 0. 
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12.4  Isotropic OCR and vertical OCR in Plaxis 

Included here is an explanation of the isotropic overconsolidation ratio versus the vertical 

overconsolidation ratio. We often determine the vertical overconsolidation ratio from testing, 

but when doing a parametric study of 𝑂𝐶𝑅 in CEM-MCC we want to control the isotropic 

overconsolidation ratio. The Plaxis material manual by Brinkgreve, Kumarswamy et al. 

(2018) is the source of the explanation presented here. In Plaxis, the inputted 𝑂𝐶𝑅 defines the 

vertical overconsolidation ratio. This is given by: 

 𝑂𝐶𝑅 =
𝜎𝑝

𝜎𝑣0
′  (12.2) 

where 𝑂𝐶𝑅 is the vertical overconsolidation ratio, 𝜎𝑝 is the vertical preconsolidation stress 

and 𝜎𝑣0
′  is the initial vertical effective stress. The MCC model does however use the isotropic 

preconsolidation stress (𝑝𝑝). The effective mean stress and deviatoric stress once were:  

 𝑞𝑐 = (1 − 𝐾0
𝑁𝐶) ∗ 𝑂𝐶𝑅 ∗ 𝜎𝑣0

′  𝑎𝑛𝑑 𝑝𝑐
′ =

1 + 2𝐾0
𝑁𝐶

3
∗ 𝑂𝐶𝑅 ∗ 𝜎𝑣0

′  (12.3) 

In the MCC model the coefficient of lateral stress at rest in normal consolidation (𝐾0
𝑁𝐶) is 

determined based on the slope of the critical state line (𝑀), the unloading/reloading Poisson’s 

ratio (𝜈𝑢𝑟), and the flexibility parameters (𝜆, 𝜅) through: 

 𝑀 = 3√
(1 − 𝐾0

𝑁𝐶)2

(1 + 2𝐾0
𝑁𝐶)2

+
(1 − 𝐾0

𝑁𝐶)(1 − 2𝜈𝑢𝑟)(𝜆
𝜅⁄ − 1)

(1 + 2𝐾0
𝑁𝐶)(1 − 2𝜈𝑢𝑟) 𝜆

𝜅⁄ − (1 − 𝐾0
𝑁𝐶)(1 + 𝜈𝑢𝑟)

 (12.4) 

Lastly the initial isotropic preconsolidation pressure may be found using the relationship: 

 𝑝𝑝 = 𝑝𝑐
′ +

𝑞𝑐
2

𝑀2 ∗ 𝑝𝑐
′
 (12.5) 

Plaxis operates with an isotropic overconsolidation ratio which is defined as: 
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 𝑂𝐶𝑅𝑖 =
𝑝𝑝

𝑝𝑒𝑞
 𝑤ℎ𝑒𝑟𝑒 𝑝𝑒𝑞 = 𝑝′ +

𝑞2

𝑀2 ∗ 𝑝′
 (12.6) 

where 𝑝𝑒𝑞 is the equivalent isotropic stress, and 𝑂𝐶𝑅𝑖 is the isotropic overconsolidation ratio. 

The vertical overconsolidation ratio needed to get no dilation/contraction (∆𝑝′ = 0) is quite 

hard to find if at the same time the slope of the critical state line (𝑀) is to be so that the 

mobilized shear strength equals the undrained shear strength (𝜏𝑚𝑜𝑏 = 𝑠𝑢). Already the 

modeling is an iterative procedure where one guesses a 𝑀, check the 𝜏𝑚𝑜𝑏, and choose either 

a lower or higher M, so that one gets 𝜏𝑚𝑜𝑏 = 𝑠𝑢. If we then want no dilation/contraction then 

the vertical overconsolidation ratio 𝑂𝐶𝑅 must be so that 𝑝𝑝 = 2𝑝′. This can be solved for 

𝑂𝐶𝑅 using the equations above, but the 𝑂𝐶𝑅 would become a function of 𝑀. This makes the 

iterative procedure even more cumbersome as the vertical overconsolidation ratio very much 

influence 𝜏𝑚𝑜𝑏.  

12.5  Changing the coefficient of lateral earth pressure 

By changing the coefficient of lateral earth pressure another difference between the Tresca 

and the MCC material models is revealed. Figure 12.9, 12.10 and 12.11 shows the stresses 

after the cavity expansion phase in a Tresca material with properties as in Table 12.1, and 

coefficient of lateral earth pressure (𝐾0) equal to 0,4, 1,4 and 0,6 respectively. Comparing 

Figure 12.2 to Figure 12.9, 12.10 and 12.11 we see the effect of changing the 𝐾0.  

When 𝐾0 is less than one then the vertical stress is the major principle stress initially. If  𝐾0 is 

bigger than one then the vertical stress is the minor principle stress initially. As described for 

Figure 12.2 the radial stress will increase in the elastic range, while the circumferential will 

decrease. Failure occurs in a Tresca material when 2𝑠𝑢 = 𝜎1 − 𝜎3. Depending on the 

undrained shear strength (𝑠𝑢), initial vertical effective stress (𝜎𝑣0
′ ) and 𝐾0, failure will occur 

either between the vertical and the circumferential stress (𝐾0 less than one and relatively low 

𝑠𝑢, as seen in Figure 12.9 and barely in Figure 12.11), between the radial and the 

circumferential stress (relatively high 𝑠𝑢 so that the radial and circumferential stress increase, 

and decrease, are dimensioning or for 𝐾0 = 1, Figure 12.2) or between the radial and the 

vertical stress (𝐾0 bigger than one and relatively low 𝑠𝑢, Figure 12.10). 
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Figure 12.9: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Tresca material with parameters as in Table 12.1 but with 𝐾0 = 0,4. 

To the left of the plastic limit the radial total stress will keep increasing as explained before. If 

possible, the circumferential total stress will decrease so that the increase in radial total stress 

leads to no excess pore pressure, and no change in mean stress. See Figure 12.9 where we 

have failure between the vertical and the circumferential stresses. Directly to the left of the 

plastic limit the vertical and circumferential stresses will decrease to account for the 

increasing radial stress. This increase and decrease, continues until failure between the radial 

and circumferential stresses occurs, at which point the graph follow the behavior explained 

previously for Figure 12.2. 
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Figure 12.10: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Tresca material with parameters as in Table 12.1 but with 𝐾0 = 1,4. 

Figure 12.10 shows the situation where the initial minor principle stress is the vertical stress. 

As before the radial stress will increase and the circumferential stress will decrease in the 

elastic range (i.e. to the right of the plastic limit). Failure will occur between the radial (major) 

stress and the vertical (minor) stress due to K0 and relatively low 𝑠𝑢. The circumferential 

stress is then free to decrease after failure between the vertical and radial stresses, until failure 

occurs between the radial and circumferential stresses as well. 
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Figure 12.11: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Tresca material with parameters as in Table 12.1 but with 𝐾0 = 0,6. 

In Figure 12.11 we see that if the 𝑠𝑢 was slightly higher, then failure would be between the 

radial and the circumferential stresses. The initial mobilized shear stress can be found as 

𝜏𝑚𝑜𝑏,0 = 1
2⁄ (𝜎1,0 − 𝜎3,0) = 0,5 ∗ (200 − 160) = 20𝑘𝑃𝑎. In Figure 12.8 the initial shear 

stress in the soil is 𝜏𝑚𝑜𝑏,0 = 0,5 ∗ (240 − 200) = 20𝑘𝑃𝑎, and in Figure 12.9; 𝜏𝑚𝑜𝑏,0 = 0,5 ∗

(200 − 140) = 30𝑘𝑃𝑎. Since 𝑠𝑢 is constant and equals 37𝑘𝑃𝑎, Figure 12.9 which have 

𝜏𝑚𝑜𝑏,0 = 30𝑘𝑃𝑎 is already quite close to failure and therefore it fails before the radial and 

circumferential stresses increase and decrease sufficiently. In Figure 12.11 this only barely 

happens due to 𝜏𝑚𝑜𝑏,0 = 20𝑘𝑃𝑎. If 𝜏𝑚𝑜𝑏,0 was slightly lower (that means either 𝐾0 was 

slightly higher or 𝜎𝑣0
′  was slightly lower), or if 𝑠𝑢 was slightly higher, then failure would not 

occur between the vertical and circumferential stresses, but between the radial and 

circumferential stresses.  

When assessing the excess pore pressure obtained in Figure 12.2, 12.9, 12.10 and 12.11, it is 

seen that if the data is extrapolated to the pile shaft (i.e. 𝑟 𝑟0⁄ = 1) then the excess pore 
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pressure is in the magnitude of 175𝑘𝑃𝑎 in all cases. In other words, the excess pore pressure 

seems relatively unaffected by changing the coefficient of lateral earth pressure when 

modeled with the EP material model, and all other parameters are unchanged. 

The excess pore pressure does not start to rise before failure between the radial and 

circumferential stresses occurs. This is because if the failure is initiated by the vertical stress 

as the major or minor principal stress, then the circumferential stress still can decrease to 

compensate for the radial stress increase, rendering the excess pore pressure and mean stress 

virtually unaffected as if in the elastic range. The initial vertical stress is equal in all cases, 

causing the stress states to be quite different when changing the 𝐾0 value. So even though the 

excess pore pressure is constant when changing 𝐾0, the Cartesian stresses are quite 

substantially changed. 

Figure 12.12 and Figure 12.13 shows similar results for 𝐾0 = 0,6 and 1,4 respectively, but 

have been produced using the MCC material model. The inclination of the critical state line 

(𝑀) have been modified so that the maximum mobilized shear strength equals the undrained 

shear strength of the Tresca material (37𝑘𝑃𝑎), to ease the comparison between the material 

models. At the same time 𝑂𝐶𝑅 have been modified so that there is no dilation/contraction (i.e. 

∆p′ = 0). 
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Figure 12.12: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Modified Cam Clay material with parameters as in Table 12.2 but with 𝐾0 = 0,6, 𝑂𝐶𝑅 = 1,58 and 𝑀 = 0,87 so that 

𝜏𝑚𝑜𝑏 = 𝑠𝑢 = 37𝑘𝑃𝑎 and ∆𝑝′ = 0. 

Comparing Figure 12.11 and Figure 12.12 (which both have 𝐾0 = 0,6) we see a lot of 

similarities, and also some differences obtained when changing the material model. To the 

right of the plastic limit (i.e. the elastic range) the plots are nearly identical. Between the 

critical state limit and the plastic limit (i.e. the plastic range) the MCC model gives a more 

curved change in stresses due to the gradual change in stiffness.  

Using the MCC model we also see that the vertical stress (both total and effective) goes 

towards the mean stress as one goes towards the critical state limit. Another way of seeing it 

is that the vertical stress equals the mean of the radial and circumferential stress. This was 

also found by Chen and Abousleiman (2012), as mentioned in Chapter 6.3. This is believed to 

be related to the shape of the yield surface and normality of the flow in the MCC model. To 

the right of about 𝑟 𝑟0⁄ = 10, the radial stress will increase and the circumferential will 

decrease equally much until about 𝑟 𝑟0⁄ = 10, where the difference becomes 2𝑠𝑢. Then further 
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decrease in the circumferential stress is prohibited, however the vertical effective stress keeps 

decreasing. The radial and the circumferential effective stress will then have to increase as the 

vertical effective stress decrease, to keep the mean effective stress constant. Higher radial 

effective stress means that the excess pore pressure can be lower while the radial total stress is 

close to unchanged.  

This causes the MCC model to predict ca. 25𝑘𝑃𝑎 lower excess pore pressure than the EP 

model. The small difference in radial total stress is probably due to the fact that the stiffness 

decrease gradually in MCC so that the final radial total stress can be somewhat lower. The 

main difference is anyway that the MCC model predicts the vertical effective and total 

stresses to reduce when 𝐾0 < 1. 

 

Figure 12.13: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Modified Cam Clay material with parameters as in Table 12.2 but with 𝐾0 = 1,4, 𝑂𝐶𝑅 = 2,6 and 𝑀 = 0,505 so that 

𝜏𝑚𝑜𝑏 = 𝑠𝑢 = 37𝑘𝑃𝑎 and ∆𝑝′ = 0. 

Figure 12.13 and Figure 12.10 shows the obtained stresses when using 𝐾0 = 1,4 in the MCC 

and the EP material models respectively. Figure 12.10 and Figure 12.13 shows the same 

tendencies and differences as Figure 12.9 and Figure 12.12 did, but having the opposite effect. 
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In Figure 12.13 the vertical stress will increase in order to follow the mean stress. This causes 

a reduction in the other effective stresses. The excess pore pressure must then increase in 

order for the radial total stress to be sufficiently large relative to the prescribed radial 

displacement. 

When using the MCC model, the vertical stress goes towards the mean stress. This causes the 

vertical total stress to increase when 𝐾0 is high (Figure 12.13), and to decrease when 𝐾0 is 

low (Figure 12.12). As the excess pore pressure equals the difference between the total mean 

stress and the effective mean stress, this affect the excess pore pressure generated. When 

using the EP material model the change in effective mean stress equals zero (following 

Equation 12.1) so that the excess pore pressure equals the change in total mean stress. As seen 

from Figure 12.9 and Figure 12.10 changing the 𝐾0 does not influence the change in total 

mean stress, which again means changing 𝐾0 does not change the excess pore pressure when 

using the Tresca material model. However, when using the MCC material model we see from 

Figure 12.12 and Figure 12.13 that the change in total mean stress is affected by changing the 

𝐾0, again causing a change in excess pore pressure. 

Appendix A.2 and A.3 shows stress paths from the simulations of CEM-EP and CEM-MCC 

respectively, with different coefficients of lateral earth pressure (𝐾0). The results are not 

presented here as they do not contribute to the discussion, but are included in Appendix so 

that they may be readily checked if wanted. 

Whether this extra increase or decrease in excess pore pressure due to high or low 𝐾0, 

respectively, is realistic is another question. 𝐾0 is very dependent on 𝑂𝐶𝑅 so it is hard to 

check this against empirical data as the two effects merge. However, we have now shown that 

the MCC model gives this result and whether the empirical data suggests any relation between 

excess pore pressure and 𝐾0 is tested in Chapter 14.  
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12.6  Trends found from the CEM model 

Looking at the results produced by the Cavity Expansion Method (CEM) we expect the 

maximum excess pore pressure from the CEM-MCC model to be equal to the analytical 

solution presented in Chapter 5 when 𝑂𝐶𝑅 = 2 and 𝐾0 = 1. Below is the variation in excess 

pore pressure found when changing the coefficient of lateral earth pressure (𝐾0) in the CEM-

MCC model shown. 

Figure 12.14 has been produced by using the parameters in Table 12.2 and changing the 𝐾0 

and 𝑀. Table 12.3 shows the values of 𝑀 in order to get 𝜏𝑚𝑜𝑏 = 𝑠𝑢 = 37𝑘𝑃𝑎 for the different 

values of 𝐾0. 

 

Figure 12.14: Excess pore pressure against normalized distance from pile center in a logarithmic scale for different values of 

the coefficient of lateral earth pressure. 
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Table 12.3: Coefficient of lateral earth pressure and corresponding slope of the critical state line in order for the mobilized 

shear strength to equal the undrained shear strength of 37𝑘𝑃𝑎. 

Coefficient of lateral earth pressure, 𝐾0 Slope of the critical state line, 𝑀 

0,4 1,05 

0,6 0,98 

0,8 0,95 

1,0 0,91 

1,2 0,88 

1,4 0,78 

1,6 0,53 

Since the initial shear stress is given by 𝜏𝑚𝑜𝑏,0 = 1
2⁄ (1 − 𝐾0) ∗ 𝜎𝑣0

′  when 𝐾0 ≤ 1, which 

must be less than the undrained shear strength of 𝑠𝑢 = 37𝑘𝑃𝑎, the lowest limit of 𝐾0 is 0,26. 

However, 𝐾0 = 0,3 gave some numerical disturbance due to the small difference between 

initial shear stress and shear strength. Therefore was 𝐾0 = 0,4 chosen as the lower boundary. 

Similarly, the initial shear stress is given by 𝜏𝑚𝑜𝑏,0 = 1
2⁄ (𝐾0 − 1) ∗ 𝜎𝑣0

′  when 𝐾0 ≥ 1. The 

upper limit given by 𝑠𝑢 = 37𝑘𝑃𝑎 then becomes 1,74. 𝐾0 = 1,6 was chosen as the upper limit 

due to numerical disturbance when higher values were chosen. Figure 12.15 was made by 

plotting the results gathered at 𝑟 𝑟0⁄ = 1,15 (i.e. the closest stress point) and using simple 

regression tools in Excel.  
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Figure 12.15: Excess pore pressure from 𝑟 𝑟0⁄ = 1,15 using CEM-MCC with the parameters listed in Table 12.2 and Table 

12.3 against the coefficient of lateral earth pressure. Together with a logarithmic regression line with the coefficient of 

determination, 𝑅2 = 0,9922. 

The best fit to the data was found to be a logarithmic regression line. The exact values of the 

parameters in this regression line is however probably related to the stiffness and strength 

chosen so that the regression line must not be used for any random value of the undrained 

shear modulus (𝐺𝑢) and the undrained shear strength (𝑠𝑢). The meaning of this regression is 

simply to find that the excess pore pressure varies logarithmically to the coefficient of lateral 

earth pressure in CEM-MCC given that all other parameters are unchanged. 

The procedure was repeated, but now with 𝑂𝐶𝑅 and 𝑀 changing, while 𝐾0 is constant and 

equal to 1. Table 12.4 shows the values of 𝑀 in order to get 𝜏𝑚𝑜𝑏 = 𝑠𝑢 = 37𝑘𝑃𝑎 for each 

different value of 𝑂𝐶𝑅. The data from Table 12.2 and Table 12.4 have then been used to 

produce the results presented in Figure 12.16 and Figure 12.17. 
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Table 12.4: Overconsolidation ratio and corresponding slope of the critical state line in order for the mobilized shear 

strength to equal the undrained shear strength of 37𝑘𝑃𝑎. 

Overconsolidation ratio, 𝑂𝐶𝑅 Slope of the critical state line, 𝑀 

1 1,12 

1,4 0,91 

2 0,66 

3 0,46 

4 0,375 

10 0,18 

15 0,13 

32 0,07 

50 0,07 
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Figure 12.16: Excess pore pressure against normalized distance from pile center in a logarithmic scale for different values of 

the consolidation ratio (𝑂𝐶𝑅). 

For large values of 𝑂𝐶𝑅 the excess pore pressure becomes negative due to dilation as 

previously explained. This seems to also be quite challenging numerically, based on the 

observation that the stress points near the pile wall seem more disturbed for higher values of 

𝑂𝐶𝑅, and the discussion on mesh dependency due to softening in Chapter 6.5. This may also 

come from the fact that the slope of the critical state line (𝑀) becomes very small for high 

𝑂𝐶𝑅 in order for the undrained shear strength to only be 37𝑘𝑃𝑎 at ten meters depth (i.e. 

𝜎𝑣0
′ = 100𝑘𝑃𝑎). The shape of the distribution of excess pore pressure against 𝑂𝐶𝑅 looks 

logarithmic, and even more so if the stress point at 𝑟 𝑟0⁄ = 2,48, which is less disturbed, is 

looked at. Figure 12.17 shows the data from 𝑟 𝑟0⁄ = 1,15, and the logarithmic trend line fitted 

to the data. As for 𝐾0, a linear logarithmic regression gave the best fit to the data.  

This also fits what Randolph, Carter et al. (1979) found which is presented in Figure 6.12, 

however they increased the stiffness as the 𝑂𝐶𝑅 increased, giving a much smaller decrease in 

excess pore pressure with 𝑂𝐶𝑅 than what Figure 12.17 shows. 
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Figure 12.17: Excess pore pressure from 𝑟 𝑟0⁄ = 1,15 using CEM-MCC with the parameters listed in Table 12.2 and Table 

12.4 against the overconsolidation ratio. Together with a logarithmic regression line with the coefficient of determination, 

𝑅2 = 0,9434. 

Combining these results one gets: 

 ∆𝑢𝑚𝑎𝑥 = 196,53 − 175,6 ∗ ln(𝑂𝐶𝑅
2⁄ ) + 80,376 ∗ ln(𝐾0) (12.7) 

where the first value is found by using the analytical solution from Chapter 5 (Equation 5.15). 

This was included because when 𝑂𝐶𝑅 = 2 and 𝐾0 = 1, we have seen that the CEM-MCC 

model predicts the same excess pore pressure as the analytical solution. The numbers in front 

of the logarithmic terms are found from the regressions shown in Figure 12.15 and Figure 

12.17. However, the effect of changing the 𝑂𝐶𝑅 or the 𝐾0 together have not been checked. 

We know that due to the definition of 𝑂𝐶𝑅 in Plaxis (see Chapter 12.4), the regression is not 

precise since we would have some dilation/contraction for 𝑂𝐶𝑅 = 2 when 𝐾0 ≠ 1. 
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This means Equation 12.7 actually needs some modification to take the covariance of 𝐾0 and 

𝑂𝐶𝑅 into account. However, the meaning of Equation 12.7 is simply to show that the 

numerical results found from CEM-MCC can be estimated by using the analytical solution 

and some terms containing the logarithm of 𝑂𝐶𝑅 and 𝐾0.  

 

Figure 12.18: Predicted excess pore pressure at 𝑟 𝑟0⁄ = 1,15 using Equation 12.7 against the numerical values found using 

the CEM-MCC model. Coefficient of determination, 𝑅2=0,9333. 

Figure 12.18 shows the excess pore pressure found by the numerical analysis on the y-axis, 

and the excess pore pressure predicted by Equation 12.7 on the x-axis. If the prediction equals 

the numerical results then the dot lies on the 𝑥 = 𝑦-line. We see that Equation 12.7 is not a 

perfect fit, but gives a coefficient of determination of 𝑅2 = 0,9333 (explained in Chapter 

14.1). This is high enough for us to say that the CEM-MCC predicts something similar to 

what Equation 12.7 suggests. This result will be used in Chapter 14 when looking for trends 

in the empirical data. 
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12.7  Effect of softening using the Tresca material model in CEM 

As a simple test the model described in Chapter 11 have been used to look into the effects of 

softening. Instead of using a material model that includes softening, an inner zone have been 

replaced with a material with lower undrained shear strength representing the remoulded soil. 

The remoulded zone was chosen to stop at 𝑟 𝑟0⁄ = 9,9 together with a sensitivity (𝑆𝑡) of 2 

when modeling this. This bypasses the problems of material softening discussed in Chapter 

6.5. However, the extent of the remoulded zone is then purely chosen by the user and not by 

the imposed strain, and one gets a quite abrupt change in stresses instead of a more realistic 

smooth transition. 

The inner remoulded zone then has a shear strength of 𝑠𝑢𝑟 =
𝑠𝑢

𝑆𝑡
⁄ = 37

2⁄ = 18,5𝑘𝑃𝑎. 

Except for changing the undrained shear strength of the inner zone all the other parameters are 

unchanged and can be found in Table 12.1.  

Figure 12.19 shows the analytical solution (solid lines) found for a linear elastic-perfectly 

plastic (EP) material with parameters as in Table 12.1, while the dots are from the Plaxis 

model using the same parameters. The figure is included merely to simplify the comparison to 

the results of the model with an inner remoulded zone shown in Figure 12.20. 
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Figure 12.19: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Tresca material with parameters as in Table 12.1. The dots are from a Plaxis analysis while the solid lines are given by 

the analytical solution presented in Chapter 5. 

The dots in Figure 12.20 are from the Plaxis model with an inner remoulded zone, while the 

solid lines are from the analytical solution with both 𝑠𝑢 = 37𝑘𝑃𝑎 and 𝑠𝑢 = 18,5𝑘𝑃𝑎. The 

solution of the inner remoulded zone with 𝑠𝑢 = 18,5𝑘𝑃𝑎 have been shifted so that the total 

radial stress in continuous over the remoulded limit (black line not to be confused with the 

critical state line shown in previous plots).  

It is important to notice that the solid lines does not represent an analytical solution for a 

linear elastic-perfectly plastic softening material, but merely is a combination of the analytical 

solution with 𝑠𝑢 = 37𝑘𝑃𝑎 and 𝑠𝑢 = 18,5𝑘𝑃𝑎. Comparing Figure 12.19 to Figure 12.20 we 

see that the remoulding causes the excess pore pressure and the total stresses to decrease. The 

vertical and mean effective stresses are unchanged, while the radial effective stress decrease 

and the circumferential effective stress increase. 

The linear elastic-perfectly plastic material model need the change in effective mean stress to 

be zero for undrained loading, as mentioned before. Since the undrained shear strength 

reduces to the remoulded shear strength (𝑠𝑢𝑟 = 18,5𝑘𝑃𝑎) in the remoulded zone, the 

difference between the radial effective stress and the circumferential effective stress reduce 
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from 2𝑠𝑢 = 74𝑘𝑃𝑎 to 2𝑠𝑢𝑟 = 37𝑘𝑃𝑎. In order for the effective mean stress to be unchanged, 

the radial effective stress must be reduced by 18,5𝑘𝑃𝑎, while the circumferential effective 

stress must increase by 18,5𝑘𝑃𝑎. 

 

Figure 12.20: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Tresca material with parameters as in Table 12.1 to the right of the remoulded limit (black line) at 𝑟𝑟 𝑟0⁄ = 9,9, and with 

𝑠𝑢 = 18,5𝑘𝑃𝑎 to the left of the remoulded limit. The dots are from a Plaxis analysis while the solid lines are given by the 

analytical solution presented in Chapter 5, shifted to fit when having a remoulded inner zone. 
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From the analytical solution presented in Chapter 5 we find by derivation of Equation 5.6, 5.7, 

5.8 and 5.9 that the total stresses (in all directions), and excess pore pressure in the plastic 

zone have a log-linear slope given by: 

 

𝑑𝜎

𝑑 (𝑙𝑛
𝑟
𝑟0

)
= −2𝑠𝑢 (12.8) 

The radial total stress must be continuous due to equilibrium considerations, but because of 

the remoulding: the total radial stress needed to produce the radial displacement decrease. In 

other words between the plastic limit (red) and the remoulded limit (black), we have the total 

stresses (and excess pore pressure) increasing by 2𝑠𝑢 = 74𝑘𝑃𝑎. When we pass the remoulded 

limit, the slope of the increase reduce to 2𝑠𝑢𝑟 = 37𝑘𝑃𝑎. As the radial effective stress decrease 

with 18,5𝑘𝑃𝑎, the excess pore pressure must increase by 18,5𝑘𝑃𝑎 for the radial total stress to 

be continuous. The vertical and mean effective stresses are unchanged, thus making the total 

vertical and mean stresses increase as the excess pore pressure increase. The circumferential 

effective stress is increasing by 18,5𝑘𝑃𝑎, as previously mentioned. The total circumferential 

stress is thus increasing by 37𝑘𝑃𝑎.  

Having an inner remoulded zone will therefore give an abrupt change in stress (equal to 𝑠𝑢 −

𝑠𝑢𝑟, (times two for the cirumferential total stress)), and a change in the slope of the total 

stresses and the excess pore pressure, from 2𝑠𝑢 to 2𝑠𝑢𝑟.  

The strain is not given by a material model when using an inner remoulded zone. The strain is 

indirectly chosen when the user decides the remoulded limit. Based on the results in Figure 

12.20, it is quite easy to set up an equation for the maximum excess pore pressure at the pile 

shaft as a function of sensitivity (𝑆𝑡), undrained shear strength of the intact material (𝑠𝑢), 

undrained shear modulus (𝐺𝑢), and the so called remoulded limit (𝑟𝑟). 

 ∆𝑢𝑚𝑎𝑥 = 2𝑠𝑢 (ln (√
𝐺𝑢

𝑠𝑢
) − ln (

𝑟𝑟

𝑟0
)) +

𝑠𝑢

𝑆𝑡
(𝑆𝑡 − 1 + 2 ln (

𝑟𝑟

𝑟0
)) (12.9) 
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A boundary of this equation is that 
𝑟𝑟

𝑟0
≤ √

𝐺𝑢

𝑠𝑢
, which means the remoulded limit cannot be in 

the elastic region. If there is no remoulding then 𝑟𝑟 = 𝑟0 and 𝑆𝑡 = 1, giving ∆𝑢𝑚𝑎𝑥 =

2𝑠𝑢 ln (√
𝐺𝑢

𝑠𝑢
). If the remoulded clay becomes completely like water (i.e. the remoulded shear 

strength goes towards zero and the sensitivity goes towards infinity) we see that the maximum 

excess pore pressure becomes; ∆𝑢𝑚𝑎𝑥 = 2𝑠𝑢 (ln (√
𝐺𝑢

𝑠𝑢
) − ln (

𝑟𝑟

𝑟0
)) + 𝑠𝑢. The resulting 

stresses are then as presented in Figure 12.21. The remoulded soil have no shear strength so 

there cannot be any increase in stresses. In order for the radial total stress to be continuous the 

excess pore pressure must increase equally much as the decrease in effective radial stress 

which is 𝑠𝑢 − 𝑠𝑢𝑟 = 𝑠𝑢𝑟.  

 

Figure 12.21: Stresses after cavity expansion against the logarithm of the normalized distance from the pile center in a 

Tresca material with parameters as in Table 12.1 to the right of the remoulded limit (black line) at 𝑟𝑟 𝑟0⁄ = 9,9, and with 

𝑠𝑢 = 0𝑘𝑃𝑎 to the left of the remoulded limit. 
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Trying to model a completely remoulded inner zone with 𝑠𝑢𝑟 = 0 in Plaxis is problematic. 

We can however decrease the remoulded strength, and look at the general trend. The 

remoulded strength have been reduced to 𝑠𝑢𝑟 = 10𝑘𝑃𝑎 and 𝑠𝑢𝑟 = 1𝑘𝑃𝑎, and the 

corresponding results support Equation 12.9. Figure 12.22 and Figure 12.23 show the results 

obtained.  

 

Figure 12.22: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Tresca material with parameters as in Table 12.1 to the right of the remoulded limit (black line) at 𝑟𝑟 𝑟0⁄ = 9,9, and with 

𝑠𝑢 = 10𝑘𝑃𝑎 to the left of the remoulded limit. The dots are from a Plaxis analysis while the solid lines are given by the 

analytical solution presented in Chapter 5, shifted to fit when having a remoulded inner zone. 
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Figure 12.23: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Tresca material with parameters as in Table 12.1 to the right of the remoulded limit (black line) at 𝑟𝑟 𝑟0⁄ = 9,9, and with 

𝑠𝑢 = 1𝑘𝑃𝑎 to the left of the remoulded limit. The dots are from a Plaxis analysis while the solid lines are given by the 

analytical solution presented in Chapter 5, shifted to fit when having a remoulded inner zone. 

We see that having the remoulded shear strength as low as 1𝑘𝑃𝑎 causes the Plaxis analysis to 

give results that do not correspond to the other results, and the discussion we have had up 

until now. At the plastic limit, the mobilized shear strength does not equal the undrained shear 

strength of 37𝑘𝑃𝑎 as we have seen in the other figures, and instead of being constant up to 

the remoulded limit it reduces as well. This causes the slope of the stresses to be higher than 

2𝑠𝑢𝑟 in the remoulded zone. We see that the stress point closest to the pile shaft is in 

agreement with Equation 12.9, and our understanding of the problem. It is my belief that 

having the shear strength as low as 1𝑘𝑃𝑎 causes some numerical disturbance as the difference 

between 𝑠𝑢𝑟 and 𝑠𝑢 becomes quite large, and an abrupt change in strength is known to be 

problematic.  

As one can see from Equation 12.9, a decrease in shear modulus in the remoulded region has 

no effect on the resulting stresses. This is because the soil is already plasticized (i.e. in the flat 

plateau seen in Figure 12.29 for the perfectly plastic model), and the Plaxis model also gave 

this conclusion.  
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Rewriting Equation 12.9 we can obtain:  

 
∆𝑢𝑚𝑎𝑥

𝑠𝑢
= ln (

𝐺𝑢

𝑠𝑢
) − (1 −

1

𝑆𝑡
) ∗ (2𝑙𝑛 (

𝑟𝑟

𝑟0
) − 1)  (12.10) 

From this we see that the first term is simply the analytical EP solution. After that we have a 

term that includes (1 −
1

𝑆𝑡
). This gives zero contribution if 𝑆𝑡 = 1. If the sensitivity (𝑆𝑡) is not 

equal to one, we see that the maximum excess pore pressure only decrease given that: 

 2𝑙𝑛 (
𝑟𝑟

𝑟0
) − 1 > 0 →

𝑟𝑟

𝑟0
> 𝑒

1
2⁄ ≈ 1,649 (12.11) 

So if 𝑟𝑟 = 𝑟0𝑒
1

2⁄  then ∆𝑢𝑚𝑎𝑥 = 𝑠𝑢 ∗ ln (
𝐺𝑢

𝑠𝑢
) regardless of the sensitivity (𝑆𝑡). If the sensitivity 

is larger than one, and we have a thin inner remoulded zone (𝑟𝑟 < 𝑟0𝑒
1

2⁄ ) then Equation 12.9 

(and 12.10) give an increase in excess pore pressure.  

The Plaxis model support this observation as well. Using the parameters from Table 12.1 as 

before, and having a sensitivity of 𝑆𝑡 = 2, meaning 𝑠𝑢𝑟 = 18,5𝑘𝑃𝑎. Figure 12.24 show that 

when the remoulded limit is placed at 
rr

r0
⁄ = 1,584 < 1,649, we do indeed see an increase 

in excess pore pressure compared to having no remoulding (i.e. Figure 12.19). The closest 

stress point to the pile surface, located at 𝑟 𝑟0⁄ = 1,15, show ∆𝑢 = 173,96𝑘𝑃𝑎 when having 

no remoulded zone as in Figure 12.19. While in Figure 12.24 the closest stress point (still 

located at 𝑟 𝑟0⁄ = 1,15) show ∆𝑢 = 185,75𝑘𝑃𝑎. This shows an increase of 6,3%, while at the 

pile surface (i.e. 𝑟 𝑟0⁄ = 1) we expect according to Equation 12.10; ∆𝑢𝑚𝑎𝑥 = 198,01𝑘𝑃𝑎 

when having a remoulded zone of rr
r0

⁄ = 1,584, and ∆𝑢𝑚𝑎𝑥 = 196,53𝑘𝑃𝑎 when having no 

remoulding.  

This increase can be explained by the model, and the fact that the excess pore pressure 

increase abruptly by 𝑠𝑢 − 𝑠𝑢𝑟 at the remoulded limit. This is a consequence of the fall in 

radial effective stress and the fact that the total radial stress must be continuous. 

Since the remoulded limit is so close to the pile shaft, the decrease of the slope of the excess 

pore pressure from 2𝑠𝑢 to 2𝑠𝑢𝑟 does not matter. When looking at Equation 12.10 we can see 
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that the second term contains 1 −
1

𝑆𝑡
 which is similar to 𝑠𝑢 − 𝑠𝑢𝑟, multiplied with the term 

2𝑙𝑛 (
𝑟𝑟

𝑟0
) − 1. Where the first part is the decrease of the slope, while the −1 represent the 

abrupt jump at the remoulded limit. An increasing excess pore pressure due to softening then 

means in simple terms that the abrupt jump in excess pore pressure is larger than the decrease 

of the slope. 

 

Figure 12.24: Stresses after the cavity expansion phase against the logarithm of the normalized distance from the pile center 

in a Tresca material with parameters as in Table 12.1 to the right of the remoulded limit (black line) and with 𝑠𝑢 = 18,5𝑘𝑃𝑎 

to the left of the remoulded limit. The dots are from a Plaxis analysis while the solid lines are given by the analytical solution 

presented in Chapter 5, shifted to fit when having a remoulded inner zone. 
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For a given 
𝑟𝑟

𝑟0
⁄  we see that the maximum excess pore pressure can be written as the linear 

line: 

 
∆𝑢𝑚𝑎𝑥

𝑠𝑢
= ln (

𝐺𝑢

𝑠𝑢
) − 𝛽 ∗ (1 −

1

𝑆𝑡
)  (12.12) 

where 𝛽 is a factor which depend on the remoulded limit, and the relation is given by: 

 𝛽 = 2𝑙𝑛 (
𝑟𝑟

𝑟0
) − 1 →

𝑟𝑟

𝑟0
= 𝑒

𝛽+1
2  (12.13) 

Figure 12.25 displays this graphically for ln (
𝐺𝑢

𝑠𝑢
) = ln (

7500

37
) = 5,312 and 

𝑟𝑟

𝑟0
= 6, giving 𝛽 =

2 ln(6) − 1 ≈ 2,584. Equation 12.12 will become useful when looking for trends in the 

empirical data as we have little information about the extent of the remoulded region. 

 

Figure 12.25: Maximum excess pore pressure normalized with the undrained shear strength against 1 − 1
𝑆𝑡

⁄  on the 

horizontal axis, where 𝑆𝑡 is the sensitivity. The orange line represents the analytical linear elastic-perfectly plastic (EP) 

solution that does not take softening into account, while the blue line represents Equation 12.10 with 𝑙𝑛 (
𝐺𝑢

𝑠𝑢
) = 𝑙𝑛 (

7500

37
) =

5,3117 and 
𝑟𝑟

𝑟0
= 6. 
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12.8  Comparison between different ways of modeling the softening 

The softening effect that is explained below is not to be confused with the softening one can 

find in the Modified Cam Clay (MCC) (and the other Critical State Soil (CSS) models) when 

one loads into the dry side of the Critical State Line/Coulomb line. In MCC one can have 

softening due to high overconsolidation ratio (𝑂𝐶𝑅) since the material dilates. Softening due 

to 𝑂𝐶𝑅/dilation gives lower excess pore pressure as explained in Chapter 6.2 and 12.3. The 

softening effect explained below is softening due to remoulding, and sensitivity of the 

material, and the CSS models does not generally include this. 

Figure 12.26 is from Randolph, Carter et al. (1979), they did not use the S-CLAY1S model 

but a MCC model with softening (no anisotropy). The softening behavior is however based on 

similar assumptions.  

 

 

Figure 12.26: (a) Undrained effective stress path in (a) 𝑞 − 𝑝′space and (b) 𝑒 − 𝑝′space for a sensitive soil. (Randolph, 

Carter et al. 1979) 

Figure 12.26 (a) shows that the difference from the MCC model is that the critical state is 

governed by an intrinsic yield ellipse. This causes the critical state point to change from F to 
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point G. This means that the deviatoric stress (𝑞) is allowed to slide on the Coulomb line and 

decrease from 𝑞𝐹 (related to the peak shear strength 𝑠𝑢) to 𝑞𝐺 (related to the remoulded shear 

strength 𝑠𝑢𝑟). In Figure 12.26 (b) we see how this relates to the void ratio, where the critical 

state line have a slope 𝜆𝑖, and the lines that point E and F lie on have a slope of 𝜆, using the S-

CLAY1S model’s terminology.  

The excess pore pressure is the difference between the total stress path (TSP) and the effective 

stress path (ESP). However, the TSP is not drawn in the figure so it is hard to draw 

conclusions from this. Figure 12.27 shows the assumed variation of shear strength against the 

normalized distance from the pile, and corresponding shear stress-strain plot. We see that they 

assume that for 𝑟 𝑟0⁄  larger than six, the shear strength is undisturbed, and that at the pile shaft 

one has full remoulding with a sensitivity of five. Randolph, Carter et al. (1979) report an 

increase in excess pore pressure for this specific case of softening. 

 

Figure 12.27: Randolph, Carter et al. (1979) assumed variation of the shear strength with 𝑟 𝑟0⁄  (a) and corresponding shear 

stress versus shear strain (b). We see that they assume a soil sensitivity of 𝑆𝑡 = 5 and that this increases gradually to the full 

shear strength at 𝑟 𝑟0⁄ = 6. (Randolph, Carter et al. 1979) 

Ladanyi (1963) used a simpler strain softening material model. Figure 12.28 shows the 

maximum excess pore pressure against the stiffness, both normalized with the undrained shear 

strength, for 
𝛾𝑟

𝛾𝑓
⁄ = 5 and the inverse of the sensitivity (i.e. 

𝜏𝑟
𝜏𝑓

⁄ =
𝑠𝑢𝑟

𝑠𝑢
⁄ ) ranging from 1 



Chapter 12. Study of the Cavity Expansion Method           Per-Anders Mortensen 

177 

to 0. The soil softening is, as shown in Figure 12.28, defined by a linear increase defined by 

the undrained shear modulus (𝐺𝑢), up to a peak strength (𝑠𝑢) defined at shear strain 𝛾𝑓, and a 

linear decrease to a residual or remoulded shear strength (𝑠𝑢𝑟) defined at shear strain 𝛾𝑟.  

 

Figure 12.28: Normalized excess pore pressure at the pile shaft against normalized stiffness produced with CEM including 

the effect of softening. Where 𝜏𝑓 = 𝑠𝑢 and 𝜏𝑟 = 𝑠𝑢𝑟. (Ladanyi 1963) 

Figure 12.28 shows a decrease of the excess pore pressure at the pile shaft for increasing 

sensitivity (i.e. decreasing 
𝑠𝑢𝑟

𝑠𝑢
⁄ ). That is, a decrease in excess pore pressure compared to 

using an elastic-perfectly plastic model with a shear strength of 𝑠𝑢. These results contradict 

the results presented by Randolph, Carter et al. (1979) and Castro and Karstunen (2010) (see 

Chapter 6.4, Figure 6.16 and Figure 6.18) which show an increase in excess pore pressure. 

They have however used critical state soil models that include softening. 

In Chapter 12.7 we model softening in CEM by introducing an inner remoulded zone with 

lower shear strength and an outer zone with the full shear strength. Both zones uses the EP 

material model with the same parameters except for the undrained shear strength. This gives 

the softening behavior illustrated in Figure 12.29. 
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Figure 12.29: Our way of modeling the soil softening, where we have a linear increase defined by the shear modulus (𝐺𝑢), up 

to a peak strength (𝑠𝑢) defined at shear strain (𝛾𝑓) and a vertical decrease to a residual or remoulded shear strength (𝑠𝑢𝑟) 

defined at shear strain (𝛾𝑟). However, 𝛾𝑓 and 𝛾𝑟 is not chosen explicitly, but defined implicitly by choosing the size of the 

remoulded zone 
𝑟𝑟

𝑟0
⁄ . 

In Appendix A.4 stress paths, both total and effective, are shown for different sizes of the 

inner remoulded zone. Based on these results a principal sketch of the stress paths is made, as 

shown in Figure 12.30. 

 

Figure 12.30: Principal sketch of the stress paths presented in Appendix A.4 based on results obtained when introducing an 

inner remoulded zone with a shear strength of 𝑠𝑢𝑟. This gives a soil softening behavior as shown in Figure 12.29. The blue 

line represents the total stress path (TSP) when the remoulded zone 
𝑟𝑟

𝑟0
⁄ = 1,58. The orange line respresents the TSP when 

𝑟𝑟
𝑟0

⁄ = 9,90, while the yellow line represents the TSP when there is no remoulded zone. The green line represents the ESP 

for all cases. 
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The green line is the ESP which goes from 𝜏 = 0 to 𝜏 = 𝑠𝑢 (i.e. point A) and down to 𝜏 = 𝑠𝑢𝑟 

(i.e. point B). The ESP is unaffected by the size of the inner remoulded zone 
𝑟𝑟

𝑟0
⁄  where 𝑟𝑟 is 

the radial extent of the remoulded zone from the pile center. The TSP on the other hand, differ 

depending on the size of the inner remoulded zone. The TSP with 
𝑟𝑟

𝑟0
⁄ = 1,58 is represented 

by the blue line and goes from 𝜏 = 0 through the points C, D, E and F. The orange line 

represents the TSP when 
𝑟𝑟

𝑟0
⁄ = 9,90, and goes through the points 𝜏 = 0, C, H, I and J. 

Lastly, the yellow line is when there is no remoulded zone at all. The TSP then goes from 𝜏 =

0 up to point C and then to point G.  

Based on these results we see that depending on the size of the remoulded zone the excess 

pore pressure can either increase or decrease. 
𝑟𝑟

𝑟0
⁄ > 𝑒

1
2⁄ ≈ 1,65 gives a decrease, while 

𝑟𝑟
𝑟0

⁄ < 𝑒
1

2⁄  gives an increase. This is based on Equation 12.10, which is derived based on the 

numerical results presented in Chapter 12.7. A discussion as to how these limits are obtained, 

and why the TSP change with 
𝑟𝑟

𝑟0
⁄  are included there. These limits does however only hold 

for that specific way of modeling the soil behavior.  

Our model uses the radius of the remoulded zone (𝑟𝑟), while Ladanyi (1963) uses the 

remoulded shear strain (𝛾𝑟). These can be related to each other if one uses the analytical 

solution presented by Gibson and Anderson (1961). The maximum shear strain is given by 

Equation 12.14, the derivation of this expression can be found in Yu (2000).  

 𝛾𝑚𝑎𝑥 = 𝜀1 − 𝜀3 = 𝜀𝜃 − 𝜀𝑟 = (
𝑚

1 − 𝑚
+

𝑚

1 − 2𝜈
) ∗ (

𝑟

𝑟𝑝
)

2𝑚−2

   (12.14) 

where 𝑚 is defined as: 

 𝑚 =
2(1 + 𝜈)(1 − 2𝜈)

3𝐺𝑢
𝑠𝑢   (12.15) 
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Looking at the shear strain 𝛾𝑟 = 5𝛾𝑓 where 𝛾𝑓 =
𝑠𝑢

𝐺𝑢
⁄ , and using 

𝐺𝑢
𝑠𝑢

⁄ = 200 as an 

example, we can see that this gives 𝛾𝑓 = 0,005 again giving 𝛾𝑟 = 0,025. Equation 12.14 and 

12.15 with 
𝐺𝑢

𝑠𝑢
⁄ = 200 gives 

𝑟𝑟
𝑟0

⁄ = 6,879 in order for 𝛾𝑚𝑎𝑥 = 𝛾𝑟.  

Using Equation 12.10, the above information, and 
𝑠𝑢𝑟

𝑠𝑢
⁄ = 0,6 → 𝑆𝑡 = 1

0,6⁄ ≈ 1,67 we get 

∆𝑢𝑚𝑎𝑥
𝑠𝑢

⁄ = 4,156, which is slightly higher than the results presented in Figure 12.28 by 

Ladanyi (1963). However, we assume that for 𝑟 𝑟0⁄ > 6,88 the shear strength is undisturbed. 

Ladanyi (1963) gets slightly lower excess pore pressure because of the linear increase from 

𝑠𝑢𝑟 back to 𝑠𝑢 behind 𝑟 𝑟0⁄ = 6,88. The reason Ladanyi (1963) gets a decrease is assumed to 

be due to the large extent of the fully remoulded zone.  

To summarize we see that Ladanyi (1963) gets a decrease in excess pore pressure for 𝛾𝑟 =

5𝛾𝑓 for all 𝑆𝑡 > 1. Randolph, Carter et al. (1979) gets an increase in excess pore pressure for 

𝑆𝑡 = 4 with a decrease in strength up to r r0⁄ = 6. Castro and Karstunen (2010) let the shear 

strength go towards zero as seen in Figure 6.18, and the shear strength is unaffected past  

r
r0⁄ ≈ 12. This gave them an increase in excess pore pressure compared to not including the 

softening. Introduzing an inner remoulded zone with lower shear strength gives a decrease in 

excess pore pressure when 
𝑟𝑟

𝑟0
⁄ > 𝑒

1
2⁄ ≈ 1,65  and an increase when 

𝑟𝑟
𝑟0

⁄ < 𝑒
1

2⁄  for all 

𝑆𝑡 > 1. 

These results do not easily compare as the softening behavior in each of these models are 

quite different. Randolph, Carter et al. (1979) and Castro and Karstunen (2010) have a much 

larger extent of the affected zone than what our model say are the limits for an increasing 

excess pore pressure. However, they have a much slower reduction in shear strength which 

means the limits produced by our model are irrelevant. In addition, the critical state soil 

models used includes contraction of the material when softening (i.e. ∆𝑝′ < 0). Contraction is 

shown to give further increase in excess pore pressure than when using a linear-elastic 

perfectly plastic material model.  

Measurements of the pore pressure at the pile shaft presented in Chapter 13 suggests an 

increase in excess pore pressure due to sensitivity (as seen in Chapter 13.4). However, the 

sensitivity is very correlated to the 𝑂𝐶𝑅 for our dataset. This means that the increase in excess 

pore pressure could very well be due to 𝑂𝐶𝑅 solely, and be unrelated to the sensitivity. The 
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empirical data does however disprove a decrease of the excess pore pressure with increasing 

sensitivity. 

Castro and Karstunen (2010) shows the fit of their model to measurements done by Roy et al. 

(1981) in Figure 6.18. We see that the prediction fits the measurements quite well, however 

the shear strength does not go towards zero, but stops at 𝑆𝑡 ≈ 1,8. Based on these results and 

the discussion above, is seems that softening causes a reduction in shear strength with a 

gradual decrease towards the pile surface. The extent of the zone with a lower shear strength 

can be quite large. However, the excess pore pressure should increase due to softening, as 

seen in the empirical data. If the material model do not include contraction as the soil soften, 

we see that a decrease in excess pore pressure is produced if the remoulded zone is relatively 

large. 

If one use an inner remoulded zone, following the method of Chapter 12.7, then the extent of 

this zone should be chosen with care. If one choose a large extent with only a small reduction 

(i.e. averaging the decrease in strength) one would get a decrease in excess pore pressure. 

Based on the above information this would give the wrong result. Using a small inner 

remoulded zone with a larger reduction in shear strength would give a more correct result. 

However, the model does not include the added effect of contraction, and deciding the size of 

the remoulded zone becomes very difficult. Using a gradual decreasing shear strength and a 

CSS strain softening material model will probably give a better prediction, but is more 

cumbersome to implement. 
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13  Measured excess pore pressure from 12 different sites 

Karlsrud (2012) have gathered empirical data from multiple sources for twelve different sites, 

listing the radius and thickness of the piles, water content, plasticity index, in-situ stress 

conditions, modulus number and undrained shear strength of the soil, together with the 

measured excess pore pressure at the pile shaft and the depth that this was measured, and 

more.  

Karlsrud (2012) only included clays where undrained conditions can be assumed, and 

excluded measurements done closer than about four pile diameters to the tip, due to possible 

effects of geometry. This data have been checked and supplemented, the result being Table 

13.6. In Chapter 13.1 the data gathered from Karlsrud (2012) have been checked with other 

sources, and in a few cases changes have been made compared to what Karlsrud (2012) 

propose. 

The dataset have been supplemented with the undrained shear modulus (𝐺𝑢) and the 

sensitivity (𝑆𝑡) of the soil at the different sites. The undrained shear modulus is determined in 

Chapter 13.2, the estimates are mainly based on the modulus number (𝑚0) gathered by 

Karlsrud (2012). The sensitivity of the soil at the different sites is gathered from multiple 

sources. Some discussion on the determination of the specific sensitivity for each site is found 

in Chapter 13.3. Chapter 13.4 shows the sensitivity from all the sites together, and we look 

into whether a trend can be found in the empirical data or not. Chapter 13.5 checks if a trend 

can be found in the excess pore pressure with respect to the coefficient of lateral earth 

pressure. Lastly, Table 13.6 in Chapter 13.6, shows all the final soil parameters for each site, 

which will later be used in Chapter 14.
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13.1  The sites with index parameters and general info on the piles 

Karlsrud (2012) include a quite detailed description of each site with regard to soil conditions, 

the test piles used, and also other information. We will only give a brief description of each 

site to give some very basic insight, for a more complete picture of the pile driving procedure 

and more, I refer you to Karlsrud (2012). 

13.1.1 Haga 

The Haga site is located in Norway, 60𝑘𝑚 north-east of Oslo. The original terrain had a slope 

of 1: 20 towards Glomma, but about 5𝑚 have been excavated only a few years before the 

testing due to tile production and plate loading tests, and the terrain have been flattened.  

The data included from the Haga site is from what they have referred to as B-piles. This test 

pile is a closed-ended fully instrumented pile with a diameter of 154𝑚𝑚, a wall thickness of 

4,5𝑚𝑚 and an embedded length of 4,85𝑚. Pore pressure cells where mounted at 4 levels, and 

the same pile was jacked into the ground and extracted to do multiple tests. The included 

measurements are from 1,9𝑚 and 3,4𝑚 depth. 

At the site there is marine clay which is very homogeneous to a depth of about 4,5𝑚 with a 

water content of 𝑤 = 38%, a plasticity index of 𝐼𝑃 = 15 %, a clay content of 40 − 60%, and 

a direct undrained shear strength of about 𝑠𝑢𝐷 = 40𝑘𝑃𝑎. As seen in Figure 13.1, there is from 

4,5 to 5,5𝑚 a more plastic clay layer with water content reaching 55%, 𝐼𝑃 and 𝑠𝑢𝐷 reaching 

30% and 55𝑘𝑃𝑎 respectively. Below 5,5𝑚 depth, the clay gradually becomes siltier. At a 

depth of about 8𝑚, there is a transition to layered fine grained sands with some interbedded 

silty clay layers, reaching down to bedrock at a depth of about 13𝑚.  
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Figure 13.1: Index parameters of the Haga test site and strength from in-situ remote vane borings. (Karlsrud 2012) 

The direct undrained shear strength profile is chosen as the mean of the in-situ remote vane 

borings as multiple direct shear strength (DSS) tests show close agreement with the vane 

borings. 

The marine clay at the site is leeched showing a salt content of less than 1𝑔/𝑙. The sensitivity 

is however still moderate and range from 𝑆𝑡 = 4 − 6 according to fall cone tests and in-situ 

vane borings. 

Due to the sandy layers below 8𝑚 depth the clay drain rather freely towards Glomma. This 

leads to very low pore pressures throughout the clay profile as shown by Figure 13.2. 
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Figure 13.2: In-situ pore pressure with variations observed between 1981 and 1982 when also the pile testing took place. 

(Karlsrud 2012) 

13.1.2 Onsøy 

The Onsøy site is located in Norway, about 3𝑘𝑚 north-west of Fredrikstad. Two types of 

piles where used at both the Onsøy and Lierstranda sites. One is referred to as type A pile, and 

the other is called type B pile. The type A pile is a closed-ended fully instrumented pile with a 

diameter of 219𝑚𝑚, a wall thickness of 8,2𝑚𝑚 and an embedded length of 10𝑚. These piles 

were driven through cased boreholes to reach the wanted depth, using a 1 − 3 ton drop 

hammer. For the Onsøy site the measurement depths included range from 7,5 − 35𝑚 for the 

type A pile.  

The type B pile is an open-ended fully instrumented pile with a diameter of 809𝑚𝑚, a wall 

thickness of 9,5𝑚𝑚, also with an embedded length of 10𝑚 and was driven through a casing 

as for the type A pile. Measurements included where recorded at 7,5 to 12,5𝑚 depth for the 

type B pile.  

For both the type A and the type B piles, pore pressure were measured at 2,5𝑚, 5𝑚 and 7,5𝑚 

from the tip of the pile. 
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In addition to the type A and type B piles, type C piles where used at the Onsøy site (these 

where not used at the Lierstranda site). The type C pile is equivalent to the type A pile except 

instead of being 10𝑚 long, the C1 pile was 30𝑚 long and had 6 positions, 5𝑚 apart, where 

pore pressure was recorded. 

At the site there is a 1 − 1,5𝑚 thick dry crust, followed by a normally consolidated soft 

plastic marine clay with water content between 50 − 70%, plasticity index from 35 − 50% 

and clay content from 40 − 60%. The clay contains traces of iron oxide specifically in the top 

part, and organic matter and shell fragments. As seen in Figure 13.3, the water content peaks 

at about 10𝑚 depth, while the plasticity index have its maximum at about 15 − 25𝑚 depth. 

From the highest level there is a clear decreasing trend. The deepest sample is from 32,5𝑚 

depth and data further down is extrapolated. At 2𝑚 depth the salt content is found to be 8%, 

and it increases to 30% at 8𝑚 depth and below.  

 

Figure 13.3: Index data of the soil at the Onsøy site, together with the in-situ stress conditions. (Karlsrud 2012) 
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The in-situ pore pressure shows a slight artesian overpressure, 11,3% above hydrostatic 

values. Geologically the site is normally consolidated, however it is still assumed to have an 

apparent pre-consolidation pressure due to creep or ageing effects corresponding to 𝑂𝐶𝑅 =

1,3 which is a low (conservative) estimate. Due to desiccation and chemical weathering the 

top part down to about 5𝑚 depth shows a higher 𝑂𝐶𝑅. 

The undrained shear strength is determined based on vane borings, CPTU data and block 

samples, as Figure 13.4 indicate. The direct undrained shear strength is about 10𝑘𝑃𝑎 at 2𝑚 

depth and increase by approximately 1,21 𝑘𝑃𝑎
𝑚⁄ . 

 

Figure 13.4: The undrained shear strength at the Onsøy site, showing results from vane borings, CPTU and block samples 

together with the chosen/assumed strength profiles. (Karlsrud 2012) 
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13.1.3 Lierstranda 

The Lierstranda site, located in Norway, lies near the shoreline of Drammensfjorden. It is 

about 1,2𝑘𝑚 east of the outlet of the Drammen river and 1,5𝑘𝑚 west of the outlet of the Lier 

river. About 15 years before the pile tests were conducted the ground was raised by about 

2𝑚. In addition to land reclamation being conducted on a tidal flat with water depths of less 

than 3𝑚, 300 − 500𝑚 south of the testing area. 

The test piles used at Lierstranda is of the same type as those used at the Onsøy site, but only 

type A and type B piles were used at Lierstranda. Measurements that have been included 

range from 7,5 − 35𝑚 depth. 

At the site there is the recent fill which is 1,5 − 2𝑚 thick, followed by more than 50𝑚 of 

normally consolidated clay. Below the fill and to about 12m depth, there is a medium plastic 

clay with water content of 40 − 42%, plasticity index of 20 − 25% and a clay content of 

32 − 28%. From Figure 13.5 we see that below 12𝑚 depth there is a gradual transition to a 

silty low plastic clay layer with a water content below 30%, plasticity index of 12% and clay 

content decreasing to about 20%. Figure 13.5 also shows the unit weight increasing with 

decreasing water content as one would expect. The salt content is about 32
𝑔

𝑙⁄  meaning the 

clay has not been leached. The clay has low organic content and a sensitivity of 3,5 (range 

3 − 6) according to in-situ vane borings. However, the fall cone test suggest a sensitivity of 

11 (range 7 − 14).  
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Figure 13.5: Index data of the soil at the Lierstranda site, together with the in-situ stress conditions. (Karlsrud 2012) 

There is also here a slight artesian overpressure, about 20% above hydrostatic values. The 

overconsolidation ratio (𝑂𝐶𝑅) is determined based on results from block samples. The high 

𝑂𝐶𝑅 in the medium plastic clay is hard to explain from a geological view, but it may be partly 

an effect of creep and also maybe due to some overburden. Below the lowest block sample the 

𝑂𝐶𝑅 trend is speculative. The chosen direct undrained shear strength profile is viewed in 

Figure 13.6. It is 20𝑘𝑃𝑎 at 5𝑚 depth and increase approximately with 1,26 𝑘𝑃𝑎
𝑚⁄ . The 

profile is based on vane borings, CPTU data, and lab results from both block and piston 

samples.  
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Figure 13.6: The undrained shear strength at the Lierstranda site, showing results from vane borings, CPTU data, and block 

and piston samples together with the chosen/assumed strength profiles. (Karlsrud 2012) 

13.1.4 Tilbrook Grange 

The Tilbrook Grange site is in the United Kingdom, and lies about 20𝑘𝑚 north-northeast of 

Bedford. The clay at the site is highly overconsolidated and very stiff, resembling conditions 

often met in the parts of the North Sea that have been overlain by glaciers according to 

Karlsrud (2012). 

Data from three different types of test piles are included for the Tilbrook Grange site, namely 

the NGI pile A, the NGI pile B and the LDPT-McClelland compression pile.  

The NGI pile A, which is a closed-ended fully instrumented pile with a diameter of 219𝑚𝑚, 

thickness of 16𝑚𝑚 and embedded length of 9,5𝑚, is similar to the type A piles used at 
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Onsøy and Lierstranda. Pore pressure was measured at 3 levels: 5,1𝑚, 7,6𝑚 and 10,1𝑚 

depth, and the pile was driven through a 3𝑚 deep casing. 

The NGI pile B is exactly as the NGI pile A except it only had 2 levels where the pore 

pressure was measured. It is 10𝑚 long and the casing was 17,5𝑚 long, measurements were 

then done at 22,5 and 25𝑚 depth. 

The LDPT-McClelland compression pile is an open-ended fully instrumented pile with an 

outer diameter of 762𝑚𝑚, and a wall thickness decreasing from 40𝑚𝑚 for the upper part to 

32𝑚𝑚 for the lower part. The pile was driven using a 40t BSP HA40 hydraulic hammer with 

a rated energy of 470𝑘𝑁𝑚. The pile was partially plugged with the top of the plug recorded at 

16,9𝑚 depth. The pile is 30,5𝑚 long with 4 levels of pore pressure measurement equipment. 

Only readings from 8𝑚, 14,3𝑚 and 26,2𝑚 depth are included. 

At the site there is an upper layer of Lowstoft till to about 17,1 − 18,6𝑚 depth. McClelland 

(1998) describe this layer as very stiff, dark grey silty clay with scattered sand to gravel size 

fragments of flint, chalk and mudstone within the clay matrix. Below this is a very stiff dark 

grey fissured clay, defined as Middle Oxford clay, with scattered silt and sand pockets 

extending to bedrock at about 40𝑚 depth. Figure 13.7 shows the index data of the soil. The 

water content is about 15%, and the plasticity index is about 25% in the Lowstoft till, 

increasing respectively to about 18% and 35% in the Oxford clay. The clay content increase 

from 35 − 50% in the Lowstoft till to 45 − 60% in the Oxford clay. 
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Figure 13.7: Index data of the soil at the Tilbrook Grange site, together with the in-situ stress conditions. (Karlsrud 2012) 

The in-situ pore pressure measurements suggest hydrostatic conditions within the Lowstoft till 

with a water table at 2𝑚 depth. In the Oxford clay there is an under pressure measured 

compared to hydrostatic conditions. According to Lambson et al (1993) the Oxford clay has a 

very low permeability and they reported that it took 5 months after the piezometers were 

installed for the pore pressures to come to an equilibrium level. 

Little data have been found in available literature on the anisotropy of the undrained strength 

of such stiff and highly overconsolidated clays. Based on results of the Drammen clay by 

Andersen (2004), and the Haga clay by Lacasse (1979), Karlsrud (2012) assumes that 𝑠𝑢𝐷 =

0,6𝑠𝑢𝐶 in the Lowstoft till and 𝑠𝑢𝐷 = 0,7𝑠𝑢𝐶 in the Oxford clay. The chosen 𝑠𝑢𝐶 -profile is 

based on Unconsolidated Undrained (UU) triaxial tests and CPTU data (𝑠𝑢𝐶 − 𝑁𝑘𝑡). The other 

data was disregarded due to possible error in the tests, the reasoning behind this can be found 
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on page 115-116 in Karlsrud (2012). 

 

Figure 13.8: The undrained shear strength at the Tilbrook Grange site, showing results from CPTU data, different lab tests 

on piston samples together with the chosen/assumed strength profiles. SuUU-lab is results from unconsolidated undrained 

triaxial tests, while Suc-lab is results from CIUC/CAUC triaxial tests. Sudv-lab and Sudh-lab are DSS test, vertically and 

horizontally trimmed, respectively. Lastly suc-Nkt are the CPTU data interpreted by using Nkt values based on the 

correlation proposed by Karlsrud et al (2005). (Karlsrud 2012) 

13.1.5 Bothkennar 

The Bothkennar site is located in the United Kingdom, about 35𝑘𝑚 west-northwest of 

Edinburgh. Nash, Powell et al. (1992) say that the soft silty clay at the site is quite 

homogeneous compared to other UK clays, and according to Karlsrud (2012) the clay is 

believed to have been deposited in a marine/estuarine environment. 

At the Bothkennar, Cowden and the Canons Park sites, the IC (Imperial College) pile was 

used. The IC-pile has undergone improvements over the years, but details of this will not be 

included. The pile is closed-ended with a diameter of 101,6𝑚𝑚. Pore pressure was recorded 

at 3 levels, but only the recordings from the top two sensors are included. At the Bothkennar 

site the test pile was 4,8𝑚 long and was jacked through a 1,2𝑚 deep preinstalled casing. 

Measuring was then done at 3,5𝑚 and 4,7𝑚 depth. 

There are some minor discrepancies regarding the plasticity index of the clay at Bothkennar. 

According to Karlsrud (2012): “The natural water content increases gradually from about 



Chapter 13. Measured excess pore pressure from 12 different sites         Per-Anders Mortensen 

194 

40% at 1𝑚 depth to 73% at 6𝑚 depth. The plasticity index correspondingly increases from 

about 40% to 70%.” (page. 138). Karlsrud (2012) refer to Lehane and Jardine (1994) and 

Jardine and Lehane (1993), “Research into the behavior of offshore piles: Field experiments 

in soft clay”. The latter paper was not available. Hight, Paul et al. (2003) say that the plasticity 

index increase from about 35% at 2,5𝑚 to 55% at 6 − 8𝑚, and reduce below 8𝑚 to 30%. 

This is seen to correspond with Figure 13.9 from Nash, Powell et al. (1992). Lehane and 

Jardine (1994) state that the plasticity index is about 25% at 1,5𝑚 increasing to about 50% at 

4 − 6𝑚 depth. According to Hight, Paul et al. (2003): 

“The clay has anomalously high and variable plasticity, which results from its 

particular organic content, and which gives rise to misleading values of apparent 

activity and poor correlation of parameters with plasticity index. After removal of the 

organic content, the plasticity index lies between 18% and 22% and the activity is 

approximately 0,5. These values provide a truer reflection of the illite, quartz and rock 

flour mineralogy, and improve correlations with engineering properties.” (page. 594)  

 

Figure 13.9: Index data of the soil at the Bothkennar site, together with the in-situ vertical effective stress. (Nash, Powell et 

al. 1992) 
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Lehane and Jardine (1994) also mentions this, and report a plasticity index reducing to about 

20 − 25% when the moderate proportion (~3%) of organic residues are extracted. Figure 

13.9, by Hight, Paul et al. (2003), shows the plastic limit and the liquid limit measured from 

natural water content, after air drying, and after treatment with hydrogen peroxide. The clay 

content is according to Lehane and Jardine (1994) increasing from 15% at 2𝑚 to 40% at 6𝑚 

depth. This is supported by Hight, Paul et al. (2003). 

 

Figure 13.10: Plastic limit and Liquid limit measured from natural water content, after air drying and after treatment with 

hydrogen peroxide for the Bothkennar site. (Hight, Paul et al. 2003) 

Since this data is to be used in a regression analysis, correlation with engineering properties, 

and true reflection of the soil characteristics is important. The 𝑅2-value of the regression 

proposed in Chapter 14.6 is seen to increase with 0,23% when using the plasticity index 

proposed by Hight, Paul et al. (2003). The apparent improvement of the regression is however 

so small and the scatter so large that it is not a trustworthy way of determining which value 

that is correct. One should be careful not to change the value of a parameter just in order to try 

to improve some kind of regression. Here I believe there is some cause and reasoning behind 

changing the variable. However, if one is to use the regression based equations and the clay 

show very high and variable plasticity index due to the organic content, then the plasticity 
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index should be chosen so that it reflects the clay and its properties, similar to what Hight, 

Paul et al. (2003) have done.  

According to Nash, Powell et al. (1992) the water table is located at about 1𝑚 depth and the 

pressure is assumed to be hydrostatic with depth. Figure 13.9 shows the effective vertical 

stress profile, and the unit weight used to make the profile. Karlsrud (2012) gives that at 3,5𝑚 

and 4,7𝑚 depth, the initial pore pressure is 27𝑘𝑃𝑎 and 38,5𝑘𝑃𝑎 respectively. While the 

vertical effective pressure is listed to be 32,9𝑘𝑃𝑎 and 39,7𝑘𝑃𝑎 at the two depths mentioned. 

This seems to coincide quite well and the initial stresses proposed by Karlsrud (2012) is 

adopted. 

Figure 13.11 shows the undrained strength profile suggested by Hight et al (1992), results 

from block samples and interpretation on CPTU data. Hight et al (1992) based their trend line 

on multiple test conducted on piston samples. Karlsrud (2012) used the trend line suggested 

by Hight et al (1992) as the results seems to agree quite well, except for the CPTU 𝑢2-based 

strength coming out a little high. The 𝑂𝐶𝑅-profile suggested by Nash et al (1992) was 

adopted by Karlsrud (2012) and is also used herein. 

 

Figure 13.11: The undrained shear strength and the overconsolidation ratio (𝑂𝐶𝑅) at the Bothkennar site. Where the plot to 

the left shows the undrained shear strength found from tests on block samples, interpretation on CPTU data from Jakobs and 

Coutts (1992), and trend lines suggested by Hight et al (1992) based on tests conducted on piston samples. The plot to the 

right shows the 𝑂𝐶𝑅 profile suggested by Nash et al (1992), results from tests on block samples and results from 

interpretation of the CPTU data. (Karlsrud 2012) 
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13.1.6 Cowden 

The Cowden site is located in the United Kingdom, about 17km north-east of Kingston upon 

Hull. The IC-pile described previously, was used at the Cowden site as well. The pile was 

jacked through a 2,5𝑚 deep preinstalled casing to a depth of 6,2𝑚, and measuring was then 

done at 3,8𝑚 and 4,9𝑚 depth. 

At the site there is a glacial till clay, which has a water content of about 16 − 18% and a 

plasticity index of approximately 20%. The clay content is about 27% and increase slightly 

with depth, there are also some fragments of chalk and flint observed.  

 

Figure 13.12: Index data of the soil at the Cowden site. (Lehane and Jardine 1994) 

Lehane and Jardine (1994) report close to hydrostatical pore pressure with depth. This, 

combined with the bulk densities from Figure 13.12, coincides well with the in-situ pore 

pressure and vertical effective stress reported by Karlsrud (2012), given a groundwater table 

at about 1,3𝑚 depth. 
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Figure 13.13: Undrained shear strength and overconsolidation ratio from tests and CPTU interpretation according to 

Lehane and Jardine (1994) for the Cowden site. 

Figure 13.13 and Figure 13.14 shows the undrained shear strength and overconsolidation ratio 

profiles proposed by Lehane and Jardine (1994) and Karlsrud (2012) respectively. The 

undrained shear strength profile agrees quite well and parameters proposed by Karlsrud 

(2012) are used. The 𝑂𝐶𝑅 profile suggested by Karlsrud (2012) is based on CPTU data and 

the SHANSEP procedure. The SHANSEP procedure was presented by Ladd and Foott (1974) 

and suggest the following relationship: 

 
𝑠𝑢

𝜎𝑣0
′ = 𝑆 ∗ 𝑂𝐶𝑅𝑚 (13.1) 

where 𝑆 represents the normalized strength for a sample consolidated well beyond the 

preconsolidation pressure, and 𝑚 is a power chosen based on empirical data, often related to 

the plasticity index. Karlsrud (2012) used this procedure with 𝑆 = 0,28 and 𝑚 = 0,8 due to 

the low plasticity of the clay. The cone factor depends on 𝑂𝐶𝑅, which Bond & Jardine (1990) 

suggested could vary within wide limits. Karlsrud (2012) therefore used an iterative procedure 
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until the assumed UU triaxial test based 𝑠𝑢𝐶-profile agree with the CPTU calculated 𝑠𝑢𝐶-

profile, which depend on the 𝑂𝐶𝑅-profile due to the cone factor. The CPTU calculated 𝑠𝑢𝐶-

profile uses the CPTU tip resistance as basis, and the CPTU correlations between 𝑞𝑡 and 𝑠𝑢𝐶 

proposed by Karlsrud et al (2005). The ratio between the direct and active undrained shear 

strength (i.e. the anisotropy ratio) was taken as 𝑠𝑢𝐷 = 0,7𝑠𝑢𝐶.  

The 𝑂𝐶𝑅 values this procedure obtains are higher than what Lehane and Jardine (1994) 

suggests below 3𝑚 depth. The pore pressure measurements are done at 3,8𝑚 and 4,9𝑚 depth, 

as previously mentioned. Karlsrud (2012) have used an 𝑂𝐶𝑅 of 21,5 and 13, respectively. 

The data from Lehane and Jardine (1994) suggests an 𝑂𝐶𝑅 of 13 and 7,5, respectively. The 

difference is as one can see, quite substantial. 

There is very little reasoning provided as to why Karlsrud (2012) trusts the SHANSEP 

procedure and the CPTU data to be more correct than the oedometer results presented by 

Lehane and Jardine (1994). The oedometer test results are not presented, only the interpreted 

values of 𝑂𝐶𝑅, and so it is hard to tell if the test results or samples have been of an adequate 

quality. However, Lehane and Jardine (1994) do not mention that the tests seem faulty, and 

oedometer tests are generally accepted as a more trustworthy method of determining the 𝑂𝐶𝑅. 

So the values proposed by Lehane and Jardine (1994) was adopted. 

 

Figure 13.14: Undrained shear strength and overconsolidation ratio interpreted from CPTU data and used by Karlsrud 

(2012) for the Cowden site. 

The pore pressure did at this site decrease during the jacking, but within some minutes after 

the end of jacking the pore pressure increased above the in-situ levels, and then tapered off 

with time. In Table 13.6, the maximum values observed some minutes after jacking is listed. 
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13.1.7 Canons Park 

The Canons Park site is located in the United Kingdom, about 16𝑘𝑚 north-west of London. 

The IC-pile described previously, was also used at the Canons Park site. The pile was jacked 

through a 2𝑚 deep preinstalled casing to a depth of 6𝑚, and measuring was then done at 

3,2𝑚 and 4,0𝑚 depth. 

At the site there is so called London clay from 2,5𝑚 to 25𝑚 depth. Above this there are 

superficial deposits of topsoil, gravel and silty clay. The London clay can be categorized into 

three zones as seen in Figure 13.15. From 2,5𝑚 to 4,1𝑚 depth, there is a so called disturbed 

London clay. The disturbed London clay is a stiff brown silty fissured clay with plasticity 

index going from 60% to 40% with depth.  

This weathered clay shows signs of mechanical disturbance possibly due to glacial process or 

mass movement, according to Bond and Jardine (1991). From 4,1𝑚 to 7𝑚 depth, there is an 

intact brown London clay. This is a stiff, light brown, silty fissured clay with a plasticity 

index of about 30%. Below this there is blue London clay, which is a stiff grey-brown, silty 

fissured clay of intermediate plasticity. From Figure 13.15, we see a sharp drop in liquid limit 

(𝑤𝐿), and corresponding increase in undrained shear strength, marking the transition between 

the disturbed and intact clay. The water content is quite constant with depth and equals about 

30%. 
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Figure 13.15: Index properties and undrained shear strength from Bond and Jardine (1991) for the Canons Park site..  

 

Figure 13.16: In-situ stress conditions, coefficient of lateral earth pressure and overconsolidation ratio from Bond and 

Jardine (1991) at the Canons Park site. 
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Figure 13.17 shows the undrained shear strength and 𝑂𝐶𝑅-profile used by Karlsrud (2012). 

The CPTU data was used in an iterative procedure with the SHANSEP method (as explained 

for the Cowden site). Since this is a high plastic clay, Karlsrud (2012) assumed that 𝑠𝑢𝐷 =

0,75𝑠𝑢𝐶, 𝑆 = 0,3 and 𝑚 = 0,85. The direct undrained shear strength profile is about 15 −

20% higher than what Bond and Jardine (1991) propose, and the 𝑂𝐶𝑅-profile is a factor of 2 

or more lower. This is stated by Karlsrud (2012) himself, but similarly as for the Cowden site 

there is not much explanation as to why one have this discrepancy.  

Bond and Jardine (1991) states that it is difficult to find the exact overconsolidation ratio of 

the London clay due to several loading and unloading cycles and glacial processes, chemical 

bonding and ageing. However, the bond suggested in Figure 13.16 is based on oedometer 

results and using the same argumentation as for the Cowden site we choose to trust these 

results. Since the values of Karlsrud (2012) is lower than what Figure 13.16 suggests, we 

chose a low estimate following the solid black line. 

The in-situ pore pressure and effective vertical stress reported by Karlsrud (2012) differ 

somewhat from what Bond and Jardine (1991) report. Karlsrud (2012) list that at 2,8𝑚 and 

4𝑚 depth, the initial pore pressure is 𝑢0 = 25𝑘𝑃𝑎 and 40𝑘𝑃𝑎, while the effective vertical 

stress is 𝜎𝑣0
′ = 46𝑘𝑃𝑎 and 60𝑘𝑃𝑎, respectively. Bond and Jardine (1991), as seen in Figure 

13.16, assume a hydrostatic pore pressure distribution with a groundwater table at 1𝑚 depth, 

and a unit weight of 𝛾 = 20 𝑘𝑁
𝑚3⁄ . This gives 𝑢0 = 18𝑘𝑃𝑎 and 30𝑘𝑃𝑎, 𝜎𝑣0

′ = 38𝑘𝑃𝑎 and 

50𝑘𝑃𝑎, at 2,8𝑚 and 4𝑚 depth, respectively.  

The data chosen by Karlsrud (2012) suggests a unit weight of 24 𝑘𝑁
𝑚3⁄   as 𝜎𝑣0 = 𝛾 ∗ 𝑧 =

𝜎𝑣0
′ − 𝑢0. This is quite high and Karlsrud (2012) does not mention the in-situ stress conditions 

specifically when describing the site. Only a table similar to Table 13.6 gives the in-situ 

stresses of the Canons Park site. We choose the stress conditions proposed by Bond and 

Jardine (1991), and also the undrained shear strength and 𝑂𝐶𝑅 are determined based on 

results from their report. 

This is then the one site where parameters deviate substantially from what Karlsrud (2012) 

have suggested. Having a single person choose soil parameters is an advantage as this means 

the same procedure and method have been used for all the sites. This could very well lead to 

better correspondence between the measured values and soil conditions, and then a better 

regression analysis can be performed. The same procedure can then readily be followed for a 



Chapter 13. Measured excess pore pressure from 12 different sites         Per-Anders Mortensen 

203 

new site, which leads to some continuity and also maybe better predictions. However, at this 

site the parameters proposed by Karlsrud (2012) seemed faulty, and parameters from Bond 

and Jardine (1991) were chosen. 

 

Figure 13.17: Undrained shear strength and overconsolidation ratio interpreted from CPTU data and used by Karlsrud 

(2012) for the Canons Park site. 

13.1.8 Empire 

The Empire site is located in the USA in the Gulf of Mexico. It is about 78𝑘𝑚 south-east of 

New Orleans in Louisiana. The site is a few feet above the sea level with a water table close 

to the surface. 

Measurements from four different types of small scale model piles, or probes, have been 

included. The piezo-lateral stress (PLS) cell is a probe developed by the Massachusetts 

Institute of Technology (MIT). The probe is 1,2𝑚 long with a diameter of 38𝑚𝑚. The pore 

pressure is measured at 1,8𝑚 from the tip and for the Empire site measurements from 44,7𝑚 

and 73,6𝑚 depth are included.  

In addition to the PLS probe, a 3” probe with an open- and closed-ended mode, plus a 1,72” 

closed probe (x-probe), have been used. The 3” probe has an instrumented tip of 4,28𝑚 

length and a diameter of 3" = 76,2𝑚𝑚. For the open-ended mode a thickness of 3𝑚𝑚 is 

assumed by Karlsrud (2012). Measurements were done at 43𝑚 and 48,8𝑚 depth. The x-

probe has a diameter of 1,72” = 43,6𝑚𝑚, and measurements were done at 36,6𝑚 depth after 

pushing the probe 3𝑚 into the soil. These probes are pushed from the end of a cased borehole 

so that the embedded length is much shorter than the measurement depth. 
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At the site there is fine sand, with some clay and organic seams, down to 23𝑚 depth. Below 

this there is mainly clay all the way down to 135𝑚 depth, but with seams of silts and fine 

sands. The clay is a soft overconsolidated clay, with a water content of about 40%, and a 

plasticity index close to 50 − 60%. 

Table 13.1: Index properties at the Empire site from Cox et al. (1979). (Karlsrud 2012) 

 

The measured in-situ pore pressure show a slight artesian overpressure of about 40𝑘𝑃𝑎 

according to Azzouz and Lutz (1986). This correspond very well with what Karlsrud (2012) 

reports, as seen in Figure 13.18. 

According to Karlsrud (2012) the in-situ total vertical stress is uncertain. Figure 13.18 shows 

the total unit weight used by MIT, which is an average from several boreholes. However, 

there were only a few samples all from the upper 20𝑚. Karlsrud (2012) state that it seems that 

they have selected values from local layers with high water and organic content, which does 

not fit the description from the bore logs. Karlsrud (2012) has calculated a unit weight based 

on the water content and the results fit with results presented by Kraft et al (1981). The 

difference in effective vertical stress is about 80𝑘𝑃𝑎, which is quite substantial. Azzouz and 

Lutz (1986) report what Karlsrud (2012) calls the MIT results. We will use the soil weight 

proposed by Karlsrud (2012). 
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Figure 13.18: In-situ stress conditions, overconsolidation ratio and total unit weight at the Empire site. (Karlsrud 2012) 

𝑂𝐶𝑅 values well above 2 would not be unlikely for 𝐼𝐿 = 0,3. It is therefore possible that the 

𝑂𝐶𝑅 assumed herein could be too low. Alternatively, if MIT’s 𝜎𝑣0
′ -profile is closer to the 

truth than the one assumed herein, the 𝑂𝐶𝑅 values back-calculated would become 

significantly larger according to Karlsrud (2012). 

The undrained shear strength profile chosen is shown in Figure 13.19, and is mainly based on 

CPTU data, as there were only lab data from the upper zone. The same SHANSEP parameters 

found for zone 1 were adopted for the deeper layers, which of course implicates some 

uncertainty. 
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Figure 13.19: Undrained shear strength interpreted from CPTU data, together with the chosen profile in thick black dotted 

line at the Empire site. (Karlsrud 2012) 

13.1.9 Saugus 

The Saugus site is located in Massachusetts USA, about 10𝑘𝑚 north-east of Boston. The 

measurements are from the PLS probe described earlier, which was also used at the Empire 

site. The probe was pushed continuously (i.e. steady penetration), but some of the tests had 

stops in penetration, and then also allowed some dissipation. The resulting measurements 

showed an increase in pressure during subsequent penetration than what the steady 

penetration test showed. In Table 13.6 only pore pressure from steady penetration is included. 

The measurements were done from 10,5 to 35,8𝑚 depth and this is the only site included 

where measurements were recorded continuously. 

At the site there is so called Boston Blue Clay (BBC), which is a lean normally consolidated 

clay with a water content of 40 − 45%, and a plasticity index of 19 − 26%. According to 

Morrison (1984) the Saugus site consist of 2,5𝑚 of sand and peat then sand from 2,5 − 5m 

depth. From 5 − 9𝑚 depth there is a transition from sand to sandy clay. Below this is a 

medium BBC down to 20𝑚, followed by soft BBC down to 40𝑚, and glacial till below this. 

This is illustrated in Figure 13.20. 
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Figure 13.20: Index properties, vertical effective stress and overconsolidation ratio at the Saugus site. Notice that the depth 

scale is in feet. (Morrison 1984) 

In geological terms the clay is normally consolidated, but have a high 𝑂𝐶𝑅 in the top part 

probably due to chemical weathering. Below this, the 𝑂𝐶𝑅 goes toward 1,25 due to creep. 

The in-situ pore pressure is close to hydrostatic, with a groundwater table at about 1,5𝑚 

depth. The total unit weight is on average 𝛾 = 17,5 𝑘𝑁
𝑚3⁄ . The in-situ stress conditions 

reported by Morrison (1984) agree with what Karlsrud (2012) have used, as seen in Figure 

13.21. 
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Figure 13.21: Stress condition, overconsolidation ratio and undrained shear strength at the Saugus site. (Karlsrud 2012) 

The undrained shear strength is based on the SHANSEP method, using the 𝑂𝐶𝑅 profile and 

in-situ vertical effective stress from Figure 13.21, with 𝑆 =  0,18 and 𝑚 = 0,8 as this is the 

best fit to the data presented by Morrison (1984) according to Karlsrud (2012). It should 

however be mentioned that the results presented by Ladd and Foott (1974) for idealized BBC, 

suggest 𝑆 = 0,20 and 𝑚 = 0,8, which would lead to an 11% increase in shear strength 

according to Karlsrud (2012). 
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13.1.10 West Delta 

The West Delta site is located in the Gulf of Mexico. It is about 15 − 20 miles south-west of 

Venice in Louisiana USA. The soil is under about 16𝑚 of water, and the area is characterized 

by deep sediments of soft clays and fairly high sedimentation rates arising from the 

Mississippi river outlet according to Karlsrud (2012).  

The same kind of small scale model sized piles or probes used at the Empire site has also been 

used at the West Delta site. In addition, large scale fully instrumented pipe piles have been 

installed. These are open-ended piles with a diameter of 762𝑚𝑚, a wall thickness of 19,1𝑚𝑚 

and an embedded length of 71,3𝑚. Measuring was done at seven different depths ranging 

from 14𝑚 to 68𝑚 depth. 

Figure 13.22 suggests that the clay is more plastic in the top and bottom part, than in the 

middle part. The middle part extends from approximately 25 − 45𝑚 depth and have a water 

content of about 40%, plasticity index of 30 − 35% and clay content of 30 − 38%. Below 

60𝑚 depth the water content, plasticity index and clay content rise to approximately 55%, 

65% and 60% respectively. 

The total unit weight have been computed by Karlsrud (2012) based on the water contents. 

This has been done since the clay contained saturated gas, which expanded the volume of the 

samples when exposed to atmospheric pressure. This led the measured total unit weights to be 

about 10% lower than what the water content suggests. The sensitivity of the clay has been 

determined by various tests and is low (𝑆𝑡 = 1,5 − 2). 
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Figure 13.22: Index data of the soil at the West Delta site, together with the in-situ stress conditions. (Karlsrud 2012) 

Measurements of the in-situ pore pressure showed a considerable artesian overpressure. The 

deepest piezometer was installed at 68,7𝑚 depth, and showed an excess pore pressure of 

about 200𝑘𝑃𝑎 compared to hydrostatic conditions. This artesian overpressure combined with 

the low unit weights implies very low effective stresses. The clay is normally consolidated, 

but the sample quality was according to Karlsrud (2012) insufficient to verify the exact 

apparent overconsolidation ratio (𝑂𝐶𝑅). An 𝑂𝐶𝑅 from 1,2 to 1 has been assumed. 

The undrained shear strength has been determined based on a number of different tests, as 

seen in Figure 13.23. The main basis of the chosen direct undrained shear strength (𝑠𝑢𝐷) 

profile is the unconsolidated undrained triaxial tests (UU), and the direct simple shear (DSS) 

tests conducted. The results are shown in Table 13.2, and show a strength of 10𝑘𝑃𝑎 at 5𝑚 

depth increasing by approximately 0,873 𝑘𝑃𝑎
𝑚⁄ . 
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Figure 13.23: The undrained shear strength at the West Delta site, showing results from vane borings and unconsolidated 

undrained (UU) triaxial tests. Together with the chosen/assumed strength profile of Karlsrud (2012) and Bogard et al 

(2000). (Karlsrud 2012) 

Table 13.2: Results of unconsolidated undrained (UU) triaxial tests and direct simple shear (DSS) tests combined to give the 

direct undrained shear strength for the West Delta site. (Karlsrud 2012) 
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13.1.11 Hamilton Air Force base 

The decommissioned Hamilton Air Force base is located in California USA near the town 

Novato, about 30𝑘𝑚 north-northwest of San Francisco. The site is protected by a dike to 

avoid flooding since it is located 1,3𝑚 below sea level. 

Four different types of piles were installed at the Hamilton Air Force base site. Only the TP1 

and TP3 piles were instrumented with pore pressure measuring equipment. Both of these piles 

are closed-ended piles with a pile diameter of 111,9𝑚𝑚, and an embedded length of 12,2𝑚. 

Both piles measured the pore pressure at three depths, where only one depth is included in 

Table 13.6, namely 6,3𝑚 for the TP1 pile, and 6,2𝑚 for the TP3 pile. The difference is due to 

the fact that the TP1 pile was jacked, while the TP3 pile was driven conventionally, leading to 

a minor difference in height of the measuring equipment. 

At the site there is about 4𝑚 of weathered dry crust followed by a soft San Francisco Bay 

mud, which is a normally consolidated clay with a water content of about 95%, and a 

plasticity index of 55%. 

 

Figure 13.24: Index parameters, vertical effective stress and undrained shear strength from Kraft et al. (1980) for the 

Hamilton site. (Karlsrud 2012) 
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The in-situ pore pressure is measured to be slightly higher than under hydrostatic conditions 

(about 12%). With a groundwater table that varies seasonally, but deemed to be at about 

1,5𝑚 depth during the pile testing. Karlsrud (2012) increased the pre-consolidation pressure 

with about 10% to 𝑂𝐶𝑅 = 1,4, due to the results of five incremental oedometer tests done on 

samples of seemingly good quality.  

The in-situ stress conditions and 𝑂𝐶𝑅-profil is shown in Figure 13.25. The 𝑠𝑢𝐶-profil was 

established by using the SHANSEP method with 𝑆 = 0,355 and 𝑚 = 0,86. These parameters 

were based on a series of CAUC triaxial tests. The 𝑠𝑢𝐷-profile is found by 𝑠𝑢𝐷 = 0,8𝑠𝑢𝐶, 

assumed due to the high plasticity of the clay. The 𝑠𝑢𝐶-profil proposed by Karlsrud (2012) is 

seen to be about 10 − 15% higher than what Kraft et al. propose. We will use the values 

Karlsrud (2012) propose. 

 

Figure 13.25: In-situ stress conditions, overconsolidation ratio and undrained shear strength used for the Hamilton site. 

(Karlsrud 2012) 
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According to Karlsrud (2012), the normalized excess pore pressure (
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
⁄ ) is on the low 

side, compared to data from other sites with soft clay. The pore pressure increased the first 

two minutes after installation, suggesting that the piezometer filters might have not been fully 

saturated. This would explain the relative low excess pore pressure observed. 

13.1.12 St. Alban 

The St. Alban site is located in Canada, about 67𝑘𝑚 west-southwest of Québec city. The piles 

used at the site were closed-ended with a diameter of 219𝑚𝑚, a thickness of 8𝑚𝑚 and an 

embedded length of 6,1𝑚. The top 1,5𝑚 were pre-augured so that the tip penetrated to 7,6𝑚 

depth. The test piles had pore pressure sensors at four levels along the shaft, along with 35 

piezometers installed prior to the pile jacking capturing the shape of the excess pore pressure 

distribution around the pile. 

The top 1,5𝑚 consist of a weathered clay crust. Below this is a highly sensitive, structured 

Champlain Sea clay deposit with increasing amount of silt with depth, as seen in Figure 

13.26. The water content increase from 20% from the water table located at 0,8𝑚 depth, up to 

as much as 100% at 2𝑚 depth, before it goes down to about 60% at 4𝑚 depth. According to 

Karlsrud (2012) the high sensitivity (𝑆𝑡 ≈ 20) causes the liquid limit (𝑤𝐿) to be lower than 

normal, again causing the plasticity index to be low compared to the water content. The 

plasticity index (𝐼𝑃) then gives a false impression of the clay characteristics.  

The clay is in geological terms normally consolidated, which according to Karlsrud (2012) 

should give a water content close to the liquid limit, if it was not for the high sensitivity. 

Karlsrud (2012) therefore use an 𝐼𝑃 of 80% at 2𝑚 depth decreasing to 40% from 4𝑚 depth 

and below, instead of the values indicated by Figure 13.26 of 𝐼𝑃 = 𝑤𝐿 − 𝑤𝑃 ≈ 20%. We will 

use the values proposed by Karlsrud (2012) as an empirical relation is based on the soil 

characteristic and misleading properties might give a more unreliable relation. 
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Figure 13.26: Index properties, shear strength and effective stress at the St. Alban site. (Roy, Blanchet et al. 1981) 

Figure 13.26 shows the initial vertical effective stress found by Roy, Blanchet et al. (1981). 

Karlsrud (2012) have recalculated the in-situ vertical effective stress and got 10 − 15% 

higher values than what Roy, Blanchet et al. (1981) propose. Karlsrud (2012) used the 

reported total unit weights and also checked the values against the water content. Comparing 

the results, we see that Roy, Blanchet et al. (1981) have used roughly averaged values, and 

that the values chosen by Karlsrud (2012) agrees more with the total unit weights found in 

Figure 13.26. The values proposed by Karlsrud (2012) was therefore chosen. 

In Figure 13.27 we see the chosen in-situ stress conditions and the overconsolidation ratio, 

showing a weathered top part before reaching 𝑂𝐶𝑅 ≈ 2. Results of CIUC triaxial tests 

correspond to the active undrained shear strength (𝑠𝑢𝐶) profile given in both Figure 13.26 and 

Figure 13.27. The direct undrained shear (𝑠𝑢𝐷) strength was assumed by Karlsrud (2012) to 

correspond to 𝑠𝑢𝐷 = 0,8𝑠𝑢𝐶.  
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Figure 13.27: In-situ stress conditions, overconsolidation ratio and undrained shear strength of the St. Alban site. (Karlsrud 

2012) 
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13.2  The undrained shear modulus 

Two ways of determining the undrained shear modulus of the soil have been used. Firstly, the 

stiffness of the soil at the different sites have been estimated by using the empirical 

relationship indicated by Figure 5.6, and secondly an assumed relation (Equation 13.8) to the 

modulus number (𝑚0) have been used.  

The stiffness to strength ratio (
𝐺𝑢

50

𝑠𝑢𝐶
⁄ ) in Figure 5.6 are obtained by CAUC triaxial tests on 

high quality block samples presented by Karlsrud and Hernandez (2011). Figure 13.28 shows 

how the data from the sites have been fitted based on the trend lines, 𝑂𝐶𝑅 and five 

levels/ranges of natural water content. The five ranges are: Fitted Very High (𝑤 < 30%), 

High (𝑤 = 30 − 40%), Middle (𝑤 = 40 − 60%), Low (𝑤 = 60 − 70%), and Very Low 

(𝑤 > 70%). The trend lines are based on samples with a water content below 70% and above 

30%. The stiffness is still estimated with these trend lines even when the water content is 

outside of these limits.  

The Hamilton Air Force Base and the top few meters at the St. Alban site have a water 

content above 70%. While the Tilbrook Grange, Cowden, Canons Park and below 30𝑚 depth 

at the Lierstranda site show a water content below 30%. Since an empirical relation is used to 

estimate the stiffness, the uncertainty in the determined undrained shear modulus is much 

higher than the other soil parameters presented in Chapter 13.1.  
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Figure 13.28: Trend lines for the stiffness and strength ratio (
𝐺𝑢

50

𝑠𝑢𝐶
⁄ ) against 𝑂𝐶𝑅 for different levels of natural water 

content after Karlsrud and Hernandez (2011) and Karlsrud (2012). The data from the different sites is fitted based on the 

water content, 𝑂𝐶𝑅 and the trend lines.  

Karlsrud (2012) have determined the modulus number with depth, for all the sites except the 

Canons Park site. For the Cowden site Karlsrud (2012) assumes a modulus number of 30. The 

other modulus numbers have been determined based on oedometer tests and are presented in 

Table 13.6.  

The modulus number is as defined in Figure 13.29 equal to 𝑚 =
𝑑2𝜀

𝑑𝜎2. However, an average 

value is assumed for the normally consolidated (NC) range and for the overconsolidated (OC) 

range going through the origin. 
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Figure 13.29: The oedometer modulus (𝑀) and modulus number (𝑚) for the overconsolidated (OC) and normally 

consolidated (NC) range as defined by Janbu (1963). (Nordal 2018) 

The modulus numbers (𝑚0) determined by Karlsrud (2012), are equal to 𝑚𝑁𝐶 in Figure 13.29. 

In Figure 13.29 the oedometer modulus (𝑀) and modulus number (𝑚) relate by a linear 

relationship through the origin for both the OC and NC range defined by: 

 𝑀 = 𝑚𝜎𝑣
′  (13.2) 

Using isotropic elastic theory and assuming 𝜈′ = 1
3⁄  gives: 

 𝐸′ =
(1 + 𝜈)(1 − 2𝜈)

1 − 𝜈
𝑀 =

2

3
𝑚𝜎𝑣

′  (13.3) 

 

  



Chapter 13. Measured excess pore pressure from 12 different sites         Per-Anders Mortensen 

220 

The shear modulus relate according to elastic theory to the Young’s modulus (given  𝜈′ = 1
3⁄  

and 𝜈𝑢 = 1
2⁄ ) by: 

 𝐺 =
𝐸

2(1 + 𝜈)
→ 𝐺𝑢 =

𝐸𝑢

3
 𝑎𝑛𝑑 𝐺′ =

3𝐸′

8
 (13.4) 

Elastic theory therefore yields 𝐺𝑢 = 𝐺′ and then 𝐸𝑢 = 9
8⁄ 𝐸′ assuming 𝜈′ = 1

3⁄ . However, 

experiments have shown that for clays, these last two equations do not fit with what is 

observed. The factor 9 8⁄  are often found to be more in the order of 10. As a crude assumption 

we use 𝐸𝑢 = 10𝐸′. The undrained stiffness of the clay should however be determined from an 

undrained triaxial test, but given the drained stiffness an assumption must be made. This 

gives: 

 𝐺𝑢 =
𝐸𝑢

3
=

10

3
𝐸′ =

10

3
∗

2

3
𝑚𝜎𝑣

′ =
20

9
𝑚𝜎𝑣

′  (13.5) 

Going back to Figure 13.29 we see that 𝑚0 (called 𝑚𝑁𝐶) is determined based on the stress-

strain relationship experienced for stress levels above the preconsolidation pressure. This is 

called virgin compression, as the soil has never been compressed under such high pressure 

before. In Nordal (2018), the modulus number in the OC range is shown as a function of the 

𝑚𝑁𝐶:  

 𝑚𝑂𝐶 = 𝑛 ∗ 𝑚𝑁𝐶 (13.6) 

where 𝑛 typically is in the range of 2 − 5. The undrained shear modulus determined from 

undrained triaxial tests, which is what we want to estimate, is most often defined at 50% 

mobilization of the undrained shear strength, as discussed in Chapter 5.3. The question then is 

which effective vertical stress to use in Equation 13.5, and is it below the preconsolidation 

stress or above. 
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The oedometer stiffness in the overconsolidated area is also often assumed to be constant. 

One could then write: 

 𝑀𝑂𝐶 = 𝑚𝑂𝐶𝑝𝑐
′ = 𝑛 ∗ 𝑚𝑁𝐶𝑝𝑐

′  (13.7) 

An undrained triaxial test is often either anisotropically consolidated to the believed stress 

level or isotropically consolidated to the believed horizontal stress level. The deviatoric stress 

is then either 𝑞0 = 𝜎𝑣0
′ − 𝜎ℎ0

′  or equal to zero. In a triaxial test the deviatoric stress is equal to 

two times the undrained shear strength at failure (𝑞𝑓 = 2𝑠𝑢). Halfway to failure we then have 

𝑞50 = 𝑠𝑢, and for a test that has been ran conventionally: ∆𝑞 = ∆𝜎𝑣 = ∆𝜎𝑣
′ − ∆𝜎ℎ

′ . If one 

disregard dilation/contraction then ∆𝑝′ =
1

3
(∆𝜎𝑣

′ + 2∆𝜎ℎ
′ ) = 0. Finally giving ∆𝑞 =

3

2
∆𝜎𝑣

′ , 

which at 50% mobilization of the undrained shear strength yields: ∆𝑞 = 𝑞50 − 𝑞0 = 
3

2
∆𝜎𝑣

′ →

∆𝜎𝑣
′ =

2

3
(𝑠𝑢 − 𝑞0).  

The undrained shear modulus was estimated by inserting 𝑚𝑁𝐶 and 𝑚𝑂𝐶 for 𝑚, and 𝜎𝑣0
′  and 𝑝𝑐

′  

for 𝜎𝑣
′ , in Equation 13.5. 𝑛 was changed from 2 to 5, and adding the change in vertical 

effective stress to 𝜎𝑣0
′  was also tested (i.e. 𝜎𝑣

′ = 𝜎𝑣0
′ +

2

3
(𝑠𝑢 − 𝑞0)). Using 𝜎𝑣

′ = 𝜎𝑣0
′  if 𝑠𝑢 −

𝑞0 < 0, and only including 𝑞0 if it was larger than zero, was also checked. 

All these different estimates were measured against the empirical estimated stiffness from 

Figure 13.28. The sum of the differences between what Equation 13.5 and what Figure 13.28 

predicted were minimal when 𝜎𝑣
′ = 𝜎𝑣0

′  and 𝑚 = 𝑚𝑂𝐶, estimated with 𝑛 = 3,6, were used in 

Equation 13.5. This value was found by using Excel solver and minimizing the sum of the 

differences between the predictions.  

The Canons Park site did not have a modulus number, but Jardine, Fourie et al. (1985) 

presents the undrained Young’s modulus found from UU triaxial tests, as seen in Figure 

13.30, together with other tests and empirical relations. The UU triaxial test results were given 

the most weight, and the undrained shear modulus (𝐺𝑢 =
𝐸𝑢

3⁄ ) was found to be 31667𝑘𝑃𝑎 at 

2,8𝑚 depth and 23333𝑘𝑃𝑎 at 4,0𝑚 depth.  
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Figure 13.30: Undrained Young’s modulus against depth for the Canons Park site. (Jardine, Fourie et al. 1985) 

At three sites the difference between the two prediction methods was quite high. This was the 

Cowden, Canons Park and Tilbrook Grange sites. At the Canons Park site, the stiffness was 

determined by testing and not Equation 13.5, so the prediction made by using Figure 13.28 is 

probably inaccurate. Cowden is the one site that Karlsrud (2012) has assumed a modulus 

number, in contrast to finding the value from oedometer testing.  

What these sites have in common is a high 𝑂𝐶𝑅 (above 10), a very low water content (below 

30%), and high stiffness (𝑚0 > 24). In Chapter 13.3 it is shown that all these sites also are 

insensitive (i.e. 𝑆𝑡 = 1). If these sites are excluded the smallest sum of differences is obtained 

for 𝜎𝑣
′ = 𝜎𝑣0

′  with 𝑚𝑂𝐶 estimated with 𝑛 = 4,5. 𝑛 = 4,5 is quite high in the expected range, 

this might have something to do with using 𝜎𝑣0
′  and not some slightly higher value. However, 

using these values minimized the difference between the two predication methods. If this 

makes the prediction more correct or reliable is however discussable.  
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The undrained shear modulus used in Chapter 14 has thus been based on:  

 𝐺𝑢 = 4,5 ∗
20

9
𝑚0𝜎𝑣0

′ = 10𝑚0𝜎𝑣0
′  (13.8) 

The Haga test site also had a plot of the undrained shear modulus at the site, as seen in Figure 

13.31, but against 𝑂𝐶𝑅 and not depth. This was used and gave a shear modulus of 𝐺𝑢 =

1522𝑘𝑃𝑎 at 1,9𝑚 depth, and 𝐺𝑢 = 4100𝑘𝑃𝑎 at 3,4𝑚 depth. This is slightly lower than what 

Equation 13.8 and Figure 13.28 suggest. The above values, found from undrained triaxial 

testing, is used in Chapter 14. 

 

Figure 13.31: Undrained Young’s modulus normalized with the undrained shear strength, found from undrained triaxial 

testing, plotted against the overconsolidation ratio (𝑂𝐶𝑅) for the Haga site. (Karlsrud 2012) 
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Figure 13.32 shows the values obtained by using Equation 13.8 together with the trend lines 

of Figure 5.6. 

 

Figure 13.32: Normalized undrained shear modulus obtained by Equation 13.8. Plotted together with the trend lines from 

Figure 5.6 obtained by CAUC triaxial tests on block samples of Norwegian clays by Karlsrud and Hernandez (2011). The 

Haga (Ha) and the Canons Park (CP-IC) are plotted with the stiffness found from triaxial testing and not Equation 13.8 as 

explained. Further description of the legend can be found above Figure 9.10. 

The predictions obtained by Equation 13.8 seems to fit relatively well to the trend lines from 

Figure 5.6 in the low 𝑂𝐶𝑅 range (𝑂𝐶𝑅 < 8). In the high 𝑂𝐶𝑅 range (𝑂𝐶𝑅 > 8) the data from 

the Cowden and Tilbrook Grange sites is estimated with Equation 13.8, while The Haga site 

and the Canons Park site are illustrated with the values found from undrained triaxial testing.  

The trend lines from Figure 5.4 indicate much lower values than what Equation 13.8 suggests 

for the Cowden and Tilbrook Grange sites. It could be that Equation 13.8 is giving too high 

stiffness over strength ratio for these two sites. Equation 13.8 assumes the same relation to 

apply for all the sites regardless of 𝑂𝐶𝑅. However, the relation between the undrained 

stiffness and the modulus number is probably a function of 𝑂𝐶𝑅. The Haga site fits the trend 

lines, but Canons Park, which has comparable soil conditions as the Cowden and Tilbrook 

Grange sites, have much higher stiffness to strength ratio than what the trend lines suggests. 

The shear modulus found for the Canons Park site, is assumed to be more or less correct as it 
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is determined by triaxial testing, and suggest that the trend lines in Figure 5.6 underestimates 

the stiffness of the heavily overconsolidated stiff British clays. 

We therefore choose to use Equation 13.8 to estimate the undrained shear modulus. This 

could be the wrong choice. Figure 13.32 indicates that we might have removed the reduction 

in 
𝐺𝑢

𝑠𝑢𝐶
⁄  that should occure when 𝑂𝐶𝑅 increase, by assuming an equal expression regardless 

of 𝑂𝐶𝑅. However, an assumption had to be made and comparison between the Canons Park, 

Cowden and Tilbrook Grange sites outweighed the trend lines of Figure 5.4. 

Other sites that do not completely follow the trend lines from Figure 5.4 are the St.Alban site 

(St.Al). Here the stiffness is lower than what the trend lines suggest. This could very well be 

due to the high sensitivity of the clay (𝑆𝑡 ≈ 18), and also the water content is as high as 90%, 

which is outside of the range that Figure 5.4 is based on. 

The Saugus site (BBC-MIT) shows higher stiffness than what the trend lines suggests, but not 

much, and the water content is around 40%. Bothkennar (BK-IC) have a high water content 

(above 60%), yet it is above the highest trend line (associated with a low water content). This 

is also a British clay, and a similar explanation as for the Cowden and Tilbrook Grange might 

apply. However, the clay at Bothkennar is not heavily overconsolidated nor does it have the 

very high shear strength seen in the other British clays. 

To summarize, the undrained shear modulus chosen for the Canons Park and the Haga sites 

are those obtained from undrained triaxial tests. For the other sites Equation 13.8 have been 

used as an estimation. Most of these sites have undrained triaxial results available, and a much 

better estimate of the undrained shear modulus can be made. Unfortunately I did not have 

time to do this. Doing this would change the regression lines and maybe show a more uniform 

trend.  
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13.3  The sensitivity 

The dataset gathered from Karlsrud (2012) does not include the sensitivity (𝑆𝑡) of the soil at 

the different sites. In the site descriptions written by Karlsrud (2012), sensitivity is mentioned 

occasionally, but mostly as a range or an average value, rarely plotted with depth. The 

literature has been searched for plots of measured sensitivity with depth and other mentions of 

sensitivity for the different sites listed in Chapter 13.1. The result of this search is gathered in 

this chapter.  

Many of the British and American sites have very little mention of sensitivity. At the Tilbrook 

Grange, Cowden, Canons Park, Empire, Saugus and Hamilton Air Force Base sites, the 

sensitivity is barely, if at all, mentioned and empirical relationships with the liquidity index 

(𝐼𝐿) have been used to estimate the sensitivity.  

Bjerrum (1954) propose a log-linear relationship between the liquidity index and the 

sensitivity of the soil as seen in Figure 13.33. Similar relationships can be found in Carter and 

Bentley (1990), Wood (1990) and Skempton and Northey (1952). The liquidity index is 

defined as: 

 𝐼𝐿 =
𝑤 − 𝑤𝑃

𝑤𝐿 − 𝑤𝑃
 (13.9) 

 

Figure 13.33: Log-linear relationship between the liquidity index and the sensitivity of the soil proposed by Bjerrum (1954) 

based on Norwegian marine clays.  
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The data utilized by Bjerrum (1954), was based on Norwegian marine clays with a sensitivity 

of 3 or more. Figure 13.34 shows the relationship proposed by Skempton and Northey (1952). 

As seen in the figure, only data with a liquidity index below 1,2 is included. All proposed 

relationships, including does not shown here by Carter and Bentley (1990) and Wood (1990), 

have been checked and most often give a similar conclusion. The relationship by Skempton 

and Northey (1952) (i.e. Figure 13.34) has been the decisive estimation method. This is 

because most of the sites mentioned (i.e. where the sensitivity is estimated based on 𝐼𝐿) have a 

low liquidity index and Figure 13.34 includes more data on clays with a low liquidity index.  

 

Figure 13.34: Relation between sensitivity and liquidity index proposed by Skempton and Northey (1952). (Carter and 

Bentley 2016) 

  



Chapter 13. Measured excess pore pressure from 12 different sites         Per-Anders Mortensen 

228 

13.3.1 Haga 

According Karlsrud (2012) fall cone tests and in-situ vane borings show that the sensitivity 

(𝑆𝑡) range from 4 − 6. Results from the falling cone tests have not been found, but Figure 

13.35 shows the results from the in-situ vane borings. This figure have been used to determine 

a sensitivity of 4,8 at 1,9𝑚 depth and 4,6 at 3,4𝑚 depth. 

 

Figure 13.35: In-situ vane strength, both remoulded and undisturbed, from Karlsrud and Haugen (1984) used to determine 

the sensitivity of the clay at the Haga site.  
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13.3.2 Onsøy 

At the Onsøy site Karlsrud (2012) does not mention the sensitivity of the clay. Berre (2013) 

report the results of falling cone tests on piston samples as seen in Figure 13.36, together with 

sensitivities from in-situ vane borings reported by Lunne, Long et al. (2003). In addition, 

Lunne, Berre et al. (2006) report sensitivities found from falling cone tests on block samples 

as listed in Table 13.3. The reported sensitivities from the different sources are shown in 

Figure 13.37 together with the chosen sensitivity profile. The measurements at Onsøy are 

from 7,5 − 35𝑚 depth, and the results from Lunne, Berre et al. (2006) (i.e. the block samples) 

are given the most weight when choosing the sensitivity profile. 

 

 

 

Figure 13.36: To the left, results from falling cone tests on piston samples, both disturbed and undisturbed, against depth 

from Berre (2013). To the right, sensitivity with depth found from in-situ vane borings reported by Lunne, Long et al. (2003) 

for the Onsøy site.  
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Table 13.3: Sensitivity from falling cone tests conducted on block samples with depth for the Onsøy site reported by Lunne, 

Berre et al. (2006). 

Depth [m] Falling cone sensitivity from block samples 

7,2 4,6 

12,1 5,9 

12,7 4,8 

14,7 4,5 

18,9 11 

 

Figure 13.37: Results from the different sources (somewhat simplified) together with the chosen sensitivity profile for the 

Onsøy site. 
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13.3.3 Lierstranda 

Karlsrud (2012) report that for the Lierstranda site, the sensitivity of the clay range from 3 −

6, when determined from in-situ vane borings. On the other hand, the range is from 7 − 14 

according to falling cone tests. Table 13.4 shows the sensitivities determined by falling cone 

tests on block samples reported by Lunne, Berre et al. (2006). The results from the in-situ 

vane borings where not found. The pore pressure measurements are from 7,5 − 35𝑚 depth, 

and a sensitivity of 8 was chosen for the top 7,5 − 12,5𝑚, while a value of 12 was chosen for 

the remaining measurements. The sensitivities found from the block samples was given the 

most weight, but the fact that the vane sensitivity was reported to be lower influenced the 

choice and the values chosen are slightly lower than what the falling cone tests might suggest 

alone.   

Table 13.4: Sensitivity from falling cone tests conducted on block samples with depth for the Lierstranda site reported by 

Lunne, Berre et al. (2006). 

Depth [m] Falling cone sensitivity from block samples 

6,0 7,7 

6,0 7,1 

6,4 11 

12,2 8,1 

16,3 12 

16,3 14 

22,3 8,4 

22,3 15 
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13.3.4 Tilbrook Grange 

Figure 13.38 shows the Atterberg limits and the natural water content of the clay at the 

Tilbrook Grange site. Since the natural water content is either equal or even lower than the 

plastic limit, the liquidity index becomes zero or negative. This is indicating that the soil is 

insensitive according to Figure 13.34, and a constant sensitivity of one was chosen for the 

Tilbrook Grange site. 

 

Figure 13.38: Soil description and water content of the soil at the Tilbrook Grange site after McClelland (1988).  
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13.3.5 Bothkennar 

The sensitivity of the clay at the Bothkennar site is determined based on the results presented 

by Hight, Paul et al. (2003). Figure 13.39 illustrates the sensitivity found from in-situ vane 

borings reported by Nash, Powell et al. (1992), together with falling cone tests conducted in 

the laboratory. The excess pore pressure due to pile driving was measured at 3,5 and 4,7𝑚 

depth, and the sensitivity at these depths were chosen as 5,6 and 6,6 respectively. 

 

Figure 13.39: Sensitivity at the Bothkennar site determined from in-situ vane borings and falling cone tests. (Hight, Paul et 

al. 2003) 
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13.3.6  Cowden 

Figure 13.12 displays the index parameters of the glacial till clay found at the Cowden site. 

Since the natural water content is less than the plastic limit, the liquidity index becomes 

negative as for the Tilbrook Grange site, indicating that the soil is insensitive. Lehane and 

Jardine (1994) supports this conclusion as they call the Cowden till insensitive in their report. 

This is the only mention of sensitivity, in the reports about the Cowden site, red by the author 

and so a sensitivity of one is chosen. 

13.3.7 Canons Park 

Also for the Canons Park site very little information was found regarding the sensitivity of the 

clay. Bond and Jardine (1991) report the water content, plastic limit and liquid limit for the 

Canons Park site, as seen in Figure 13.15. Using Equation 13.9 the liquidity index was found 

to be 𝐼𝐿 = 0,02 and 0,035, at the relevant depths: 2,8𝑚 and 4,0𝑚 respectively. Figure 13.34 

gives a sensitivity very close to one, which is then the assumed sensitivity for both the 

measurement depths at the Canons Park site. 
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13.3.8 Empire 

Table 13.1 give a liquidity index of 0,3 for the upper 35 − 50𝑚 (zone 1), and 0,26 from 63 −

78𝑚 (zone 2), which is the relevant range of depth. Looking more closely at the specific 

depths, Figure 13.40 supports a liquidity index of about 0,3 for the relevant depths. Using the 

relationship from Figure 13.34, proposed by Skempton and Northey (1952), gives a 

sensitivity of 1,65 given a liquidity index of 0,3, which is then chosen for the measurement 

depths. 

 

Figure 13.40: Natural water content, plastic limit and liquid limit against depth (in feet) for the Empire site. (Azzouz and 

Lutz 1986) 
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13.3.9 Saugus 

Baligh, Vivatrat et al. (1979) reports an average sensitivity of 6 for the Saugus site, but no 

plot nor information on how this value was found is included. By calculating the liquidity 

index using the data from Morrison (1984), shown in Figure 13.41, and the relationship 

proposed by Skempton and Northey (1952) (i.e. Figure 13.34) for the relevant depths an 

average sensitivity of 5,76 was found. Based on this estimate, the information given by 

Baligh, Vivatrat et al. (1979) was deemed to be correct, and a sensitivity of 6 was chosen for 

the relevant depths.  

 

Figure 13.41: Natural water content, plastic limit and liquid limit against depth (in feet) for the Saugus site. (Morrison 1984) 
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13.3.10 West Delta 

Karlsrud (2012) report that various tests conducted to determine the remoulded shear strength 

gave a sensitivity between 𝑆𝑡 = 1,5 − 2,0. The inverse of the normalized shaft friction 

(
𝑡𝑠𝑖

𝑠𝑢𝐷
⁄ ) should according to Karlsrud (2012) reflect the sensitivity. Immediately after pile 

driving, 
𝑡𝑠𝑖

𝑠𝑢𝐷
⁄  was measured in the range 0,2 − 0,35. The inverse of this gives: 𝑆𝑡 = 2,85 −

5,0. This is a about a factor of 2 larger than the sensitivity measured in the laboratory. 

Audibert and Hamilton (1998) reported the sensitivities found from undrained compression 

strength tests as seen in Figure 13.42. This figure have been used when determining the 

sensitivity of the clay at the depths where the excess pore pressure due to the pile driving was 

measured (i.e. from a depth of 14 − 68𝑚). The sensitivities chosen range from 1,4 to 1,7, and 

are purely based on the laboratory results. The apparent sensitivity (i.e. inverse of 
𝑡𝑠𝑖

𝑠𝑢𝐷
⁄ ) 

mentioned by Karlsrud (2012), have not influenced the chosen sensitivities. 

 

Figure 13.42: Sensitivity against depth in feet reported by Audibert and Hamilton (1998) for the West Delta site. 

13.3.11 Hamilton Air Force Base 

The index data from the Hamilton site, shown in Figure 13.24, indicate a liquidity index of 

0,93 at about 6𝑚 depth, which is the approximate depth that the pore pressure was measured. 

This gives a sensitivity of 7,0 and 7,2, using the relationship proposed by Bjerrum (1954) and 

Skempton and Northey (1952) respectively. A sensitivity of 7 was chosen for the Hamilton 

Air Force Base site at the relevant depths. 
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13.3.12 St. Alban 

Rochelle, Trak et al. (1974) report the sensitivity, measured at five depths, in the St. Alban 

clay. Tavenas and Leroueil (1977), Tavenas, Leroueil et al. (1978) and Konrad and Roy 

(1987) report a sensitivity measured by field vane of 14 and 22, at 3𝑚 and 5,7𝑚 depth 

respectively. Roy and Lemieux (1986) report a sensitivity also measured by field vane of 12 

at 2,3𝑚 depth, and 17 at 5𝑚 depth. Figure 13.43 shows the chosen values at the relevant 

depths, together with the measured sensitivites mentioned above. 

Table 13.5: Index properties and especially sensitivity of the clay at the St. Alban site. (Rochelle, Trak et al. 1974) 

 

 

Figure 13.43: Sensitivity of Champlain clay at the St. Alban site. Chosen values in orange and measured values in blue 

gathered from Rochelle, Trak et al. (1974), Tavenas and Leroueil (1977), Tavenas, Leroueil et al. (1978), Roy and Lemieux 

(1986) and Konrad and Roy (1987). 
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13.4  Sensitivity of all the sites 

Combining all the information presented in Chapter 13.3 with the measured pore pressure, we 

will look for trends in the excess pore pressure with the sensitivity. Karlsrud (2012) presents 

plots of overconsolidation ratio (𝑂𝐶𝑅, Figure 9.11), and plasticity index (𝐼𝑃, Figure 9.13) 

against measured excess pore pressure normalized with the direct undrained shear strength 

(
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
⁄ ).  

Figure 13.44 and Figure 13.45 shows the same kind of plot, but with sensitivity (𝑆𝑡) along the 

x-axis in a linear and logarithmic scale, respectively. In addition to the measured data, five 

trend lines are plotted. In Figure 13.44 these lines are linear with respect to 𝑆𝑡, while in Figure 

13.45 these lines are log-linear.  

As the legend indicates: the red trend line is for all the data combined, the orange is only 

based on the closed-ended piles, the yellow is based on the open-ended piles, the blue is based 

on the full sized piles, and the green is only based on the model sized piles. The equation of 

these trend lines are depicted in the figure in the same order as the legend suggests. 

In both plots we see that the model sized piles indicate a larger increase in excess pore 

pressure with sensitivity than the other data, while the open-ended piles show a very small 

decrease. The spread of the data is much larger for the clays with low sensitivity. This is 

partly because we have more data in that range, but also because the sites with the highest 

𝑂𝐶𝑅 (Tilbrook Grange (Ti), Canons Park (CP-IC) and Cowden (Co-IC)) are sites where the 

soil is deemed insensitive.  

The sites with high 𝑂𝐶𝑅 show a lot more scatter, and they are also grossly over-predicted by 

the CEM-EP solution. This will be explained more thoroughly in Chapter 14.9, however these 

sites are the main reason we see an increase in excess pore pressure with increasing 

sensitivity. If these sites are removed from the data the slope reduce quite significantly.  
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Figure 13.44: Normalized excess pore pressure (
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝑑
⁄ ) versus sensitivity (𝑆𝑡) in a linear scale for all sites together 

with different trend lines. Further description of the legend can be found above Figure 9.10. 

 

Figure 13.45: Normalized excess pore pressure (
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝑑
⁄ ) versus sensitivity (𝑆𝑡) in a logarithmic scale for all sites 

together with different trend lines. Further description of the legend can be found above Figure 9.10. 
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The coefficient of determination (explained in Chapter 14.1) is very low in the linear plot, 

only 𝑅2 = 0,045 for the regression based on all the piles. If the sensitivity is plotted in a 

logarithmic scale (i.e. Figure 13.45) this increase to 𝑅2 = 0,154. This is because we have 

more data with a low sensitivity. Using a logarithmic axis then makes it possible to improve 

the fit in the low range compared to using a linear axis. 

In Chapter 12.7 we found a linear expression (Equation 12.12) where the normalized excess 

pore pressure minus the CEM-EP solution (
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝑑
⁄ − ln (

𝐺𝑢
𝑠𝑢𝑑

⁄ )) equals a factor 𝛽(1 −

1
𝑆𝑡

⁄ ). Figure 13.46 shows the normalized excess pore pressure against the factor 1 − 1
𝑆𝑡

⁄ . 

All the trend lines do now show an increasing excess pore pressure with increasing sensitivity. 

The coefficient of determination for the trend line based on all the piles has gone up to 𝑅2 =

0,266. This is however still quite low.  

 

Figure 13.46: Normalized excess pore pressure (
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝑑
⁄ ) versus 1 − 1

𝑆𝑡
⁄  for all sites together with different trend lines. 

Further description of the legend can be found above Figure 9.10. 
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Equation 12.12 actually suggests that the analytical linear elastic-perfectly plastic cavity 

expansion solution (CEM-EP), should be subtracted from the normalized excess pore 

pressure. This makes a lot of sense as we then will have removed the part of the measured 

pore pressure that can be described by the analytical solution. The part that is left must then 

be explained by other factors.  

This is illustrated in Figure 13.47, and we see that the result is quite similar to that of Figure 

13.46. However, the factor in front of 𝑥 in the regression lines is now directly comparable to 

the 𝛽 factor seen in Equation 12.12 (only 𝛽 is defined to be negative, so that 𝛽 = −3,838 for 

the Reg. All piles trend line). The coefficient of determination does not change significantly 

but increase to 𝑅2 = 0,274 for the trend line based on all the piles.  

 

Figure 13.47: Residual between the measured normalized excess pore pressure and the analytical linear elastic-perfectly 

plastic cavity expansion method solution (CEM-EP) (i.e.
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝑑
− 𝑙𝑛 (

𝐺𝑢

𝑠𝑢𝑑
)) against the factor 1 −

1

𝑆𝑡
  found in Chapter 12.7. 

Including the data from all sites and different trend lines. Further description of the legend can be found above Figure 9.10. 
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The 𝛽 can be related to the remoulded limit by Equation 12.13. The regression line in Figure 

13.47, based on the data from all the piles, then suggests a remoulded limit of 
rr

r0
⁄ = 0,242.  

Similarly to Figure 12.25 showing a decreasing excess pore pressure due to increasing 

sensitivity for 
rr

r0
⁄ = 6 and ln (

𝐺𝑢

𝑠𝑢
) = ln (

7500

37
) = 5,312, Figure 13.48 shows an increasing 

excess pore pressure with increasing sensitivity when 
rr

r0
⁄ = 0,242 and ln (

𝐺𝑢

𝑠𝑢
) =

ln (
18394

73,7
) = 5,520. These values of 𝐺𝑢 and 𝑠𝑢𝐷 is, as seen in Table 14.1, the average values 

of the dataset presented in Table 13.6. As discussed in Chapter 12.7 the excess pore pressure 

will increase due to softening if  
𝑟𝑟

𝑟0
< 𝑒

1
2⁄ ≈ 1,649 as seen in Equation 12.11.  

 

Figure 13.48: Normalized excess pore pressure (
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
⁄ ) minus the CEM-EP solution (𝑙𝑛 (

𝐺

𝑠𝑢𝐷
)) versus 1 − 1

𝑆𝑡
⁄ . The 

blue line represents Equation 12.10 with 𝑙𝑛 (
𝐺

𝑠𝑢𝐷
) = 𝑙𝑛 (

18394

73,7
) = 5,5198 and 

𝑟𝑟

𝑟0
= 0,242 → 𝛽 = −3,838 
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However, Figure 13.47 shows that many of the sites, especially the insensitive sites, have a 

lower excess pore pressure than what the CEM-EP solution predicts. It is seen that using 𝛽 =

−3,838 in Equation 12.12, does not give the same results as the trend lines in Figure 13.47, 

due to this. 

Karlsrud (2012), among many others, have shown that the overconsolidation ratio (𝑂𝐶𝑅) (i.e. 

dilation/contraction) influence the excess pore pressure generated due to pile driving. As 

already discussed the sites with very high 𝑂𝐶𝑅 are all insensitive (i.e. plottet at 1 −
1

St
= 0 in 

Figure 13.47). This means the effect of 𝑂𝐶𝑅 affect and disturbs the picture drawn by Figure 

13.47. In the same way, Figure 9.11 only showing 𝑂𝐶𝑅 against excess pore pressure is 

probably disturbed by other factors such as sensitivity. If only the sites with 𝑂𝐶𝑅 ≤ 2 is 

included then the trend line from Figure 13.47 becomes completely straight as seen in Figure 

13.49. This has also been checked directly against sensitivity (𝑆𝑡) on the x-axis, giving the 

same result as Figure 13.49 indicates. 

 

Figure 13.49: Residual between the measured normalized excess pore pressure and the analytical linear elastic-perfectly 

plastic cavity expansion method solution (CEM-EP) (i.e.
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝑑
− 𝑙𝑛 (

𝐺𝑢

𝑠𝑢𝑑
) ) against the factor 1 −

1

𝑆𝑡
  found in Chapter 12.7. 

Including the data from the sites with 𝑂𝐶𝑅 ≤ 2 and a trend line based on all the piles. Further description of the legend can 

be found above Figure 9.10. 
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The y-axis in Figure 13.50 is the residual between the measured excess pore pressure and the 

predicted excess pore pressure based on the trend lines suggested by Karlsrud (2012) in 

Figure 9.11 (Equation 14.16). This indicates that the trend lines of Karlsrud (2012) capture the 

trend with sensitivity seen in Figure 13.46, without using 𝑆𝑡 as input. This means that the 

𝑂𝐶𝑅 is probably the main reason for the increase, but we cannot say if the increase is also 

somewhat related to sensitivity. Since sensitivity and 𝑂𝐶𝑅 are very correlated in our dataset 

(low sensitivity when 𝑂𝐶𝑅 is high, and high sensitivity for low 𝑂𝐶𝑅) it is hard to separate the 

effects. This is discussed more thoroughly in Chapter 14.9. However, a decrease in excess 

pore pressure with increasing sensitivity is not seen in any of the plots. 

 

Figure 13.50: Measured excess pore pressure minus predicted excess pore pressure based on Equation 14.16 by Karlsrud 

(2012) against 1 − 1
𝑆𝑡

⁄ . Including the data from all sites and a trend line based on all the piles. Further description of the 

legend can be found above Figure 9.10. 
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13.5  Coefficient of lateral earth pressure for all the sites 

The coefficient of lateral earth pressure (𝐾0) is very correlated to the 𝑂𝐶𝑅. Looking at the 

trend line based on all the sites we see a clear decrease in 
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
⁄  for increasing 𝐾0, as 

shown by Figure 13.51. This is solely due to 𝑂𝐶𝑅, and is actually the opposite trend of what 

we found when using CEM-MCC. In Chapter 12.6 we found that the ∆𝑢𝑚𝑎𝑥 increase with 

𝐵𝑙𝑛(𝐾0) increasing. Where 𝐵 is a factor which was found to be positive in the CEM-MCC 

analyses, and is assumed to depend on the stiffness and strength of the soil. 

 

Figure 13.51: Normalized excess pore pressure (
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
⁄ ) versus the coefficient of lateral earth pressure (𝐾0) in a linear 

scale for all sites together with a trend line based on all the piles. Further description of the legend can be found above 

Figure 9.10. 

If one use the trend lines proposed by Karlsrud (2012), and plot the residual (i.e. ∆𝑢𝑚𝑎𝑥 −

∆𝑢𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) against 𝐾0, as seen in Figure 13.52, the result is a much weaker, but still 

decreasing trend.  
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Figure 13.52: Measured excess pore pressure minus predicted excess pore pressure based on Equation 14.16 by Karlsrud 

(2012) against the coefficient of lateral earth pressure. Including the data from all sites and a trend line based on all the 

piles. Further description of the legend can be found above Figure 9.10. 

Based on these results an increase in excess pore pressure due to an increase in the coefficient 

of lateral earth pressure seems very unlikely. The trend found in the CEM-MCC model cannot 

be seen in the empirical data. However, as for the sensitivity, 𝐾0 is very correlated to the 

𝑂𝐶𝑅. It could be that using CEM-MCC gives a larger decrease with increasing 𝑂𝐶𝑅 than the 

trend lines of Karlsrud (2012), and that an increase due to high 𝐾0 balance the prediction. This 

is however purely speculative and based on Figure 13.52 we see that using 𝑂𝐶𝑅 alone capture 

the trend of the data. 

  



Chapter 13. Measured excess pore pressure from 12 different sites         Per-Anders Mortensen 

248 

13.6  Empirical data summarized in a table 

Table 13.6: Summary of pile data, site conditions and measured excess pore pressure at the pile shaft for the different sites. 

Where the question mark (?) means the value have not been determined (also means it has been unnecessary to determine 

that parameter for our use for that specific site). 

 

 

Test site Pile name
Depth of 

measuring
Pile diameter

Pile wall 

tickness

Equivalent pile 

radius

Embedded 

length
Depth of pile tip Jacked or driven Sensitivity

Direct undrained 

shear strength

Initial pore 

pressure

Initival vertical 

effective stress

z [m] D [mm] t [mm] Req [mm] L [m] ztip [m] [-] St [-] suD [kPa] u0 [kPa] sig'v0 [kPa]

Haga B-piles 1,9 154 4,5 77 4,85 4,85 Jacked 4,8 41,5 5 39

3,4 154 4,5 77 4,85 4,85 Jacked 4,6 41 -2 73

Onsøy A1 7,5 219 8,2 109,5 10 15 Hammered 5 15 73,3 52

10 219 8,2 109,5 10 15 Hammered 5 17,5 101,5 64

12,5 219 8,2 109,5 10 15 Hammered 5 21 129,7 76

A2 15 219 8,2 109,5 10 22,5 Hammered 5 23 157,9 88

17,5 219 8,2 109,5 10 22,5 Hammered 8 26 186,1 100

20 219 8,2 109,5 10 22,5 Hammered 7 28 214,3 112

A3 22,5 219 8,2 109,5 10 30 Hammered 6 31,5 242,5 125

25 219 8,2 109,5 10 30 Hammered 6 34,5 270,7 139

27,5 219 8,2 109,5 10 30 Hammered 6 38 298,9 152

A4 30 219 8,2 109,5 10 37,5 Hammered 6 42 327,1 166

32,5 219 8,2 109,5 10 37,5 Hammered 6 45,5 355,3 180

35 219 8,2 109,5 10 37,5 Hammered 6 49 383,5 195

B1(open) 7,5 809 9,5 87,2 10 15 Hammered 5 15,5 73,3 52

10 809 9,5 87,2 10 15 Hammered 5 17,5 101,5 64

12,5 809 9,5 87,2 10 15 Hammered 5 21 129,7 76

C1 10 219 8,2 109,5 30 35 Hammered 5 17,5 101,5 64

15 219 8,2 109,5 30 35 Hammered 5 23 157,9 88

20 219 8,2 109,5 30 35 Hammered 7 28 214,3 112

25 219 8,2 109,5 30 35 Hammered 6 34,5 270,7 139

30 219 8,2 109,5 30 35 Hammered 6 42 327,1 166

35 219 8,2 109,5 30 35 Hammered 6 49 383,5 195

Lierstranda A7 7,5 219 8,2 109,5 10 15 Hammered 8 25,2 83 61,1

10 219 8,2 109,5 10 15 Hammered 8 30,8 112,6 70,5

12,5 219 8,2 109,5 10 15 Hammered 8 33,3 142,2 86,5

A8 15 219 8,2 109,5 10 22,5 Hammered 12 35,7 171,8 102,4

17,5 219 8,2 109,5 10 22,5 Hammered 12 38,5 201,5 119,8

20 219 8,2 109,5 10 22,5 Hammered 12 41,3 231,1 137,2

A9 22,5 219 8,2 109,5 10 30 Hammered 12 44,5 260,7 154,9

25 219 8,2 109,5 10 30 Hammered 12 47,6 290,3 172,5

27,5 219 8,2 109,5 10 30 Hammered 12 50,4 320 191

A10 30 219 8,2 109,5 10 37,5 Hammered 12 53,3 349,6 209,6

32,5 219 8,2 109,5 10 37,5 Hammered 12 56,3 379,2 229

35 219 8,2 109,5 10 37,5 Hammered 12 58,8 408,8 248,4

B2(open) 7,5 809 9,5 87,2 10 15 Hammered 8 25,2 83 61,1

10 809 9,5 87,2 10 15 Hammered 8 30,8 112,6 70,5

12,5 809 9,5 87,2 10 15 Hammered 8 33,3 142,2 86,5

Tilbrooke Grange NGI-A 5,1 219 16 109,5 9,5 12,5 Hammered 1 270 28 81

7,6 219 16 109,5 9,5 12,5 Hammered 1 400 51 114

10,1 219 20 109,5 9,5 12,5 Hammered 1 300 74 145

NGI-B 22,5 219 16 109,5 10 27,5 Hammered 1 465 305 305

25 219 16 109,5 10 27,5 Hammered 1 485 340 340

LDP (open) 8 762 36 305,2 30,5 30,5 Hammered 1 365 55 118

14,3 762 36 305,2 30,5 30,5 Hammered 1 350 112 200

26,2 762 36 305,2 30,5 30,5 Hammered 1 460 210 360

Bothkennar IC-pile 3,5 101,6 ? 50,5 4,8 6,0 Jacked 5,6 18,1 27 32,9

4,7 101,6 ? 50,5 4,8 6,0 Jacked 6,6 20,2 38,5 39,7

Cowden IC-pile 3,8 101,6 ? 50,5 3,74 6,24 Jacked 1 138 25,2 56,5

4,9 101,6 ? 50,5 3,74 6,24 Jacked 1 101 38,6 71,2

Canons Park IC-pile 2,8 101,6 ? 50,5 4,06 6,06 Jacked 1 80 18 38

4 101,6 ? 50,5 4,06 6,06 Jacked 1 78 30 50

Empire PLS 44,7 38,3 ? 19 1,2 45,7 Pushed 1,65 66 475 296

73,6 38,3 ? 19 1,2 74,6 Pushed 1,65 116 775 538

3"-Open 43,0 76,2 Assumed 3 14,8 4,28 45,9 Pushed 1,65 64 457 290

3"-Closed 48,8 76,2 ? 38 6,42 53,8 Pushed 1,65 72 526 328

1,72"-Closed/x-probe 36,6 43,6 ? 21,8 3 37,6 Pushed 1,65 56,5 384 240

Saugus PLS 10,5 38 ? 19 1,2 11,1 Pushed 6 45,9 90 75,1

12 38 ? 19 1,2 12,6 Pushed 6 45,3 105,3 86,5

13,6 38 ? 19 1,2 14,2 Pushed 6 44,7 120,7 98

19,1 38 ? 19 1,2 19,7 Pushed 6 44 175,4 140,5

25,1 38 ? 19 1,2 25,7 Pushed 6 42,4 237,1 185,1

31,2 38 ? 19 1,2 31,8 Pushed 6 49,7 296,9 230,9

34,9 38 ? 19 1,2 35,7 Pushed 6 55,8 333,5 259,3

35,8 38 ? 19 1,2 36,5 Pushed 6 57,1 342,7 265,3

West Delta LP (open) 14 762 19,1 119,1 71,3 71,3 Hammered 1,5 14 330 51

23,9 762 19,1 119,1 71,3 71,3 Hammered 1,4 23 450 97

33,1 762 19,1 119,1 71,3 71,3 Hammered 1,5 29,5 575 137

42,2 762 19,1 119,1 71,3 71,3 Hammered 1,5 37 700 162

51,4 762 19,1 119,1 71,3 71,3 Hammered 1,5 46 830 195

60,5 762 19,1 119,1 71,3 71,3 Hammered 1,7 57 970 223

68,1 762 19,1 119,1 71,3 71,3 Hammered 1,7 66 1070 252

3"-Closed 17,7 76,2 ? 38 4,28 20,8 Pushed 1,4 17,5 380 67

45,1 76,2 ? 38 4,28 48,2 Pushed 1,5 39 750 178

3"-Open 45,1 76,2 Assumed 3 21,1 4,28 48,2 Pushed 1,5 39 750 178

54,3 76,2 Assumed 3 21,1 4,28 57,4 Pushed 1,6 48,5 885 203

63,4 76,2 Assumed 3 21,1 4,28 66,5 Pushed 1,7 61 1015 235

Hamilton TP1-JC 6,3 111,9 ? 56 12,2 12,2 Jacked 7 18 51 47

TP3-DC 6,2 111,9 ? 56 12,2 12,2 Hammered 7 17,8 50 46

St. Alban Pile B 2 219 8 109,5 6,1 7,6 Jacked 10,4 11 15,7 19,0

3 219 8 109,5 6,1 7,6 Jacked 14 14,4 25,5 23,3

4 219 8 109,5 6,1 7,6 Jacked 16 16 35,3 29,4

5 219 8 109,5 6,1 7,6 Jacked 17 20 45,2 35,6

6 219 8 109,5 6,1 7,6 Jacked 22 23,2 55,0 41,7
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Test site Pile name
Depth of 

measuring
Plasticity index Water content

Overconsolidat-

ion ratio

Coefficient of 

lateral earth 

pressure

Direct over 

active undrained 

shear strength

Active 

undrained shear 

strength

Stifness to 

strength ratio 

from Fig. 5.4

Undrained shear 

modulus from 

Fig. 5.4

Modulus 

number

Undrained shear 

modulus from 

Eq. 13.8

Excess pore 

pressure at the 

pile shaft

z [m] Ip [%] w [%] OCR [-] K0 [-] suD/suC [-] suC [kPa] Gu/suC [-] Gu [kPa] m0 [-] Gu [kPa] Δumax [kPa]

Haga B-piles 1,9 11 35 8,21 1,52 0,714 58,1 45 3236 16,0 1522 144

3,4 15 40 3,7 0,87 0,714 57,4 130 3584 16,0 4100 271

Onsøy A1 7,5 37 64 1,46 0,64 0,725 20,7 150 4459 7,0 3640 76

10 40 68 1,3 0,62 0,725 24,1 165 5319 6,3 4032 96

12,5 42,5 65,5 1,3 0,62 0,725 29 165 6222 6,6 5016 135

A2 15 45 63 1,3 0,61 0,725 31,7 165 7168 6,8 5984 130

17,5 46 62,5 1,3 0,60 0,725 35,9 165 8222 7,0 7000 161

20 47 62 1,3 0,60 0,725 38,6 165 9452 7,2 8064 222

A3 22,5 44,5 58 1,3 0,60 0,725 43,4 230 10674 7,4 9250 210

25 42 54 1,3 0,59 0,725 47,6 230 12026 7,7 10634 254

27,5 42 53,5 1,3 0,58 0,725 52,4 230 13440 7,9 12008 282

A4 30 42 53 1,3 0,58 0,725 57,9 230 14993 8,2 13529 288

32,5 41 52,2 1,3 0,57 0,725 62,8 230 3236 8,4 15120 315

35 40 52 1,3 0,57 0,725 67,6 230 3584 8,7 16868 391

B1(open) 7,5 37 64 1,46 0,64 0,725 21,4 150 4459 7,0 3640 36

10 40 68 1,3 0,62 0,725 24,1 165 3584 6,3 4032 64

12,5 42,5 65,5 1,3 0,62 0,725 29 165 5319 6,6 5016 105

C1 10 40 68 1,3 0,62 0,725 24,1 165 7168 6,3 4032 92

15 45 63 1,3 0,61 0,725 31,7 165 10070 6,8 5984 137

20 47 62 1,3 0,60 0,725 38,6 165 12026 7,2 8064 152

25 42 54 1,3 0,59 0,725 47,6 230 14993 8,2 11329 206

30 42 53 1,3 0,58 0,725 57,9 230 6246 8,2 13529 276

35 40 52 1,3 0,57 0,725 67,6 230 6580 8,7 16868 396

Lierstranda A7 7,5 23 42 2,32 0,77 0,70 36 150 8612 11,5 7027 141

10 25 43 2,3 0,75 0,70 44 150 10741 10,5 7403 181

12,5 19 39 2,22 0,75 0,70 47,6 210 13844 11,2 9688 191

A8 15 16 34 1,92 0,65 0,70 51 240 17074 11,8 12083 183

17,5 15 33,5 1,62 0,60 0,70 55 280 19965 13,0 15574 232

20 14 33 1,4 0,56 0,70 59 320 23000 14,0 19208 259

A9 22,5 13 32,5 1,29 0,53 0,70 63,6 340 25467 14,5 22461 275

25 12 32 1,2 0,50 0,70 68 360 27947 15,0 25875 308

27,5 12 30 1,17 0,47 0,70 72 365 30533 15,0 28650 342

A10 30 12 28 1,15 0,45 0,70 76,1 365 33120 15,0 31440 276

32,5 12 27,5 1,17 0,45 0,70 80,4 365 6246 15,0 34350 333

35 12 27 1,12 0,45 0,70 84 370 6580 15,0 37260 326

B2(open) 7,5 23 42 2,32 0,77 0,70 36 150 8612 11,5 7027 79

10 25 43 2,3 0,75 0,70 44 150 25920 10,5 7403 120

12,5 19 39 2,22 0,75 0,70 47,6 220 31920 11,2 9688 130

Tilbrooke Grange NGI-A 5,1 22 15 34 2,60 0,70 385,7 22 37378 36,0 29160 92

7,6 22 15 50 2,60 0,70 571,4 18 77267 31,5 35910 69

10,1 23 15 13 2,15 0,70 428,6 34 81600 29,0 42050 171

NGI-B 22,5 35 17 12 1,55 0,70 664,3 36 34089 28,5 86925 913

25 35 17 11,5 1,40 0,70 692,9 37 42667 27,0 91800 292

LDP (open) 8 22 15 35 2,60 0,70 521,4 22 89600 32,5 38350 420

14,3 26 15 14 1,80 0,70 500 33 5264 24,0 48000 420

26,2 32 18 10 1,35 0,70 657,1 39 6352 28,0 100800 1222

Bothkennar IC-pile 3,5 19 61 2,6 0,95 0,80 22,6 100 15067 18,0 5922 110

4,7 21 68 2,22 0,90 0,80 25,3 110 18987 18,0 7146 125

Cowden IC-pile 3,8 19 17 21,5 2,35 0,70 197,1 26 31667 Assumed 30 16950 250

4,9 18 16 13 1,75 0,70 144,3 34 23333 Assumed 30 21360 260

Canons Park IC-pile 2,8 54 28 41 1,90 0,75 107 30 21049 ? 31667 -60

4 40 30 32 1,65 0,75 104 36 38258 ? 23333 -70

Empire PLS 44,7 59 46 1,15 0,65 0,775 85,2 250 23324 8,0 23680 488

73,6 50 38 1,2 0,65 0,775 149,7 360 23324 8,0 43040 893

3"-Open 43,0 63 45 1,16 0,74 0,775 82,6 250 23324 8,0 23200 327

3"-Closed 48,8 63 47 1,16 0,74 0,775 92,9 250 10948 8,0 26240 753

1,72"-Closed/x-probe 36,6 63 45 1,20 0,76 0,775 72,9 245 11380 8,0 19200 725

Saugus PLS 10,5 17 33 4,6 0,95 0,75 61,2 100 11760 16,4 12316 108

12 20 43 3,8 0,88 0,75 60,4 100 15112 14,8 12802 159

13,6 26 42 3,2 0,83 0,75 59,6 110 15795 13,5 13230 245

19,1 18,5 40 2,0 0,68 0,75 58,7 250 19293 12,1 17001 345

25,1 19 45 1,35 0,60 0,75 56,5 220 21205 9,6 17770 400

31,2 25 43 1,25 0,58 0,75 66,3 240 21696 9,4 21705 479

34,9 22 41 1,25 0,58 0,75 74,4 240 3989 9,2 23856 575

35,8 20 41 1,25 0,58 0,75 76,1 240 10347 9,2 24408 579

West Delta LP (open) 14 53 70 1,2 0,72 0,75 18,7 180 17658 8,8 4488 101

23,9 37 50 1,15 0,64 0,75 30,7 250 20880 12,0 11640 110

33,1 33 42 1,1 0,63 0,75 39,3 260 18027 14,5 19865 100

42,2 34 39,5 1,1 0,63 0,75 49,3 380 17245 14,5 23490 191

51,4 47 48 1,15 0,66 0,75 61,3 250 15680 10,4 20280 180

60,5 58 55,5 1,25 0,71 0,75 76 240 5658 8,7 19401 328

68,1 65 56 1,3 0,74 0,75 88 230 20094 7,0 17640 481

3"-Closed 17,7 49 65 1,2 0,70 0,75 23,3 180 20094 9,5 6365 141

45,1 35 39 1,1 0,63 0,75 52 380 18044 12,7 22606 183

3"-Open 45,1 35 39 1,1 0,63 0,75 52 380 17756 12,7 22606 122

54,3 49 52 1,2 0,67 0,75 64,7 245 2089 10,0 20300 259

63,4 65 57 1,3 0,73 0,75 81,3 230 2044 8,5 19975 348

Hamilton TP1-JC 6,3 55 97 1,4 0,80 0,80 22,5 155 917 5,0 2350 76

TP3-DC 6,2 55 97 1,4 0,80 0,80 22,3 155 1243 5,0 2300 55

St. Alban Pile B 2 80 90 2,02 0,90 0,80 13,8 115 1568 6,0 1140 48

3 60 80 2,02 0,90 0,80 18 115 2215 6,0 1398 70

4 40 60 2,01 0,85 0,80 20 115 2595 6,0 1764 94

5 35 60 2,01 0,85 0,80 25 115 2875 7,0 2492 116

6 37 60 2,01 0,85 0,80 29 115 3335 7,0 2919 137
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14  Regression based on the empirical data 

When looking at Figure 9.13 one tries to see a trend based on the plasticity index (𝐼𝑃) on one 

axis, and the normalized excess pore pressure (
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
⁄ ) on the other axis. The data shows 

no clear trend, however all the soil parameters change from site to site so there is more than 

just the 𝐼𝑃 changing. In Figure 9.11 the overconsolidation ratio and normalized excess pore 

pressure are plotted. Here the data shows a clear trend, and the trend line proposed by 

Karlsrud (2012) based on that figure is looked at in Chapter 14.8. Knowing that the 

overconsolidation ratio (𝑂𝐶𝑅) and the undrained shear strength (𝑠𝑢) influence the excess pore 

pressure it is hard to make a two dimensional plot showing the effect of other variables for 

example 𝐼𝑃. Multivariate analysis is a tool to find patterns and relationships between several 

variables simultaneously.  

14.1  Multivariate linear regression 

We will in this chapter go through some basic statistical values and the basic principle of the 

linear multivariate analysis in an informal way. Equation 14.1 shows the mathematical 

expression assumed: 

 𝑦�̂� = 𝛼0 + ∑ 𝛼𝑖 ∗ 𝑥𝑖

𝑝

𝑖=1

  (14.1) 

where 𝑥𝑖 is the regressors or input variables, 𝛼𝑖 is the parameters and 𝑦�̂� is the dependent 

variable. The residual sum of squares (RSS) is the squared error between the prediction and 

the measured values summed together for all the data points in the dataset. This can be written 

mathematically as: 

 𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑦�̂�)
2

𝑛

𝑖=1

   (14.2) 

where 𝑅𝑆𝑆 is the residual sum of squares, 𝑦𝑖 is the regressand or the measured variable, and 𝑦�̂� 

is the predicted variable found by using Equation 14.1.
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The basic principle is to minimize 𝑅𝑆𝑆 by changing the parameters (𝛼𝑖). There are many ways 

to evaluate a regression. We will primarily use the coefficient of determination together with 

residual plots, maximum error, mean value and standard error. The coefficient of 

determination (𝑅2) is defined as: 

 𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=1  

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1  

  (14.3) 

where 𝑇𝑆𝑆 is the total sum of squares, defined as the equation indicates, and �̅� is the mean 

value of the measured variable. The 𝑅2 is a number between one and minus infinity. When 

𝑅2 = 1 then the measured values are predicted perfectly with the regression (i.e. 𝑦𝑖 = 𝑦�̂�). If  

𝑅2 = 0 then 𝑇𝑆𝑆 = 𝑅𝑆𝑆, meaning the mean value (�̅�) is an equally good prediction as 𝑦�̂�. If 

𝑅2 is negative then the mean value (�̅�) gives a better prediction than the regression. 𝑇𝑆𝑆 is 

closely related to the variance (𝑠2) as: 

 𝑠2 =
1

𝑛
∑(𝑦𝑖 − �̅�)2

𝑛

𝑖=1

=
𝑇𝑆𝑆

𝑛
  (14.4) 

where 𝑛 is the number of data points. Also the standard deviation of the sample (𝑠), is simply 

the square of the variance. We will use the name standard error when 𝑅𝑆𝑆 is used in Equation 

14.4 instead of 𝑇𝑆𝑆. This then gives the difference between the predictions and the measured 

values on average. 

If one adds a parameter then 𝑅2 will always increase in a linear multivariate regression. If the 

amount of parameters equal the number of data points in the dataset then 𝑅2 will always be 

equal to one. When comparing two regressions with a different number of parameters it is 

therefore common to use the adjusted coefficient of determination (�̅�2). The 𝑅𝑆𝑆 and 𝑇𝑆𝑆 are 

so called biased estimates of the error and is replaced by unbiased versions (dividing with 𝑛 −

𝑝 − 1 and 𝑛 − 1, respectively). The �̅�2 is then only increasing when the increase in 𝑅2 is 

more than what one would expect to see by chance.  
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Written mathematically this gives: 

 �̅�2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
∗

𝑛 − 1

𝑛 − 𝑝 − 1
= 1 − (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑝 − 1
  (14.5) 

where 𝑝 are the number of parameters (𝛼𝑖) used in the regression. �̅�2 can then be used to 

evaluate regressions with a different number of parameters. However, �̅�2 can not be used to 

evaluate regressions where the number of data points (𝑛) differ. 

14.2  Statistics of the dataset 

We will here present some boundaries and standard statistical values of the dataset presented 

in Table 13.6. The dataset contains 𝑛 = 84 data points from 12 different sites. The dependent 

variable is the excess pore pressure at the pile shaft (∆𝑢𝑚𝑎𝑥). There are 16 regressors. Six of 

these are related to the pile and contains little uncertainty. These are the measurement depth 

(𝑧), the pile diameter (𝐷), the pile wall thickness (𝑡), the equivalent pile radius (𝑅𝑒𝑞), the 

embedded length (𝐿) and the depth of the pile tip (𝑧𝑡𝑖𝑝).  

The remaining 10 regressors are related to the soil conditions, and are more uncertain. 

Namely: the sensitivity (𝑆𝑡), the direct undrained shear strength (𝑠𝑢𝐷), the initial pore pressure 

(𝑢0), the initial vertical effective stress (𝜎𝑣0
′ ), the plasticity index (𝐼𝑃), the water content (𝑤), 

the overconsolidation ratio (𝑂𝐶𝑅), the coefficient of lateral earth pressure (𝐾0), the ratio 

between direct and active undrained shear strength (
𝑠𝑢𝐷

𝑠𝑢𝐶
⁄ ), and the undrained shear 

modulus (𝐺𝑢) derived by Equation 13.8 as discussed in Chapter 13.2. Table 14.1 shows the 

range of the different regressors and the mean value in the dataset for the given regressor. 

Table 14.1: Mean value and range (minimal-maximal value) of the regressor from the dataset. 

Regressor Mean Range 

𝑧 21,8𝑚 1,9 ↔ 73,6𝑚 

𝐷 278𝑚𝑚 38 ↔ 809𝑚𝑚 
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𝑡 11,1𝑚𝑚 3 ↔ 36𝑚𝑚 

𝑅𝑒𝑞 90,8𝑚𝑚 14,8 ↔ 305,2𝑚𝑚 

𝐿 15,0𝑚 1,2 ↔ 71,3𝑚 

𝑧𝑡𝑖𝑝 28,7𝑚 4,9 ↔ 74,6𝑚 

𝑆𝑡 5,7 1 ↔ 22 

𝑠𝑢𝐷 73,7𝑘𝑃𝑎 11 ↔ 485𝑘𝑃𝑎 

𝑢0 267,2𝑘𝑃𝑎 −2 ↔ 1070𝑘𝑃𝑎 

𝜎𝑣0
′  139,5𝑘𝑃𝑎 19 ↔ 538𝑘𝑃𝑎 

𝐼𝑃 35,0% 11 ↔ 80% 

𝑤 46,6% 15 ↔ 97% 

𝑂𝐶𝑅 4,87 1,1 ↔ 50 

𝐾0 0,869 0,45 ↔ 2,6 

𝑠𝑢𝑑
𝑠𝑢𝑐

⁄  0,735 0,7 ↔ 0,8 

𝐺𝑢 18394𝑘𝑃𝑎 1032 ↔ 100800𝑘𝑃𝑎 

When using one of the regression lines proposed herein it is important that the regressors used 

are within the range of the regressors of the dataset. The mean value indicates where the 
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regression is most dependable, but the residual plot of the regression should also be used to 

see how well the regression does in the specific range. 

Table 14.2 shows similar properties for the dependent variable (i.e. the excess pore pressure at 

the pile shaft) together with the standard deviation from the mean value. 

Table 14.2: Mean value, range (minimal-maximal value) and standard deviation of the dependent variable. 

Dependent variable Mean value Range Standard deviation 

∆𝑢𝑚𝑎𝑥 252,9𝑘𝑃𝑎 −70 − 1222𝑘𝑃𝑎 212,9𝑘𝑃𝑎 

If the average direct undrained shear strength (�̅�𝑢𝐷) and the average undrained shear modulus 

(�̅�𝑢) from Table 14.1 is used in the linear elastic-perfectly plastic (EP) analytical solution (i.e. 

Equation 5.15) one gets: ∆�̅�𝑚𝑎𝑥 = �̅�𝑢𝐷 ln (
�̅�𝑢

�̅�𝑢𝐷
) = 73,7 ∗ ln (

18394

73,7
) = 406,8𝑘𝑃𝑎. The 

average excess pore pressure found from the dataset, as seen in Table 13.2, is ∆�̅�𝑚𝑎𝑥 =

252,9. The analytical solution is grossly over-predicting the data on average.  

If the Modified Cam Clay (MCC) model is used the average parameters can, as an estimate, 

be based on 𝑒0 = 2,7𝑤, 𝜆 =
1+𝑒0

𝑚0
 and 𝜅 =

1+𝑒0

𝑚𝑂𝐶
=

1+𝑒0

5𝑚0
 according to Nordal (2018). Using the 

parameters from Table 14.1 we get: �̅� = 46,6%, �̅�0 = 1,258, �̅� = 0,182 and �̅� = 0,0364. 

Where the average modulus number (�̅�0) is found from Table 13.6 to be equal to 12,4. The 

model from Chapter 11 is then modified so that 𝑢0 = �̅�0 = 267,2𝑘𝑃𝑎, and 𝜎𝑣0
′ = 𝜎𝑣0

′ =

139,5𝑘𝑃𝑎. Lastly, the inputted vertical overconsolidation ratio equals the average of Table 

14.1 (i.e. 𝑂𝐶𝑅̅̅ ̅̅ ̅̅ = 4,87), and the slope of the critical state line (𝑀) is modified so that 𝜏𝑚𝑜𝑏 =

�̅�𝑢𝑑 = 73,7𝑘𝑃𝑎.  

This gave ∆𝑢 = 182,8𝑘𝑃𝑎 at the closest stress point (i.e. 𝑟 𝑟0⁄ = 1,15). Extrapolating this to 

the pile surface gave ∆𝑢𝑚𝑎𝑥 ≈ 195𝑘𝑃𝑎. Compared to the average excess pore pressure found 

from the dataset (i.e. ∆�̅�𝑚𝑎𝑥 = 252,9) this is surprisingly a bit low. However, using the mean 

values of the data is not the same as using site specific parameters as seen in Chapter 14.3 for 

the CEM-EP solution. Using site specific data for each case is however quite cumbersome so 

this is the best estimate of what the CEM-MCC model would give for our dataset.  
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Based on the information from Chapter 12.6 and Equation 12.7 this gives: 
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
=

195

73,7
=

ln (
𝐺𝑢

𝑠𝑢𝐷
) − 𝐴𝑙𝑛 (

𝑂𝐶𝑅

2
) = ln (

18394

73,7
) − 𝐴𝑙𝑛 (

4,87

2
). Solved for 𝐴 one gets 𝐴 = 3,23. This is then 

compared to the results of Chapter 14.4 and 14.5. 

14.3  Comparison between CEM-EP and the empirical data 

The excess pore pressure at the pile shaft can, according to the Cavity Expansion Method 

(CEM) in a linear elastic-perfectly plastic material (CEM-EP, see Chapter 5 and Equation 

5.15), be expressed by: 

  ∆�̂�𝑚𝑎𝑥 = 𝑠𝑢𝐷 ln (
𝐺𝑢

𝑠𝑢𝐷
) (14.6) 

If Equation 14.6 is used to estimate the measured excess pore pressure with the soil 

parameters for the specific sites the mean value becomes 396,6𝑘𝑃𝑎. Which is higher than the 

mean found from the measured data (i.e. 252,9𝑘𝑃𝑎), meaning that the CEM-EP solution 

over-predicts the excess pore pressure on average. Notice that using the mean undrained shear 

strength and mean undrained shear modulus of the dataset (Table 14.1) does not give the same 

result (∆�̅�𝑚𝑎𝑥 = 406,8).  

The standard error between the prediction and the measured value is 485,9𝑘𝑃𝑎. The 

maximum error is −2251𝑘𝑃𝑎 and comes from the Tilbrook Grange site, where the prediction 

is way too high as Figure 14.1 indicates. This is because of the high strength and stiffness of 

the soil at this site. As there are no parameters being optimized 𝑝 = 0 and 𝑅2 = �̅�2 = −4,21. 

This means using the mean value of the data set (i.e. 252,9𝑘𝑃𝑎) for all the sites give a better 

prediction on average than Equation 14.6.  

Figure 14.1 shows the residual plot of the prediction given by Equation 14.6. Residual plots 

are most commonly plotted with the error in the prediction (i.e. ∆𝑢𝑚𝑎𝑥,𝑖 − ∆�̂�𝑚𝑎𝑥,𝑖) on the y-

axis and the measured dependent variable on the x-axis. It was however chosen to show the 

measured value (∆𝑢𝑚𝑎𝑥,𝑖) on the y-axis, and the predicted value (∆�̂�𝑚𝑎𝑥,𝑖) on the x-axis. This 

does in principle not change the information obtained from the plot. If the data point lies on 

the 𝑥 = 𝑦-line then the prediction equals the measured value.  
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If it lies above the 𝑥 = 𝑦-line then the predicted value is too low, similarly if the data point is 

below the 𝑥 = 𝑦-line then the predicted value is too high.  

The residual plot should be used to check if there is a lot of data points in the predicted range 

and also if there is large errors in the predictions for the given range. By using the same 

system for the sites as previously explained, it is easy to check if the soil conditions at the site 

where the excess pore pressure is to be estimated are similar to the site defining the regression 

in a given range.  

We see from Figure 14.1 that the Tilbrook Grange site is grossly over-predicted due to the 

high stiffness and strength. This is also the reason why the mean value of the predictions are 

too high. Figure 14.2 shows that if the predicted value lies between 0 − 300𝑘𝑃𝑎 then the 

predictions seem to correspond relatively well to the data. This also explains why there are 

discrepancies between reports on whether the linear-elastic perfectly plastic solution is a good 

or bad estimation.  

 

Figure 14.1: Residual plot of the prediction obtained by Equation 14.6 for all sites. Further description of the legend can be 

found above Figure 9.10. 
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Looking more closely at the sites in Figure 14.2, it was found that most of the sites (except the 

Haga site) had an 𝑂𝐶𝑅 around or below two.  

 

Figure 14.2: Residual plot of the prediction below 800𝑘𝑃𝑎 obtained by Equation 14.6. Further description of the legend can 

be found above Figure 9.10. 

Figure 14.3 shows only the data for the sites with 𝑂𝐶𝑅 less than or equal to two. The 

analytical solution seems to fit very well when 𝑂𝐶𝑅 ≤ 2, except to the measurements done 

with model sized piles at Empire (Em-1,72”+3”Cl) and Saugus (BBC-MIT).  

The adjusted coefficient of determination is �̅�2 = 0,689 when 𝑂𝐶𝑅 ≤ 2, which is a huge 

improvement. This is however not directly comparable as we have reduced the number of data 

points from 𝑛 = 84 to 𝑛 = 59, but the scatter plot shows that the fit has improved 

significantly. It is clear that high 𝑂𝐶𝑅 affect the excess pore pressure, and that the analytical 

solution become insufficient. The mean value obtained for the sites with 𝑂𝐶𝑅 ≤ 2 is 258,7, 

while the predicted mean is 226,3. The maximum error is +396𝑘𝑃𝑎 for the Empire site (Em-



Chapter 14. Regression based on the empirical data           Per-Anders Mortensen 

258 

1,72”+3”Cl). This means that the excess pore pressure is under-predicted on average for the 

sites with 𝑂𝐶𝑅 ≤ 2, and by quite a lot for the Empire site specifically. 

 

Figure 14.3: Residual plot of prediction obtained by Equation 14.6 for the sites with 𝑂𝐶𝑅 ≤ 2. Further description of the 

legend can be found above Figure 9.10. 

The CEM-EP solution was also used with the undrained extension shear strength (𝑠𝑢𝐸) and 

the undrained compression shear strength (𝑠𝑢𝐶), to check if this gave a better fit. The 𝑠𝑢𝐸 was 

assumed to be given by: 𝑠𝑢𝐸 = 0,5𝑠𝑢𝐷 as a crude approximation based on trends suggested by 

Nordal (2018), while the 𝑠𝑢𝐶 is given in Table 13.6. Using the entire dataset we got �̅�2 =

−0,646 when using 𝑠𝑢𝐸, which is an approvement. This is however only because the high 

𝑂𝐶𝑅 sites are over-predicted. When only looking at the sites with 𝑂𝐶𝑅 ≤ 2, the adjusted 

coefficient of determination became �̅�2 = −0,0233. This is much lower than that obtained 

when using the direct undrained shear strength (𝑠𝑢𝐷).  
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When using 𝑠𝑢𝐶 we got �̅�2 = −9,30 which can be expected as using 𝑠𝑢𝐷 gave too high excess 

pore pressure on average. For the sites with 𝑂𝐶𝑅 ≤ 2 using 𝑠𝑢𝐶 gave �̅�2 = 0,712, which is an 

approvement. However, Figure 14.4 shows that this is not a better fit for most of the sites. The 

increase in �̅�2 is due to the large under-prediction for the Empire site (Em-1,72”+3”Cl). 

Based on the discussion from Chapter 5.3, the most theoretically correct value is to use the 

direct undrained shear strength when using the CEM-EP model. For low 𝑂𝐶𝑅 clays it could 

be argued that using 𝑠𝑢𝐶 gives an equally good prediction. However, we see that for most of 

the sites using 𝑠𝑢𝐶 gives an over-prediction. 

 

Figure 14.4: Residual plot of prediction obtained by Equation 14.6 with the compression undrained shear strength (𝑠𝑢𝐶) for 

the sites with 𝑂𝐶𝑅 ≤ 2. Further description of the legend can be found above Figure 9.10. 
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14.4  Regression based on the trend lines found in Chapter 12 

Our analysis of the Modified Cam Clay (MCC) model, the linear elastic-perfectly plastic (EP) 

analytical solution and the effect of an inner remoulded zone in the Cavity Expansion Method 

(CEM) have led us to the conclusion that the maximum excess pore pressure can be expressed 

as an equation with 𝑠𝑢𝐷, 𝐺𝑢, 𝑆𝑡, 𝑂𝐶𝑅 and 𝐾0 as input parameters.  

The analytical solution simply give: 

 
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
= ln (

𝐺𝑢

𝑠𝑢𝐷
)   (14.7) 

The CEM-MCC model gives the exact same solution as the EP solution, given 𝑂𝐶𝑅 = 2 and 

𝐾0 = 1, explaining the first term in Equation 14.8. The two last terms are based on the results 

of the numerical analysis in Chapter 12.6. The two factors 𝐴 and 𝐵 are positive according to 

the CEM-MCC model, but may very well depend on the stiffness (𝐺𝑢) and strength (𝑠𝑢𝐷). 

 
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
= ln (

𝐺

𝑠𝑢𝐷
) − 𝐴 ∗ ln (

𝑂𝐶𝑅

2
) + 𝐵 ∗ ln(𝐾0)   (14.8) 

From Chapter 12.7 we found that for a given remoulded limit (i.e. Equation 12.12): 

 
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
= ln (

𝐺𝑢

𝑠𝑢𝐷
) − (1 −

1

𝑆𝑡
) 𝛽 (14.9) 

where 𝛽 depends on the remoulded limit as seen in Equation 12.13 (see Chapter 12.7). This is 

however only the correct solution if the softening is modeled according to the model depicted 

in Figure 12.29. Based on this we might expect the maximum excess pore pressure to be 

represented by: 

 ∆�̂�𝑚𝑎𝑥 = 𝑠𝑢𝐷 (ln (
𝐺𝑢

𝑠𝑢𝐷
) − 𝛼1 (1 −

1

𝑆𝑡
) − 𝛼2 ln (

𝑂𝐶𝑅

2
) + 𝛼3 ln(𝐾0)) (14.10) 
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where the parameters (𝛼𝑖) may be estimated by using multivariate analysis. The resulting 

factors are given in Table 14.3. 

Table 14.3: Result of multivariate analysis of Equation 14.10 optimizing the 𝛼𝑖 parameters so that 𝑅𝑆𝑆 is minimized. The 

parameters are listed with three significant figures. 

𝛼1 −2,32 

𝛼2 2,78 

𝛼3 3,84 

It is worth noticing that 𝛼1 = −2,32 indicates 
𝑟𝑟

𝑟0
⁄ = 𝑒

𝛼1+1

2 = 0,52. Which is a little low 

according to the Haga site where Figure 2.1 shows a reduction of shear strength to about 0,9𝑟0 

and then an increase to the in-situ value at 3,6𝑟0. However, this is only one site and the 

remoulded limit indicate a full reduction to the remoulded shear strength while the values 

from Haga is indicating also where the shear strength only reduced slightly. 

𝛼2 has the same sign as we found in the numerical analysis, but using the CEM-MCC model 

we got 𝛼2 = 4,75 with 𝑠𝑢𝐷 = 37𝑘𝑃𝑎 and 𝐺𝑢 = 7500𝑘𝑃𝑎. Using the empirical data which 

have a mean shear strength of �̅�𝑢𝐷 = 73,7𝑘𝑃𝑎 and a mean undrained shear modulus of �̅�𝑢 =

18394𝑘𝑃𝑎, gave 𝛼2 = 3,23 as seen in Chapter 14.2. This compares quite well, the difference 

could very well be due to the fact that now the effect of 𝐾0 and 𝑆𝑡 is included as well.  

𝛼3 found in the numerical analysis with 𝑠𝑢𝐷 = 37𝑘𝑃𝑎 and 𝐺𝑢 = 7500𝑘𝑃𝑎 was 2,17, 

compared to 3,84 found from the empirical analysis. The difference here could very well 

come from the dependence of 𝛼3 to 𝑠𝑢𝐷 and 𝐺𝑢, or the inclusion of 𝑆𝑡. 

The regression line does show the same trends as the CEM-MCC model. The only factor that 

has a negative sign (i.e. shows the opposite effect than what we expected) is the 𝛼1 factor and 

as already explained this could very well be correct due to a low ratio of  
𝑟𝑟

𝑟0
⁄  giving an 

increase and not a decrease in excess pore pressure due to softening.  

The analysis gave a predicted mean excess pore pressure of 267,1𝑘𝑃𝑎 and a standard error of 

133,5𝑘𝑃𝑎. The maximum error is −634𝑘𝑃𝑎, and comes from the Tilbrook Grange site, as 
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before. The adjusted coefficient of determination was �̅�2 = 0,592, found by using Equation 

14.5 with 𝑝 = 3. 

Figure 14.5 shows the residual plot between the predictions made by Equation 14.10 and the 

measured values. From the residual plot we see quite a lot of similarities to Figure 14.1. The 

major difference is that Equation 14.10 correspond much better to the measured values at the 

Canons Park (CP-IC) and the Cowden (Co-IC) sites. The measurements for the small scaled 

closed-ended pile at Empire (Em-3”Cl) is grossly under-predicted in both plots. This holds 

true for all the regression lines proposed herein.  

The small scaled piles are driven at a faster rate than the real size piles and this could be the 

reason for the under-prediction, as mentioned in Chapter 9. However, the consolidation time 

is proportional to the square of the pile radius and this should counteract such an effect to 

some extent according to Karlsrud (2012). 

In addition, the measurements done at the Tilbrook Grange site (Ti) is much better predicted, 

but there is still a very large scatter (as the maximum error suggests). The Tilbrook Grange 

site was found in Figure 14.1 to be the main reason for the over-prediction of the CEM-EP 

solution. By adding a term reducing the excess pore pressure due to dilation (high 𝑂𝐶𝑅) the 

prediction becomes better for the high 𝑂𝐶𝑅 sites such as Canons Park, Cowden and Tilbrook 

Grange. 
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Figure 14.5: Residual plot of prediction made with Equation 14.10 with the parameters as stated in Table 14.3. Further 

description of the legend can be found above Figure 9.10. 

14.5  Regression based on CEM, excluding the effect of K0 

Since the effect of the coefficient of lateral earth pressure on excess pore pressure is 

somewhat discussable (as discussed in Chapter 13.5), a regression without that term is 

presented. The prediction is based on Equation 14.11 and the parameters (𝛼𝑖) is found by 

minimizing the 𝑅𝑆𝑆. The resulting parameters are presented in Table 14.4. 

 ∆�̂�𝑚𝑎𝑥 = 𝑠𝑢𝐷 (ln (
𝐺𝑢

𝑠𝑢𝐷
) − 𝛼1 (1 −

1

𝑆𝑡
) − 𝛼2 ln (

𝑂𝐶𝑅

2
)) (14.11) 
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Table 14.4: Result of multivariate analysis of Equation 14.11 optimizing the 𝛼𝑖 parameters so that 𝑅𝑆𝑆 is minimized. The 

parameters are listed with three significant figures. 

𝛼1 −0,400 

𝛼2 1,68 

The regression gives a mean excess pore pressure of 266,0𝑘𝑃𝑎, and a standard error of 

149,0𝑘𝑃𝑎. The maximum error is −826𝑘𝑃𝑎 and is obtained from the Tilbrook Grange site. 

The adjusted coefficient of determination is �̅�2 = 0,498. That means there is a quite large 

drop in �̅�2 when leaving out the coefficient of lateral earth pressure from Equation 14.10. In 

addition, 𝛼2 becomes smaller deviating more from the value found in the numerical analysis 

in Chapter 14.2 of 3,23.  

𝛼1 increase indicating a remoulded limit of  
𝑟𝑟

𝑟0
⁄ = 𝑒

𝛼1+1

2 = 1,35. The Haga site showed that 

the undrained shear strength was reduced from in-situ values to about 3,6𝑟0 from the pile 

surface. Based on this the 𝛼1 cannot be said to be more or less wrong than what we found 

previously.  

Figure 14.6 shows the residual plot, and we see a quite similar picture as in Figure 14.5. The 

change between Figure 14.1 and Figure 14.5 previously presented was much greater as the 

�̅�2-value indicates. The main change when removing the 𝐾0 term in Equation 14.10 is seen in 

the high 𝑂𝐶𝑅 sites. The predictions at Haga (Ha), Tilbrook Grange (Ti), Cowden (Co-IC) and 

Canons Park (CP-IC) are better when using Equation 14.10 (with the 𝐾0 term) than when 

using Equation 14.11 (without the 𝐾0 term). These are the sites that change the most between 

the different regressions proposed.  

The 𝐾0 term is also high when the 𝑂𝐶𝑅 is high, so it makes sense that these sites are most 

influenced. However, the high 𝑂𝐶𝑅 sites display large scatter, this will be discussed further in 

Chapter 14.9. However, having one more parameter to optimize is probably the main reason 

for the improved fit of the prediction to measurements.  



Chapter 14. Regression based on the empirical data           Per-Anders Mortensen 

265 

 

Figure 14.6: Residual plot of prediction made with Equation 14.11 with the parameters as stated in Table 14.4. Further 

description of the legend can be found above Figure 9.10. 

14.6  Regression using the ten most influential regressors 

By changing the regressors used in a multivariate linear regression, it was found that when 

using 10 regressors the highest �̅�2-value was obtained when using the measurement depth 

(𝑧), the equivalent pile radius (𝑅𝑒𝑞), the direct undrained shear strength (𝑠𝑢𝐷), the initial pore 

pressure (𝑢0), the initial vertical effective stress (𝜎𝑣0
′ ), the plasticity index (𝐼𝑃), the water 

content (𝑤), the overconsolidation ratio (𝑂𝐶𝑅), the coefficient of lateral earth pressure (𝐾0) 

and the undrained shear modulus (𝐺𝑢) as regressors. Only linear dependence between the 

regressors and the dependent variable was tested.  
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This means the excess pore pressure is assumed to be predicted by: 

 
∆�̂�𝑚𝑎𝑥 = 𝛼0 + 𝛼1 ∗ 𝑧 + 𝛼2 ∗ 𝑅𝑒𝑞 + 𝛼3 ∗ 𝑠𝑢𝐷 + 𝛼4 ∗ 𝑢0 + 𝛼5 ∗ 𝜎𝑣0

′ + 𝛼6 ∗ 𝐼𝑃

+ 𝛼7 ∗ 𝑤 + 𝛼8 ∗ 𝑂𝐶𝑅 + 𝛼9 ∗ 𝐾0 + 𝛼10 ∗ 𝐺𝑢 
(14.12) 

where the 𝛼𝑖 parameters is found by minimizing the 𝑅𝑆𝑆 and the result is listed in Table 14.5. 

Table 14.5: Resulting parameters from multivariate linear regression of Equation 14.12 with three significant figures. 

𝛼0 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 

−225 10,2 0,454 −0,360 −0,681 1,37 −0,128 0,823 −10,3 206 0,00376 

The predicted mean is equal to that of the dataset (i.e. 252,9𝑘𝑃𝑎) with a standard error of 

96,6𝑘𝑃𝑎. The maximum error is −371𝑘𝑃𝑎 again for the measurement done at 25𝑚 depth 

with the NGI-B pile type at the Tilbrook Grange site. The adjusted coefficient of 

determination is found to be �̅�2 = 0,762. 

The ten most “important” regressors are those one would expect, except for the fact that 𝐾0 

gives a higher correspondence to the data than when included than the sensitivity (𝑆𝑡). If one 

use 𝑆𝑡 instead of 𝐾0, then the �̅�2 reduce by 1,9%, which is quite substantial when having so 

many regressors and only changing a single one. 

Figure 14.7 shows the residual plot of the prediction made by Equation 14.12. Comparing the 

predictions made by Equation 14.11 and Figure 14.6, to Figure 14.7 we see that the 

measurements from the Saugus site increase more with depth than what Equation 14.11 

estimate. In Figure 14.6 it seems like Equation 14.11 over-predicts the open-ended piles 

compared to Equation 14.12. In addition we see that Equation 14.12 predicts better the 

Canons Park (CP-IC), Cowden (Co-IC) and Tilbrook (Ti) sites, which are high 𝑂𝐶𝑅 sites. The 

St.Alban (St.Al) site seems, together with the open-ended pile at the Empire (Em-3”Op) site, 

to be the few places better predicted by Equation 14.11 than 14.12. 
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Figure 14.7: Residual plot of prediction made with Equation 14.12 with the parameters as stated in Table 14.5. Further 

description of the legend can be found above Figure 9.10. 

14.7  Regression using the four, three and two most influential regressors 

Following the same procedure as in Chapter 14.6, the number of regressors were reduced 

from then to four. The resulting prediction became: 

 ∆�̂�𝑚𝑎𝑥 = 𝛼0 + 𝛼1 ∗ 𝑧 + 𝛼2 ∗ 𝑅𝑒𝑞 + 𝛼3 ∗ 𝜎𝑣0
′ + 𝛼4 ∗ 𝐺𝑢 (14.13) 

where the 𝛼𝑖 parameters is found by minimizing the 𝑅𝑆𝑆 and the result is listed in Table 14.6. 
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Table 14.6: Resulting parameters from multivariate linear regression of Equation 14.13 with three significant figures. 

𝛼0 𝛼1 𝛼2 𝛼3 𝛼4 

−48,5 −5,46 0,508 2,90 −0,00164 

The regression gave that the measurement depth (𝑧), the equivalent radius (𝑅𝑒𝑞), the initial 

vertical effective stress (𝜎𝑣0
′ ) and the undrained shear modulus (𝐺𝑢) were the four most 

important regressors (of the 16 tabulated) to include in order for the �̅�2 to be as high as 

possible given a linear relationship as shown in Equation 14.13.  

Again the regressors one would expect to be of importance is in fact so, except the fact that 

𝑂𝐶𝑅 is not included. The linear-elastic solution gives us a maximum excess pore pressure at 

the pile shaft only given by the undrained strength and stiffness. However, the size of the 

excess pore pressure in the field and the extent (i.e. the plastic radius) depend on the pile 

radius. The fact that the equivalent pile radius trumps the pile diameter and the thickness, 

might be an indication that reducing the pile radius when a pile is open-ended is correct.  

The fact that the initial vertical effective stress is deemed more important than the strength 

itself is not so troubling as there are multiple proposed relations between 𝑠𝑢𝐷 and 𝜎𝑣0
′ . It could 

very well be that 𝜎𝑣0
′  is determined more correctly and so the regression gives a higher �̅�2 due 

to this, but it could just as likely be a coincidence or a mistake related to inaccurate 

measurements. 𝑂𝐶𝑅 is not included, supprisingly, this might be due to the relations between 

𝑠𝑢𝐷, 𝜎𝑣0
′ , 𝐺𝑢 and 𝑂𝐶𝑅. This is however highly speculative, and based on the discussion of 

correlation between the regressors, it is just as likely that the regressors that are deemed to be 

most important are chosen quite randomely. 

The depth (𝑧) is not a factor in the analytical Cavity Expansion Method (CEM), but in reality 

there are many factors that change with depth. Close to the top of the pile there are ground 

heave due to the pile driving, which most likely cause a change in excess pore pressure. Close 

to the pile tip there are so called geometry effects. Karlsrud (2012) has removed the data 

which are closer than about four pile diameters to the pile tip. However, the geometry effect 

could be affecting the excess pore pressure further up than 4𝑟0.  
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With parameters optimized the resulting mean prediction is still equal to the sample mean (i.e. 

252,9𝑘𝑃𝑎), but the standard error increase to 104,8𝑘𝑃𝑎. The maximum error is −414𝑘𝑃𝑎, 

and is from the measurement done at 25𝑚 depth with the NGI-B pile type at the Tilbrook 

Grange site, as before. The adjusted coefficient of determination only reduce to �̅�2 = 0,742 

(compared to that of Equation 14.12: �̅�2 = 0,762). This means that reducing the number of 

regressors from ten to four only reduce the fit of the regression with 2%.  

Figure 14.8 shows the residual plot of the prediction given by Equation 14.13. The figure is 

quite similar to that of Equation 14.12 (i.e. Figure 14.7). There are minor differences between 

many of the sites, but only the high 𝑂𝐶𝑅 sites such as Haga (Ha), Tilbrook Grange (Ti), 

Cowden (Co-IC) and Canons Park (CP-IC) shows significant change.  

 

Figure 14.8: Residual plot of prediction made with Equation 14.13 with the parameters as stated in Table 14.6. Further 

description of the legend can be found above Figure 9.10. 

Further reducing the number of regressors to three gave: 

 ∆�̂�𝑚𝑎𝑥 = −5,35𝑧 + 2,74𝜎𝑣0
′ − 0,000589𝐺𝑢 − 1,34 (14.14) 

with �̅�2 = 0,731. Removing the depth (𝑧) as well gives: 
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 ∆�̂�𝑚𝑎𝑥 = 1,64𝜎𝑣0
′ + 0,00186𝐺𝑢 − 10,9 (14.15) 

with �̅�2 = 0,697. If the initial effective vertical stress (𝜎𝑣0
′ ) is replaced by the direct 

undrained shear strength (𝑠𝑢𝐷) in Equation 14.15 it is interesting to see that this reduces the 

�̅�2 to 0,462. It could be that using 𝑠𝑢𝐷 instead of 𝜎𝑣0
′  gives a lower �̅�2-value because 𝐺𝑢 and 

𝑠𝑢𝐷 are very much influenced by 𝑂𝐶𝑅, while 𝜎𝑣0
′  is unaffected by 𝑂𝐶𝑅. Combining 𝜎𝑣0

′  and 

𝐺𝑢 then give more independence from 𝑂𝐶𝑅, and then more room to optimize the parameters 

to fit the data.  

14.8  Trend line suggested by Karlsrud (2012) 

Karlsrud (2012) suggested a trend line (as seen in Figure 9.11) based on the direct undrained 

shear strength (𝑠𝑢𝐷), the overconsolidation ratio (𝑂𝐶𝑅) and wheter the pile is open- or closed-

ended: 

 ∆�̂�𝑚𝑎𝑥 = 𝜇𝑠𝑢𝑑 ∗ 𝑂𝐶𝑅−0,6 (14.16) 

where 𝜇 = 6 for open-ended, and 𝜇 = 8 for closed-ended piles. It is a quite simple expression 

with essentially three input parameters or regressors. The fit of the expression is however 

relatively good. Karlsrud (2012) does not say why that exact expression was chosen, but 

based on Figure 9.11 it makes just as much sense as any other expression. The exponent and 

the 𝜇 factor are probably optimized to fit the data and the results is rather good. 

The mean value of the prediction is 250,8𝑘𝑃𝑎 compared to the mean of the dataset of 

252,9𝑘𝑃𝑎. The standard error in the prediction compared to the dataset is 126,3𝑘𝑃𝑎. The 

maximal error is −604𝑘𝑃𝑎, and is obtained for the NGI-B pile type measured at 25𝑚 depth 

at the Tilbrook Grange site. The adjusted coefficient of determination becomes �̅�2 = 0,635. 

Figure 14.9 shows the residual plot of the expression proposed by Karlsrud (2012). 

Comparing this to Figure 14.6 shows us mainly two things. The open-ended piles at the West 

Delta (WD), Empire (Em-3”Op) and Onsøy (On-B) sites are better predicted with Equation 

14.16 than Equation 14.11. In addition, the Tilbrook Grange (Ti) site shows a slightly better 

correspondence to Equation 14.16, but there is however very much scatter in the 
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measurements from this site. The predictions for the remaining sites compare quite well, but 

there are of course minor differences. 

 

Figure 14.9: Residual plot of prediction made with Equation 14.16 suggested by Karlsrud (2012). Further description of the 

legend can be found above Figure 9.10. 

Equation 14.16 includes the strength, the 𝑂𝐶𝑅 and wheter the pile is open-ended or closed-

ended. The stiffness is not directly included, but since the stiffness is related to the 𝑂𝐶𝑅 and 

𝑠𝑢𝐷 (as seen in Figure 5.6), one can argue that the stiffness is represented indirectly. Figure 

14.10 shows the undrained shear modulus (𝐺𝑢), against the residual between the measured 

excess pore pressure and the predicted excess pore pressure based on Equation 14.16 (i.e. the 

trend line suggested by Karlsrud (2012)), in the same manner as done for the sensitivity in 

Figure 13.50 in Chapter 13.4, and 𝐾0 in Figure 13.52 in Chapter 13.5. It shows no significant 

trend, only larger scatter for the sites with high stiffness as we expect due to the correlation 

between high stiffness and high 𝑂𝐶𝑅. 
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Figure 14.10: Measured excess pore pressure minus predicted excess pore pressure based on Equation 14.16 by Karlsrud 

(2012) against the undrained shear modulus (𝐺𝑢). Further description of the legend can be found above Figure 9.10. 

The size effect, plasticity index and geometry effect have also been checked for trends by 

plotting against the residual. In Figure 14.11 the pile diameter (𝐷) is plotted on the x-axis to 

see if there is a trend with size of the pile. In Figure 14.12 the geometry effect have been 

checked by using the factor 
𝑧+𝐿−𝑧𝑡𝑖𝑝

𝐿
 where 𝑧 is the measurement depth, 𝐿 is the embedded 

length, and 𝑧𝑡𝑖𝑝 is the depth of the pile tip, all in meters. This factor is zero if the measurement 

is done at the top of the pile and one if the measurement is done at the tip of the pile. 

Lastly the residual has been plotted against the plasticity index (𝐼𝑃) in Figure 14.13. Just as 

Figure 13.50 show no trend with sensitivity Figure 14.11, 14.10 and 14.11 show no 

significant trend with 𝐷, 
𝑧+𝐿−𝑧𝑡𝑖𝑝

𝐿
 or 𝐼𝑃 respectively. If one only includes the closed-ended 

piles the residual shows a decrease with increasing pile diameter (𝐷). The 𝑅2 = 0,16 so it 

could be said that there is a trend of decreasing excess pore pressure with increasing pile 

diameter for the closed-ended piles. As previously explained, this could be due to the fact that 

the small scale piles are driven at a faster rate than the full scale piles. 



Chapter 14. Regression based on the empirical data           Per-Anders Mortensen 

273 

 

Figure 14.11: Measured excess pore pressure minus predicted excess pore pressure based on Equation 14.16 by Karlsrud 

(2012) against the pile diameter (𝐷). Further description of the legend can be found above Figure 9.10. 

 

Figure 14.12: Measured excess pore pressure minus predicted excess pore pressure based on Equation 14.16 by Karlsrud 

(2012) against the factor 
𝑧+𝐿−𝑧𝑡𝑖𝑝

𝐿
 where 𝑧 is the measurement depth, 𝐿 is the embedded length and 𝑧𝑡𝑖𝑝 is the depth of the pile 

tip. This factor is one if the measurement is done at the pile tip and zero if the measurement is done at the pile top. Further 

description of the legend can be found above Figure 9.10. 
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Figure 14.13: Measured excess pore pressure minus predicted excess pore pressure based on Equation 14.16 by Karlsrud 

(2012) against the plasticity index (𝐼𝑃). Further description of the legend can be found above Figure 9.10. 

Similar plots have been made with the remaining parameters from Table 13.6 on the x-axis. 

None showed a trend with a 𝑅2-value above 6%. This means there is no parameter in Table 

13.6 that if included would give a significant increase in the �̅�2-value of Equation 14.16 other 

than the pile diameter (𝐷). However, only direct relationships was checked, meaning there 

could be a relationship if different parameters was combined. 

14.9  Correlation of the regressors and heteroscedasticity 

Looking at the residual plots we see that all the prediction methods show so-called 

heteroscedasticity as illustrated in Figure 14.14. Heteroscedasticity is the opposite of 

homoscedasticity, and means that the variance is different for subpopulations. In our case we 

see that the variance, or standard deviation, between the predicted and the measured excess 

pore pressure increase as the predicted excess pore pressure increase. High excess pore 

pressure is mainly related to high strength and stiffness as the analytical solution suggests, and 

is then also related to high 𝑂𝐶𝑅.  
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Figure 14.14: Plot of random data showing heteroscedasticity. (Wikipedia) 

When doing regression analysis a basic assumption is that the modelling errors are 

uncorrelated and uniform. The presence of heteroscedasticity is then a concern as it 

invalidates many statistical tests and methods. The linear multivariate regression is based on 

this assumption, however the result of the analysis is not automatically wrong due to this. The 

method tries to minimize the error for all data points equally much, when the variance is 

actually higher for a certain subgroup. The results from this subgroup should however be 

given less weight when the error is minimized. How much less weight can be based on the 

increase in variance, but an assumption on how reliable the data is must be made. This has not 

been done herein. 

In addition to the heteroscedasticity seen in the dataset, we have correlated regressors. We 

look for trends with the sensitivity (𝑆𝑡), the coefficient of lateral earth pressure (𝐾0) and the 

overconsolidation ratio (𝑂𝐶𝑅). These regressors are seen to be correlated. The sensitivity is 

seen in Figure 14.15 to be high when 𝑂𝐶𝑅 is low. These are then negatively correlated, 

however they are not collinear. 
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Figure 14.15: Correlation between the overconsolidation ratio (𝑂𝐶𝑅) and the sensitivity (𝑆𝑡). When 𝑂𝐶𝑅 is low 𝑆𝑡 is high 

and vice versa, meaning the regressors are negatively correlated. Further description of the legend can be found above 

Figure 9.10. 

Figure 14.16 shows the correlation between the coefficient of lateral earth pressure, and the 

𝑂𝐶𝑅. We see here a positive exponential correlation.  

 

Figure 14.16: Correlation between the overconsolidation ratio (𝑂𝐶𝑅) and the coefficient of lateral earth pressure (𝐾0). The 

correlation trend line suggest a positive exponential correlation and with a high coefficient of determination (𝑅2 = 0,926). 

Further description of the legend can be found above Figure 9.10. 
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Correlation of the regressors means that when optimizing the parameters the assumed effects 

merge. The parameters (𝛼𝑖), found in Chapter 14.4 and 14.5, may then change erratically in 

response to small changes in the dataset, and separating the effect of 𝑆𝑡, 𝐾0 and 𝑂𝐶𝑅 becomes 

impossible.  

The effect of correlation and heteroscedasticity means that even though Equation 14.11 shows 

a decrease in �̅�2 when removing 𝐾0 from Equation 14.10 we cannot conclude that 𝐾0 is 

important when predicting the excess pore pressure. This is because the scatter for the high 

𝑂𝐶𝑅 sites give an increase in �̅�2 when using more parameters to optimize the fit.  

The correlation means that 𝑂𝐶𝑅 could be used to explain the softening due to 𝑆𝑡, and the 

increase/decrease in mean stress due to 𝐾0, alone. Due to the known effect of 

contraction/dilation on excess pore pressure, as seen in Janbu’s pore pressure equation 

(Chapter 3.4, Equation 3.13), we know that 𝑂𝐶𝑅 will influence the excess pore pressure 

generated. Due to the correlation, we cannot conclude that sensitivity nor 𝐾0, actually affect 

the excess pore pressure. This is supported by Figure 13.50 and Figure 13.52 which shows no 

trend with 𝑆𝑡, and the opposite trend as to what we expect with 𝐾0. 
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14.10 Conclusions based on the empirical data and the regressions 

We have now proposed six different equations together with the trend lines suggested by 

Karlsrud (2012), and the analytical solution (CEM-EP), for estimating the excess pore 

pressure due to pile driving, at the pile shaft. The question remaining is then which estimation 

should be used, and this is also the hardest question to answer. The truth is that none of these 

methods seems to capture the data in such a way that we believe the equation itself to be 

accurate. The measured data seems to have too much spread in order for this to be possible to 

obtain. The spread in data combined with the correlation of the regressors means that drawing 

definitive conclusions becomes difficult and the results questionable. We will here however 

try to conclude as much as possible on the limited data.  

Looking at all the residual plots presented in Chapter 14 there is a common denominator. The 

Cowden, Canons Park and Tilbrook Grange sites (i.e. sites of high 𝑂𝐶𝑅) change the most 

between the different prediction methods. At the same time these sites also deviate the most 

from the trend suggested by the other data. Especially the measurements from the Tilbrook 

Grange site is deviating.  

Karlsrud (2012) reports that the measurement from 20𝑚 depth with the LDP pile at the 

Tilbrook Grange site showed an increasing pore pressure, before a peak value was reached 20 

days after the pile was driven. At Cowden the delay lasted only a few minutes before the peak 

pore pressure was reached. Such delays could be an indication of poor filter saturation in the 

pore pressure measurement equipment.  

According to Karlsrud (2012) the dilation of high 𝑂𝐶𝑅 clays cause negative pore pressure that 

could desaturate the piezometer filter even if the filter was properly saturated before the pile 

driving began. This would lead to low values of the pore pressure immediately after pile 

driving. This could also explain the scatter (higher variance) seen in the data for the high 𝑂𝐶𝑅 

clays. 

Some of the regression results have been checked and parameters have been re-optimized for 

only the sites with 𝑂𝐶𝑅 ≤ 2. When the change in parameters is large it could suggest that the 

scattered data from the high 𝑂𝐶𝑅 clay sites disturb the regression. However, many of the 

trend lines suggested are trying to capture the effect of high 𝑂𝐶𝑅, and only using the sites 

with 𝑂𝐶𝑅 ≤ 2 will then of course change the optimized parameters. Nonetheless, it is 



Chapter 14. Regression based on the empirical data           Per-Anders Mortensen 

279 

interesting to see how well the fit of the predictions are to the sites with low 𝑂𝐶𝑅 clays, and 

how much the optimized parameters change when removing the sites with high 𝑂𝐶𝑅. 

If one removes the data from the sites with 𝑂𝐶𝑅 > 2 then the �̅�2-values increase for all the 

estimations proposed herhein. However, all but Equation 14.11 and the trend line suggested 

by Karlsrud (2012) suggested large change in the optimized parameters. This is not 

unexpected for the regression lines proposed in Chapter 14.6 and 14.7 as these are only linear 

best fit, but the major change in parameters for Equation 14.10 was more surprising.  

If the sites with 𝑂𝐶𝑅 > 2 is neglected then Equation 14.11 give �̅�2 = 0,746 without 

changing the parameters, and the CEM-EP solution give �̅�2 = 0,689. Adjusting the 

parameters in Equation 14.11 to only fit the sites with 𝑂𝐶𝑅 ≤ 2, gave minor changes in the 

parameters compared to the other prediction methods (𝛼1 = −0,400 → −0,618 and 𝛼2 =

1,68 → 1,46) and �̅�2 = 0,747.  

Including the 𝐾0-term (Equation 14.10) give �̅�2 = 0,767 without updating the parameters, 

and �̅�2 = 0,792 when updating the parameters (𝛼1 = −2,32 → −5,13, 𝛼2 = 2,78 → 7,06 

and 𝛼3 = 3,84 → 11,3). Based on this the 𝐾0 cannot be said to influence the results 

substantially. The major decrease we saw in �̅�2 (Chapter 14.5) when excluding 𝐾0 was most 

likely related to removing a parameter that could be used to decrease the error for the high 

𝑂𝐶𝑅 clays. This is supported by the fact that 𝑂𝐶𝑅 and 𝐾0 is highely dependable, and 

changing the dataset then gives large changes of the optimized parameters. 

The data from the high 𝑂𝐶𝑅 sites are less dependable and the fact that Equation 14.11 did 

only change slightly when removing the high 𝑂𝐶𝑅 clays makes the estimate more 

trustworthy. The trend line suggested by Karlsrud (2012) gave �̅�2 = 0,793 without updating 

the parameters when only including the clays with 𝑂𝐶𝑅 ≤ 2. If the parameters were updated 

they gave �̅�2 = 0,811 for an exponent of −0,6 and a factor 𝜇 = 8 → 8,72 for the closed-

ended and 𝜇 = 6 → 5,98 for the open-ended piles. 

I believe Equation 14.11 and the trend lines suggested by Karlsrud (2012) to give the best 

estimates as these are somewhat based on what we expect, and show the least change when 

excluding the data with 𝑂𝐶𝑅 > 2. Equation 14.16 (the trend lines from Karlsrud (2012)) give 

the highest �̅�2-value of the two. This means it is the best fit to the data, but the estimate is 

made by using three optimized parameters compared to Equation 14.11 which uses two.  
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Based on Chapter 13.4 it is however questionable if the sensitivity can be said to have an 

effect at all (see Figure 13.50). In Figure 14.15 we see that 𝑂𝐶𝑅 and 𝑆𝑡 are very correlated in 

our dataset. This means it is hard to separate the effects from each other. Equation 14.11 

includes both, but do not give a higher �̅�2-value than the trend lines suggested by Karlsrud 

(2012). This indicates that the low ratio of 
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
⁄  for the high 𝑂𝐶𝑅 sites might solely be 

due to the 𝑂𝐶𝑅, and that the sensitivity have no effect. 

As Figure 14.6 and Figure 14.9 indicates the scatter is large and one should be particularly 

careful using the estimates for heavily overconsolidated clays. The upside of Equation 14.11 

is that it is more theoretically founded where the factors can be explained and represents 

physical quantities (i.e. the remoulded limit and dilation/contraction). The downside is that 

𝑂𝐶𝑅 and 𝑆𝑡 is correlated and the parameters (𝛼𝑖) may therefore interact during the 

optimization. 

Based on Chapter 14.7 we see that the depth of the measurement (𝑧), equivalent radius (𝑅𝑒𝑞), 

initial vertical effective stress (𝜎𝑣0
′ ) and undrained shear modulus (𝐺𝑢) is deemed the most 

important regressors in order for the �̅�2-value to be as high as possible. The initial vertical 

effective stress combined with the undrained shear modulus can be used to estimate the 

undrained shear strength and the overconsolidation ratio. It can therefore be argued that the 

strength and dilation/contraction is represented. This is however an excuse, and not a reliable 

conclusion. The trend lines from Karlsrud (2012) also suggests that whether the piles are 

open- or closed-ended (i.e. equivalent radius) is important for the estimation.  

The fact that the depth of the measurement is one of these factors could be due to ground 

heave or geometry effects due to closeness to the pile tip. However, the trend lines from 

Karlsrud (2012) do not show a significant trend with any of the parameters from Table 13.6 

other than that the pile diameter (𝐷) is seen to increase with decreasing excess pore pressure 

for the closed-ended piles. This is however probably due to higher driving rate for the small 

scale piles. Based on this, the main parameters are strength (𝑠𝑢𝐷), 𝑂𝐶𝑅 and whether the piles 

are open- or closed-ended. The sensitivity is highly dependent on 𝑂𝐶𝑅 in our dataset so 

whether sensitivity is affecting the excess pore pressure or not is questionable based on the 

empirical data.  

 



             Per-Anders Mortensen 

281 

Conclusion 

In this report we have looked at the prediction of stresses after pile driving in clay, and 

focused on the excess pore pressure produced as this can be readily checked with 

measurements. The numerical methods reviewed herein are the Cavity Expansion Method 

(CEM) and the Strain Path Method (SPM). SPM has not been modeled, but results have been 

gathered from the literature. 

Based on the results presented in Chapter 7 we see that SPM and CEM produce the same 

radial strains, when studied about 8𝑟0 above the pile tip, and this is also seen to correspond 

well with measurements. SPM introduce the downward motion of installing a pile, giving 

vertical strains. This also gives an unloading procedure as the pile tip passes, leading to lower 

stresses than CEM, close to the pile wall (i.e. within about 10𝑟0). Far away from the pile wall 

CEM and SPM is seen to produce quite similar stresses.  

The radial effective stress after pile driving is grossly over-predicted by CEM, as seen when 

comparing Figure 9.12 and Figure 7.8, and SPM is seen to give a much better estimate due to 

the unloading procedure.  

Johansson and Jendeby (1998) finds that the radial total stress decrease much faster than the 

excess pore pressure due to stress relaxation, as seen in Figure 2.14. This could explain the 

low radial effective stresses measured after pile driving. Karlsrud, Kalsnes et al. (1993) 

suggest that vertical silo effects and cylindrical arching may occur in lean clays during the 

reconsolidation phase. As discussed in Chapter 2.2 this would cause lower radial and vertical 

effective stress, close to the pile, inside the remoulded zone. 

The vertical effective stress is seen to be reduced due to contraction and to increase due to 

dilation, when CEM is used. If neither dilation nor contraction is included in the material 

model then CEM will produce no change in vertical effective stress (see Chapter 12). SPM 

predicts a larger decrease of the vertical effective stress if a strain softening critical state 

material model is used, as seen in Figure 2.13. If the Modified Cam Clay model is used, SPM 

is seen to give larger vertical effective stress than CEM. If a strain softening material model is 

used in CEM, no further change in vertical effective stress is seen, other than that which 

comes from contraction/dilation.
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It could be that the stress relaxation, observed in the radial total stress, also can occur in the 

vertical total stress. If either this or vertical silo effects do occur, it would lead to lower 

vertical effective stress. If piles are to be driven in a slope then the vertical effective stress 

after pile driving is of high importance, as shown in Chapter 2.6. In order to avoid failure it 

could be necessary to introduce the excess pore pressure without increasing the vertical total 

stress as a conservative estimate. The presence of permeable layers could drain the excess 

pore pressure to more critical parts of the slope, and in addition the permeable layers could 

lose its strength due to the excess pore pressure as well. 

The excess pore pressure predicted at the pile shaft by SPM is lower than what CEM predicts. 

However, the empirical data, gathered by Karlsrud (2012), shows that the analytical linear 

elastic-perfectly plastic solution with a Tresca yield criterion in CEM (CEM-EP, Equation 

5.15) under-predicts the excess pore pressure at the pile shaft on average when only the sites 

with an overconsolidation ratio (𝑂𝐶𝑅) of less than two is included, as shown by Figure 14.3. 

Based on this, it could be argued that SPM predicts too low excess pore pressure when 

𝑂𝐶𝑅 ≤ 2. The reason why SPM better fits the measurements of the radial effective stress, 

could then be due to stress relaxation or cylindrical arching, while the excess pore pressure is 

too low due to the unloading procedure introduzed.  

Figure 6.13 shows that the measured excess pore pressure at the pile shaft normalized with the 

direct undrained shear strength (
∆𝑢𝑚𝑎𝑥

𝑠𝑢𝐷
⁄ ) reduce with increasing 𝑂𝐶𝑅. This is expected as 

𝐺𝑢
50

𝑠𝑢𝐷
⁄  reduce with increasing 𝑂𝐶𝑅 (see Figure 5.4). However, the measurements show a 

steeper decrease with 𝑂𝐶𝑅 than what Figure 5.4 suggests, as seen in Figure 9.11. This is 

supported by the fact that CEM-EP grossly over-predicts the excess pore pressure at the sites 

with 𝑂𝐶𝑅 > 2, as shown by Figure 14.1. This is explained by Janbu’s pore pressure equation 

(Equation 3.13), which shows that the excess pore pressure reduces when the material dilates, 

and overconsolidated clays are known to dilate. 

By using the CEM model described in Chapter 11, strain softening has been modeled by 

introducing an inner remoulded zone with lower shear strength using the EP material model 

(see Chapter 12.7). The numerical simulations showed that an expression for the excess pore 

pressure at the pile shaft could quite easily be rendered for this way of modeling the strain 

softening (i.e. Equation 12.10). The results showed an increasing excess pore pressure when 
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the remoulded zone (𝑟𝑟) over the initial pile radius (𝑟0) was 
𝑟𝑟

𝑟0
⁄ < 𝑒

1
2⁄  regardless of soil 

sensitivity. If 
𝑟𝑟

𝑟0
⁄ > 𝑒

1
2⁄  then the excess pore pressure at the pile shaft would decrease.  

Randolph, Carter et al. (1979) and Castro and Karstunen (2010) used more advanced critical 

state strain softening soil models, and both got an increase in excess pore pressure due to 

softening. Even though the zone with reduced shear strength extended to 𝑟 𝑟0⁄ ≈ 6 and ≈ 12, 

respectively. However, the shear strength was reduced gradually as seen in Figure 6.18 and 

Figure 12.27, and the models also included contraction when softening, which is known to 

give a higher excess pore pressure.  

The empirical data show an increase in excess pore pressure with increasing sensitivity, as 

seen in Figure 13.46. The sensitivity is however very correlated to the 𝑂𝐶𝑅 in our dataset 

(Table 13.6) as shown by Figure 14.15. This causes the increase in excess pore pressure due 

to sensitivity to be questionable, and if the residual between the measured excess pore 

pressure and the trend line proposed by Karlsrud (2012) is plotted against sensitivity (i.e. 

Figure 13.50) then there is no significant trend. The sensitivity could, however, be partly the 

reason for the increase, but due to the correlation with 𝑂𝐶𝑅 in our dataset the two effects 

merge, and a definitive conclusion cannot be drawn. However, a decrease in excess pore 

pressure due to sensitivity is highly unlikely, and therefore one should be careful using 

softening material models that do not include contraction as the material soften. 

The CEM-MCC model showed that the excess pore pressure increased logarithmically with 

the coefficient of lateral earth pressure (𝐾0), as seen in Figure 12.15. This is because the 

vertical stress goes towards the mean of the radial and the circumferential stress as described 

by Chen and Abousleiman (2012), and confirmed in Chapter 12.5. The empirical data did 

show a decrease in excess pore pressure with increasing 𝐾0 as shown by Figure 13.51. Figure 

14.16 shows that also 𝐾0 is very correlated to the 𝑂𝐶𝑅. If the residual between the measured 

excess pore pressure and the trend line proposed by Karlsrud (2012) is plotted against 𝐾0 (see 

Figure 13.52) we see a much weaker, but still decreasing trend. Based on this, the empirical 

data cannot be said to support any relation between 𝐾0 and the excess pore pressure. 

Especially not an increasing excess pore pressure with increasing 𝐾0, as the CEM-MCC 

model suggests. 
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If the excess pore pressure at the pile shaft is to be estimated, I would use the trend line 

proposed by Karlsrud (2012) (Equation 14.16), and then check with the residual plot (Figure 

14.9), as this has shown a good fit to the empirical data. One could also go into the site 

specific data to see if one of the sites have similar soil conditions. Equation 14.11, has a 

slightly worse fit to the empirical data than Equation 14.16, but can be used as comparison as 

the equation is based on results from the CEM-MCC model and the results of CEM-EP with 

an inner remoulded zone, and is then not purely empirical.  

CEM and SPM is seen to give a similar radial extent of the excess pore pressure, regardless of 

material model for low 𝑂𝐶𝑅. This extent is also shown to compare quite well with 

measurements. Equation 5.2 (CEM-EP) can therefore be used as an estimate, as long as the 

𝑂𝐶𝑅 is not very high. 

The shape of the radial distribution of the excess pore pressure is seen to be captured quite 

well by the SPM model. The SPM model propose a near constant value before a log-linear 

decrease and this kind of shape is seen in Figure 9.2, 9.5, 9.6, 9.8 and 9.9. These figures do 

however only include measurements from sites with 𝑂𝐶𝑅 ≤ 4.  

The excess pore pressure at the pile shaft can become negative according to the CEM-MCC 

model, and this is observed at the Canons Park site. Equation 14.11 can also predict negative 

excess pore pressure, while Equation 14.16 always give a positive prediction. There is not 

enough high 𝑂𝐶𝑅 data in our dataset to conclude on this issue. The distribution and the radial 

extent of the excess pore pressure for high 𝑂𝐶𝑅 clays is therefore also very uncertain. If 

Equation 14.11 gives a negative excess pore pressure at the pile shaft then either SPM or 

CEM should be used with site specific soil parameters to determine the radial distribution and 

extent. The empirical data herein does not give sufficient guidance if the 𝑂𝐶𝑅 is very high, 

and other sources should be consulted. 

Pile groups are seen to give a close to constant excess pore pressure inside the pile group (see 

Chapter 2.5). The radial extent of the excess pore pressure increase slightly. As a conservative 

estimate the prediction of the excess pore pressure at the pile shaft can be assumed constant 

within the pile group, and a slightly larger radial extent should be assumed as well. 
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Further work 

There are quite a few things that can be further worked on. The dataset could be further 

supplemented and especially measurements of high 𝑂𝐶𝑅 clays are lacking. More parameters 

could be determined. The driving rate could be of interest as this is seen to give higher excess 

pore pressure for some of the small scale piles than what the trend lines suggest. Since the 

strain rate during pile driving is shown by Baligh (1985) to be 14000 times higher than 

during an undrained triaxial test, one could use the empirical data suggesting an increase in 

peak strength, reduction in strain before peak strength, and increase in the softening behavior, 

to modify the soil parameters and see if this gives a better fit. One could also use the triaxial 

test results, which have been conducted at many of the sites, to give a better estimate of the 

undrained shear modulus. 

The radial extent of the excess pore pressure could be more thoroughly checked with 

measurements as the fit of Equation 5.2 is based on limited data. Similarly, empirical data 

from pile groups can be used to check the assumption of a near constant excess pore pressure 

within a pile group. A 3D numerical simulation can be conducted expanding multiple 

cylindrical cavities and the results could be used to check the same assumption. 

Most of the SPM simulations have been conducted using Boston Blue Clay (BBC) soil 

parameters. Especially results of high 𝑂𝐶𝑅 clays are lacking. This is a cumbersome model to 

set up, however the results are seen to give a better fit to empirical data, so parametric studies 

and comparison between SPM and empirical data could be valuable. CEM-MCC could also 

be modeled with site specific data and then be compared with measurements from multiple 

sites. This has to the authors knowledge not been conducted, and could lead to a definitive 

conclusion on whether CEM-MCC gives a good estimate of the excess pore pressure or not. 

The effect of pile driving on slope stability needs further work. The prediction of the vertical 

effective stress is uncertain and comparison between measurements and predictions are sorely 

needed. Empirical data, either from lab experiments or from the field, could show unknown 

mechanisms and could give valuable information. In addition, the presence of permeable 

layers could influence the slope stability as they could lose their strength, and drain the excess 

pore pressure to more critical parts of the slope. Experiments and modeling could be 

conducted to illuminate this and the effect on slope stability. 
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Appendix A 

A.1 Stress paths from CEM-MCC varying the OCR 

Figure A.1.1: Effective stress path (ESP) and total stress path (TSP) together with the critical state line (CSL) and the initial 

yield surface for different 𝑂𝐶𝑅, with the deviatoric stress (𝑞) on the vertical axis and the mean stress (𝑝′, 𝑝) on the horizontal 

axis. Found by using the Cavity Expansion Method (CEM) and the Modified Cam Clay (MCC) model with parameters as in 

Table 12.2, but with 𝑀 varying so that 𝑠𝑢 = 37𝑘𝑃𝑎 for the different values of 𝑂𝐶𝑅. The data is gathered from a stress point 

at 𝑟 𝑟0⁄ = 2. 

 

Figure A.1.2: Effective stress path (ESP) and total stress path (TSP) together with the Tresca yield criterion for different 

𝑂𝐶𝑅, with the radial/major principal stress (𝜎𝑟
′ = 𝜎1

′, 𝜎𝑟 = 𝜎1) on the vertical axis and the circumferential/minor principal 

stress (𝜎𝜃
′ = 𝜎3

′ , 𝜎𝜃 = 𝜎3) on the horizontal axis. Found by using the Cavity Expansion Method (CEM) and the Modified Cam 

Clay (MCC) model with parameters as in Table 12.2, but with 𝑀 varying so that 𝑠𝑢 = 37𝑘𝑃𝑎 for the different values of 

𝑂𝐶𝑅. The data is gathered from a stress point at 𝑟 𝑟0⁄ = 2.
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.  

Figure A.1.3: Effective stress path (ESP) and total stress path (TSP) together with the Tresca yield criterion for different 

𝑂𝐶𝑅, with the radial/major principal stress (𝜎𝑟
′ = 𝜎1

′, 𝜎𝑟 = 𝜎1) on the vertical axis and the vertical/intermediate principal 

stress (𝜎𝑧
′ = 𝜎2

′ , 𝜎𝑧 = 𝜎2) on the horizontal axis. Found by using the Cavity Expansion Method (CEM) and the Modified Cam 

Clay (MCC) model with parameters as in Table 12.2, but with 𝑀 varying so that 𝑠𝑢 = 37𝑘𝑃𝑎 for the different values of 

𝑂𝐶𝑅. The data is gathered from a stress point at 𝑟 𝑟0⁄ = 2. 
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A.2 Stress paths from CEM-EP varying the K0 

Figure A.2.1: Effective stress path (ESP) and total stress path (TSP) together with the Tresca yield criterion for different 𝐾0, 

with the deviatoric stress (𝑞) on the vertical axis and the mean stress (𝑝′, 𝑝) on the horizontal axis. Found by using the 

Cavity Expansion Method (CEM) and the linear elastic-perfectly plastic (EP) model with parameters as in Table 12.1, but 

with 𝐾0 varying. The data is gathered from a stress point at 𝑟 𝑟0⁄ = 2. 

 

Figure A.2.2: Effective stress path (ESP) and total stress path (TSP) together with the Tresca yield criterion for different 𝐾0, 

with the major principal stress (𝜎1
′, 𝜎1) on the vertical axis and the minor principal stress (𝜎3

′, 𝜎3) on the horizontal axis. 

Found by using the Cavity Expansion Method (CEM) and the linear elastic-perfectly plastic (EP) model with parameters as 

in Table 12.1, but with 𝐾0 varying. The data is gathered from a stress point at 𝑟 𝑟0⁄ = 2. 
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Figure A.2.3: Effective stress path (ESP) and total stress path (TSP) together with the Tresca yield criterion for different 𝐾0, 

with the major principal stress (𝜎1
′, 𝜎1) on the vertical axis and the intermediate principal stress (𝜎2

′, 𝜎2) on the horizontal 

axis. Found by using the Cavity Expansion Method (CEM) and the linear elastic-perfectly plastic (EP) model with 

parameters as in Table 12.1, but with 𝐾0 varying. The data is gathered from a stress point at 𝑟 𝑟0⁄ = 2. 
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Figure A.2.4: Effective stress path (ESP) and total stress path (TSP) together with the Tresca yield criterion for different 𝐾0, 

with the radial stress (𝜎𝑟
′, 𝜎𝑟) on the vertical axis and the circumferential stress (𝜎𝜃

′ , 𝜎𝜃) on the horizontal axis. Found by 

using the Cavity Expansion Method (CEM) and the linear elastic-perfectly plastic (EP) model with parameters as in Table 

12.1, but with 𝐾0 varying. The data is gathered from a stress point at 𝑟 𝑟0⁄ = 2. 
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Figure A.2.5: Effective stress path (ESP) and total stress path (TSP) together with the Tresca yield criterion for different 𝐾0, 

with the radial stress (𝜎𝑟
′, 𝜎𝑟) on the vertical axis and the vertical stress (𝜎𝑧

′, 𝜎𝑧) on the horizontal axis. Found by using the 

Cavity Expansion Method (CEM) and the linear elastic-perfectly plastic (EP) model with parameters as in Table 12.1, but 

with 𝐾0 varying. The data is gathered from a stress point at 𝑟 𝑟0⁄ = 2. 
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A.3 Stress paths from CEM-MCC varying the K0 

 

Figure A.3.1: Effective stress path (ESP) and total stress path (TSP) together with the critical state line (CSL) and the yield 

surface for different 𝐾0, with the deviatoric stress (𝑞) on the vertical axis and the mean stress (𝑝′, 𝑝) on the horizontal axis. 

Found by using the Cavity Expansion Method (CEM) and the Modified Cam Clay (MCC) model with parameters as in Table 

12.2, but with OCR varying so that ∆𝑝′ = 0 and 𝑀 varying so that 𝑠𝑢 = 37𝑘𝑃𝑎 for the different values of 𝐾0. The data is 

gathered from a stress point at 𝑟 𝑟0⁄ = 2. 

 

Figure A.3.2: Effective stress path (ESP) and total stress path (TSP) together with the Tresca yield criterion for different 𝐾0, 

with the major principal stress (𝜎1
′, 𝜎1) on the vertical axis and the minor principal stress (𝜎3

′, 𝜎3) on the horizontal axis. 

Found by using the Cavity Expansion Method (CEM) and the Modified Cam Clay (MCC) model with parameters as in Table 

12.2, but with OCR varying so that ∆𝑝′ = 0 and 𝑀 varying so that 𝑠𝑢 = 37𝑘𝑃𝑎 for the different values of 𝐾0. The data is 

gathered from a stress point at 𝑟 𝑟0⁄ = 2. 
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Figure A.3.3: Effective stress path (ESP) and total stress path (TSP) together with the Tresca yield criterion for different 𝐾0, 

with the major principal stress (𝜎1
′, 𝜎1) on the vertical axis and the intermediate principal stress (𝜎2

′, 𝜎2) on the horizontal 

axis. Found by using the Cavity Expansion Method (CEM) and the Modified Cam Clay (MCC) model with parameters as in 

Table 12.2, but with OCR varying so that ∆𝑝′ = 0 and 𝑀 varying so that 𝑠𝑢 = 37𝑘𝑃𝑎 for the different values of 𝐾0. The data 

is gathered from a stress point at 𝑟 𝑟0⁄ = 2. 
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Figure A.3.4: Effective stress path (ESP) and total stress path (TSP) together with the Tresca yield criterion for different 𝐾0, 

with the radial stress (𝜎𝑟
′, 𝜎𝑟) on the vertical axis and the circumferential stress (𝜎𝜃

′ , 𝜎𝜃) on the horizontal axis. Found by 

using the Cavity Expansion Method (CEM) and the Modified Cam Clay (MCC) model with parameters as in Table 12.2, but 

with OCR varying so that ∆𝑝′ = 0 and 𝑀 varying so that 𝑠𝑢 = 37𝑘𝑃𝑎 for the different values of 𝐾0. The data is gathered 

from a stress point at 𝑟 𝑟0⁄ = 2. 
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Figure A.3.5: Effective stress path (ESP) and total stress path (TSP) together with the Tresca yield criterion for different 𝐾0, 

with the radial stress (𝜎𝑟
′, 𝜎𝑟) on the vertical axis and the vertical stress (𝜎𝑧

′, 𝜎𝑧) on the horizontal axis. Found by using the 

Cavity Expansion Method (CEM) and the Modified Cam Clay (MCC) model with parameters as in Table 12.2, but with OCR 

varying so that ∆𝑝′ = 0 and 𝑀 varying so that 𝑠𝑢 = 37𝑘𝑃𝑎 for the different values of 𝐾0. The data is gathered from a stress 

point at 𝑟 𝑟0⁄ = 2. 
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A.4 Stress paths from CEM-EP with softening 

Figure A.4.1: Effective stress path (ESP) and total stress path (TSP) for a material with a sensitivity of 𝑆𝑡 = 2 together with 

the Tresca yield criterion for both the intact undrained shear strength (𝑠𝑢 = 37𝑘𝑃𝑎) amd the remoulded undrained shear 

strength (𝑠𝑢𝑟 = 18,5𝑘𝑃𝑎). With the remoulded limit (𝑟𝑟) located at both 
𝑟𝑟

𝑟0
⁄ = 1,58 and 

𝑟𝑟
𝑟0

⁄ = 9,90, and without 

softening entirely. The deviatoric stress (𝑞) is on the vertical axis and the mean stress (𝑝′, 𝑝) is on the horizontal axis. Found 

by using the Cavity Expansion Method (CEM) and the linear elastic-perfectly plastic (EP) model with parameters as in Table 

12.1, but with softening as described in Chapter 12.7 included. The data is gathered from a stress point at 𝑟 𝑟0⁄ = 1,27. 
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Figure A.4.2: Effective stress path (ESP) and total stress path (TSP) for a material with a sensitivity of 𝑆𝑡 = 2 together with 

the Tresca yield criterion for both the intact undrained shear strength (𝑠𝑢 = 37𝑘𝑃𝑎) amd the remoulded undrained shear 

strength (𝑠𝑢𝑟 = 18,5𝑘𝑃𝑎). With the remoulded limit (𝑟𝑟) located at both 
𝑟𝑟

𝑟0
⁄ = 1,58 and 

𝑟𝑟
𝑟0

⁄ = 9,90, and without 

softening entirely. The radial/major principal stress (𝜎𝑟
′ = 𝜎1

′, 𝜎𝑟 = 𝜎1) is on the vertical axis and the circumferential/minor 

principal stress (𝜎𝜃
′ = 𝜎3

′, 𝜎𝜃 = 𝜎3) is on the horizontal axis. Found by using the Cavity Expansion Method (CEM) and the 

linear elastic-perfectly plastic (EP) model with parameters as in Table 12.1, but with softening as described in Chapter 12.7 

included. The data is gathered from a stress point at 𝑟 𝑟0⁄ = 1,27. 
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Figure A.4.3: Effective stress path (ESP) and total stress path (TSP) for a material with a sensitivity of 𝑆𝑡 = 2 together with 

the Tresca yield criterion for both the intact undrained shear strength (𝑠𝑢 = 37𝑘𝑃𝑎) amd the remoulded undrained shear 

strength (𝑠𝑢𝑟 = 18,5𝑘𝑃𝑎). With the remoulded limit (𝑟𝑟) located at both 
𝑟𝑟

𝑟0
⁄ = 1,58 and 

𝑟𝑟
𝑟0

⁄ = 9,90, and without 

softening entirely. The radial/major principal stress (𝜎𝑟
′ = 𝜎1

′, 𝜎𝑟 = 𝜎1) is on the vertical axis and the vertical/intermediate 

principal stress (𝜎𝑧
′ = 𝜎2

′, 𝜎𝑧 = 𝜎2) is on the horizontal axis. Found by using the Cavity Expansion Method (CEM) and the 

linear elastic-perfectly plastic (EP) model with parameters as in Table 12.1, but with softening as described in Chapter 12.7 

included. The data is gathered from a stress point at 𝑟 𝑟0⁄ = 1,27.
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Appendix B 

B.1 The method of Nishida (1963) compared to the data of Table 13.6 

 

Figure B.1.1: Residual plot of the prediction obtained by Equation 8.3 for all sites. Further description of the legend can be 

found above Figure 9.10.
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Figure B.1.2: Residual plot of the prediction below 800𝑘𝑃𝑎 obtained by Equation 8.3. Further description of the legend can 

be found above Figure 9.10. 
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B.2 The method of Svanø (1978) compared to the data of Table 13.6 

 

Figure B.2.1: Residual plot of the prediction obtained by Equation 8.8 for all sites. Further description of the legend can be 

found above Figure 9.10. 
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Figure B.2.2: Residual plot of the prediction below 800𝑘𝑃𝑎 obtained by Equation 8.8. Further description of the legend can 

be found above Figure 9.10. 
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B.3 The method of Broms and Massarch (1979) compared to the data of Table 13.6 

 

Figure B.3.1: Residual plot of the prediction obtained by Equation 8.10 for all sites. Further description of the legend can be 

found above Figure 9.10. 
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Figure B.3.2: Residual plot of the prediction below 800𝑘𝑃𝑎 obtained by Equation 8.10. Further description of the legend 

can be found above Figure 9.10.
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Appendix C 

C.1 Change in stress during expansion in CEM-MCC 

  

Figure C.1.1: Legend for the plots in Appendix C.1, showing the percentage of the applied displacement (i.e. the applied 

radial displacement over the final radial displacement) for each line. 

  

Figure C.1.2: Excess pore pressure normalized with the undrained shear strength from initial (i.e. before any displacement) 

to final (i.e. entire displacement applied) state against the normalized radial distance from the pile center in a logarithmic 

scale. Modeled in Plaxis with input parameters from Table 11.2.



Appendix C                                   Per-Anders Mortensen 

315 

 

Figure C.1.3: Change in total radial stress normalized with the undrained shear strength from initial (i.e. before any 

displacement) to final (i.e. entire displacement applied) state against the normalized radial distance from the pile center in a 

logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 

  

Figure C.1.4: Change in effective radial stress normalized with the undrained shear strength from initial (i.e. before any 

displacement) to final (i.e. entire displacement applied) state against the normalized radial distance from the pile center in a 

logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 
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Figure C.1.5: Change in total vertical stress normalized with the undrained shear strength from initial (i.e. before any 

displacement) to final (i.e. entire displacement applied) state against the normalized radial distance from the pile center in a 

logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 

  

Figure C.1.6: Change in effective vertical stress normalized with the undrained shear strength from initial (i.e. before any 

displacement) to final (i.e. entire displacement applied) state against the normalized radial distance from the pile center in a 

logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 
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Figure C.1.7: Change in total circumferential stress normalized with the undrained shear strength from initial (i.e. before 

any displacement) to final (i.e. entire displacement applied) state against the normalized radial distance from the pile center 

in a logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 

  

Figure C.1.8: Change in effective circumferential stress normalized with the undrained shear strength from initial (i.e. before 

any displacement) to final (i.e. entire displacement applied) state against the normalized radial distance from the pile center 

in a logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 
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Figure C.1.9: Change in total mean stress normalized with the undrained shear strength from initial (i.e. before any 

displacement) to final (i.e. entire displacement applied) state against the normalized radial distance from the pile center in a 

logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 

  

Figure C.1.10: Change in effective mean stress normalized with the undrained shear strength from initial (i.e. before any 

displacement) to final (i.e. entire displacement applied) state against the normalized radial distance from the pile center in a 

logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 
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Figure C.1.11: Change in deviatoric stress normalized with the undrained shear strength from initial (i.e. before any 

displacement) to final (i.e. entire displacement applied) state against the normalized radial distance from the pile center in a 

logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 
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C.2 Change in stress during dissipation in CEM-MCC 

  

Figure C.2.1: Legend for the plots in Appendix C.2, showing the dissipation time for each line. 

  

Figure C.2.2: Excess pore pressure normalized with the undrained shear strength from t=0, where the stress equals that of 

the final state from Appendix C.1, to t=1300days (i.e. ∆𝑢 ≤ 1𝑘𝑃𝑎) against the normalized radial distance from the pile 

center in a logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 

 



Appendix C                                   Per-Anders Mortensen 

321 

 

Figure C.2.3: Change in total radial stress normalized with the undrained shear strength from t=0, where the stress equals 

that of the final state from Appendix C.1, to t=1300days (i.e. ∆𝑢 ≤ 1𝑘𝑃𝑎) against the normalized radial distance from the 

pile center in a logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 

 

Figure C.2.4: Change in effective radial stress normalized with the undrained shear strength from t=0, where the stress 

equals that of the final state from Appendix C.1, to t=1300days (i.e. ∆𝑢 ≤ 1𝑘𝑃𝑎) against the normalized radial distance from 

the pile center in a logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 
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Figure C.2.5: Change in total vertical stress normalized with the undrained shear strength from t=0, where the stress equals 

that of the final state from Appendix C.1, to t=1300days (i.e. ∆𝑢 ≤ 1𝑘𝑃𝑎) against the normalized radial distance from the 

pile center in a logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2.

  

Figure C.2.6: Change in effective vertical stress normalized with the undrained shear strength from t=0, where the stress 

equals that of the final state from Appendix C.1, to t=1300days (i.e. ∆𝑢 ≤ 1𝑘𝑃𝑎) against the normalized radial distance from 

the pile center in a logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 
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Figure C.2.7: Change in total circumferential stress normalized with the undrained shear strength from t=0, where the stress 

equals that of the final state from Appendix C.1, to t=1300days (i.e. ∆𝑢 ≤ 1𝑘𝑃𝑎) against the normalized radial distance from 

the pile center in a logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 

 

Figure C.2.8: Change in effective circumferential stress normalized with the undrained shear strength from t=0, where the 

stress equals that of the final state from Appendix C.1, to t=1300days (i.e. ∆𝑢 ≤ 1𝑘𝑃𝑎) against the normalized radial 

distance from the pile center in a logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 
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Figure C.2.9: Change in total mean stress normalized with the undrained shear strength from t=0, where the stress equals 

that of the final state from Appendix C.1, to t=1300days (i.e. ∆𝑢 ≤ 1𝑘𝑃𝑎) against the normalized radial distance from the 

pile center in a logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 

 

Figure C.2.10: Change in effective mean stress normalized with the undrained shear strength from t=0, where the stress 

equals that of the final state from Appendix C.1, to t=1300days (i.e. ∆𝑢 ≤ 1𝑘𝑃𝑎) against the normalized radial distance from 

the pile center in a logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 
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Figure C.2.11: Change in deviatoric stress normalized with the undrained shear strength from t=0, where the stress equals 

that of the final state from Appendix C.1, to t=1300days (i.e. ∆𝑢 ≤ 1𝑘𝑃𝑎) against the normalized radial distance from the 

pile center in a logarithmic scale. Modeled in Plaxis with input parameters from Table 11.2. 


