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Abstract

With their presence, Social Networking Services (SNS) introduced new services instantly

available for worldwide consumption. During the last decade, the popularity of SNS has

risen tremendously. Today, SNS have millions of users and create a large proportion of

total worldwide web traffic. This has not remained unnoticed by businesses, which have

increased their focus against this new market.

Several network laws have been proposed to model either user behavior or network value.

However, the validity of the behavior laws has to a small extent been verified for SNS.

Similarly, most common network valuation laws are based on a theoretical approach. It is

therefore unclear how precise they are for SNS valuation. In this study, empirical findings

are presented to clarify user behavior in SNS further and give more precise SNS valuation

estimates.

The data used for analysis in this study were obtained from SNS themselves or by web-

pages including relevant statistics.

The results in this study showed that Zipf’s law could not be accurately fitted with

popularity of Twitter members. Popularity of Youtube videos could to a large extent be

accurately fitted with Zipf’s law. Average content productivity increases with network

size for SNS studied. The power response surface, as a function of network size and

average content created per day, V̄prs(n, c) = 14.1514 × n0.892437 × c0.167022 was the best

model for SNS valuation. Using previous results in this study, the power response surface

was converted to a function only dependent on network size. The proposed model then

grew n1.226481 in asymptotic terms - approximately as Tilly-Odlyzko’s law.
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1 Introduction

1.1 Background

The increase in popularity of Social Networking Services (SNS) the last decade has not

remained unnoticed. With their presence, SNS enabled new services such as sharing of

media, event planning and creation of interest groups instantly available for worldwide

consumption. Today, a significant proportion of total web traffic is generated by SNS. As

a consequence if this, businesses have increased their focus against this new multi-billion

dollar market.

1.2 Motivation

Several network laws have been proposed to model either user behavior or network value.

Examples of these laws include Sarnoff’s law for broadcast network valuation, Metcalfe’s

law for valuation of communication networks and Zipf’s law for estimating popularity of

content. However, the validity of the behavior laws has to a small extent been verified for

SNS. Similarly, most common network valuation laws are based on a theoretical approach.

It is therefore unclear how precise they are for SNS valuation.

1.3 Problems

• What generates value in a network is a disputed question. Metcalfe’s law states that

network value is equal to the number of potential connections. Reed’s law is even

more optimistic and express network value as the number of potential subgroups.

Beckstrom’s law, on the other hand, has another way to measure value, as the law

uses utility surplus of all network members to calculate network value. Andrew

Odlyzko and Benjamin Tilly suggest that the value of a user grows as log(n), which

leads to a total network value of nlog(n). There is clearly a disagreement on how

to estimate network value.

• Is each network connection of equal value? Metcalfe and Reed’s law assign an

equal value to each network connection, while Beckstrom’s and Tilly-Odlyzko’s law

assign different value for different network connections. Obviously, both approaches

cannot be correct.
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• The nature of networks differs in the way they function. For example, some networks

require subscription fees, some offers seamless communication with other networks

while other networks have advertisement. Is it likely that one network law can

accurately describe the value for all networks?

• How do you test the accuracy of a network law? Does the law explain why some

networks choose to interconnect or merge and why some networks do not?

1.4 Limitations

The fitting of Zipf’s law and data from Twitter in chapter 4.1 is based on the 10 011

most popular Twitter users, and not from a uniform selection of all Twitter members.

Similarly, in chapter 4.3, the fitting is based on the 160 most viewed Youtube videos.

There is thus no basis to conclude on data outside the observation range.

The following limitations apply to chapter 4.7 and 4.11. Types of content created in

SNS vary very much. In some SNS, the creation of content is a time consuming process.

Examples of this could be creation of blogs and uploads of videos. In other networks, the

creation of content is a simple process. Status updates on Twitter is an example of this

(for more information about Twitter, see chapter 4.1). In chapter 4.7 and 4.11, different

types of content are not differentiated. Another thing to notice is that some sites only

provided day-to-day data for content created. These are used as estimations for average

content created. A third limitation in these chapters, is that the data collected for both

network size and average content created are not uniformly distributed in the observation

interval.

The models for social network value in chapter 4.11 use only average content created

per day and network size as independent variables. Since various SNS provide different

types of services, what creates value varies correspondingly. However, since the model

is required to be practical, some simplifications had to be made. Another limitation in

this chapter was the few observations available, as only six SNS provided the information

needed. A third issue arose when network size, average content created and estimated

value were not retrieved at the same date. This is dealt with as described in chapter 4.11.

1.5 Contributions

In this study, empirical data regarding user behavior in SNS are presented. Adjusting

the exponent in the Zipf probability mass function, the best-fit function for popularity

15



of Twitter members and Youtube videos are calculated. Whether content productivity

increases with network size for SNS studied is concluded. A response surface model for

SNS valuation is presented and compared with existing network laws.

1.6 Organization of report

The phenomenon network effect is introduced in chapter 2. This phenomenon has an

important impact on how to model network value of networks exhibiting this effect.

Chapter 3 overviews the most common network laws proposed: Sarnoff’s law, Metcalfe’s

law, Reed’s law, Tilly-Odlyzko’s law, Zipf’s law and the 1% rule. These laws are compared

in chapter 3.8.

Chapter 4 presents findings about user behavior in SNS and three models to valuate such

networks. Useful information and methodology is presented before each result. User

behavior findings in SNS are presented in the following five chapters:

• Chapter 4.1: Can popularity of Twitter members be modeled with Zipf’s law?

• Chapter 4.3: Can popularity of Youtube videos be modeled with Zipf’s law?

• Chapter 4.5: Examples of number of connections in SNS.

• Chapter 4.7: Does content productivity increase with network size?

• Chapter 4.9: What is important for members of online communities?

Each of these chapters is followed by a discussion of the current topic.

Models for valuation of SNS are presented in chapter 4.11 and discussed in chapter 4.12.

The problems introduced in chapter 1.3 are discussed in chapter 5.

Conclusions containing the most interesting findings in this study and further work are

presented in chapter 6.

The following items are in the appendix:

• Appendix A: a list of SNS contacted and the request sent to these.

• Appendix B: a paper based on this study written by Harald Øverby and myself.
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2 Network effect

Network effect (or network externality) is a phenomenon where the utility of consumption

is affected by the number of other users using the same or compatible products [1].

This effect can both be positive or negative, depending on whether subscribers value the

network more/less as the number of users increase/decrease. Network effects are often

mistaken for economies of scale. We distinguish between supply side and demand side

economies of scale. Supply side economies of scale refers to cost advantages obtained by

a company due to expansion. Demand side economy of scale, on the other hand, is a

synonym for network effect.

With a positive network effect, subscribers value the network more as the number of

members increase. In such networks, being the only member is pointless, since the utility

of a user relies on interactions with other members. A telephone network is an example

of a network that exhibits a positive network effect. Since the value of a user in a

telephone network is derived from being able to connect to other people, a large network

is preferable over a smaller network. Similarly, the network becomes more valuable itself,

as existing customers are able to connect to the new subscriber. The same effect occurs

in SNS. Large SNS are attractive to prospects, as a lot of acquaintances probably also are

members of the network. Equivalent, the acquaintances will also benefit if the prospect

choose to join the network.

Negative network effects occur when more users make the network less valuable, typically

because of congestion and competition of resources. In such networks, exclusiveness is

preferable, since it means less congestion. Examples of such networks are frequent flying

memberships and VIP-access clubs.

It is also possible for a network to exhibit both positive and negative network effects.

The Internet, for example, is a network where the value of subscription increases with

the number of possible services and interactions. In this network you prefer a lot of

websites to be available. Your utility does also increase, as you are able to communicate

with your friends and family through SNS and chat services. However, the value of being

connected to the Internet decreases as more users are competing for the same physical

resources. A lot of active users on the Internet will decrease your utility if it means lower

download and upload speeds, overload on servers, package loss and so forth.

When a network effect is mentioned in the remaining parts of this thesis, it can be

interpreted as a positive network effect.
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3 Network laws

The following subchapters introduce the most common network laws proposed. This

chapter concludes with a comparison of the different laws presented.

3.1 Sarnoff ’s law

Sarnoff’s law is attributed to David Sarnoff, an American pioneer in radio and television.

The law states that the value of a broadcast network, where the content is sent from

one-to-many, is proportional to the number of subscribers. The reasoning behind this

is that the bigger audience, the more you can charge for advertisements in the network.

Examples of broadcast networks where the law is applicable include newspapers, radio and

television networks. Figure 1 illustrates a TV broadcast network applicable for Sarnoff’s

law.

Figure 1: TV broadcast network applicable for Sarnoff’s law

Sarnoff’s law is widely accepted as valuation for broadcast networks, but also limited to

this network type [2]. The law is given in equation 1:

S(n) = n (1)

3.2 Metcalfe’s law

Metcalfe’s law states that the value of a network of n compatible communicating devices

is equal to n2 [3]. The law is applicable for one-to-one communication in a network of

20



n members. Examples of such networks include cellphone, instant messaging and email

networks. The law can be understood mathematically as the number of possible links

or unique connections in a network. In a network of n nodes, there are n nodes in the

network that can reach the other n-1 nodes. This gives n(n-1) links. But a link from

a node A to node B in the network is the same as the link from node B to node A.

Therefore; the total sum of unique links in the network is equal to:

M(n) =
(n− 1)n

2

M(n) ≈ n2 (2)

As an example of potential connections in a network, consider the telephone network

illustrated in figure 2.

Figure 2: Potential connections in a telephone network with four members

The number of potential connections in this network is:

(4− 1)× 4

2
=

12

2
= 6

As several papers have pointed out, among [2], [4] and [5], Metcalfe’s law assumes that

all network members are of equal value to each other. This can obviously not be true

for all network sizes. Take the cellphone network in United States as an example. This

network had an estimate of 285 610 580 subscribers in 2009 [6]. It is impossible that all

users connected to this network will provide equal value to each other, if any value at all.
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Aspects like culture, religion and geography affect the utility derived from connections in

a network.

Andrew Odlyzko and Benjamin Tilly [2] also emphasized that Metcalfe’s law would pro-

vide incentive for all networks to merge or interconnect. According to Metcalfe’s law,

two networks of size m and n will have a value of m2 and n2 respectively. If they in-

terconnect or merge, the total value becomes (m + n)2, which gives a surplus of mn for

each network, or 2mn in total. Consider an example where two networks both have 1000

members. According to Metcalfe’s law, their value equals 10002 = 1 000 000 separately

or 2 000 000 in total. If they interconnect or merge, the total value becomes 20002 = 4

000 000, which means the network would be worth twice as much as the two separate

networks. Such a ”free lunch” would imply that all networks wants to interconnect or

merge. This is clearly not the case for many companies, as interconnections often require

time and political pressure [2].

Robert Metcalfe replied to the criticism himself in a blog post and pointed out that the

law was mostly applicable to smaller networks approaching critical mass [3]. He also

argued that nobody had ever tried to estimate a, the constant of proportionality in his

law (M(n) = a × n2). However, even if the constant of proportionality, a, is extremely

small, Metcalfe’s law still grows Θ(n2). Therefore, the term n2 will dominate the function

for sufficiently large values of n.

3.3 Reed’s law

In a paper from 1999, David R. Reed argues that there are some network structures

where the value can scale even more than Sarnoff and Metcalfe’s law [7]. He introduces

the concept Group-Forming Network (GFN) as a new network category that enables

affiliations among subsets of members. Examples of such networks may be chat rooms

and online auctions. Reed defines value as potential connectivity for transactions, which

for a GFN is equal to the potential number of subgroups. In a network of n members,

each element can be included or not in a subgroup. This gives 2n possible subgroups in

total. However, this includes two non-proper subsets: one where no elements are included

and n sets where only one element is included. Therefore, according to Reed’s law, the

value of a GFN is equal to:

R(n) = 2n − n− 1

R(n) ≈ 2n (3)
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As equation 3 shows, Reed’s law states that the value of such networks scale exponentially

with network size. But what about networks where the value is derived from several types

of communication categories? In such cases, Reed argues that the dominant component

will out rule the least significant component(s) for sufficiently large values of n. So, if a

network, for example, consists of components that scale accordingly to Sarnoff, Metcalfe

and Reed’s law, the component belonging to Reed’s law will eventually dominate, since

2nO(n) and 2nO(n2).

Since Reed’s law grows even faster than Metcalfe’s law, it is vulnerable for the same

criticism. However, it is important to highlight that Reed talks about value of potential

and not actual affiliations. This fact makes the law unpractical for real network valuation.

To see this, consider how much value a new user increases the network value:

R(n+ 1)−R(n) = 2n+1 − 2n = 2n(2− 1) = 2n

In other words, user n+1 will always double the value of the network, which leads to an

unrealistic growth in network value. To illustrate this, consider two networks with 100

members each. According to Reed’s law they are separately worth 2100 = 1.2677 × 1030

or 2.5353× 1030 in total. If the networks interconnect or merge, the total value becomes

2200 = 1.6069×1060. This would mean an increase in total network value of 6.3383×1031%.

3.4 Tilly-Odlyzko’s law

In the paper ”A refutation of Metcalfe’s Law and a better estimate for the value of net-

works and network” [2], Andrew Odlyzko and Benjamin Tilly accuse Metcalfe and Reed’s

law for overestimating the value of networks. They argue that the main fundamental fal-

lacy underlying Metcalfe and Reeds law is the assumptions that all potential connections

or subgroups are of equal value to a network member. They reason that, since some

connections are not used at all and some very rarely, an equal assignment of value to

each connection or subgroup is not justifiable. They suggest a new way to value a general

communication network of size n. Based on Zipf’s law, Tilly and Odlyzko argue that a

network participant, in a network of size n, derives value proportional to log(n). This

leads to a total network value of:

T −O(n) = n× log(n) (4)
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This model has a growth rate only slightly faster than Sarnoff’s law. They argue that

this is a better network law than Metcalfe and Reed’s law since:

• Their estimate provides only small gains in value when large firms interconnect,

which explains why interconnection often requires time, effort and governmental

regulatory.

• Large Internet Service Providers (ISPs) often refuse to exchange traffic freely with

smaller ISPs without any payment. This is consistent with nlog(n) as valuation,

since the smaller firm gains considerable more than the larger firm.

Even though Tilly-Odlyzko’s law seems to be able to describe real world observations

of network effects, there are some downsides with the law. In their reasoning, Tilly and

Odlyzko assumed that a network member derives value according to Zipf’s law. However,

Zipf’s law is intended to describe popularity, not value. Whether this approximation

is justifiable remains unclear. In addition, Odlyzko and Tilly did only provide some

examples where Zipf’s law could be an accurate describer of popularity. Whether the law

is a good estimation of popularity in all networks remain unanswered. As we later shall

see, it is also important to estimate the exponential value in Zipf’s law. Without the

exponential value specified, the function might differ very much; as the only restriction

is that it is greater than 0.

3.5 Beckstrom’s law

In the paper ”A New Model for Network Valuation” [8], Rod Beckstrom proposed a new

model for network valuation. According to Beckstrom, the model can be used to value

any network type and size. In this model, the present value of any network is equal to the

sum of the net present value of the benefit of all transactions minus the net present value

of the cost of all transactions. Note that transactions only are carried out if the benefit is

higher than the cost of the transaction. All values are discounted over any given period

of time. In mathematical notation, Beckstrom’s law is formulated as1:

N�

i=1

Vi,j =
M�

k=1

Bi,k

(1 + rk)tk
−

P�

l=1

Ci,j

(1 + rl)tl
(5)

Where:
1The original paper [8] has some typos. In this study, r was changed to rk in the formula and 1 to l

under the explanation of ”tk or tl”
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Vi,j = net present value of all transactions of k = 1 through n to individual i with respect

to network j

i = one user of the network

j = identifies one network or network system

Bi,k = the benefit value of transaction k to individual i

Ci,l = the cost of transaction l to individual i

rk and rl = the discount rate of interest to the time of transaction k or l

tk and tl = the elapsed time in years to transaction k or l

Beckstrom defines benefit of a network transaction as difference between costs paid in the

network minus the lowest cost alternative. A network transaction will not be executed

if the network does not provide the lowest cost alternative. To illustrate the principle,

consider the following example of cellphone subscription: you need to call your friend and

have to pay 1$ to your network operator for the entire conversation. As the next cheapest

alternative, you can drive to your friend and talk to your friend in person. If we assume

that this alternative cost 5$, your benefit of subscribing to the network provider is equal

to 5$ - 1$ = 4$ for this transaction. If we further assume that the cellphone provider has

a cost of 0.10 $ for your call, it means the provider has a benefit of the transaction of

1$ - 0.10$ = 0.90$. The total benefit value of this transaction, according to Beckstrom’s

law, is equal to 4$ + 0.90$ = 4.90$. If we discount each transaction with the appropriate

discount rate raised to the time elapsed to the transaction, we get the net present value of

the transaction. Finally, if we sum all the benefit value for all transactions in a network

over a given period of time, we get the total network value for a given period.

Even though Beckstrom’s law may give correct results, it introduces a new problem: How

are you going to get the beneficial value and cost of every transaction in a network? This

question must be as hard to answer as the original problem: How valuable is a network?

Others accuse Beckstrom for reinventing Metcalfe’s law, as pointed out by [9] and [10].

In [10], the author derives Metcalfe’s law from Beckstrom’s law with simple algebra.

3.6 Zipf’s law

Zipf’s law is named after George Kingsley Zipf and refers to the fact that several types

of data follow a Zipfian distribution. If k is the rank of elements from a data set (where

k = 1 is the most frequent element), Zipf’s law predicts that out of a population of N
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elements, where s is the value of the exponent, the frequency of elements of rank k is:

f(k, s,N) =
1/ks

�N
n=1(1/n

s)
, s > 0 ∈ R, n ∈ I (6)

Equation 6 is plotted in figure 3 with logarithmic axes. The figure shows the frequency

of element k = [1, 10] with s = [1, 4] in a Zipfian distribution:
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Figure 3: Zipf probability mass function (logarithmic axes)

The cumulative Zipfian function is plotted in figure 4 where k = [1, 10] with s = [1, 4].

The cumulative frequency is always equal to 1 when all the elements in k are summarized.
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Figure 4: Cumulative Zipf distribution

Zipf’s law has proven to be very accurate for modeling popularity of data, such as words

in the English language [11] and sizes of large cities [12]. In ”Power Laws, Weblogs, and

Inequality”, Clay Shirky showed that income, web page links and traffic to sites follow

a power law distribution [13]. In ”Zipf ’s law and the Internet”, Lada A. Adamic and

Bernardo A. Huberman shows that a great number of Internet features follow a Zipfian

distribution [14]. In their research, they found Zipf’s law to be present in:

• The level of routers transmitting data from one geographic location to another.

• The content of the World Wide Web.

• How individuals select the websites they visit and form peer-to-peer communities.

3.7 Participation inequality and the 1% rule

Participation inequality means that some people participate more than others. The phe-

nomenon is well known and present in several situations in everyday life. A situation

exemplifying the principle may be a conversation between coworkers. In this case, typi-

cally a few of the extrovert workers with the best subject knowledge talk a lot, while the

majority talk little or nothing at all.

The 1% rule or the 90-9-1 principle divides a community into three categories: creators,

editors and audience. The principle states that out of the content created in a community:
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• 1% of the visitors will create content (creators).

• 9% will comment or modify (editors).

• The majority of 90% will just consume/read the content (audience).

The relationship between actors in a society following the 1% rule can be illustrated with

a pyramid:

Figure 5: The 1% rule

The 1 % rule has been proved to be valid in several domains [15]:

• 167 113 of Amazon’s book reviews were contributed by the top 100 reviewers.

• Over 50% of all the Wikipedia edits are done by 0.7% of the total users.

• In December 20, 2007 on the MSDN Community site, edits were made by 1.72% of

the community.

• 0.16% of all visitors to YouTube upload videos to it.

• 0.2% of visitors to Flickr upload photos.

There are some downsides with the 1% rule. In situations where customer opinions is

important, the 1% rule implies that a small share of customers give feedback. This gives

an unrealistic picture of the customer base modeled. Similarly, if you try to find out

what movies to watch or books to read, the 1% rule implies that most of the reviews

written, represent a tiny share of people with experience about those items. Even though
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this relationship seems to occur naturally, some means can be initiated to decrease the

inequality. Participation rewarding and emphasizing the importance of contributions

motivates users to actively participate. In addition, making the contribution process

easier makes the threshold lower for contribution incentives.

Even though the 1% rule is present in several communities, the rule does not seem to

be valid in all situations. In ”Crowdsourcing Participation Inequality: A SCOUT Model

for the Enterprise Domain”, Osamuyimen Stewart, David Lubensky and Juan M Huerta

studied participation levels inside an enterprise network [16]. They claim that a 33-66-1

(33% audience, 66% editors and 1% creators) distribution can be achieved through careful

design.

3.8 Comparison of network laws

Sarnoff, Metcalfe, Reed and Tilly-Odlyzko’s law are all simple to use, but also limited to

a specific network domain. Sarnoff’s law is generally accepted for valuation of broadcast

networks. Metcalfe and Reed’s law on the other hand, talks about potential and not

actual value, which leads to a heavy overestimate in network valuation as the number

of members increase. Tilly-Odlyzko’s law seems to be more accurate when it comes to

describing real word examples of network interconnection or merging. A drawback with

the law is that it is unclear what kind of value the law predicts. Beckstrom’s law is

applicable to all networks, but very little practical to use. Zipf’s law, even though not a

network valuation law, gives a handy description of how networks tend to function and

a relationship between the most popular resources used. Another law not applicable for

network valuation is the 1% rule. This law describes relationship between participation

levels in communities where content is created.

Examples of network types applicable for some of the network laws presented are given

in table 1. All network laws in the table find value for a single member or transaction in

the network, and then sum for the total number of members in the network.

Law: Applicable for Examples of networks

Sarnoff Broadcast networks TV, radio

Metcalfe Communication networks Telephone, fax

Reed Group affiliations networks Online auctions, SNS

Tilly-Odlyzko Communication networks Telephone, fax

Beckstrom All networks TV, telephone, SNS

Table 1: Comparison of some of the network laws introduced
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A comparison of Sarnoff, Metcalfe, Reed and Tilly-Odlyzko’s law is shown in figure 6.
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Figure 6: Comparison of network laws that only depends on the number of users (loga-

rithmic axes)

Some numerical examples of network value according to Sarnoff’s, Tilly-Odlyzko’s and

Metcalfe’s law are given in table 2. Reed’s law is left out, as the results are too large to

be represented by most common math software.

Network size Sarnoff’s law Tilly-Odlyzko’s law Metcafe’s law

n S(n) = n T −O(n) = nlog(n) M(n) = n2

10 000 10 000 40 000 100 000 000

100 000 100 000 500 000 1 000 000 0000

1 000 000 1 000 000 6 000 000 1 000 000 000 000

10 000 000 10 000 000 70 000 000 100 000 000 000 000

100 000 000 100 000 000 800 000 000 10 000 000 000 000 000

1 000 000 000 1 000 000 000 9 000 000 000 1 000 000 000 000 000 000

Table 2: Some examples of network value with Sarnoff, Tilly-Odlyzko and Metcalfe’s law

as valuation

The network laws proposed leads to different gain in value if networks interconnect or

merge. Table 3 shows a comparison of gain in network value if network m and n inter-

connect or merge, according to the different laws.
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Law: Value of network m/n Value of separate networks Value of interconnection/merge

Sarnoff m/n m+ n m+ n

Tilly-Odlyzko mlog(m)/nlog(n) mlog(m) + nlog(n) (m+ n)log(m+ n)

Metcalfe m2/n2 m2 + n2 m2 + n2 + 2mn

Reed 2m/2n 2m + 2n 2m+n

Table 3: Gain in network value

The increase in network value if network m and n interconnects or merge, with Tilly-

Odlyzko’s law as valuation formula is plotted in figure 7. The increase is calculated as

(m+ n)log(m+ n)−mlog(m)− nlog(n).
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Figure 7: Increase in network value after interconnection or merging with Tilly-Odlyzko’s

law as valuation

The increase in network value if network m and n interconnects or merge, with Metcalfe’s

law as valuation is plotted in figure 8. The increase is calculated as (m+ n)2 −m2 − n2.
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Figure 8: Increase in network value after interconnection or merging with Metcalfe’s law

as valuation

The increase in network value if network m and n interconnects or merge, with Reed’s

law as valuation is plotted in figure 9. The increase is calculated as 2m+n − 2m − 2n.
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Figure 9: Increase in network value after interconnection or merging with Reed’s law as

valuation (logarithmic z-axis)

Sarnoff’s law was not illustrated here, since this law does not provide any gain in network

value due to interconnection or merging.
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4 Findings from social networking services

This chapter contains findings from SNS, explanations on how the results were obtained

and discussions of each topic. When data were obtained with a comprehensive method,

the method is presented in the corresponding chapter. This applies to chapter 4.1 and

4.3. These chapters look at the relationship between content consumption and Zipf’s law.

A brief presentation of the specific SNS examined here is also given.

In chapter 4.5, 4.7 and 4.11 a Wikipedia article was used to find relevant information from

SNS [17]. This article contains a list of the most common active SNS today. The SNS on

this list were visited to obtain data about number of members, number of connections,

average content created and estimated value. These statistics were retrieved on 4.13.2011

either through website information, request forms or emails. 203 SNS were visited and

additional requests were sent to 57 SNS. A complete list of SNS contacted is listed in

appendix A.

When a best-fit formula is given, it was calculated using IBM SPSS Statistics 19. Coefficient

of Determination (R2) values are also given when applicable. R2 is the ratio of the ex-

plained variance (variance of the regression model) and the total variance (variance of

actual data). R2 is defined as:

R2 =
SSreg

SStot
= 1− SSerr

SStot
(7)

Where

SStot =
�n

i=1(yi − ȳ)2 is the total sum of squares

SSreg =
�n

i=1(fi − ȳ)2 is the explained sum of squares

SSerr =
�n

i=1(yi − fi)2 is the residual sum of squares

yi are actual observations

ȳ =
1

n

�n
i=1 yi is the average value of the actual observations

fi are estimated values by the regression model

Best-fit formulas and R2 values are given in chapter 4.1, 4.3, 4.7 and 4.11.

A residual is the distance of a point from the curve. A residual is positive when the

point is above the curve and negative when the point is below the curve. When residuals

from regression analysis are given in this chapter, they are transformed to studentized

residuals. This is done since studentized residuals have two useful properties compared
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to non-studentized residuals [18]:

• They have zero mean and unit standard deviation. This makes it possible to deter-

mine how far an observation is away from the mean in terms of standard deviation

units.

• Leverage is a term used when some observations affect the outcome of a regres-

sion model significantly. Studentized residuals compensate for the leverage effect.

Therefore, it is easier to observe residual outliers regardless of the leverage of the

observations (outliers are residuals that are extremely far away from the regression

curve i terms of standard deviation units).

Studentized residuals are calculated with the following formula:

Stud.Res =
�i�

MSE(1−Hii)
(8)

Where:

�i is residual at observation i

Mean Square Error (MSE) =
1

n−m− 1

�n
i=1 �

2
i

n is the number of observations

m is the number of parameters in the regression model

Hii is the diagonal elements of a hat matrix defined as:

H = X(XTX)−1XT (9)

where

X =





1 x1

. .

. .

. .

1 xn





The results from chapter 4.2, 4.4 and 4.8 will be discussed against the following assump-

tions for non-linear regression [19]:

1. Plausibility: the regression model is scientifically plausible.
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2. Normality: the variability of values around the curve follows a Gaussian distribu-

tion.

3. Homoscedasticity: the response variables all have the same variance.

4. Accuracy: the model assumes that you know the independent variable(s) exactly.

5. Independence: the errors are independent of each other.

The results from 4.11 are not discussed against these assumptions, as the regression

analysis in this chapter were based on few observations.

4.1 Zipf’s law and Twitter

Andrew Odlyzko and Ben Tilly presumed that popularity in a network follows Zipf’s

law. The purpose of this chapter and chapter 4.3 was to see if such an approximation of

popularity is valid in SNS.

Twitter (launched in 2006) is a free of charge social networking site with 175 million

register users as of 2.15.2011 [20]. Members of the network can express their opinions

and thoughts through text-based posts called ”tweets”. A member of the network can

choose to follow any other Twitter member to receive their updates. Figure 10 shows

the twitter profile of Bob Metcalfe, the inventor of Metcalfe’s law. To the left in the

figure, you see his most recent ”tweets”. Some facts about him, for example the number

of members following Bob Metcalfe, is shown on the right side of the picture.
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Figure 10: Bob Metcalfe’s profile on Twitter

An Internet page keeps track of the 10 020 most popular Twitter users [21]. That is,

the users with the most followers. The python script given at the next page was used to

retrieve the statistics from the site.
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import u r l l i b 2

import re

# Web page prov id ing s t a t i s t i c s

u r l b a s e = ’ http :// tw i t t e r c oun t e r . com/pages /100/ ’

# HTML s t r i n g conta in ing r e l e van t data

reg exp = ’[0−9 ,]+</ span> f o l l owe r s </div>’

# Create an empty array

f o l l ow e r s = [ ]

# I t e r a t e through the 10020 most popular Twitter u s e r s

f o r i in range (0 , 10020 , 20 ) :

p r i n t s t r ( f l o a t ( i )/100)+ ’% complete ’

# Get the HTML f i l e with the u s e r s with rank [ i , i +19]

html content = u r l l i b 2 . ur lopen ( u r l b a s e+s t r ( i ) ) . read ( )

# Use r e gu l a r exp r e s s i on to f i nd r i g h t l i n e s in the HTML f i l e

temp = re . f i n d a l l ( reg exp , html content ) ;

# I t e r a t e through the r e l e van t HTML f i l e s to f i nd number o f f o l l ow e r s

f o r j in range (0 , l en ( temp ) ) :

i f j != 0 :

temp [ j ] = temp [ j ] . r e p l a c e ( ’ , ’ , ’ ’ )

temp [ j ] = temp [ j ] . r e p l a c e ( ’</span> f o l l owe r s </div > ’ , ’ ’ )

i f i n t ( temp [ j ] ) != 0 :

f o l l ow e r s . append ( i n t ( temp [ j ] ) )

# Avoid any i n c o n s i s t e n c i e s by s o r t i n g the data

f o l l ow e r s . s o r t ( r e v e r s e=True )

# Writing the r e s u l t s to a tex t f i l e

my f i l e = f i l e (” tw i t t e r . txt ” , ’w’ )

p r i n t >> myf i l e , f o l l ow e r s

my f i l e . c l o s e ( )

38



The resulting data from the script were retrieved on 4.26.2011. Nine out of the 10 020

entries were obviously wrong as the number of followers was either 0 or out of order.

This lead to a data basis of 10 011. Figure 17 shows the result where users are sorted

descending by popularity.
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Figure 11: Number of followers for the 10 011 most popular twitter users

It is obvious that the data follows some sort of a long tail distribution. This implies that

a power function may be suitable. Consequently Zipf’s law could also be a good fit, since

this is a special type of a power function. To test the plausibility of different functions,

best-fit formulas and corresponding R2 values are calculated. These are given in table 4:

Fit type Best-fit formula R2

Power 1× 108 × k−0.837 0.98953

Exponential 446872× e−3×10−4k 0.78575

Logarithmic −4× 105 × ln(k) + 3× 106 0.67679

Quadratic 0.0256× k2 − 329.72× k + 1× 106 0.42312

Linear 73.619× k + 583084 0.23421

Table 4: Regression fits for data from Twitter, sorted by R2

A power function fits the data with a very high correlation coefficient, so it seems likely

that Zipf’s law also is a good fit. To be able to compare the popularity of Twitter users

with Zipfs law, the data is transformed to frequency:
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fk =
nk

2147851407

Where 2147851407 is the total number of followers for the most popular 10 011 users and

nk the number of subscribers for user k. It is further assumed that the frequencies are

sorted descending by popularity (f1 is the most popular user, f10011 the least popular).

The value of the exponent (s), that fits the data best, is unknown. To find the optimal

value of s, we need to minimize the Residual Sum of Squares (SSerr) function:

min
s

SSerr =
10011�

k=1

(fk −
1/ks

�10011
n=1 1/ns

)2 subject to s > 0 (10)

The Levenberg-Marquardt algorithm gives the optimal solution for Least Sum of Squares

(SSopt):

SSopt = 0.0000636271

when

s = 0.56

This leads to the following best-fit formula for Zipf’s law:

f(k, 0.56, 10011) =
1/k0.56

�10011
n=1 (1/n0.56)

=
1/k0.56

129.1195
(11)

Note that the value of the exponent differs from the exponent for the best-fit power

function. This is because Zipf’s law has one degree of freedom more than a regular power

function of the form αxβ. In the latter case, both α and β have to be estimated. The

only parameter estimated with Zipf’s law is the value of the exponent, s. Consequently; a

power function will always have higher R2 value, since it has one extra variable to adjust

to improve the accuracy of the regression model.

The mathematics behind the calculation of R2 after fitting the data from Twitter with

Zipf’s law follows:

R2 = 1− SSerr

SStot
= 1−

�10011
i=1 (yi − fi)2�10011
i=1 (yi − ȳ)2

= 1− 6.3706× 10−5

4.1940× 10−4
= 0.8481 (12)
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Where:

ȳ =
1

n

10011�

i=1

fi = 9.9894× 10−5 (13)

An R2 value of 0.8481 means that 84.81% of the variation on fk can be explained by the

regression on k.

Figure 12 shows the frequency of the data plotted against a function following a Zipfian

distribution with s = 0.56 for k = [1, 10011].
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Figure 12: Fitting of Zipf’s law and data from Twitter (logarithmic axes)

The same data are plotted in figure 13 with linear axes.
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Figure 13: Fitting of Zipf’s law and data from Twitter (linear axes)

The studentized residuals after fitting Zipf’s law with Twitter are given in figure 14.
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Figure 14: Studentized residuals after fitting data from Twitter with Zipf’s law

Figure 15 displays a histogram of the studentized residuals.
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Figure 15: Occurrences of studentized residuals after fitting data from Twitter with Zipf’s

law

4.2 Discussion on Zipf’s law and Twitter

Zipf’s law was fitted with popularity of Twitter members since Twitter is a large and

successful online community with a lot of relevant data available at [21]. Whether the

results from the fitting violate the regression assumptions is discussed below:

1. Plausibility

Compared with the data from Twitter, Zipf’s law with s=0.56 has an R2 value of

0.8481. Even though this value does not indicate a very good fit, it does not mean

that it is scientifically implausible to fit Zipf’s law with the data from Twitter.

Hence, the first regression assumption is met.

2. Normality

The occurrences of studentized residuals are not mirrored around origo, as it can

be observed in figure 15. Given such a large sample size of 10011, the studentized

residuals are expected to follow a Gaussian curve, given the normality assumption

is fulfilled. This is not the case with the resulting studentized residuals from the

fitting.

3. Homoscedasticity

The variance of studentized residuals in figure 14 is very high in the interval [0,1000]
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compared to the rest of the interval [1000,10011]. At the most extreme, the stan-

dardized residuals are as high as seven times the standard deviation unit. This

implies that the homoscedasticity property is violated.

4. Accuracy

The independent value, k, is known exactly, so this property is not violated.

5. Independence

There is a systematic pattern in the studentized residuals in figure 14. This implies

that the studentized residuals are not independent of each other. This last property

is therefore also violated.

As we have seen, several regression assumptions are violated. This implies that the data

from Twitter cannot be fitted accurately with Zipf’s law, at least not for the whole interval

examined. Even though Zipf’s law turned out to be an imprecise describer of the data

from Twitter, a pure power function (αxβ) may be appropriate as its R2 value indicated

a very good fit. However, no further analysis where performed to conform this, as this

was out of scope for this study.

4.3 Zipf’s law and Youtube

Youtube was founded by Steve Chen, Chad Hurley and Jawed Karimin in 2005 [22] and

bought one year later by Google. With its presence, the site made worldwide video

sharing possible for anyone with an Internet connection. The main feature of the site is

the possibility to share, watch and comment videos. The videos on the site are either

uploaded by individuals or by site partners. Today, Youtube is one of the world’s most

visited website, with huge amounts of videos available. Figure 16 illustrates a video

playback on Youtube.
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Figure 16: Video playback on Youtube

James Zern, a software engineer at the company, revealed on 4.20.2011 that 99% of the

views at Youtube come from 30% of the videos available [23]. This inequality indicates

that video popularity is non-linear and that it might follow Zipf’s law. To look further

into this, a python script similar to the one written in chapter 4.1 was used to retrieve

the statistics. The script, given at the next page, downloads the data from a Youtube

page with the 160 all time most viewed videos [24].
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import u r l l i b 2

import re

# Web page prov id ing s t a t i s t i c s

u r l b a s e = ’ http ://www. youtube . com/ char t s / v id eo s v i ews ? t=a&p=’

# HTML s t r i n g conta in ing r e l e van t data

reg exp = ’[0−9. ]+ v i sn inge r ’

# Create an empty array

youtube = [ ]

# I t e r a t e through the 160 most viewed Youtube v ideos

f o r i in range ( 1 , 9 ) :

p r i n t s t r ( f l o a t ( i )/0.08)+ ’% complete ’

# Get the HTML f i l e with the u s e r s with rank [ i , i +19]

html content = u r l l i b 2 . ur lopen ( u r l b a s e+s t r ( i ) ) . read ( )

# Use r e gu l a r exp r e s s i on to f i nd r i g h t l i n e s in the HTML f i l e

temp = re . f i n d a l l ( reg exp , html content ) ;

# I t e r a t e through the r e l e van t HTML f i l e s to f i nd number o f views

f o r j in range (0 , l en ( temp ) ) :

temp [ j ] = temp [ j ] . r e p l a c e ( ’ . ’ , ’ ’ )

temp [ j ] = temp [ j ] . r e p l a c e ( ’< l i c l a s s=” l a s t”><strong > ’ , ’ ’ )

temp [ j ] = temp [ j ] . r e p l a c e ( ’ v i sn inge r ’ , ’ ’ )

youtube . append ( i n t ( temp [ j ] ) )

# Writing the r e s u l t s to a tex t f i l e

my f i l e = f i l e (” youtube . txt ” , ’w’ )

p r i n t >> myf i l e , youtube

myf i l e . c l o s e ( )
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The resulting data after running the script are illustrated in figure 17. The data were

retrieved on 4.27.2011.
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Figure 17: Number of views for the most popular Youtube videos

Like in section 4.1, different types of fit for the data are compared. The fit types and

corresponding R2 values are given in table 5.

Fit type Best-fit formula R2

Power 6× 108 × k−0.485 0.9873

Exponential 2× 108e−0.009×k 0.85145

Logarithmic −6× 107 × ln(k) + 4× 108 0.89573

Quadratic 14481× k2 − 3× 106k + 2× 108 0.7197

Linear −1× 106k + 2× 108 0.53176

Table 5: Several regression fits for data from youtube, sorted by R2

A power function fits the data with a very high correlation coefficient, so it seems likely

that the data can be fitted accurately with Zipf’s law. To see how the data from Twitter

follows a Zipfian distribution, frequency of each Youtube video is calculated as:

fk =
nk

15107824000

Where 15 107 824 000 is the total number of views for the 160 most popular videos and

nk is the number of views for video of popularity rank k.
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We need to solve an optimization problem similar as in chapter 4.1 to find the optimal

value of the exponent, s:

min
s

SSerr =
160�

k=1

(fk −
1/ks

�160
n=1 1/n

s
)2 subject to s > 0 (14)

The optimal solution for SSopt can be calculated with the Levenberg-Marquardt algorithm:

SSopt = 0.0000401594

when

s = 0.45

This leads to the following best-fit function for Zipf’s law:

f(k, 0.45, 160) =
1/k0.45

�160
n=1(1/n

0.45)
=

1/k0.45

28.4102
(15)

The corresponding R2 value is calculated as:

R2 = 1− SSerr

SStot
= 1−

�160
i=1(yi − fi)2�160
i=1(yi − ȳ)2

= 1− 4.0160× 10−5

0.0028
= 0.9859 (16)

Where:

ȳ =
1

n

160�

i=1

fi = 0.0063 (17)

An R2 value of 0.9859 means that 98.59% of the variation on fk can be explained by the

regression on k.

Figure 18 shows the frequency of the data plotted against a function following a Zipfian

distribution with s = 0.45 for k = [1, 160].
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Figure 18: Fitting of Zipf’s law and data from Youtube (logarithmic axes)

Figure 19 shows the same result, but with linear axes.
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Figure 19: Fitting of Zipf’s law and data from Youtube (linear axes)

The residuals from the fitting are given in figure 20.
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Figure 20: Studentized residuals after fitting data from Youtube with Zipf’s law

Finally, a histogram of the studentized residuals is plotted in figure 21.
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Figure 21: Occurrences of studentized residuals after fitting data from Youtube with

Zipf’s law
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4.4 Discussion on Zipf’s law and Youtube

Popularity of Youtube videos was compared with Zipf’s law, since Youtube is the world’s

largest video-sharing site with data on popularity of videos available. The results are

here discussed against the non-linear regression assumptions given in chapter 4 to discuss

the trustworthiness of the fitting results:

1. Plausibility

The first regression assumption is met as Zipf’s law with s=0.45 has a very high R2

value (0.9859). This means that the regression line almost perfectly fits the data.

It is therefore very likely that Zipf’s law with s=0.45 fits to the data from YouTube.

2. Normality

The occurrences of studentized residuals are distributed approximately as a Gaus-

sian distribution, as it can be observed in figure 21. The second requirement is

therefore fulfilled.

3. Homoscedasticity

The variances of the studentized residuals are mostly equally divided in the inter-

val, except for some outliers. These few studentized residuals were approximately

seven times as high as the unit standard deviation. Overall, the homoscedasticity

assumption was preserved with some exceptions.

4. Accuracy

The k values are know exactly, so this property is not violated.

5. Independence

The last regression requirement, independence, is not perfect, as the residuals are

not completely randomly distributed. However, a systematic misfit, as observed

with the fitting of Zipf’s law with Twitter, is not registered here.

With regard to these points, the fitting of data from Youtube and Zipf’s law seems to be

a plausible estimate. Zipf’s law had approximately the same R2 value as a pure power

function, despite having one extra degree of freedom.
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4.5 Number of connections in a social network

The data used in this chapter were retrieved as described in the beginning of chapter 4.

However, as it can be observed in table 6, limited data on average number of connections

were available from SNS contacted. The entry marked with # in the table was retrieved

by email.

Website Number of members Average number of connections

http://www.facebook.com/ 500 000 000 [25] 130 [25]

http://twitter.com/ 175 000 000 [26] 126 [27]

http://www.goodwizz.com/ 75 000 # 20 #

Table 6: Social networking services with information about average number of connections

and number of members

4.6 Discussion on number of connections in a social network

Several network laws proposed are based on potential connectivity. Therefore, the value

grows Ω(n) with network size. Some observations of average number of connections are

given in table 6. From this data it is obvious that interactions do not scale Ω(n) with

network size, in contradiction to what several network laws propose. Even though the

number of potential connections scales quadratically with network size in communication

networks or even exponentially in GFNs, it does not seem to be a justifiable estimation

of active connections in a network. Take Facebook as an example, a social networking

site with approximately 500 million members in 2011 [25]. In this network, users are able

to create various subgroups (through groups, events and community pages), which seem

to fit Reed’s definition of a GFN quite nice. Let us see how the number of potential

subgroups differs from actual number of subgroups. The average user on Facebook is

connected to 80 community pages, groups and events [25]. This leads to a maximum of:
500× 106 × 80

2
= 20 billions actual subgroups, as at least two people are connected to a

subgroup (by definition). If you even try to calculate the number of potential subgroups

(2500×106), you probably either get infinite or an error telling the number is too large to

be represented.
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4.7 Relationship between content created and size of social net-

working services

This chapter looks at the relationship between network size and content created in SNS.

When only average content created per month was available, 30.43684990 days per month

was used for conversion between days and months. The results from a total of 15 SNS are

given in table 7. SNS marked with * did only provide continuous day-to-day statistics.

Data from SNS marked with # were retrieved by email.

Website Members Content created per day

http://www.facebook.com 500 000 000 [25] 1 478 471 003 [25]

http://www.twitter.com 175 000 000 [20] 140 000 000 [26]

http://www.badoo.com/ 114 270 752 [28] 1 303 687 [28]

http://www.fotolog.com/ * 32 288 764 [29] 18 856 [29]

http://www.tumblr.com/ 16 647 053 [30] 24 379 313 [30]

http://www.deviantart.com/ 13 000 000 [31] 100 000 [31]

http://www.hyves.nl/ * 11 204 424 [32] 1 108 472 [32]

http://www.foursquare.com 8 000 000 [33] 2 500 000 [33]

http://www.meetup.com/ 7 200 000 [34] 80 494 [34]

http://www.couchsurfing.org/* 1 242 512 [35] 1 320 [35]

http://www.eproject-inc.com/* 2 300 000 [36] 20 000 [36]

http://goodwizz.com 750 000 # 3 000 #

http://www.italki.com/ 500 000 [37] 39 [37]

http://www.travellerspoint.com/* 378 756 [38] 1 941 [38]

http://www.athlinks.com/ 140 000 [39] 220 [39]

Table 7: Websites with information about content created and number of members

Table 8 shows various fit types for the data, sorted descending by the corresponding R2.

Fit type Best-fit formula R2

Quadratic 7× 10−9 × n2 − 0.5585× n+ 5× 106 0.99892

Linear 2.7411× n− 5× 107 0.90330

Power 2× 10−8 × n1.8555 0.79081

Exponential 23444× e3×10−8×n 0.47616

Logarithmic 9× 107 × ln(n)− 1× 109 0.28987

Table 8: Several regression fits for content created as a function of number of members
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A comparison of quadratic, linear and power regression with actual data is given in figure

22.
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Figure 22: Comparison of quadratic, linear and power regression with actual data

A linear and quadratic fit seems both plausible, as both fit types has very high R2 values.

These two alternative fits are therefore studied in more detail. A closer look at the linear

fit is given in figure 23.
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Figure 23: Linear regression (logarithmic x-axis)
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The corresponding studentized residuals, from the linear fit, are given in figure 24.
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Figure 24: Studentized residuals from linear regression (logarithmic x-axis)

A histogram of the studentized residuals, with a linear fit, is given in figure 25.
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Figure 25: Occurrences of studentized residuals with linear regression

The quadratic fit is given in figure 26.
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Figure 26: Quadratic regression (logarithmic x-axis)

The corresponding studentized residuals, with a quadratic fit, are given in figure 27.
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Figure 27: Studentized residuals from quadratic regression (logarithmic x-axis)

A histogram of the studentized residuals, with a quadratic fit, is given in figure 25.
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Figure 28: Occurrences of studentized residuals with quadratic regression

It is obvious that the quadratic fit has a lower or equal sum-of-squares value, since it has

one extra parameter to adjust. However, an interesting question is whether the decrease

in sum of squares is worth the loss in degrees of freedom with a quadratic function. An

F-test can answer this question. To perform an F-test, two alternative hypotheses are

needed:

H0 : The best-fit for the data is a first order polynomial (straight line)

H1 : The best-fit for the data is a second order polynomial (quadratic)

The relevant data for these calculations are given in table 9.

Second order polynomial First order polynomial % Increase

Degrees of freedom 12 13 8.33 %

SSerr 2.188× 1015 1.958× 1017 8948.81 %

Table 9: Comparison of sum-of-squares and degrees of freedom

The F-ratio is defined as:

F =
% increase in sum− of − squares

% increase in degrees of freedom
(18)
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Applied to the data, the F-ratio is:

F =
8948.81%

8.33%
= 1062

An F ratio higher than 1.0 means that either:

• The more complicated model is correct (quadratic in this case).

• The simpler model is correct, but random errors made the complicated model to fit

better than the simpler model.

The P-value describes the probability for the second case to be true. The confidence level

for P is set to 0.05, corresponding to a 5% chance of rejecting the null hypothesis, given

it was true. The null hypothesis will be rejected if P < 0.05.

The P-value, calculated with IBM SPSS Statistics 19 for the comparison of a first and

second order polynomial, was < 0.0001. Based on this, the H0 hypothesis is rejected.

Thus, a quadratic function fits the data significantly better than a linear function. It is

therefore concluded that average productivity increases with network size for SNS studied.

4.8 Discussion on relationship between content created and size

of networks

Some problems occurred during the work in this section. Few of the sites visited had

available information about both network size and content created. In addition, network

sizes from the sample data are not uniformly distributed as it can be observed in figure

22. Facebook, for example, has more members than the remaining 14 SNS summarized.

Similarly, content created per day for Facebook exceeds content created for the rest of the

14 networks summarized. Consequently, there were few data points to fit in the interval

[0.5× 108,5× 108] as it can be seen in figure 22.

The following section discusses the linear regression model against the regression assump-

tions listed at the beginning of chapter 4.

1. Plausibility

A linear fit would imply that productivity of a single network member is unaffected

by network size, which seems to be a possible hypothesis. The linear fit has also a

high R2 value (0.9033) and is therefore plausible.

2. Normality
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The occurrences of studentized residuals are centralized around 0, as it can be

observed in figure 25. Since only 15 observations were made, it is expected that the

studentized residuals do not follow a Gaussian curve perfectly. With this in mind,

the normality requirement is fulfilled.

3. Homoscedasticity

The studentized residuals have approximately the same absolute value, except two

outliers. These are approximately 2.5 times the size of the standard deviation unit

as figure 24 shows.

4. Accuracy

When it comes to the accuracy requirement, it comes clear that some values of

network size and content created are more precise than others, as some networks

provided rounded numbers (as it can be seen in table 7). However, these num-

bers are provided by the SNS themselves and are therefore assumed to be good

approximations.

5. Independence

The first 11 studentized residuals in figure 24 does not seem to be independent

of each other, but again, only 15 data points were collected. It would be desir-

able to have more data to discuss further whether the studentized residuals were

independent or not.

The following section discusses a quadratic regression model against the regression as-

sumptions:

1. Plausibility

The quadratic model has an R2 value of 0.99892. A quadratic fit would imply that

productivity of a single network member increases with network size. This is also

a plausible model and was therefore used as the alternative hypothesis. The first

regression assumption is therefore met.

2. Normality

The occurrences of studentized residuals shown in figure 28 are approximately the

same as with the linear regression. Therefore the same discussion applies as above.

3. Homoscedasticity

The studentized residuals in figure 27 are approximately of the same size with few

exceptions, but again, only 15 data points were collected.
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4. Accuracy

The accuracy requirement discussion is the same as with a linear function.

5. Independence

About half of the studentized residuals to the right in figure 27 seem to be indepen-

dent of each other, while the first six are approximately the same. As mentioned

earlier, it would be desirable to have more data to discuss further whether the

studentized residuals were independent or not.

Both a linear and a quadratic fit, compared against the regression assumptions, seem to

be plausible fitting functions. However, as the F-test gave an F-ratio is extremely high

(1062) and significant at confidence level 0.05, it is concluded that a quadratic model is

the best function to model content productivity as a function of network size.

4.9 What is important for members of online communities?

This chapter is simply a presentation of a study conducted by Petter B. Brandtzæg and

Jan Heim. Their findings will later be discussed against existing network laws and results

obtained in this study.

In ”User Loyalty and Online Communities: Why Members of Online Communities are

not Faithful”, Petter B. Brandtzæg and Jan Heim studied why community-users stop

using their social network [40]. The survey was conducted as an online survey within the

following communities2:

Name Number of members

Biip 280 000

Hamar-Ungdom * 190 000

Nettby* 320 000

Underskog 10 000

Table 10: Norwegian online communities in the study

The purpose of the survey was to reveal why online community members lack interest in

an online community. The reasons for decreasing interest were grouped into nine specific

and one cumulative category. Out of 200 responses, 257 reasons were given in total as

2Online communities marked with a * do no longer exist
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some participants answered multiple reasons. The results from the online survey are

given in table 11:

Reasons Number of reported reasons (in %)

1. Lack of interesting people/friends attending 62 (24%)

2. Low quality content 59 (23%)

3. Low usability 45 (18%)

4. Harassment/bullying 24 (9%)

5. Time-consuming/isolating 16 (6%)

6. Low trust 15 (6%)

7. Over-commercialized 15 (6%)

8. Dissatisfaction with moderators 3 (1%)

9. Unspecified boring 3 (1%)

10. Other 15 (6%)

Total 257 (100%)

Table 11: Reasons why online community members stop using the social service or using

it less

4.10 Discussion on what creates value in a social network

The results by Petter B. Brandtzæg and Jan Heim are here discussed against the networks

laws presented earlier.

In tradition economy, utility is measured as the difference between maximum willingness

to pay minus actual price paid. If we sum the utility for every user in a system, we get

the total economic surplus or economic value. That is also the idea behind Beckstrom’s

law, but as pointed out earlier, the utility of network members is hard to measure in

practice. So, how do we then measure value? In section 2, network externality was

defined as ”networks where the utility of consumption is affected by the number of other

users using the same or compatible products”. Since the value of such networks directly

depends on the number of users, active connections seem to be an indicator of network

value. However, this number does not count for other categories that create value in SNS.

The study by Petter B. Brandtzæg and Jan Heim is an interesting contribution in the

discussion that this chapter is devoted to. Their result reveals what is important for

network members in some online communities in Norway. Network size seems to matter,

as ”lack of interesting people/friends attending” is the main reason why members value

61



the service less. However, this reason size alone does only stand for 24%. This result

indicates that network laws based purely on network size do not count for the other 76%

of what is important in Norwegian communities studied.

In the survey, ”Low quality content” was a category with almost the same importance as

”Lack of interesting people/friends attending”. In SNS, the variety and quality of content

is a key factor for success. Encouragement to produce content is therefore commonly

observed in SNS. As an example of its importance, consider what the value of Twitter

would be if the members stopped ”tweeting”. With this in mind, content productivity

seems to be an important variable in the estimation of SNS value.

The remaining seven reasons in the study by Petter B. Brandtzæg and Jan Heim are

harder to measure objectively. These categories are items where users typically have

different requirements. For example, low trust, is probably a greater issue for people with

higher technical competence. This makes these reasons harder to measure in practice.

Still they count for the majority of the reasons with 53%. This result indicates that

network laws purely based on network size are too simplistic.

4.11 Models for valuation of social networking services

This chapter presents alternative models for SNS value based on two variables: content

created and network size. The data used in this chapter were retrieved as described in the

beginning of chapter 4. Table 12 displays the data obtained. The following abbreviations

are used in the table:

nc = Current number of members

nv = Number of members at valuation

cc = Current content created per day

cv = Content created per day at valuation

V = Market value

When data of content created at valuation are missing, cv is estimated with the following

formula:

cv =
nv

nc
× cc
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Social network nc nv cc cv V

Facebook 500 000 000 [25] - 14 785 000 000 [25] - $ 41 000 000 000 [25]

Twitter 175 000 000 [26] - 95 000 000 [26] - $ 7 700 000 000 [41]

Fotolog 32 288 764 [29] 10 000 000 [42] 18856 [29] 5 840 $ 90 000 000 [42]

Flixster 3 000 000 [43] - 2 299 844 [44] - $ 90 000 000 [45]

Badoo 114 270 752 [28] - 142 609 [28] - $ 300 000 000 [46]

Foursquare 8 000 000 [33] 1 800 000 [47] 2 500 000 [33] 562 500 $ 95 000 000 [47]

Table 12: Size, content created and market value of social networking services

The data that are going to be modeled is illustrated in figure 29.
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Figure 29: Scatter of actual value, average content created and network size

Three alternative fit formulas are tested against each other: a linear, a second-degree

polynomial and a power fit. Figure 30, 31 and 32 display how content created correlates

with market value, how number of members correlate with market value and how number

of members correlate with content created, respectively. R2 values are given for all fit

types.
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Figure 30: Correlation between content created and market value (logarithmic axes)
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Figure 31: Correlation between number of members and market value
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Figure 32: Correlation between number of members and content created

The first model estimated was a linear formula:

V̄lrs(n, c) = A+B0 × n+B1 × c (19)

The unknown parameters A, B0 and B1 were calculated with Mathematica 8, using the

function FindFit :

A = −4.38267× 108

B0 = 33.8423

B1 = 1.65914

This leads to the following best-fit linear response surface formula:

V̄lrs(n, c) = −4.38267× 108 + 33.8423× n+ 1.65914× c (20)

V̄lrs(n, c) is plotted in figure 33.
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Figure 33: Response surface for estimated network value when V̄lrs is used as valuation

A closer look at the linear model applied to the data is given in table 13.

n c V V̄lrs V/V̄lrs ratio Residual, �

500000000 14785000000 41000000000 41013267900 0.999676497 13267900

175000000 95000000 7700000000 5641753800 1.364823825 -2058246200

10000000 5840 90000000 -99834310.62 -0.901493679 -189834310.6

3000000 2299843.782 90000000 -332924337.2 -0.270331694 -422924337.2

114270752 142609.4361 300000000 3429154679 0.087485117 3129154679

1800000 562500 95000000 -376417593.8 -0.252379277 -471417593.8

SSerr 1.44653× 1019

Table 13: Residuals and accuracy of the linear regression model

The second alternative was a quadratic response surface of the form:

V̄qrs(n, c) = β00 + β10 × n+ β20 × n2 + β01 × c+ β02 × c2 + β11 × n× c (21)

The calculated parameters were again calculated with Mathematica 8’s FindFit function:

β00 = 9.85197× 107

β10 = −1.09755

β20 = 2.451× 10−8

β01 = −3.69289
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β02 = −1.49024× 10−8

β11 = 4.52827× 10−7

This leads to the following best-fit quadratic response surface:

V̄qrs(n, c) =9.85197× 107 − 1.09755n+ 2.451× 10−8 × n2 − 3.69289× c−

1.49024× 10−8 × c2 + 4.52827× 10−7 × n× c (22)

Figure 34 displays how value of SNS varies according to V̄qrs.
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Figure 34: Response surface for estimated network value when V̄qrs is used as valuation

Table 14 shows the residuals for the best-fit quadratic response surface.
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n c V V̄qrs V/V̄qrs ratio Residual, �

500000000 14785000000 41000000000 40999998812 1.000000029 −1187.502663

175000000 95000000 7700000000 7699999727 1.000000035 −272.951536

10000000 5840 90000000 90000000 1.000000000 0.826648

3000000 2299843 90000000 89999999 1.000000011 −0.675020

114270752 142609 300000000 299999874 1.000000420 −125.397824

1800000 562500 95000000 94999999 1.000000011 −0.403340

SSerr 1498578

Table 14: Size, content created and market value of social networking services

Table 15 shows how network value varies with average content created per day and

network size, according to V̄qrs.

Content created ↓
Number of members

10 000 100 000 1 000 000 10 000 000 100 000 000

10 000 98,471,801.44 98,373,671.85 97,414,214.32 90,003,475.05 234,279,686.59

100 000 98,139,701.62 98,045,239.93 97,122,461.41 90,078,512.21 238,022,624.48

1 000 000 94,805,425.37 94,747,642.69 94,191,654.24 90,815,605.77 275,438,725.34

10 000 000 60,134,861.09 60,443,868.48 63,555,780.76 96,858,739.59 648,271,932.15

100 000 000 -419,350,960.33 -415,374,052.21 -375,583,132.63 24,509,899.19 4,243,823,821.60

Table 15: Estimated network value in USD with V̄qrs for some common network sizes

The last alternative model was a power response surface of the form:

V̄prs(n, c) = α× nβ0 × cβ1 (23)

The best-fit power response surface was again calculated with Mathematica 8’s FindFit

function. The optimal variables were calculated to be:

α = 14.1514

β0 = 0.892437

β1 = 0.167022

The optimal solution is given in equation 24:

V̄prs(n, c) = 14.1514× n0.892437 × c0.167022 (24)
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The function is plotted in figure 35:
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Figure 35: Response surface for estimated network value when V̄prs(n, c) is used as valu-

ation

Some calculation details about the best-fit power response surface are given in table 16.

n c V V̄ V/V̄prs ratio Residual, �

500000000 14785000000 41000000000 40988874992 1.000271415 -11125007.54

175000000 95000000 7700000000 6912687207 1.113893884 -787312793.4

10000000 5840 90000000 106397693.5 0.845882998 16397693.49

3000000 2299843.782 90000000 98574741.69 0.913012791 8574741.69

114270752 142609.4361 300000000 1595346308 0.188046945 1295346308

1800000 562500 95000000 49389314.69 1.923492978 -45610685.31

SSerr 2.30033× 1018

Table 16: V̄prs(n, c) applied to data

Table 17 shows how network value varies with average content created per day and

network size when V̄prs(n, c) is applied as valuation formula.
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Content created ↓
Number of members

10 000 100 000 1 000 000 10 000 000 100 000 000

10 000 1,127,374.08 4,296,037.31 16,370,729.95 62,383,256.86 237,721,271.42

100 000 2,228,784.32 8,493,135.33 32,364,436.09 123,329,804.86 469,967,736.40

1 000 000 4,406,238.94 16,790,670.70 63,983,507.56 243,819,279.94 929,111,946.69

10 000 000 8,711,000.61 33,194,646.22 126,493,451.92 482,023,314.11 1,836,826,110.87

100 000 000 17,221,383.75 65,624,807.78 250,073,714.13 952,945,457.83 3,631,349,455.36

Table 17: Estimated network value in USD with V̄prs(n, c) for some common network

sizes

It was earlier in this study estimated a relationship between content created and network

size:

c(n) = 7× 10−9 × n2 − 0.5585× n+ 5× 106

which in asymptotic terms is equal to:

c(n) = n2 (25)

Now, if we use equation 25 as an estimate for c in the formula V̄prs(n, c), we get a model

describing network value as a function of network size:

V̄prs(n, c) ≈ n0.892437 × c0.167022

V̄ (n) = n0.892437 × (n2)0.167022 = n0.892437 × n0.334044 = n1.226481

In figure 36, V̄ (n) is compared with other network laws only dependent on network size.
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Figure 36: Comparison of V̄prs(n) with existing network laws (logarithmic axes)

4.12 Discussion on models for valuation of social networking

services

The purpose of this chapter was to give simple and precise models for valuation of SNS.

The proposed models were based on actual market value, since this value represents what

people actually are willing to pay. A benefit with this model is that it gives market value

in a currency (United States Dollar (USD)). It is therefore clear what kind of value the

model estimates, unlike several other network laws proposed.

Some problems were encountered during the work. The main problem was few obser-

vations available, despite extensive searches for data. Even though information requests

were sent to 260 SNS, either passively or actively, only six SNS had the information

needed. Since the models therefore were estimated on a limited data basis, it would be

interesting to test the models against new data from SNS. This would clarify the model

accuracy further. Another issue arose when network size, average content created and es-

timated value were not retrieved at the same date. Therefore a conversion was necessary

(as described in section 4.11).

Three different models were proposed for valuation of SNS: a linear response surface, a

quadratic response surface and a power response surface. The plausibility of these models

are discussed in the next sections.

A linear response surface model had three estimated variables. This is what is positive
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about the model, as it is simple to use. However, it is probably the only positive thing.

Several negative values occurred during estimation, as table 13 shows. A linear surface

model is therefore not an appropriate model for network valuation. Any further calcu-

lations were therefore not made with this formula. The main conclusion with the linear

response surface model is that it is considered inappropriate for SNS valuation.

The next alternative model was a quadratic response surface. This model had six pa-

rameters fitted and is therefore vulnerable to overfitting, as only six data observations

were made. Overfitting means that the model describes errors instead of actual relation-

ships. This may occur when too many parameters are used compared to the number of

observations. Is it likely that some of the data observations include errors? The observa-

tions used are from the SNS themselves or news articles. However, I suspect some of the

numbers not to be accurate. As discussed earlier, some numbers are obviously rounded.

In addition, the conversion described earlier has probably introduced some new errors.

Overfitting is therefore likely to be a problem with this model. As expected, this model

performed extremely good when it was tested against the observations used to find the

best-fit function: the V/V̄qrs ratio is extremely low, and consequently the SSerr value as

well.

Table 15 illustrates network value for different values of average content created and

network size according to V̄qrs. An interesting observation in this table is that several

values are negative. This is clearly an undesirable property. Another unwanted property

is that estimated value sometimes decreases as content productivity or network size in-

creases. The model is therefore considered inappropriate for SNS valuation. Any further

calculations were therefore not conducted.

Finally, a power response surface was modeled. This model has also three estimated

variables and is simple to use. This model does not have negative value estimations or

decrease in value when productivity or network size increases. The model is therefore

plausible. The V/V̄prs ratio given in table 16 shows the relative accuracy of the model.

As it can be observed, the estimated value varies approximately between 18% and 192%

of actual value. However, this is on the same data used for the estimation of the power

response surface. Estimations with new data will probably be less precise off than this.

Table 17 displays estimated value when V̄prs(n, c) is applied as valuation formula. Ac-

cording to this model, a doubling in network size increases network value approximately

four times. A tenfold in average content created leads to approximately a doubling in

network value.

A property of networks exhibiting a network effect is that a user number n+ 1 provides
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a network more value than user number n. This is because user number n gives utility

to n− 1 members as they now are able to connect to entrant number n. Similarly; user

number n is able to connect to n− 1 users. In contrast, users n+ 1 brings more value to

the network. This is because n users are able to connect to the new entrant. Similarly,

user number n + 1 is able to benefit the n users in the network. As result of this, it is

desirable that a valuation model grows Ω(n) when it is modeling networks exhibiting a

network effect.

In chapter 4.11, the power response surface model, V̄prs(n, c), was transformed to a func-

tion only dependent on network size. This way it was possible to discuss the power

function proposed in this study against network effects. The proposed model exhibits

network effects, as it grows faster than a linear function. The model grows much slower

than both Reed and Metcalfe’s law. This is a wanted property, as we have seen both Reed

and Metcalfe’s law lead to unrealistic network values. The model grows approximately

as Tilly-Odlyzko’s law, as it can be observed in figure 36. However, the model presented

here is likely to be more accurate than Tilly-Odlyzko’s law for SNS valuation, as the

model presented in this study is based on actual observations of SNS value.
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5 Summary

This section discusses the problems introduced in chapter 1.3.

• What generates value in networks?

Connectivity/network size has been the most common measure of network value in

the network laws proposed. This decision is easy to justify since network effects are

present in SNS.

No network laws proposed have used average content created as estimator of network

value. As the study by Petter B. Brandtzæg and Jan Heim revealed, low quality

content is an important reason why members loose interest in a social community.

A social network with low content productivity implies that little new content

is available. It also means low content diversity compared to a more productive

network. Content productivity was therefore considered an important factor of

network value and used as a variable in the SNS valuation models proposed in this

study.

As mentioned earlier, several aspects other than those mentioned above affect indi-

vidual utility/value in an online community. Some categories are harder to measure

objectively, but what generates network value does not seem to be as monotonous

as several network laws propose. The models proposed in this study deals with two

variables, as these are both easy to measure and assumed important for network

value.

• Is each network connection of equal value?

In SNS, people that create content are more likely to be of greater importance

than people that only consume content. The 1% rule indicates that only a small

proportion of the community create content. Those participants are likely to be of

higher importance than a non-contributor. Given the 1% rule is valid, a scheme

where each network connection is of equal value is unsuitable. Similarly, Zipf’s law

indicates that popularity of content/connections follows a Zipfian distribution. An

equal value of each network connection does not fit this theory either. An equal

network connection value is only justifiable when it comes to potential connectivity.

• Is it likely that one network law can accurately describe the value of all networks?

As several SNS have been introduced, it might have come clear to the reader that

SNS differ very much. Twitter, for example, does only provide text-based up-

dates. Facebook, in contrast, has great service diversity. It is therefore important
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to remember that the models proposed only account for some of the variables that

contribute to network value. Several other factors influence value, not taken into

account in here. When it has been observed such a great diversity within social

networks, an even greater diversity is expected if other network domains are con-

sidered. Thus, if precise estimations are needed, domain specific network laws are

most appropriate.

This said, the purpose of the model is not to be a perfect estimator. This would

require the model to be far too complex to have any practical purpose, both in

terms of difficult variables to measure and difficulty of calculation.

• How do you test the accuracy of a network law?

Most of the network laws proposed are theoretical and have therefore to a limited

extent been tested against real world network properties. Tilly and Odlyzko used

real world cases of interconnection and merging to test the accuracy of their law.

This may give an indicator of whether the law is plausible, but no specific bench-

marks. The models presented in this study are empirical, and should therefore

model the real world. The value estimated by the models in this study can be

tested against known market value to give an exact performance benchmark.
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6 Conclusions and further work

6.1 User behavior in social networking services

• The best-fit formula to model popularity of Twitter members as a Zipfian function

was:

f(k, 0.56, 10011) =
1/k0.56

129.1195

The corresponding R2 value was 0.8481. This implies that Zipf’s law is a plausible

model, but not an ideal fit. After further analysis of the studentized residuals it

was concluded that popularity of Twitter users could not be fitted accurately with

Zipf’s law. At least not for the whole interval examined.

• The best-fit formula to model popularity of Youtube videos as a Zipfian function

was:

f(k, 0.45, 160) =
1/k0.45

28.4102

The corresponding R2 value was 0.9859. This implies that Zipf’s law is a very good

estimation of popularity of Youtube videos. The analysis of the studentized residu-

als supported this conclusion, as the residuals to a large extent were in accordance

with the regression assumptions.

• A power function, but not necessarily Zipf’s law, is probably the best option to

model popularity of content in SNS.

• A person’s number of connections in SNS does not scale Ω(n).

• The best-fit function to model content productivity (average content created per

day) as a function of network size was:

c(n) = 7× 10−9 × n2 − 0.5585× n+ 5× 106

This quadratic function was significantly better than the best-fit linear function.

Thus, average productivity increases with network size for SNS studied.
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6.2 Valuation of social networking services

• Giving precise value estimations of SNS are hard.

• A linear response surface model and a quadratic response surface model where found

inappropriate for SNS valuation.

• The most appropriate model for valuation of SNS was the power response surface:

V̄prs(n, c) = 14.1514× n0.892437 × c0.167022

This model uses number of members and average content created as variables.

• As a function of network size, the proposed model grew n1.226481 in asymptotic terms

- approximately as Tilly-Odlyzko’s law.

6.3 Further work

• Test Zipfs law against popularity of content in more SNS.

• Gather more data (used during the estimation of a power response surface model)

to either:

– Estimate the variables in a power response surface more accurately.

– Test the proposed valuation model further.
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A Request sent to various social networking services

A.1 Social networking services contacted

http://www.anobii.com/ http://lafango.com/

http://www.athlinks.com/ http://www.lifeknot.com/

http://www.asmallworld.net/ http://www.listography.com/

http://www.audimated.com/ http://www.livejournal.com/

http://badoo.com/ http://www.mocospace.com/

http://www.bebo.com/ http://mog.com/

http://blauk.com/ http://www.mouthshut.com/

http://www.cafemom.com/ http://mubi.com/

http://www.care2.com/ http://www.multiplay.co.uk/

http://www.couchsurfing.org/ http://muxlim.com/

http://www.cozycot.com/ http://netlog.com/

http://www.cross.tv/ http://www.nexopia.com/

http://www.crunchyroll.com/ http://oneworldgroup.org/tv

http://dailybooth.com/ http://www.opendiary.com/

http://www.deviantart.com/ http://www.playlist.com/

http://www.disaboom.com/ http://www.plurk.com/

http://www.experienceproject.com/ http://raptr.com/

http://www.exploroo.com/ https://www.ravelry.com/

http://fledgewing.com/ http://sciencestage.com/
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http://identi.ca/ http://www.webbiographies.com/
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http://kaioo.com/
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A.2 Email request

Date: 04.13.2011 12:55

Subject: Master thesis

To whom it may concern,

I am writing a master thesis at the Norwegian University of Science and Technology about

economic valuation of social networks. To make my results better, I need information

about some elements describing social networks:

1. Number of members in the social network

2. Average content created per day/month (what kind of content created depends on

the nature of the service. e.g. pictures uploaded, blogs created etc.)

3. Average number of connections/friends for a user in your network

4. Estimated value of your network in USD

If you are able to answer some (or all of these questions) for your social network, it would

substantiate my results significantly. All answers may be anonymous, if you prefer so.

For any questions, do not hesitate to contact me.

Thank you for your time and help.

Best regards,

Martin Falck-Ytter
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B Paper

A paper based on this study, written by Harald Øverby and myself, is attached at the

next six pages. The paper has been submitted to the World Telecommunications Congress

(WTC) 2012, Miyazaki, Japan [48].
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Abstract— Social networking services (SNS) have emerged as a 
crucial aspect for private people and businesses worldwide. The 
usage of SNS in the private sector has seen an exponential use the 
last years, which has also lead businesses to increase their 
visibility on SNS. SNS such as Facebook and Twitter have 
enjoyed huge success due to a large user base and attention from 
the business sector. The value of a specific SNS is dependent on a 
number of key characteristics, such as the number of users and 
the amount of content produced. In this paper we present 
empirical data for valuation and user behavior in SNS. The data 
used are from the most common SNS today, including Twitter 
and Youtube. We provide an overview of how the number of 
users and content produced influence the total valuation of a 
SNS. We also develop analytical models capturing the network 
effects in SNS. The analysis provided can be used to estimate 
both value and user behavior of future SNS.  

Keywords-Social networking services; network valuation 

I. INTRODUCTION 
The popularity and use of Social Network Services (SNS) 

has exploded during the last decade. SNS such as Facebook, 
Twitter and MySpace have millions of followers, many who 
use a lot of their daily hours updating their profiles and posting 
new entries. As an example, Facebook has now over 500 
million users, in which 50 % log on every day [1]. This 
evolution has lead to an increased focus from the business 
sector on SNS, as a mean to reach potential customers.  

Several network laws have been proposed to model either 
user behavior or value. Examples of these laws include 
Sarnoff’s law for broadcast network valuation, Metcalfe’s law 
for valuation of communication networks and Zipf’s law for 
estimating popularity of content. However, the validity of these 
laws is uncertain for SNS. Behavior laws have to a small extent 
been verified within the SNS domain. Similarly, most common 
network valuation laws are based on a theoretical approach. It 
is therefore unclear how precise they are for SNS valuation.  

In this paper we will study empirical data regarding user 
behavior in SNS. Adjusting the exponent in the Zipf 
probability mass function, we calculate the best-fit function for 
popularity of Twitter members and Youtube videos. We see 
whether content productivity increases with network size and 
present a response surface model for SNS valuation. The 

contributions in this paper are empirical findings clarifying 
user behavior in SNS further and a SNS valuation formula. 

The rest of the paper is organized as follows: Section II 
presents a background on SNS. Section III presents related 
works on valuation of networks and SNS in particular. Section 
IV outlines our modeling and data gathering approach. Section 
V contains results. Section VI presents key findings in a 
conclusion. 

II. SOCIAL NETWORKING SERVICES  
SNS are online platforms for social interactions. With their 

presence, SNS enabled new services such as sharing of media, 
event planning and creation of interest groups instantly 
available for worldwide consumption. The popularity of SNS 
has not remained unnoticed. A large proportion of total web 
traffic today is generated by the largest SNS. According to the 
Internet traffic monitoring company Alexa, around 40 % of 
global Internet users visit Facebook daily [2]. Some of largest 
SNS today include LinkedIn (launched 2003), Facebook 
(launched 2004), Youtube (launched 2005) and Twitter 
(launched 2006). 

 
In SNS, the variety and quality of content is a key factor 

for success. Encouragement to produce content is therefore 
commonly observed in these networks.  

Figure 1: Visualized connections on Facebook (image from Facebook) 

III. NETWORK VALUATION 
Several network laws have been proposed to either model 
behavior or estimate value. The following section presents and 
discusses the most common network laws proposed. 



 
Sarnoff’s law is attributed to the American radio and 

television pioneer David Sarnoff. The law states that the value 
of a broadcast network is proportional to the number of 
subscribers. The reasoning behind this is that the bigger 
audience, the more you can charge for advertisements in the 
network. Examples of broadcast networks where the law is 
applicable include newspapers, radio and television networks. 

!!!! ! !!   (1) 
Sarnoff’s law is widely accepted as valuation for broadcast 

networks, but also limited to this network type. 

Metcalfe’s law states that the value of a network of n 
compatible communication devices is equal to n2. The law can 
be understood mathematically as the number of possible links 
in a communication network: each of the nodes in a network of 
size n can reach n-1 nodes. This gives n(n-1) links. But a link 
from node A to node B, is the same as the link from node B to 
node A. Therefore; the total number of unique links is equal to: 

!!!! ! ! !! ! !!!!  

!!!! ! !!2   (2) 

Metcalfe’s law assumes that all network connections are of 
equal value to an individual user. This can obviously not be 
true for all network sizes. It is impossible that all users 
connected to a large network will provide equal value to each 
other, if any value at all. Aspects like culture, religion and 
geography affect the utility derived from connections in a 
network. 

In [3], David R. Reed argues that there are some network 
structures where network value can scale even more than 
Sarnoff and Metcalfe’s law. He introduces the concept Group-
Forming Network (GFN) as a new network category that 
enables affiliations among subsets of members. Examples of 
such networks may be chat rooms and online auctions. Reed 
defines value as potential connectivity for transactions, which 
for a GFN is equal to the potential number of subgroups. In a 
network of n members, each element can be included or not in 
a subgroup. This gives 2n possible subgroups in total. However, 
this includes two non-proper subsets: one where no elements 
are included and n sets where only one element is included. 
Therefore, according to Reed’s law, the value of a GFN is 
equal to: 

!!!! ! !! !! !!!!1 

!!!! !! !!!   (3) 

Since Reed’s law grows even faster than Metcalfe’s law, it 
is vulnerable for the same criticism. However, it is important 
to highlight that Reed talks about value of potential and not 
actual affiliations. This fact makes the law unpractical for real 
network valuation. 

 
In [4], the authors accuse Metcalfe and Reed for 

overestimating the value of networks. They argue that the 
main fundamental fallacy underlying Metcalfe and Reed’s law 

is the assumptions that all potential connections or subgroups 
are of equal value to a network member. They reason that, 
since some connections are not used at all and some very 
rarely, an equal assignment of value to each connection or 
group is not justifiable. They suggest a new way to value a 
general communication network of size n. Based on Zipf’s 
law, Tilly and Odlyzko argue that the value of a user scales as 
log(n). This leads to a total network value, in a network with n 
members, of: 

! ! !!!! !! !!"#$!!!  (4) 

Even though Tilly-Odlyzko's law seems to be able to 
describe real world observations of network effects, there are 
some downsides with the law. In their reasoning, Tilly and 
Odlyzko assumed that a network member derives value 
according to Zipf's law. However, Zipf's law is intended to 
describe popularity, not value. Whether this approximation is 
justifiable remains unclear. In addition, Odlyzko and Tilly did 
only provide some examples where Zipf's law could be an 
accurate describer of popularity. Whether the law is a good 
estimation of popularity in all networks remain unanswered. As 
we later shall see, it is also important to estimate the 
exponential value in Zipf's law. Without the exponential value 
specified, the function might differ very much; as the only 
restriction is that the value is greater than 0. 

In [5], Rod Beckstrom proposed a new model for network 
valuation. According to Beckstrom, the model can be used to 
value any network type and size. In this model, the present 
value of any network is equal to the sum of the net present 
value of the benefit of all transactions minus the net present 
value of the cost of all transactions. Note that transactions only 
are carried out if the benefit is higher than the cost of the 
transaction. All values are discounted over any given period of 
time. In mathematical notation, Beckstrom’s law is formulated 
as1: 

!!!! !
!!!!

!!!!!!!!
!
!!!

!
!!! !! ! !!!!

!!!!!!!!
!
!!!   (5) 

Although Beckstrom’s law may give correct results, it 
introduces a new problem: How are you going to get the 
beneficial value and cost of every transaction in a network? 
This question must be as hard to answer as the original 
problem: How valuable is a network? 

Zipf’s law is named after George Kingsley Zipf and refers 
to the fact that several types of data follow a Zipfian 
distribution. If k is the rank of elements from a data set (where 
k = 1 is the most frequent data), Zipf probability mass function 
predicts that out of a population of N elements, where s is the 
value of the exponent, the frequency of elements of rank k is:  

!!!! !!!! !! ! !!!!
!!!!!!!!

! ! !! ! !!! ! !!! !! ! !!  (6) 

Zipf’s law has proven to be very accurate for modeling 
popularity of data, such as words in the English language [6] 
and sizes of large cities [7]. In [8], the authors showed that 

                                                             
1 The original paper has some typos. In this paper, r was changed to rk in the formula and 1 to l under the 

explanation of  tk and tl 



income, web page links and traffic to sites follow a power law 
distribution. A similar study was performed in [9], where the 
authors showed that a great number of Internet features follow 
a Zipfian distribution: 

• The level of routers transmitting data from one 
geographic location to another 

• The content of the World Wide Web 
• How individuals select the websites they visit and form 

peer-to-peer communities 

 

IV. MODELLING AND DATA GATHERING 

A. Popularity of content produced by users in a SNS 
 

Popularity of Twitter users and Youtube videos were 
compared with Zipf’s law to see whether Zipf’s law were an 
accurate describer of popularity in these two social networks.  
The data gathering approach for the two networks follows: 

• Twitter 
An Internet page containing statistics for the 10 020 most 

popular Twitter users was used to retrieve data [10].  A Python 
script was written to gather information about number of 
followers for each of the 10 020 most popular users2.  

• Youtube 
Similarly, a Python script was used to collect statistics 

from a site containing a list of the 160 most viewed Youtube 
videos [11].  

 
When these statistics were retrieved, the value of the 

exponent, s, in Zipf’s law was optimized to find the best-fit 
Zipf probability mass function. This optimization was done 
with the Levenberg-Marquardt algorithm. The corresponding 
Coefficient of Determination  (R2) value was calculated with 
the following formula: 

!! ! !! ! !!!""
!!!"!

! ! ! !!!!!!!!!
!!!

!!!!!!!!!
!!!

   (7) 

Where SSerr is the residual sum of squares, SStot is the total 
sum of squares, yi are actual observations, fi are estimated 
values by the regression model and ! is the average value of 
yi.. The R2 value compares the variance of the model's 
predictions with the total variance of the data. 
 

                                                             
2 10 011 observations were made, as some entries were zero or out of order 

When best-fit functions were given, studentized residuals 
were calculated, as they have zero mean and unit standard 
deviation. This makes it possible to determine how far an 
observation is away from the mean in terms of standard 
deviation units. Studentized residuals does also compensate 
for the leverage effect. Therefore, it is easier to observe 
outliers. The studentized residuals were compared against the 
following assumptions for non-linear regression: 

• Plausibility: The regression model is scientifically 
plausible. 

• Normality: The variability of values around the curve 
follows a Gaussian distribution. 

• Homoscedasticity: The response variables all have the 
same variance.  

• Accuracy: The model assumes that you know the 
independent variable(s) exactly. 

• Independence: The errors are independent of each 
other. 

 

B. Content productivity as a function of network size / 

C. Valuation of SNS as a function of content and size 
 

To gather information for the two last parts of this study, 
203 SNS were visited or requested for the following data: 

• Average content produced per day 
• Number of members 
• Estimated market value in (United States Dollars) USD 

 
The relationship between network size and content created 

in SNS was studied to see whether content productivity 
increases with network size. 15 SNS were able to provide the 
data requested. Best-fit formulas were compared with the data 
and an F-test was performed on plausible regression models. 
The F-test compares change in sum of squares with change in 
degrees of freedom for two models, where one model is more 
complicated (has more adjustable variables).  An F ratio 
higher than 1 means that either that: 

• The more complicated model is correct  
• The simpler model is correct, but random errors made 

the complicated model to fit better than the simpler 
model.  

A P-value describes the probability for the second case to 
be true. The confidence level for the P-value was in this study 
set to 0.05, corresponding to a 5% chance of rejecting the 
correct model. This way it could be concluded whether one 
model significantly fitted the data better.  

 
Three alternative response surface models for valuation of 

SNS were calculated and compared. The models were based 
on two variables: content created and network size. 
Unfortunately, only 5 social networks were able to provide the 
information needed. The software Mathematica 8 was used to 
calculate best fit for a linear, quadratic and power response 
surface. Any plausible response surfaces were converted, 
based on the function estimated in the previous section, to a 
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Figure 2: Zipf probability mass function 



function only dependent on network size. This way, it was 
possible to compare the response surface model against 
network effects and network laws presented earlier in this 
study. 

V. RESULTS 
The empirical results from this study is presented below:  

A. Popularity of content produced by users in a SNS 
1. Twitter 

The resulting data from the script were retrieved 4.26.2011 
and are given in figure 3. 

 
Figure 3: Number of followers for the 10 011 most popular Twitter users 

To be able to compare the popularity of Twitter users with 
Zipf’s law, the data were transformed to frequency: 
 

!! ! !!
!"#$%&"#'$    (8) 

 
Where nk is the number of followers for Twitter user with 
popularity rank k and 2147851407 is the total number of 
followers for the 10 011 most popular Twitter users. The 
following minimum sum of squares problem was solved to 
find the optimal value of the exponent, s: 
 
!"#! !!!! !!""!!

!!!
!!!!

!!!!!""!!!!!
!!!"#$%&'!!"!!! ! !!  (9) 

 
The value s for the minimal sum of squares was 0.56. In figure 
4, Zipf’s law with s=0.56 is plotted with the data from Twitter. 

 
Figure 4: Zipf's law plotted against popularity of Twitter members 

Studentized residuals and histograms of studentized residuals 
are given in figure 5 and 6. 

 
Figure 5:  Studentized residuals after the fitting (Twitter) 

The result of the fitting where then tested against the 
regression assumpations listed earlier to test wheter Zipf’s law 
was an accurate describer. The data from Twitter fitted with 
Zipf’s law (s=0.56) had an R2 value of 0.8481. Even though 
this value does not indicate a very good fit, it does not mean 
that it is scientifically implausible to fit Zipf’s law with the 
data from Twitter. The occurrences of studentized residuals in 
figure 6 are not mirrored around origo. The normality 
assumption is therefore violated. At the most extreme, the 
standardized residuals were as high as seven times the 
standard deviation unit (figure 5). This implies that the 
homoscedasticity property is violated. The independent value, 
k, is known exactly, so this property is not violated. The last 
regression assumption is independence. There is a systematic 
pattern in the studentized residuals in figure 5. This implies 
that the studentized residuals are not independent of each 
other. This last property is therefore also violated. As we have 
seen, several regression assumptions are violated. This implies 
that the data from Twitter cannot be fitted accurately with 
Zipf’s law, at least not for the whole interval examined. 
 

2. Youtube 
 

Number of views for the 160 most popular Youtube videos 
was retrieved 4.27.2011 by the script and is given in figure 7. 
The procedure performed was the same as with the fitting of 
Zipf’s law with Twitter. The optimal value of the exponent, s, 
was 0.45. The results from the fitting are illustrated in figure 
8, 9 and 10.  
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Figure 6: Occurrences of studentized residuals (Twitter) 



 

Tested against the regression assumptions listed earlier, Zipf’s 
law fitted the data from Youtube with a very high R2 value 
(0.9859). This means that the regression line almost perfectly 
fits the data. It is therefore very likely that Zipf’s law is a good 
describer of popularity of YouTube videos. The occurrences of 
studentized residuals are distributed approximately as a 
Gaussian distribution (figure 10). The second requirement is 

therefore fulfilled. The variances of the studentized residuals 
(figure 9) are mostly equally divided in the interval, except for 
some outliers. These were approximately seven times as high as 
the unit standard deviation. Overall, the homoscedasticity 
assumption was preserved with some exceptions. The values of 
popularity rank are known, so this property is not violated. The 
last regression requirement, independence, is not perfect, as the 
residuals are not completely randomly distributed (figure 9). 
However, a systematic misfit is not registered here. With regard 
to these points, Zipf’s law seems to be a good describer of 
popularity of Youtube videos. 

B. Content productivity as a function of network size 
 

Figure 11 displays scatter plot of content created and 
network size, obtained as described in chapter IV-B.  Best-fit 
formulas and corresponding R2 values for a quadratic, linear 
and power fit are plotted in the same figure.  

Linear and quadratic functions had high R2 values and are 
therefore both plausible estimates. Their best-fit formulas are 
given below: 
!!!!!"#$%#&'( ! !!!!"!!!! ! !!!!"!! ! !!!"! (10) 
!!!!!"#$%& ! !!!!"##! ! !!!"!   (11) 

The P-value for the comparison of a first and second order 
polynomial was < 0.0001. Thus, a quadratic fit was statistically 
significant at confidence level 0.05. This means that the 
quadratic model fitted the data significantly better than the 
linear model. Consequently, average productivity increased 
with network size for SNS studied. 

 

C. Valuation of SNS as a function of content and size 
 

The best-fit linear and quadratic response surfaces had 
both undesirable properties, as they both had negative value 
estimations and value decrease after increase in either network 
size or content productivity. These models were therefore 
considered inappropriate. The best-fit power response surface 
was: 
!!"#!!! !! ! !"!!"!#!!!!"#$%&!!!!"#$%%!  (12) 
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Figure 8: Zipf’s law plotted against popularity of Youtube videos 
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Figure 10: Occurrences of studentized residuals (Youtube) 

Figure 11: Comparison of best-fit quadratic, linear and power functions 



Where n is the network size and c average content created per 
day. Details about the best-fit power response surface function 
are given in table 1. 

Table 1: Power response surface regression calculations 

Network 
size 

Average 
content  

created per 
day 

Actual value Estimated value Actual/ 
estimated 

ratio 

Residual 

500000000 14785000000 41000000000 40988874992 1.000271 -11125007 

175000000 95000000 7700000000 6912687207 1.113893 -787312793 

10000000 5840 90000000 106397693.5 0.845882 16397693 

3000000 2299843 90000000 98574741.69 0.913012 8574741 

114270752 142609 300000000 1595346308 0.188046 1295346308 

1800000 562500 95000000 49389314.69 1.923492 -45610685 

Residual Sum of Squares 2.3!1018 

 
Figure 12 displays the response surface estimated by Vprs(n,c).  
 

 
Figure 12: Power response surface for estimated network value 

It was earlier in this study concluded that content as a 
function of network size grew quadratically. If we in 
asymptotic terms, substitute content productivity in Vprs(n,c), 
we get a model describing network value as a function of 
network size: 

!!"#!!! !! !! !!!!"#$%&!!!!"#$%%!  (13) 
!!"#!!! ! !"!!"!#!!!!"#$%&!!!!!!!"#$%%! (14) 
!!"#!!! ! !!!!!"#$%   (15) 

Vprs(n) compared against network laws proposed is given in 
figure 13. 
 

 
Figure 13: Comparison of results in this study and proposed network laws 

VI. CONCLUSION 
In this paper we have presented analytical models for user-

behavior and SNS valuation with the following key findings: 

• Zipf’s law was not an accurate describer of popularity 
of Twitter members.  

• Zipf’s law was a good describer of popularity of 
Youtube videos.  

• Content productivity increases with network size for 
SNS studied.  

• An empirical model for SNS valuation was proposed 
based on two variables: network size (n) and average 
content created per day (c).  The best-fit response 
surface was the following power function: 

!!"#!!! !! ! !"!!"!#!!!!"#$%&!!!!"#$%% 

• Compared to proposed network laws, the power 
response surface grows approximately as Tilly-
Odlyzko’s law in asymptotic terms. 

Further work: 

• Test Zipf’s law against popularity of content in more 
SNS 

• Gather more data (used during the estimation of a power 
response surface model) to either: 

o Estimate the variables in a power response surface 
more accurately 

o Test the proposed valuation model 
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