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Abstract

In this thesis, power system harmonics and detection methods for power system harmonics
have been investigated. Harmonics have been an issue in power systems for a very long
time, but due to the increasing use of nonlinear loads, like power electronic converters, the
harmonic pollution have increased. Electrical grids where new type of components interact
are becoming prone to harmonic pollution as well. Harmonics can cause severe damage
to components in the power system, like overheating of components or false tripping of
circuit breakers, and thus, it should be reduced. A mathematical model that describes ac-
curately the physical behaviour of harmonics can be a challenging task in a large scale
system. Even if a detailed mathematical model is available, such model can be of high or-
der and can result in a complex controller. As an alternative to high fidelity modelling, this
thesis is based on data analysis and on-line identification techniques that can characterize
the grid under operation.

There are several methods available for harmonic detection, and in this thesis, the empirical
mode decomposition (EMD) is investigated. This method, unlike the commonly used fast
Fourier transform (FFT) method, is a more recent developed method that was designed to
handle both non-linearity and non-stationarity. In addition to the standard EMD, an online
version of the method is investigated. This extension of the EMD is a method that enables
analysis of data streams, which may be suitable for on-line harmonic detection and control
purposes.

Standard EMD decomposes a signal into a number of intrinsic mode functions (IMFs),
which are different modes of oscillation. After the decomposition is complete, the fre-
quencies of each IMF can be calculated and the harmonic components of the signal can be
detected. In the online extension of the EMD, the extraction of modes is done blockwise
through a sliding window that enables analysis of data flows in real-time with some delay.

In this thesis, EMD has been applied to a current measurement using both a Python code
and MATLAB code, which revealed differences in the decomposition. The Python code
was able to identify all the frequency components of the current measurement, while the
results obtained with MATLAB suffered from mode mixing. A duplication of the current
measurement was made in order to make it suitable for the online EMD. This duplication
was analyzed using the standard EMD, both in Python and MATLAB, and online EMD.
When the measurement was duplicated, mode mixing became an issue for both codes. In
order to investigate why mode mixing occurred, a synthetic signal mimicking the current
measurement was constructed and analyzed with the online EMD. It was found that if the
amplitudes of the harmonic components were doubled, the mode mixing disappeared. For
real-time applications, it is important to know the time lag of the online EMD decomposi-
tion. Thus, the time lag for a synthetic signal without mode mixing is examined.
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Sammendrag

I denne avhandlingen har harmoniske komponenter og deteksjonsmetoder for harmoniske
komponenter i kraftsystemer blitt undersøkt. Harmoniske komponenter i kraftsystem har
vært et problem i lang tid, men på grunn av den økende bruken av ikke-lineære laster,
som kraftelektroniske omformere, har mengden av harmoniske komponenter økt. I tillegg
blir kraftnett hvor nye typer komponenter interagerer også utsatt for forplantning av har-
moniske komponenter. Harmoniske komponenter kan forårsake alvorige skader på kom-
ponentene i kraftnettet, som for eksempel kan det forårskaje overoppheting av komponen-
ter eller feilaktig utkobling av strøm brytere, og de bør dermed reduseres. En matematisk
modell som beskriver de harmoniske komponentenes oppførsel nøyaktig kan være kom-
pleks og utfordrende å beskrive. Selv om en slik matematisk modell eksisterer kan en slik
modell være av høy orden og kan resultere i en kompleks kontroller. Som et alternativ til
slik modellering vil denne oppgaven benytte seg av data analyse og on-line identifikasjon-
steknikker som karakterisere kraftnetet under drift.

Det er flere tilgjengelige metoder for å detektere harmoniske komponenter, og i denne
avhandlingen vil empirical mode decomposition (EMD) bli undersøkt. Denne metoden,
i motsetning til den hyppige brukte metoden fast Fourier transform (FFT), er en nyere
utiklet metode som ble designet for å håndtere både ikke-linearitet og ikke-stasjonæritet. I
tillegg til standard EMD vil en on-line versjon av metoden bli undersølt. Denne versjonen
av EMD er en metode som muliggjør analyse av datastrømmer, som kan være egnet for å
detektere harmoniske komponenter i sanntid og kontrollformål.

Standard EMD dekomponerer et signal til en rekke modusfunksjoner kalt intrinsic mode
functions (IMFs), som er forskjellige svingemoduser. Etter at dekomponeringen er fullført,
kan frekvensene for hver IMF beregnes og signalets harmoniske komponenter kan de-
tekteres. For online EMD detekterer moduser blokkvis gjennom et glidende vindu som
muliggjør analyse av datastrømmer i sanntid, dog med en tidsforsinkelse.

I denne oppgaven har EMD blitt anvendt på et målt strømsignal ved hjelp av både en
Python-kode og MATLAB-kode, hvor forskjeller i dekomponeringen ble funnet. Python-
koden var i stand til å identifisere alle frekvenskomponentene til strømsignalet, mens re-
sultatene som ble oppnådd med MATLAB led av blanding av modusene (mode-mixing).
En forlenging av strømsignalet ble gjort for å gjøre den egnet for online EMD. Denne
forlengingen ble analysert ved hjelp av standard EMD, både i Python og MATLAB, og
online EMD. Når signalet ble forlenget, ble mode-mixing et problem for begge kodene.
For å undersøke hvorfor mode-mixing oppstod, ble et syntetisk signal som imiterer strøm-
signalet konstruert og analysert med online EMD. Det ble funnet at hvis amplitudene til
de harmoniske komponentene ble fordoblet, var det ingen mode-mixing. For sanntidsap-
plikasjoner er det viktig å vite tidsforsinkelsen av online EMD fører med seg. Derfor ble
tidsforsinkelsen for et syntetisk signal uten mode-mixing undersøkt.
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Chapter 1
Introduction

1.1 Motivation

Power systems operates at a fundamental frequency of 50 Hz or 60 Hz, depending on the
location of power system. Ideally, the current and voltage waveforms would be pure si-
nusoidal. However, integer multiples of the fundamental frequency may also be present,
making the sinusoid distorted. These integer multiples of the fundamental frequencies
are a form of electrical pollution, and are known as power system harmonics [1]. Power
system harmonics originate due to various operations, for example, ferroresonance, mag-
netic saturation, synchronous resonance, and nonlinear and electrically switched loads [2].
Power systems harmonics have been an issue for many years, but in recent years the pol-
lution has increased due to the increased use of nonlinear loads. In addition, electrical
grids (e.g., microgrids, marine vessels, offshore platforms, solar farms, wind farms) where
several new type of components (power electronic converters, passive components) inter-
act, are becoming prone to harmonic pollution as well. The harmonics can have severe
impact on different components in the power system, and they should therefore be prop-
erly detected, and procedures should be made to reduce the propagation. A mathematical
model that describes accurately the physical behaviour of harmonics in power systems can
be a challenging task in a large scale system. Even if a detailed mathematical model is
available, such model can be of high order.

As an alternative to high fidelity modelling, there are several different data analysis meth-
ods available for detecting power system harmonics, and one of the most commonly used
method is the fast Fourier transform (FFT). Even though this methods has provided promi-
nent results, the FFT is limited to linear and stationary signals. A method that handles both
nonlinear and non stationary signals is the empirical mode decomposition (EMD) [3]. Due
to its adaptive decomposition nature, it has been applied to a variety of research areas e.g,
for medical and seismic signal analyses [4]. A number of extensions of the EMD method

1



are currently available, like local EMD, ensemble EMD and sliding EMD. An extension
of the EMD method that can be applied to data streams, and hence may be suitable for
direct control purposes, is the online EMD [5]. This method applies EMD to a window of
the data, then the window is shifted.

In order to reduce the harmonic propagation in power systems there are several solutions,
and in [6] two types of solutions are described. The first solution that is mentioned is to
reduce the propagation of harmonics by designing the nonlinear devices for low levels of
harmonic distortion. The second solution that is mentioned is to install harmonic compen-
sation equipment at the terminals by the use of filters. There are several types of filters that
can be used for such compensation, and a choice must be made based on factors like the
power and voltage ratings. One type of filter that can be used for harmonic compensation
is the shunt active filter [7]. This is a filter that can be connected as shown in Figure 1.1.
In order for the shunt active filter to work properly, a reference current must be computed,
and in [8] a version of an online EMD method is used to compute the reference current.

Figure 1.1: Shunt APF. APF connected at point of common coupling (PCC) [7].

The version of the online EMD used in [8] is not the same version of the online EMD
that will be investigated in this thesis, but the research performed in this reference is a
motivating factor for wanting to investigate the online EMD presented in [5].

1.2 Objectives

The aim of this work is to evaluate the decomposition provided by the EMD, and one
of its extensions - the online EMD, for a real signal containing harmonics. The online
EMD allows the analysis of data streams, which can be beneficial for real-time harmonic
detection and control purposes. However, the decomposition of the online EMD has a time
delay that should be estimated if the aim is to use the resultant signals for control purposes.
Thus, this work also aims to investigate the time delay of the online EMD decomposition
of a signal containing harmonics.
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1.3 Limitations

The current measurement that is analyzed is a short measurement of only 0.05 seconds.
In order to make it suitable for the Online EMD the current measurement is duplicated
a number of times. The thesis is limited to analysis of this particular measurement, the
duplication and synthetic versions of it. The programming will be performed in both
Python and MATLAB.

The theory presented in this thesis is what the author means is necessary for the reader
to know before continuing on to the analysis and results. For a reader with little experi-
ence in signal analysis in power systems, the author recommends to review the references
presented in each section for a more detailed description if necessary.

1.4 Structure of thesis

• Chapter 2: in this chapter, theory about the concept of harmonics, the problems they
can cause and harmonic interaction is presented.

• Chapter 3: in this chapter, an introduction to methods used for analysis in electrical
power systems is giver. In addition to this, some of the most common methods for
harmonic detection is presented.

• Chapter 4: in this chapter, the standard EMD method is presented. It includes some
drawbacks and some extensions of the method.

• Chapter 5: in this chapter, the Online EMD method is presented with its algorithm
and information about the execution time.

• Chapter 6: in this chapter, the Hilbert transform and an algorithm for calculation of
the instantaneous frequency is presented.

• Chapter 7: in this chapter, an analysis using the standard EMD and the Online EMD
is presented. Both the methods are applied to current signals containing harmonics,
and the results are discussed.

• Chapter 8: in this chapter, the conclusion of the analysis is presented, and some
remarks on further work is given.
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Chapter 2
Harmonics

With increasing use of power electronic equipment in modern industry to achieve higher
reliability and efficiency in power systems, there is also an increasing propagation of har-
monics. Even though harmonics are becoming an increasing issue, it is not a new concept.
The first ones to ever use the word harmonic was Houston and Kennelly in 1894 [9]. They
did not use any equations to describe the concept, but presented the properties of of peri-
odic curves. Problems caused by harmonic components of voltage and current have been
an issue for power engineers for over 100 years:

“We operating men, I think, all agree that we have harmonics. I think we
all agree that, like the poor, the harmonics will always be with us. If we could
get rid of them, we would be very glad to do so. ”

- J.B Fisken (Sept. 8, 1916) [10]

The concept of harmonics and harmonic interaction have been presented in [11], but they
will included here as well.

2.1 Concept of harmonics

Harmonics are a major concern in power systems, as harmonics cause distortion in volt-
age and current waveforms [12]. Harmonics refer to components of a waveform that are
integer multiples of the fundamental frequency [13]. As a result of this, the frequency of a
harmonic, fh, can be found as:

fh = h · fn (2.1)

5



where h is an integer and fn is the fundamental frequency. If the fundamental frequency
is, for example, 50 Hz, the 6th would have a frequency of:

f6 = 6 · 50Hz = 300Hz

In addition to integer multiple of the fundamental frequency, which is known as harmonics,
there is also a phenomenon called interharmonics which are non-integer multiples of the
fundamental frequency. A main source of interharmonics are AC/AC converters [12].

Harmonics are caused by loads that draw non-sinusoidal current from a sinusoidal voltage
source. Examples of loads that produce harmonics are static VAR compensators, inverters,
converters, electric arc furnaces and AC or DC motor drives. [13]

2.2 Fourier Series

A periodic function, f(t), can be expressed as f(t) = f(t + T ) [12]. This function can
be represented by a series of elements that consists of a DC component, other frequencies
that include the fundamental frequency component and its harmonics. This applies if the
Dirichlet conditions are met:

1. f(t) has a finite mean value over a period, T.

2. f(t) has a finite number of positive and negative maximum values.

3. f(t) has a finite number of discontinues over a period, T.

The trigonometric series, f(t), can be expressed as:

f(t) =
a0
2

+

∞∑
h=1

[ahcos(hω0t) + bhsin(hω0t)] (2.2)

where ω0 = 2π/T .

The expression in equation (2.2) can be simplified to:

f(t) = c0 +

∞∑
h=1

chsin(hω0t+ φh) (2.3)

where

c0 =
a0
2
, ch =

√
a2h + b2h, and φh = tan−1(

ah
bh

)
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hω0 is the hth order harmonic of the periodic function, c0 is the magnitude of the DC
component, ch is the magnitude of the hth harmonic component and φh is the phase of the
hth harmonic component.

Equation (2.3) is the Fourier series and it describes the periodic function that consists of
the contribution of sinusoidal functions with different frequencies and amplitudes.

2.3 Problems caused by harmonics

There are several problems caused by both harmonic currents and voltages. They can
cause problems both in the power system and in the installation itself. The problems are
wide in range and some of them will be presented here.

2.3.1 Problems caused by harmonic currents

Neutral conductor over-heating can be an issue if the triple-N harmonic currents are
present in a three-phase system. These will add in the neutral which can cause
overheating [14]. Figure 2.1 illustrates such harmonics.

Figure 2.1: Triple-N Harmonic currents in the neutral [14].

Nuisance tripping of circuit breakers can occur in residual current circuit breakers (RCCB)
due to the presence of harmonics for two reasons. Firstly, the RCCB is an elecrome-
canical device and may not sum higher frequency components correctly, and hence,
trip. Secondly, equipment that generate harmonics may also generate switching
noise that must be filtered at the power connection of the equipment [14].
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Skin effect is when an alternating current flows on the outer surface of a conductor. For
power supply frequencies, skin effect is usually not a problem, but for frequencies
above 350 Hz, i.e the seventh harmonic, skin effect may occur. Skin effect causes
losses and heating, and should be avoided [14].

Overheating of transformers can be caused by the presence of harmonics. When har-
monics are present in a transformer, eddy current losses increases. In fact, the eddy
current losses will increase with the square of the harmonic number. Increased eddy
current losses will lead to a higher operating temperature and a shorter life time for
the transformer [14].

2.3.2 Problems caused by harmonic voltages

Voltage distortion of the supply voltage can occur when a non-linear load draws a dis-
torted current which causes a non-sinusoidal voltage drop in a circuit impedance.
The distorted voltage causes distorted current flow in linear loads which can affect
performance or efficiency. Figure 2.2 illustrates this behaviour, where the voltage
distortion is assumed to be zero at the point of common coupling(PCC). This is
not the case in real applications as the supply network has impedance and carries
distorted currents and hence the supply voltage is always distorted.[14]

Figure 2.2: Voltage distortion caused by a non-linear load [14]

Zero-crossing noise can be an issue for electronic controllers that determine when loads
should be turned on by detecting the zero-crossing of the supply voltage. If tran-
sients or harmonics are present, it is more difficult to detect the zero-crossing of
the supply voltage as there may be several zero-crossings per cycle caused by the
distorted voltage [14].
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2.4 Harmonic interaction

In addition to the harmonics caused by non-linear loads, there is a concern that harmon-
ics may interact between large numbers of power inverters and the distribution network.
Studies [15] have shown that this is in fact an issue especially for large populations of
PV inverters, which can cause problems for microgrids where PV is a common resource.
Under certain circumstances with presence of high penetration of PV inverters, the PV
inverters have switched of undesirably or the harmonic emissions have increased signif-
icantly. As a result of this, the power quality standards set for the PCC are exceeded
even though all the inverters individually satisfy their specifications. For networks with a
large number of PV inverters, the resonance phenomenon can be characterised by parallel
resonance and series resonance.

Parallel resonance of the supply inductance Lp, parallel network capacitance Cp, result-
ing from distortion that is generated internally, i.e, as illustrated in Figure 2.3(left).
The PV inverter can be assumed to be the source of the harmonic generation. In
this case, the impedance at the resonance is high, which results in higher voltage
distortion at the PCC, or where the PV inverter is connected to the load [15].

Series resonance of the supply inductance Lp, parallel network capacitance Cp, resulting
form distortion that is generated externally or that is injected, as illustrated in Figure
2.3(right). Here, the mechanism is the background supply voltage distortion. In this
case the impedance at the resonance is low, which results in higher current distortion
through the load and PV inverter capacitor [15].

Figure 2.3: Mechanisms of parallel resonance (left) and series resonance (right) [15].

In practice both the resonance phenomenons are linked in one circuit hence causing mea-
suring of both increased voltage and current. The series and parallel resonance can be
calculated by:
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fr =
1

2π
√
LC

(2.4)

where fr is the resonance frequency and L and C are respectively the equivalent reactance
and capacitance in the parallel or series network.

If the PV inverter generates a harmonic (parallel resonance mechanism), which corre-
sponds to the parallel resonance frequency, then high resonance voltage will occur in the
network at the PCC. As a result of this, the operation of the PV inverter and equipment
connected to the PCC may be effected. If the power network is weak, i.e, L is large,
the resonance may be even more severe resulting in a lower frequency parallel resonance.
If the network background distortion contains a harmonic (series resonance mechanism),
which corresponds to the series resonance frequency, high resonance current will flow in
the network. As an example of the effect, one can assume that if there are 10-30 house-
holds with PV installed on the roof tops and that these are all on one phase of a single 400
V cable feed, the natural frequency can be as low as the 5th harmonic (250 Hz) [15].

2.4.1 Inverter topologies

In [16], PV inverters are described as single-phase self-commutated voltage source con-
verters in the 1-5 kW for individual households. These inverters are summarised in Figures
2.4 and 2.5, and the following description:

1) Single-stage pulse-width-modulated (PWM) DC/AC converter topology (H-bridge or
Push-Pull) that is directly coupled to the grid through a low frequency (LF) isolation
transformer and filter. This can be seen in figure 2.4.

2) Multi-stage topology of PWM DC/AC converter front-end including a high-frequency
(HF) isolation transformer, a high frequency rectifier, a line frequency unfolding
bridge coupled to the network through small filter components. This can be seen in
figure 2.5.

Figure 2.4: Single-stage H-bridge PWM converter and line frequency transformer and filter ele-
ments [16].
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Figure 2.5: Multi-stage converter with high-frequency transformer and low-frequency unfolding
bridge [16].

2.4.2 Network simulations

A dutch residential network that includes 197 homes with PV arrays and inverters installed
is a basis for a study of possible PV interaction issues is presented in [15]. A part of this
network (VP4) was modelled an can be seen in Figure 2.6. This section of the network
includes a 10 kV - 400 V transformer and houses with different type of PV inverters. In
this model, houses with the same inverter topology were modelled as one single model.

Figure 2.6: Model of network (VP4) with inverters [15], [16].
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A simulation with this network , shown in Figure 2.6, was completed with the Dutch
national average background distortion (THD = 3%). In order to keep the voltage within
the regulation limits, the voltage, Vmain, was reduced by 2 %. The result of this simulation
is shown in Figure 2.7, which shows a clear current distortion and some distortion of the
voltage. The network was also tested for maximum allowed distortion, and the result can
be seen in Figure 2.8. The results show voltage distortion and severe current distortion.

Figure 2.7: Simulation results for two locations in the network section (VP4) with average back-
ground distortion (Vmain − 2%)[15].

Figure 2.8: Simulation results for two locations in the network section (VP4) with maximum allow-
able distortion [15].
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Chapter 3
Electrical power systems -
classification of methods for
analysis

There are several methods available for signal analysis in power systems. In Figure 3.1
a tree diagram shows the classification of some of these methods. As seen in this figure,
there are two top-level classifications, Ambient operation and Transient operation, which
refers to the system response which they are applicable. In this chapter, an overview of
classification of methods for electrical power systems is presented. The classification, and
the explanation of the different methods is from [17] where additional information can be
found.
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Figure 3.1: Tree diagram showing classification of methods for power system analysis [17]

3.1 Ambient

As mentioned, the classification is divided into two top-levels, Ambient Operation and
Transient Operation. Ambient operation refers to when the system is assumed to be fairly
linear and the variation of load approximately random and Gaussian. The variations of
load are made by the consumers when they turn their electric equipment ON and OFF.
These changes cause a disturbance that is continuous and has small amplitude. When
performing measurements during ambient operation, the signals are stochastic in nature
and dominated by broadband noise. This originates in the load side, and since the load
cannot be measured everywhere in the system, the input is assumed to be unknown. When
performing an analysis during ambient operation, the goal is to determine the damping
of the system. This is done by using the measurements, which can be difficult to obtain
by the outputs only. A solution to this is to apply probing. Therefore, the methods for
ambient operation can be divided into methods that require probing and methods that does
not require probing, as illustrated in Figure 3.1.

3.1.1 Methods that require probing

Probing is done by injecting an external disturbance into a system through a large load of
an interconnector and measuring the response of the system. The probing signal is taken
as input and the measurements are taken as the output of the system. The system response
is then calculated using basic input-output system theory.
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3.1.2 Methods that do not require probing

As illustrated in Figure 3.1, the methods that do not require probing can be further divided
into non-parametric and parametric methods. Parametric methods are methods that aims
to fit the signal to a model. In order to obtain this, there must be an assumption on how
the signal behaves. Contrarily, non-parametric methods do not fit the signal to a model,
and they are only related to the signal. Non-parametric methods can be used to estimate
mode frequencies in data, but are not suitable for estimating damping coefficients. By
looking at the tree diagram in Figure 3.1 again, it shows that the parametric methods can
be further divided into recursive and non-recursive methods. Recursive methods converge
to a solution for the model parameters with respect to time and uses a new set of data
to update the previous calculated solution. Non-recursive methods re-calculates a new
solution for each new set of data. The non-recursive methods can further be divided into
Time-Domain and Frequency-Domain approaches (Figure 3.1). The time-domain methods
use the measurement time series directly whereas the frequency-domain methods use the
spectra of the measurements.

3.2 Transient

The other top-level is as mentioned transient operation. Transient operation refers to the
power system response after a fault has occurred or a large disturbance has been initi-
ated. During this operation there are large deviations in measurable system parameters,
for example, in the frequency. It is assumed that the transient after a fault or a disturbance
represents the actual impulse response of the system. Thus, the aim of transient analysis
is to measure the stability of the system by determining the oscillatory frequency and the
damping of the transient. As illustrated in Figure 3.1, transient methods are sub-divided
into linear and non-linear methods.

3.2.1 Linear methods

Linear methods assume that after a fault or a disturbance, the system is still linear. The
purpose of the method is to fit a model of a sum of decaying sinusoids to the transient
data. The measured output y(t) is made out of a weighted sum of n decaying sinusoids
λi, with weights Bi, where λi can be decomposed into a frequency component ωi and a
exponential decay component αi.

y(t) =

n∑
i=1

Bie
λit

The linear methods can be divided into time-domain and frequency-domain methods. The
difference between these two classifications is that the time-domain methods fit a linear
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model to the data by analyzing the time-series of the data, whereas the frequency-domain
methods fit a linear model to the data by analyzing the frequency spectra of the data.

3.2.2 Non-linear methods

In comparison to the linear methods, non-linear methods assume that after a fault or dis-
turbance, the response is mainly non-linear. Non-linearity in this case refers to the inter-
actions between the frequency components in the transient response. Non-linear methods
aim to track the change of frequency and damping over a short period of time. As seen
in Figure 3.1, the non-linear methods can be sub-divided into parametric methods, which
provide specific values for the damping modes, and non-parametric methods, which does
not provide this information.

3.3 Harmonic detection methods in power systems

The purpose of harmonic detection methods is to predict the harmonic distortion, at one
or more locations, in the power network [9]. Analysis of harmonics is often carried out in
order to estimate the effect of a new non-linear load or if a harmonic filter is going to be
installed. There are several methods available for harmonic detection, and in this section,
the most common methods will be mentioned. Methods for harmonic detection in active
power filters (APFs) can be classified relative to the domain where the mathematical model
is developed, time-domain and frequency-domain. Some of the most common methods
are listed In table 3.1. The time-domain methods, compared to the frequency-domain
methods, require fewer calculations and are hence used when speed is an important factor.
The frequency-domain methods are traditionally identified with Fourier analysis. Because
of the growing pollution of harmonics in power systems and the wish to reduce harmonics,
there are several attempts to find more efficient and cost effective solutions for harmonic
detection. Some examples of other methods can be seen in [18, 19, 20]

Table 3.1: Classification of typical harmonic detections in APF [21].

Domain Harmonic detection method

Time-domain

- Synchronous fundamental dq-frame
- Synchronous individual harmonic dq-frame
- Instantaneous power pq-theory and variants
- Generalized integrators and variants

Frequency-domain
- Discrete Fourier Transform (DFT)
- Fast Fourier Transform (FFT)
- Recursive Discrete Fourier Transform (RDFT)

As seen in Table 3.1, the Fourier transform is a typical detection method for harmonics.
The Fourier transform, in different versions, is a method that is easy to implement and
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is a method that is commonly used for analyzing global energy-frequency distributions.
Fourier spectral analysis has dominated i data analysis almost the entire time since it was
first introduced, and it has been applied to all sorts of data [3]. Even though the method has
shown valid results under a variety of conditions, there are some drawbacks of the Fourier
spectral analysis. In order for the Fourier spectrum to make physical sense, the following
two requirements must be fulfilled:

1. The system must be linear.

2. The data must be strictly periodic or stationary.

Linear systems. A linear system implies two conditions:

• Homogeneity.

• Superposition.

A state of a system defined in the state equation form can be considered as:

ẋ = f [x(t), r(t), t] (3.1)

If x(t) is the solution to this differential equation with initial conditions x(t0) when
t = t0 and the input r(t), t > t0:

x(t) = ϕ[x(t0), r(t)] (3.2)

then homogeneity implies that

ϕ[x(t0), αr(t)] = αϕ[x(t0, r(t))] (3.3)

where α is a scalar constant [2].

The superposition implies that the following relation f(t) + g(t) describes a linear
system even though f(t) and g(t) are non-linear functions of the variable t [22].

Stationarity. The requirement of stationarity is not only a requirement for the Fourier
spectral analysis, but also for many other data analysis methods [3]. A time series
X(t)

X(t) = [x(t0), X(t1), ..., X(tN−1)] (3.4)

is strongly stationary if the joint probability

P (x(t)) = P (X(tN − tN−1, ..., t1 − t0)) (3.5)

only depend on the time differences τ = tn+1 − tn for all n = 0, ..., N − 1
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A time series, X(t), is weakly stationary if, for all t,

E(|X(t)2|) <∞,
E(X(t)) = m,

C(X(t1), X(t2)) = C(X(t+ τ), X(t2 + τ)) = C(t1 − t2),

}
(3.6)

where, E() is the expected value and C() is the covariance function.

Not many data sets from artificial sources or natural phenomena satisfy these definitions.
However, Fourier spectral Analysis is still used to examine such data, which may produce
misleading results [3].

There are several methods available for analysis of non-stationary data, and a few of them
are listed below. Even though these methods solves the issue of stationarity, some of
them depend on Fourier analysis, and are hence limited to linear systems. A review of the
methods listed below, and some other methods, can be seen in [3].

• The spectrogram; which is a limited time window-width Fourier spectral analysis
that obtains a time-frequency distribution by applying a sliding window along the
time axis.

• The wavelet analysis; which is generally defined as:

W (a, b;X,ψ) = |a|−1/2
∫ ∞
−∞

X(t)ψ∗(
t− b
a

)dt, (3.7)

where ψ∗ is the basic wavelet function, a is the dilation factor and b is the translation
of the origin. The definition in Equation (3.7) is quite complex and might be difficult
to understand, so a physical explanation is: W(a,b;X,ψ) is the energy of X of scale a
at t = b.

• The Wigner-Ville distribution; which can be defined as the Fourier transform of the
central covariance function. The central covariance of any time series, X(t), can be
defined as:

Cc(τ, t) = X(t− 1

2
τ)X∗. (3.8)

Then the Wigner-Ville distribution can be defined as:

V (ω, t) =

∫ ∞
−∞

Cc(τ, t)e
−jωτdτ. (3.9)

In addition to the methods listed above and the other methods presented in [3], a method
that handles both non-linearity and non-stationarity will be presented in Chapter 4.
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Chapter 4
Empirical Mode Decomposition

A method that handles both non-linearity and non-stationarity is the Empirical Mode De-
composition (EMD). This method was pinoeered by Norden E. Huang et al. [3] in 1998
as an adaptive time-series method. It assumes that any oscillatory time-series consists of
different modes of oscillation, called intrinsic mode functions (IMFs). The purpose of
the method is to identify the IMF functions by their characteristic time scales, and then
decompose the data according to this. If this method is combined with Hilbert spectral
analysis, it is called Hilbert - Huang Transform (HHT).

In this chapter, the working principle of the EMD method will be explained and some
drawbacks and extensions of the method will be presented.

4.1 Intrinsic Mode Functions

As mentioned, the EMD decomposes a signal into IMFs, and in this section, the properties
of an IMF will be explained. An IMF is a function that fulfils the following two conditions
[3] :

1. For the whole data set, the number of extrema and zero crossings are equal or differ
at most by one;

2. At any point, the mean of the local maxima envelope and the local minima envelope
is approximately zero.

The first condition is not a new idea, and such principle is not only used the EMD method.
For a Gaussian process, this is similar to the narrow band requirements. The second one
is, on the other hand a new idea. Other methods, e.g., Fourier analysis, are based on global
requirements, but EMD is based on a local requirement. Such local requirements avoid
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unwanted fluctations induced by asymmetric wave forms in the instantaneous frequency
[3].

Figure 4.1: A typical IMF with same number of extrema and zero crossings. It also shows symmetry
in the upper envelope (defined by the maxima) and the lower envelope (defined by the minima), with
respect to zero [3].

4.2 Empirical Mode Decomposition - Algorithm

The purpose of the EMD method is to empirically identify the intrinsic oscillatory modes
and decompose the data. This is done through a process called sifting. The algorithm
considers signal oscillations at a highly local level and separates the data into time scale
components which are local and non-overlapping [3]. Thus, the EMD decomposes a os-
cillatory signal into IMFs.

The data set xt is decomposed into IMFs xn(t) and a residue r(t) such that the signal can
be expressed as:

x(t) =
∑
n

xn(t) + r(t) (4.1)

The sifting process consists of the following steps, which are also illustrated in Figure 4.2:

• Step 1: Initialize the following: n:= 1, r0(t) = x(t)

• Step 2: Extract the IMFs as follows:

1. Set h0(t) = rn−1(t) and k = 1

2. Identify all the local maxima and minima of hk−1(t).
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3. By cubic splines interpolation, construct the upper and lower envelopes for
hk−1(t). The upper envelope, Uk−1(t), is defined but the local maxima and
the lower envelope,Lk−1(t) is defined by the local minima.

4. Determine the mean, mk−1(t) = 1/2(Uk−1(t) − Lk−1(t)) of both the upper
and lower envelopes.

5. Compute the kth component: hk(t) = hk−1(t)−mk−1(t).

(a) If hk(t) does not fulfil the criteria set for an IMF, the k must be increased
to k + 1. Go back to step 2,2.

(b) If hk(t) fulfils the criteria set for an IMF, then set x(n)(t) = hk(t) and
rn(t) = rn−1(t)− xn(t).

• Step 3: Stop the sifting process if rn(t) is a residue. If it is not a residue, increase n
to n+ 1 and start over at step 2 again.

Figure 4.2: Flow diagram of the EMD algorithm [23].
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4.3 Drawbacks of EMD

Even though there are many benefits to the EMD, there are some aspects that must be
considered and noticed. The method does have some drawbacks which will be presented
in this section. The drawbacks are gathered from [23], except for the concept mode mixing,
which is from [24, 25, 26, 27].

4.3.1 Mode mixing

When EMD is applied there is a risk of mode mixing. Mode mixing is when different
modes of oscillations coexist in a single IMF, and the concept was pointed out by Huang
in 1998 [27]. Mode mixing can occur, for example, when the data contains frequencies
that are close or the data exhibit intermittency. This causes the IMFs to lose its physi-
cal meaning and hampers the analysis. To illustrate the concept of mode mixing the the
decomposition of the following signal x(t) can be considered:

x(t) =

{
sin(2πf1t) + sin(2πf2t),

1

30
≤ t ≤ 2

30
,

sin(2πf1t), otherwise.
(4.2)

The decomposition of the signal x(t) is illustrated in Figure 4.3.

Figure 4.3: Illustration of a signal, x(t), that is decomposed using EMD and where mode mixing
occurs. The signal consist of two sine curves with frequencies f1 = 1776 Hz and f2 = 1000 Hz. The
mode mixing is visible in the span t = 1

30
and t = 2

30
[27].
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The decomposition illustrated in Figure 4.3 show that in the time span t = 1
30 and t = 2

30 ,
IMF 1 absorbs the component that appears in IMF 2. Thus, the decomposition of this
signal is influenced by mode mixing. As illustrated by this example, mode mixing can
be a problem when EMD is applied to a signal. There are different methods available for
avoiding mode mixing when applying EMD, and some of them can be seen in [24, 25, 26].

4.3.2 Estimating envelopes

The most used technique for estimation of the upper and lower envelopes, which are
needed to identify the mean at every time point, is the spline interpolation. The splines
represent functions which are piece wise composed from polynomials of order n. In order
to locate the extrema precisely, over-sampling can be used. Of a time series x(t), cubic
splines are often used to interpolate maxima and minima. In general, they give proper
results, but they come with a computational cost. There are alternative schemes for in-
terpolation that has been proposed using taut or rational splines. These methods allow,
depending on another parameter, a smooth transition between a linear and a cubic spline
[28]. In addition, there are other techniques available, and it has also been attempted to
estimate local means directly and not use envelopes at all (see [29],[30]). Anyhow, in order
to get proper results when using an algorithm that uses envelopes, the envelopes must be
properly estimated.

4.3.3 Stopping criterion

Unless otherwise specified, standard EMD continues the sifting process on the full signal
until it no longer exist local segments. This can cause oversampling and splitting of IMFs
into fragments that are meaningless. A solution to this is to set a stopping criterion. One
possibility is to specify the number of siftings. Another possibility is to use a criterion,
called the Rilling stopping criterion, that is based on the total variance:

σ2
i =

N∑
n=0

(hi,k−1(tn)− hi,k(tn))2

hi,k−1(tn)
(4.3)

The IMFs are obtained when σ2
i < δ holds for some chosen threshold δ. The procedure

will stop when the residue rn(t) is either a constant or a monotonic slope that only contains
one extrema. Another stopping criterion can be used. This is an evaluation function that
has been introduced by [31]:

σ(t) =
U(t) + L(t)

U(t)− L(t)
(4.4)

which uses two thresholds δ1 and δ2. The sifting process iterates until σ(t) < δ1 for a
prescribed fraction (1-α) of the total duration and σ(t) < δ2 for the rest. This method
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introduces three new parameters that the user has to set. If these parameters are not chosen
correctly, it might have impact on the IMFs.

4.3.4 Boundary conditions

When spline interpolation are used, fluctuations in the beginning and the end of the data
set occur. If the first and last point are considered as knots of the upper and lower en-
velopes, then results that do not have physical meaning occur. As illustrated in Figure 4.4,
these defects will propagate to the signal components that are extracted later on. There
are a number of solutions to this, for example, padding the ends with typical waves [3],
mirroring the extrema closest to the ends [31] or by using the average of the two closest
for the maximum or minimum spline [32].

Figure 4.4: a) EMD of the non-stationary time series x(t) = sin(7t)+sin(4t)+0.1t-1, where the first
and last data point of the time series are treated as knots of x(t), which leads to improper boundary
conditions. b) EMD of the same non-stationary time-series with proper boundary conditions [23].
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By comparing the results illustrated in Figure 4.4 a and b, the effect of not choosing the
proper boundary conditions is clearly visible. In Figure 4.4 a, the last data point of the
time series have been treated as knots of x(t). This leads to an end effect for each of the
IMFs, revealing distorted results at both of the ends. For each new IMF that is extracted
the end effects are influencing a larger part of the IMF. In addition to the end effects, the
oscillating modes of the signal is not extracted correctly by either of the IMFs. When the
boundary conditions are chosen properly, the oscillating modes are extracted properly, as
seen in Figure 4.4 b.

4.4 Extensions of EMD

The EMD is an analysis method which is applied to the full length signal. If the signal
is long, there is a need for large computer memory and this can limit the method. This
also means that the method is not suited for analysis of data streams. If the method was
able to analyse data streams, it would provide more opportunities and would be beneficial
for real-time analysis. Such an extension of this method, called Online EMD, allows the
analysis of data streams and will be presented in Chapter 5. In this section other extensions
will be discussed briefly.

4.4.1 Local EMD

In the standard EMD, the iteration process is continued as long as there is a local zone
where the mean of the envelopes is not considered as too small. As mentioned in sec-
tion 4.3, over-iterating on the whole signal to achieve a better local approximation can
result in pollution of other parts of the signal. This pollution is in particular uniformizing
the amplitude and in over-decomposing it by spreading its components out over adjacent
modes. In [31] a variation of the EMD, called local EMD, is described. This method
introduces another step in the sifting process. In comparison to the standard EMD, this
method identifies the local zones where the error remains large and isolates them. Then,
extra iterations are applied to only them. In order to achieve this, a weighting function
ω(t) is introduced and applied where sifting is still necessary. This can be implemented
into the EMD algorithm like this:

hj,n(t) = hj,n−1(t)− ωj,n(t)mj,n(t) (4.5)

This can be used to improve the sifting process and avoide over-sifting.
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4.4.2 Ensemble EMD

Ensemble EMD (EEMD) is method is a noise assisted method that is presented in [33]. In
[23] it is stated that method considers true IMFs to an ensemble average of extracted IMFs
according to

xj =
1

N

N∑
i=1

xji(t) (4.6)

where white noise with finite amplitude, constant variance and zero mean is added to the
time-series x(t). The mean IMFs will stay within the natural dyadic filter windows, and
thus, reduce the possibility of mode mixing and keep the dyadic property.

The working principle of EEMD can be summarized by the following steps [33]:

1. Add a white noise series to the data;

2. Decompose the data with the added white noise into IMFs;

3. Repeat step 1 and step 2 over and over again with different white noise series;

4. Calculate the ensemble means of the IMFs as the final result.

The added white noise will cancel each other out in the final mean of the IMF. To illustrate
the performance of EEMD an example is given in [23]. Here, the performance of EEMD
vs EMD is compared. The result can be seen in Figure 4.5. In this example, two signals
(x1(t) = 0.1sin(20t) and x2(t) = sin(t)) are superimposed, where signal x1(t) is interrupted
for a certain time span. The EEMD applied by using an ensemble of 15 different noisy
signals.
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Figure 4.5: a) Superposition of the signals x(t) = x1(t) + x2(t) = 0.1sin(20t)+sin(t) and the
component signals. b) IMF 1 and IMF 2 obtained from EMD of the same signal. c) IMFs obtained
by EEMD of the same signal using an ensemble of 15 different noisy signals [23].

The results obtained in Figure 4.5, reveals that the the EEMD provides a decomposition
that is more accurate than the decomposition obtained using EMD for this specific signal.
IMF 1 obtained with EMD should only consist of one of the two components, but as
illustrated, it is clearly influenced by mode mixing as both of the components are present
in the IMF. The EEMD on the other hand is able to extract the oscillating modes more
accurate and is not influenced by mode mixing.
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4.4.3 SEMD and wSEMD

The standard EMD is applied over the entire signal. Because of this, the method is lim-
ited by the computer memory which limits size of the time-series to be analyzed. An-
other issue is that the EMD cannot be applied online. Two Online version of EMD called
Sliding Empirical Mode Decomposition (SEMD) and Weighted Sliding Empirical Mode
Decomposition (wSEMD) are presented in [34]. SEMD decomposes a time-series of arbi-
trary length into a residue and IMF-like functions called sliding intrinsic mode functions
(SIMFs). SEMD uses a window, with fixed size m, and a step size k, which has to be
chosen. Within this window, EMD or EEMD is applied. Then, the window is shifted by k
samples and EMD is applied again. The step size k should be chosen much smaller than
the size m to avoid discontinuities. If k < m and the window size is a multiple of the step
size, i.e. if

E =
m

k
∈ N (4.7)

holds, then for each sample x(t) of the original signal time series, E estimates are calculated
within the different windowsmi, as soon as the first E iterations have been done. The time
series in each segment mi is decomposed by EMD into j different IMFs xmij(t) and a
local residue rmi

(t) according to

xmi
(t) =

∑
j

xmij(t) + rmi
(t), (4.8)

where the number of sifting is kept equal for all segments. The resulting IMFs are gathered
in a matrix with corresponding sample points. Columns that corresponds to the beginning
or the end of the time series are left out from further processing as they are deficient. This
assures that all columns have the same amount of information for estimating the average
of IMF amplitudes at each time point t in each segment. This finally yields for t > m:

xj =
1

E

i+E−1∑
i

xmij(t), (4.9)

r(t) =
1

E

i+E−1∑
i

rmi
(t), (4.10)

i =
( t−m

k

)
+ 2 (4.11)

The resulting functions xj(t) are SIMFs and r(t) is the residue. To summarize, equations
(4.9) - (4.11) describes the SEMD decomposition process and a schema of the SEMD
algorithm is illustrated in 4.6.
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Figure 4.6: Scheme of the SEMD algorithm. The time-series segments in the shifted windows
are EEMD. IMFs and the residue are determined by mode amplitudes which are averaged over
corresponding samples in all windows. m is the window size and k is the step size [34].

The end-effects of the standard EMD are reduced when using SEMD. However, estimates
that comes from the boundaries are expected to be more defective compared to the ones
from the middle part of any specific window. In order to solve this, a weighted sum of the
estimates can be used. To accomplish this, the resulting IMFs and residue are multiplied
by a vector of rank m for every window,

w(n) = exp

(
− 1

2

(
α

2n

N

)2)
, (4.12)

− N

2
≤ n ≤ N

2
, α = 2.5, N = m− 1 (4.13)

In order to calculate the data point of an IMF, the first step is to calculate the sum over n
estimates multiplied by n weighting coefficients. After this, the resulting sum is normal-
ized by the reciprocal of the sum of all used weights again. Then, the amplitude and the
sliding residue is preserved and the completeness of the decomposition is obtained again.
If this described weighting is used, the method is called wSEMD.
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Chapter 5
Online EMD

In this chapter an extended version of the EMD called Online EMD will be presented. The
Online EMD will also be used to analyze data later on. The algorithm and description of
this method is from [5].

Chapter 4 described several advantages of applying EMD. However, there are some draw-
backs as well:

1. The classical EMD is not able to analyze real time data.

2. The classical EMD requires increasing computational resources to analyze a grow-
ing data.

3. The classical EMD converges in a number of sifting steps that increases for long
data, which causes over-sifting issues.

The reasons above are namely because each sifting step considers the entire data span. A
solution to these problems is to process the signal in blocks. However, there is an issue
when merging the IMFs from two sequential blocks. When merging these IMFs, there may
be discontinuities due to the boarder effect of the EMD. A solution to this is to apply EMD
on overlapping blocks, and hence, prevent discontinuities by merging the results with a
smoothing function, like the wSEMD described in section 4.4.3. This method restrains a
constant number of sifting steps and IMFs for all analyzed blocks, which prevents blocks
with discordant number of IMFs. The Online EMD that will be presented here takes
advantage of the sliding approach of wSEMD. This new method has low computational
and low memory requirements like the wSEMD while retaining the essence of EMD. A
great advantage of the Online EMD is that it does not require any prior knowledge about
the number of underlying components in a set of data or the sifting steps that are required to
extract them. In the following section, the algorithm for the Online EMD will be presented.
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5.1 Algorithm of online EMD

Online EMD uses a sliding window that includes l local extrema to monitor data. The
window is shifted by one extremum and the fastest oscillation is extracted using standard
EMD. After the fastest oscillation is extracted, a stitching procedure stitches the modes of
this window to the previous extracted modes that overlap in the current window. According
to the windows position in time, the stitching procedure weights the overlapping modes
from different windows and then averages them. The window function for the stitching
procedure is φ̃(s) on [−τ, τ ] and zero outside, e.g., φ̃(s) = 1√

2π
exp(− s

2

2 ) - 1√
2π

exp(− τ
2

2 ),
with τ = 3, that restrain discontinuities from boundary errors [5]. The stitching procedure
causes the algorithm to gradually discover data for the first IMF and the residual. Other
IMFs are discorvered by repeating the analysis with the residual as the input signal. The
stitching procedure is illustrated in Figure 5.1.

Figure 5.1: An overview of the online EMD sliding window and the stitching procedure. The
window includes l = 10 extrema. Using classical EMD, the fastest oscillation,M i in blue, is extracted
and the window function, φ, is plotted in green. The weighted IMF, M̂ i, stitched to the previous
uncovered IMFs in red [5].
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The online EMD algorithm is as follows [5]:

1. Initialize i = 1, Φ0(t) = 0, e1 = 0 the starting time of the signal and M̄ = 0.

2. Identify the window starting at ei containing l consecutive local extrema (e1,...,el)
of the signal X(t).

3. Using classical EMD, extract the first IMF (i.e. fastest oscillation)M i(t) of the data
in the window.

4. Let e
′

1,...,e
′

l be the positions of the l
′

extrema in M i. Set sk = -τ + 2(k-1)τ /(l
′
-1) for

k ∈ 1,...,l
′
. We define warped weights φk(t) for k ∈ 1,...,l

′ − 1 and t ∈ [e
′

k,...,e
′

k+1]
as:

φk(t) = φ̃

(
sk + (sk+1 − sk)

t− e′k
e
′
k+1 − e

′
k

)
(5.1)

(and 0 outside). The weighted IMF M̂ i is defined as:

M̂ i(t) = (φ1(t)M i
1(t), ..., φl′−1(t)Ml′−1(t))

where M i
k(t) is the mode between two extrema:

M i
k(t) = M i(t), e

′

k ≤ t < e
′

k+1 (5.2)

The total of weights is kept in memory:

Φi(t) = Φi−1(t) +

l
′
−1∑
k=1

φk(t) (5.3)

5. Stitch M̂ i on the weighted IMFs already extracted:

M̄ = M̄ + M̂ i (5.4)

and normalize the part of the data that will go out of the sliding window at the next
iteration:

M̄(t) = M̄(t)/Φi(t) for all t ∈ [ei, ei+1] (5.5)

6. This newly finalized part of the IMF M̄(t), for t ∈ [ei,ei+1] is subtracted from the
data,

Ri = Xi(t)− M̄(t) for all t ∈ [ei, ei+1] (5.6)

The resulting data Ri is pushed to another instance of online EMD in order to
identify subsequent IMFs.

7. Increase i to i+1 and go back to step 2.

There are some remarks to this online EMD algorithm:
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1. The head of the stitched IMF, M̄(t), ei+1 ≤ t ≤ ei+l−1, needs subsequent data to
the completed, thus, the IMFs uncovered by online EMD feature a lag ei+l−1−ei <
∆t < ei+l − ei. As the value of ∆t depends on the distances between the extrema,
IMFs with lower frequencies exhibit longer lags.

2. For the stitching procedure of steps 4 and 5, the number of extrema l
′

of the IMF
is possibly different from the number of extrema l that defines the sliding window;
it occurs in (rare) situation where small fast oscillations are added to large slow
oscillations. It can happen that some extrema of the fast oscillations do not lead to
extrema in the combined signal - yet they can be recovered by EMD that will create
new extrema in the extracted IMF. This is why this distinction is done between l and
l
′
.

5.2 Execution time

In comparison to the classical EMD, the online EMD has the possibility to analyze data
streams. This is a great advantage and opens doors for other applications. To demonstrate
this, both the standard EMD and the online EMD are used in [5] to analyze a sinusoid
with a monotonic function, and a white noise signal, both including 280k samples. These
signals are analyzed in a streaming fashion. This means that the signals are split into
batches, in this case 10k samples, that are sequentially analyzed. The classical EMD has a
disadvantage compared to the online EMD. For each new batch, the standard EMD must
process the previous batches with the new one. This causes a longer execution time for
each batch, and the execution growth rate depends on the number of undiscovered IMFs.
Figure 5.2 shows the execution time of the online EMD and standard EMD for the sinu-
soidal signal. It can be seen that the last execution time of the last batch for the standard
EMD is four times longer than for the first batch. Looking at the same signal, but for the
standard EMD of the white noise, the execution time of the last batch is about 104 higher
than the execution time for the first batch. The execution time for the online EMD also
depends on the uncovered IMFs, but in comparison to the standard EMD, the computa-
tional cost is more stable. The online EMD is slower to analyze each batch because of the
sliding window and the stitching procedure. However, the online EMD has almost con-
stant execution time for each batch. This makes this method advantageous for analyzing
data streams with an increasing number of oscillatory components. The comparison of the
classical EMD and the online EMD can be seen in figure 5.2, where both of the methods
uses the Rilling stopping criterion.

34



Figure 5.2: Execution time of online EMD (l = 20) and classical EMD (both using Rilling stopping
criterion) with a white noise signal and a sinusoid with a trend. [5]
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Chapter 6
Hilbert transform and Instantaneous
frequency

The combination of EMD and Hilbert Transform is called as mentioned called HHT [3].
In this chapter, the Hilbert transform and an algorithm for calculating the instantaneous
frequency will be presented. When analyzing signals that contain harmonic components
it is important to find at which order they occur. Therefore, it is important to calculate the
instantaneous frequency. The first step after the IMFs have been extracted is to use the
Hilbert transform to form the analytical signal, and then apply an algorithm for calculating
the instantaneous frequency.

6.1 Hilbert transform

The advantages of using the Hilbert transform (HT) can be listed as below [35]:

• The HT can give the amplitude and instantaneous frequency of a measured signal,
and hence solves a typical demodulation problem.

• In comparison to the Fourier analysis, which assumes that a signal is a sum of a
number of sine waves, the HT allows a complex demodulation analysis of the form
of a single but modulated sine wave.

The Hilbert transform is a integral transform, like Laplace and Fourier, and it is named
after David Hilbert [35]. The HT of a function x(t) is defined by an integral transform as
follows:

H[x(t)] = x̃(t) = π−1
∫ ∞
−∞

x(τ)

t− τ
dτ (6.1)
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The mathematical definition in the above equation does not give much understanding of the
HT. However, physically, the HT gives a better understanding of what the transformation
does. Physically, the HT can be seen as a linear filter that does not change the amplitudes
of the spectral components, but the phases are shifted by π/2. This shifting can be seen
in Figure 6.1 c. The HT representation x̃(t) of the original function is the convolution
integral of x(t) with ((πt)−1), and it is written as x̃(t) = x(t) ∗ (πt)−1. In Figure 6.1 a the
impulse response function of the ideal HT can be seen, and in Figure 6.1 b and 6.1 c the
module and phase characteristics are shown.

Figure 6.1: The ideal HT: the impulse response function (a), the module (b) and the phase (c) of the
HT function [35].

This means that when HT to is applied to a constant, it returns zero. If HT is applied twice
to a function, the result is the original signal, but with opposite sign. If the HT is applied
four times to a real function, it returns the original function. This means that a function
and its HT are orthogonal over an infinite interval.
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6.2 Instantaneous frequency

For non-stationary signals, where the spectral characteristics vary with time, the instanta-
neous frequency is an important concept. For these signals, the instantaneous frequency
is a time varying parameter that defines the location of the spectral peak of the signal as it
varies with time.

The instantaneous angular frequency, as indicated by equation (6.2), is the first derivative
of the instantaneous phase as a function of time and it plays an important role in signal
analysis. At any given time, there is a single value of instantaneous phase [35].

ω(t) = ψ̇(t) (6.2)

where ˙ψ(t) = arctan(x̃(t)/x(t))

The angular frequency is given in radians per second, while the cycle frequency is given
in Hertz. To avoid unwrapping of the phase, the instantaneous frequency can be calculated
as:

ω(t) =
x(t)˜̇x(t)− ẋ(t)x̃(t)

A2(t)
= Im

[
Ẋ(t)

X(t)

]
(6.3)

where A(t) = (x2(t)+x̃2(t)))1/2

The instantaneous frequency measures the direction and rate of a phasor rotation in the
complex plane.

6.2.1 Algorithm for calculating instantaneous frequency

There are several algorithms available for calculating the instantaneous frequency. The
one that will be presented here is an algorithm without derivation. If the calculation of
the instantaneous frequency is based on the derivative of angles, there might be some
challenges. If the signal (IMF in the context of EMD) is not clean, the results will become
very noisy. Thus, it is an advantage to do this calculation without the derivative. The
algorithm is from [35] but some alterations have been made by Prof. Olav Bjarte Fosso at
the Department of Electric Power Engineering, NTNU. The algorithm is easy to implement
and it takes into account the discrete form of a real signal x(n) that is obtained by sampling
the analog signal at discrete instants of time tn. The analytical signal will be on the form
Xn = xn + ix̃n.

Using the trigonometric property:

arctan x− arctan y = arctan
( x− y

1 + xy

)
(6.4)
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The difference in angle is then:

∆Ψn = Ψn+1 −Ψn

= arctan
(xhn+1

xn+1

)
− arctan

(xhn
xn

)
= arctan

( xh
n+1

xn+1
− xh

n

xn

1 +
xh
n+1x

h
n

xn+1xn

)

= arctan
(xhn+1xn − xhnxn+1

xn+1xn + xhn+1x
h
n

)
(6.5)

The multiplication of the initial analytic signal and the complex conjugate produces a new
complex function:

XnX
∗
n+1 = (xn + ixhn)(xn+1 − ixhn+1)

= xnxn+1 + xhnx
h
n+1 + i(xhnxn+1 − xnxhn+1)

(6.6)

ω =
∆ψ

∆t
=

arctan(−XnX
h
n+1)

∆t
(6.7)

f =
1

2π

∆ψ

∆t
=

arctan(−XnX
∗
n+1)

∆t
(6.8)

This algorithm does not require any unwrapping of the phase and it is less sensitive to
noise.
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Chapter 7
Results and discussion

In this chapter, analysis using both the standard EMD and the online EMD will be pre-
sented. The purpose of the analysis is to examine the decomposition provided by both the
standard EMD and the online EMD for harmonic signals. The standard EMD is applied
using both a Python implementation and a MATLAB implementation of the method. The
standard EMD applied in MATLAB is the same standard EMD the online EMD applies in
the shifting window. Hence, it is useful to apply the standard EMD and the online EMD
in order to have a basis of comparison.

The analysis is divided into three parts. In the first part, a real current measurement with
fundamental frequency of 60 Hz, illustrated in Figure 7.1, and an elongated signal, illus-
trated in Figure 7.2, is analyzed using the standard EMD implemented in Python. The
real current measurement is from [36], and was provided by Jalal Khodaparast Ghadiko-
laei, a postdoctoral researcher at the Department of Electric Power Engineering, NTNU.
The original signal is 0.05 seconds long, and has only 6 extrema. Following [5], in or-
der to avoid errors introduced by the stitching window, a minimum number of 10 extrema
is required to apply the online EMD. Thus, the original signal was extended. The elon-
gated signal is a duplication of the real current measurement, and it is duplicated 27 times,
making it 1.35 seconds long. In the second part, the same two signals, the original current
measurement and the elongated signal, are analyzed using the standard EMD implemented
in MATLAB. Finally, in the third part, the online EMD is applied to the elongated signal.

There are several ways to implement the EMD in both MATLAB and Python. In this
analysis, one implementation of the EMD in MATLAB and one implementation in Python
are applied and compared.
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Figure 7.1: Real measurement of a current containing harmonics.

Figure 7.2: Duplicated signal of the current measurement in Figure 7.1.
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7.1 Part 1 - Analysis using the standard EMD (Python
code)

In this section, the standard EMD will be applied to both the original current measurement
in Figure 7.1 and the duplicated signal in Figure 7.2 using Python. After EMD is applied,
and the decomposition is obtained, the frequencies of the signal is calculated using both
instantaneous frequency and FFT.

7.1.1 Original current signal

The current measurement has been analyzed previously in [11] using a code implemented
in Python, and the main results from this analysis will be presented here. The analysis
was performed using 23 siftings as the stopping criteria as this provided the most accurate
decomposition. The decomposition using the standard EMD is illustrated in Figure 7.3.

Figure 7.3: Standard EMD of the original current measurement. The first plot is the data, the
following 6 plots are the IMFs and the last one is the residue. The standard EMD is performed using
23 siftings.

In the frequency result in Figure 7.3, the first two IMFs, IMF 1 and IMF 2, are noise,
and IMF 3, IMF 4 and IMF 5 carry information about the frequency components of the
measurement. The IMFs are distorted at the ends, making it clear that the decomposi-
tion suffers from end effects. The end effects propagate as the number of IMFs that are
extracted increases, making IMF 5 more influenced by the end effects than IMF 3. In
addition to the instantaneous frequency of the IMFs, the FFT of the signal is calculated in
order to verify the frequency results. The frequency results are illustrated in Figure 7.4.
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(a) (b)

(c) (d)

Figure 7.4: a) Instantaneous frequency of IMF 3, b) instantaneous frequency of IMF 4, c) instanta-
neous frequency of IMF 5 and d) FFT of the current measurement. In a, b, and c the frequency in
Hertz on the y-axis and the time, in seconds, is on the x-axis.

In Figure 7.4 a, the instantaneous frequency of IMF 3 is presented. The result reveals a
oscillating frequency mainly between 500 Hz and 1000 Hz. Just by this result, it is not
possible to confirm that this is in fact the IMF that carries only the information about one of
the harmonic components of the signal, and it might carry some noise as well. Even though
this instantaneous frequency do not present an accurate result, the FFT result presented in
Figure 7.4 d, reveals that the signal consist of a frequency component of approximately
740 Hz, which reinforces the instantaneous frequency result. The instantaneous frequency
of IMF 4 on the other hand reveals a more constant frequency result at approximately 300
Hz. In the middle part, where the IMF is not influenced by end effects, there are small
deviations, and a frequency of 300 Hz can be concluded as found. This is also verified by
the FFT result in Figure 7.4 where a frequency component of 300 Hz is calculated. The
instantaneous frequency of IMF 5 reveals an almost constant result of just below 60 Hz.
The previous knowledge of the current measurement is that it has a fundamental frequency
of 60 Hz, which does not correspond to the instantaneous frequency calculated for IMF
5. The cause of the deviation between the fundamental frequency and the instantaneous
frequency calculated for IMF 5 may be the end effect. As seen in Figure 7.3, IMF 5 is

44



heavily influenced by end effects, leaving not a complete period to analyse. This can influ-
ence the instantaneous frequency and the result may be distorted. As for the instantaneous
frequencies for IMF 3 and IMF 4, the instantaneous frequency of IMF 5 can be verified by
the FFT results presented in Figure 7.4 d, which reveals a frequency of 60 Hz.

In order to verify that the calculated frequency components actually is the correct fre-
quency components of the signal, a reconstruction of the signal, based on the calculated
frequencies, is made and compared to the original signal. The frequency results reveal a
740 Hz, a 300 Hz and a 60 Hz component with amplitudes of approximately 0.04, 0.1 and 1
respectively. Hence, the reconstructed signal is composed as sin(2π60t) + 0.1sin(2π300t)
+ 0.04sin(2π740t). The synthetic signal and the original signal is plotted together and the
result is illustrated in Figure 7.5.

Figure 7.5: Original current measurement (in blue) and the reconstruction as sin(2π60t) +
0.1sin(2π300t) + 0.04sin(2π740t) (in orange).

In Figure 7.5, the reconstruction (in orange) and the original signal (in blue) are plotted
together. By comparing the two signals, there are some deviations that distinguish the two
signals. Since the original signal is a real current measurement it is expected that it will
contain some noise, and it seems to be the only thing that distinguishes the two signals.
Based on the comparison of these two signals, and the frequency results in Figure 7.4,
it can be concluded that the signal consist of a fundamental frequency of 60 Hz and the
harmonic components of 300 Hz and 740 Hz.
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7.1.2 Duplicated current signal

The duplicated current signal in Figure 7.2 was, as mentioned, constructed to make it suit-
able for the online EMD. It was chosen to analyze the duplicated signal with the standard
EMD in Python as well in order to have a basis of comparison. The decomposition of the
duplicated current signal using the standard EMD is illustrated in Figure 7.6. The stan-
dard EMD was applied to the duplicated signal with the same number of siftings as for the
original signal, 23.

Figure 7.6: EMD of the duplicated current signal performed with 23 siftings.

Compared to the decomposition obtained for the original current signal in Figure 7.3, the
decomposition obtained for the duplicated current signal is not as influenced by end ef-
fects. Since the duplicated signal is 27 times longer than the original signal, the end effects
will not influence such a large part of the signal. This will provide a longer period where
the IMF is constant and not distorted, and the frequency results may be more accurate. For
each IMF the frequency is calculated using FFT, and the results are illustrated in 7.7.
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Figure 7.7: Frequency results of IMF 1 - IMF 7 using FFT.
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Based on the frequency results illustrated in Figure 7.7, it is concluded that IMF 1 and IMF
2 represents the noise present in the duplicated current signal. The next IMFs, IMF 3, IMF
4 and IMF 5, have amplitudes that correspond to the amplitudes obtained in 7.3, and are
considered as the main components that carry information about the frequency components
present in the signal. The FFT result of IMF 3 reveals a dominating frequency component
at 740 Hz with an amplitude just below 0.04, but it also contain a frequency component
at approximately 300 Hz and one at approximately 700 Hz, both with a small amplitude
around 0.005. The same goes for the other two functions, IMF 4 and IMF 5, where other
small frequency components are present in the FFT results. This reveals that there is mode
mixing present, but the main frequency component for each IMF is still detected using the
FFT.

7.2 Part 2 - Analysis using the standard EMD (MATLAB
code)

In this section, the standard EMD will be applied to both the original current measurement
in Figure 7.1 and the duplicated signal in Figure 7.2 using a MATLAB implementation of
the EMD. After the decomposition is complete, the frequencies will be calculated using
both instantaneous frequency and FFT.

7.2.1 Original current signal

The original current measurement is analyzed using a MATLAB implementation of the
standard EMD. The analysis was performed using 8 siftings as the stopping criteria, as
this gave the most accurate results. The result of the decomposition using the standard
EMD is illustrated in Figure 7.8.
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Figure 7.8: EMD of the original current signal using 8 siftings as the stopping criteria.

The decomposition, illustrated in Figure 7.8, reveals 5 IMFs, which is one less IMF than
the decomposition using the Python implementation of the standard EMD provides. The
reason for this can be explained by the number of siftings, which are different for the two
cases, and that they are two different implementation of the standard EMD. The IMFs in
Figure 7.8 are not as influenced by end effect like the IMFs in Figure 7.3, which is an
improvement. On the other hand, the IMFs in Figure 7.3 are more distorted than the IMFs
in Figure 7.8.

As for the results obtained by the standard EMD in Python, the instantaneous frequency
of each IMF and the FFT of the original current measurement are calculated. The results
are illustrated in Figure 7.9.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.9: a) Instantaneous frequency of IMF 1, b) instantaneous frequency of IMF 2, c) instanta-
neous frequency of IMF 3, d) instantaneous frequency of IMF 4, e) instantaneous frequency of IMF
5, f) FFT of the original current measurement.
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Based on the frequency results illustrated in Figure 7.9, the first IMF that resembles any
of the frequency components is IMF 3. As for the results obtained with the standard
EMD in Python, this IMF reveals a oscillating frequency between 500 Hz and 1000 Hz.
Purely based on this frequency result, it is not possible to confirm that this is one of the
frequency components of the signal. On the other hand, since the standard EMD in Python
revealed a similar frequency result for this IMF, and the FFT result of the signal in Figure
7.9 f shows a frequency component of 740 Hz, it can be concluded that this IMF carries
information about this frequency component. IMF 4 on the other hand reveals a completely
different results than the results obtained with the standard EMD in Python. In Figure 7.9
d, the frequency oscillates between 30 Hz and 90 Hz, and it is not possible to extract
any of the other two frequency components. Even though the average of the frequency
is approximately 60 Hz, it is clear that it is influenced by another frequency component.
Thus, it can be concluded that this decomposition suffers from mode mixing, and the 300
Hz component and the 60 Hz component are not detected.

7.2.2 Duplicated current signal

As for the analysis performed in Python, the duplicated signal illustrated in Figure 7.2 is
also analyzed using the standard EMD in MATLAB. The analysis is performed using the
stopping criteria of 8 siftings. The decomposition using the standard EMD in MATLAB
is illustrated in Figure 7.10.

Figure 7.10: EMD of the duplicated current signal using 8 siftings as the stopping criteria.

The decomposition in Figure 7.10 reveals 9 IMFs, which is two more than the decompo-
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sition of the same signal using the standard EMD in Python. As for the results obtained
for the original signal using the standard EMD in MATLAB, the end effects are still im-
proved compared to the results obtained by the standard EMD in Python. As for the other
analyses using the standard EMD, the frequencies of the IMFs are calculated. For a proper
comparison, the frequencies are calculated in the same way as for duplicated signal using
the standard EMD in Python, by using FFT. The frequency results are illustrated in Figure
7.11.

(a) (b)

(c) (d)

(e) (f)

Figure 7.11: a) FFT of IMF 1, b) FFT of IMF 2, c) FFT of IMF 3, c) FFT of IMF 4, d) FFT of IMF
5 and e) FFT of IMF 6.
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In Figure 7.11, the second IMF, IMF 2, reveals a dominating frequency of 740 Hz with an
amplitude just below 0.02, and multiple of components with smaller amplitudes both with
higher and lower frequency. Because of the small amplitude and the presence of other
components it is clear that there is mode mixing present. Since the amplitude of the 740
Hz is too low, it can be assumed that the component is also present in IMF 3. In IMF 3,
the dominating frequency component is the 300 Hz component, but the 740 Hz component
is also present. The 300 Hz component has a too low amplitude, and it is clear that the
frequency component must be present in other IMFs. In IMF 4 a frequency component at
60 Hz with an amplitude just below 1 is detected. In addition to this a frequency component
at 300 Hz is detected as well. Based on this it is clear to say that the frequency component
of 300 Hz is both present in IMF 4 and in IMF 3, and that mode mixing is present in more
than one case. Mode mixing is also present in the results obtained with Python, but in
Python, the results are a bit more accurate for the IMFs.

Based on these results obtained by the standard EMD, both in Python and MATLAB, it can
be seen that the Python implementation of the standard EMD provides the most accurate
decomposition both for the original signal and the duplicated signal.

7.3 Part 3 - Analysis using the online EMD

In this part the online EMD is used to analyze the duplicated signal illustrated in Figure
7.2. As mentioned earlier in the results, the online EMD and the standard EMD use the
same implementation of the standard EMD. The online EMD applies the standard EMD in
a window, then the window is shifted. Before the duplicated signal is analyzed, the online
EMD is applied to a synthetic signal in order to demonstrate the working principle of the
method.

7.3.1 Synthetic signal 1

In this section, a synthetic signal is analyzed in order to verify the decomposition and to
illustrated the working principle of the online EMD. The synthetic signal consists of three
sinusoids with frequencies of 25 Hz, 80 Hz and 800 Hz, all with amplitude 1, and a linear
trend. The online EMD is applied with 4 siftings as the stopping criteria and with 10
extrema per window (l = 10).

Figures 7.12, 7.13 and 7.14 illustrates the decomposition using online EMD after 500,
1500 and 4500 samples, respectively. After 500 samples, Figure 7.12, the IMF with the
highest frequency is extracted, while the other components are still in the residual. At the
moment that there are l = 10 extrema in the residual, the online EMD starts to extract the
second IMF and after that, it extracts IMF 3 (Figures 7.13 and 7.14). The red parts in the
plots are the parts of the IMFs that are not completed yet due to the stitching procedure.
These parts indicate the delay of each IMF (time delay, ∆t), which is determined by the
frequency of the IMF.
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Figure 7.12: Decomposition of a synthetic signal using online EMD after analyzing 500 samples.
The window size is 10, i.e., l=10 and 4 siftings is used.

Figure 7.13: Decomposition of a synthetic signal using online EMD after analyzing 1500 samples.
The red parts are the parts of the IMFs that are still incomplete. The window size is 10 , i.e., l=10
and 4 siftings is used.
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Figure 7.14: Decomposition of a synthetic signal using online EMD after analyzing 4500 samples.
The red parts are the parts of the IMFs that are still incomplete. The window size is 10 , i.e., l=10,
and a 4 siftings is used.

The decomposition using the online EMD on this synthetic signal reveals 3 IMFs. The
decomposition after 4500 samples, illustrated in Figure 7.14, shows a promising decom-
position where the IMFs look even and not distorted. After the decomposition was com-
pleted, the instantaneous frequency for each of the IMFs was calculated. The calculation
of the instantaneous frequencies was performed using the algorithm presented in section
6.2.1 and the results are illustrated in Figures 7.15, 7.16 and 7.17.
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Figure 7.15: Instantaneous frequency of IMF 1. The samples are shown on the x-axis, and the
Frequency, in Hertz, on the y-axis.

Figure 7.15 shows the instantaneous frequency of IMF 1. The result reveals that a fre-
quency of approximately 800 Hz is discovered, which corresponds to the highest frequency
component of the synthetic signal. The frequency is constant for the whole sampling pe-
riod, only with few deviations.
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Figure 7.16: Instantaneous frequency of IMF 2. The samples are shown on the x-axis, and the
Frequency, in Hertz, on the y-axis.

Figure 7.16 shows the instantaneous frequency of IMF 2. The result shows that a fre-
quency of approximately 80 Hz is discovered, which corresponds to one component of the
synthetic signal. The frequency is constant in large parts of the result, but deviates a bit
at the end. This deviation does not influence a large part of the result, and it can still be
concluded, that the frequency component of 80 Hz is properly detected.
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Figure 7.17: Instantaneous frequency of IMF 3. The samples are shown on the x-axis, and the
Frequency, in Hertz, on the y-axis.

Figure 7.17 shows the instantaneous frequency of IMF 3. The result shows that a fre-
quency of approximately 25 Hz is discovered, which corresponds to the lowest frequency
component of the synthetic signal. The frequency obtained here is even more constant than
the frequency for IMF 1 and IMF 2. Even though it is more constant for the most part, it
shows a larger devuation at the end than the other two IMFs. The deviation however, does
not influence the correct detection of the 25 Hz component.

The decomposition using online EMD and the instantaneous frequency calculation shows
accurate results for the synthetic signal, and the working principle of the online EMD is
well illustrated by this example.
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7.3.2 Analysis of duplicated current signal

Since the original current measurement illustrated in 7.1 is only 0.05 seconds long and only
contains 6 extrema, the duplicated current signal illustrated in Figure 7.2 will be analyzed
using the online EMD. The online EMD was applied with 10 extrema per window (l = 10)
and with 8 siftings. The results of the online EMD revealed 18 IMFs. Since the purpose
of the analysis is to examine harmonic components, only the IMFs with such relevance
are shown in Figure 7.18. The complete results of the online EMD can be seen in the
Appendix.

Figure 7.18: Online EMD of the duplicated signal with 8 siftings, window size l = 10 and only
showing 6 IMFs.

In Figure 7.18, only the IMFs with relevance is presented. Based on prior analysis of this
signal, and the original signal, the decomposition raises some concerns. The IMFs have
a too low amplitude to be considered as one of the frequency components of the signal,
and there might be a mode mixing issue. The instantaneous frequency of the 6 IMFs is
calculated and the results are illustrated in Figure 7.19.
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(a) (b)

(c) (d)

(e)

Figure 7.19: a) Instantaneous frequency of IMF 1, b) instantaneous frequency of IMF 2, c) instanta-
neous frequency of IMF 3, c) instantaneous frequency of IMF 4, d) instantaneous frequency of IMF
5 and e) instantaneous frequency of IMF 6.
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As for the results obtained with the standard EMD in MATLAB, the online EMD suffers
from mode mixing for this particular signal as the IMFs reveal a oscillating frequency. The
first IMF in Figure 7.19, IMF 1, is considered as noise. The frequency result of IMF 2,
IMF 3 and IMF 4 reveals fluctuating frequencies and it is clear that there is mode mixing
present. From the frequency result of these three IMFs it is not possible to extract any
of the frequency components. From the results of IMF 4 the average frequency might be
approximately 60 Hz, but it is influenced by another frequency component in some parts.
IMF 5 and IMF 6 reveals more constant frequency results, but the frequencies are two
low to be considered as one of the frequency components of the signal. It is clear that the
decomposition is not accurate for the duplicated signal both using the standard EMD and
the online EMD in MATLAB.

7.3.3 Synthetic signal 2

Because the online EMD of the duplicated current signal revealed mode mixing, online
EMD is applied to a signal with the same properties as the constructed signal in Figure
7.5 but with the same length as the duplicated signal, 1.35 seconds, in order to examine
the decomposition when there is no noise in the signal. The duplicated signal and the
reconstruction are illustrated in Figure 7.20 and 7.21. The decomposition of the online
EMD, using 8 siftings, is illustrated in Figure 7.22.

Figure 7.20: Plot showing the synthetic signal sin(2π60t) + 0.1sin(2π300t) + 0.04sin(2π740t) in
orange and the duplicated signal in blue for the entire time span.
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Figure 7.21: Plot showing the synthetic signal sin(2π60t) + 0.1sin(2π300t) + 0.04sin(2π740t) in
orange and the duplicated signal in blue for 0.2 seconds.

Figure 7.22: Online EMD of the synthetic signal sin(2π60t) + 0.1sin(2π300t) + 0.04sin(2π740t)
with the window size (l) = 10 and with 8 siftings.

The decomposition of the synthetic signal using online EMD in Figure 7.22 reveals 4
IMFs. IMF 1 and IMF 2 looks constant, while IMF 3 and IMF 4 reveals a change in the
oscillation in the middle part. This might indicate that there is something happening in the
middle of the IMFs, and that IMF 2 and IMF 3 might be influenced with some deviations
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as well. The instantaneous frequency of each of the IMFs is calculated and the results are
illustrated in Figure 7.23.

(a) (b)

(c) (d)

(e)

Figure 7.23: a) Instantaneous frequency of IMF 1, b) instantaneous frequency of IMF 2, c) instan-
taneous frequency of IMF 3, d) instantaneous frequency of IMF 4 and e) FFT of IMF 2.
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Compared to the decomposition achieved from the duplicated current signal using the
online EMD method, the decomposition of the synthetic signal is improved. In Figure
7.23, the 740 Hz component is detected properly in IMF 1, but the 300 Hz is still not
detected in IMF 2. IMF 2 shows a fluctuating frequency around 60 Hz. In figure 7.23 e,
the FFT is applied to IMF 2, and the results reveal a frequency component of 60 Hz and
one at 300 Hz. This indicates that there is still mode mixing between the 60 Hz and the
300 Hz frequency component.

7.3.4 Synthetic signal 3

The mode mixing effect from the EMD became clear after the original signal was dupli-
cated to make it longer for the online EMD analysis. In order to examine the time delay
of the IMF components for a case when mode mixing does not occur, another synthetic
signal was constructed. Through trial and error it was found that the amplitudes presented
in Table 7.1 gave results without mode mixing. The synthetic signal is then composed as
sin(2π60t) + 0.2sin(2π300t) + 0.08sin(2π740t). The decomposition of the online EMD is
illustrated in Figure 7.24.

Table 7.1: Table showing the frequency and amplitudes of the frequency components of the synthetic
signal.

Component Frequency [Hz] Amplitude
1 740 0.08
2 300 0.2
3 60 1

Figure 7.24: Online EMD of the synthetic signal sin(2π60t) + 0.2sin(2π300t) + 0.08sin(2π740t).
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The decomposition in Figure 7.24 reveals 5 IMFs. The first three IMFs is expected to be
the once carrying information about the frequency components of the signal as the last
two IMFs are of small amplitude. For each of the IMFs, the instantaneous frequency is
calculated. The frequency results are illustrated in Figure 7.25.

(a) (b)

(c) (d)

(e)

Figure 7.25: a) Instantaneous frequency of IMF 1, b) instantaneous frequency of IMF 2, c) instanta-
neous frequency of IMF 3, d) instantaneous frequency of IMF 4 and e) and instantaneous frequency
of IMF 5.
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The frequency results in Figure 7.25, reveal accurate frequency results. IMF 1 reveals a
frequency of 740 Hz, IMF 2 reveals a frequency of 300 Hz and IMF 3 reveals a frequency
of 60 Hz, which corresponds to the frequency components of the synthetic signal. Hence,
by increasing the amplitudes of the two harmonic components, a proper decomposition
without mode mixing is achieved.

7.3.5 Time delay of IMFs

The red part of the IMFs in Figure 7.24 illustrates the part of the signal that is not com-
pleted yet bacause of the stitching procedure in the online EMD. This indicates that for
each IMF, there is a time delay, ∆t, which increases from one IMF to another. Since
the EMD extracts the fastest oscillation first, the time delay for components with lower
frequency will be longer than the time delay for the components with higher frequency.
The time delays are presented in Table 7.2. In the case of harmonic detection, it is only
necessary to consider the time delays for the components representing the harmonic com-
ponents. For this signal, this includes IMF 1, IMF 2 and IMF 3.

Table 7.2: Time delays for each IMF obtained with the online EMD and l = 10.

Component Time delay (s)
IMF 1 0.0112
IMF 2 0.0267
IMF 3 0.0961
IMF 4 0.2906
IMF 5 0.6971

The time delay of each IMF represents the time required by the online decomposition pro-
cess to obtain an IMF for real-time applications. For example, IMF 2 is obtained about
0.03 seconds after the measured signal is available. However, in the standard EMD de-
composition process, the full signal has to analyzed, which is not suitable for real-time
applications.
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Chapter 8
Conclusion and further work

The standard EMD and the online EMD have been studied and applied to signals contain-
ing harmonics. For the original current measurement, mode mixing did not occur for the
Python code for standard EMD, but it did occur for the MATLAB code for standard EMD.
For the duplicated version of the current measurement, mode mixing occurred for both
the Python code of standard EMD and the MATLAB codes for standard EMD and online
EMD. The mode mixing was more severe for the MATLAB codes for both standard EMD
and online EMD, than it was for the Python code of the standard EMD. The online EMD
and standard EMD in MATLAB uses the same algorithm for EMD, and since both of them
experienced mode mixing, it is concluded that the mode mixing is a problem for the EMD
algorithm, not the online implementation of the standard EMD. It can be concluded that
the Python code for EMD handles mode mixing more properly than the MATLAB codes
for online EMD and standard EMD, but as seen from the results, the MATLAB codes for
online EMD and standard EMD handles the end effects in a more proper way than the
Python code for standard EMD.

The EMD implementation in Python and the implementation in MATLAB are suppose to
perform the same task, but as seen in the results, they provide different results. Different
methods used in either the interpolated curves between extrema or to minimize end effects
might be the cause of the different results obtained for Python and MATLAB results. The
online EMD is an open source code, which can be downloaded and used by anybody.
What the analysis in this thesis has shown is that it is important to fully understand what
the method does, and that there might be other implementations of the same method that
are more suited for the particular signal. With empirical methods, it is important to fully
understand the premise and the working principle of the method in order to choose the
right parameters.
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It is not ideal to duplicate a current measurement since it is no longer an actual measure-
ment, and the mode mixing got worse in this case. In order to investigate the mode mixing
issue, a synthetic signal was constructed based on the frequency results obtained by the
standard EMD in Python. The synthetic signal was analyzed using the online EMD, and it
revealed that there was still mode mixing present. Since the frequencies are far apart (60
Hz, 300 Hz and 740 Hz), it was concluded that it was the amplitudes of these frequency
components that caused the mode mixing. Through trial and error, it was found that when
the amplitudes of the harmonic components were doubled, mode mixing did not occur,
and a proper decomposition was obtained.

The method is called online EMD, but as revealed in the results, the method impose a time
delay to the IMFs, making it not completely online. The time delay can be reduced by
changing the number of siftings and the window size, but as the method is now, it is only
suitable for window sizes of more than 10 extrema.

Even though the results revealed mode mixing for the specific current measurement, there
are, as mentioned, solutions to this problem. The online EMD provides more opportu-
nities, like analyzing data streams, which would be beneficial for control purposes in for
example active power filters. Because of this, the method should be pursued in the future.

Concluding remarks

• Online EMD is an extension of the EMD that enables analysis of data streams, which
is beneficial for control purposes in for example active power filters.

• There are different ways to implement the EMD method in both MATLAB and
Python, and in this thesis a comparison of two chosen implementations is performed.
The standard EMD and the online EMD implementations in MATLAB are more
prone to mode mixing than the standard EMD implementation in Python for this
specific current measurement.

• The end effects are more severe in the standard EMD implementation in Python than
for the standard EMD and Online EMD implementations in MATLAB.

• When the amplitudes of the current harmonics in the current measurements are dou-
bled, mode mixing does not occur.

• Even though the method is called online EMD, the method imposes a time delay to
each of the IMFs, which makes the method not completely online.

68



Further work

For further analysis using the online EMD the author has some suggestions for further
work:

• The online EMD is a newer extension that should be applied for other current mea-
surements containing harmonics, preferably for measurements that does not have to
be duplicated, in order to further grasp the accuracy of the decomposition.

• Based on the mode mixing problem, methods for suppressing such phenomena
should be implemented in the code. Since the mode mixing was not as severe in
the Python code, another implementation of the EMD might improve the results
obtained with the MATLAB codes for both standard EMD and online EMD. One
possibility is to investigate if a different interpolation improves the results.

• Since the online EMD is able to analyze data streams, the method should be pursued
for control purposes in for example active power filters.
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Figure 8.1: Online EMD of duplicated current signal with infinite IMFs and 8 siftings. The first is
the plot of the data, the next 18 plots are the IMFs, and the last one is the residue.
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