
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

le
ct

ri
c

P
ow

er
 E

ng
in

ee
ri

ng

M
as

te
r’

s
th

es
is

Viljar Fjellanger

On-line Voltage Estimation during
Sensorless Control of an Induction
Machine Drive

Master’s thesis in Electric Power Engineering
Supervisor: Roy Nilsen

June 2019

Viljar Fjellanger

On-line Voltage Estimation during
Sensorless Control of an Induction
Machine Drive

Master’s thesis in Electric Power Engineering
Supervisor: Roy Nilsen
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electric Power Engineering

i

Problem Description

In the research group Power Electronics System and Components (PESC) at the department of Electric

Power Engineering a new Control-platform is developed. This control platform is based on a picoZed -

board with a Xilinx Zynq7030 System-on-Chip (SoC) with two floating point processors and a Field

Programmable Gate Array (FPGA). The tools used are Vivado for FPGA programming, System

Generator and Simulink for developing IP-cores for the FPGA and finally SDK for C++ programming.

One of the applications of this Control-platform is Sensorless control of Electric Machines. This thesis

shall be focused on a 3-phase Induction Motor drive. The tasks to be performed are:

▪ Derive mathematical models and present the control theory for Induction Motor Drives.

▪ Discuss the most commonly used flux models: Current Model and Voltage Model.

▪ Evaluate the sources of error in these models; especially voltage errors.

▪ Present the theory for the effect on dead-times and blanking times on in the pulse pattern in a 2-

level 3-phase inverter.

▪ Develop a voltage-estimator to be used in a flux model. The estimator should be implemented

in the FPGA by help of Simulink and the System Generator package from Xilinx.

▪ Methods and Workflow for how to test this in Simulink and on the Control Platform should be

presented if sufficient time is available.

Supervisor: Prof. Roy Nilsen

ii

Preface

This thesis was submitted to the Department of Electric Power Engineering at NTNU and concludes the

2-year master program “Electric Power Engineering”. The work has been challenging and motivating

and really widened my horizon in the exiting world of programming. I am very grateful for the new

acquired knowledge.

I want to thank my supervisor Prof. Roy Nilsen for all his guidance throughout the project. His

theoretical knowledge, constructive feedback and passion for the field of study has been very valuable

during this work. I would also give a special thanks to PhD candidate Anirudh Budnar Acharya for

sharing his knowledge in FPGA programming and his invaluable assistance with the FPGA design.

Lastly, I want to thank the participants in the PESC group for all the interesting and fruitful discussions.

Trondheim, June 11, 2019

Viljar Fjellanger

iii

Abstract

Sensorless control of electrical machines can increase reliability and reduce cost of high-performance

drives. The sensorless control can be achieved by using field-oriented control, where voltage and current

measurement are used as inputs to a flux model called voltage model. However, it is well known that

errors in input variables, such as stator voltage, can lead to drifting in the flux linkage estimation. It is

possible to give an estimate of the stator voltage using control signal for the inverter’s IGBTs and

correcting for turn-on and turn-off delays of the IGBTs and blanking time.

The main purpose of this thesis was to design and test an on-line voltage estimator using Xilinx’s System

Generator DSP tool together with Xilinx SDK. The voltage estimator was tested using an open loop

𝑉/𝑓-controller with the future goal of implementing it in a field-oriented control. Tests were performed

purely on the control board without a physical inverter connected. Test results were compared to

simulations and the expected results deducted in the theoretical study. Modelling, scaling and control

strategies of the induction machine was thoroughly reviewed with updated concepts and notations and

a non-ideal inverter model was presented and analysed in order to design the voltage estimator.

The voltage estimator used the CPU for mathematical computations and the FPGA to estimate the time

period to which the inverter outputs had same voltage potential as DC-link voltage. Theoretical analysis

showed that blanking time and difference in turn-on and turn-off time in the IGBTs introduced a time

delay to the output voltage pulse, compared to control signal of the IGBT. It was also shown that the

time delay was dependent on current direction. The voltage estimator’s ability to introduce this time

delay was initially tested. The test was performed by using one bridge leg as a half-bridge converter and

monitoring the on-time counter value. Results from tests with a constant control voltage and a switch in

current direction, showed correct time delays in on-time estimation.

Phase voltage estimation was tested during low speed 𝑉/𝑓-control. The test was performed with and

without blanking time. Results without blanking time showed an estimated phase voltage equal to the

control voltage and test with blanking time showed estimation of a distorted output voltage. The

distorted waveform of estimated output voltage was in accordance with the theoretical analysis.

An expression for the non-linear voltage drop imposed by the inverter was deducted in the non-ideal

inverter model. The expression was used to create a correction to the control voltage with the intention

to remove the distortion of output voltage. The estimator was tested similarly as for the initial phase-

voltage test. The result showed an estimated output voltage equal to the sinusoidal reference voltage

from the controller. From this it could be verified that the non-linear voltage drop equation given by the

inverter model was correct. Furthermore, similarities between results from the compensated 𝑉/𝑓-control

and the expected results from a FOC, showed that the estimator could work independently of control

strategy.

From the results it was concluded that the new IP-core that was integrated in the FPGA design was able

to recognise current direction and insert the correct time delay to the on-time count. It was also

concluded that voltage estimator was able to estimate correct output voltage, independent of control

strategy. This verified the equations for output voltage and distorted voltage deducted in non-ideal

inverter model.

Finally, Xilinx System Generator DPS tool was proven to an efficient way of programming complex

FPGA programs. The tool allowed for design, testing and implementation of new IP-cores without

knowledge of VHDL programming.

iii

Sammendrag

Sensorløs kontroll av elektriske maskiner kan bidra til økt pålitelighet samt kostnadsreduksjon på

motordrifter med krav til høy-presisjon. Kontrollstrategien feltorientert kontroll kan brukes for å oppnå

sensorløs kontroll ved at strøm- og spenningsmålinger brukes i en fluksmodell som kalles spennings-

modellen. Det er videre et kjent problem at unøyaktige inputvariabler i spenningsmodellen, som for

eksempel spenningsmålinger, kan føre til feil i fluksestimeringen. I litteraturen kalles denne feilen for

drifting. Det er mulig å estimere statorspenningen ved hjelp av styresignalene til IGBTene i omformeren.

Ved slik estimering er det viktig å korrigere for tidsforsinkelser i forbindelse med svitsjeforløpet til

IGBTene samt dødtid i omformeren.

Hovedformålet med oppgaven har vært design og testing av en on-line spenningsestimator. Estimatoren

er designet ved hjelp programmene System Generator DSP og SDK, begge utviklet og laget av Xilinx.

Spenningsestimatoren er testet ved hjelp av en åpen sløyfe 𝑉/𝑓-kontroller med et framtidig mål om å

implementere den i en feltorientert kontroller. Testene i denne masteroppgaven ble gjort på et

kontrollbrett uten tilkobling til en fysisk omformer. Resultatene ble sammenlignet med simuleringer og

sett i sammenheng med de forventede resultatene fra teoristudiet. Modellering, skalering og

kontrollstrategier for induksjonsmaskinen ble nøye gjennomgått. Likningene ble presentert med

oppdatert notasjon i henhold til motordrift faget på fakultetet. En ikke-ideell omformermodell ble også

presentert og analysert for å forstå hvordan spenningsestimatoren skulle designes.

Matematiske beregninger til estimatoren ble gjort i prosessoren mens estimatet av tidsintervallet, hvor

spenningen på omformerens utgangsterminaler var lik DC-spenningen, ble gjort i FPGAen. Analysen

av omformeren viste at differansen i av og på forsinkelsen i IGBTene samt dødtiden, introduserte en

tidsforsinkelse i spenningspulsen fra omformeren i forhold til kontrollsignalet til IGBTen. Det ble også

vist at tidsforsinkelsen var avhengig av strømretningen i brogrenen. For å teste FPGA-programmets

evne til å estimere riktig tidsintervall, ble den ene brogrenen brukt som en halvbro-omformer og påtrykt

en konstant kontrollspenning. Strømretningen ble også endret under testen. Testresultatene viste at

estimatoren var i stand til å gi korrekte resultater.

Fasespenningsestimat ble testet ved bruk av en 𝑉/𝑓-kontroller innstilt for lav utgangshastighet. Testen

ble gjennomført med og uten dødtid. Resultatet fra testen uten dødtid vise et fasespenningsestimat likt

kontrollspenningen. Resultatet med dødtid viste en forvrenging i den estimerte utgangsspenningen, helt

i samsvar med teoristudiet.

Et utrykk for det ulineære spenningsfallet fra omformeren ble utledet i den ikke-ideelle omformer-

modellen. Uttrykket ble brukt til å korrigere kontrollspenningen med mål om fjerne det ulineære

spenningsfallet. Testresultatene viste at den estimerte utgangsspenningen hadde samme fase og

amplitude som den sinusformede referansespenningen fra omformeren. Resultatet viste at det utledede

utrykket som beskriver spenningsfallet var korrekt. Resultatene fra testen var også lik det man kunne

forventet seg ved bruk av feltorientert kontroll. Dette viste at estimator ikke var begrenset til en kontroll-

strategi.

Fra resultatene konkluderes det at den nye IP-kjernen som ble integrert i det ferdige FPGA-designet,

evnet å estimere riktig tidsintervall for utgangsspenningen. Det ble også konkludert at spennings-

estimatoren klarte å estimere riktig utgangsspenning i de forskjellige testene og at estimering var

uavhengig av kontrollstrategien. Dette ga grunnlaget for verifisering av likningene som ble funnet i den

ikke-ideelle omformermodellen.

Xilinx System Generator DPS-verktøy har vist seg å være en svært effektiv måte å programmere

komplekse FPGA-programmer på. Verktøyet muliggjorde design, testing og implementering av en ny

IP-kjerne uten inngående kunnskap om VHDL programmering.

iv

Table of Content

LIST OF FIGURES .. VI
LIST OF CODE ... VII
ACRONYMS .. VIII
NOTATIONS .. IX

1 INTRODUCTION ... 1

1.1 BACKGROUND AND MOTIVATION .. 1
1.2 SCOPE OF WORK ... 2
1.3 ORGANIZATION OF THE REPORT ... 2

2 MODELLING AND SCALING OF THE INDUCTION MACHINE ... 3

2.1 INTRODUCTION TO THE IM MACHINE. ... 3
2.2 MODELLING OF THE INDUCTION MACHINE .. 4

2.2.1 Physical model ... 5
2.2.2 Clarke Transformation ... 6
2.2.3 Park Transformation ... 8

2.3 PU SYSTEM .. 12

3 CONTROL OF THE INDUCTION MACHINE .. 13

3.1 𝑉/𝑓-CONTROL .. 13
3.2 ROTOR-FLUX ORIENTATED CONTROL .. 15

3.2.1 Current Model ... 15
3.2.2 Voltage Model ... 17
3.2.3 Torque equation .. 19

3.3 DRIFTING IN VOLTAGE MODEL .. 20

4 VOLTAGE AND CURRENT MEASUREMENT.. 23

4.1 NON-IDEAL INVERTER MODEL ... 23
4.1.1 Switching characteristics ... 23
4.1.2 Blanking time and on/off time .. 25
4.1.3 Voltage drop over the IGBT and power diode ... 26
4.1.4 Phase voltage of the machine ... 28

4.2 CONSEQUENCES OF THE NON-LINEAR VOLTAGE DROP .. 31
4.3 CURRENT MEASUREMENT ... 33

4.3.1 Current measurement circuit... 34
4.3.2 Offset error .. 35
4.3.3 Scaling error .. 37

5 PROGRAMMING STRUCTURE AND SOFTWARE .. 39

5.1 INTRODUCTION .. 39
5.2 PROGRAMMING STRUCTURE IN SDK... 40
5.3 IP-CORE GENERATION USING SYSTEM GENERATOR DSP IN SIMULINK ... 43

6 CPU AND FPGA PROGRAMMING.. 49

6.1 INTRODUCTION .. 49
6.2 𝑉/𝑓- CONTROL (CONTROLLER) .. 50
6.3 PWM (MODULATOR) ... 52
6.4 VOLTAGE ESTIMATION WITH BLANKING TIME CORRECTION .. 53
6.5 DISTORTION VOLTAGE CORRECTION .. 61

v

7 PROGRAM VERIFICATION THROUGH SIMULATION AND TESTING .. 62

7.1 INTRODUCTION .. 62
7.2 DC-VOLTAGE TEST .. 63
7.3 AC-VOLTAGE TEST .. 67
7.4 AC-VOLTAGE TEST WITH CORRECTION ... 70

8 DISCUSSION ... 72

9 CONCLUSION AND FURTHER WORK ... 75

9.1 CONCLUSION ... 75
9.2 FURTHER WORK ... 76

REFERENCES ... 77

vi

List of figures
FIGURE 2.1: PRINCIPLE DRAWING OF THE THREE-PHASE INDUCTION MACHINE ... 3
FIGURE 2.2: SCHEMATIC REPRESENTATION OF THE THREE-PHASE INDUCTION MACHINE ... 4
FIGURE 2.3: THREE-PHASE INDUCTION MACHINE ... 6
FIGURE 2.4: EQUIVALENT TWO-PHASE INDUCTION MACHINE .. 6
FIGURE 2.5: CLARKE TRANSFORMED MODEL ... 8
FIGURE 2.6:PARK TRANSFORMED MODEL ... 8
FIGURE 3.1: 𝑉/𝑓 CURVE WITHOUT VOLTAGE BOOST .. 14
FIGURE 3.2: TORQUE/SPEED CURVE WITHOUT VOLTAGE BOOST .. 14
FIGURE 3.3: 𝑉/𝑓 CURVE WITH VOLTAGE BOOST .. 14
FIGURE 3.4: TORQUE/SPEED CURVE WITH VOLTAGE BOOST .. 14
FIGURE 3.5: VECTOR DIAGRAM FOR USED IN VOLTAGE MODEL .. 18
FIGURE 3.6: DRIFTING OF STATOR FLUX .. 20
FIGURE 4.1: INVERTER CIRCUIT ... 23
FIGURE 4.2: TURN-ON VOLTAGE AND CURRENT WAVEFORM ... 24
FIGURE 4.3: TURN-OFF VOLTAGE AND CURRENT WAVEFORM .. 24
FIGURE 4.4: SWITCHING PATTERNS FOR A TWO LEVEL THREE-PHASE INVERTER WITH CURRENT FLOWING TO THE LOAD. (A) IDEAL

SWITCHING. (B) SWITCHING THIS BLANKING TIME. (C) ACTUAL PHASE TO 0 VOLTAGE. (D) EQUIVALENT PHASE TO 0 VOLTAGE . 25
FIGURE 4.5: 𝑉/𝑓-CONTROLLED INVERTER VOLTAGES ... 31
FIGURE 4.6: 20% SPEED ... 32
FIGURE 4.7: 5% SPEED ... 32
FIGURE 4.8: 2.5% SPEED .. 32
FIGURE 4.9: MECHANICAL SPEED AND FFT ANALYSIS OF MECHANICAL SPEED WITH MEASUREMENT ERRORS [18]. 33
FIGURE 4.10: CURRENT MEASUREMENT CIRCUIT .. 34
FIGURE 4.11: OFFSET ERROR IN CURRENT MEASUREMENT ... 35
FIGURE 4.12: SCALING ERROR IN CURRENT MEASUREMENT .. 37
FIGURE 5.1: (A) SCHEMATIC REPRESENTATION OF THE ZYNQ-PROCESSOR [26]. (B) PHOTO OF THE CONTROL BOARDS. 39
FIGURE 5.2: INPUT AND OUTPUT GATES ... 43
FIGURE 5.3: BLOCK SPECIFICATION FOR GATEWAY PORTS .. 43
FIGURE 5.4: BASIC BLOCK LIBRARY FOR THE XILINX TOOL ... 44
FIGURE 5.5: COUNTER EXAMPLE ... 44
FIGURE 5.6: SIMULATION OF COUNTER .. 45
FIGURE 5.7: SCOPE OUTPUT .. 45
FIGURE 5.8: SYSTEM GENERATOR SETUP .. 46
FIGURE 5.9: (A) COUNTER EXAMPLE IN SIMULINK. (B) COUNTER EXAMPLE IN VIVADO ... 46
FIGURE 5.10: LINK BETWEEN HARDWARE PLATFORM, BSP AND PROJECT .. 47
FIGURE 6.1: OBJECTS AND ELEMENTS IN THE CONTROL SOFTWARE .. 49
FIGURE 6.2: 𝑉/𝑓-CURVE .. 50
FIGURE 6.3: SWITCHING BEHAVIOUR WITH BLANKING TIME, POSITIVE CURRENT ... 53
FIGURE 6.4: SWITCHING BEHAVIOUR WITH BLANKING TIME, NEGATIVE CURRENT .. 54
FIGURE 6.5: BLANKING TIME COMPENSATOR ... 55
FIGURE 6.6: RISING AND FALLING EDGE DETECTOR ... 55
FIGURE 6.7: SIGN OF CURRENT ... 56
FIGURE 6.8:BLANKING TIME COUNTER ... 56
FIGURE 6.9: BLANKING TIME CORRECTION OF IGBT BIT. (A) POSITIVE CURRENT. (B) NEGATIVE CURRENT. 57
FIGURE 6.10: TIME-PLOT OF CORRECTED AND UNCORRECTED IGBT SIGNAL .. 58
FIGURE 6.11: (A) COUNTER AND REGISTER LOGIC. (B) CORRECTED SIGNAL, ON-TIME COUNTER AND ON-TIME REGISTER 58
FIGURE 6.12: COMPLETE BLOCK DESIGN OF THE BLANKING TIME CORRECTOR IP-CORE .. 59
FIGURE 6.13: SEQUENCER BLOCK .. 60
FIGURE 7.1: PWM MODEL .. 62
FIGURE 7.2: ILLUSTRATION OF CORRECTED AND UNCORRECTED IGBT BIT ... 63
FIGURE 7.3: CLOSE-UP PICTURE OF TURN-ON AND TURN-OFF DELAY IMPOSED BY BLANKING TIME .. 64

vii

FIGURE 7.4: SIMULATION - ON-TIME COUNT FOR DC-TEST WITH AND WITHOUT BLANKING TIME ... 64
FIGURE 7.5:CONTROL BOARD - ON-TIME COUNT FOR DC-TEST WITHOUT BLANKING TIME .. 65
FIGURE 7.6 CONTROL BOARD - ON-TIME COUNT FOR DC-TEST WITH BLANKING TIME .. 66
FIGURE 7.7: SIMULATION – VOLTAGE ESTIMATION WITH AND WITHOUT BLANKING TIME ... 67
FIGURE 7.8: CONTROL BOARD – VOLTAGE ESTIMATION WITHOUT BLANKING TIME .. 68
FIGURE 7.9: CONTROL BOARD – VOLTAGE ESTIMATION WITH BLANKING TIME ... 69
FIGURE 7.10: CONTROL BOARD – CONTROL VOLTAGE COMPENSATION .. 70
FIGURE 7.11: CONTROL BOARD – VOLTAGE ESTIMATION WITH COMPENSATED CONTROL VOLTAGE .. 71

List of code
CODE 5.1: MAIN.CC ... 40
CODE 5.2: DRIVEROUTINEFAST.CPP .. 41
CODE 5.3: EXAMPLECLASS.HPP .. 42
CODE 5.4: EXAMPLECLASS.CPP .. 42
CODE 5.5: INITIALIZATION OF A NEW IP-CORE ... 47
CODE 5.6: READING AND WRITING TO AND FROM THE IP-CORE .. 48
CODE 6.1: SCALAR CONTROL INITIALIZATION CODE .. 50
CODE 6.2: SCALAR CONTROL RUN CODE .. 51
CODE 6.3:PWM RUN CODE .. 52
CODE 6.4: VOLTAGEESTIMATOR CODE ... 60
CODE 6.5: DISTORTEDVOLTAGECORRETION CODE .. 61

viii

Acronyms

AC Alternating Current

ADC Analog Digital Controller

CPU Central Processor Unit

DC Direct Current

DSP Digital Signal Processors

pu Per unit

PWM Pulse Width Modulation

FOC Field-Oriented Control

SDK System Development Kit

MMF Magnetomotive Force

IGBT Insulated-Gate Bipolar Transistor

FFT Fast Fourier Transform

AAF Anti-Aliasing Filter

BSP Board Support Package

ix

Notations

Symbol Explanation

𝑈 Voltage

𝐼 Current

𝑅 Resistance

𝐿 Inductance

Ψ Flux linkage

𝑆 Apparent power

𝛼 Alpha-axis

𝛽 Beta-axis

𝜑 Current angle

𝛿 Voltage angle

𝜀 Flux linkage angle

𝑈 Column matrix of voltages

𝐼 Column matrix of currents

Ψ Column matrix of flux linkages

𝑹 Resistance matrix

𝑳 Inductance matrix

𝑅𝑠 Stator resistance

𝑅𝑟 Rotor resistance

𝐿𝑠𝜎 Stator leakage inductance

𝐿𝑟𝜎 Rotor leakage inductance

𝐿𝑠𝑚 Peak value of mutual inductance between stator windings

𝐿𝑟𝑚 Peak value of mutual inductance between rotor windings

𝐿𝑠𝑟𝑚 Peak value of mutual inductance between stator and rotor winding

𝑥𝑠 Stator reactance

𝑥𝑟 Rotor reactance

𝑥𝜎 Leakage reactance

𝑥𝑠𝜎 Stator leakage reactance

𝑥𝑟𝜎 Rotor leakage reactance

𝑥𝑚 Mutual reactance

𝑥𝑀 Equivalent mutual reactance

𝑇𝑟 Rotor rime constant

𝑛 Rotor speed [𝑝𝑢]

𝑓 Frequency

x

𝜔 Angular frequency

𝜃 Angle of rotor

𝜃𝑘 Angle of fictitious system with respect to stator

𝜃𝑟 Angle of fictitious system with respect to rotor

𝑇𝑒 Electrical torque

𝜏𝑒 Electrical torque in pu

𝑝 Pole pairs

𝑻 Transformation matrix

𝑱 Rotation matrix used in transformation

Small letters indicate pu values

Superscript Explanation

S Stator quantities in stator coordinates

R Rotor quantities in rotor coordinates

SR Stator and rotor quantities in their original coordinates

s Referred to stator

r Referred to rotor

𝑘 Referred to transformed frame

𝜓𝑠 Referred to stator flux linkage axis

𝜓𝑟 Referred to rotor flux linkage axis

^ Estimated value

∗ Actual value

′ Distorted value

Subscript Explanation

𝑎, 𝑏, 𝑐 Phases in the machine

𝛼 𝛼-axis quantity

𝛽 𝛽-axis quantity

s Stator quantity

r Rotor quantity

e Electrical quantity

N Rated value

n Reference value

− Vector

1

1 Introduction

1.1 Background and Motivation
Ever since the introduction of variable speed drives, pioneered in the late 70’s, AC machines have

taken over more and more of the variable speed applications previously dominated by DC machines

[1]. Throughout the years, different control strategies have been developed to fulfil different needs in

the market. These are typically divided into high-performance and low-performance drives.

Traditionally, high-performance drives have required position measurements in the control scheme.

However, during the last decades extensive research has been carried out in order to remove the

dependency of position measurement, also known as sensorless control. Position sensor itself and

wiring between sensor and controller represent a reliability issue, increased maintenance work,

increased weight and unnecessary cost [2].

High-performance sensorless drives require estimation of rotor position. Position estimation can be

achieved with the knowledge of flux linkages in the machine. This is exploited by the control strategy

field-oriented control (FOC), where flux linkages are calculated using current and voltage

measurements in the so-called voltage model. It is known that the open integrator used in the voltage

model can cause a DC-offset in the flux linkage estimation if subjected to errors in parameter

estimation or measurements. In literature, this phenomenon is referred to as drifting and the

implications it causes has grates impact during low speed operation or slow runs through zero speed.

Today it exists numerus methods, so-called observers, that tackles the challenges caused by drifting

[3-5]. For several years, sensorless control has also been a field of interest at the Department of Electric

Power Engineering at NTNU, where project, master and doctor theses have been written about the

subject [6-9].

To avoid drifting it is important to apply accurate voltage and current measurements. Direct voltage

measurements on inverter terminals are the most accurate, however high rise-times and high output

voltage require special measuring equipment with adequate bandwidth and insulation [10]. Moreover,

the analog signal processing may introduce offset errors. Expensive measuring hardware and analog

signal processing can be avoided by estimating the inverter voltage output with help of the IGBTs

control signal. However, semiconducting components in the inverter cause a non-linear voltage drop

that has to be taken into account in order to achieve desired estimation accuracy.

To facilitate further research and development in fields like sensorless FOC, a R&D group at the

department of Electrical Power Engineering has since the beginning of 2019 worked on establishing a

common NTNU Control Platform. The complete drive setup uses a control board from Avnet and a

process interface board developed by SINTEF Energy. The setup also uses release and monitoring

tools provided by The Switch Marine Drives. The control platform will act as the foundation for future

research and a starting point for master and doctor theses in the years to come.

The NTNU control platform consists of a CPU routine and a complete FPGA design. The CPU routine

is written in C++ and developed in Xilinx’s System Development Kit (SDK). FPGA design is

constructed out of a network of IP-core using another Xilinx program called Vivado. Previously, IP-

cores have been written using the language VHDL and development of IP-cores has required specialist

knowledge. However, in today’s market there exists development tools that can make this work

significantly easier and allow a broader range of electrical engineers to participate in FPGA design.

This thesis will use Xilinx System Generator DSP together with MATLAB Simulink in the

development of a new IP-core. The IP-core will be a part of the output voltage estimator.

2

1.2 Scope of work
This thesis focuses on modelling and control of an induction machine drive. It also focuses on

implementation of an on-line voltage estimation technique for a two-level three-phase inverter. IP-

core development using Xilinx System Generator DSP at the department of Electrical Power

Engineering has previously only been done to a small extent. This thesis present and explain the tool

in detail with the intention of being an example for future development.

The scope of the work includes:

▪ Modelling, control and scaling of the induction machine according to the concepts and

notations presented in the course Electrical Drives (TET4120).

▪ Modelling of a two-level three-phase inverter.

▪ Development of an on-line voltage estimator and an open loop 𝑉/𝑓-controller.

▪ Analysis of simulation and test results with the goal of validating the estimation technique.

Limitations of the work includes:

▪ Tests of voltage estimator are not done on a physical drive.

▪ Current measurements are emulated from the CPU and not form a running machine.

▪ FOC is not implemented in the control routine.

There are also a number of simplifications and approximations in the induction machine model,

inverter model and output voltage estimator. These are explained in the receptive chapters.

1.3 Organization of the report
The report is divided into eight main chapters: Physical modelling of the induction machine, Clark and

Park transformation and pu scaling of voltage and flux linkage equations are presented in chapter 2.

Open loop 𝑉/𝑓-control and closed loop FOC alongside with the phenomenon drifting are presented in

chapter 3. A non-ideal inverter model and consequences of errors in current measurements are analysed

in chapter 4. Chapter 5 introduces the programming structure for the NTNU Control Platform and

gives an example of how to generate an IP-core using Xilinx’s System Generator tool in MATLAB

Simulink. A summary of CPU routines for the drive and voltage estimator, together with a thorough

explanation of the developed IP-core, is presented in chapter 6. Chapters 7 presents simulation and

control board tests. A discussion of the thesis is given in chapter 8. Finally, the conclusions and

suggestion for further work are given in chapter 9.

3

2 Modelling and Scaling of the Induction Machine

2.1 Introduction to the IM machine.
The asynchronous machine is a type of AC machine and is the most commonly used electrical machine

in the industry. This is because of its simple construction, easy maintenance, robustness and versatile

area of application. The output power of the asynchronous machine can range from a few watts up

towards 10 𝑀𝑊 [11]. The operating principles of the machine are described by Faraday’s law of

induction and Lorentz force on the conductors in the rotor. Alternating currents in the stator windings

set up a magnetic field in the machine’s stator and rotor. When the alternating field crosses the rotor

conductors a current is induced within the conductor, thus creating a force perpendicular to the field

and current.

Asynchronous machines come with two different types of rotors, wounded and squirrel-cage rotor.

Asynchronous machines with a wounded rotor, also called double fed asynchronous machines, have

isolated windings in both stator and rotor. The winding has the same number of poles and phases as

the stator and each phase is connected to its own isolated slipring. Additional resistance can be

connected in series with the rotor winding during start-up to increase the starting torque. As the

machine accelerates, the resistances are short circuited to increase the torque at higher speeds and to

reduce conduction losses [12]. The other and more commonly used asynchronous machine is the one

using a squirrel-cage rotor. This machine is commonly called Induction Machine (IM). The squirrel-

cage rotor is made out of multiple aluminium or copper rods that are moulded in slots of the rotor and

short circuited at both ends. Lack of rotor windings and slipring with brushes makes the induction

machine both cheaper to produce and easier to maintain than the double fed asynchronous machine.

In this master thesis, modelling and control will be based on the induction machine.

An illustration of the three-phase induction machine is presented in Figure 2.1. Each distributed phase

winding is represented by an equivalent concentrated coil aligned with its respective magnetic axis.

The three magnetic axes are shifted 120° in space and is shown as 𝑎𝑆, 𝑏𝑆, 𝑐𝑆 in the figure.

Figure 2.1: Principle drawing of the three-phase Induction Machine

4

2.2 Modelling of the Induction Machine
There are several different reasons why it is important to make equivalent models of the induction

machine. Different control strategies use different transformed models of the physical machine in order

to simplify the analysis and equations [11]. The models also allow the machine and control strategies

to be tested using simulation tools.

The control and analysis used in this master thesis require two different transformed models. Stator

oriented model and rotor-flux oriented model. Both models have fictitious stator and rotor windings

located at the same magnetic axis. The transformed models are presented in detail in this subchapter.

However, before deducting the different transformed models, it is necessary to make a physical model

representing the real currents, voltages, impedances and fluxes in the machine. Moreover, to simplify

the transformations it is possible to make a two-phase representation of the physical three-phase

system.

For all the models presented in this thesis, direction and polarity of currents and voltages are defined

according to a machine running in motor operation. Capital symbols are used for physical values and

lower-case letters are used for pu-values. The superscript 𝑆 and 𝑅 indicate that the vector is in its

original frame of reference, i.e. stator quantiles in stator frame and rotor quantiles in rotor frame. Lower

case superscript indicates what reference frame the windings are fixed to, i.e. 𝑠 is fixed to stator, 𝑟 is

fixed to rotor or 𝑘 is fixed to an unspecified system. Subscript 𝑠 and 𝑟 indicate where the winding is

located. Furthermore, subscript 𝑎, 𝑏, 𝑐 or 𝛼, 𝛽 specify the stator or rotor winging in question.

The physical machine model presented is based on the work done in [11] and [13] and both Clarke and

Park transformations are based on the work done in [11].

Figure 2.2: Schematic representation of the three-phase Induction Machine

The following five assumptions are taken into account when modelling the machine:

1. The stator windings only give a sinusoidal distributed field in the air gap.

2. All the stator windings are equal and have their unique orientation.

3. Resistance and inductances are assumed independent of temperature and frequency.

4. Magnetic saturation, hysteresis and eddy currents are neglected.

5. The squirrel-cage rotor is equivalent to a wounded rotor.

5

2.2.1 Physical model

The physical model is based on the so-called Co-energy concept and can be constructed by using the

voltage balance equations for each of the equivalent stator and rotor winding [11]. Eq.(2.1) shows

voltage equation for the windings in the induction machine given in matrix form. The six windings in

question are presented in Figure 2.2. Flux linkage in the voltage equation can be expressed by eq.(2.2).

𝑈𝑆𝑅 = 𝑹𝑆𝑅 ∙ 𝐼𝑆𝑅 +

𝑑Ψ𝑆𝑅

𝑑𝑡

Ψ𝑆𝑅 = 𝑳𝑆𝑅 ∙ 𝐼𝑆𝑅

(2.1)

(2.2)

Where the voltage, current and flux linkage vectors are:

𝑈𝑆𝑅 = [𝑈𝑠𝑎 𝑈𝑠𝑏 𝑈𝑠𝑐 𝑈𝑟𝑎 𝑈𝑟𝑏 𝑈𝑟𝑐]
𝑇

𝐼𝑆𝑅 = [𝐼𝑠𝑎 𝐼𝑠𝑏 𝐼𝑠𝑐 𝐼𝑟𝑎 𝐼𝑟𝑏 𝐼𝑟𝑐]
𝑇

Ψ𝑆𝑅 = [Ψ𝑠𝑎 Ψ𝑠𝑏 Ψ𝑠𝑐 Ψ𝑟𝑎 Ψ𝑟𝑏 Ψ𝑟𝑐]
𝑇

(2.3)

The resistance matrix containing the physical stator and rotor resistance has the shape of a 𝑰4 identity

matrix and can be expressed as:

 𝑹𝑆𝑅 = 𝑑𝑖𝑎𝑔[𝑅𝑠 𝑅𝑠 𝑅𝑠 𝑅𝑟 𝑅𝑟 𝑅𝑟] (2.4)

The inductances used to calculate the flux linkages in the machine can be expressed with help of

submatrices. 𝑳𝑠𝑠
𝑆 and 𝑳𝑟𝑟

𝑆 are the self and mutual inductances of stator and rotor with respect to itself.

The air gap between stator and rotor is assumed to be constant since the rotor is assumed to be

symmetrical, thus making both submatrices independent of rotor angle, 𝜃. 𝑳𝑠𝑟
𝑆 (𝜃) and 𝑳𝑟𝑠

𝑅 (𝜃) are the

mutual inductance between stator and rotor and vice versa, both with a rotor angle dependency.

 𝑳𝑆𝑅 = [
𝑳𝑠𝑠

𝑆 𝑳𝑠𝑟
𝑆 (𝜃)

𝑳𝑟𝑠
𝑅 (𝜃) 𝑳𝑟𝑟

𝑆] (2.5)

Submatrices 𝑳𝑠𝑠
𝑆 are written in detail in eq.(2.6). The diagonal elements show the self-inductance of

each winding. Self-inductance is given by stator leakage induces, 𝐿𝑠𝜎 (i.e. inductance in the end

windings etc.) and mutual inductance of the winding with respect to itself (i.e. 𝐿𝑠𝑚 ∙ cos(0)). The off-

diagonal elements give the mutual inductance between two different windings. From Figure 2.2 it can

be seen that the stator windings are located 120° from each other, thus making the off-diagonal

elements equal 𝐿𝑠𝑚 ∙ ± cos(2𝜋/3).

 𝑳𝑠𝑠
𝑆 = [

𝐿𝑠𝑎 𝐿𝑠𝑎𝑠𝑏 𝐿𝑠𝑎𝑠𝑐

𝐿𝑠𝑏𝑠𝑎 𝐿𝑠𝑏 𝐿𝑠𝑏𝑠𝑐

𝐿𝑠𝑐𝑠𝑎 𝐿𝑠𝑐𝑠𝑏 𝐿𝑠𝑐

] = 𝐿𝑠𝜎 [
1 0 0
0 1 0
0 0 1

] + 𝐿𝑠𝑚

[

 1 −

1

2
−

1

2

−
1

2
1 −

1

2

−
1

2
−

1

2
1]

 (2.6)

Same goes for self and mutual inductances in the equivalent rotor windings, 𝑳𝑟𝑟
𝑅

.

 𝑳𝑟𝑟
𝑅 = [

𝐿𝑟𝑎 𝐿𝑟𝑎𝑟𝑏 𝐿𝑟𝑎𝑟𝑐

𝐿𝑟𝑏𝑟𝑎 𝐿𝑟𝑏 𝐿𝑟𝑏𝑟𝑐

𝐿𝑟𝑐𝑟𝑎 𝐿𝑟𝑐𝑟𝑏 𝐿𝑟𝑐

] = 𝐿𝑟𝜎 [
1 0 0
0 1 0
0 0 1

] + 𝐿𝑟𝑚

[

 1 −

1

2
−

1

2

−
1

2
1 −

1

2

−
1

2
−

1

2
1]

 (2.7)

6

The mutual inductance between stator and rotor given by 𝑳𝑠𝑟
𝑆

 is presented in the matrix below. The

mutual inductances are dependent on rotor position and is given by the peak inductance between a

stator and rotor winding, 𝐿𝑠𝑟𝑚, and the physical angle between the two windings at a given time in

space.

 𝑳𝑠𝑟
𝑆 (𝜃) = 𝐿𝑠𝑟𝑚

[

 cos(𝜃) cos (𝜃 +

2𝜋

3
) cos (𝜃 +

4𝜋

3
)

cos (𝜃 −
2𝜋

3
) cos(𝜃) cos (𝜃 +

2𝜋

3
)

cos (𝜃 −
4𝜋

3
) cos (𝜃 −

2𝜋

3
) cos(𝜃)

]

 (2.8)

The mutual inductance between rotor and stator, 𝑳𝑟𝑠
𝑅 (𝜃), is simply the transposed matrix of 𝑳𝑠𝑟

𝑆 (𝜃).

 𝑳𝑟𝑠
𝑅 (𝜃) = (𝑳𝑠𝑟

𝑆 (𝜃))
𝑇
 (2.9)

The different constants used in the inductance matrices are summarised below

 𝐿𝑠𝜎 – Leakage inductance of each stator winding

 𝐿𝑟𝜎 – Leakage inductance of each rotor winding

 𝐿𝑠𝑚 – Peak value of mutual inductance between two stator windings

 𝐿𝑟𝑚 – Peak value of mutual inductance between two rotor windings

 𝐿𝑠𝑟𝑚 – Peak value of mutual inductance between a stator and rotor winding

2.2.2 Clarke Transformation

The sinusoidal phase currents, voltages and flux linkages in the machine can be represented as three

vectors, shifted 120° in space, in the two-dimensional plane. The sum of the phase vectors will be a

rotating vector with constant amplitude. This rotating space vector can also be represented by a two-

phase winding where the windings are shifted by 90 electrical degrees. The transformation from a

three-phase system to a two-phase system is usually called Clark transformation, after professor Edith

Clark, or 𝛼, 𝛽, 𝛾 transformation. Preforming a Clark transformation will simplify both equations and

analysis of the system.

The old three-phase system and the transformed two-phase system are presented in Figure 2.3 and

Figure 2.4, respectively. It can be seen that the new 𝛼-axis is located similar to the old 𝑎-axis. 𝛽-axis

is leading 𝛼-axis with 90 electrical degrees. The angle 𝜃 are the same in both models.

Figure 2.3: Three-phase induction machine Figure 2.4: Equivalent two-phase induction machine

7

Two-phase transformation of stator and rotor current can be done using the equations presented in

(2.10). The two-phase representation of the three-phase system as shown in Figure 2.4 and given by

the equations are only valid if it is assumed that the sum of current in the three-phase system is equal

to zero. However, this will not limit the model since the drive will be tripped if current starts returning

through earth, thus making the sum of phase current different from zero.

Stator currents Rotor currents

𝐼𝑠𝛼
𝑠 =

2

3
(𝐼𝑠𝑎 −

1

2
∙ 𝐼𝑠𝑏 −

1

2
𝐼𝑠𝑐) = 𝐼𝑠𝑎

𝐼𝑠𝛽
𝑠 =

2

3
(
√3

2
∙ 𝐼𝑠𝑏 −

√3

2
𝐼𝑠𝑐) =

√3

3
(𝐼𝑠𝑏 − 𝐼𝑠𝑐)

𝐼𝑟𝛼
𝑟 =

2

3
(𝐼𝑟𝑎 −

1

2
∙ 𝐼𝑟𝑏 −

1

2
𝐼𝑟𝑐) = 𝐼𝑟𝑎

𝐼𝑟𝛽
𝑟 =

2

3
(
√3

2
∙ 𝐼𝑟𝑏 −

√3

2
𝐼𝑟𝑐) =

√3

3
(𝐼𝑟𝑏 − 𝐼𝑟𝑐)

(2.10)

Equations needed to transform currents in the two-phase system back to a three-phase system are

presented in (2.11).

Stator currents Rotor currents

𝐼𝑠𝑎 = 𝐼𝑠𝛼
𝑠

𝐼𝑠𝑏 = −
1

2
∙ 𝐼𝑠𝛼

𝑠 +
√3

2
∙ 𝐼𝑠𝛽

𝑠

𝐼𝑠𝑐 = −
1

2
∙ 𝐼𝑠𝛼

𝑠 −
√3

2
∙ 𝐼𝑠𝛽

𝑠

𝐼𝑟𝑎 = 𝐼𝑟𝛼
𝑟

𝐼𝑟𝑏 = −
1

2
∙ 𝐼𝑟𝛼

𝑟 +
√3

2
∙ 𝐼𝑟𝛽

𝑟

𝐼𝑟𝑐 = −
1

2
∙ 𝐼𝑟𝛼

𝑟 −
√3

2
∙ 𝐼𝑟𝛽

𝑟

(2.11)

Voltages and flux linkages can be transformed from a three-phase to a two-phase representation and

vice versa using the same relations as shown in (2.10) and (2.11). As for currents, the transformed

voltage and flux linkage model is only valid if the sum of phase voltages is zero.

After the Clark transformation, voltage and flux linkage equations can be expressed in matrix form by

eq.(2.12) and (2.13), respectively.

𝑈𝑠𝑟 = 𝑹𝑠𝑟 ∙ 𝐼𝑠𝑟 +

𝑑Ψ𝑠𝑟

𝑑𝑡

Ψ𝑠𝑟 = 𝑳𝑠𝑟 ∙ 𝐼𝑠𝑟

(2.12)

(2.13)

Where the voltage, current and flux linkage vectors are:

𝑈𝑠𝑟 = [𝑈𝑠𝛼
𝑠 𝑈𝑠𝛽

𝑠 𝑈𝑟𝛼
𝑟 𝑈𝑟𝛽

𝑟
]
𝑇

𝐼𝑠𝑟 = [𝐼𝑠𝛼
𝑠 𝐼𝑠𝛽

𝑠 𝐼𝑟𝛼
𝑟 𝐼𝑟𝛽

𝑟
]
𝑇

Ψ𝑠𝑟 = [Ψ𝑠𝛼
s Ψ𝑠𝛽

s Ψ𝑟𝛼
r Ψ𝑟𝛽

r
]
𝑇

(2.14)

The resistance matrix is given by the diagonal matrix shown in (2.15). The components of the matrix

are the physical resistance in stator and rotor windings.

 𝑹𝑠𝑟 = 𝑑𝑖𝑎𝑔[𝑅𝑠 𝑅𝑠 𝑅𝑟 𝑅𝑟] (2.15)

In order to use the same inductances as in the physical model, a scaling factor of 3/2 must be

introduced to the elements that produces flux in the air gap. This is done to compensate for the MMF

produced by the two-phase system that would otherwise be 2/3 smaller than the real MMF [11].

8

The new inductance matrix for the two-phase system is presented in (2.16). Comparing 𝑳𝑠𝑟 with 𝑳𝑆𝑅

from the physical model, it can be seen that the matrix is reduced from a 6𝑥6 to a 4𝑥4 matrix.

Moreover, since the new stator and rotor windings are shifted by 90°, mutual inductance between the

two windings in stator or rotor is zero. Mutual inductance between a stator and rotor winding is still

dependent on rotor position.

𝑳𝑠𝑟(𝜃) =

[

𝐿𝑠𝛼𝛼 0 𝐿𝑠𝛼𝑟𝛼(𝜃) 𝐿𝑠𝛼𝑟𝛽(𝜃)

0 𝐿𝑠𝛽𝛽 𝐿𝑠𝛽𝑟𝛼(𝜃) 𝐿𝑠𝛽𝑟𝛽(𝜃)

𝐿𝑟𝛼𝑠𝛼(𝜃) 𝐿𝑟𝛼𝑠𝛽(𝜃) 𝐿𝑟𝛼𝛼 0

𝐿𝑟𝛽𝑠𝛼(𝜃) 𝐿𝑟𝛽𝑠𝛽(𝜃) 0 𝐿𝑠𝛽𝛽]

=

[

 𝐿𝑠𝜎 +

3

2
𝐿𝑠𝑚 0

3

2
𝐿𝑠𝑟𝑚 cos 𝜃 −

3

2
𝐿𝑠𝑟𝑚 sin 𝜃

0 𝐿𝑠𝜎 +
3

2
𝐿𝑠𝑚

3

2
𝐿𝑠𝑟𝑚 sin 𝜃

3

2
𝐿𝑠𝑟𝑚 cos 𝜃

3

2
𝐿𝑠𝑟𝑚 cos 𝜃

3

2
𝐿𝑠𝑟𝑚 sin 𝜃 𝐿𝑟𝜎 +

3

2
𝐿𝑟𝑚 0

−
3

2
𝐿𝑠𝑟𝑚 sin 𝜃

3

2
𝐿𝑠𝑟𝑚 cos 𝜃 0 𝐿𝑟𝜎 +

3

2
𝐿𝑟𝑚]

(2.16)

Where: 𝐿𝑠𝜎 – Leakage inductance of each stator winding

 𝐿𝑟𝜎 – Leakage inductance of each rotor winding

 𝐿𝑠𝑚 – Peak value of mutual inductance between two stator windings

 𝐿𝑟𝑚 – Peak value of mutual inductance between two rotor windings

 𝐿𝑠𝑟𝑚 – Peak value of mutual inductance between a stator and rotor winding

2.2.3 Park Transformation

From last section, it was shown that the inductance matrix, 𝑳𝑠𝑟, was dependent on rotor position. This

dependency occurs because stator and rotor windings are fixed to different axis in the model. By

modelling both stator and rotor winding in the same axis system, inductance becomes independent of

position. This will simplify the model even further.

The transformation from the two-phase equivalent system to the new system with stator and rotor

windings rotating in the same axis system is called Park transformation. The Park transformed system

is show in Figure 2.6. The figure shows the new fictitious stator and rotor winding fixed to the same

axis.

Figure 2.5: Clarke transformed model Figure 2.6:Park transformed model

9

The transformation matrix and the inverse transformation matrix used in Park transformation are

presented in (2.17).

 𝑻𝑘 = [
𝑻𝑠𝑠

𝑘 0

0 𝑻𝑟𝑟
𝑘] 𝑻−𝑘 = [

𝑻𝑠𝑠
−𝑘 0

0 𝑻𝑟𝑟
−𝑘] (2.17)

Where the different elements of the transformation matrices are:

 𝑻𝑠𝑠
𝑘 = [

cos θ𝑘 sin θ𝑘

−sin θ𝑘 cos θ𝑘
] 𝑻𝑠𝑠

−𝑘 = [
cos θ𝑘 −sin θ𝑘

sin θ𝑘 cos θ𝑘
] (2.18)

 𝑻𝑟𝑟
𝑘 = [

cos θ𝑟 sin θ𝑟

− sin θ𝑟 cos θ𝑟
] 𝑻𝑟𝑟

−𝑘 = [
cos θ𝑟 −sin θ𝑟

sin θ𝑟 cos θ𝑟
] (2.19)

Where: 𝜃𝑟 = 𝜃𝑘 − 𝜃

The relation between voltages, currents and impedances between Park and Clarke transformed systems

are given by:

𝑈𝑘 = 𝑻𝑘 ∙ 𝑈𝑠𝑟

𝐼𝑘 = 𝑻𝑘 ∙ 𝐼𝑠𝑟

𝑿𝑘 = 𝑻𝑘 ∙ 𝑿𝑠𝑟 ∙ 𝑻−𝑘

𝑈𝑠𝑟 = 𝑻−𝑘 ∙ 𝑈𝑘

𝐼𝑠𝑟 = 𝑻−𝑘 ∙ 𝐼𝑘

(2.20)

An expression for the flux linkage can be found by multiplying both sides of eq. (2.13) with 𝑻𝑘 and

using the relations given in (2.20).

 Ψk = 𝑻𝑘 ∙ Ψsr = 𝑻𝑘 ∙ 𝑳𝑠𝑟 ∙ 𝑻−𝑘 ∙ 𝐼𝑘 = 𝑳𝑘 ∙ 𝐼𝑘 (2.21)

Voltage equations in the new transformed system can be found by multiplying both sides of the voltage

equation, eq.(2.12), with the transformation matrix, 𝑻𝑘, and using the relations between the two

systems.

𝑻𝑘 ∙ 𝑈𝑠𝑟= 𝑻𝑘 (𝑹𝑠𝑟 ∙ 𝐼𝑠𝑟 +
𝑑Ψ𝑠𝑟

𝑑𝑡
)

𝑈𝑘= 𝑻𝑘 ∙ 𝑹𝑠𝑟 ∙ 𝑻−𝑘 ∙ 𝐼𝑘 + 𝑻𝑘 ∙
𝑑(𝑻−𝑘 ∙ Ψ𝑘)

𝑑𝑡

𝑈𝑘 = 𝑹𝑘 ∙ 𝐼𝑘 +
𝑑Ψ𝑘

𝑑𝑡
+ 𝑻𝑘 ∙

𝑑𝑻−𝑘

𝑑𝑡
∙ Ψ𝑘

(2.22)

It can be seen that the inverse transformation matrix, 𝑻−𝑘, is a function of 𝜃𝑟 and 𝜃𝑘,. The derivative

of 𝑻−𝑘 can be expressed as:

𝑑𝑻(𝜃𝑟,𝜃𝑘)

−𝑘

𝑑𝑡
∙
(𝜕𝜃𝑟 ∙ 𝜕𝜃𝑘)

(𝜕𝜃𝑟 ∙ 𝜕𝜃𝑘)
=

𝜕𝜃𝑟

𝑑𝑡
∙
𝜕𝑻−𝑘

𝜕𝜃𝑟

+
𝜕𝜃𝑘

𝑑𝑡
∙
𝜕𝑻−𝑘

𝜕𝜃𝑘

= 𝜔𝑛 ∙ 𝑓𝑟 ∙
𝜕𝑻−𝑘

𝜕𝜃𝑟

+ 𝜔𝑛 ∙ 𝑓𝑘 ∙
𝜕𝑻−𝑘

𝜕𝜃𝑘

 (2.23)

By substituting eq.(2.23) in eq.(2.22) and introducing the coupling matrices 𝑱𝑟 and 𝑱𝑘, the voltage

equation can be expressed as:

 𝑈𝑘 = 𝑹𝑘 ∙ 𝐼𝑘 +
𝑑Ψ𝑘

𝑑𝑡
+ 𝜔𝑛 ∙ 𝑓𝑟 ∙ 𝑱𝑟 ∙ Ψ𝑘 + 𝜔𝑛 ∙ 𝑓𝑘 ∙ 𝑱𝑘 ∙ Ψ𝑘 (2.24)

Where: 𝑱𝑟 = 𝑇−𝑘 ∙
𝑑𝑇−𝑘

𝑑𝜃𝑟

= [

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

] 𝑱𝑘 = 𝑇−𝑘 ∙
𝑑𝑇−𝑘

𝑑𝜃𝑘

= [

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]

10

Voltage, current and flux linkage vectors in the new system become:

𝑈𝑘 = [𝑈𝑠𝛼
𝑘 𝑈𝑠𝛽

𝑘 𝑈𝑟𝛼
𝑘 𝑈𝑟𝛽

𝑘]
𝑇

𝐼𝑘 = [𝐼𝑠𝛼
𝑘 𝐼𝑠𝛽

𝑘 𝐼𝑟𝛼
𝑘 𝐼𝑟𝛽

𝑘]
𝑇

Ψ𝑘 = [Ψsα
𝑘 Ψsβ

𝑘 Ψrα
𝑘 Ψrβ

𝑘]
𝑇

(2.25)

The resistance matrix becomes equal to that used in previous section.

 𝑹𝑘 = 𝑑𝑖𝑎𝑔[𝑅𝑠 𝑅𝑠 𝑅𝑟 𝑅𝑟] (2.26)

As mention earlier, one of the main motivations of preforming a Park transformation is the inductance

matrix’s independency of rotor position. Since stator and rotor winding are fixed to the same axis

system, the new inductance matrix simply becomes 𝑳𝑠𝑟(𝜃 = 0).

 𝑳𝑘 = 𝑳𝑠𝑟(0) =

[

 𝐿𝑠𝜎 +

3

2
𝐿𝑚 0

3

2
𝐿𝑚 0

0 𝐿𝑠𝜎 +
3

2
𝐿𝑚 0

3

2
𝐿𝑚

3

2
𝐿𝑚 0 𝐿𝑟𝜎 +

3

2
𝐿𝑚 0

0
3

2
𝐿𝑚 0 𝐿𝑟𝜎 +

3

2
𝐿𝑚]

 (2.27)

Where: 𝐿𝑠𝜎 – Leakage inductance of each stator winding

 𝐿𝑟𝜎 – Leakage inductance of each rotor winding

 𝐿𝑚 – Mutual inductance between two windings

Orientation of axis system

For a synchronous machine with salient poles, Park transformed system is always oriented to the rotor

in order to achieve an inductance matrix independent of the position. In an asynchronous machine

however, axis orientation does not have the same constraints. The symmetrical rotor ensures a position

independent inductance matrix as long as the equivalent stator and rotor windings are orientated to the

same magnetic axis.

There are several different alternatives on how to orient the Park transformed system. The desired

orientation is dependent on application, control and measurement available of the machine. Commonly

used orientations include: Stator-oriented model, rotor-oriented model and space-vector oriented

model. In this thesis, stator-oriented model and rotor-flux (space-vector) oriented model will be used.

Stator-oriented model

In stator-oriented model, 𝛼𝑘 , 𝛽𝑘 is fixed to the 𝛼𝑠, 𝛽𝑠-axis, thus making the new axis system stationary.

Currents and voltages are alternating with stator frequency, 𝑓𝑠, in both equivalent stator and rotor

windings. This can for example be beneficial when using a hysteresis controller.

 𝜃𝑘 = 0 𝜃𝑟 = −𝜃 𝑓𝑘 = 0 (2.28)

Rotor-flux oriented model

In rotor-flux oriented system, 𝛼𝑘 is fixes to the rotor flux 𝜓𝑟. The rotor flux rotates with the same

frequency as the stator frequency i.e. synchronous frequency. The synchronous rotating model result

in DC-quantities of currents and voltages in steady state operation. This can be beneficial when using

PI-controllers.

 𝜃𝑘 = 𝜃𝜓𝑟
 𝜃𝑟 = 𝜃𝜓𝑟

− 𝜃 𝑓𝑘 = 𝑓𝜓𝑟
= 𝑓𝑠 (2.29)

11

Electrical torque

The electrical torque of the machine in the Park transformed model can be expressed as [11]:

 𝑇𝑒 =
𝑝

2
∙ 3 ∙ 𝐿𝑚 ∙ (𝐼𝑠𝛽

𝑘 ∙ 𝐼𝑟𝛼
𝑘 − 𝐼𝑠𝛼

𝑘 ∙ 𝐼𝑟𝛽
𝑘) (2.30)

By realizing that Ψs = 𝐿𝑚 ∙ 𝐼𝑟, the torque equation can be expressed in terms of stator quantities

 𝑇𝑒 =
𝑝

2
∙ 3 ∙ (Ψ𝑠𝛼

𝑘 ∙ 𝐼𝑠𝛽
𝑘 − Ψ𝑠𝛼

𝑘 ∙ 𝐼𝑠𝛼
𝑘) (2.31)

Where: 𝑝 is the number of pole pairs in the motor

12

2.3 Pu system
Once the proper transformation model has been established, it is possible to scale the values according

to a pu-system. The base values are often chosen to be related to the rated value of the machine. There

are many reasons why a pu-scaled model can be beneficial. Since the values are scaled according to

the rated limits, it becomes easy to detect if the machine is running in overload regardless of the power

rating. The scaling also makes it easier to utilize experiences with machines of other power rating.

Moreover, proper pu-scaling can also simplify machine model, thus simplifying the equations [11].

Base values for stator quantities in the pu-model are shown in (2.32).

𝑈𝑠,𝑏𝑎𝑠𝑖𝑠 = Û𝑛

𝑍𝑠,𝑏𝑎𝑠𝑖𝑠 =
Û𝑛

Î𝑛

𝐿𝑠,𝑏𝑎𝑠𝑖𝑠 =
Ψ𝑠,𝑏𝑎𝑠𝑖𝑠

𝐼𝑛

𝐼𝑠,𝑏𝑎𝑠𝑖𝑠 = Î𝑛

𝑆𝑠,𝑏𝑎𝑠𝑖𝑠 =
3

2
∙ Û𝑛 ∙ Î𝑛

Ψ𝑠,𝑏𝑎𝑠𝑖𝑠 =
Û𝑛

2𝜋 ∙ 𝑓𝑛

(2.32)

An important simplification that can be achieved when scaling the model is the simplified inductance

matrix. By properly selecting the rotor base values, inductance matrix becomes [14]:

 𝒙𝑘 = 𝚿𝑠𝑟,𝑏𝑎𝑠𝑒
−1 ∙ 𝑿𝑠𝑟

𝑘 ∙ 𝑰̂𝑠𝑟,𝑏𝑎𝑠𝑖𝑠 = [

𝑥𝑠 0 𝑥𝑚 0
0 𝑥𝑠 0 𝑥𝑚

𝑥𝑚 0 𝑥𝑟 0
0 𝑥𝑚 0 𝑥𝑟

] (2.33)

Where 𝑥𝑠 = 𝑥𝑚 + 𝑥𝑠𝜎

 𝑥𝑟 = 𝑥𝑚 + 𝑥𝑟𝜎

The base value for the torque is given as:

 𝑇𝑏𝑎𝑠𝑖𝑠 =
𝑆𝑛

Ω𝑛

=
3

2
∙ 𝑝 ∙

Û𝑛 ∙ Î𝑛
𝜔𝑛

=
3

2
∙ 𝑝 ∙ Ψn ∙ Î𝑛 (2.34)

By scaling the voltage equations, (2.24), and flux linkage equations (2.21) according to (2.32) and

introducing the scaled inductance matrix, pu-equation for voltage and flux linkage can be expressed

by (2.35) and (2.36), respectively.

Voltage equations

𝑢𝑠𝛼
𝑘 = 𝑟𝑠 ∙ 𝑖𝑠𝛼

𝑘 +
1

𝜔𝑛

∙
𝑑𝜓𝑠𝛼

𝑘

𝑑𝑡
− 𝑓𝑘 ∙ 𝜓𝑠𝛽

k

𝑢𝑠𝛽
𝑘 = 𝑟𝑠 ∙ 𝑖𝑠𝛽

𝑘 +
1

𝜔𝑛

∙
𝑑𝜓𝑠𝛽

𝑘

𝑑𝑡
+ 𝑓𝑘 ∙ 𝜓𝑠𝛼

k

𝑢𝑟𝛼
𝑘 = 𝑟𝑟 ∙ 𝑖𝑟𝛼

𝑘 +
1

𝜔𝑛

∙
𝑑𝜓𝑟𝛼

𝑘

𝑑𝑡
− (𝑓𝑘 − 𝑛) ∙ 𝜓𝑟𝛽

k

𝑢𝑟𝛽
𝑘 = 𝑟𝑟 ∙ 𝑖𝑟𝛽

𝑘 +
1

𝜔𝑛

∙
𝑑𝜓𝑟𝛽

𝑘

𝑑𝑡
− (𝑓𝑘 − 𝑛) ∙ 𝜓𝑟𝛼

k

(2.35)

Flux linkage equations

𝜓𝑠𝛼
𝑘 = 𝑥𝑠 ∙ 𝑖𝑠𝛼

𝑘 + 𝑥𝑚 ∙ 𝑖𝑟𝛼
k

𝜓𝑠𝛽
𝑘 = 𝑥𝑠 ∙ 𝑖𝑠𝛽

𝑘 + 𝑥𝑚 ∙ 𝑖𝑟𝛽
k

𝜓𝑟𝛼
𝑘 = 𝑥𝑟 ∙ 𝑖𝑟𝛼

𝑘 + 𝑥𝑚 ∙ 𝑖𝑠𝛼
𝑘

𝜓𝑟𝛽
𝑘 = 𝑥𝑟 ∙ 𝑖𝑟𝛽

𝑘 + 𝑥𝑚 ∙ 𝑖𝑠𝛽
𝑘

(2.36)

The electrical torque in pu can be expressed as follows:

 𝜏𝑒 =
𝑇𝑒

𝑇𝑏𝑎𝑠𝑖𝑠

=
3/2 ∙ 𝑝 ∙ (Ψ𝑠𝛼

𝑘 ∙ 𝐼𝑠𝛽
𝑘 − Ψ𝑠𝛽

𝑘 ∙ 𝐼𝑠𝛼
𝑘)

3/2 ∙ 𝑝 ∙ Ψ𝑛 ∙ 𝐼𝑛
= 𝜓𝑠𝛼

𝑘 ∙ 𝑖𝑠𝛽
𝑘 − 𝜓𝑠𝛽

𝑘 ∙ 𝑖𝑠𝛼
𝑘 (2.37)

13

3 Control of the Induction Machine

3.1 𝑉/𝑓-Control
Scalar control or more commonly known 𝑉/𝑓-control, is the most used control strategy in the industry

when controlling an induction motor. 𝑉/𝑓-control offers a low-performance control of the machine,

i.e. ability to control steady state speed but not dynamic processes between two steps in speed

reference. This behaviour makes 𝑉/𝑓-control suitable for applications with little requirement with

regard to dynamic processes like fans and pumps [15].

𝑉/𝑓-control can be performed using both open and closed loop. The difference between the two setups

is usage of position sensor. Closed loop control is able to adjust the mechanical speed to the reference

value, while the open loop control regulates the synchronous rotating field according to a reference,

thus giving a small steady state deviation between reference and actual speed. Both control methods

use current measurements to protect the machine for overload.

The reason why the control strategy is called 𝑉/𝑓-control is simply because the relation between stator

voltage and frequency is kept constant during different operation speeds. Equations for steady state

stator voltage and stator flux for low-, medium- and high-speed operation are presented in (3.1).

Looking at stator flux during medium- and high-speed operation, it is evident that stator flux is

proportional with stator voltage and inverse proportional with stator frequency. Consequently, by

keeping the 𝑉/𝑓 ratio constant, stator flux is also kept constant. This constant relationship is shown in

Figure 3.1.

 Low speed Medium and high speed

𝑢 𝑠 = 𝑟𝑠 ∙ 𝑖 𝑠 + 𝑗 (𝑓𝑠 ∙ 𝜓𝑠)

𝑗𝜓𝑠 =
1

𝑓𝑠
∙ (𝑢 𝑠 − 𝑟𝑠 ∙ 𝑖 𝑠)

𝑢 𝑠 ≈ 𝑗 (𝑓𝑠 ∙ 𝜓𝑠)

𝑗𝜓𝑠 ≈
𝑢 𝑠

𝑓𝑠

(3.1)

A classical torque speed curve of an induction motor is presented in Figure 3.2. If the stator flux is

kept at its rated value, hence constant 𝑉/𝑓 ratio, the familiar torque characteristic will be shifted along

the frequency axis with more or less the same shape. This behaviour enables the machine to deliver

nominal torque in large area of the nominal speed range. The slip rate of the machine is also kept low,

giving good efficiency and low reactive power consumption during lower speed operation [16].

However, looking at voltage and flux equations during low speed operation, it is seen that resistive

voltage drop starts to make an impact on the flux amplitude. The reduced flux amplitude result in a

lower torque. This effect is also illustrated in Figure 3.2, where the torque at low speeds becomes lower

than the nominal torque. If the machine has a high load-torque during start up, this behaviour may

prove to be problematic [15].

14

Figure 3.1: 𝑉/𝑓 curve without voltage boost Figure 3.2: Torque/speed curve without voltage boost

Figure 3.3: 𝑉/𝑓 curve with voltage boost Figure 3.4: Torque/speed curve with voltage boost

One method of avoiding the problem at lower speed operation and especially when the stator frequency

is close to zero is to introduce a so-called voltage boost. The voltage boost compensates for the resistive

voltage drop, ensuring a stator flux at 1 𝑝𝑢, thus making the machine able to produce the same torque

throughout the nominal speed operation range. The voltage boost and the new torque/speed

characteristic are presented in Figure 3.3 and Figure 3.4, respectively [16].

15

3.2 Rotor-Flux Orientated Control
Some applications of the induction machines, like ship propulsion or electrical cars, may require the

ability to control dynamic processes as well as steady state values of speed and torque. Such drives are

called high-performance drives. A control strategy that falls under this is the so-called field-oriented

control (FOC). FOC allows the magnitude, frequency and phase shift of the different phase-voltages

in the machine to be controlled individually, thus allowing the torque and flux to change separately

[13]. There are at least three different control strategies of field oriented control [11]:

1. Stator oriented field control

2. Rotor oriented field control

3. Rotor-flux oriented field control

This thesis will only present and analyse benefits and challenges regarding the rotor-flux oriented

control

The rotor-flux oriented control is an attractive control strategy because the control becomes very

similar to the simple DC-machine control. Since the rotor-flux oriented system is rotating with stator

frequency, all steady state values of currents, voltages and fluxes become DC-quantities in steady state.

Furthermore, by definition, 𝛼𝑘-axis is fixed to the rotor flux vector, thus 𝜓𝑟 = 𝜓𝑟𝛼 and 𝜓𝑟𝛽 ≡ 0.

Looking at the scaled rotor-flux eq. (2.36) it becomes evident that the length of the flux is determined

by 𝑖𝑠𝛼
𝜓𝑟 .

 𝜓𝑅 = 𝜓𝑅𝛼 𝜓𝑅𝛽 ≡
𝑑𝜓𝑅𝛽

𝑑𝑡
≡ 0 (3.2)

Flux linkage vectors are not a physical quantity and cannot be measured. Therefore, in order to control

the machine according to a flux vector it is necessary to calculate/estimate the flux vector using a flux

model. Different models use different input parameters, thus making them suitable for different

applications. The two estimation models presented in this thesis is called Voltage model and Current

model. Usually, current model is the preferred estimation model if there is a position sender mounted

on the shaft of the machine and voltage model can be used if the machine is running in sensorless

control.

3.2.1 Current Model

Current model uses measurements of stator current and rotor position as input parameters. Precise

position measurement and the knowledge of stator frequency allows for a Park transformed system

that is fixed to the rotor flux space vector. As stated earlier, fixing the new stator and rotor winding to

a system that rotates with the same frequency as stator frequency yields DC-quantities of voltage,

current and flux vectors in steady state. It will be shown in the derived current model below that control

of the decomposed induction machine becomes very similar to that of a DC-machine. The model

presented is based on the work done in [11].

Current model is derived from the rotor voltage and rotor-flux equations presented in eq.(2.35) and

(2.36). Rotor voltage vector and rotor flux vector can be presented as follows:

 𝑢 𝑟
𝑘 = 𝑟𝑟 ∙ 𝑖 𝑟

𝑘 +
1

𝜔𝑛

∙
𝑑𝜓𝑟

𝑘

𝑑𝑡
+ 𝑗 ∙ 𝑓𝑟 ∙ 𝜓𝑟

𝑘 (3.3)

 𝜓𝑟
𝑘 = 𝑖 𝑟

𝑘 ∙ 𝑥𝑟 + 𝑖 𝑠
𝑘 ∙ 𝑥𝑚 (3.4)

16

With help of eq.(3.4), it is possible to express the rotor voltage with stator current and roto flux as state

variables. Substituting for 𝑖
 𝑟
𝑘

 in eq.(3.3) and rearranging the equations with the two state variables gives:

 𝑢 𝑟
𝑘 =

1

𝜔𝑛

∙
𝑑𝜓𝑟

𝑘

𝑑𝑡
+ (

𝑟𝑟
𝑥𝑟

+ 𝑗 ∙ 𝑓𝑟) ∙ 𝜓𝑟
𝑘 −

𝑥𝑚𝑟𝑟
𝑥𝑟

∙ 𝑖 𝑟
𝑘 (3.5)

It is possible to simplify the equations by introducing the following set of parameters.

 𝜓𝑅
𝑘 =

𝜓𝑟
𝑘

1 + 𝜎𝑟

 𝜎𝑟 =
𝑥𝑟

𝑥𝑚

− 1 𝑟𝑅 = (
𝑥𝑚

𝑥𝑟

)
2

𝑟𝑟 =
𝑟𝑟

(1 + 𝜎𝑟)
2
 𝑇𝑟 =

𝑥𝑟

𝜔𝑛𝑟𝑟
 (3.6)

Since the induction machine has a rotor that is short circuited in both ends, 𝑢𝑟
𝑘will always be zero.

Multiplying eq.(3.5) with 1/(1 + 𝜎𝑟) and using the new parameters presented in (3.6), a simplified

voltage equation can be expressed as:

𝑢 𝑟
𝑘

1 + 𝜎𝑟

=
1

𝜔𝑛

∙
𝑑𝜓𝑟

𝑘

𝑑𝑡
∙

1

1 + 𝜎𝑟

+ (
𝑟𝑟
𝑥𝑟

+ 𝑗 ∙ 𝑓𝑟) ∙
𝜓𝑟

𝑘

1 + 𝜎𝑟

−
𝑥𝑚𝑟𝑟
𝑥𝑟

∙
1

1 + 𝜎𝑟

∙ 𝑖 𝑟
𝑘

0 =
1

𝜔𝑛

∙
𝑑𝜓𝑅

𝑘

𝑑𝑡
+ (

1

𝑇𝑟 ∙ 𝜔𝑛

+ 𝑗 ∙ 𝑓𝑟) ∙ 𝜓𝑅
𝑘 − 𝑟𝑅 ∙ 𝑖 𝑟

𝑘

(3.7)

By decomposing the equation above and aligning the fictitious system with the rotor-flux, eq.(3.7) can

be expressed in terms of 𝛼 and 𝛽 components as follows:

0 =
1

𝜔𝑛

∙
𝑑𝜓𝑅

𝜓𝑟

𝑑𝑡
+

𝜓𝑅
𝜓𝑟

(𝜔𝑛𝑇𝑟)
 − 𝑟𝑅 ∙ 𝑖𝑠𝛼

𝜓𝑟

0 =
1

𝜔𝑛

∙
𝑑𝜓𝑅𝛽

𝜓𝑟

𝑑𝑡
+ 𝑗𝑓𝑟 ∙ 𝜓𝑅

𝜓𝑟 − 𝑟𝑅 ∙ 𝑖𝑠𝛽
𝜓𝑟

(3.8)

(3.9)

Since the 𝛼-axis is fixed to the rotor flux vector, hence flux in 𝛽-axis is equal to zero, it is possible to

find an expression of rotor frequency by reengaging eq.(3.9). The rotor frequency is used to define

rotor flux frequency in both dynamic and steady state operation.

 𝑓𝑟 =
𝑟𝑅 ∙ 𝑖𝑠𝛽

𝜓𝑟

𝜓𝑅
𝜓𝑟

 𝑓𝜓𝑟
= 𝑓𝑟 + 𝑛 (3.10)

The differential equation describing the rotor flux is given by eq.(3.8). After multiplying the equation

with 𝜔𝑛 and some rearrangements, the rotor flux can be described as follows:

𝑑𝜓𝑅

𝑑𝑡
= −

1

𝑇𝑟

∙ 𝜓𝑅 +
𝑥𝑀

𝑇𝑟

∙ 𝑖𝑠𝛼
𝜓𝑟 (3.11)

Where 𝑟𝑅 ∙ 𝜔𝑛 =
𝑥𝑀

𝑇𝑟
, 𝑥𝑀 =

𝑥𝑚

(1+𝜎𝑟)

17

3.2.2 Voltage Model

The voltage model uses measurements of stator voltage and stator current as input parameters. There

are several different ways to acquire the stator voltage. It is possible to measure the output voltage of

the inverter directly using the correct measuring tools. It is also possible to estimate the stator voltage

using the on and off times of the IGBTs and the DC-link voltage. Measurements of DC-link voltage is

available from the inverter and requires less complicated measuring tools. Therefore, estimation of

stator voltage offers a cheaper solution with less hardware required compared to the direct

measurements. However, stator voltage estimation also introduces some challenges, especially in the

slow speed operation area. Some of the challenges include unilinear voltage drops, blanking time and

turn-on and turn-off time of the IGBTs. The impact of these non-ideal properties is discussed in chapter

4.1 and 4.2.

The main motivation for using the voltage model to estimate fluxes in the machine is because it does

not require a position measurement, thus allowing for sensorless control. The model is derived from

stator and rotor flux equations given in (2.36). However, using these equations requires knowledge of

the stator flux. In the voltage model, stator flux is obtained by integrating the induced voltage with an

open integrator, according to the stator voltage equation. Stator flux is found using following equation:

 𝜓̂𝑠 = 𝜔𝑛 ∙ ∫ (𝑢 𝑠 − 𝑟̂𝑠 ∙ 𝑖 𝑠)
𝑡

𝑡0

𝑑𝑡 + 𝜓̂𝑠(𝑡0) (3.12)

Where: 𝜓̂𝑠(𝑡0) is the stator flux before magnetization and is equal to zero

It is important to note that the open integrator used to calculate 𝜓̂𝑠 is very sensitive to inaccurate

estimates of stator resistance or measurements of current and voltage. These issues are explained and

further discussed in chapter 3.3.

It is possible to derive the relationship between stator and rotor flux using the pu-scaled equations

presented in (2.36). By using stator current and rotor flux as state variables, stator flux can be expressed

as:

𝜓𝑠
𝑘 = 𝑥𝑠 ∙ 𝑖 𝑠

𝑘 + 𝑥𝑚 ∙ (
𝜓𝑟

𝑘

𝑥𝑟

−
𝑥𝑚

𝑥𝑟

∙ 𝑖 𝑠
𝑘)

=
𝑥𝑚

𝑥𝑟

∙ 𝜓𝑟
𝑘 + (1 −

𝑥𝑚
2

𝑥𝑠 ∙ 𝑥𝑟

) ∙ 𝑥𝑠 ∙ 𝑖 𝑠
𝑘

(3.13)

Again, the equation can be simplified by introducing some new parameters. The simplification uses

the following relations:

 𝜓𝑅
𝑘 =

𝜓𝑟
𝑘

1 + 𝜎𝑟

 𝑥𝑟 = (1 + 𝜎𝑟) ∙ 𝑥𝑚 𝜎 = 1 −
𝑥𝑚

2

𝑥𝑠 ∙ 𝑥𝑟

 𝑥𝜎 = 𝜎 ∙ 𝑥𝑠 (3.14)

With help of the new parameters given in (3.14), eq.(3.13) simply becomes:

 𝜓𝑠
𝑘 = 𝜓𝑅

𝑘 + 𝑥𝜎 ∙ 𝑖 𝑠
𝑘 (3.15)

Consequently, if stator flux is known, rotor flux becomes:

 𝜓𝑅
𝑘 = 𝜓𝑠

𝑘 − 𝑥𝜎 ∙ 𝑖 𝑠
𝑘 (3.16)

18

Current and flux space vectors used in the voltage model are presented in Figure 3.5. The figure also

shows the corresponding angles between different vectors and from vectors to the physical magnetic

a-phase. In a three-phase induction machine, it is possible to use the vector calculations given by

eq.(3.16) directly in order to find the rotor-flux length and position. If these calculations are to be

performed, it would be natural to choose a stator-oriented Park transformed system, i.e. superscript

𝑘 = 𝑠.

Figure 3.5: Vector diagram for used in voltage model

A more generic way of acquiring the rotor flux vector is to temporary orient the system to the stator-

flux vector. It is necessary to use this approach to estimate the flux in a permanent magnet machine,

synchronous machine or a multi-phase asynchronous machine. Similar with rotor-flux oriented system

used in the current model, the stator flux vector is located in the 𝛼𝜓𝑠-axis, as shown in Figure 3.5.

Angle and amplitude of stator fluxes and consequently orientation of the Park transformed system is

know from integration of the flux producing voltage, i.e. eq.(3.12). Since the angles between both

stator flux and current vector with respect to 𝑎𝑠-axis is known, the angle between them simply

becomes:

 𝜑̂𝑠
𝑠 = 𝜑𝑠

𝑠 − 𝜀𝑠̂
𝑠 (3.17)

Where: 𝜑𝑠
𝑠 is the angle between the current and 𝑎𝑠

 𝜀𝑠̂
𝑠 is the angle between the 𝜓̂𝑠 and 𝑎𝑠

Once the angle between the current and stator flux vector is found, it is possible to decompose the

current vector in the stator-flux oriented system.

 𝑖𝑠𝛼
𝜓𝑠 = 𝑖 𝑠 ∙ cos 𝜑̂𝑠

𝑠 𝑖𝑠𝛽
𝜓𝑠 = 𝑖 𝑠 ∙ sin 𝜑̂𝑠

𝑠 (3.18)

From Figure 3.5 it can be seen that the angle between stator and rotor flux can be found with help of

trigonometry.

 𝜀𝑟̂
𝑠 = tan−1 (

𝑥𝜎 ∙ 𝑖𝑠𝛽
𝜓𝑠

𝜓̂𝑠 − 𝑥𝜎 ∙ 𝑖𝑠𝛼
𝜓𝑠

) (3.19)

19

The angle between rotor-flux and 𝑎𝑠-axis and consequently the position of the rotor-flux oriented

system can now be calculated. This is done with help of stator-flux angle.

 𝜀𝑟̂
𝑠 = 𝜀𝑠̂

𝑠 − 𝜀𝑠̂
𝑟 (3.20)

The length of the rotor flux can be found by decomposing the stator flux and current vector into the

new rotor-flux oriented system. Rotor flux length is then given by:

 𝜓𝑅 = 𝜓𝑠𝛼
𝜓𝑟 − 𝑥𝜎 ∙ 𝑖𝑠𝛼

𝜓𝑟 (3.21)

3.2.3 Torque equation

The expression for stator flux presented in eq. (3.15) can be decomposed as follows:

 𝜓𝑠𝛼
𝑘 = 𝜓𝑅𝛼

𝑘 + 𝑥𝜎 ∙ 𝑖𝑠𝛼
𝑘 𝜓𝑠𝛽

𝑘 = 𝜓𝑅𝛽
𝑘 + 𝑥𝜎 ∙ 𝑖𝑠𝛽

𝑘 (3.22)

Electrical torque as a function of stator current and rotor-flux can be found by substituting for stator

flux in torque expression shown in eq.(2.37) with help of eq.(3.22).

𝜏𝑒 = 𝜓𝑠𝛼
𝑘 ∙ 𝑖𝑠𝛽

𝑘 − 𝜓𝑠𝛽
𝑘 ∙ 𝑖𝑠𝛼

𝑘

= (𝜓𝑅𝛼
𝑘 + 𝑥𝜎 ∙ 𝑖𝑠𝛼

𝑘) ∙ 𝑖𝑠𝛽
𝑘 − (𝜓𝑅𝛽

𝑘 + 𝑥𝜎 ∙ 𝑖𝑠𝛽
𝑘) ∙ 𝑖𝑠𝛼

𝑘

= 𝜓𝑅𝛼
𝑘 ∙ 𝑖𝑠𝛽

𝑘 − 𝜓𝑅𝛽
𝑘 ∙ 𝑖𝑠𝛼

𝑘 + 𝑥𝜎(𝑖𝑠𝛼
𝑘 𝑖𝑠𝛽

𝑘 − 𝑖𝑠𝛽
𝑘 𝑖𝑠𝛼

𝑘)

= 𝜓𝑅𝛼
𝑘 ∙ 𝑖𝑠𝛽

𝑘 − 𝜓𝑅𝛽
𝑘 ∙ 𝑖𝑠𝛼

𝑘

(3.23)

By fixing the system to the rotor-flux and using the relations given in (3.2), electrical torque equation

simply becomes:

 𝜏𝑒 = 𝜓𝑅 ∙ 𝑖𝑠𝛽
𝜓𝑟 (3.24)

As mentioned before, rotor-flux oriented control is chosen in order to get a control strategy similar to

the simple DC-machine control. In DC-machine control, field-voltage is used to control the slow

magnetization process and armature current is controlled to give a quick torque control. It is seen from

eq.(3.11) that change in rotor flux is a slow process due to the large rotor time constant, similar to the

change in magnetization. This shows strong resemblance between field voltage control and 𝑖𝑠𝛼
𝜓𝑟 control.

From eq.(3.24) it is seen that a change in 𝑖𝑠𝛽
𝜓𝑟 will cause an immediate change in torque. From this, it

is evident that control of 𝑖𝑠𝛽
𝜓𝑟 and armature current can also be treated similarly. This shows that rotor-

flux oriented control can be controlled with similar control strategy as the DC-machine.

20

3.3 Drifting in Voltage Model
Drifting phenomenon is a well know problem related to flux estimations using the voltage model. The

reason why drifting only effects the voltage model is because of the open integrator used to calculate

stator flux. The problem with an open integrator is that faults in the calculation keeps adding up,

introducing a DC-component to the flux estimation. There are several different factors that contributes

to drifting. Problems regarding stator voltage estimation due to non-liner voltage losses in the inverter,

wrongly estimated stator resistance, offset in current measurement and unsymmetrical physical stator

windings may be some of the reasons [17]. Drifting can occur in both dynamic and steady state

operation.

The phenomenon itself can be illustrated with help of Figure 3.6. The figure shows two stator-oriented

𝛼𝑠, 𝛽𝑠-planes. The black reference frame illustrates the correct 𝛼𝑠, 𝛽𝑠-plane that is given by the real

parameters of the machine and the red reference frame illustrates an estimated 𝛼̂𝑠, 𝛽̂𝑠-plane, that has

been subjected to drifting. If measurements and parameter estimation are done correctly, estimated and

real reference frame will coincide, thus making estimated stator flux, 𝜓̂ 𝑠
𝑠 , equal to the correctly

calculated stator flux, 𝜓 𝑠
𝑠 . As the estimation gets subjected to inaccurate measurements or parameter

estimates, a DC-component stat to accumulate in the estimated flux, drifting the estimated reference

frame away from its correct position.

𝜓̂ 𝑠 = 𝜓 𝑠
𝑠 + 𝜓𝑑𝑟𝑖𝑓𝑡

𝑠

Figure 3.6: Drifting of stator flux

It is illustrated in Figure 3.6 that 𝜓̂ 𝑠
𝑠 follows the circular trajectory of the estimated reference frame.

This is because the controller uses coordinates from the estimated reference frame to perform the

inverse Park and Clarke transformation when calculating control voltages for the modulator. Even

though the trajectory of the vector changes, starting point of the vector, which is given by the physical

machine, is assumed to be constant. Analysing the figure, it is observed that as 𝜓̂ 𝑠
𝑠 rotates

anticlockwise, amplitude will oscillate between being smaller and larger than 𝜓 𝑠
𝑠 . The angle of 𝜓̂ 𝑠

𝑠 in

relation to 𝛼𝑠-axis will also alternate between leading and lagging 𝜓 𝑠
𝑠 . Furthermore, an increase in

𝜓𝑑𝑟𝑖𝑓𝑡
𝑠 will cause an increase in both oscillation amplitude and angle estimation error. Constant

oscillations indicate nether increase or decrees in 𝜓𝑑𝑟𝑖𝑓𝑡
𝑠 .

21

To understand how different errors contributes to 𝜓𝑑𝑟𝑖𝑓𝑡
𝑠 , the expression for 𝜓̂ 𝑠

𝑠 , given by eq.(3.12),

can be further developed. The effect of errors can be analysed by dividing estimated and measured

parameters into two terms, where one is describing the correct value and one is describing the error

value. A similar analysis was presented in the author’s project thesis [9]. Consequently, if the

measurement or estimate is correct, the error becomes equal to zero. “ * ” denotes the correct values

and “ ′ ” denotes the error. Expressions for measured voltage, 𝑢 𝑠, measured current, 𝑖 𝑠, and estimated

stator resistance, 𝑟̂𝑠, are shown below.

 𝑢 𝑠 = 𝑢 𝑠
∗ + 𝑢 𝑠

′ 𝑖 𝑠 = 𝑖 𝑠
∗ + 𝑖 𝑠

′ 𝑟̂𝑠 = 𝑟𝑠
∗ + 𝑟𝑠

′ (3.25)

Using the new notation, an expression describing the correct estimated stator flux can be given as:

 𝑢 𝑠
∗ = 𝑟𝑠

∗ ∙ 𝑖 𝑠
∗ +

1

𝜔𝑛

∙
𝑑𝜓𝑠

∗

𝑑𝑡
 (3.26)

By introducing the new relations from (3.25) in eq.(3.12), 𝜓̂ 𝑠
𝑠 can be expressed as:

 𝜓̂𝑠 = 𝜔𝑛 ∫ ((𝑢 𝑠
∗ + 𝑢 𝑠

′) − (𝑟𝑠
∗ + 𝑟𝑠

′) ∙ (𝑖 𝑠
∗ + 𝑖 𝑠

′))
𝑡

𝑡0

𝑑𝑡 + 𝜓̂𝑠(𝑡0) (3.27)

Where: 𝜓̂𝑠(𝑡0) is the stator flux before magnetization and is equal to zero

The estimated stator flux equation can be further developed by inserting eq.(3.26).

𝜓̂𝑠 = 𝜔𝑛 ∫ ((𝑟𝑠
∗ ∙ 𝑖 𝑠

∗ +
1

𝜔𝑛

∙
𝑑𝜓𝑠

∗

𝑑𝑡
+ 𝑢 𝑠

′) − (𝑟𝑠
∗ + 𝑟𝑠

′) ∙ (𝑖 𝑠
∗ + 𝑖 𝑠

′))
𝑡

𝑡0

𝑑𝑡

= 𝜓̂𝑠
∗ + 𝜔𝑛 ∫ (𝑢 𝑠

′ + 𝑟𝑠
∗ ∙ 𝑖 𝑠

∗ − 𝑟𝑠
∗ ∙ 𝑖 𝑠

∗ − (𝑟𝑠
∗ + 𝑟𝑠

′) ∙ 𝑖 𝑠
′ − 𝑟𝑠

′ ∙ 𝑖 𝑠
∗) 𝑑𝑡

𝑡

𝑡0

= 𝜓̂𝑠
∗ + 𝜔𝑛 ∫ (𝑢 𝑠

′ − 𝑟̂𝑠 ∙ 𝑖 𝑠
′ − 𝑟𝑠

′ ∙ 𝑖 𝑠
∗) 𝑑𝑡

𝑡

𝑡0

= 𝜓̂𝑠
∗ + 𝜓̂𝑠

′

(3.28)

Where: 𝜓̂𝑠
∗ is the correctly estimated stator flux

 𝜓̂𝑠
′is the error component

Eq.(3.28) shows the three main contributors to the drifting phenomenon. Voltage measurement errors,

given by 𝑢 𝑠
′ , current measurement error, given by 𝑟̂𝑠 ∙ 𝑖 𝑠

′ and stator resistance estimation error, given

by 𝑟𝑠
′ ∙ 𝑖 𝑠

∗ . There are several important observations that can be done when analysing the equation. As

mentioned earlier, drifting may occur during both steady state and dynamic operation. It can be seen

from the equation that all error terms contain a vector. It is the nature of the vector that determines

how estimation or measuring faults affect the stator flux.

A common problem when dealing with measurements, is an undesired DC-offset in the measurement.

If the flux model is subjected to a DC-offset, it can be seen from eq.(3.28) that the offset vector would

cause an incremental increase in 𝜓̂𝑠
′ for each sample. The integration of DC-component in 𝜓̂𝑠

′ will occur

during both steady state and dynamic operation. It is easy to understand that if a DC-offset error is not

corrected, stator-flux estimation will over time drift so far away that the control becomes unstable.

Since the error leads to a constant increase in drifting it may cause instability during all speed regions

of the machine. However, the effect of drifting is most predominant in the low speed area. DC-offsets

are usually a result of an unbalanced supply voltage to components in the measuring circuit [18].

22

Drifting errors caused by stator resistance estimation, would cause drifting during dynamic operation.

Stator resistance estimation errors are most problematic during very low speed operation and zero

crossings. Electrical conductance of copper is strongly dependent on temperature, thus making stator

resistance dependent of operation temperature. To minimise size and cost, induction machines are

designed to increase in temperature during nominal load operation. Consequently, stator resistance

measured during an identification run with no-load, will not coincide with the actual stator resistance

in nominal load operation. It exists methods of on-line adaption of the stator resistance, as presented

in [19], but this has not been a part of the scope for this thesis.

Errors in flux estimation due to resistance estimation error is given by the integration of 𝑟𝑠
′ ∙ 𝑖 𝑠

∗ . In

steady state, 𝑖 𝑠
∗ is purely sinusoidal and no DC-offset is integrated. However, during magnetisation for

example, 𝑖 𝑠
∗ becomes a DC-vector, causing drifting similarly to DC-offsets in measurements. It is

worth mentioning that even though resistance estimation errors do not contribute to drifting during

steady state operation, the error will still lead to a wrongly estimated stator-flux amplitude. A thorough

analysis of rotor resistance estimation error’s effect on the voltage model was presented in the master

thesis [7].

It exists many different correction methods that tackles the problems regarding drifting. The correction

methods use a so-called observer in order to compensate for the different errors. Drift compensation

is added before the integration of stator flux. Even though observers are able to compensate for drifting,

it is still important to put effort into getting correct measurements and parameter estimations.

Correction observers has been a topic in previous doctor, master and project thesis at NTNU. A

comparison between a Closed Loop observer with a P-regulator in the feedback loop [3] and the

Niemelä observer [5] was done in [7]. The Closed Loop observer was further studied in the author’s

project thesis [9] where difference between Closed Loop observers with P-regulator and PI-regulator

[4] were analysed. The Closed Loop observer that was analysed in the author’s project thesis used the

voltage model to estimate a stator flux amplitude and angle. Estimated stator flux frequency and

current measurement were fed into the current model and an alternative stator flux estimation was

calculated. Current model did not suffer from drifting and was therefore used in the lower speed areas.

As the speed increased parameter estimation had a lower impact on the voltage model, thus making it

the most desirable estimation method. The regulator in the feedback loop forced the voltage model to

follow estimation from the current model at very low speeds while gradually removing its influence

as the machine accelerated.

23

4 Voltage and Current Measurement

4.1 Non-ideal Inverter Model
The two-level three-phase inverter is a common topology when controlling an induction machine. The

inverter consists of three bridge legs, each with two IGBTs and two power diodes connected in anti-

parallel. Inverter topology is presented in Figure 4.1. When the inverter is controlled by a pulse-width-

modulator (PWM) output phase voltage is controlled by comparing a sinusoidal control voltage to a

constant triangular wave. In an ideal converter, ratio between control voltage and triangular wave

matches the ratio between output phase voltage and DC-link voltage. However, non-ideal properties

of the semi-conducting components introduce a non-linear voltage drop on the inverters output

terminals.

In this subchapter it will be shown how the non-ideal inverter can be modelled. The model presented

is the well-known inverter model first deducted in [20].The goal of the model is to find a voltage

expression that contain the actual output voltage, the non-linear voltage drop and the resistive voltage

drop of the inverter.

Figure 4.1: Inverter circuit

4.1.1 Switching characteristics

Switching characteristics of the IGBT itself is one of the contributing factors to non-linear voltage

drop in the inverter. The IGBT has a time delay from it receives a turn-on signal until the bridge leg

midpoint has approximately the same voltage potential as the DC-terminal to which it is connected,

and vice versa. Turn-on waveform is presented in Figure 4.2. The first time-delay, 𝑡𝑑(𝑜𝑛), is the time

needed for gate-source voltage, 𝑈𝐺𝑆, to rise from zero to threshold voltage, 𝑈𝐺𝑆(𝑡ℎ). Experimental tests

conducted in [21] shows that 𝑡𝑑(𝑜𝑛) decreases with increasing temperatures. Once 𝑈𝐺𝑆 reaches 𝑈𝐺𝑆(𝑡ℎ),

drain current starts to increase according to the voltage-current transfer curve of the IGBT. Current

through the IGBT rises alongside with 𝑈𝐺𝑆 until it carries the entire load current. This rise time is noted

𝑡𝑟𝑖 in the figure. Once the IGBT carries full load current, 𝑈𝐺𝑆 is clamped to its respective value, known

in the literature as the Miller plateau, and the voltage over the component starts to drop. It is seen that

the voltage drops with two different gradients. 𝑡𝑓𝑣1 corresponds to the active region and 𝑡𝑓𝑣2

corresponds to the ohmic region in the voltage-current output characteristics [22]. From Figure 4.2 it

is seen that time intervals 𝑡𝑑(𝑜𝑛), 𝑡𝑟𝑖 and 𝑡𝑓𝑣1 are the one of interest when analysing the time delay

from turn-on signal to the midpoint has the correct voltage potential. Furthermore, this time interval

decreases with rising temperatures and increase with increasing load currents.

24

Figure 4.2: Turn-on voltage and current waveform

Turn-off waveform of the IGBT is presented in Figure 4.3 and is the inverse sequence of the turn-on

waveform. Initially in the closed IGBT, 𝑈𝐺𝑆 is equal to the gate voltage 𝑈𝐺𝐺. When the IGBT is turned

off, 𝑈𝐺𝑆 has to be reduced to the Miller plateau before the voltage drop over the component start to

increase. This time-delay is called 𝑡𝑑(𝑜𝑓𝑓). The Miller plateau is proportional with load current.

Consequently, small load currents result in longer 𝑡𝑑(𝑜𝑓𝑓) delay and vice versa. Research presented in

[21] shows that 𝑡𝑑(𝑜𝑓𝑓) increases with increased temperatures. Once the gate-source voltage reaches

the Miller plateau, voltage drop over the IGBT will increase until it is equal to the DC-link voltage.

The voltage rise time is called 𝑡𝑟𝑣. From a voltage potential perspective, it is seen that the time from a

turn-off signal is given until the IGBT is blocking the voltage is given by 𝑡𝑑(𝑜𝑓𝑓) and 𝑡𝑟𝑣.

Figure 4.3: Turn-off voltage and current waveform

25

4.1.2 Blanking time and on/off time

The switching patterns for inverter leg A is shown in

Figure 4.4. It is assumed that the current is flowing to

the load. Figure 4.4-(a) shows the switching pattern

sent from the modulator, i.e. without any time delays.

The upper IGBT turns on at the same time instance as

the lower IGBT turns off.

However, in real life inverters, it is necessary to

introduce a time delay between the turn-off and turn-

on of the IGBTs in order to prevent a short circuit of

the bridge leg. This time delay is called blanking time,

Δt, and is shown in Figure 4.4-(b).

Furthermore, as shown in previous section, the IGBT

itself introduce a delay between the initial turn-on and-

off signal and changed in midpoint potential. Figure

4.4-(c) shows the phase-to-0 voltage, 𝑈𝑎0, of the

inverter. From previous section it is seen that rising

time is given by 𝑡𝑑(𝑜𝑛) + 𝑡𝑟𝑖 + 𝑡𝑓𝑣1 and falling time is

given by 𝑡𝑑(𝑜𝑓𝑓) + 𝑡𝑟𝑣. To simplify the expression of

𝑈𝑎0, the voltage can be expressed as in Figure 4.4-(d).

From Figure 4.4-(a), on-time from the modulator, 𝑇𝑎

is 𝑇2 − 𝑇1. However, looking at the equivalent 𝑈𝑎0 it

is evident that this is not true. It can be seen from the

figure that on-time describing the midpoints voltage

potential is given by 𝑇2 − 𝑇1 − Δ𝑡 − 𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓. By

comparing the two on-times, the error between them

can be expressed as:

Figure 4.4: Switching patterns for a two level three-

phase inverter with current flowing to the load. (a) Ideal

switching. (b) Switching this blanking time. (c) Actual

phase to 0 voltage. (d) equivalent phase to 0 voltage

𝑇𝑒𝑟𝑟 = 𝑇𝑎 − 𝑇𝑎

∗ = (𝑇2 − 𝑇1) − (𝑇2 − 𝑇1 − Δ𝑡 − 𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓)

= 𝑡𝑜𝑓𝑓 − 𝑡𝑜𝑛 − Δ𝑡
(4.1)

Where 𝑡𝑜𝑛 = 𝑡𝑑(𝑜𝑛) + 𝑡𝑟𝑖 + 𝑡𝑓𝑣1/2

 𝑡𝑜𝑓𝑓 = 𝑡𝑑(𝑜𝑓𝑓) + 𝑡𝑟𝑣/2

When current in the inverter switches direction, it can be shown [20] that 𝑇𝑒𝑟𝑟 can be expressed as:

 𝑇𝑒𝑟𝑟 = −(𝑡𝑜𝑓𝑓 − 𝑡𝑜𝑛 − Δ𝑡) (4.2)

The two time-error equations can be generalized by introducing a current direction dependency

 𝑡′ = sing(𝑖𝑠𝑎)(𝑡𝑜𝑓𝑓 − 𝑡𝑜𝑛 − Δ𝑡) (4.3)

Where sing(𝑖𝑎𝑛) = {
 1: 𝑖𝑠𝑎 > 0
-1: 𝑖𝑠𝑎 < 0

}

26

The on-time of 𝑇𝐴+ given by the modulator and shown in Figure 4.4-(a), can be expressed by midpoint

voltage on-time and the time-error.

 𝑇𝑎 = 𝑇𝑎
∗ + sign(𝑖𝑠𝑎) ∙ 𝑡′ (4.4)

Where: 𝑇𝑎
∗ is the equivalent on-time shown in Figure 4.4 (d)

 𝑡′ = 𝑡𝑜𝑓𝑓 − 𝑡𝑜𝑛 − Δ𝑡

Doing the same analysis for the two other phases, gives the same result. On-times can be described by

the following equations.

 𝑇𝑏 = 𝑇𝑏
∗ + sign(𝑖𝑠𝑏) ∙ 𝑡′ (4.5)

 𝑇𝑐 = 𝑇𝑐
∗ + sign(𝑖𝑠𝑐) ∙ 𝑡′ (4.6)

It is important to note that the duration of turn-on and -off time delays are not constant but dependent

on load current. Furthermore, turn-off time is usually much longer than turn-on time. The difference

can be in the hundreds of nanoseconds range [23].

4.1.3 Voltage drop over the IGBT and power diode

Blanking time, on-time and off-time are not the only contributors to reduction in phase voltage in the

inverter. Both power diodes and IGBTs will introduce a voltage drop due to its non-ideal properties.

This voltage drop is called forward voltage. Forward voltage can be divided into a constant voltage

drop and a current dependent voltage drop for both devices. The constant voltage drop is a result of

the properties of a semiconductor and the current dependent voltage drop is given by the equivalent

on-state resistance.

The forward voltage drop of the IGBT and power diode are given by eq.(4.7) and (4.8), respectively.

 𝑈𝑠𝑤 = 𝑈𝑠𝑤0 + 𝑟𝑠𝑤 ∙ |𝑖𝑠𝑎| (4.7)

 𝑈𝑓𝑑 = 𝑈𝑓𝑑0 + 𝑟𝑓𝑑 ∙ |𝑖𝑠𝑎| (4.8)

Where: 𝑈𝑠𝑤0 is the constant voltage drop over the IGBT switch

 𝑈𝑓𝑑0 is the constant voltage drop over the power diode

 𝑟𝑠𝑤 is the equivalent on-state resistance of the IGBT switch

 𝑟𝑓𝑑 is the equivalent on-state resistance of the power diode

Analysing Figure 4.1 it can be found that the instantaneous phase-to-zero voltage, 𝑢𝑎0, is affected by

both current direction and on/off status of the IGBTs within the bridge leg. Given the two possible

current directions and the complementary switching of the IGBTs, it is evident that the voltage-drop

in 𝑢𝑎0 can be affected by the forward voltage in four different ways.

When the current is flowing in positive direction, i.e. from the DC-link to the load, it can be seen that

the current flows through the upper IGBT when 𝑇𝐴+ is on and through the lower freewheeling power

diode when 𝑇𝐴− is on. 𝑢𝑎0 given the two switching states and positive current direction are presented

in eq.(4.9) and (4.10).

 𝑢𝑎0 =
𝑈𝑑𝑐

2
− 𝑈𝑠𝑤

𝑢𝑎0 = −
𝑈𝑑𝑐

2
− 𝑈𝑓𝑑

 (𝑇𝐴+ is on and 𝑇𝐴− is off) (4.9)

 (𝑇𝐴− is on and 𝑇𝐴+ is off) (4.10)

27

By introducing the variable 𝑆𝐴 that defines which of the two IGBTs that are conducting, eq.(4.9) and

(4.10) can be combined into the following equation.

 𝑢𝑎0 = (𝑈𝑑 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) ∙ (𝑆𝐴 −
1

2
) −

1

2
∙ (𝑈𝑠𝑤 + 𝑈𝑓𝑑) (4.11)

Where: 𝑆𝐴 = 1: (𝑇𝐴+ is on and 𝑇𝐴− is off)

 𝑆𝐴 = 0: (𝑇𝐴− is on and 𝑇𝐴+ is off)

When the current direction is reversed, current will flow through the upper diode when 𝑇𝐴+ and through

the lower IGBT when 𝑇𝐴− is on. 𝑢𝑎0 is then given by eq.(4.12) and (4.13).

 𝑢𝑎0 =
𝑈𝑑𝑐

2
+ 𝑈𝑓𝑑

𝑢𝑎0 = −
𝑈𝑑𝑐

2
+ 𝑈𝑠𝑤

 (𝑇𝐴+ is on and 𝑇𝐴− is off) (4.12)

 (𝑇𝐴− is on and 𝑇𝐴+ is off) (4.13)

Similarly as with positive current direction, eq.(4.12) and (4.13) can be expressed as a function of the

on/off state of the switches in the bridge leg.

 𝑢𝑎0 = (𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) ∙ (𝑆𝐴 −
1

2
) +

1

2
(𝑈𝑠𝑤 + 𝑈𝑓𝑑) (4.14)

Since the switching in the inverter has a much higher frequency than the fundamental frequency, it can

be assumed that the current diction does not change during one switching period. Using this

assumption and by introducing the sign of the respective bridge leg current, it is possible to express

eq.(4.11) and (4.14) by the following equation.

 𝑢𝑎0 = (𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) ∙ (𝑆𝐴 −
1

2
) −

1

2
sign(𝑖𝑠𝑎) ∙ (𝑈𝑠𝑤 + 𝑈𝑓𝑑) (4.15)

By inserting eq.(4.7) and (4.8) in eq.(4.15), 𝑢𝑎0 can be expressed as a function of the constant and

current dependent voltage drop of the semiconducting components in the circuit.

𝑢𝑎0 = (𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) ∙ (𝑆𝐴 −
1

2
) −

1

2
sign(𝑖𝑠𝑎) ∙ (𝑈𝑠𝑤0 + 𝑟𝑠𝑤 ∙ |𝑖𝑠𝑎| + 𝑈𝑓𝑑0 + 𝑟𝑓𝑑 ∙ |𝑖𝑠𝑎|)

= (𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) ∙ (𝑆𝐴 −
1

2
) −

1

2
sign(𝑖𝑠𝑎) ∙ (𝑈𝑠𝑤0 + 𝑈𝑡ℎ,𝑓𝑑0) −

1

2
(𝑟𝑠𝑤 + 𝑟𝑓𝑑) ∙ 𝑖𝑠𝑎

(4.16)

The mean phase-to-zero voltage, 𝑈𝑎0, can be found by substituting 𝑆𝐴 with bridge leg on-time and

dividing it by the switching period, or two times the sampling time, when using synchronised PWM.

𝑈𝑎0 = (𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) (
𝑇𝑎

2𝑇𝑠𝑎𝑚𝑝

−
1

2
) −

1

2
sign(𝑖𝑠𝑎)(𝑈𝑠𝑤0 + 𝑈𝑓𝑑0) −

1

2
(𝑟𝑠𝑤 + 𝑟𝑓𝑑) ∙ 𝑖𝑠𝑎 (4.17)

When conducting the same analysis on the other phases, similar results are found.

𝑈𝑎0 = (𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) (
𝑇𝑏

2𝑇𝑠𝑎𝑚𝑝

−
1

2
) −

1

2
sign(𝑖𝑠𝑏)(𝑈𝑠𝑤0 + 𝑈𝑓𝑑0) −

1

2
(𝑟𝑠𝑤 + 𝑟𝑓𝑑) ∙ 𝑖𝑠𝑏 (4.18)

𝑈𝑐0 = (𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) (
𝑇𝑐

2𝑇𝑠𝑎𝑚𝑝

−
1

2
) −

1

2
sign(𝑖𝑠𝑐)(𝑈𝑠𝑤0 + 𝑈𝑓𝑑0) −

1

2
(𝑟𝑠𝑤 + 𝑟𝑓𝑑) ∙ 𝑖𝑠𝑐 (4.19)

28

4.1.4 Phase voltage of the machine

The voltage between bridge leg midpoint and neutral point of the machine for the three different phases

can be expressed by eq.(4.20)-(4.22). The equations show that the phase-to-neutral voltage is given by

its respective phase-to-zero voltage and a neutral-to-zero voltage, 𝑈𝑠0. Note that 𝑈𝑠0 is equal in all the

phase voltages.

 𝑈𝑠𝑎 = 𝑈𝑎0 − 𝑈𝑠0 (4.20)

 𝑈𝑠𝑏 = 𝑈𝑏0 − 𝑈𝑠0 (4.21)

 𝑈𝑠𝑐 = 𝑈𝑐0 − 𝑈𝑠0 (4.22)

According to Kirchhoff’s first law, the total sum of currents entering a junction is equal to the total

sum leaving the junction. Since the neutral point of the machine is isolated from ground, the sum of

currents entering the neutral has to be zero.

 𝑖𝑠𝑎 + 𝑖𝑠𝑏 + 𝑖𝑠𝑐 = 0 (4.23)

The three-phased motor connected to the inverter is assumed to be a balanced load. Thus, the sum

phase-voltages are also zero.

 𝑈𝑠𝑎 + 𝑈𝑠𝑏 + 𝑈𝑠𝑐 = 0 (4.24)

An expression of 𝑈𝑠0 can be found by inserting eq.(4.20)-(4.22) in (4.24).

𝑈𝑎0 + 𝑈𝑏0 + 𝑈𝑐0 − 3𝑈𝑠0 = 0

𝑈𝑠0 =
1

3
(𝑈𝑎0 + 𝑈𝑏0 + 𝑈𝑐0)

(4.25)

The expression can be further developed by inserting eq.(4.17)-(4.19).

𝑈𝑠0 =
1

3
((𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) ((

𝑇𝑎

2𝑇𝑠𝑎𝑚𝑝

−
1

2
) + (

𝑇𝑏

2𝑇𝑠𝑎𝑚𝑝

−
1

2
) + (

𝑇𝑐

2𝑇𝑠𝑎𝑚𝑝

−
1

2
)))

−
1

3
(
1

2
(𝑈𝑠𝑤0 + 𝑈𝑓𝑑0)(sign(𝑖𝑠𝑎) + sign(𝑖𝑠𝑏) + sign(𝑖𝑠𝑐)) −

1

2
(𝑟𝑠𝑤 + 𝑟𝑓𝑑) ∙ (𝑖𝑠𝑎 + 𝑖𝑠𝑏 + 𝑖𝑠𝑐))

(4.26)

By realizing that the sum of currents is equal to zero eq.(4.26) simplifies to:

𝑈𝑛0 =
1

3
(𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) (

𝑇𝑎 + 𝑇𝑏 + 𝑇𝑐

2𝑇𝑠𝑎𝑚𝑝

−
3

2
)

−
1

6
(𝑈𝑠𝑤0 + 𝑈𝑓𝑑0)(sign(𝑖𝑠𝑎) + sign(𝑖𝑠𝑎) + sign(𝑖𝑠𝑎))

(4.27)

Going back to eq.(4.20) and inserting eq.(4.17) and (4.27), the expression for 𝑈𝑠𝑎 becomes:

𝑈𝑠𝑎 = 𝑈𝑎0 − 𝑈𝑠0

= (𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) ((
𝑇𝑎

2𝑇𝑠𝑎𝑚𝑝

−
1

2
) −

1

3
(
𝑇𝑎 + 𝑇𝑏 + 𝑇𝑐

2𝑇𝑠𝑎𝑚𝑝

−
3

2
))

−(𝑈𝑠𝑤0 + 𝑈𝑓𝑑0) (
1

2
sign(𝑖𝑠𝑎) −

1

6
(sign(𝑖𝑠𝑎) + sign(𝑖𝑠𝑏) + sign(𝑖𝑠𝑐)))

−
1

2
(𝑟𝑠𝑤 + 𝑟𝑓𝑑) ∙ 𝑖𝑠𝑎

(4.28)

29

With help of some simple algebraic manipulation, eq.(2.28) can be expressed as follows:

𝑈𝑠𝑎 =
1

3
(𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) (

2𝑇𝑎 − 𝑇𝑏 − 𝑇𝑐

2𝑇𝑠𝑎𝑚𝑝

)

−
1

6
(𝑈𝑠𝑤0 + 𝑈𝑓𝑑0)(2sign(𝑖𝑠𝑎) − sign(𝑖𝑠𝑏) − sign(𝑖𝑠𝑐))

−
1

2
(𝑟𝑠𝑤 + 𝑟𝑓𝑑) ∙ 𝑖𝑠𝑎

(4.29)

Similar analysis can be done for the other two phases.

𝑈𝑠𝑏 =
1

3
(𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) (

2𝑇𝑏 − 𝑇𝑎 − 𝑇𝑐

2𝑇𝑠𝑎𝑚𝑝

)

−
1

6
(𝑈𝑠𝑤0 + 𝑈𝑓𝑑0)(2sign(𝑖𝑠𝑏) − sign(𝑖𝑠𝑎) − sign(𝑖𝑠𝑐))

−
1

2
(𝑟𝑠𝑤 + 𝑟𝑓𝑑) ∙ 𝑖𝑠𝑏

(4.30)

𝑈𝑠𝑐 =
1

3
(𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) (

2𝑇𝑐 − 𝑇𝑎 − 𝑇𝑏

2𝑇𝑠𝑎𝑚𝑝

)

−
1

6
(𝑈𝑠𝑤0 + 𝑈𝑓𝑑0)(2sign(𝑖𝑠𝑐) − sign(𝑖𝑠𝑎) − sign(𝑖𝑠𝑏))

−
1

2
(𝑟𝑠𝑤 + 𝑟𝑓𝑑) ∙ 𝑖𝑠𝑐

(4.31)

Eq.(4.29)-(4.31) express the different voltage components in the phase-voltages. However, the

equations do not yet differentiate the output voltage of the inverter from and the non-linear voltage

drop. Going back to section 4.1.2, it can be seen that the on-time used in the phase-voltage equation,

represents on-times from the modulator. By inserting eq.(4.4)-(4.6), the equation can be further

extended.

𝑈𝑠𝑎 =
1

3
(𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) (

2𝑇𝑎
∗ − 𝑇𝑏

∗ − 𝑇𝑐
∗

2𝑇𝑠𝑎𝑚𝑝

−
2𝑡′ ∙ sign(𝑖𝑠𝑎) − 𝑡′ ∙ sign(𝑖𝑠𝑏) − 𝑡′ ∙ sign(𝑖𝑠𝑐)

2𝑇𝑠𝑎𝑚𝑝

)

−
1

6
(𝑈𝑠𝑤0 + 𝑈𝑓𝑑0)(2sign(𝑖𝑠𝑎) − sign(𝑖𝑠𝑏) − sign(𝑖𝑠𝑐)) −

1

2
(𝑟𝑠𝑤 + 𝑟𝑓𝑑) ∙ 𝑖𝑠𝑎

(4.32)

The description of 𝑈𝑠𝑎 given by eq. (4.32) includes actual on-time, time error and voltage drop caused

by the semiconducting components, both linear and non-linear. Using the different elements of the

equation, it is possible to express the phase-voltage, 𝑈𝑠𝑎, in terms of output voltage, distorted voltage

and resistive voltage drop.

 𝑈𝑠𝑎 = 𝑈𝑠𝑎
∗ + 𝑈𝑠𝑎

′ −
1

2
(𝑟𝑡ℎ,𝑠𝑤 + 𝑟𝑡ℎ,𝑓𝑑) ∙ 𝑖𝑠𝑎 (4.33)

The output voltage is represented as 𝑈𝑠𝑎
∗ and is given by the DC-link voltage, total voltage drops of

the IGBT and power diode and the on-time describing electrical potential at the bridge leg. The voltage

drops of the semiconducting components are much smaller than the DC-link voltage and can therefore

be neglected.

𝑈𝑠𝑎
∗ =

1

3
(𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) (

2𝑇𝑎
∗ − 𝑇𝑏

∗ − 𝑇𝑐
∗

2𝑇𝑠𝑎𝑚𝑝

)

≈
1

3
∙ 𝑈𝑑𝑐 ∙ (

2𝑇𝑎
∗ − 𝑇𝑏

∗ − 𝑇𝑐
∗

2𝑇𝑠𝑎𝑚𝑝

)

(4.34)

30

The distorted voltage is represented as 𝑈𝑠𝑎
′ and is governed by DC-link voltage, voltage drops caused

by the IGBT and power diode, on-time error, and the direction of currents. The approximation

regarding DC-link voltage done in eq.(4.34), is also true for 𝑈𝑠𝑎
′ .

𝑈𝑠𝑎
′ =

1

3
(𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) (

2𝑡′ ∙ 𝑠𝑖𝑔𝑛(𝑖𝑠𝑎) − 𝑡′ ∙ 𝑠𝑖𝑔𝑛(𝑖𝑠𝑏) − 𝑡′ ∙ 𝑠𝑖𝑔𝑛(𝑖𝑠𝑐)

2𝑇𝑠𝑎𝑚𝑝

)

−
1

6
(𝑈𝑠𝑤0 + 𝑈𝑓𝑑0)(2sign(𝑖𝑠𝑎) − sign(𝑖𝑠𝑏) − sign(𝑖𝑠𝑐))

=
1

6
((𝑈𝑑𝑐 − 𝑈𝑠𝑤 + 𝑈𝑓𝑑) (

𝑡′

𝑇𝑠𝑎𝑚𝑝

) − 𝑈𝑠𝑤0 − 𝑈𝑓𝑑0) (2sign(𝑖𝑠𝑎) − sign(𝑖𝑠𝑏) − sign(𝑖𝑠𝑐))

≈
1

6
(
𝑈𝑑𝑐 ∙ 𝑡′

𝑇𝑠𝑎𝑚𝑝

− 𝑈𝑠𝑤0 + 𝑈𝑓𝑑0) (2sign(𝑖𝑠𝑎) − sign(𝑖𝑠𝑏) − sign(𝑖𝑠𝑐))

(4.35)

Analysing the other two phase-to-neutral voltages gives a similar result.

𝑈𝑠𝑏 = 𝑈𝑠𝑏
∗ + 𝑈𝑠𝑏

′ −
1

2
(𝑟𝑠𝑤 + 𝑟𝑓𝑑) ∙ 𝑖𝑠𝑏

𝑈𝑠𝑏
∗ ≈

1

3
∙ 𝑈𝑑𝑐 ∙ (

2𝑇𝑏
∗ − 𝑇𝑎

∗ − 𝑇𝑐
∗

2𝑇𝑠𝑎𝑚𝑝

)

𝑈𝑠𝑏
′ ≈

1

6
(
𝑈𝑑𝑐 ∙ 𝑡′

𝑇𝑠𝑎𝑚𝑝

− 𝑈𝑠𝑤0 + 𝑈𝑓𝑑0) (2sign(𝑖𝑠𝑏) − sign(𝑖𝑠𝑎) − sign(𝑖𝑠𝑐))

(4.36)

(4.37)

(4.38)

𝑈𝑠𝑐 = 𝑈𝐶𝑛

∗ + 𝑈𝐶𝑛
′ −

1

2
(𝑟𝑠𝑤 + 𝑟𝑓𝑑) ∙ 𝑖𝑠𝑐

𝑈𝑠𝑐
∗ ≈

1

3
∙ 𝑈𝑑𝑐 ∙ (

2𝑇𝑏
∗ − 𝑇𝑎

∗ − 𝑇𝑐
∗

2𝑇𝑠𝑎𝑚𝑝

)

𝑈𝑠𝑐
′ ≈

1

6
(
𝑈𝑑𝑐 ∙ 𝑡′

𝑇𝑠𝑎𝑚𝑝

− 𝑈𝑠𝑤0 + 𝑈𝑓𝑑0) (2sign(𝑖𝑠𝑐) − sign(𝑖𝑠𝑎) − sign(𝑖𝑠𝑏))

(4.39)

(4.40)

(4.41)

31

4.2 Consequences of the Non-linear voltage drop
Previous subchapter showed an expression for the output voltage of the inverter together with its

resistive and non-linear voltage drop. These expressions are important in order to understand how the

nonlinearity affects the drive, especially when the speed of the machine is low. The distortion caused

by the inverter affect open loop 𝑉/𝑓-control and closed loop FOC somewhat different. The sinusoidal

control voltage used in 𝑉/𝑓-control leads to a distorted output voltage. The current controller used in

FOC forces the output voltage of the inverter to have a sinusoidal waveform by introducing the same

distortion seen in 𝑉/𝑓-control in the control voltage, only with opposite sign.

The waveforms and amplitudes of control voltage, distorted voltage and output voltage in a 𝑉/𝑓-

controlled drive is shown in Figure 4.5. The figure shows the equations deducted in previous

subchapter and illustrates voltages in a machine operating at 5% of nominal speed. Figure 4.5-(a)

shows the control voltage calculated in the controller. This is the desired output voltage for that given

frequency. The boost voltage that was discussed in chapter 3.1 are used to compensate for the resistive

voltage drops in the inverter. The control voltage can be described by following equation:

 𝑈𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =
1

3
∙ 𝑈𝑑𝑐 ∙ (

2𝑇𝑎 − 𝑇𝑏 − 𝑇𝑐

2𝑇𝑠𝑎𝑚𝑝

)

(a)

(b)

(c)

Figure 4.5: 𝑉/𝑓-controlled inverter voltages

Figure 4.5-(b) show the distorted voltage 𝑈𝑠𝑎
′ . 𝑈𝑠𝑎

′ can be described by eq.(4.35) and the equation is

repeated below. The distorted voltage has a trapezoidal waveform that changes in amplitude as a

function of the direction of the phase currents. During the complete time period of one phase current,

all three phase currents changes polarity once, making a total of six current directions. Thus, distorted

voltage will also change its value six times within the time period. The six-step change in value can

also be seen in the figure. Furthermore, eq.(4.35) shows that the amplitude of the distorted voltage is

given by DC-link voltage, non-linear component of the forward voltage, sampling time and the time

error, 𝑡′. Since these values are more or less constant, the distorted voltage can be considered as

independent of output current and voltage.

 𝑈𝑠𝑎
′ ≈

1

6
(
𝑈𝑑𝑐 ∙ 𝑡′

𝑇𝑠𝑎𝑚𝑝

− 𝑈𝑡ℎ,𝑠𝑤0 + 𝑈𝑡ℎ,𝑓𝑑0) (2sign(𝑖𝑠𝑎) − sign(𝑖𝑠𝑏) − sign(𝑖𝑠𝑐))

The peak amplitude of 𝑈𝑠𝑎
′ occurs when the current direction of 𝑖𝑠𝑎 is positive and when 𝑖𝑠𝑏 , 𝑖𝑠𝑐 is

negative or vice versa. Using eq. (4.35) and inserting the different current directions shows a peak

value of 2/3(𝑈𝑑𝑐 ∙ 𝑡′/𝑇𝑠𝑎𝑚𝑝 − 𝑈𝑡ℎ,𝑠𝑤0 + 𝑈𝑡ℎ,𝑓𝑑0). Moreover, distorted voltage is always in counter-

phase with the respective phase-current.

32

Figure 4.5-(c) shows output phase voltage, 𝑈𝑠𝑎
∗ . The trapezoidal distortion voltage from Figure 4.5-(b)

acts as a non-linear voltage drop on the output voltage. The figure shows that output voltage, when

using a 𝑉/𝑓-controller, results in a discontinuous voltage with a lower amplitude compared to the

control voltage. The equation describing output voltage is presented in eq.(4.34) is repeated below.

 𝑈𝑠𝑎
∗ ≈

1

3
∙ 𝑈𝑑𝑐 ∙ (

2𝑇𝑎
∗ − 𝑇𝑏

∗ − 𝑇𝑐
∗

2𝑇𝑠𝑎𝑚𝑝

)

 𝑈𝑠𝑎
∗ = 𝑈𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + 𝑈𝑠𝑎

′ (4.42)

The output voltage can also be expressed by the control voltage and the distortion voltage as shown in

eq.(4.42). Looking at the equation, it is easy to understand why the distorted voltage has the largest

impact during low speed operation. Control voltage amplitude is proportional with stator frequency

and will therefore have a small amplitude at low speeds. Distortion voltage amplitude however, can

be assumed to be independent of frequency, thus causing a significant distortion at lower speeds. This

effect is illustrated in the figures below. Figure 4.6, Figure 4.7 and Figure 4.8 show the rotating voltage

vector in the machine, 𝑢𝑠
𝑠 with 20%, 5% and 2.5% of nominal speed, respectively. Influence of 𝑈𝑠𝑎

′

is clearly increasing as the machine slows down. The discontinues trajectory of 𝑢𝑠
𝑠 creates a six-

harmonic component that causes toque ripples in the machine if not compensated for.

Figure 4.6: 20% speed Figure 4.7: 5% speed Figure 4.8: 2.5% speed

As mention earlier, non-ideal properties of the inverter can also influence closed loop FOC. The current

controller used in FOC regulates the phase current considerably faster than its reference value. The

controller is able to keep a sinusoidal output voltage and current by introducing the same distortions

shown in 𝑉/𝑓-control (Figure 4.5-(b)) in the control voltage. Consequently, the distorted control

voltage will contain the same six-harmonic component as the output voltage in open loop control [24].

As shown in section 3.2.2, stator voltage is an input variable when operating in sensorless control. It

is possible to acquire knowledge of stator voltage either by direct measurements, indirect

measurements, or through estimation. The benefits of estimating the phase voltage is the reduction in

required measuring hardware. This reduces both costs and sources of errors. A common method of

estimating the stator voltage is to use the control voltage given by the current controller. This simple

solution gives an accurate estimate of the actual voltage in medium and high-speed operation.

However, as the speed decreases to the lower speed regions and the sixth-harmonic component

generated by the current controller becomes more dominant in the control voltage, the accuracy of the

estimation also decrees [19]. Moreover, if the control voltage is distorted with a sixth-harmonic

component, the calculated fluxes will also be affected by the same harmonic component [24]. The

harmonic component in the flux will generate ripples in the electrical torque, just like in open loop

control. If the operating speed reduced even further, distorted voltage may exceed the required control

voltage in amplitude. This will make it impossible to achieve a stable operation [19]. A common

solution to this problem is to use the description of distorted voltage as a feedforward term after the

current controller. Consequently, both control voltage and output voltage become sinusoidal. An

example of this is shown in [10].

33

Another method is to estimate output voltage using eq.(4.34). This method requires knowledge of the

time interval where the midpoint voltage is equal to 𝑈𝑑𝑐. One of the benefits with this method is that

it is able to estimate phase voltage of both 𝑉/𝑓-controlled and FOC drives during all speed ranges. It

is this estimation method that will be implemented into the control design in this thesis.

4.3 Current measurement
In control strategies like Field Oriented Control, correct current measurements are essential in order

to ensure stable control. As discussed in chapter 3.3, current measurements errors, together with other

estimation and measurement errors will cause a phenomenon called drifting. Drifting gives the

estimated flux an oscillatory behaviour and causes oscillations in speed, thus vibrations. It can also

make the control itself unstable. Offset errors and scaling errors are the most common problems

regarding current measurement. Both errors may contribute to drifting. Furthermore, the errors

themselves will also cause vibrations in the machine regardless of drifting. An analysis of current

measurement error’s effect on FOC AC-machines are presented in [18] and mathematical derivations

presented in this subchapter is based in this work. The paper also proposes a correction method for

these errors. However, the method relies on having precise speed measurement and the estimated speed

obtained in sensorless control does not give high enough accuracy [10].

The consequences of measuring errors are illustrated in Figure 4.9. The figure shows the mechanical

speed of a machine controlled by a two-level three-phase inverter without any compensation or

correction for errors. It also shows an FFT analysis of the speed. It is evident that the presence of

current measurement errors causes oscillation in the speed. Speed oscillations will increase the

vibrations in the machine, thus reducing lifetime on mechanical components like bearings, mechanical

seals, shaft couplings or gear transition. The FFT analysis shows that the oscillations are mainly

governed by three harmonic components equal to (𝑓𝑒), two times greater (2𝑓𝑒) and six times greater

(6𝑓𝑒) than the electrical frequency. The harmonic component with frequency 𝑓𝑒 is caused by offset

errors and the component with frequency 2𝑓𝑒 is caused by scaling errors. The harmonic component of

6𝑓𝑒 is a consequence of the nonlinear voltage drop in the inverter, discussed in previous subchapter.

Figure 4.9: Mechanical speed and FFT analysis of mechanical speed with measurement errors [18].

These torque ripples act as a disturbance load on the mechanical system and decrease the performance

of the speed controller. It is important to further analyse the reasons for measurement errors, how they

affect the measuring signals and how wrongly measured signals affect the motor equations in order to

understand and reduce these problems.

34

4.3.1 Current measurement circuit

An illustration of the measuring circuit is presented in Figure 4.10. The measuring circuit typically

consists of a closed loop Hall effect current sensor, a buffer/scaling circuit, an anti-aliasing filter, an

AD-converter, a FPGA and a processor.

Figure 4.10: Current measurement circuit

The closed loop Hall effect sensor gives an exact representation of the input signal if the sensor is

within its linear operation region. The instantaneous value of the secondary current of the sensor are

given by 𝑖𝑠 = 𝑁𝑝/𝑁𝑠 ∙ 𝑖𝑝, where 𝑁𝑝 and 𝑁𝑠 are the number of turns on the primary and secondary side

of the senor, respectively. The secondary current passes through a measuring resistance producing a

voltage drop over the resistor. The voltage over the resistor has the same shape as the input current

and the scaling factor is given in the component’s datasheet.

Output voltage of the Hall element is connected to a buffer circuit, e.g. differential amplifier. Scaling

of the voltage signal according to the ADC can also be done in the buffer circuit. In order to avoid

aliasing of the measurement, measuring signal is passed through an analog AAF (anti-aliasing filter).

According to Nyquist-Shannon sampling theorem, an analog signal sampled at twice its frequency

suffers form no loss of information [25]. In other words, the highest frequency that can be measured

cannot exceed 𝑓𝑠𝑎𝑚𝑝/2. The AFF can be realized by using different kinds of low pass filters. Ordinary

first- and second-order LP filter or Butterworth filters are commonly used.

The ADC (analog to digital converter) converts the scaled and filtered analog signal to a digital

number. Some of the most common converter techniques include Successive approximation, Single-

and Dual slope integration, Flash and Delta-sigma ADC, all with their advantages and disadvantages

[25].

The FPGA (field programmable gate arrays) can be used for several different tasks and is a critical

component in the control of the machine. The FPGA used in the author’s project consists of 125k

programmable logical cells. These logical cells can be arranged and rearranged in order to complete

the required tasks. The ability to arrange and rearrange connections between the logical cells, makes

the FPGA able to isolate different sections of the logical structure to do different task in parallel. Going

back the measuring circuit, the FPGA is used as a moving average filter. Since the sampling rate of

FPGA is much higher than the CPU, filtering of the measured value from the ADC does not introduce

an additional time delay in the calculations done by the CPU. The FPGA integrates the values from

the ADC and the respective numbers of samples included in the integration within one sampling period

of the CPU and stores the vales in the memory.

35

4.3.2 Offset error

When measuring the currents of a symmetrical three phase load with isolated neutral, it is common

practice to measure two of the phases. The last phase current is easily calculated according to

Kirchhoff’s first law. If one of the measured phase voltages is subjected to a DC-offset, it can be

understood that the average of the respective sinewave will no longer be zero. The DC-component

introduced to the phase affected by the offset error, will also be present in the calculated phase current

but with opposite sign. The consequences of current offset on the measured current vector 𝑖𝑠 is best

illustrated using a stator-oriented system.

Figure 4.11 shows measurements of 𝑖𝑠𝛼
𝑠 and 𝑖𝑠𝛽

𝑠 as a function of time and 𝑖𝑠 as a function of its

respective 𝛼, 𝛽 components. A DC-offset is imposed on one of the measured phases. The figure shows

that the offset does not alter the amplitude of 𝑖𝑠𝛼
𝑠 and 𝑖𝑠𝛽

𝑠 , but introduced a DC-offset to one of the

current components. By analysing 𝑖𝑠 in the 𝛼𝑠, 𝛽𝑠-plane, it becomes evident that while keeping a

circular trajectory, the offset causes the origin to move away from zero. As the origin of the circular

trajectory drifts away from zero, amplitude of 𝑖𝑠 starts to oscillate. The oscillations will have the same

frequency as the electrical frequency in the system. In order to understand how this oscillation

translates to a torque ripple, it is necessary to investigate the machine equations.

Measured current with offset error

Figure 4.11: Offset error in current measurement

DC-offset in measurements is a consequence of unbalanced supply voltage to the current sensors or

by one of the analog devices in the measuring circuit (e.g. buffer circuit, AFF or ADC). Since the

offset is imposed by the measuring circuit itself, the measured currents can be expressed as:

𝑖𝑠𝑎 = 𝑖𝑠𝑎
∗ + 𝑖𝑠𝑎

′

𝑖𝑠𝑏 = 𝑖𝑠𝑏
∗ + 𝑖𝑠𝑏

′

𝑖𝑠𝑐 = −(𝑖𝑠𝑎 + 𝑖𝑠𝑏)

(4.43)

Where: 𝑖𝑠𝑎
∗ , 𝑖𝑠𝑏

∗ are actual phase currents

 𝑖𝑠𝑎
′ , 𝑖𝑠𝑏

′ are DC-offsets

In order to more easily analyse the distorted current vector’s effect on the rotor flux and electrical

torque, the three-phase system is converted into a synchronous rotating reference frame. The

decomposed, synchronous rotating current vectors are then given by:

𝑖𝑠𝛼
𝜓𝑟 = 𝑖𝑠𝛼

𝜓𝑟
∗
+ 𝑖𝑠𝛼

𝜓𝑟
′

=
2

3
[𝑖𝑠𝑎 ∙ cos(2𝜋𝑓𝑠) + 𝑖𝑠𝑏 ∙ cos (𝜔𝑠 −

2𝜋

3
) + (-𝑖𝑠𝑎 − 𝑖𝑠𝑏) ∙ cos (𝜔𝑠 +

2𝜋

3
)]

(4.44)

𝑖𝑠𝛽
𝜓𝑟 = 𝑖𝑠𝛽

𝜓𝑟
∗
+ 𝑖𝑠𝛽

𝜓𝑟
′

=
2

3
[-𝑖𝑠𝑎 ∙ sin(2𝜋𝑓𝑠) − 𝑖𝑠𝑏 ∙ sin (𝜔𝑠 −

2𝜋

3
) − (-𝑖𝑠𝑎 − 𝑖𝑠𝑏) ∙ sin (𝜔𝑠 +

2𝜋

3
)]

(4.45)

36

As with the three-phase system, 𝑖𝑠𝛼
𝜓𝑟 and 𝑖𝑠𝛽

𝜓𝑟 are expressed as an actual current vector and a DC-offset

contribution. However, due to the transformation, 𝑖𝑠𝛼
𝜓𝑟

∗
 and 𝑖𝑠𝛽

𝜓𝑟
∗
 becomes DC-quantities and 𝑖𝑠𝛼

𝜓𝑟
′
 and

𝑖𝑠𝛽
𝜓𝑟

′
 becomes sinusoidal.

If the current measurement is used in a feedback loop of a quick current controller, oscillation in the

measured signal will be compensated for by the controller itself. This is done by introducing an

oscillatory component in the controller output. The oscillatory component is the same error as

previously discussed, but instead of being present in current measurements, it now creates an

oscillation in the actual phase current. The phase current can therefore be expressed in terms of a

constant reference value (in steady state) and an oscillating error.

 𝑖𝑠𝛼
𝜓𝑟

∗
= 𝑖𝑠𝛼

𝜓𝑟 + 𝑖𝑠𝛼
𝜓𝑟

′
= 𝑖𝑠𝛼,𝑟𝑒𝑓

𝜓𝑟 + 𝑖𝑠𝛼
𝜓𝑟

′
 (4.46)

 𝑖𝑠𝛽
𝜓𝑟

∗
= 𝑖𝑠𝛽

𝜓𝑟 + 𝑖𝑠𝛽
𝜓𝑟

′
= 𝑖𝑠𝛽,𝑟𝑒𝑓

𝜓𝑟 + 𝑖𝑠𝛽
𝜓𝑟

′
 (4.47)

The rotor flux of the machine is given by eq. (4.48). The rotor time constant, 𝑇𝑟, is large compared to

other time constants in the system [11]. Due to the large time constant it can be understood that fast

oscillation in 𝑖𝑠𝛼
𝜓𝑟

∗
 has little impact on the amplitude of 𝜓𝑅. It can therefore be concluded that the offset

current does not influence 𝜓𝑅 and the flux can be assumed constant [18].

𝑑𝜓𝑅

𝑑𝑡
= −

1

𝑇𝑟

∙ 𝜓𝑅 +
𝑥𝑀

𝑇𝑟

∙ 𝑖𝑠𝛼
𝜓𝑟 (4.48)

The torque equation in pu is presented in eq. (4.49). By inserting eq. (4.47), the electrical torque can

be represented by a reference torque and a disturbance load. Oscillations in 𝑖𝑠𝛽
𝜓𝑟

∗
, clearly causes

oscillation in the electrical torque generated by the machine. As stated earlier, oscillation in the torque

can be represented as a disturbance load torque.

 𝜏𝑒 = 𝜓𝑅 ∙ 𝑖𝑠𝛽
𝜓𝑟

∗
= 𝜓𝑅 ∙ (𝑖𝑠𝛽,𝑟𝑒𝑓

𝜓𝑟 + 𝑖𝑠𝛽
𝜓𝑟

′
) = 𝜏𝑒,𝑟𝑒𝑓 − Δ𝜏𝐿 (4.49)

The oscillation in the torque is given by the frequency of 𝑖𝑠𝛽
𝜓𝑟

′
 in the synchronous rotating reference

system. It is given in [18] that 𝑖𝑠𝛽
𝜓𝑟

′
 can be expressed as:

𝑖𝑠𝛽
𝜓𝑟

′
=

2

3
[-sin(𝜔𝑠) ∙ 𝑖𝑠𝑎

′ − sin (𝜔𝑠 −
2𝜋

3
) ∙ 𝑖𝑠𝑏

′ − sin (𝜔𝑠 +
2𝜋

3
) ∙ (-𝑖𝑠𝑎

′ − 𝑖𝑠𝑏
′)]

=
2

√3
√(𝑖𝑎𝑠

′)2 + (𝑖𝑎𝑠
′ ∙ 𝑖𝑏𝑠

′) + (𝑖𝑏𝑠
′)2 ∙ cos(𝜔𝑠 + 𝛾)

(4.50)

Where: 𝛾 = arctan (
√3∙𝑖𝑎𝑠

′

𝑖𝑎𝑠
′ +2𝑖𝑏𝑠

′)

The disturbance load torque can then be expressed as follows:

 Δ𝜏𝐿 = 𝜓𝑅

2

√3
√(𝑖𝑎𝑠

′)2 + (𝑖𝑎𝑠
′ ∙ 𝑖𝑏𝑠

′) + (𝑖𝑏𝑠
′)2 ∙ cos(𝜔𝑠 + 𝛾) (4.51)

Eq. (4.51) shows that DC-offset in the current measurement causes a disturbance load that oscillates

equal to the stator frequency, thus causing vibrations in the machine with equal frequency.

37

4.3.3 Scaling error

The other current measurement fault that causes torque ripples is called scaling error. As mentioned in

section 4.3.1, measuring signal from the current sensor has to be scaled according to the input of the

ADC. The resistance used in the current measurement itself and in the scaling circuit, contain some

degree of inaccuracy. This inaccuracy may lead to a misrepresentation of amplitude when the current

controller rescales the signal back to the real current values. A scaling error in one of the two measured

phases will also affect the amplitude of the calculated phase current. As for the last sub-chapter, the

scaling errors effect on measured current is best illustrated in stator-oriented reference frame.

Figure 4.12 shows measurements of 𝑖𝑠𝛼
𝑠 and 𝑖𝑠𝛽

𝑠 as a function of time and 𝑖 𝑠 as a function of its

respective 𝛼, 𝛽 components. The measuring circuit is imposed with a scaling error in one of the

measured phase-currents. It can be seen from the figure that this particular scaling error effects the

amplitude of 𝑖𝑠𝛼
𝑠 . Looking at 𝑖 𝑠 in the 𝛼𝑠, 𝛽𝑠-plane shows that the scaling error changes current vectors

trajectory from a circular to an elliptic trajectory. The elliptic trajectory causes amplitude of 𝑖 𝑠 to

oscillate with twice the electrical frequency.

Measured current with scaling error

Figure 4.12: Scaling error in current measurement

If the current measurement is used in a feedback loop of a fast current-controller, it can be assumed

that the measured value follows the given reference value. This assumption is valid because the current

controller is much quicker than the changes in the reference value. Instantaneous value of the measured

current can be expressed as:

𝑖𝑠𝑎 = 𝑖𝑠𝑎,𝑟𝑒𝑓 = 𝐼 cos(𝜔𝑠)

𝑖𝑠𝑏 = 𝑖𝑠𝑏,𝑟𝑒𝑓 = 𝐼 cos (𝜔𝑠 −
2

3
𝜋)

(4.52)

(4.53)

Since the measured value follows the reference value, it can be understood that an error in the measured

signal will lead to the actual current being regulated incorrectly. As an example, if measured current

indicates an amplitude which is 2% higher than the actual current, output current will be regulated to

a value lower than the reference value. Given that the actual currents are controlled by a high-

performance current controller, they can be expressed as:

𝑖𝑠𝑎
∗ = 𝐼 cos(𝜔𝑠) /𝐾𝑎

𝑖𝑠𝑏
∗ = 𝐼 cos (𝜔𝑠 −

2

3
𝜋) /𝐾𝑏

(4.54)

(4.55)

Where 𝐾𝑎 and 𝐾𝑏 are the scaling error introduced by the measuring circuit

38

It was explained in section 4.3.2 that oscillations in 𝑖𝑠𝛼
𝜓𝑟

∗
 due to a DC-offset had little effect on the

rotor flux amplitude due to the large rotor time constant. This is also the case when the measurements

are subjected to scaling errors. It was also shown that 𝑖𝑠𝛽
𝜓𝑟

′
 created an oscillatory disturbance torque.

The same analysis can be conducted for measurements subjected to scaling errors. 𝑖𝑠𝛽
𝜓𝑟

′
 can be found

by preforming a Park transformation on the three-phase system.

 𝑖𝑠𝛽
𝜓𝑟

′
=

2

3
[-sin(𝜔𝑠) ∙ 𝑖𝑠𝑎

′ − sin (𝜔𝑠 −
2𝜋

3
) ∙ 𝑖𝑠𝑏

′ − sin (𝜔𝑠 +
2𝜋

3
) ∙ 𝑖𝑠𝑐

′] (4.56)

𝑖𝑠𝑎
′ and 𝑖𝑠𝑏

′ are the difference between the measured current and the actual current. Using equations

(4.52)-(4.55), the error between measured and actual current can be expressed as:

𝑖𝑠𝑎
′ = 𝑖𝑠𝑎 − 𝑖𝑠𝑎

∗ = 𝐼 cos(𝜔𝑠) (1 −
1

𝐾𝑎

)

𝑖𝑠𝑏
′ = 𝑖𝑠𝑏 − 𝑖𝑠𝑏

∗ = 𝐼 cos (𝜔𝑠 −
2

3
𝜋) (1 −

1

𝐾𝑏

)

𝑖𝑠𝑐
′ = −(𝑖𝑠𝑎

′ + 𝑖𝑠𝑏
′)

(4.57)

(4.58)

(4.59)

The expression for 𝑖𝑠𝛽
𝜓𝑟

′
 can be further developed by inserting equations (4.57)-(4.59) in eq. (4.56).

With use of MaplesoftTM mathematical program Maple and some geometric simplifications, 𝑖𝑠𝛽
𝜓𝑟

′
 can

be expressed as:

𝑖𝑠𝛽
𝜓𝑟

′
=

𝐾𝑎 − 𝐾𝑏

𝐾𝑎 ∙ 𝐾𝑏

∙
𝐼

3
∙ (√3 cos(𝜔𝑠) − 3 sin(𝜔𝑠)) ∙ cos(𝜔𝑠)

=
𝐾𝑎 − 𝐾𝑏

𝐾𝑎 ∙ 𝐾𝑏

∙
𝐼

6
∙ (2√3 sin (

𝜋

6
− 2𝜔𝑠) + √3)

=
𝐾𝑎 − 𝐾𝑏

𝐾𝑎 ∙ 𝐾𝑏

∙
𝐼

√3
∙ (sin (

𝜋

6
− 2𝜔𝑠) +

1

2
)

=
𝐾𝑎 − 𝐾𝑏

𝐾𝑎 ∙ 𝐾𝑏

∙
𝐼

√3
∙ (cos (2𝜔𝑠 +

𝜋

3
) +

1

2
)

(4.60)

Eq. (4.60) shows that 𝑖𝑠𝛽
𝜓𝑟

′
 oscillates with double the stator frequency. Going back torque equation

shown in (4.49), it is possible to find an expression for the disturbance load Δ𝜏𝐿.

ΔτL = 𝜓𝑅 ∙ 𝑖𝑠𝛽
𝜓𝑟

′

=
𝐾𝑎 − 𝐾𝑏

𝐾𝑎 ∙ 𝐾𝑏

∙
𝐼 ∙ 𝜓𝑅

√3
∙ (cos (2𝜔𝑠 +

𝜋

3
)) +

𝐾𝑎 − 𝐾𝑏

𝐾𝑎 ∙ 𝐾𝑏

∙
𝐼 ∙ 𝜓𝑅

2√3

(4.61)

Eq. (4.61) shows that a scaling error in a measured phase-current causes a disturbance load that

oscillates with twice the stator frequency. As in previous section, the variation in electrical torque

causes vibrations in the machine equal to twice the stator frequency.

39

5 Programming Structure and Software

5.1 Introduction
An R&D group called PESC at the department of Electrical Power Engineering has since the beginning

of 2019 worked on establishing a common NTNU Control Platform. The control platform is intended

to be a common foundation for research projects and a starting point for future master and doctor thesis

at the department. Contributing to the PESC group has been a major part of the author’s master thesis.

The control platform is built by writing new and modifying already existing C++ code. Also, some of

the IP-cores used in FPGA programming are provided by SINTEF

This chapter gives a quick overview of the controller boards and Software on which the NTNU Control

Platform is based upon. Programming structure of the CPU and an introduction to Xilinx System

Generator tool for creation of IP-cores are also presented in this chapter.

The control platform uses a control board from Avnet called PicoZed 7030, red board in Figure 5.1-

(b), and a process interface board from SINTEF Energy, green board in Figure 5.1-(b). The control

board from Avnet uses a Zynq xc 7z030 processor that has two floating point ARM-processors (also

called CPUs) and one FPGA mounted on the same chip. The processors physical location on the board

and an illustration of the Zynq-processor is also shown in Figure 5.1. One of the CPU runs a Linux

program that is used to program the remaining CPU and FPGA. It also allows the card to be

programmed and monitored using special release and monitoring tools. Linux program, release tools

and monitoring tools are provided by The Switch Marine Drives. Process interface board from SINTEF

allows for control of two 2-level 3-phase inverters and eight measurements (normally 2𝑥3-phase

current measurement and 2𝑥DC-Link voltage measurement).

Programming of control board is done using three different software, all provided by Xilinx. Code for

the remaining CPU is written in C++ using Software Development Kit (SDK). FPGA is programmed

by connecting so-called IP-cores together in a program called Vivado. The IP-cores them self are made

using conventional VHDL-Programming or by using Xilinx’s System Generator plugin in Simulink.

Vivado also provide a generic IP-core catalogue that can be used.

(a) (b)
Figure 5.1: (a) schematic representation of the Zynq-processor [26]. (b) Photo of the control boards.

40

5.2 Programming structure in SDK
The CPU program is structured in such a way that it is possible to change the application with minimum

modifications to the code. The core structure consists of a “main.cc” file that runs in between the

interrupts and a “DriveRoutioneFast.cpp” file that calls all the functions of the drive. In the future, the

core structure will also contain a State Machine located in the DriveRoutineFast, based on the

Drivecom standard. The objects that is used within this foundation are made using class declaration

and can be easily changed or added to a code repository for future use. In this subchapter main.cc and

DriveRoutineFast.cpp will be presented and explained. The chapter will also give an example of class

declaration.

A simplified version of “main.cc” is presented in Code 5.1. The “main.cc” file stats with initializing

all the required communication, parameters and interrupts before entering an infinite while loop. The

program stays in the while loop until the CPU receives an interrupt generated by the PWM IP-core.

When the CPU receives the interrupt, the program jumps out of the while loop and executes “void

PWMIsr()”, shown between line 1-6 in the code. The function runs DriveRoutineFast, thus executing

one iteration of the control routine. It is important to note that DriveRoutineFast needs to have

sufficient with time to finish all its calculations before a new interrupt appears. However, today’s fast

processing capability reduces this problem. In fact, the processors used on the control board is fast

enough to use only one interrupt for the entire drive control if desired.

1. void PWMIsr() // Interrupt from the PWM

2. {
3. DriveRoutineFast();

4.
5. m_dataloggers[0].Run(DATALOGGER_PROBE_BACKGROUND);

6. }
7.
8. int main()
9. {
10. // Initialize SW and parameters from data base:

11. Initialize_SW();

12.

13. // Initialize Interrupts

14. // Initialize Communication

15.

16.

17. while(true)

18. {

19. ++cntr_background;

20. TESTLED_REG =light;

21. g_wtcp.Service();

22. }

23. return 0;

24. }

Code 5.1: main.cc

A summary of DriveRoutineFast.cpp is presented in Code 5.2. The code shows the different objects

that are executed when the CPU receives an interrupt. These can be seen between line 17-35. Line 6-

15 shows the global variables used to operate the drive. The global variables include both input

variables like FrequencyIn and output variables like u_a_est. Input and output variables are monitored

and changed using the Software “WatchView”, developed and provided by The Switch. Line 1-4

shows the class declarations. Code for the classes are written in individual .cpp files with a

corresponding heather file “.hpp”. Since type of converter and control strategy etc. is specified through

class declaration, one can simply change the control strategy from 𝑉/𝑓-control to FOC by including a

41

new heather file and changing the name of the class. This object-oriented programming makes the

code very flexible and versatile.

1. //Class declarations
2. PWM_2L_3ph PWM_1;

3. ScalarControl Controller;

4. VoltageEstimator BlankingTimeCorr;

5.
6. //Global variables
7. int FrequencyIn; //Desired frequency

8. float BlankingTime; //Blanking time in [s]

9. float DCLinkVoltage;
10. float U_s_amp; //Calculated controller volt.vect.amp

11. float U_s_ang; //Calculated controller volt.vect.ang

12. float u_a_est; //Estimated a-phase voltage

13. float u_b_est; //Estimated b-phase voltage

14. float u_c_est; //Estimated c-phase voltage

15. int NonLinCorr; //0=off, 1=on with non-linear corr.

16.

17. void DriveRoutineFast(void)

18. {

19. //Voltage measurement estimation

20. BlankingTimeCorr.Run(BlankingTime);

21.

22. u_a_est = BlankingTimeCorr.GetPhaseVoltage_a();

23. u_b_est = BlankingTimeCorr.GetPhaseVoltage_b();

24. u_c_est = BlankingTimeCorr.GetPhaseVoltage_c();

25.

26. //Runs the converter

27. Controller.Run(FrequencyIn,5);

28.

29. //Return voltage vector

30. U_s_amp = Controller.GetVoltageVectorAmp();

31. U_s_ang = Controller.GetVoltageVectorAng();

32.

33. //Runs PWM

34. PWM_1.Run_3phase(U_s_amp, U_s_ang, DCLinkVoltage, NonLinCorr);

35. }

Code 5.2: DriveRoutineFast.cpp

A common programming platform with multiple authors has the potential to generate programs with

different “programming styles”, making it over-complex and hard to understand. It is therefore

necessary to create a common structure, describing how future classes should be written. A suggestion

of such a structure is presented in Code 5.3 and Code 5.4, showing the heather and source file of an

example-class, respectively.

The first line in the .hpp file presented in Code 5.3 defines the name of the class. The class name is

used to create objects in for example DriveRoutineFast.cpp, as shown in line 2-4 in Code 5.2. It is

possible to create several objects of one class. This can be useful when e.g. two identical inverters are

controlled by the same processor. The class is built up by public and private functions and values. It is

good practice to keep all variables within a class private (line 9-19) and functions that sets, gets or

calculate the private variables as public (line 3-7).

42

1. class ExampleClass
2. {

3. public:
4. void Init (int InitValueIn_1, int InitValueIn_2);

5. void Run (int VariableIn_1, float VariableIn_2);

6. void SetValue (float ParameterIn_1);

7. float GetValue (void);

8.
9. private:
10. // Initialized values

11. int InitValue_1;

12. int InitValue_2;

13.

14. // Calculated values

15. float temp_1;

16. float temp_2;

17.

18. // Output values

19. float Output;

20. };

Code 5.3: ExampleClass.hpp

Source file of the example-class specifies the actions that will happen when the function is called up

in DriveRoutineFast or other places within the program. The example code shows how variables can

be set during the initialisation run (line 3-7), how input variables can be used in combination with

private variables to execute a calculation (line 9-14) and how a private variable can be accessed outside

the class (line 16-19).

1. #include "ExampleClass.hpp"
2.
3. void ExampleClass::Init(int InitValueIn_1, int InitValueIn_2)
4. {

5. InitValue_1 = InitValueIn_1;

6. InitValue_2 = InitValueIn_2;

7. }

8.
9. void ExampleClass::Run(int VariableIn_1, float VariableIn_2)
10. {

11. temp_1 = InitValue_1 + VariableIn_1;

12. temp_2 = InitValue_2 + VariableIn_2;

13. Output = temp_1 * temp_2;

14. }

15.

16. float ExampleClass::GetValue (void)

17. {

18. return Output;

19. }

Code 5.4: ExampleClass.cpp

43

5.3 IP-core Generation using System Generator DSP in Simulink
As a part of the installation of Vivado, Xilinx also provide the option to install a tool called System

Generator DSP. The System Generator tool becomes an extension to MATLAB Simulink and allows

for programming and generation of IP-cores using Simulink. In order to generate an IP-core, special

Simulink blocks provided by Xilinx have to be used. The new library gets implemented as a part of

the installation. Once a block design is complete, it is possible to test the functionality using other

Simulink libraries.

Gateway In and Gateway Out

The interface of the new IP-core is defined using the blocks Gateway In and Gateway Out. This is

shown in Figure 5.2 where the violet area represents the inside of the IP-core. The two gateway ports

convert signals from Simulink, FPGA or CPU to fixed- or floating-point signal or vice versa. Output

type from Gateway In can be specified using the block settings highlighted in Figure 5.3-(a). The

Gateway can convert input data to Boolean (true, false), Fixed-point (signed or unsigned) or floating-

point (single or double). Figure 5.3-(b) shows gateway implementation in the IP-core design and are

the same for both Gateway In and Gateway Out. Gateway implementation defines how the software

communicates with the IP-core. The specification “None” is used if the input or output is connected

to another IP-core and “AXI4-Lite” is used for communication with the CPU. The new IP-core can

also generate its own interrupt that can be used to trigger special events in the CPU.

Figure 5.2: Input and Output gates

(a) (b)
Figure 5.3: Block specification for Gateway ports

Outside

IP-core Inside

IP-core

44

Creating a block design

As mentioned earlier, when downloading System Generator, Xilinx will provide a Simulink library

dedicated to generating IP-cores. The new blocks provided by Xilinx can be used in a similar manner

as other Simulink libraries, making programming easier and more understandable for many electrical

engineers without special knowledge of VHDL programming. The fact that blocks are made by experts

from Xilinx ensures a reliable IP-cores design.

A picture of the basic building blocks is shown in Figure 5.4. Enable ports and reset ports can also be

added to many of the blocks, making them very versatile. It is also possible to integrate already existing

MATLAB scrips (.m files) and VHDL files in the new design using the block “Black Box”.

Figure 5.4: Basic block library for the Xilinx tool

An example of a block design is shown in Figure 5.5. The design is created using a counter-, relational-

and constant-block and generates a sawtooth signal with the amplitude of 100 at the output as long as

the counter is enabled.

Figure 5.5: Counter example

45

Simulating the block design

The gateway ports allow the IP-core to be simulated before it is implemented it in the FPGA design.

Simulation is a quick way of verifying the design. The input signal to the IP-core can be anything from

a simple constant or a sinewave generator to the output of another Simulink model. The output of the

IP-core can be monitored or used in another IP-core design. A simulation of the counter constructed

above can be performed using a step function. The complete simulation circuit is presented in Figure

5.6. Data type of the input signal can be specified using a Data Type Conversion block and the

converted signal is then passed into the IP-core.

Figure 5.6: Simulation of counter

Simulation results can be monitored using a scope as shown in Figure 5.6. Scope output is presented

in Figure 5.7. The counter counts to 100 where it is reset. Also, the counter does not start until it is

enabled by the step function. In order to run simulations, one has to specify a sampling time. The

sampling time is given by the internal clocks of the FPGA and can be found in Vivado. This simulation

is executed with a sampling time of 10 𝜇𝑠. It is also necessary to include System Generator block in

the Simulink design to get the program to compile.

Figure 5.7: Scope output

46

Generating an IP-core

When the program is sufficiently tested it is possible to generate an IP-core that can be integrated in

the FPGA design. This is done by double clicking on the System Generator block shown on the top

left corner of Figure 5.6. The options menu is shown in Figure 5.8. Here, one has to specify which

board or processor that is being used and what hardware language the code should be generated in.

These options are highlighted in Figure 5.8-(a). Next, the clock used in FPGA and in Simulink

simulations are specified. If the clocks do not match up, the system generator will take care of the

scaling. The clock specification is found under the banner “Clocking” and is highlighted in Figure 5.8-

(b). Once the settings are properly chosen, the IP-core is created by pressing “Generate”.

(a) (b)

Figure 5.8: System Generator setup

Figure 5.9-(a) shows the counter circuit from Simulink and Figure 5.9-(b) shows the final generated

IP-core that can be implemented in the FPGA design. In this specific design, Gateway In was specified

as AXI4-Lite and Gateway Out was specified as None. Enable of the counter is controlled from the

CPU through the AXI-port of the block. The AXI-port is the top left input port of Figure 5.9-(b). This

connection will be auto-generated when the new IP-core is added to the FPGA design, together with

the clock input “clk”. The output port of the design, Gateway Out, is shown as an internal connection.

This connection has to manually be connected the desired IP-core and will not be accessed from the

CPU.

(a) (b)

Figure 5.9: (a) Counter example in Simulink. (b) Counter example in Vivado

47

Implementing the IP-core in SDK

Once the FPGA program in Vivado is completed and a new bit stream has been created, it is possible

to export a new hardware platform. The new hardware platform contains a special made .h file for the

new IP-cores generated by System Generator. The .h file allow for easy read and write access for the

CPU. A very nice feature of this system is that the user does not need to know about the memory

location for the different in- and outputs of the IP-core. The communication between CPU and IP-core

is established by initializing the IP-core with a standardized syntax and the in- and outputs of the IP-

core are written to or read from using pre-defined function. An example of how to initialize, write to

and read from an IP-core is presented below.

The hardware platform generated from Vivado is linked to SDK and automatically updated if changed.

Each project inside SDK is also linked to a Board Support Package (BSP) which again is liked to a

hardware platform. The links between hardware platform, BSP and SDK project is shown in Figure

5.10. If the hardware platform is updated, SDK will ask if the user want to update the BSP. Since the

project uses .h files directly from the BSP, all driver in the project is also updated once the BSP is

updated

Figure 5.10: Link between hardware platform, BSP and project

When the BSP has been updated, the auto-generated .h file can be included in the initialization file of

the project. The .h file name is generated using the same name as shown in the Vivado design. From

Figure 5.9-(b) it is seen that the block is labelled “counter_example_0” where “counter_example” is

the name of the block and “0” is the block ID. It can be understood that if a second Counter IP-core

was to be added to the FPGA design, it would be named “counter_example_1”. Initialization of the

counter IP-core is shown in Code 5.5. The first step of initializing the new IP-core is to create a pointer

for that specific IP-core. This is shown in line 5. The last step is to run the initialize function specified

in the .h file of the IP-core. The initialize function is shown in line 10 of the code. The initialize

function can be generalized to “Name”_Initialize(&pointer, ”block ID”). In this case, memory location

of “ptr_counter” and the block ID “0” is passed to the function.

1. // Include auto-generated .h file from BSP
2. #include "counter_example.h"
3.
4. //User IP-core variables
5. counter_example ptr_counter;

6.
7. void Initialize (void)
8. {
9. //Initialize the new IP-core
10. counter_example_Initialize(&ptr_counter,0 //Insert block ID);

11. }

Code 5.5: Initialization of a new IP-core

48

After the IP-core has been initialized, input and output values from the IP-core can be easily accessed

by standardized functions. A generalized syntax for the read and write functions are presented below:

o “Name”_”Port name”_read(&pointer);

o “Name”_”Port name”_write(&pointer, “value”);

The name of the IP-core is the same as during initialization. Port name is the same as the Gateway port

in Simulink. In the Counter example, this name will be “gateway_in”. Block name, port names and the

functions presented can also be found in the block datasheet located in the hardware platform.

An example of how to read and write to an IP-core is presented in Code 5.6. Line 13 shows how

“gateway_in” can be assigned the value 1, thus enabling the counter. The input status can be monitored

using the read function shown in line 16. It is important to note that before the read and write functions

can be accessed in a source file, .h for the IP-core in question has to be included, shown in line 2.

Moreover, the pointer also has to be declared in similar manner as in the initialization file. This is done

by using an extern declaration and is shown in line 5 of the example code.

1. // Include auto-generated .h file from BSP
2. #include "counter_example.h"
3.
4. // Looks for external declaration in "Counter_example.h"
5. extern counter_example ptr_counter;

6.
7. void RunRoutine (void)
8. {

9. int EnableValue;

10.

11. //********Communication to the IP-core********//

12. //Write to the IP-core

13. counter_example_gateway_in_write(&ptr_counter,1);

14.

15. //Read from the IP-core

16. EnableValue = counter_example_gateway_in_read(&ptr_counter);

17. }

Code 5.6: Reading and writing to and from the IP-core

49

6 CPU and FPGA Programming

6.1 Introduction
This chapter will show how the programming tools presented in chapter 5 can be used to create an

open loop 𝑉/𝑓-control of a three-phase induction machine. It will also show how the phase voltage

can be estimated using IGBTs control signal with correction for banking time. Lastly, implementation

of a correction voltage to the control voltage will be presented.

The program is built on the control platform developed in the PESC group. A summary of main.cc and

DriveRoutineFast.cpp is shown in Code 5.1 and Code 5.2, respectively. The program is built using

different objects in the CPU and different IP-cores in the FPGA. These elements are illustrated in

Figure 6.1. The project specific classes developed in this thesis are: 𝑉/𝑓-controller, PWM modulator

and voltage estimator and corrector. The classes have been written in C++ using SDK and implemented

in the standardized control platform. The PWM IP-core is developed by SINTEF and the Blanking

Time Correction IP-core is developed by the author using Xilinx’s System Generator tool in Simulink.

Figure 6.1: Objects and elements in the control software

The 𝑉/𝑓-controller gathers information about the machine’s nominal frequency and voltage together

with desired acceleration time (from 0-1 𝑝𝑢 speed) during the initialization run. Control values 𝑓𝑠 and

𝑈𝑏𝑜𝑜𝑠𝑡 can be changed during operation and controls stator frequency and voltage boost at low speed.

The output of the controller is a voltage vector amplitude and angle. Since both open loop 𝑉/𝑓-control

and closed loop FOC has the same output, control strategy can easily be changed without having to

major modification to the program.

The PWM receives a voltage vector from the controller and decompose it into 𝛼𝑠, βs components.

Then an inverse Clark-Transformation is performed in order to find the three phase voltages. The

control voltage, or modulation index, and switching frequency are sent to the PWM IP-core.

Blanking Time Correction IP-core uses the three bit-signals for 𝑇𝐴+, 𝑇𝐵+, 𝑇𝐶+ (see Figure 4.1) from

PWM IP-core and blanking time duration, Δ𝑡, as inputs. Current measurement, 𝑖 𝑠,𝑚𝑒𝑎𝑠, should have

come from Hall elements connected to a running machine. However, since all testing in this thesis is

performed without a physical inverter, a current signal is emulated in the modulator and sent to the

FPGA. The IP-core gives out the number of samples where bridge-leg midpoint has the voltage

potential of 𝑈𝑑𝑐 within one interrupt. It also sends out the total number of samples within one interrupt.

Voltage estimator uses the numbers of samples and DC-link voltage to estimate phase voltages.

50

6.2 𝑉/𝑓- Control (Controller)
The 𝑉/𝑓-controller was presented in chapter 3.1. The program is based on an open loop control with

a boost voltage in the lower speed range. Boost voltage is introduced to compensate for the resistive

voltage drop. The program is also designed to go into field weakening when the frequency becomes

higher than nominal frequency. Voltage/frequency curve of the controller is illustrated in Figure 6.2.

The figure shows a linear relation between voltage and frequency with a voltage lift in the lower speed

regions, and constant voltage with increased frequency in the field weakening range.

Figure 6.2: 𝑉/𝑓-curve

Initialization of the controller is shown Code 6.1. The controller is assigned a nominal voltage and

frequency, switching frequency and desired acceleration time. The values are passed to the private

variables of the class, so they can be accessed by any member of the class. Lastly, peak value of the

phase voltage is found, as shown in line 10.

1. void ScalarControl::Init(int NominalVoltage,int NominalFrquency,
int SwitchingFrequency, int AccelerationTime)

2.
3. {

4. Un = NominalVoltage;

5. fn = NominalFrquency;

6. fsw = SwitchingFrequency;

7. AccTime = AccelerationTime;

8.
9.
10. Un_pf_peak = 0.8165 * Un;//sqrt(2)/(sqrt(3))

11. }

Code 6.1: Scalar Control Initialization code

The controllers Run code is presented in Code 6.2. Input values to the code are desired stator frequency

and boost voltage. The 𝑉/𝑓-gradient is calculated (line 4) and used to determine the amplitude of the

voltage vector. From the code it can be seen that the frequency is ramped up and down according to

the chosen ramp time. The boost voltage is introduced at line 33-42. The magnitude of the boost

voltage is reduced as the speed is increasing. Lastly, the frequency is integrated using the actual stator

frequency and switching frequency.

As mentioned earlier, the code will also go into field weakening operation when the desired stator

frequency exceeds the nominal frequency. Field weakening code is not presented in this chapter. Up

and down ramping of frequency is exactly the same as for normal operation, however voltage is kept

constant.

51

1. void ScalarControl::Run(int frequency, int BoostVoltage)
2. {

3. //Volt per hertz

4. VoltPerHertz = Un_pf_peak/fn;

5.
6. //Limits the frequency

7. fref = frequency;

8.
9. //Normal operation

10. if (fs <= fn)

11. {

12. //Ramping up the voltage

13. if (fref > fs)

14. {

15. fs += (fn/(fsw*AccTime));

16. U_s_amp = VoltPerHertz*fs;

17. }

18.

19. //Ramping down the voltage

20. else if (fref < fs)

21. {

22. fs -= (fn/(fsw*AccTime));

23. U_s_amp = VoltPerHertz*fs;

24. }

25.

26. //Constant voltage

27. else

28. {

29. U_s_amp = VoltPerHertz*fs;

30. }

31.

32. //Boost Voltage at low speed

33. if (fs == 0)

34. {

35. temp = 0;

36. }

37. else

38. {

39. temp = (fn - fs) / fn;

40. U_boost = temp * (fmax(fmin(BoostVoltage, 10), 0));

41. U_s_amp += (U_boost);

42. }

43. }

44. //Sets the angle between 0-2*pi

45. U_s_ang += (fs/fsw*2*M_PI);

46.

47. if (U_s_ang > 2*M_PI)

48. {

49. U_s_ang -= 2*M_PI;

50. }

Code 6.2: Scalar Control Run code

52

6.3 PWM (Modulator)
The PWM code is presented in Code 6.3. Voltage vector angle and amplitude along with DC-link

voltage and blanking time gets read into the function. Voltage vector is decomposed to its respective

𝛼𝑠 and 𝛽𝑠 components (line 11-12). Using inverse Clark transformation, eq.(2.11), 𝛼𝑠, 𝛽𝑠 components

are converted to three phase voltages. The phase voltages are scaled according to the DC-link voltage

ranging from -1 to 1 (line 19-21), where -1 = −𝑈𝑑𝑐/2 and 1 = 𝑈𝑑𝑐/2. Since the FPGA uses fixed

point integer variables as input, control voltages are scaled with a scaling factor and type-casted to a

32-bit integer variable before being passed to the PWM IP-core, seen from line 21-27.

A load current is modulated in the code and passed down to the blanking time correction IP-core. Load

currents are in phase with phase voltages. It will be shown in the next subchapters that blanking time

correction is dependent on current direction and not amplitude, hence current amplitude is the same as

control voltage amplitude. The integer typecasting and scaling is shown in line 29-31 and the value is

written to the IP-core in line 32-34. Finally, blanking time interval is multiplied with sampling time

period of the FPGA before being passed down to the correction IP-core.

1. void PWM_2L_3Ph::Run_3phase(float VoltageAmp, float VoltageAng,
float DCLinkVoltage, float BlankingTimeIn)

2. {

3. //Declaring private variables

4. U_s_amp = VoltageVectorAmp;

5. U_s_ang = VoltageVectorAng;

6. Udc = DCLinkVoltage;

7.
8. //Alpha/Beta calculation

9. U_s_alpha = U_s_amp * cos (U_s_ang);

10. U_s_beta = U_s_amp * sin (U_s_ang);

11.

12. //3 phase calculation

13. U_s_a = U_s_alpha;

14. U_s_b = 0.5 * (-U_s_alpha + sqrt(3) * U_s_beta);

15. U_s_c = 0.5 * (-U_s_alpha - sqrt(3) * U_s_beta);

16.

17. m_a = 2 * U_s_a / Udc;

18. m_b = 2 * U_s_b / Udc;

19. m_c = 2 * U_s_c / Udc;

20.

21. // Convert to integer values:

22. pwm_a=static_cast<int32_t>(fmax(fmin(m_a, 1.0), -1.0) * 2000);

23. pwm_b=static_cast<int32_t>(fmax(fmin(m_b, 1.0), -1.0) * 2000);

24. pwm_c=static_cast<int32_t>(fmax(fmin(m_c, 1.0), -1.0) * 2000);

25. PWM_REFERENCE_REG(pwm_base_adresse,0) = pwm_a;

26. PWM_REFERENCE_REG(pwm_base_adresse,1) = pwm_b;

27. PWM_REFERENCE_REG(pwm_base_adresse,2) = pwm_c;

28.

29. ia_out = m_a * 16383; //Scale to a 16-bit value

30. ib_out = m_b * 16383; //Scale to a 16-bit value

31. ic_out = m_c * 16383; //Scale to a 16-bit value

32. blankingtimecorr_ia_in_write(&ptr_blank, ia_out);

33. blankingtimecorr_ib_in_write(&ptr_blank, ib_out);

34. blankingtimecorr_ic_in_write(&ptr_blank, ic_out);

35.

36. //Write BlankingTime to FPGA

37. BlankingTime = BlankingTimeIn * 100E6; //Nr. FPGA samp per intr

38. blankingtimecorr_blankingtime_write(&ptr_blank, BlankingTime);

Code 6.3:PWM Run code

53

6.4 Voltage Estimation with Blanking Time Correction
This chapter will present a method to estimate the output voltage of the inverter, 𝑈𝑎𝑠

∗ , using the DC-

link voltage, knowledge of blanking time and current direction. An expression for 𝑈𝑎𝑠
∗ was thoroughly

deducted and presented in eq.(4.34). The equation is repeated below.

 𝑈𝑎𝑠
∗ =

1

3
∙ 𝑈𝑑𝑐 ∙ (

2𝑇𝑎
∗ − 𝑇𝑏

∗ − 𝑇𝑐
∗

2𝑇𝑠𝑎𝑚𝑝

) (6.1)

Where: 𝑇𝑎
∗ = 𝑇𝑎 − sing(𝑖𝑠𝑎) ∙ 𝑡′

𝑡′ = 𝑡𝑜𝑓𝑓 − 𝑡𝑜𝑛 − Δ𝑡

𝑇𝑏
∗ = 𝑇𝑏 − sing(𝑖𝑠𝑏) ∙ 𝑡′ 𝑇𝑐

∗ = 𝑇𝑐 − sing(𝑖𝑠𝑐) ∙ 𝑡′

In this model, on and off delays of the IGBT, 𝑡𝑜𝑛 and 𝑡𝑜𝑓𝑓, are assumed to be equal and independent

of current. However, switching waveform presented in section 4.1.1 shows that in real life applications,

this will not be true. Current dependency could be included in the estimator when it is used on a

physical drive. Moreover, 𝑡𝑜𝑓𝑓 delay is much longer than 𝑡𝑜𝑛 delay. This should also be taken into

consideration when implemented into a real drive. Δ𝑡 is the blanking time in a bridge leg. Blanking

time is a constant time delay between turn-on and turn-off of the two complementary IGBTs and is

used to prevent a short circuit of the bridge leg. In other words, when the upper IGBT turns off, turn-

on signal for the lower IGBT is delayed according to Δ𝑡. Blanking time is a known time delay and is

illustrated in Figure 4.4-(b).

From eq.(6.1) it is seen that actual on-time and sampling time has to be acquired in order to estimate

phase voltage. Blanking time of IGBTs are given by the gate driver on the inverter’s circuit board, thus

making output signals from controller equal to the ideal switching presented in Figure 4.4-(a) and

given by 𝑇𝑎 , 𝑇𝑏 , 𝑇𝑐. It is necessary to create additional logics in the FPGA in order to capture the ideal

on-time and subtract or add the blanking time, in accordance with the equations above.

There are four scenarios one has to analyse to determine when and where subtraction or addition of

blanking time has to occur in order to give a correct output voltage estimate. The scenarios are: 1) 𝑇𝐴−

is opening and 𝑇𝐴+ is closing with current flowing to the load, 2) 𝑇𝐴+ is opening and 𝑇𝐴− is closing

with current flowing to the load, 3) 𝑇𝐴− is opening and 𝑇𝐴+ is closing with current flowing from the

load, 4) 𝑇𝐴+ is opening and 𝑇𝐴− is closing with current flowing from the load.

Figure 6.3 illustrates scenario 1). Figure 6.3-(a) shows the current flow when 𝑇𝐴− is closed. Since the

IGBT is one-directional due to its internal diode, current has to go in the freewheeling diode 𝐷𝐴−, thus

giving bridge leg midpoint the electrical potential of 0 𝑉. During switching transaction, blanking time

introduce a time interval where none of the IGBTs are conducting. The positive current continues to

flow through 𝐷𝐴−, extending the time interval where electric potential of bridge leg a is 0 𝑉. Since it

is the on-time of 𝑇𝐴+ that is being delayed, it can be understood that blanking time has to be subtracted

in order to find 𝑇𝑎
∗. This delay is illustrated in Figure 6.3-(c) where the dotted line shows the ideal on-

switching and the solid line shows the actual on-switching.

(a) (b) (c)

Figure 6.3: Switching behaviour with blanking time, positive current

54

Scenario 2) can also be illustrated using Figure 6.3. Initially 𝑇𝐴+ is closed and current flows through

the IGBT, as shown in Figure 6.3-(b). Electric potential at the midpoint will then be equal to 𝑈𝑑𝑐. As

for the first scenario, during switching transaction, blanking time introduce a time period where none

of the IGBTs are closed. Positive current will immediately commutate from 𝑇𝐴+ to 𝐷𝐴− when 𝑇𝐴+

opens, changing the electrical potential of the bridge leg from 𝑈𝑑𝑐 to 0 𝑉 (Figure 6.3-(a)). Since the

electrical potential follows the ideal switching, no correction is done in scenario 2).

It can be seen from Figure 6.4 that scenario 3) becomes similar to scenario 2). Current commutate

immediately from 𝑇𝐴− to 𝐷𝐴+ when the lower IGBT is opens. Midpoint potential immediately rise

from 0 𝑉 to 𝑈𝑑𝑐 and blanking time correction is not preformed.

Scenario 4) can also be analysed using Figure 6.4. From Figure 6.4-(a) it is seen that current flows

through 𝐷𝐴+ when 𝑇𝐴+ is conducting. During the blanking time interval with no conducing IGBTs, the

negative current will still flow in the upper diode, extending the duration where electrical potential is

equal to 𝑈𝑑𝑐. This extension is illustrated in Figure 6.4-(c) where ideal voltage is given dotted line and

actual voltage is given by the solid line. This increased voltage area shows that blanking time has to

be added to 𝑇𝑎 after 𝑇𝐴+ has closed in order to find 𝑇𝑎
∗.

(a) (b) (c)
Figure 6.4: Switching behaviour with blanking time, negative current

One way of estimating 𝑇𝑎
∗ between two CPU interrupts is to count the numbers of clock cycles in the

FPGA where the bridge leg has an electrical potential equal 𝑈𝑑𝑐. The analysis above showed that the

time duration with this potential was shorter than expected when the current was positive, i.e. flowing

to the load, and longer when the current was negative, i.e. flowing from the load. Moreover, the

analysis also showed that loss of voltage area happened when 𝑇𝐴+ was supposed to closed (rising edge

control bit) and an addition of voltage area happened when 𝑇𝐴+ was opened (falling edge control bit).

By detecting rising and falling edges of the control bit alongside with direction of current, it is possible

to write a FPGA program that counts the number of cycles where electrical potential of the bridge leg

is equal to 𝑈𝑑𝑐.

An example of such a program is presented in Figure 6.5. The program is made using Xilinx library in

Simulink. Input signal are: bit signal to the upper IGBT in the bridge leg, phase current, blanking time

and one reset signals and one enable signal given by the interrupt. Input signals are presented with a

green background colour. Output signal is the number of clock cycles with midpoint potential equal

𝑈𝑑𝑐 and is coloured blue. The program is built using logical ports, counters, delays and registers. The

upper violet area shows the logics for scenario 1) and 2) and the lower area shows the logics for

scenario 3) and 4). The different segments of the program will be discussed in detail below.

55

Figure 6.5: Blanking time compensator

The IGBT control bit is connected to a rising/falling edge detector that sends out a positive pulse to

ether rising edge pulse or falling edge pulse. The content of the detector and a plot of its input and

output signal can be seen in Figure 6.6.

Figure 6.6: Rising and falling edge detector

Current direction is found by comparing the current signal with 0. Output of the comparator gives a

constant value of 1 in either positive or negative current branch. A magnified picture of the comparator

and plots of input and output signals are shown in Figure 6.7.

56

Figure 6.7: Sign of current

The counter logic used for scenario 1) is presented in Figure 6.8. The rising edge pulse and positive

current signal sends a pulse through the AND port, shown in Figure 6.8-(c). The pulse both enables

and latches into the register, making the register output, q, equal to 1. The register output will continue

to have the value 1 until it is enabled again and reads in an input value, d, equal to zero. Output of the

register is connected to an enable port of a counter that starts counting. The sampling period of the

FPGA is 10 𝑛𝑠. The counter is increasing the value by one for each sample. In order to get the desired

blanking time, it is therefore necessary to divide the blanking time with sampling period. This deviation

is done in the CPU and is shown in Code 6.3, line 37. When the counter exceeds this value, it resets

itself, shown in Figure 6.8-(e), and enables the register. It can be seen from Figure 6.8-(c) that d is

zero, thus making q equal to zero. Figure 6.8-(d) show that q is high during the time instance between

the rising edge pulse and the blanking time counter reaching its value.

Similar behaviour is found when the current is negative and a falling edge pulse is detected, as for

scenario 4).

(a)

(c)

(d)

(b)

(e)

Figure 6.8:Blanking time counter

57

(a)

(b)

Figure 6.9: Blanking time correction of IGBT bit. (a) positive current. (b) negative current.

The correction logic used for positive and negative current is presented in Figure 6.9-(a) and -(b),

respectively. Time-plots of Figure 6.9-(a) are presented Figure 6.10-(a). The positive current and rising

edge pulse sets the register output high. This signal is inverted and used in a AND operator together

with the IGBT bit. It is seen from Figure 6.10-(a) that the corrected signal is delayed with the inversed

register output when the IGBT has a rising edge and follows IGBT bit during falling edge, in

accordance with analysis done for scenario 1) and 2).

Time-plots for Figure 6.9-(b), i.e. negative current, are presented Figure 6.10-(b). From the analysis of

scenario 3) and 4) it was shown that the corrected signal should follow the IGBT bit during a rising

edge signal and extend the time period to which the signal was high after a falling edge signal. Negative

current and falling edge pulse sets the register output high. The output stays high until banking time

counter has reached its target value. It can be seen from Figure 6.10-(b) that by using a OR operator,

register output works as an extension of the IGBT bit.

58

Positive current Negative current

(a) (b)

Figure 6.10: Time-plot of corrected and uncorrected IGBT signal

Output of scenario 1) and 2) are connected to an AND gate together with positive current signal from

Figure 6.7. This ensures that the delayed “on time” only occurs when the current is positive. The same

goes for scenario 3) and 4). The two correction pathways are then combined with help of an OR gate

and connected to the enable port of a counter which again is connected to a register. This logical circuit

is presented in Figure 6.11-(a). The counter is latched into the register and reset at every interrupt. The

corrected bit and interrupt signal, on-time counter and register output are presented in Figure 6.11-(b).

Blanking time makes the signal unsymmetrical round the interrupt. This asymmetry is reflected in the

counter and register. Finally, in can be understood that the integration of the corrected bit, i.e. output

of the counter, becomes an estimate of the corrected on -time, 𝑇𝑎
∗. This value is latched into the register.

(a) (b)

Figure 6.11: (a) counter and register logic. (b) corrected signal, on-time counter and on-time register

59

Figure 6.12: Complete block design of the blanking time corrector IP-core

Until now, the subchapter has presented a logical circuit that can be used in order to find the corrected

on-time of one bridge leg of the inverter. The two other bridge legs can be found using the same circuit.

The total block design of the blanking time corrector is presented in Figure 6.12, where the input gates

of the block is located to the left and the output gates are located at the right. The circuit shown in

Figure 6.5 is made into a subsystem and is used to calculate the actual on-time of all the three bridge

legs. Driver signal input (IGBT bit input) is connected internally in the FPGA to a driver interface IP-

core which again is driven by the PWM-IP. The driver interface sends out six bits, one for each IGBT.

The bit for the upper IGBT of the respective bridge leg is picked out of the bit-word using a slice

operator. Input ports ia_in, ib_in, ic_in, BlankingTime and output ports Ta_on, Tb_on, Tc_on,

T_samp_on are all defined as AXI4-Lite ports, thus allowing communication with the CPU.

The sequencer, shown in the bottom left corner of Figure 6.12 and in details in Figure 6.13, is driven

by the interrupt signal generated by the PWM IP-core. The signal is type-casted to a Boolean signal

and connected to a rising edge detector. When a rising edge of the interrupt is detected an enable signal

is sent to the on-time registers, shown in Figure 6.11, latching in the latest value of 𝑇𝑎
∗, 𝑇𝑏

∗, 𝑇𝑐
∗ to the

register output which in terms are read by the CPU. The on-time counters are also reset. It can be seen

that the reset signal is delayed with 11 clock cycles. This is done to ensure the counter is not reset

before the value is latched into the register which can happen due to internal rooting delays in the

FPGA. The interrupt also drives a counter that counts the total number or FPGA samples between two

interrupts. The counter and register circuit are similar to the one presented in Figure 6.11. However,

the fixed interrupt frequency makes the output value of the register constant. This constant value is

read by the CPU and used as 𝑇𝑠𝑎𝑚𝑝.

60

Figure 6.13: Sequencer block

Knowing 𝑇𝑎
∗, 𝑇𝑏

∗, 𝑇𝑐
∗, it is possible to calculate the actual phase voltage of the load connected to inverter

terminals using eq.(6.1). Code for the voltage estimator is presented in Code 6.4. On-time register

output of the three phases and total count between two interrupts are read from the IP-core (line 4-7)

using the “read function” described in chapter 5.3. The calculation of phase voltages is shown in line

11-21. It can be seen that eq.(6.1) is somewhat modified in order to give the average voltage over a

sampling period instead of one switching period.

1. void VoltageEstimator::Run(int DCLinkVoltage)
2. {

3. //Get nr. of samples from FPGA

4. N_T_intr = (float) blankingtimecorr_t_samp_on_read(&ptr_blank);

5. N_Ta_on = (float) blankingtimecorr_ta_on_read(&ptr_blank);

6. N_Tb_on = (float) blankingtimecorr_tb_on_read(&ptr_blank);

7. N_Tc_on = (float) blankingtimecorr_tc_on_read(&ptr_blank);

8.
9.
10. //Voltage calculation according to formula

11. N_on_a_phase = 2 * N_Ta_on - N_Tb_on - N_Tc_on;

12. N_on_b_phase = 2 * N_Tb_on - N_Ta_on - N_Tc_on;

13. N_on_c_phase = 2 * N_Tc_on - N_Ta_on - N_Tb_on;

14.

15. T_on_a_phase = N_on_a_phase/N_T_intr;

16. T_on_b_phase = N_on_b_phase/N_T_intr;

17. T_on_c_phase = N_on_c_phase/N_T_intr;

18.

19. U_sa = DCLinkVoltage * 0.3333 * T_on_a_phase;

20. U_sb = DCLinkVoltage * 0.3333 * T_on_b_phase;

21. U_sc = DCLinkVoltage * 0.3333 * T_on_c_phase;

22. }

Code 6.4: VoltageEstimator code

61

6.5 Distortion voltage correction
It was shown in chapter 4.1 that blanking time introduced a six-step trapezoidal voltage that distorted

the output voltage of the inverter. It was discussed in chapter 4.2 how the distorted voltage affected

both open loop 𝑉/𝑓-control and closed loop FOC. It was understood that the trapezoidal distortion

voltage created a discontinuous output voltage when the machine was controlled using 𝑉/𝑓-control

and a similar distortion in control voltage when the machine was controlled using FOC.

It has been shown that the distorted voltage introduced to the output voltage could be expressed by eq.

(4.35). The distorted voltage equation is repeated below:

𝑈𝑠𝑎
′ ≈

1

6
(
𝑈𝑑𝑐 ∙ 𝑡′

𝑇𝑠𝑎𝑚𝑝

− 𝑈𝑠𝑤0 + 𝑈𝑓𝑑0) (2sign(𝑖𝑠𝑎) − sign(𝑖𝑠𝑏) − sign(𝑖𝑠𝑐)) (6.2)

By introducing the same distorted waveform to the control voltage, but with opposite sign as observed

in the output voltage, it is possible to compensate for this distortion. Such correction for the non-linear

voltage drop has been proposed in several papers [10, 19, 24]. The authors of [24] propose to use a PI-

regulator to tune the amplitude of the correction voltage. Tuning of amplitude is necessary if turn-on

and -off delays and forward voltages are unknown. In this thesis, the control board does not control

any physical inverter, thus turn-on and -off time together with forward voltage of the switch and power

diode is set equal to zero. Since all variables of eq.(6.2) are known, compensation voltage should not

need tuning in order to remove voltage distortion from the output voltage.

The correction code is presented in Code 6.5. The correction code is implemented in the already

existing modulator code presented in Code 6.3. Blanking time and 𝑇𝑠𝑎𝑚𝑝 is read from the blanking

time IP-core (line 8-9). The correction voltage for the different phases is calculated according to

eq.(6.2) (line 11-13). Finally, correction voltage is added to the control voltage (line 16-18).

1. void PWM_2L_3Ph::Run_3phase(float VoltageAmp, float VoltageAng,
float DCLinkVoltage, float BlankingTimeIn)

2. {

3. …
4. …
5.
6. if (VoltageCorrectionOn == 1)
7. {
8. //Reading blanking time and T_samp from FPGA
9. blank_time = 1E-8*blankingtimecorr_blankingtime_read(&ptr_blank);
10. T_samp = 1E-8*blankingtimecorr_t_samp_on_read(&ptr_blank);

11.

12. U_a_InvCorr = 0.16667 * ((Udc*(blank_time))/T_samp) *

(2*sign_a - sign_b - sign_c);

13. U_b_InvCorr = 0.16667 * ((Udc*(blank_time))/T_samp) *

(2*sign_b - sign_a - sign_c);

14. U_c_InvCorr = 0.16667 * ((Udc*(blank_time))/T_samp) *

(2*sign_c - sign_a - sign_b);

15.

16. //Modulation indexes with non-linear correction

17. m_a = (m_a + (2*U_a_InvCorr/Udc));

18. m_b = (m_b + (2*U_b_InvCorr/Udc));

19. m_c = (m_c + (2*U_c_InvCorr/Udc));

20. }

21. …

22. …

Code 6.5: DistortedVoltageCorretion code

62

7 Program Verification through Simulation and Testing

7.1 Introduction
The program has been tested and debugged using a combination of Simulink simulations and the real-

time monitoring tool “WatchView”, provided by The Switch. Simulink has mainly been used in the

work regarding the blanking time corrector IP-core. Simulink simulation has been used extensively

during development, testing and debugging of the new IP-core and has proven to be a very powerful

and efficient tool. WatchView has been used to monitor and run the control board. WatchView

communicates with the CPU and allows parameters within the CPU program to be changed and

monitored. The software has been used during development and testing of all C++ routines that have

been written or modified. It is not possible to use WatchView to monitor and control signals in the

FPGA. However, input and output values from the IP-core can be accessed if the gates are defined as

AXI4-Lite and properly initialized in the CPU software. Since WatchView communicate with the

CPU, values from the FPGA can only be written to or read from during each CPU interrupt. This

makes WatchView suitable for testing and verifying IP-cores and not suitable for debugging.

The goal of this chapter is to verify the changes and additions done in the programming software. The

chapter will focus on the blanking time correction IP-core and the C++ programs related to it. Print

screens of time-plots from WatchView will be compared to simulation results from Simulink.

In order to conduct proper simulations, a PWM model has been provided. The PWM model is made

by Anirudh Budnar Acharya (PhD. candidate at NTNU) and is shown in Figure 7.1. Control voltage

is changed using the sinewave generator to the left in the figure. Control voltage input are updated

each interrupt and the value is compared with a triangular wave. The sampling frequency of the model

can be changed between equal to the triangular wave or half the triangular wave. Upper IGBT-bit for

the three phases are given by Sa_out, Sb_out and Sc_out. These outputs are connected directly to the

IGBT-bit in-port seen in Figure 6.12. The PWM modulator also provide an interrupt signal according

to the sampling time which is connected the sequencer in Figure 6.12.

The current signal is generated using the same circuit as the control voltage and the blanking time can

be controlled using a Constant block.

Figure 7.1: PWM model

63

7.2 DC-voltage test
To verify that the blanking time IP-core is able to introduce a turn-on and turn-off delay to the IGBT

control signal from the modulator as a function of phase current, a DC-voltage test is conducted to one

of the bridge legs. DC-voltage is achieved by applying a constant control voltage. The bridge leg then

acts as a half bridge converter, with operation in 1st and 4th quadrant. The duty cycle of the converter

is set to 0.5, i.e. control voltage equal to 0. The DC-voltage test makes it easy to spot the increased

and decreased on-time of the corrected IGBT bit. The constant control voltage should give a constant

average output voltage of half the DC-link voltage, thus constant on-time of the IGBT bit. However,

if the blanking time corrector works as intended, average voltage and on-time is expected to be reduced

during positive current and increased during negative current.

The triangular wave and control voltage are presented in the first subplot of Figure 7.2. When the

control voltage value is greater than the triangular wave, IGBT bit is set high and vice versa. An

interrupt is given at every top and bottom of the triangular wave. The corrected and uncorrected IGBT

bit together with the interrupt pulse are shown in the second subplot of Figure 7.2. In a real-life

application, blanking time is expected to last somewhere between 1 and 3 𝜇𝑠. However, in order to

illustrate the correction, blanking time has been specified to 20 𝜇𝑠 during the DC-voltage test.

The triangular wave has a frequency of 1 𝑘𝐻𝑧 and the FPGA has a sampling frequency of 100 𝑀𝐻𝑧.

Since the interrupt happens every half period, the FPGA will sample 50𝑥103 times within two

interrupt signals. The chosen control voltage is expected to create an IGBT bit signal that is high during

half the sampling interval, i.e. 25𝑥103 samples. The IGBT bit given by the modulator is shown by the

dashed green line in Figure 7.2. The figure shows a symmetrical on-signal around the interrupt pulse.

Looking at the corrected IGBT bit, shown by the blue line in Figure 7.2, it is observed that blanking

time introduce a turn-on and turn-off delay depending on the current direction. The phase current is

shown in the third subplots of Figure 7.2. As described in chapter 6.4, positive current (i.e. current

flowing to the load) introduce a turn-on delay and negative current introduce a turn-off delay. The

duration of the delays is given by 𝑇𝑒𝑟𝑟 (from chapter 4.1.2) which in this thesis is equal to blanking

time. By dividing the blanking time on the FPGSs sampling time period, 10 𝑛𝑠, it is found that a

blanking time of 20 𝜇𝑠 corresponds to 2000 samples.

Figure 7.2: Illustration of Corrected and Uncorrected IGBT bit

64

Figure 7.3: Close-up picture of turn-on and turn-off delay imposed by blanking time

A close-up picture of the turn-on and turn-off delays are shown in Figure 7.3. The figure shows the

expected delay of 2000 samples with both positive and negative current. Going back to Figure 7.2, it

can be understood that numbers of samples where corrected IGBT bit is high is expected to be 23𝑥103

between the two first interrupts and 25𝑥103 between the 2nd and 3rd. Similarly, when the current

changes direction, numbers of samples from the 3rd to the 4th interrupts should also be 25𝑥103 and the

number of samples between 4th and 5th interrupt should be increased to 27𝑥103.

Figure 7.4 shows the output value of the on-time count registers when the IP-core is simulated in

Simulink. The first subplot shows the on-time count of the uncorrected IGBT bit from the modulator.

As expected, the plot shows a constant value of 25𝑥103 on-time samples between two interrupts. The

second subplot shows the on-time register of the corrected IGBT bit. The simulation result shows that

the IP-core is able to introduce correct turn-on and -off delays. The results show a reduction in counted

value of every other count according to the specified blanking time when the current is positive and

similarly an increase in count when the current changes direction.

Figure 7.4: Simulation - on-time count for DC-test with and without blanking time

65

The same DC-voltage test is also performed on the control board. In the simulated case, counted on-

time within two interrupts were presented for both the corrected and uncorrected IGBT bit. The control

board is tested with and without a specified blanking time. This should give similar results as the

simulations. Blanking time is specified to be 20 𝜇𝑠 or 2000 samples, as for the simulation. Although

tests of the control board and simulations seems to be quite similar, it is important to stress that where

the simulation only tests the developed IP-core, control board tests requires the complete software

platform to be operational in order to work. This includes a complete IP-core design for the FPGA, an

operating C++ program for the CPU and communication between them. Another important difference

is the sampling delays of signals. This will be discussed further later in this chapter.

Figure 7.5 show a print screen of the test results when the system is not subjected to blanking time.

Dots on the lines represent the values used in the CPU for that interrupt. The program itself

automatically draws a straight line between the values used by the CPU in order to illustrate waveforms

easier.

As discussed earlier and shown in Figure 7.2, it is expected that the test shows a constant counted

value. However, looking at the test results it is obvious that this is not the case. The value cursors show

a difference of 126 samples between two samples. Furthermore, the total count of samples between

two interrupts showed a constant value of 50554 samples. This indicate that the triangular wave used

in the PWM IP-core has a frequency that is a bit lower than 1 𝑘𝐻𝑧. As for the simulated case, it is

expected that a constant control voltage of 0 without correction of blanking time will give an on-count

of half the total counted value, i.e. 25277 sample. From Figure 7.5 it can be seen that the expected

result of 25277 samples are in the middle of the counted values read from the IP-core. This indicate

that the IGBT pulse is not symmetrical around the interrupt or that somewhere in the complete IP-core

design it exists a delay on the IGBT pulse that the author is not aware of. It is seen from the print

screen that the delay is independent of current direction.

Figure 7.5:Control board - on-time count for DC-test without blanking time

66

Figure 7.6 shows a print screen of the test results when the system is subjected to a blanking time of

20 𝜇𝑠 or 2000 samples. Value cursors shows an increase in the counted value of every other count by

2000 when the current is negative and a decrease in counted value when the current is positive. The

test shows that the blanking time corrector IP-core is able to delay the on- and off-times according to

the specifications discussed in chapter 6.4. The test also shows that the read and write functions

provided by the System Generator tool works as anticipated.

The difference in on-time counted values that was found when the system was tested without blanking

time can also be seen when blanking time is introduced. The deviation is best seen between sample

number 474 and 475. Tests using the value cursor show that the two points are 126 samples apart. The

added deviation is also seen in the on-time count of a particular current direction. Top and bottom

values of the counted value were found to be 2126 samples.

Figure 7.6 Control board - on-time count for DC-test with blanking time

67

7.3 AC-voltage test
Previous subchapter showed that the blanking time IP-core was able to introduce a turn-on and turn-

off delay to the IGBT bit sent from the modulator, depending on the current. It also showed that the

delay corresponded to the specified blanking time. The next step in verifying the program software is

to conduct a voltage estimation test. As for the previous subchapter, this chapter will present

simulations of the isolated IP-core and tests using the complete setup of the control board. Both

simulations and control board test will be carried out with and without blanking time.

As discussed in chapter 4.2, distorted voltage and its effect on the output voltage of the inverter is

independent of frequency. From chapter 3.1 it is known that during 𝑉/𝑓-control, voltage is reduced

linear with frequency. From this it can be understood that the distorted voltage has greatest effect on

the output voltage when frequency is low, i.e. motor is running on low speed. It is in low speed

operation area voltage estimation becomes most critical. During low speed operation it is expected that

blanking time will introduce a sixth-harmonic distortion to the output voltage if the control voltage is

kept sinusoidal, similar to what is shown in Figure 4.5. The simulation and tests are done with an

output frequency of 2 𝐻𝑧. The low frequency should cause a visual distortion on output voltage when

blanking time is introduced. Blanking time is specified to be 2 𝜇𝑠 or 200 samples for both control

board tests and simulations.

Simulation results of the IP-core is presented in Figure 7.7. The figure shows control voltage and

estimated output voltage, with and without blanking time. When blanking time is set to zero, the result

shows an estimated phase voltage equal to the control voltage. As for the DC-voltage test, it is seen

that that the IP-core does not correct the IGBT bit sent from modulator when the system is without

blanking time. Phase voltage is calculated similar to what is shown in Code 6.4. The fact that control

voltage and estimated voltage are equal shows that the IP-core is able to count correct on-time of all

three phases and also the total time between two interrupts.

When the blanking time is specified to 2 𝜇𝑠 it can be seen that the estimated voltage reduces in

amplitude and becomes discontinuous. The DC-voltage test showed that for an isolated bridge leg,

blanking time reduced the average output voltage when the current was positive and increased it when

the current was negative. However, as shown in chapter 4.1, phase voltage of a 3-phase load connected

to an inverter is not given exclusively by the bridge-leg voltage to which it is connected. The influence

of the other bridge legs results in a non-linear voltage drop in the phase voltage. Blanking time will

always reduce the voltage available on the output terminals of the load. The waveform of the

Figure 7.7: Simulation – Voltage estimation with and without blanking time

68

non-linear drop is shown in chapter 4.2 and corresponds to the simulation result. Figure 7.8 shows a

print screen of the test result from the control board. The red signal shows the reference voltage

controlled by the 𝑉/𝑓-controller and the green signal shows the estimated output phase voltage. The

test is conducted with blanking time specified equal zero.

As for the simulated test, the result shows an estimated phase voltage equal to the control voltage.

Again, this shows that blanking time IP-core does not introduce any delay on the IGBT bit before

counting the on-time when blanking time is equal to zero. Moreover, the fact that control voltage and

estimated voltage are equal, verifies the transformations and scaling done in the controller and

modulator (Code 6.1, Code 6.2 and Code 6.3), and communication between FPGA and CPU.

During testing, it was found that the system introduces a 2-sample delay between control voltage and

estimated voltage. Control voltage used in the PWM IP-core uses one sample to read the value given

by the CPU and the on-time counter counts for the following sample before sending the counted vale

back to the CPU. Since the sampling frequency of the CPU is constant, error between estimated and

actual phase becomes larger as the frequency increase. In this case when the frequency is equal to

2 𝐻𝑧, the 2-sample delay represent a marginal phase shift error of 0.72 𝑑𝑒𝑔. However, when the

frequency is increased to 50 𝐻𝑧, the 2-sample delay introduce a phase shift error of 9 𝑑𝑒𝑔. It is

possible to compensate for this phase shift in the software. However, phase compensation has not been

discussed in this thesis and therefore not implemented.

Figure 7.8: Control board – Voltage estimation without blanking time

69

Figure 7.9 shows the test results when blanking time is specified to be 2 𝜇𝑠. Again, reference voltage

is shown by the red signal and estimated phase voltage is shown by the green signal. The same unilinear

voltage drop that was observed during simulations is also observed during the control board test.

Similarities between simulated and tested result shows that the developed software is able to estimate

the distorted voltage. The result is also in accordance with the theoretical study that describes the non-

linear voltage drop. It is therefore concluded that the developed software platform is able to estimate

the correct output voltage given the assumptions and simplifications done in the thesis.

As mentioned in chapter 6.3, load current is emulated in the CPU and sent to the IP-core. Emulated

load current is in phase with the control voltage. Since the six-step trapezoidal distortion voltage is

shifted 180 𝑑𝑒𝑔 in relation to phase current, it is expected that the output phase voltage will have a

discontinuous drop in value for every 60 𝑑𝑒𝑔 starting from the zero crossing. Looking at the result, it

is evident that the estimated voltage shows this discontinuous pattern.

Figure 7.9: Control board – Voltage estimation with blanking time

70

7.4 AC-voltage test with correction
Until now, simulations and tests have shown that the developed software presented in chapter 6 are

able to estimate an output voltage using the corrected on-times of the different IGBT bits, sampling

tine, knowledge of current direction and DC-link voltage. The estimated voltage has shown similar

waveform as was expected from theoretical analysis deduced in chapter 4.1 and shown in chapter 4.2.

These chapters also show a mathematical description of the voltage drops that causes the distorted

output voltage. It can be understood that this voltage is not a physical voltage drop over a component,

but rather a consequence of the non-ideal properties of the switch and diode used in the inverter. It was

discussed in chapter 4.2 that a reference voltage with a sinusoidal waveform would cause the output

voltage to be distorted. Consequently, this distortion should be removed from the output voltage if the

distorted voltage is introduced with opposite sign in the control voltage.

This chapter will present test results preformed on the control board with correction of the control

voltage. As for the AC-voltage test, 𝑉/𝑓-controller is specified to run on 2 𝐻𝑧 and blanking time is

set to be 2 𝜇𝑠.

Control voltage with- and without compensation is presented in Figure 7.10 and illustrated by the blue

and green signal, respectively. The distorted voltage is shown by the red signal. All signals have been

scaled to pu values in relation to the DC-link voltage.

Figure 7.10: Control board – Control voltage compensation

71

Figure 7.11 shows the output voltage with compensation on control voltage. Estimated output voltage

is shown by the green signal, modulator output is shown by the red signal and control voltage is shown

by the blue signal. It is clear from the figure that the compensated control voltage removes the non-

linear voltage drop from the output voltage, making the estimated voltage equal to its reference. Also,

it can be observed that the estimated voltage has some irregular sampling points. This is caused by the

one sampling delay introduced between CPU and FPGA. If stator currents used in the program were

measured on a physical drive and not emulated in the CPU, it is expected that the compensation would

use more than one sample to restore output voltage to its desired value.

There are two important aspects of this results. First, removal of distorted output voltage means that

vibrations in the machine will reduce during low speed operation. Second and most important, the fact

that compensated control voltage manages to remove the distortion, increases confidence in the

equations deducted in the inverter model. Since voltage estimation is based on these equations,

confidence in the voltage estimate is also increased.

Figure 7.11: Control board – Voltage estimation with compensated control voltage

72

8 Discussion

In today’s market, there exists several control strategies for induction machines where different design

is suitable for different application areas. The control strategies can be divided into low-performance

drives and high-performance drives. The PESC group at the department of Electric Power Electronic

wishes to conduct research and development in the field of high-performance drives. However, since

the group is establishing a new software and hardware platform, the initial focus has been on

developing control routines for the CPU and signal processing in the FPGA. This has been done using

a 𝑉/𝑓-controller. 𝑉/𝑓-control can be controlled using an open loop configuration, thus making

measurements only necessary for protection. A running machine allows measurement circuits and

estimation technique to be properly tested before closing the control loop and stepping into the field

of high-performance drives.

The PESC group will focus on the well-known high-performance control strategy called field-oriented

control (FOC) where the machine is controlled using an estimated rotor-flux linkage vector. Voltage

model is used when the machine is driven without a position sensor, also known as sensorless control.

Position sensor and wiring between sensor and controller represent a source of failure and unnecessary

cost, thus making sensorless control desirable. Voltage model estimates stator flux linkage by

integrating the induced voltage, i.e. difference between stator voltage and resistive voltage drop, with

an open integrator. Consequently, voltage model is dependent on stator voltage, stator current and

stator resistance in order to calculate flux linkages in the machine.

The open integrator used in the voltage model is sensitive to input parameter errors. Due to lack of

negative feedback, inaccuracies will cause integration of a DC-offset in the flux estimation. In the

literature this phenomenon is referred to as drifting. Drifting can occur during both dynamic and steady

state operation and has strongest influence on the system during low speed operation. Drifting can

cause vibrations in the machine and make the control unstable. Many authors have proposed different

methods or so-called observers to take on this problem [4, 5, 8].

Errors in current measurement causes both torque ripples and drifting and can generally be divided

into offset errors and scaling errors. Current measurements with offset errors cause the origin of the

measured current vector to move away from zero while keeping a circular trajectory. The introduction

of a DC-component causes the flux estimation to drift during both dynamic and steady state operation.

It was also found that offset errors generated a ripple in torque with frequency equal to electrical

frequency. Analysis done on scaling errors showed that the trajectory of measured current vector

became elliptic. The elliptic trajectory causes drifting in stator flux estimation during dynamic

operation and a wrongly estimated amplitude during steady state operation. The elliptic trajectory also

causes a ripple in torque with twice the electrical frequency.

Along with current measurement errors, voltage measurement will also cause drifting in the voltage

model if not done precisely. Output voltage can be measured directly on inverter terminals. However,

the high rise-time and amplitude of the voltage pulses sent from the inverter requires special measuring

equipment with adequate bandwidth and insulation [10]. An alternative to voltage measurement is to

use the control voltage in the flux model. This is a commonly used method that gives good results in

the high and medium speed range. However, during very low speed operation, voltage drops enforced

by the inverter causes a non-linear relationship between output voltage and control voltage, making it

unsuitable for flux estimation. Possible solutions to the problem is to use the mathematical description

of the non-linear voltage drop as a feedforward term, making the control voltage sinusoidal [19, 24]

or to subtract the same voltage from the distorted control voltage before using it in the flux model [10].

73

A third way to acquire knowledge of output voltage of the inverter is to count the time interval where

bridge leg midpoint has the electrical potential of DC-link voltage. Blanking time and the difference

in on- and off-time introduce time-intervals where the midpoint voltage potential is clamped to either

zero or to the DC-link depending on the current direction. Accuracy of estimation therefore relay on

the knowledge of these time delays. In this thesis, blanking time is considered as a constant value. This

is true for inverters with a static gate driving circuit. Furthermore, the thesis also assume that on-time

and off-time delays are equal in length and remain constant. However, in real-life applications the

difference between the two time delays are large and can be in the hundreds of nanoseconds range

[20]. Moreover, from analysis done on the IGBTs switching characteristics, it is evident that they are

dependent on load current and environment.

Experimental tests conducted in [21] shows that 𝑡𝑑(𝑜𝑛) for the IGBT decreases with increasing

temperatures, thus reducing the turn-on delay. Switching characteristics also show that turn-on delay

is a function of current due to 𝑡𝑟𝑖’s current dependency. Turn-off delay is dependent on the so-called

Miller plateau, witch in terms is dependent on both load current and temperature [21]. The dynamic

behaviour of both turn-on and turn-off delays indicates a need for current and temperature dependent

expressions of these time delays in order to increase accuracy of voltage estimate.

From the discussion above, assumption of equal and constant turn-on and turn-off time may seem

unreasonable. However, since tests has been conducted on the control board without a physical inverter

the effect of current and temperature dependency has not been present during the tests. Furthermore,

the difference in turn-on and turn-off delays, affects the estimation in a similar manner as blanking

time. Therefore, by choosing a blanking time in the higher expectancy range, the estimation technique

can be verified by only using blanking time. The time delays introduced by the switching

characteristics of the inverter is independent of control strategy. Therefore, it can be understood that

voltage estimation conducted on an open loop 𝑉/𝑓-control, would give similar estimation results on a

closed loop FOC.

Since the initial control signal for the IGBTs is generated in the PWM IP-core within the FPGA, it is

obvious that corrections to this signal also has to be done within the FPGA. A blanking time correction

IP-core has been designed and tested using the tools described in chapter 5. Previously, development

of FPGA platform required specialist knowledge of VHDL programming. However, the ability to

design and test the new IP-core in a familiar and easy programming environment as Simulink, enables

many electrical engineers to participate in the development. The Simulink development platform also

allows for thorough testing of the IP-cores functionality before implementing it to the design. This has

reduced the debugging work substantially. Moreover, the tool auto-generates documentation of the IP-

core alongside with a .h file that includes standardised initialization, read and write functions. This

allows easy communication between CPU and IP-core and eliminates potential errors with respect to

memory location mismatches.

To verify that the blanking time correction IP-core is able to introduce the correct time delays on

IGBTs control signal, a DC-test was conducted on one of the bridge legs. Test results without blanking

time showed an alternating deviation in the on-time count of 126 samples. The test results also showed

that the expected on-time count was located in the middle of the two counted values. This behaviour

indicates the presence of time delay somewhere within the FPGA design. The constant alternating

behaviour indicate that the time delay is independent of current direction. Result when blanking time

was introduced showed that the IP-core was able to reduce and extend the time duration of the IGBT

control signal according to the theory. The same alternating deviation found without blanking time

was still present in the on-time count. This indicate that the time delay is enforced to the IGBT control

signal somewhere outside the new IP-core in the FPGA design.

74

AC-voltage test showed a correct voltage estimate with regard to the control voltage without blanking

time. The result also showed a small phase shift between estimated and control voltage. This phase

shift becomes more predominant as the speed of the machine increases, hence phase shift

compensation might be needed if the estimated voltage is to be used in the voltage model. Furthermore,

all AC-voltage tests showed the presence of a glitch in the estimation. The glitch is shown as a spike

in estimation and was only present in the estimation during low speed operation. Investigation of the

problem showed that the on-time counted value from the IP-core, sometimes was read to the CPU as

zero. It was thought that internal rooting delays in the FPGA caused the on-time counter to reset before

the value was latched into the register. As a solution, a delay of 10 clock cycles was introduced to the

counter reset. This reduced the glitches substantially, however not all were removed.

Another observation was that the glitch only appeared when one of the currents changed direction.

After reviewing the IP-core design it was found that sign of current detection logics was specified to

“greater than” and “smaller than” zero. Consequently, if the current is equal to zero, both logical

pathways will also be equal to zero. The AND gates seen in Figure 6.11-(a) would block all signals

from passing through to the counter enable. Moreover, since the current signal is emulated in the CPU,

current values in FPGA are updated with each interrupt. If the current is read in as zero, it can be

understood that this might cause a sampling period with zero count.

AC-voltage tests with blanking time showed estimation of a discontinuous output voltage with a

reduction in amplitude compared to the desired control voltage. This is in accordance with the

theoretical study, where it was explained that a sinusoidal control voltage would cause a distorted

output voltage. Analysis showed that output distortion could be removed if the inverse of the non-

linear voltage drop was added to the control voltage. An expression for non-linear voltage drops was

deduced in the non-ideal inverter model. Test results showed that the corrected control voltage was

able compensate for the voltage drop, thus making the output voltage equal to the reference value

calculated in the modulator.

There are several reasons why this result is important. During open loop control, distorted output

voltage would create unwanted vibrations in the machine during low speed operation. Vibrations in

electrical machines reduces lifetime of mechanical components like bearings and seals and is generally

unwanted, thus making control voltage compensation desirable. Moreover, the fact that the distorted

output voltage is restored back to the reference value, validates the equations deduced in the non-ideal

inverter model and the relationship between control voltage, non-linear voltage drop and output

voltage equation. It also shows that equations and estimation technique are implemented correctly on

the control board. Lastly, the open loop control voltage with correction has the same waveform as a

closed loop controller. Since the estimated voltage is equal to its sinusoidal reference, it is reasonable

to believe the estimation technique can be transferred to closed loop control without having to do any

adjustments. Again, this shows that the estimation technique can be utilized on both 𝑉/𝑓-control and

FOC.

It is important to emphasise that the results presented in this thesis are performed purely on the control

board without a real inverter or load connected. It is expected that uncertainties in delay parameters

and real current measurement would cause a reduction in the accuracy of voltage estimation. This

might call for tuning the estimator once it is connected to a physical drive. However, the results clearly

show that the voltage estimator works in an ideal environment, proving the concept and the

mathematical relations deducted in the thesis.

75

9 Conclusion and Further Work

9.1 Conclusion
This master thesis focuses on modelling and control of an induction machine drive. It also focuses on

implementation of an on-line voltage estimation technique for a two-level three-phase inverter. The

on-line voltage estimator has been developed using Xilinx SDK, Xilinx Vivado and Xilinx System

Generator DSP tool in MATLAB Simulink. The programming platform used in this thesis will become

a part of a common programming platform at the department of Electrical Engineering at NTNU.

Therefore, programming structures and tools used in the thesis is also thoroughly explained.

Sensorless control of induction machines is desirable due to reduced cost and increased reliability. In

FOC, voltage model is used as flux estimation model during sensorless operation. However, errors in

measurements and estimation causes drifting in the estimated reference frame due to the open

integrator. Drifting introduces unwanted vibrations in the machine and can even cause the control to

become unstable. The impact of drifting is amplified during low speed operation and slow runs though

zero speed.

Being one of the contribution factors to drifting, it is important that voltage measurements or

estimations are accurate. From the non-ideal inverter model, it was seen that output voltage of the

inverter was given by the midpoint potential of the inverter bridge legs. Analysis showed that blanking

time and the difference in turn-off and turn-on times of the IGBTs introduced a time delay to the

voltage potential, compared to the IGBTs control signal. It also showed that the time delay was current

dependent.

The voltage estimator’s ability to correct time duration where midpoint potential of the bridge leg was

equal DC-link voltage was initially tested. The tests results without blanking showed an alternating

deviation between the on-time counts of 126 samples. This deviation was found to be independent of

current direction, and the nature of the deviation suggested that the IGBT control signal was subjected

to a delay somewhere in the FPGA design. Test results with blanking time showed the desired delay

in on-time of every other count. Measurements showed that the observed delay was equal to blanking

time. It also showed that the delay was current dependent. The same alternating deviation found

without blanking time, was also present when blanking time was introduced.

The voltage estimator was also tested during low speed 𝑉/𝑓-control. Tests with and without blanking

showed that the voltage estimator was able to perform satisfactorily. Estimated output voltage followed

control voltage without blanking time and the expected non-linear voltage drop was observed when

blanking time was introduced. Furthermore, when compensation for non-linear voltage drop was

introduced in the control voltage, results showed that output voltage followed reference voltage from

the modulator.

The tests were conducted on the control board with no inverter connected. It is expected that test results

of voltage estimation when connected to a physical drive, would show a lower accuracy than presented

in this thesis and tuning of the estimator might be needed. However, given the test results it can be

concluded that the voltage estimator was able to estimate correct output voltage given the correct input

parameters.

Finally, time duration where midpoint potential is equal to DC-link voltage was estimated in the FPGA

design using a self-developed IP-core. The IP-core was designed and tested using Xilinx System

Generator tool in MATLAB Simulink. This tool has proven to be an effective way of programming

complex FPGA programs without knowledge in VHDL programming. The tool has the potential to

enable electric power engineers the ability to participate in designing, building and testing advanced

FPGA designs, something that previously has required specialist programming knowledge.

76

9.2 Further Work
The goal of the theoretical study, programming tools, programming structures and developed control

software presented in this thesis, was to contribute in building a common programming platform. Once

the programming platform is established it will allow for more research and development in regard to

high-performance sensorless FOC.

Following tasks could be considered for further work in the development to the programming platform:

▪ Investigate effects in voltage estimation accuracy by making duration of turn-on and turn-off

delays dependent on load current and temperature.

▪ Improvements to the blanking time correction IP-core to further reduce or remove glitching in

voltage estimation.

▪ Experimental testing and tuning of the voltage estimator using a physical motor drive setup.

▪ Design and develop a current measurement circuit for protection and measurement.

77

References

[1] W. Zimmermann, "Sensorless Control of AC Machines," Fachhochschule fuer Tecknik

Esslingen, Available: http://www.it.hs-esslingen.de/~zimmerma/publications/erk.pdf.

[2] M. Leksell, L. Harnefors, and H.-P. Nee, "Machine Design Considerations for Sensorless

Control of PM Motors," KTH / Royal Institute of Technology, Stocholm1998

[3] F.Bauer and H. D. Heining, "Quick Responce Space Vector Control for a High Power Three-

level-Inverter Drive System," EPE, pp. 417-421, 1989.

[4] M. C. Paicu, I. Boldea, G.D.Andreescu, and F.Blaabjerg, "Very low speed preformance of

active flux based sensorless control: interior permanent magnet synchronous motor vector

control versus direct torque and flux control," IET Electr. Power Appl. , vol. vol. 3, no. no. 6,

pp. 551-561, 2008.

[5] M. Niemelä, "Position sensorless electrically excited synchronous motor drive for industrial

use based on direct flux linkage and torque contro," Doctoral thesis, Lappeenranta University

of Technology, 1999.

[6] M. Bolstad, "Sensorless Control of Synchronous Machines Used in Adjustable Speed Hydro,"

Department of Electric Power Engineering, NTNU, Trondheim, 2018.

[7] E. Mørkved, "Sensorless Control of a 6-phase Induction Machine," MSc, Department of

Electric Power Engineering, NTNU, Trondheim, 2018.

[8] T. F. Nestli, "Modelling and identification of Induction Machines," Doctor Degree,

Department of Electric Power Engineering, NTH, Trondheim, 1995.

[9] V. Fjellanger, "Sensorless Control of a six-phase Induction Machine," Department of Electric

Power Engineering, NTNU, Trondheim, 2018.

[10] Joachim Holtz and J. Quan, "Drift- and Parameter-Compensated Flux Estimator for Persistent

Zero-Stator-Frequency Operation of Sensorless-Controlled Induction Motors," IEEE

Transactions on power electronics, vol. vol. 39, no. no. 4, pp. 1052-1060, 2003.

[11] R. Nilsen, Electric Drives. Trondheim: Department of Electric Power Engineering, 2018.

[12] T. Wildi, "Electrical Machines, Drives, and Power Systems," 5. ed. Upper Saddle River, New

Jersey Columbus, Ohio: Prentice Hall, 2002.

[13] N. B. Araya, "Modelling and Control of Six-Phase Induction Motor Drive," MSc, Electric

Power Engineering, NTNU, Trondheim, 2012.

[14] S. Midttveit and R. Nilsen, "Transformerte Modeller for Driefeltmaskiner," EFI SINTEF-

Gruppen03.06.1987 1987.

[15] A. M. Trzynadlowski, The Field Orientation Principle in Control of Induction Motors Reno:

Kluwer Academic Publishers, 1994.

[16] A. Hughes, Electrical Motors and Drives, 2ed ed. Manchester: G H Newnes, 1993.

[17] B. Fossen, "Modelling and Identification of Multi-phase Machines," Project thesis,

Department og Electric Power Engineering, NTNU, Trondheim, 2016.

[18] Dae-Woong Chung and S.-K. Sul, "Analysis and Compensation of Current Measurement Error

in Vector-Controlled AC Motor Drives," IEEE Transactions on industry applications, vol. vol.

34, no. no. 2, pp. 340-345, 1998.

http://www.it.hs-esslingen.de/~zimmerma/publications/erk.pdf

78

[19] J. Holtz and J. Quan, "Sensorless Vector Control of Induction Motors at Very Low Speed

Using a Nonlinear Inverter Model and Parameter Identification," IEEE Transactions on

industry applications, vol. vol. 38, no. nr. 4, pp. p. 1087 - 1095, 2002.

[20] J.-W. C. S.-K. Sul, "Inverter Output Voltage Synthesis Using Novel Dead Time

Compensation," IEEE Transactions on power electronics, vol. vol. 11, no. no. 2, March 1996.

[21] H. L. Hove, O. C. Spro, D. Pefritsis, G. Guidi, and K. Ljøkelsøy, "Minimization of det time

effect on bridge converter output voltage quality by use of advanced gate drivers," 2019 10th

International Conference on Power Electronics (ICPE 2019 ECCE Asia), 2019.

[22] N. Mohan, T. Undeland, and W. Robbins, 3., Ed. Power Electronics. USA: Wiley, 2003.

[23] J.-W. Choi and S.-K. Sul, "Inverter Output Voltage Synthesis Using Novel Dead Time

Compensation," IEEE Transactions on power electronics, vol. vol. 11, no. no. 2, March 1996.

[24] G. Pellegrino, P. Guglielmi, E. Armando, and I. R. Bojoi, "Self-Commissioning Algorithm for

Inverter Nonlinearity Compensation in Sensorless Induction Motor Drives," IEEE

Transactions on Industry Applications vol. vol. 46, no. nr. 4, pp. p. 1416 - 1424, 2010.

[25] P. Horowitz and W. Hill, Third, Ed. The Art of Electronics. New York: Cambrige University

Press, 2015.

[26] C. Visjon. (2018). Zynq All Programmable SoC System Architecture [Online]. Available:

https://www.core-vision.nl/events/zynq-all-programmable-soc-system-architecture-

8/?lang=en

https://www.core-vision.nl/events/zynq-all-programmable-soc-system-architecture-8/?lang=en
https://www.core-vision.nl/events/zynq-all-programmable-soc-system-architecture-8/?lang=en

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

le
ct

ri
c

P
ow

er
 E

ng
in

ee
ri

ng

M
as

te
r’

s
th

es
is

Viljar Fjellanger

On-line Voltage Estimation during
Sensorless Control of an Induction
Machine Drive

Master’s thesis in Electric Power Engineering
Supervisor: Roy Nilsen

June 2019

	List of figures
	List of code
	Acronyms
	Notations
	1 Introduction
	1.1 Background and Motivation
	1.2 Scope of work
	1.3 Organization of the report

	2 Modelling and Scaling of the Induction Machine
	2.1 Introduction to the IM machine.
	2.2 Modelling of the Induction Machine
	2.2.1 Physical model
	2.2.2 Clarke Transformation
	2.2.3 Park Transformation
	Orientation of axis system
	Electrical torque

	2.3 Pu system

	3 Control of the Induction Machine
	3.1 𝑉/𝑓-Control
	3.2 Rotor-Flux Orientated Control
	3.2.1 Current Model
	3.2.2 Voltage Model
	3.2.3 Torque equation

	3.3 Drifting in Voltage Model

	4 Voltage and Current Measurement
	4.1 Non-ideal Inverter Model
	4.1.1 Switching characteristics
	4.1.2 Blanking time and on/off time
	4.1.3 Voltage drop over the IGBT and power diode
	4.1.4 Phase voltage of the machine

	4.2 Consequences of the Non-linear voltage drop
	4.3 Current measurement
	4.3.1 Current measurement circuit
	4.3.2 Offset error
	4.3.3 Scaling error

	5 Programming Structure and Software
	5.1 Introduction
	5.2 Programming structure in SDK
	5.3 IP-core Generation using System Generator DSP in Simulink
	Gateway In and Gateway Out
	Creating a block design
	Simulating the block design
	Generating an IP-core
	Implementing the IP-core in SDK

	6 CPU and FPGA Programming
	6.1 Introduction
	6.2 𝑉/𝑓- Control (Controller)
	6.3 PWM (Modulator)
	6.4 Voltage Estimation with Blanking Time Correction
	6.5 Distortion voltage correction

	7 Program Verification through Simulation and Testing
	7.1 Introduction
	7.2 DC-voltage test
	7.3 AC-voltage test
	7.4 AC-voltage test with correction

	8 Discussion
	9 Conclusion and Further Work
	9.1 Conclusion
	9.2 Further Work

	References

