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Problem Description

A major challenge in delivering Over The Top services with high expectation to
the Quality of Experience is that the service provider cannot rely on that the net-
work operators can or will control and prioritize the traffic according to the service
providers needs. Therefore it is of great interest to investigate potential mechanisms
that can be used to control traffic types outside the network operator domain. This
assignment will take a closer look at the gateway located at customer premises,
which has capabilities that may control and prioritize the traffic types.

Using an already established home gateway testbed based on Click Modular
Router[1][2] the students will investigate and implement new components for the
Knowledge and Action Planes. The Knowledge Plane components will specifically
focus on the characteristics and behavior of the terminal equipment, the operating
system and its applications[3], while the Action Plane components should address
a selected set of functions that are required to support the optimization process.
The modeling and description of a general QoE reasoning process is also of great
interest.

Assignment Given: 13th of January 2011

Supervisor: Bjørn J. Villa



Abstract

This report focuses on the quality aspects of media delivery over the Internet. We
investigate the constructs of Knowledge Plane, Monitor Plane and Action Plane
as controlling functions for the Internet. Our goal is to implement functionality for
monitoring services in a home network, allowing the router to reason and take actions
to obtain an optimal traffic situation based on user preferences. The actions taken
to alter ongoing traffic are implemented in a modular router framework called Click.
We will use this router to affect the media stream TCP connections into behaving
in accordance with the networks optimal state. New features are implemented to
complement the functionality found in Click, giving us the tools needed to obtain
the wanted results.

Our focus is on adaptive video streaming in general and Silverlight Smooth
Streaming in particular. Using custom Silverlight client code, we implemented a
solution which allows the applications to report usage statistics to the home gateway.
This information will be used by the home gateway to obtain an overview of traffic in
the network. Presenting this information to the user, we retrieve the user preferences
for the given video streams. The router then dynamically reconfigures itself, and
starts altering TCP packets to obtain an optimal flow of traffic in the home network.

Our system has been implemented on a Linux PC where it runs in its current
form. All the different areas of the solution, ranging from the clients, router, Knowl-
edge Plane and traffic manipulation elements are put together. They form a working
system for QoE/QoS optimization which we have tested and demonstrated. In ad-
dition to testing the concept on our own streaming services, the reporting feature
for Silverlight clients has also been implemented in a private build of TV2 Sumo.
This is the Internet service of the largest commercial television station in Norway.
Further testing with the TV2 Sumo client has given promising results. The system
is working as it is, although we would like to see more complex action reasoning to
improve convergence time for achieving the correct bit rate.
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Chapter 1

Introduction

Media streaming over the Internet has seen a tremendous growth and development
over the past decade. YouTube was established in February 2005, and was at the
end of 2006 sold to Google for $1.65 billion[4]. Early 2007, YouTube alone com-
prised approximately 20% of all HTTP traffic, or nearly 10% of all traffic on the
Internet[5]. In December 2005, YouTube had 8 million views per day, and in May
2010 it exceeded 2 billion views per day[6]. Add movie rentals and music stream-
ing by services like Voddler, Spotify and Wimp and it’s clear that the Internet is
receiving large amounts of traffic from media streaming. The Voddler movie rental
service is illustrated in figure 1.1.

Figure 1.1: Voddler is an example of service providers that sell streaming media over
the Internet. To attract paying customers they need to deliver high quality video
over a best effort network.

With this growing trend in real time streaming media, the Internet is put to the
test. The Internet is a dumb network with intelligence at the edges. By this we
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mean that the Internet only forwards packets as directed by the end hosts. The
Internet does not differentiate between a billion spam mails and a corporate video
conference. If you are having a video conference with a business associate or a loved
one at the opposite side of the globe, your communication can be disrupted by a
swarm of spam mail.

This is in essence the topic for this thesis. How can we influence the Internet
so that certain data gets increased priority, and therefore better Quality of Service
(QoS)? The Internet today works, some might say. We can watch videos from
YouTube and make calls over Skype. So why do we need this extra control?

We’re rapidly moving towards the “everything over IP” world[7]. The new and
brave world; where telephony, video telephony, video on demand, television, music
and other media will be carried over the same network. We are getting closer each
year and the amount of data transmitted is extreme. Figure 1.2 shows the usage
statistics from Akamai on a Sunday evening. Akamai[8] is a major provider of
content on the web. Akamai host amongst others TV2 Sumo, which is the Internet
service of the largest commercial television station in Norway.

Figure 1.2: This figure is a screen dump of Akamai streaming statistics. At the
time of this screen dump, a Sunday evening, they had in excess of 1.9 Million active
streams and over 14.9 Million HTTP hits per second. According to their web pages
they handle 20% of the worlds total web traffic.

With everything over the same network we need to exercise control over what gets
priority. We can accept some quality degradations when we use Skype, and we are
used to allowing hiccups in web telephony services because they are cheap. However,
when our living room television cannot deliver the news uninterrupted, that will be
a problem. This is why we work towards a future Internet where the network
itself can make decisions based on the content it’s transmitting. This way the
network could provide high quality uninterrupted service to voice communications
and television even if the network is experiencing congestion. During congestion,
voice and video communications are types of services that experience vast quality
degradation. These types of services are more sensitive to delay and jitter than
other types of traffic like web browsing and file transfers.
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If the network was more intelligent and could do service differentiation based on
content, we could allow higher utilization of links in the infrastructure. The current
situation of our infrastructure is that it is scaled up to keep the link utilization and
therefore the loss, delay and jitter down. Merging television and telephony to be
carried over the Internet represent tremendous value to the service providers given
that the network is able to successfully transmit with high quality and reliability.

We talk about this new Internet with service differentiation based on content.
We envision everything over the same network without quality degradation for the
user when we move away from dedicated television and telephony networks. Making
the entire Internet compatible for such traffic handling will be a “work in progress”
for many years. The complexity in control systems usually increases drastically with
size, and we’re talking about the Internet. This will not be easy.

As this transformation cannot be done in one simple act of revolution, the solu-
tion must be to start somewhere and continuously add layers of functionality. For
our work we have chosen to examine traffic at the end user premises, that is the
home gateway. The home gateway is often the bottle neck of bandwidth for a typical
user. On the home network, several clients can be connected with gigabit Ethernet
connections. The home gateway link towards the Internet is often below 10Mbps for
a typical subscriber line. The competition for resources between clients in a home
network often result in severe quality degradation. This is where our focus will be.

Most Internet subscribers have experienced a slow network caused by other traffic
from a process sending or receiving large amounts of data. Peer-to-peer networking
is extremely efficient in claiming the entire bandwidth of a subscriber link. While
such traffic is active, keeping a Skype conversation or streaming video is relatively
unbearable. This is an obvious case where traffic collides, and it’s not hard to
identify the problem and fix it. You’ll simply have to do the downloading after
finishing your conversation. If you cannot control the download, then you have
a problem. Even though you only need 80Kbps to obtain a voice conversation, a
peer-to-peer download running at 6000Kbps is making it impossible. This is when
you would want the home gateway to recognize your traffic as more important,
passing your traffic in front of the queues giving you quality as if you were the
only one utilizing the link. The download would run at 5920Kbps instead of the
6000Kbps, which would give a time difference of 9 seconds for downloading a 500MB
file. Instead of 11 min 6 seconds, the download would take 11 min 15 seconds. The
positive effect is that you would have a voice conversation with excellent quality.
Clearly it is worth it.

Another mechanism that has been introduced in streaming services with great
success is adaptive streaming. A comparison between this technology and tradi-
tional streaming can be seen in figure 1.3. The concept and theoretical aspects will
be introduced in this report. For now it suffices to say that it allows the client to
dynamically change the video quality of an ongoing stream. This is done to adapt to
changes in network conditions. This form of video streaming is increasingly popular
and is the focus of our report. The authors of [9] argues that this streaming tech-
nology has its problems when it comes to competing traffic. Two clients streaming
simultaneously will, according to their findings, cause frequent quality variations.

3



Figure 1.3: Traditional streaming offers a low quality video stream that all users
have enough bandwidth to view. Adaptive streaming will automatically adjust on
the fly to the viewers changing network conditions, calculating and delivering the
best possible quality level.

We will in this report focus on delivering video streams in a home network using
Silverlight Smooth Streaming technology. We will focus on the home gateway and its
possible role in the provisioning of resources. In our previous work[10] we explored
a similar solution where we dynamically configured a home gateway to set a strict
limit on bandwidth for certain services. Setting a strict limit on bandwidth will
cause excess data to be dropped, which is a wasteful way of controlling traffic. In
this report we will propose less intrusive ways to control traffic rates on a per stream
basis in the best interest of the network. This will be achieved by manipulating the
transport protocol TCP, which is used in Smooth Streaming.

In order to be able to do such manipulation, the home gateway must obtain
information about active video streams. In our previous work obtained such infor-
mation by monitoring traffic by packet count and a recognizing a pre-defined list
of video sources. Here we will explore a form of application involvement where the
Silverlight clients communicate directly to the home gateway control function. The
home gateway control will in turn use this information in addition to user prefer-
ences to obtain a stable streaming rate for the given client. Our results show that
this form of control can be quite effective and with the information from the clients
we can present an overview to the user. This way the user can monitor the home
network and possible reasons for a low quality video stream might be visualized.

The goal of our work was to implement a complete testbed for this architec-
ture. We have therefore implemented a Silverlight client that retrieves end host
information and transmits this to the home gateway control function. The home
gateway is implemented with custom tools to manipulate data traffic. The control
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function includes a web user interface where the user can make decisions as to what
quality the video should be delivered in. Using this information the home gateway
control function will try to alter traffic flows to obtain the quality wanted by the
user. Using our solution, when several clients are streaming video, we should be
able to control what bit rate the streams should use by simply inputting it to the
user interface. This should be regarded as a proof-of-concept solution for content
aware home gateways with mechanisms for influencing quality of service.
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Chapter 2

Background

2.1 Autonomic Access Networks
In this section we will explain the concept which our work is founded upon. The
constructs of Knowledge Plane, Monitor Plane and Action Plane will be introduced
and their functions explained. First, in section 2.1.1, we will present an overview of
the network and in turn look at the elements it contains and interaction between
them in sections 2.1.2 through 2.1.5. After this, a short presentation of our previous
work and system is found in section 2.1.6. This is helpful background material for
understanding the system we want to present here.

2.1.1 Overview
There have been several proposals for autonomic access networks. Amongst them
are [11]. These solutions mainly consist of three layers of functionality. These
layers are called Knowledge Plane(KP), Monitor Plane(MP) and Action Plane(AP).
The idea is that the network through information gathering in MP should be able
to interpret and classify current traffic patterns and possible complications. This
reasoning process is done by the KP which allows the network to identify problems
in Internet traffic. The KP is then able to use a diverse set of tools to resolve the
problem it has identified. The action chosen by the KP is realized by the AP which
applies a change in the network configuration. In figure 2.1 the placement of KP,
AP and MP is shown in a distributed example where each node has its reasoning
process. These nodes are able to communicate with a global KP that allows the
network to define an optimized solution.

A scenario could be that the MP reports that a video stream is experiencing
low throughput or high delay due to a congested link. The KP could then, through
the AP, initiate counter measures in the network to guarantee a level of resources
available to the service. The actions taken by the KP will vary according to where
in the network the problem occurs. An example of such mechanisms can be adding
of Forward Error Correction(FEC) packets in the core network[11]. At the edges,
bursty traffic can be shaped by the home gateway to prevent it from causing lag
spikes in a video stream.
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Figure 2.1: Complete architecture for a global autonomic network where informa-
tion can be collected, distributed and acted upon. Our model includes a web user
interface where we envision that users can influence the policies enforced at the edges
of the network.

The webUI allows for interaction between the user and the network at the edges.
Obtaining this information may allow the KP reasoning process to make optimized
decisions.

There have been several contributions proposing design and architecture for the
KP and its role in an autonomic network[11][12][13][14]. This work has been focusing
on the intermediate nodes in the network and how a network as a whole can be tied
together by a KP layer. These ideas and proposals together with future work in this
area will define the structure of such a network. The design and implementation is,
needless to say, a formidable challenge that will require optimized solutions in every
level to assure the wanted functionality without extreme amounts of overhead.

In our previous work[10] we have been focusing on the home gateway. This is
the node that connects users to the network and this node is of special interest
to the network as a whole. Users are connected to the home gateway with Gbps
capacity and a typical home gateway often serves several users simultaneously. The
home gateway link to the network is normally in the order of some Mbps that
is shared amongst the users. Web browsing and downloading emails are by nature
bursty traffic and the user bandwidth towards the home gateway allows very sporadic
flooding of the home gateway. This is a problem if the gateway simultaneously serves
a video streaming service. Our previous work was therefore focused on shaping this
other traffic to protect video streaming services from traffic bursts that will manifest
as interrupted video for the user.

The following sections will present the KP, AP, MP approach to an autonomic
network as well as describing the previous state of our system.
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2.1.2 The Knowledge Plane
The Internet is a best effort stupid network with intelligence in the end-systems.
It does not discriminate between packets and has, for the most part, no interest in
what it’s transporting. This simplicity has been an important factor in the success
of the Internet. The IP protocol has taken its grasp on world communications.

Despite its success, we should always try to find new ways to improve the Inter-
net. This is why the idea of a KP has been proposed[12]. The Internet transports
data without knowing what it’s transporting or why it’s transporting it. If we could
put another layer on top of the Internet, this layer would allow the Internet to know
what it’s asked to do. The proposal is therefore a distributed cognitive system that
permeates the network, called the Knowledge Plane.

2.1.3 The Action Plane
When we design a system for optimizing traffic patterns through the Internet we
need to, at some point, alter the traffic traversing it. Our goal is to make small
adjustments to the ongoing flows that tilts the traffic conditions in favour of our
services of interest. These services are mostly media streaming services, that is a
category of services with higher requirements for throughput, delay and jitter than
traditional web traffic as HTTP and email.

The AP is our tool to make these adjustments. Through it we aim to make
dynamic changes to packets and flows in order to increase the overall QoE perceived
by the user. The AP is the tool set of the KP. When the KP has obtained a
picture of the network environment it will try to determine what could be done to
improve the current state of the system. This could mean that a typical download
should be delayed in order to allow a competing video streaming service better traffic
conditions. If the KP decides that this would be valuable to the user, then it will
signal the AP to take actions to achieve this. The AP is provided with the necessary
parameters to identify the services in question and will then apply the changes. The
AP therefore needs access to the packets flowing through the node, and it needs to
be able to make changes to the packets or even dropping them.

2.1.4 The Monitor Plane
To be able to improve the network conditions for specific services we need to identify
and obtain information about them. As nodes in the Internet do not have any
information of what the packets they process contain, we need to achieve this by
adding a separate service. This is a task for the MP.

The MP will provide the system with information of ongoing traffic. The KP
will maintain an overview of the current traffic through the home gateway. By
informing the MP of what traffic to look for, the MP can inspect packets and report
back on the current state of given streams or even application specific information
from within the data packets. This helps the KP to do correct interpretations of
the traffic at any time and will make our home gateway content aware.
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A MP component could also be active. Such a component could probe the
operating system(OS), applications or network nodes in order to provide the KP
with information. Any form of information gathering from the OS, its applications
or the network, is the responsibility of the MP.

2.1.5 Interaction
The interactions between the KP, MP and AP are centered round the KP. The
KP collects information through different channels and tries to identify actions that
may be taken to optimize the current traffic situation. The KP can use the MP to
intercept control information in certain transport protocols or provide overall traffic
statistics. Using information from the MP and information provided from the user
via the webUI, it can determine a proper action. This action is then communicated
to the AP which initiates the actual traffic manipulation.

Results from the manipulation are monitored by MP and reported to KP which
then needs to reason again to check if the wanted effect has been obtained. If it
has, KP can go back to reading system information and reasoning. If or when a new
imperfection is found, the process starts over again.

2.1.6 Previous Work
We implemented a functioning system for dynamic reconfiguration of the home
gateway allowing the gateway to adapt to the current traffic pattern. This was done
by the use of the Click[1] modular router, explained in section 3.3, for monitoring
and routing of traffic. Java applications was reading and interpreting the behavior
and configurations of the gateway and was responsible for the reconfiguration. Most
of our effort was used to combine the tools presented to us by Click in a Java system
and creating mechanisms for exchanging information.

Because of the amount of time put into creating a working system, our methods
for shaping and controlling of traffic flows were quite simple. Traffic was classified
according to user preferences and put in several queues that were shaped by a mech-
anism that most accurately could be described as a leaky bucket. This resulted in an
even flow of traffic and heavy bursts were punished by packet dropping. The packet
dropping was implemented using Random Early Detection(RED). This algorithm
randomly drops packets from a queue when the queue is approaching its capacity.
Since most of the traffic in the Internet is sent over TCP, a lost packet will result in
lowered transmission rate. This lowered the rate to our target rate set by the leaky
bucket.

This solution has its pros and cons. The tradeoff was simplicity versus waste.
The traffic was successfully shaped and we observed an increase in video streaming
quality when the system was active. The negative effect of this approach was the
high amount of waste that appears when the leaky bucket fills up and packets are
dropped. As previously described, the bandwidth from the home gateway towards
the users is definitely not the bottleneck. Discarding packets at the home gateway
that have already been sent through the network will trigger a retransmission, which
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results in increased bandwidth use to send the same amount of information. This
is quite the opposite of our overall goal which is to optimize the transfer of data. A
more appropriate approach would be to forward the packet and signal the sender to
decrease its transmission rate. That way we could decrease waste of bandwidth and
still be able to control the flows.

Our system included a KP implemented in Java, a MP that was a Java-Click
hybrid and an AP that were realized by the Click router. In addition to these
layers, two entities were added. These were entities we found could improve the KP
decision making and in that effect further optimize the system. The first addition to
the classic three layer architecture was the webUI that allowed the user to input its
preferences. This allowed the KP to differentiate between video streams according to
user preferences and served as a visual tool presenting traffic information to the user.
The second entity was a service registry web service. Our vision was that service
providers could register their services and relevant information in a common registry.
This allows the KP to easily identify services and to present better information to
the user.

Our KP would gather information from the MP in order to get a picture of the
current traffic. In addition, information from the service registry would be collected
to create a lookup table for recognizing and classifying services. Communications
between KP and the external service registry was done by the use of web services,
which allows for a standardized way of machine to machine interactions. The list of
registered services was presented to the user for his or her input. This information
was then aggregated so that the KP knew what services the user preferred and which
services had an active flow. Using this information, the KP tried to find an optimal
allocation of resources and used the AP to enforce them. Statistics were collected
and reported to the webUI which presented the user with a graphic representation
of traffic history and identified flows.

2.2 A Brief Introduction to Video Streaming
This section provides a brief introduction to video streaming and underlying con-
cepts. We also present the most widespread transport protocols used in media
streaming, beginning with presenting media streaming in general.

Video streaming gives clients the opportunity to access video and audio content
over the Internet. The streaming content is made available by service providers
with the use of streaming servers. The distributed content is either real-time or on-
demand. Real-time is typically live, while on-demand is recorded content. Examples
of real-time services are television broadcasting and video conferences, while on-
demand services are movie rentals and YouTube videos. We will mainly focus on
live streaming in this thesis, because it is the most demanding service related to
network resources. In addition, live content is more sensitive to fluctuations in the
network such as bandwidth and delay.

An example of a video streaming service in use today is the television provider
TV2 in Norway which offer streaming services through their TV2 Sumo service.
Other similar services are YouTube, NRK and Netflix. We believe that media
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streaming has achieved its popularity because it gives users a more interactive ex-
perience compared to downloading a full length video and then viewing it. This
interactivity can be an interface for changing channels, the opportunity to chat with
other viewers or view previously shown television shows, etc. Another advantage of
media streaming is the “view and waste” property where the client views the content
without storing it locally. This enhances protection of copyrights and reduces the
problem of redistribution of media content through file sharing. However, providing
extra interactivity through streaming have costs relating to resource consumption
and high QoE/QoS demands.

2.2.1 Traditional Streaming Protocols
The Real-Time Transport Protocol provides end-to-end network transport functions
for real-time multimedia content (audio, video, etc.). RTP is only a transport pro-
tocol and has no means of providing interactivity to the client. The interactivity
gives users the opportunity to play, pause and fast forward, which is provided by
RTSP. Hence, RTSP can be considered an extension of the RTP protocol. RTSP
is used to set up the session between the server and a client. This session between
server and client is maintained until the media file transfer is complete. This differs
from HTTP streaming which is stateless. HTTP streaming is presented in section
2.2.3. An example of streaming using the RTP combined with RTSP is shown in
figure 2.2.

Figure 2.2: Protocol stack example when streaming using RTP/RTSP.

RTP was published as a standard by IETF in 1996 (RFC 1889) and an enhanced
version followed in 2003 (RFC 3550). It provides services such as payload type
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identification, sequence numbering, time stamps and delivery monitoring. However,
RTP does not provide a reliable delivery or provide QoS guarantees, but relies on
lower layer protocols. RTP can be used in combination with for example UDP or
TCP. Usually UDP is the preferred protocol. This gives the server the opportunity
to push traffic at a bit rate decided at the application level. The server can then
control the streaming session using reports generated at the client and transported
to the server using RTCP[15].

As mentioned, RTP uses the RTCP for probing for feedback on the quality of
transmission sessions. RTCP is based on periodic transmission of control packets.
The feedbacks which can be gathered from using RTCP are number of lost packets,
jitter and RTT. These parameters can then be used by RTP to perform adaptations
to the quality or transmission rate to be used for the data distribution [11].

The reason for RTP not being as popular as expected is that it runs on special
ports which could be blocked by firewalls and NATs. Another disadvantage is that
RTP streaming needs special servers configured for this technology. To enhance the
streaming technology the next evolution step was to use HTTP instead of RTCP.
HTTP is stateless and runs on port 80 which is supported by almost every device
connected to the Internet. HTTP streaming will be introduced in the section 2.2.3.

2.2.2 TCP in Media Streaming
It was believed that TCP did not have the properties needed in order to provide
media streaming because of the contribution to extra delay when retransmission
is activated. Another reason for the scepticism in the streaming capabilities of
TCP is the congestion avoidance algorithms used. It was believed that congestion
avoidance would contribute to large fluctuations in the video bit rate and viewers
QoE. Hence, there were proposed several TCP friendly protocols with smoother
handling of congestion avoidance. It has been shown that TCP can be used for
video streaming. This is because the real-time requirements for video are less strict
than for VoIP communication. Two main methods of dealing with the retransmission
issue are buffering and bit rate adjustment. A buffer at the client side will handle
the extra delay from retransmissions. Offering the video in a set of different bit rates
will allow the client to choose a bit rate best suited to its traffic condition. This way
the client can handle large bit rate fluctuations, and in combination with a buffer
also deal with retransmission delay. Using custom players we can obtain smooth
transitions between bit rates. Having a smooth transition to a lower bit rate gives
a higher QoE than if the video was to stop playing in order to fill the buffer again.
These properties in combination with TCP functions such as fairness is why TCP
is being used as the transport protocol of choice for video streaming [16].

2.2.3 Progressive Download
There are several solutions to providing media streaming. One is to transfer the
video content from the streaming server to the client using a TCP session at the
highest possible bit rate. A buffer is then used at the client-side which starts play-
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ing the video content after some byte threshold in the buffer is reached[15]. This
will reduce the clients waiting time, compared to downloading the full length video
file, but it will not perform well under fluctuating network conditions. This can be
prevented using large buffers, but the client waiting time until it starts playing the
video content will approach the video download time, which again reduce interac-
tivity. This technique is referred to as progressive download and is used by services
such as YouTube, Vimeo and MySpace[17].

Progressive download uses HTTP for session initialization. Traversing firewalls
is one problem in using RTP/RTCP[18]. HTTP is among the most widely used
protocols in the Internet. Nodes will therefore recognize HTTP traffic as normal
web traffic, which eases the traversal of firewalls. It is hard to adapt the network
to media streaming, instead we can use HTTP and adapt media streaming to the
network.

One disadvantage of this technique is that if the viewer decides to stop watching
the video half way and the full length video is contained in the buffer. Then the
unused part of the video has been transmitted over the network and contributes to
a significant amount bandwidth waste [17]. Another disadvantage is a lack of the
ability to adapt to current network state. Consider a scenario where the network
traffic approaches the saturation point, then this type of streaming technology has
no means of reducing the bit rate at which it is distributed. The result is that the
user will experience hiccups in the viewing session which is considered a severe drop
in QoE.

2.2.4 Single Rate Adaption
A development in traditional streaming is to determine the user bandwidth in the
startup of the streaming session. This allows for choosing a video quality for this
specific user. This technique is used by the Norwegian television provider NRK
and others. Using the bandwidth measurements, a static bit rate is chosen for the
client. Some fluctuations in the network conditions can be handled by using this
technology in combination with a client side buffer. This approach performs well
under stable network conditions, but it does not cope well with large fluctuations in
network conditions. This technique can be referred to as single rate adaption[19].
An enhancement to this is the concept of self-adaptive streaming which will be
presented in the following section.

2.2.5 Self Adaptive Streaming
Self-adaptive streaming is a concept developed for handling fluctuations in a network
environment. In general the streaming server advertises a set of available streams
with distinct bit rates and other relevant parameters to the client, using a manifest
file written in a markup language like XML. The streaming server achieves different
bit rates by dividing a video file into small segments (some seconds long) with
different resolution, hence file size. The client will then monitor network parameters
such as display resolution, CPU usage, available bandwidth, etc. Based on these
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Figure 2.3: Example showing adaptive streaming using HTTP [17].

parameters the client will use HTTP GET requests to retrieve segments with the
most appropriate bit rate in accordance to the current network conditions[15]. This
server-client signaling is presented in figure 2.4.

The network conditions are monitored periodically to detect fluctuations and
the switching between different bit rates is done seamlessly. It is believed that this
is the technique of choice without doing changes to the current Internet architec-
ture. Another advantage is that by using adaptive streaming there is a possibility
to constrain the buffer size and therefore reduce the wasted bandwidth if a client
decides to stop watching the video half way in. Wasted buffering was presented as a
disadvantage with progressive download in section 2.2. This technology can adapt
to different users with different connections to the Internet. All the users can view
the media without the need for the media itself being scaled for the user with the
lowest bandwidth. Hence, a client with high bandwidth can view a video with high
quality, while clients with low bandwidth can view videos with lower quality[17].

A negative property of adaptive streaming is that there are no standards for
this technology, but there is ongoing standardization work. This has resulted in an
IETF draft[20]. Some examples of proprietary solutions using this HTTP streaming
are Adobe Dynamic HTTP Streaming, Apple HTTP live streaming and Microsoft
Smooth Streaming. Another property lacking in HTTP streaming is the support for
multicast. By using multicast video content can be transported to central points in
the network and clients can connect to these points on demand. This will enhance
the network usage because only one video stream is sent from the streaming server
to the multicast point. Then there is no need for having one end-to-end unicast
stream for every client.
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Figure 2.4: Example showing adaptive streaming HTTP server-client signaling. At
first the client requests the manifest file, and then the movie transfer starts. At time
unit 6 some loss/congestion is detected and the client requests a segment with lower
bit rate. At time unit 8 the loss/congestion is no longer present, and a segment with
higher quality is requested. [15].

The lack of multicast support is often countered by the use of content delivery
networks. The media is sent to servers closer to the end users, and all end users
closest to this server will retrieve their data from that server. Properties from
multicast are then imitated by network nodes. Multicast is built on a different
approach and a direct comparison is not possible. From the perspective of the
network both these approaches allows for data to be transmitted down through a
hierarchy. Their differences apart, these methods are putting the server load on the
closest node. In addition to this, proxy caches are already in place all across the
Internet. These caches tend to cache smaller files that are requested frequently. As
more and more clients are connected and watching a particular video, the caches will
recognize this and cache the media segments[21]. In essence these proxies become
an extension of the content delivery network. The service providers will benefit from
these caches and as this caching happens without any request for it by the provider,
this is a free extension to the delivery network.

2.2.6 HTML5 Video Streaming
HTML5 is not a web standard yet. Still it is of great interest to the future of video
on the web. Most browsers support the <video> tag introduced in HTML5 which
allows for easy addition of video in a web site, without the need for browser-specific

16



third-party plug-ins. These plug-ins are activated by the <object> tag in HTML.
The problem was that the video players and content were a black box, as seen from
the browser. This means that CSS is not able to style or apply transitions to the
video being showed on the web page[22].

Using the <video> tag a web developer can easily add a video while developing
a website by simply writing:

<video src="myVideo.webm"></video>

This is basically all that is needed, but height and width attributes should be in-
cluded, as with the <img> tag[23]. This is simply done by:

<video src="myVideo.webm" width="320" height="240"></video>

Since the <video> tag is a regular tag like <p> and <div>, it can be styled directly
using CSS. If a fully functioning video interface is needed, then a control panel can
be added using the controls attribute like this:

<video src="myVideo.webm" width="320" height="240" controls></video>

HTML5 offers a fallback mechanism allowing the developer to specify alternate
sources using different formats or codecs[22]. Research is also being done to allow
support for peer-to-peer connections in a specification called HTML Device.

The web is designed to be open and platform independent. Many vendors have,
despite this, implemented their own technology to offer rich web applications. Sil-
verlight is one of these technologies, accompanied by Adobe Flash and Apple Quick-
Time amongst others. These technologies provide additional functionality to the
web, but impair the webs ability to be uniformly usable across platforms. The
World Wide Web Consortium is therefore developing HTML5 that should provide
enhanced functionality without proprietary technologies[24].

The question then becomes if HTML5 will be able to provide the wanted func-
tionality. The usability across platforms is a plus, but to replace the proprietary
technologies it must also provide technology that makes it a viable substitute. In
February 2011 the World Wide Web Consortium held the second workshop on “Web
and TV”. A summary of the workshop is available at

http://www.w3.org/2010/11/web-and-tv/summary.html

They concluded that “Most players of the Web and TV world who need to stream
video on the Web require some adaptive mechanism to quickly react to network
fluctuations and ensure a smooth user experience while watching videos. (...) Inte-
gration within HTML may require exposing new functionalities in the browser, such
as QoS (Quality of Service) counters, control of the adaptive streaming process, and
access to the streaming manifest. The Web and TV Interest Group should prioritize
and discuss these needs on a second step.”

The development of HTML5 is ongoing and the focus on adaptive streaming
is present as network fluctuations should be handled. The downside is that the
work group does not seem to be very close to finding a solution. The goal is to
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develop a comprehensive test suite to achieve broad interoperability for the full
specification by 2014[25]. This was announced by Jeff Jaffe, the CEO of World
Wide Web Consortium. As of now it seems that the proprietary adaptive streaming
solutions will not get any competition in the near future.

2.3 Overview of TCP
TCP is a widely used protocol in the Internet today and provides a reliable transmis-
sion of data segments and congestion control mechanisms. As elaborated in section
2.2.2, despite TCPs reliable characteristics it is still found to be an effective trans-
port protocol for video content. We will in this section provide a brief overview of
some TCP protocol versions to highlight some important characteristics. We will
not provide a complete overview of all mechanisms in TCP, but rather highlight
those that are important for our work.

2.3.1 TCP Reno
The most important aspect of TCP in relation to our work, configuring a home
gateway, is the rate adjustment mechanisms built into the different TCP versions.
Versions like TCP Reno use packet drops as an indication of congestion. First, TCP
Reno starts with sending one segment and waits for a corresponding ACK. The
sender continues to send segments as ACKs are received. The number of segments
which are allowed in transit is called the transmission window. The period when
TCP Reno increment its sending rate exponentially is called slow start. When a
packet drop is detected, due to receiving duplicated ACKs, the window is halved and
it enters a new period where the window is increased with one segment every time
an ACK is received. This period with linear increase in the transmission window is
called congestion avoidance[26]. This is the basic mechanisms of TCP Reno. Other
mechanisms like fast retransmit have been complemented in newer versions. Fast
retransmit includes a timer at the sender which sets the amount of time before a
segment is considered lost. However, the main mechanism used to control TCP
Reno implementations is packet drop. This type of TCP traffic can be controlled
using queues with RED, which we did in our previous work. The randomly dropping
of segments will provoke a reduction of the senders throughput and be fair among
simultaneously active TCP flows[10]. Next, we introduce other TCP versions which
are delay based.

2.3.2 TCP Vegas
Other versions of TCP use RTT calculations based on the time between a segment
is sent and the corresponding ACK is received. One example of this is TCP Vegas.
When sending the first segment, Vegas calculate a BaseRTT which is the RTT of
the first segment. The window size advertised from the receiver in the ACKs, is also
used. These parameters are used to calculate expected throughput as follows:
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Throughput = WindowSize
BaseRTT

When the next ACK arrives at the sender, a new throughput called actual
throughput is calculated and compared to the expected throughput. The formula is
the same as previously shown; however the window size and BaseRTT might have
changed.

Next, the difference between expected and actual throughput is calculated and
compared to initial thresholds. The upper and lower threshold is denoted as α and
β respectively. These thresholds set the limits on how the protocol reacts to the
difference in actual and expected throughput.

α < (Expected− Actual)Throughput < β

If the difference between expected and actual throughput is in between the upper
and lower threshold, then the sending rate is kept at the same level. However, if it
is below α, then the window size is reduced linearly. Similar, when the difference
in throughput is above β, then the window is increased linearly[26]. This is typical
behavior for basic TCP Vegas, but other version can do this differently.

2.3.3 Compound TCP
With the two distinct TCP versions presented in previous sections we move to the
Compound TCP (CTCP). It is based on both the Reno and Vegas approach. CTCP
has emerged due to the steady increase in transmission rate. One major disadvan-
tage of Reno like approaches is that when the transmission rate is high, then a
reduction of window size to half of its original size will represent a large amount of
bytes. Therefore, reducing the window size to half of its original size and entering
congestion avoidance to rebuild transmission rate will be time consuming. Versions
like HSTCP and STCP have been developed to overcome this issue[27]. Another
disadvantage is the fairness between delay and loss sensitive TCP versions. Loss sen-
sitive versions do not back off until they experience duplication of ACKs. Then these
versions will overflow queues compared to delay sensitive version, because queues
with an increasing amount of packets will contribute to a delay increase. Hence,
delay sensitive TCP versions will back off at an earlier stage than loss sensitive
versions. FAST TCP is developed to handle these challenges[27].

Even though both delay and loss sensitive TCP versions have solutions for high
bandwidth transmission, there are still some problems when these two types of flows
are present in the network at the same time. This is why CTCP was developed [27].

CTCP uses three windows to calculate its TCP sending window. These are
calculated using the following formula:

win = min(cwnd+ dwnd, awnd) , where:

cwnd = congestion window,
dwnd = delay window,

awnd = advertised window from the receiver.
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From this formula it can be seen that the congestion window, the delay window
and the advertised receive window all contribute to the transmission rate adaptation
in CTCP. The congestion window is controlled by packet drops explained in section
2.3.1 and the delay window is controlled by increase/decrease in transmission delay.

It is worth noting that the transmission window is the sum of both the congestion
and delay window. The increase of the congestion window is described with the
following formula[27]:

win = cwnd+1
cwnd+dwnd

Another important characteristic of this approach is that the delay component
is not used until the transmission session leave the slow start mode and enters
congestion avoidance. The slow start period follows the same principles as in TCP
Reno and dwin is set to zero. However, in congestion avoidance the delay mode of
CTCP follows the same principle as in TCP Vegas presented in section 2.3.2. The
only difference from CTCP and TCP Vegas is that CTCP also reacts to packet losses
with reducing its window size aggressively if packet loss is detected. If a transmission
timeout occur, the TCP sender enters slow start again. Hence, the delay component
of CTCP is disabled.

2.4 RTT Measurements
As we investigated how to manipulate TCP flows according to user preferences,
we discovered a significant need to gather accurate information from ongoing flows.
TCP characteristics where presented in section 2.3 and common for several TCP
versions is the throughput formula. RTT is a fluctuating parameter which needs
to be estimated accurately in order to correctly set a target bit rate for individual
TCP flows. There are different methods for estimating RTT and these are mainly
divided into active and passive categories. They will be addressed in the following
subsections.

2.4.1 Active Measurements
Active measurements are where a network measurement probe actively injects pack-
ets into the network and awaits a response from the designated destination. An
example of such tool is ICMP ping messages[28]. A user sends ICMP packets and
the destination node will respond if it is configured to support ICMP ping. The user
which sent the ping can then measure the RTT (delay of the echo reply) and packet
drop ratio. An issue with using ICMP ping is that some network administrators
deactivate it for security or other reasons. The ping message will then be discarded
at the receiving node.

2.4.2 Passive Measurements
Another method used is passive measurements where an intermediate node analyzes
the traversing traffic flows and through this gathers statistics about them. An
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example is where the three-way handshake period of a TCP session is analyzed.
The time interval between when a segment with the SYN flag set, and when a
corresponding ACK passes through the measuring node, can be used to calculate the
RTT[29]. This is illustrated in figure 2.5. This type of passive measurement makes
use of well-known TCP behavior. The behavior pattern used could be complex and
unpredictable. As a result, TCP timestamps where proposed.

Figure 2.5: An example of an intermediate node which analyses TCP RTT in a
three-way handshake passively[29].

TCP timestamps are described in RFC 1323 and is an extension to the option
field found in the TCP header. An illustration of the TCP option field can be seen
in figure 2.6. An issue with using TCP timestamps is that both client and server
have to support it. Tests have shown that on average 76,4% of all nodes support
TCP timestamps[30]. Hence, this solution needs some other mechanisms if TCP
timestamps is not supported in both client and server. One solution could be to
first use TCP timestamps, and if this fails ICMP ping could be used as backup.

2.4.3 Comparing Active and Passive Measurements
An objection to using ICMP ping to retrieve RTT for TCP flows is that some nodes
in the network will treat ICMP and TCP traffic differently. In some cases nodes
give TCP flows more resources when saturation is experienced. Measurements of
RTT are then dependent on the protocol in use to do the measuring. This issue
has been addressed in previous work and it has been shown that both ICMP ping
and TCP analysis methods give approximately equal RTT[28]. Most servers do not
block ICMP ping messages, sending ping messages is therefore a valid solution.
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Figure 2.6: An illustration of the option field in the TCP header. The first and
second byte identifies the option selected and data length, while the following 8
bytes represent the timestamp values. The timestamp value field indicates when the
segment was received and the timestamp echo reply is used to store the timestamp
of when the last segment was received.
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Chapter 3

Theory

In this chapter we will outline how the theory on the KP-MP-AP architecture is
adapted into our system. We will first focus on the Monitor Plane to see how
the information gathering can be done. We need some functionality to retrieve
information of the services that are running at the terminal equipment connected
to our home gateway. Then we turn to the specifics of the Silverlight Smooth
Streaming technology. After this, the Action Plane will be addressed; the entity
that manipulates traffic in order to obtain the network goals. The Action Plane
is realized by the Click modular router framework, which will be introduced here.
Finally we present an overview of the architecture and how information will traverse
the entities of our system.

3.1 Information from Terminal Equipment
Some video streaming clients collect information from the terminal equipment.
Adaptive streaming services will monitor the bandwidth obtained while transfer-
ring chunks of data to approximate the available bandwidth. In addition, CPU
usage can be used to determine if the terminal equipment has the processing power
to receive video at a higher rate. Much of our testing has been on the TV2 Sumo
service which uses Silverlight Smooth Streaming. This service monitors bandwidth
and CPU load, and uses this information to determine which quality to request from
the streaming server.

Each video service utilizes the collected information to improve its QoE. We want
to explore how this kind of information could be used by the KP to optimize video
services in the home network.

The methods for collecting information vary in many areas. We can passively
collect data from traffic running through nodes in the network. By this approach
we can collect the information that is communicated between the client and the
streaming server, and in addition aggregate traffic statistics. Alternatively we can
have an active approach, where data is collected at the end system and transmitted
to the closest KP instance. For a home network this will normally be the home
gateway. There are several places within the end system where an active approach
could be placed. We will now have a closer look at passive, and several active,
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techniques for information gathering from the end systems.

3.1.1 Monitoring Traffic
This is, as described earlier, a passive approach. The goal here is to make use of the
information that is transmitted between the client and server. In adaptive streaming
services there is usually an initial message sequence where the server advertises its
services and bandwidth options. In addition, the client often provides information
for authentication. As mentioned in section 2.2.5, the former can be done using a
manifest file. The latter is often done in a similar matter with XML encoded strings
presenting the user information to the server.

Silverlight Smooth Streaming uses this approach. After logging in to a service
provider web page, the server communicates user details to the client as shown in
figure 3.1.

Figure 3.1: This is a cropped view of a Wireshark capture where the streaming
server sends user information to the client application. The service used here is
TV2 Sumo and the user details are retrieved from their database of users. This
information can be used to identify users which can be useful in the KPs decision
making.

Using this information we can recognize, separate users and give dynamic per-
user configurations. We can see which clients are accessing video services and this
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can be utilized when determining how to treat them. If a client name is livin-
groomTV it will tell us that this is a service that should receive QoE above the best
effort, at the expense of the others. It can also be argued that when the father or
mother in a household is streaming the news, this should have priority over the 14
year old daughter streaming Justin Biebers latest sightings in LA from a US gossip
website.

Following our example on IIS Smooth Streaming, the successive messages be-
tween the server and client is the clients retrieval of a manifest. This manifest
contains information of all available video and audio streaming rates as shown in
figure 3.2. Being aware of this information allows the KP to set a target streaming
rate for each service, giving one service a slightly elevated QoE. This is especially
useful when two adaptive streaming services are competing for bandwidth.

Figure 3.2: Yet a Wireshark capture where the streaming server sends video stream
details to the client application. Once again, this is a cut from TV2 Sumo. This
information is very useful for the KP to determine an optimal resource sharing
policy. Knowing what bit rates each video can be offered can greatly improve KP
decision making.

According to [9], competing players will cause frequent quality variations. They
argue that they observe congestion at the same time and responds by lowering the
quality. When they both lower their rates, bandwidth is available and they both
increase their rates simultaneously. These fluctuations can be prevented by tilting
the resource provisions slightly in favor of one service. From a global perspective,
this is a more stable use of bandwidth and the users will avoid annoying quality
changes. Even though one of the players will have a constantly lower rate which
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causes a lower QoE, the video will be streamed at a constant rate. The constant
streaming rate will have a positive effect on the QoE. In sum the user getting lower
rate will have a slightly lower QoE, but the user getting the high rate will have a
significantly higher QoE. From a global perspective the case of service differentiation
is definitely closer to the optimal solution.

After the initiation process, the client will frequently send GET messages to the
server where it specifies what quality the video should be delivered in. By collecting
all the mentioned packets the KP should know who the user is, what service the user
is streaming, what rates are available and what rate is currently being streamed.

These files are, as described, sent in Silverlight Smooth Streaming. Similar files
are also sent in Adobe OSMF player and Apples adaptive streaming services. The
gains of passive monitoring can therefore be significant. An even bigger advantage is
that this is monitored from the home gateway. No end user software or alterations in
software are needed; it’s plug and play from the moment it is installed in the home
gateway. And in addition to getting direct information from the signaling between
client and server, statistics can also be gathered. Bit rates can be logged and traffic
analysis can be aggregated. This allows for the implementation of a learning ability.
The home gateway can recognize different scenarios and how its previous actions
have taken effect. Based on this information it can make the right configuration in
the network using both pre-programmed parameters and the learnt behavior of the
network.

3.1.2 Altering Streaming Client Code
This approach is motivated by the observations we have done while using the TV2
Sumo Smooth Streaming service. The client provides information to the user of
what bit rate is currently being used and what the users maximum bit rate is. In
addition to this, the current CPU load is displayed. The latter is of special interest
because allowing the network to know the CPU load will contribute in the decision
of what stream should receive more bandwidth. There is no point in allocating extra
network resources to a computer that will have trouble decoding it.

In the previous section we saw that Silverlight Smooth Streaming, and the Adobe
OSMF adaptive streaming, retrieve user and server capability information. This
was the information we were going to capture in our passive approach. As shown in
figure 3.3, it also collects information from the processing done in the end system. A
suggestion is therefore to collect all this information directly from the client instead
of going to great lengths to capture and interpret this information from other sources.
Other useful information could also be available from the video client, depending
on what the framework supports. We can make use of the information gathering
already taking place in the streaming video client.

A solution could be to write code that could be added to the existing client
and would function as a communicator towards the KP. There are several ways to
signal the KP with information from the client. In our case, having main focus
on Silverlight applications, a HTTP approach seems to be a reasonable solution.
Building a HTTP client is simple in Silverlight and parameters could be passed to a
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Figure 3.3: Screenshot of the Tv2 Sumo Silverlight client where some system pa-
rameters are read and posted to the user. There is lots of information available in
the Silverlight Player

web server enabled home gateway with POST messages. At the home gateway, the
parameter passed in the HTTP request can then be read and utilized.

Another benefit of this approach is the simplicity of upgrading it. The video
streaming clients are downloaded from the service provider every time the user
watches a video. This means that users would get the software and successive
upgrades without noticing it. Of the approaches for end system reporting of data,
this is the most user-friendly approach as upgrading is done server side.

3.1.3 Collecting Information From the Browser
The web streaming services are presented from the providers web site using a client.
One thing the clients have in common is that they are all viewed in a web browser.
Most web browsers allow for custom third-party plug-ins or add-ons. By creating an
add-on we could retrieve information about the resource consumption and service
provider by collecting it in the browser.

This method has several imperfections that, in our view, disqualify it. First
of all, the number of browsers is quite large. A custom add-on would have to be
implemented for each browser and constantly be updated as the browsers often
have version upgrades. In addition, video player clients presented by Silverlight or
Flash are black boxes to the browser. As discussed in section 2.2.6, most clients
are not HTML encoded. If HTML5 someday presents a good solution for adaptive
streaming, the browser might be able to read information from this player.

27



The clients are often represented by a <object> tag, and its content is not visible
to the browser. Adding together the concerns of this approach we see that we would
have to do several implementations trying to get information hidden in a black box.

3.1.4 A Standalone Application
Another solution for the active approach is to have a standalone application running
on the end system. This application could be written using any programming frame-
work and language. But a platform independent language would save the trouble of
multiple implementations.

This application would run in the OS directly. This would give easier access to a
lot of OS parameters. We could retrieve the CPU load and available memory directly.
In addition we could get information on what type of interface the end system uses
to connect to the home gateway. Wired and wireless Internet connections have
different levels of QoS. This is especially a concern if the signal strength is low on
a wireless link. The network link load could also be collected, but this would be a
total of all traffic originating and terminating in this end system.

The standalone approach has some advantages in retrieving network link infor-
mation. The retrieval of application information would on the other hand be a
significant challenge. Application specific information, like the current quality level
used by a Smooth Streaming application, will be difficult to retrieve. The application
is run in a black box, on top of a browser. It is not made for easy access.

The conclusion is that some parameters could be easily gathered from the OS
through a standalone application. These could aid us in determining what actions
to take. Especially CPU, memory and network link signal strength are good candi-
dates.

3.2 Silverlight Adaptive Streaming
In our previous proposal[10], we have already implemented some traffic monitoring.
Using known media services, video streams are monitored and bandwidth usage is
calculated. Even though this monitoring could have been improved by the measures
explained in section 3.1.1, we want to explore new ways. As a proof of concept
solution, perfecting the traffic monitoring is not the goal. We will therefore focus
on a different approach.

Implementing a browser add-on, as described in section 3.1.3, is not desirable.
The standalone application described in section 3.1.4 could provide useful informa-
tion. The information would however be high level usage statistics and not detailed
information of a video stream and its properties.

Therefore we have chosen to explore the option of altering the client code, as
described in section 3.1.2. In accordance with previous work, we have yet again
focused on Silverlight Smooth Streaming. Our custom client code is therefore written
in Silverlight for a Silverlight Media Framework video player. This implementation
process will be explained in section 5.1.
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Silverlight provides an adaptive streaming technology called Internet Informa-
tion Services Smooth Streaming or IIS Smooth Streaming for short. The Silverlight
framework provides a media player that has support for multiple streaming technolo-
gies. The player can be instantiated to provide progressive download or adaptive
streaming of media along with other forms of media delivery.

The properties of an adaptive stream have been covered in section 2.2.5. The
adaptive streaming provided by the Silverlight framework is the technology we have
investigated in this report. Microsoft announced in October 2008 that they would
feature a new streaming extension called Smooth Streaming. For promotion pur-
poses Microsoft announced an initiative with Akamai and launched a showcase web
site; SmoothHD.com[17].

The Smooth Streaming technology uses MP4 media format. This is the first time
in over a decade that Microsoft uses a file format other than ASF as a media format.
The MP4 container contains less overhead, is based on a widely used standard, has
H.264 video codec support and native support for payload fragmentation within the
file.

Adaptive streaming requires that the video is coded into several different bit
rates. A manifest file that has an overview of these bit rates is created; as shown in
figure 3.4.

Figure 3.4: Expanded view of the information present in a manifest file. The avail-
able bit rates are listed and a path to the file containing each bit rate is given. This
file is then retrieved by the client which will choose a bit rate to retrieve.

As described, these video files are partitioned into chunks of data. The chunks
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contain a given time interval of video for a given bit rate. This way the client has
an array of video files to request. It chooses the wanted bit rate, and then selects
the time interval it wants to retrieve from within the video.

The Smooth Streaming specification defines each chunk as a MP4 fragment and
the chunks are stored as a contiguous MP4 file. Each fragment can be chosen from
this file at random access. When a client asks for a specific time segment, the server
finds the appropriate chunk and sends it over the Internet as a standalone file. This
means that the chunk files are created virtually upon request while the video is
stored on disk as a single full-length file encoded per bit rate. This is possible due
to the mentioned support for payload fragmentation in MP4.

Using this scheme, the Smooth Streaming servers offer the content to the Sil-
verlight clients. A client is free to request a video file with the wanted bit rate and
specify a time interval to retrieve. In the Silverlight framework the Smooth Stream-
ing media players have a pre-defined way of determining what bit rate to request
and when to adapt.

For greater flexibility the developer is free to implement his own version of this
selection process. This allows service providers with a choice to either use the pre-
defined player settings or rewriting the logic for rate adaption. The rate adaption
logic is included in the source code, allowing for small customizations or completely
rewriting it. The custom implementation of such mechanisms is complex, and most
service providers would be better off using the provided code.

3.3 The Click Modular Router Framework
There are many different router architectures in use today. Most of them are pro-
prietary solutions (e.g. Cisco) that give network administrators the opportunity to
use different built in functions. There are no mechanisms for extending the already
built in functionality. This is supported by the Click framework, without severe cost
of routing performance. It has been shown that Click only contributes to a 10% cost
of computing resources, compared to normal Linux routing operations[1].

Click is an open source project developed at MIT. It offers a flexible architecture
for developing routers with configurations aimed to support different scenarios. This
is what we need when we wish to explore how a home gateway can be used to
enhance QoE offered by adaptive streaming services. The Click framework is built
upon several different fundamentals which will be presented in the following sections.

3.3.1 Click Elements
A Click configuration is built upon several smaller processing entities called elements.
When an element finishes its designated task it will hand the packet to the following
element in the routers configuration. An example of an element task is to decrease
the TTL field in the IP header. A series of elements which execute different tasks is
called a forwarding graph. An illustration of an element can be seen in figure 3.5.

The reason for having many elements with a restricted area of responsibility is
to give network administrators the possibility to add and remove elements in order
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Figure 3.5: Example showing a Click element with its corresponding class name,
ports and configuration string. This is just a dummy element which does not do
anything else than having one input and two output ports. This element is provided
for illustration purposes[1].

to tune the routing behavior to their needs. The Click framework now offers a wide
collection of elements which can be used to build routers with different behavior.
These elements and their corresponding documentation can be found on the Click
website[31].

However, if an element for a specific need is not already built, then this element
can be built as a class in C++, a widely used programming language. The syntax
and how an element is built will be explained further in section 3.3.3. We present
the most basic element building blocks in the following subsections[1]:

Element Class

Element class is like a class in classical programming (e.g. Java, C#). This is where
the element behavior is defined.

Ports

All elements have a set of both input and output ports. A packet enters an element
through an input port, is processed, and leaves the element through an output port.
These ports can be agnostic, pull or push.

Pull is when an element asks for a packet whenever it is idle. The element
which receives a pull request will then return a packet or a null pointer if there are
no waiting packets. A push port is used when an element wants to send a packet
without being concerned if the receiving element is idle or not. This can for example
be when an element sends a packet to a queue element. Agnostic connection is used
when the connection is not defined. Hence, the router will initialize the connection
as either push or pull according to the context in which it is used. It is important
to note that two elements communicating with each other needs to be paired using
equal port types. Hence, a push output port needs to be connected to a push input
port.
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Configuration String

Configuration strings allows for a dynamic initializing and use of elements. This
means that each element can take a set of input parameters and configure its be-
havior according to them. It can for example be the queue length which is used
by the queue element. Then the queue length is taken as an input parameter when
the queue element is initialized. An example is given in section 3.3.2. Next, we will
introduce how the configuration files are written in Click.

3.3.2 Writing Click Configurations
As mentioned in the previous section, elements are the fundamental building blocks
used when creating a router configuration. Human readable names are assigned to
elements and can be compared to variables used in ordinary programming languages.
The benefit of using human readable names for elements is that it makes it easier to
identify the specific element handlers. These handlers are used to manipulate the
behavior of elements at run-time. Element handlers will be outlined in the following
subsection. First, we give an example for how we can define a source for packets and
a queue using human readable names. Note that the double colon is the notation
used for assigning an element a human readable name.

packetSource::FromDevice(eth0);

myQueue::Queue(10);

In both packetSource and myQueue the element is used with a corresponding con-
figuration string which is contained inside the parentheses.

The flow of packets is then defined using arrows. An example using the previously
defined elements is as follows:

packetSource->myQueue;

This example is not a complete Click configuration. This configuration is very
basic and the only task these lines of code perform is handing a packet over from
the designated Network Interface Card (NIC) and stores it in a queue. The queue
is defined as myQueue with ten available queue positions. However, it is a good
introduction to how the flow of packets is and how a Click configuration can be
built. After building a Click configuration file it can be initialized using the following
command:

click-install [configuration-filepath]

To uninstall a click configuration the following command is used:

click-uninstall
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These commands are referred to as tools in the Click documentation and we only
present the ones we frequently used. Other tools can be found on the click docu-
mentation website[32].

Up until now we have described how a Click configuration can be initialized at
the startup of the Click router. In most cases, a click configuration is reinitial-
ized whenever a new configuration file is written. However, there are two methods
for interacting with elements and altering configuration files without restarting the
router. These are handlers and hot swapping[1]. Both will be outlined in the fol-
lowing subsections.

Element Handlers

Element handlers are used by elements to support user interaction with elements
in an already running configuration. They can also be used to retrieve statistics
such as current or average queue size in a running queue element. Each element will
create its own subfolder in the /proc path in a Linux system. In our installation of
the Click framework all handlers where put in the following folder:

/click/

For example the element myQueue would have a unique folder, containing its desig-
nated handlers. myQueue could for example have a handler called “length”, which
is used to change the elements queue size. Then the folder structure would be as
follows:

/click/myQueue

Inside the myQueue folder a text file named length would reside. The default value
contained in the length file would be 10, because of the configuration string explained
in section 3.3.1. This way the length of myQueue can be changed run time without
having to click-uninstall and click-install the configuration file. It is important to
note that elements which we want to interact with through handlers should have
unique human readable name. Then it will be both easier and faster to identify each
elements handler folder. This is because a Click configuration is built from several
elements which are working together.

Configuration Hot Swap

Even though handlers give some interaction possibilities between the user and a
running Click configuration, there is a need to sometimes add and remove elements
without restarting the router. The issue with restarting the Click router every time
we do changes to the Click configuration is that we lose the current router state. This
can for example be the packets stored in a queue. Throwing away packets already
stored in a queue is considered bad behavior and should be avoided. Because of
this, there is a possibility to hot swap to a new configuration file without shutting
down the router. The command for using hot swap is:
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click-install -h [configuration-filepath]

The hot swap will be performed if the new configuration file does not contain
any errors. If the new configuration contains errors, then the old configuration will
be used.

3.3.3 Writing Click Elements
Click has several classes which can be used to create new elements. The description
of these classes can be found on the click home page:

http://read.cs.ucla.edu/click/doxygen/classes.html

When writing a Click configuration, the framework may not contain all the func-
tionality needed. Then we have to build a new Click element from a header and
source file with the file extensions .hh and .cc accordingly. The header file contains
class, method and variable declarations and can be viewed as an interface for other
classes using the element. The source file is where the class, method and variables
are implemented. Hence, it is where most of the complexity is placed. This is
to hide complexity from the header file. Then a programmer can easily use the
methods declared in the header file without being concerned about how they are
implemented.

3.3.4 Compiling Click Elements
After a Click element is written we need to compile it into the running Click frame-
work in order to use it when writing a configuration file. First, the element header
and source files need to be put in a designated folder, where it can be read by the
Click framework. Each type of elements has their own folder which is categorized
based on their functionality. For example, in our Click installation, the checkip-
header.cc and checkipheader.hh are placed under the /ip folder as follows:

/CLICKDIR/click-1.8.0/elements/ip

Because /ip is a folder which contains built-in elements it should be left as it is
in order to maintain the Click frameworks structure. When developing new Click
elements it is beneficial to keep the elements under development separated from the
rest of the frameworks fully functioning elements. In a clean Click installation this
folder is called /local and its path in our installation were as follows:

/CLICKDIR/click-1.8.0/elements/local

All our developed header and source files were put in this folder. This folder is not
included in the Click frameworks build path as default. In order to add it, we first
needed to navigate to where the Click framework was installed. Our installation
path was as follows:
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/CLICKDIR/click-1.8.0/

The /local folder was added to the Click build path using the following command:

./configure --enable-local

Next, we used the following command to update the list of elements which Click
uses when it compiles the framework.

make elemlist

Finally, we compiled the Click framework using:

make install

It is important to note that all executing commands in the compiling section needs
to be run in the super-user context.

3.4 Overview and Architecture
We have described our approach for retrieving information and the tools for altering
traffic. In this section we would like to present how the entities will be connected
and the information utilized. The description will focus both on the functional plane
as well as the physical. The entities and their tasks will be described and the system
architecture will be presented, showing how these entities are placed in our home
network.

Figure 3.6: Illustrating the entities in our system and the communication between
them. The MP entities will report the presence of media streams to the KP. The KP
will in turn write this to the web data storage. This is where the web user interface
reads data and presents them to the user. The user set its preferences which prompt
the KP reasoning process to reconfigure the router.
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The functional entities of our system are presented in figure 3.6. An addition
to the already mentioned entities KP, MP and AP, is the concept of a web user
interface. This interface is described in section 4.3 as a method of collecting user
preferences. It is implemented to ease the reasoning process done by the KP and
allowing the user to influence the decisions of the KP.

Our goal is to implement these entities in a system that will function as a com-
plete home gateway. The placement of our system in a network setting is shown
in figure 3.7. Routing tables are written in Click and forward regular IP traffic as
an “off the shelves” home gateway would. Applications do not need to be aware
of the enhanced functionality of our home router to get normal best effort service
connection. This is a necessity as making all applications compatible is impossible.
To utilize the enhanced functionality clients must contact the home gateway.

Figure 3.7: Here we illustrate where our system will be implemented in the Internet.
Our Knowledge Plane and Action Plane components will reside in the home gateway.
The Monitor Plane component will be loaded to the user terminal equipment upon
starting a reporting video service.

Silverlight clients are downloaded from the service provider each time a web
page is visited. This means that the service provider chooses if the user should
get a video player with a reporting process. If the service provider has enabled
the reporting functionality, as proposed in section 3.1.2, the Silverlight Application
will try to contact the home gateway. This communication will be successful if the
home gateway is enabled to process the information, if not the information goes
to waste. The functionality of the Silverlight Application should not be affected
by the reporting process. This should be true both when the application makes
contact with a home gateway, and when the home gateway is non-compatible with
our system.

The Silverlight applications are running at the users terminal equipment. The
rest of our entities will run on a single physical entity and will be comparable to

36



a regular home gateway. A Silverlight application will report run time application
specific parameters to the KP. Utilizing the information obtained, the KP will reason
on the state of the network. If an action is found that would improve the overall
Quality of Experience(QoE) for the users, it will be signaled to the Action Plane.
With this communication between the entities, the system would be able to work
as a collective system for quality optimization.
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Chapter 4

Methods

In this chapter we will consider how we can control traffic in the home network.
There is a variety of approaches that could be used to obtain control over the traffic
flows. We will present some of these, and propose two Click elements based on the
presented techniques. Current video streaming services, such as Silverlight Smooth
Streaming, have deficits in their adaption to traffic in a home network because
they only regard a limited set of local parameters. Using our architecture with its
interaction between the MP, KP and AP we try to develop a home gateway that
will be able resolve these deficits. After presenting the techniques for traffic control,
we will present the web user interface. This is an interface where a user of the home
gateway can monitor the traffic in the network and input his or her preferences.

4.1 Controlling TCP Traffic
In section 2.2 we presented video streaming and how this technology distributes
both live and recorded video content to end users. Several protocols are used, but
the state of the art technology is adaptive streaming which uses HTTP over TCP.
In the home gateway proposed in our previous work, we presented a gateway which
is able to distinguish between flows and prioritize among them. We did not further
develop AP mechanisms to control TCP traffic. As discussed in section 2.1.6, we
used built in functions with RED to control the traffic. We managed to control the
traffic, but it’s not the most effective solution when it comes to link utilization.

Traditional Downstream Limitation

This is the approach used in our previous solution. As explained in section 2.1.6,
this can be done by dropping packets coming in to the receiver. We could also
have delayed or corrupted incoming data to make the TCP receiver react to what
it interprets as a lossy or erroneous connection. These forms for limiting TCP are
effective at achieving their goal, but they introduce unwanted behavior like packet
retransmission and TCP timeouts. We have therefore focused our work on more
subtle forms of control. By this we mean that we want to manipulate the signaling
used in TCP and imitate a poor link throughput or link congestion, leading TCP
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to lower its transmission rate.

Controlling TCP by Altering Upstream Communication

In this section we present more sophisticated methods for controlling TCP traffic.
First we begin by introducing main characteristics of how TCP adjusts its sending
rate according to current network state.

TCP mainly implements two controlling features for the traffic flows[33]. These
are as follows:

• Flow Control

• Congestion Control

TCP uses flow control to synchronize the transmission rate of the sender and the
maximum receiving rate of the receiver. Some receivers have less processing power
than an ordinary PC, and therefore needs a mean to advertise to the sender to
slow down its sending rate. This is done by advertising the maximum window size,
hence maximum receiving bit rate, in the ACK packets sent from the receiver to the
sender. There is also another technique used for TCP to adopt its sending rate to
the network environment. This is congestion control which is used to adapt TCPs
sending rate to congested links and queues in the network. This is done by dropping
packets, and then TCP will use congestion avoidance, slow start, fast retransmit and
fast recovery to recover its sending rate. Another technique used is retransmission
timeout (RTO), where a timer is used to decide for how long a sender should wait
before an ACK from the receiver is considered lost. All of these features need to
be taken into consideration when we are proposing a solution for controlling TCP
flows traversing our home gateway. We begin with introducing TCP pacing.

4.1.1 TCP Pacing
The purpose of TCP pacing is to evenly distribute the packets sent from the stream-
ing server to the client over the entire duration of the transportation RTT. The idea
is that this will reduce the bursty behavior of TCP, where several packets are sent
close to each other in a short period of time. Reducing burstiness will enhance
transmission effectively in the network because an even distribution of packets will
not lead to congested queues at network nodes in short time intervals. This evenly
separation of packets will only lead to dropping from queues when the network is
approaching its saturation point. Figure 4.1 illustrates a comparison of bursty TCP
traffic with and without using TCP Pacing.

TCP pacing can be implemented at the sender or the receiver end. Normally,
a sender using TCP will send the next packet in the sequence when the sender
receives a TCP ACK of the previous packet from the receiver. When TCP pacing
is activated, the sender will delay sending the next packet. The new sending rate is
equal to the window size divided by the estimated RTT. All packets are then evenly
distributed over the RTT[34].
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Figure 4.1: A comparison of an ordinary bursty TCP flow a) and TCP pacing b). We
see that in ordinary TCP transfer then several packets are grouped together, while
they are evenly distributed over the complete RTT when TCP pacing is activated.

TCP pacing could also be implemented at the receiver. This can be done by
delaying the TCP ACK response. However, controlling a TCP flow at the receiver
side is believed to be challenging. Some TCP versions use one ACK to acknowledge
several packets, making control of TCP traffic at the receiver side hard. In this case
we only accomplish delaying the sending of a burst consisting of all packets which
belong to one ACK. However, it is interesting to see if this technique could be used
to slow down the sending rate of the TCP sender. This will be elaborated in section
4.1.2.

It has been shown that evenly distributing TCP packets is not preferable in
terms of increasing TCP throughput. This is because spreading the packets over a
certain time interval will lead to synchronized losses between several TCP sources.
Another argument for not implementing TCP pacing is that TCP will not adopt
the sending rate before the network is actually saturated. This is because there
is a higher probability for several TCP flows experiencing saturation at the same
point in time. This is handled in for example Random Early Detection, which is
performing random dropping of packets. Random dropping of packets will activate
congestion avoidance at the sender side and therefore prevent the synchronized con-
gestion avoidance behavior[34]. However, we will use this technique on separate
flows at a gateway instead for using it on several flows and nodes simultaneously.
The global synchronization should therefore not be a problem.

4.1.2 PostACK
PostACK is a technique which is used to delay the sending of ACKs from the
receiver to the sender. This was discussed in section 4.1.1. It does however have
high demands for adjusting the interval between ACKs sent from the receiver. This
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is because there needs to be a close collaboration between the managing entity (KP)
and the controlling entity (AP) that performs the adjustment of the flow sending
rate. This is needed in order to make the traffic adjustment transient to the user,
so that it does not influence the QoE. This is because the interval between ACKs
needs to be adjusted according to both current traffic flows in the gateway and the
user preferences.

Even though there can be some challenges in creating an element that takes all
of these elements into account we will investigate how this can be implemented in
Click and demonstrate the effects of it when it is implemented in our testbed.

4.1.3 Controlled Packet Drops
Controlled packet drops are the technique where dropping of packets is used to
activate congestion avoidance at the sender. This is used in RED and other known
active queue management (AQM) algorithms to control the sending rate of different
TCP flows. This technique is implemented in routers today and is what we used in
our previous gateway solution. It is not considered optimal because it will trigger
retransmission of information which has already traversed the network. Because
streaming of video with high quality (HD) uses large amounts of resources, it is
advantageous to keep the amount of information retransmission to a minimum.

4.1.4 Endpoint Window Size Adjustment
A solution proposed for controlling TCP traffic at the receiver side is one where the
controlling entity rewrites the window field in the TCP header. The TCP header
and its corresponding fields can be seen in figure 4.2.

Figure 4.2: An overview of the TCP header and its fields.
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The receiver window size indicates how much data in bytes which it can store in
the receiving buffer. It is an indication of how much traffic that can be in transmis-
sion between the streaming server and the client at any time.

One solution discussed in other works is using this technique in combination
with RED algorithm[33]. This way, saturation can be avoided at an early stage
and the throughput of the network will be increased. Fairness between flows will be
maintained, because dropping of packets is random instead of unfair models like tail
dropping. Tail dropping is considered unfair because traffic sources transmitting
large packet bursts will occupy most of the queuing capacity in network nodes,
while senders using small bursts can then see the queues as full and will experience
dropping of packets.

Using RED in combination with rewriting the TCP window field is referred to
as RED-RWM and it has been shown in simulations that this technique is very
beneficial when it comes to enhancing network throughput and effectively[33]. This
is because it does not report to the sender with the use of packet drops. Instead the
window field is changed to slow down or increase the sending rate.

One challenge with this technique is when encryption is used. Then the TCP
header will be hidden and it will not be possible to read and update the header
fields.

Despite problems if encryption is used, it is of great interest to see how this
technique can be implemented using Click [1]. We will need to create an element
which rewrites the TCP receiver window size in the ACKs sent from the receiver
to the sender. Another important issue is that the TCP header checksum needs to
be recalculated before the ACK is sent towards the sender. Checksums are used to
control the integrity of the TCP headers. Hence, the senders dismiss packages with
false checksums.

4.2 Click Element Proposals
This section provides an overview of the functionality provided by the Click ele-
ments we have developed. Code is not present in this section in order to ease the
understanding of how these elements operate. Before our elements can manipulate
the different TCP flows, we need to identify them.

4.2.1 TCP Flow Identification
All TCP ACKs traversing our home gateway upstream will be sent through the pro-
posed element. A Click handler is used by the KP to set the source and destination
IPs of the TCP stream the element is to manipulate. This handler is constructed
using comma-separated values (CSV) and will be adapted to each proposed element.
We assume that each user will view at most one video stream at any given instant
in time. This assumption allows us to uniquely identifying a TCP session based on
a source and destination IP pair. Another characteristic of the proposed elements
is that all TCP ACKs which do not have the source and destination IP set in the
handler, will traverse the element without modification.
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4.2.2 ACK Pacing Element
The ACK pacing element is illustrated in figure 4.3. The basic idea is that every
ACK is sent from the receiver to the server in order to confirm that each individual
packet was received without any errors. The combined time it takes for a packet
to be sent and the receiver to acknowledge a packet is denoted as RTT. The RTT
and the receivers congestion window are used by the server side TCP algorithm to
calculate the throughput at which the content should be transmitted. The formula
used in these calculations is as follows:

Throughput = RWIN
RTT

We see from this formula that in order to affect the TCP sending rate there is
a possibility to either increase the RTT or reduce the receivers RWIN. First, we
propose a Click element for increasing the RTT by pacing ACK packets sent from
the client to the server. Our element is placed in the receivers sending path. Every
ACK sent from the receiver to the server will enter the ACK pacing element. As
the ACK packets traverse the element we calculate the inter-arrival time between
ACKs, denoted γ. Normally, γ would not be altered between intermediate nodes in
the transmission path. But, in order to reduce the TCP throughput we increase the
RTT by adding an extra time delay φ to the existing inter-arrival time.

Three phases become clear when we use this technique in an adaptive streaming
environment. These are denoted as the initialization, learning and the operating
phase. They are introduced in order to ease the understanding of some of the
challenges in using the ACK pacing element. They will be outlined in the following
subsections. An illustration on the KP/AP interaction can be found in figure 4.4

Initialization Phase

This state is where the KP decides that some streaming flows should be protected
and others should reduce their transmission rate. The KP sets the parameters
needed by the AP to identify the different active flows. Next, the ACK pacing ele-
ment in the AP starts to measure the inter-arrival time between each incoming ACK
and calculates an average inter-arrival time using these measurements. Meanwhile
the KP calculates a metric from its collected parameters, this metric represent how
much a flow should reduce its sending rate. The metric is used in combination with
the average inter-arrival time to set how aggressive the increase in delay, φ, should
be in the learning phase. The learning phase is explained in the following subsection.

Learning Phase

The learning phase is the time period when the element is used for the first time
with a new streaming service. As described in section 2.2.5 an adaptive stream
will operate at several distinct bit rates (QL). But the ACK pacing element has no
means of knowing how much a φ increase in the time between each ACK is needed in
order to reach a target bit rate. The element therefore needs to start by increasing
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Figure 4.3: This is an illustration of the ACK pacing element which space the
receivers ACK responses sent from the receiver to the streaming server. It can be
seen that the ACKs enter the element with a time interval γ between them. After
a calculation process the ACKs leave the element with a γ + φ increase in the time
interval between them.

φ with for example 1 ms and wait for a response from KP. The aggressiveness of the
increase in the added delay is controlled by the metric calculated by KP from the
collected parameters.

φ = γ ∗ KPmetric10 , where 0 ≤ KPmetric ≤ 100

The KP will report to the AP, i.e. the ACK pacing element, if there were any
effect of the φ increase in delay. If the φ increase resulted in a flow reducing its
sending rate (QL), the delay will be kept at this level. However, if the φ increase in
delay had no effect, then the AP will continue to increase φ until the KP is satisfied
and the optimal bit rate (QL) is achieved. When the optimal bit rates (QL) for
all current flows are achieved, then the AP enters the operating phase which is
described next.

Operating Phase

After an optimal receiving bit rate according to KPs reasoning process is reached,
there should be a mechanism which stores current QL and the introduced delay φ,
which was needed in order to achieve the corresponding QL. Then the ACK pacing
element could faster reach the optimal QL next time it is needed to do so for the
same service. Without this mechanism the time it takes for the AP to find a match
between φ and the wanted QL can in some situations be time consuming and the
adjustment in QL be too slow.
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Figure 4.4: This figure illustrates the complete interaction sequence between the KP
and AP. First the KP sets the initial parameters, then the AP enter the learning
phase where the delay φ is increased and the KP reports back if the wanted effect
is achieved. This cycle continues until the KP is satisfied and the ACK pacing
element stores service name, φ and QL, which is stored for future reference. Finally,
the element enters the operating phase.

4.2.3 TCP Receive Window Manipulation
This element is based upon the fundamental idea of how TCP senders throughput
can be controlled by altering the clients advertised receive window. Theory behind
this approach has been addressed in section 4.1.4. For explanatory reasons we divide
the element functionality into three parts; TCP flow identification, new receive
window calculation and TCP header checksum calculation. The elements basic
behavior is illustrated in figure 4.5. First, we address how needed parameters are
gathered from the KP through the use of a Click handler. Click handlers where
introduced in section 3.3.2.

The Service Session Handler

The handler used by the receive window manipulating element is named serviceSes-
sion handler and is constructed from CSV as follows:

Source IP:Destination IP:RTT:Target bit rate, ...

The source and destination IP addresses are used for identification. All TCP headers
are read and their source and destination IP address pairs are compared to the values
found in the service session handler. If there is a match, a new receive window will
be calculated. On the contrary, if there is no match, the packet is passed through
the element without modification. The next parameter found in the handler is the
target bit rate.

The RTT is self-explanatory and is used in combination with target video bit rate
to calculate the advertised receive window. The last parameter is the target bit rate
which represents the bit rate at which the KP wants the TCP flow to run at. Using
this structure ease the complexity of the method needed in order to retrieve each
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Figure 4.5: This is an illustration of the receive window manipulating element which
rewrites the window field contained in the TCP header. The three main functions
which this element performs are highlighted inside the element box.

parameter. Next, we explain how these parameters are used in order to correctly
estimate the receive window size.

Receive Window Calculation

When calculating a TCP window which will control the bit rate of the TCP flow,
there is a need for a general formula which describes the TCP senders behavior.
Several different TCP versions was described in section 2.3 and the general through-
put formula used by them is preferred to use for window size calculation. However,
it is important to note that there is a difference in how TCP senders adjusts their
sending rate according to the advertised receive window. This is because different
senders can implement different versions of TCP. For this reason the element has a
possibility to fail in achieving a target bit rate for the current TCP flow. However,
the calculated window size can be viewed as a starting point. The KP can from this
estimation adjust the window size according to feedback retrieved from the stream-
ing clients. More information about this reasoning process is addressed in section
5.3.3.

Checksum Calculation

After a new window size for a TCP ACK is calculated it is important to note that
the checksum which is located in the TCP header needs to be updated. This is
because a receiver of a TCP ACK will use the checksum to control if the TCP
header has been tampered with. The receiver of a TCP ACK will accept or dismiss
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packets depending on if they pass the checksum control.

4.3 Web User Interface
The web user interface (webUI) is where the user can interact with our proposed
home gateway. We implemented this interface in inspiration of how other home
gateway producers do this today. Most home gateways have an interface where
users can set security mechanisms, IP address allocation, etc. Our webUI can be
considered as an addition to these standard user options, where the streaming flows
and their corresponding parameters passing through the gateway are presented. It
is also possible for the user to set its preferences toward media streams, in the form
of individual bit rate control. In addition to the technical implementation of the
webUI, we wanted to have a design that is appealing to the user. This is to enhance
the experience of user interaction. The webUI is presented in figure 4.6.

In order for the webUI to run, we implemented a HTTP server which runs on
port 80 in the home gateway. We chose the Apache HTTP Server because it is open
source and is well documented. Another reason for choosing Apache is its Linux
support, which is the operating system our home gateway runs on top of.

The web site presented to the user is written in PHP [35], AJAX [36] and is
styled using CSS [37]. All technical functionality was developed using these tech-
nologies. The reason for using PHP in combination with AJAX is that AJAX makes
it possible to use JavaScripts to update information presented in the webUI. All the
information and the graphical presentation are then updated dynamically without
having a disturbing effect on the user experience. Without AJAX, the user would
need to refresh the webUI manually to get an updated view of the current traffic
statistics. A styling template was used to improve the user interface appearance.
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Figure 4.6: This figure demonstrates the webUI when there are two active flows
traversing the home gateway. Parameters collected from each Silverlight client is
presented to the user. A dropdown menu is also presented for the user where it is
possible to set the bit rate at which the flow should be controlled to run at.
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Chapter 5

Implementation

In this chapter we will discuss the implementation done in our project. We will
explain the code written to enable Silverlight clients to send application specific pa-
rameters at run time. The Knowledge Plane implementation in the home gateway
receiving and utilizing this information will also be explained, in addition to the
statistics server that aggregates global service statistics. The chapter will be con-
cluded by a section describing the element implementation process using the Click
framework.

5.1 Information Gathering: Altering Client Code

In this section we will cover the basic functionality of our Silverlight client. Our client
will be a standard Silverlight Smooth Streaming application with the addition of a
reporting service. This reporting service will be tasked with sending application
specific information describing the media stream. The information will be sent to
the home gateway which will use it for network configuration. In addition, the
information will be sent to a statistics server where it will be aggregated for post
processing by the service provider.

5.1.1 Building a Silverlight Client

To test our custom code we needed a running Silverlight application. Using Vi-
sual Studio 2010 and a template, we built our Hello World application. When
Silverlight was up and running the next addition to our application was to add a
SmoothStreamingMediaElement. This is a media player from the Silverlight Media
Framework. This player was then initialized to provide adaptive streaming. To sim-
plify our client code and the need for video files for adaptive streaming, our client
retrieves its video material from an already existing Smooth Streaming server. That
way we could have control of the player and retrieve information from it without
hosting our own material. Using this player we explored what parameters that was
accessible directly from the Silverlight client.
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Table 5.1: Parameters collected from Silverlight client
event The type of event triggered in Silverlight client

eventMessage A message in relation to the event
playState Current playstate of the Silverlight player
fullScreen Boolean value indicating if player is full screen
clientId A Silverlight client globally unique identifier

avgProcessorLoad Processor load of the client computer
avgProcessLoad Processor load caused by Silverlight

videoDownloadBitrate Current rate of streaming
avaliableVideoBitrates Video bit rates the media is offered in

myIp IP address of the streaming client
ispAS The AS number for the client IP, its ISP

sourceIpAndPort IP and port of streaming server, as DNS name
timeIncrement Time since application was loaded, in seconds

5.1.2 Retrieving Information from Silverlight

Silverlight pages have corresponding code behind files. In these files we can add code
that should run with the page. From the code behind we can observe parameters
pertaining to the video player. Using the Silverlight framework, we can also monitor
terminal equipment parameters such as CPU usage. The main idea is that when
we observe a change in these parameters, the information is then sent to the home
gateway. This allows us to have instant updates from the application to the KP.

The Silverlight code uses a set of event handlers to notify if changes have occurred
to the player or video stream. When such an event occurs, methods are invoked to
retrieve a set of system parameters. The combined information from the Silverlight
event and system parameters are passed in a HTTP POST message to the KP.
The parameters retrieved are represented in table 5.1. An example of a running
Silverlight client sending an HTTP POST message is shown in figure 5.1.

These parameters will be retrieved and sent when the video player triggers a
PlayStateChange, FullScreenChange, BitRateChange, Initial- or PeriodicEvent.

The PlayStateChange is triggered by a change in playing state, i.e. playing/-
paused/stopped/buffering and other possible player states. FullScreenChange is
relatively self-explanatory, it occurs when the user enables or disables full-screen
mode. BitRateChange event will be triggered when the Silverlight client decides to
change its video download bit rate. This allows us to monitor what it is currently
running and also be notified when it changes. This will alert us if unwanted com-
petition for resources is present. Another use of this information is that it will tell
us if our traffic manipulation is working.

In addition to these player and media specific events we have included some time
activated events. InitialEvent is sent a few seconds after the player is loaded, to give
notification to KP that it exists and what its status is. After the player is loaded,
a PeriodicNotification will be sent every minute as a keep-alive message. This way
the router is able to detect players that are closed and can remove them from its
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registry when a PeriodicNotification is not received for some time.
Most of the parameters can be retrieved from Silverlight directly, either through

event notifications or method invocations to retrieve variables. There are two ex-
ceptions though, namely myIp and ispAS. The Silverlight framework does not give
access to information from the network or transport protocols. We have solved this
by setting up a simple php script on an external server that we can connect to via
HTTP and it will respond with our IP and the AS-number of our ISP. The script
can be found in Appendix A. It first retrieves the IP address using php and then
does a Linux shell execution of “whois” on the IP to find the ISP AS number.

Figure 5.1: Screenshot of our Silverlight client where the collected parameters are
posted to screen. The parameters can be seen in larger scale in figure 6.14

The KP application has a separate web server in addition to the Apache web
server running the webUI. This web server is coded in Java and will read the incom-
ing HTTP POST messages and parse them to a SilverlightMeasurement object in
the KP. These SilverlightMeasurement objects are stored in lists according to what
client they originated from. This way, the KP will obtain and store all measurements
it receives from the startup of a client until it stops.

5.1.3 Sending the Parameters
After retrieving the wanted information it must be sent somewhere. In our imple-
mentation we send the information to two separate servers. One of them is our home
gateway where the KP resides. The other server is thought to be a global statistics
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server. Silverlight clients will report information to a local server, the home gateway,
for the purpose of traffic altering.

At the same time the information will be sent to a global server where information
from all the clients is sent. This server can aggregate the information and use it in
usage statistics or similar activities that the service provider deems useful.

Figure 5.2 depicts a simple overview of the information flow between the entities
involved with service and content delivery as well as the statistics server, home
gateway and end user clients.

Figure 5.2: This is an overview of how the clients will access content and the infor-
mation flow that follows. The service provider is contacted and it will redirect to a
streaming server. After this the router will start RTT measurements and the clients
will do service reports to the home gateway and a data collection. The information
delivered to the home gateway will be the basis for the control and status interface
presented to the user. Here the user can do manual service control.

To the Home Gateway

Every time an event occurs, this will trigger the client to retrieve lots of system
parameters and put them in an information package. These packages are queued
for transmission.

The transmission is done by a Silverlight Web Client. As long as there are
information packages in the queue it will send them to the designated server.
All the parameters will be written to a HTTP POST message in the form of
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param1=data1&param2=data2&(...)paramN=dataN. It is then the responsibility
of the KP to interpret this information. This is further discussed in section 5.3.

In order to know where to send these messages we have to obtain the IP address
of the home gateway where KP resides. We have therefore assumed a static DNS
entry in the home gateway. The Silverlight client will send the POST messages to
a fixed address like click22.item.ntnu.no(as is the case in our testbed). This way we
could instruct the router to resolve this address to itself. Then the Silverlight client
would not have to do anything to obtain the address of the router.

To a Statistics Server

We have also included functionality to send a copy of the information package to one
or several other IPs. Our thought is that this feature could be useful to aggregate
information from all the clients in all the home networks. This could generate useful
statistics for the service provider.

We have implemented an example statistics server at cap.item.ntnu.no where a
copy of all measurements will be sent. The statistics server is described in section
5.4.

5.1.4 Issues and Imperfections
In implementing the Silverlight client we have met some issues. Silverlight is pro-
tective of the Internet layering. By this we mean that Silverlight allows us a bare
minimum of information from the lower layers; the transport and network layer. We
tried to retrieve the client IP address from Silverlight without success. That is the
reason for the remote IP script, which returns the client IP address upon request.

We also tried to get the port numbers for the Silverlight media stream TCP
connections. Without these port numbers we cannot differentiate between two ses-
sions coming from the same client in the home network. This is because they will
share a source and destination IP pair. We could not retrieve the port numbers, and
our system is therefore limited to one streaming application from the same server
per client. Having several applications runnig will result in them being classified
as one stream by the home gateway. They will then share the same restrictions for
bandwidth.

Before starting our implementation, the specifics of how our client should make
itself known to the home gateway were unclear. One suggestion was to alter the
second byte of the IP header, known as the Type Of Service (TOS) field. By setting
this field to specific values, we could use them in a local context to recognize what IP
packets were media packets. A coding scheme could be made so that our Silverlight
application could communicate its presence and signal quality levels by piggybacking
the IP packets TOS field. The Silverlight framework did not allow us this per packet
control and this approach could not be used.

There is a lot more information to be collected from the Silverlight clients. This
information is the information the service provider sends to the client in something
called initParams. Information like the name of the service is sent as an information
package. This is contained in initParams at the client side. The problem is that

55



retrieving this information would not be generic. A separate implementation would
have to be done for each service provider to implement the functionality. Obtaining
this information could prove useful, depending on the amount of information passed
from the service provider. As a minimum, we should expect to find a service name.
Naming the services would make the webUI more user-friendly.

5.2 Alternate Silverlight Client:
Application Controlled Bit Rate

When developing the Silverlight client for reporting parameters to the KP we dis-
covered a second form of rate control. This approach is strictly confined to the
application layer of the services and does therefore not include any Click router
functionality.

When Silverlight sends a POST message to the KP, it will respond with an “all
is well” message and Silverlight will interpret this as a sign that the message was
delivered successfully. One addition was made to the response from the KP. When
a new measurement is sent to the KP it will respond with the user preference in
addition to the “all is well” message. This message is illustrated in figure 5.3.

The Silverlight clients that does not read the message, but merely verify that it
got a response will not know the difference. A second Silverlight client we built to
test the concept will on the other hand read the response and check if the user has
set a bit rate preference. If the user preferred rate is not 0, i.e. it is set to one of
the available bit rates, the client will limit its download rate to the given rate.

Figure 5.3: Screenshot of the debug text block in our alternate Silverlight client.
The Silverlight application is printing the response it gets from KP. In addition to
a standard message from the server with a timestamp, the client is told what rate
the user prefers

Silverlight Smooth Streaming has implemented the possibility to deny the client
certain bit rates. It is useful when the content provider want to limit HD material
to premium accounts or similar cases. By using this functionality we can read all
available bit rates the video stream is offered in. Then we can make a custom list
of rates that we approve of and call a function on the stream named SelectTracks.
The player will then act as if our user defined level is the highest rate possible.

This approach offers high precision rate control. And as we only remove the
rates higher than the user preference, the client will still be adaptive and decrease
its rate if it experiences bandwidth limitations.
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The Silverlight client is just that, a client. We can therefore not send a message
to the client when the user sets a rate. The parameter has to be piggy-backed on
the response from KP when a POST message is received from the client. In our
implementation the client will send a PeriodicNotification every 60 seconds. This
will be the worst case response time from a user preference is set until the client has
decreased, or increased, its rate.

A possible solution to decrease this response time is to increase the frequency of
PeriodicNotifications. The KP would then have opportunity to communicate to the
Silverlight client more often.

5.3 Implementation of KP
Our KP instance is implemented in Java. Its responsibility is to aggregate the
information coming from the Silverlight clients that are connected to the home
gateway.

As previously explained, the home gateway will use a customized DNS entry to
direct all the client measurements to the KP. At the receiving side, the KP needs
to interpret the incoming information and structure it so that it can be used to
determine how to alter the traffic in order to improve the traffic situation.

In this section we will describe the most important aspects of the KP imple-
mentation. The web server allows both the Silverlight clients and the webUI to
communicate with the KP and is described in section 5.3.1. The web server will re-
lay the incoming information to the ServiceSessionBank which serves as a registry of
all active Silverlight clients. The ServiceSessionBank is the central entity for keeping
state and history of the ongoing video streams; we will discuss this in section 5.3.2.
Finally we will describe the ActionReasoner which is the entity responsible for com-
munication with Click and the AP actions. The ActionReasoner will be discussed
in section 5.3.3.

5.3.1 The Web Server
In addition to the Apache web server for the webUI, described in section 4.3, the
KP process itself runs a Java web server. The Apache server is running at port 80
which is the default HTTP port. The Apache server will be the one you reach if
you contact the home gateway at its address using a web browser.

At port 23500, the KP web server is running. The reason for this extra web server
is that it is run by the KP and we can therefore make a HTTP POST message to
result in a method call in the KP. This will make the router more responsive than
in our previous work. We had a system where a call to the KP was processed and
written to file by an Apache web server and this file was read by the KP periodically.
Now we will have real time processing of incoming messages.

The KP web server has two functions

• Receive Silverlight Information

• Receive User Preferences
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To fully accomplish these it also needs a third function. When called for, it has to
respond with a clientaccesspolicy.xml file which Silverlight requires for cross-domain
access.

The Silverlight parameters are structured as described in section 5.1.3. The web
server should obtain these parameters and respond with a HTTP 200 OK message.

After successfully receiving and responding to the Silverlight client, the parame-
ters are passed on to the ServiceSessionBank instance which obtains lists of all active
Silverlight clients. This is described in section 5.3.2. This entity is responsible for
storing and organizing clients and measurements.

The second source of information is the webUI. The user is presented with a
collection of streaming information in a graphical representation of the services that
is currently running. When a user makes a decision pertaining to the quality of one
of the services this will also be reported to the KP using HTTP POST messages.

The KP then needs to identify the service the user has marked and what changes
the user wants. This information is written to the ServiceSession identified by the
Silverlight client id.

This way the KP web server allows for Silverlight clients and end users to report
directly to the running service. This has greatly improved the dynamic processing
of events. Instead of periodically reading input and calculating changes, we now
handle each event separately and dynamically.

5.3.2 The ServiceSessionBank
We mentioned that this entity is a central registry of what ServiceSessions are cur-
rently streaming to the end users. In the Java application a ServiceSession instance
is the equivalent of a Silverlight client run by one of the end users.

Each Silverlight client generates its own guid (Globally unique identifier) which
we also use in the Java code to separate ServiceSessions. This way we can match the
incoming Silverlight measurements to a ServiceSession by using the client id (the
guid).

A ServiceSessionBank has its own Parser, GuiXmlWriter and ActionPlaneSes-
sions objects. These entities simplify the work of controlling ServiceSessions and
receiving new measurements as well as reporting to the webUI.

Figure 5.4 graphically describes how the ServiceSessionBank organizes its data.
When a new measurement arrives from the web server, it is sent to the parser.
The parser will read the incoming string and parse this to a SilverlightMeasurement
object. This is a domain object that is made up of variables and get-methods for
reading the information. They are instantiated by the parser and cannot be changed,
they just represent a measurement.

The ServiceSessionBank contains a list of ServiceSession objects. Each of these
ServiceSession objects contains a list of SilverlightMeasurements that originated
from this ServiceSession. When we have gotten the parsed SilverlightMeasurement,
we simply iterate through the list of ServiceSessions in the ServiceSessionBank until
we find a match by client id. Then we add the measurement to this ServiceSession
list of measurements.

58



Figure 5.4: This is a high-level representation of how a HTTP POST message is
handled after being received by the web server. The request body will be forwarded
to the ServiceSessionBank which parses it into a SilverlightMeasurement using the
Parser class. This SilverlightMeasurement will then be sent to the correct Service-
Session and added in a list of measurements from that session.

This way all the information coming from the Silverlight clients will be stored
under the ServiceSessionBank in lists of measurements. One list of measurements
per ServiceSession; where the measurements in the list share client id.

When a new SilverlightMeasurement is added we need to update the webUI,
this measurement will contain the newest information from the Silverlight client.
The ServiceSessionBank then calls a method on the GuiXmlWriter that will write a
status report from all the ServiceSessions to an XML file located in the Apache web
server directory, see figure 5.5. This information is then read from the web interface
and presented to the user. The webUI was described in section 4.3.

With new information we also need to check if this will affect our AP settings.
This is where the ActionPlaneSessions come into play. The ActionPlaneSessions
entity can be considered as a ServiceSessionBank for the ServiceSessions that are
marked for traffic alteration in the AP.

It is therefore a subset of the ServiceSessions contained in ServiceSessionBank.
Every time a change in the lists occurs, we call the ActionPlaneSession entity. It
will iterate the ServiceSessionBank list of ServiceSessions and make a list of the ones
that the user has marked for special treatment. If the list differs from the one it
already has, it will call the ActionReasoner with an alert that changes has occurred
in the list of ServiceSessions that the ActionReasoner should be aware of. Once
again, we refer to figure 5.5 for a flow chart representation of these events.

The ActionReasoner is, as its name implies, the entity that reads the user prefer-
ences and calculates changes we could do to the traffic. This entity will be explained
in section 5.3.3.

The ServiceSessionBank also has a ServiceSessionBankCleaner. The responsi-
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Figure 5.5: This figure shows post processing in ServiceSessionBank after receiving
a new SilverlightMeasurement. We need to update the WebUI and alert the Action-
PlaneSessions that a change may have occurred to a session that is relevant to the
AP.

bility of the cleaner is to periodically iterate all the ServiceSessions and calculate
the time since last received measurement. If this time exceeds a given threshold,
SESSION_INACTIVE_LIMIT specified in the Constants class, the session will be
purged. This way we make sure that sessions that are inactive for too long will be
removed.

5.3.3 The Action Reasoner
This is the entity that does the reasoning and writes configuration data to Click. As
previously described, the ServiceSessionBank will check to see if the list of services
has changed. If it has, the ActionReasoner will be notified.

This way, the ActionReasoner will always contain a list of the services that are
currently marked for special treatment by the user. This list will be iterated and
a Click element handler, described in section 3.3.2 will be written. This is the way
the KP communicates with the Click which is our implementation of AP in the
KP-MP-AP approach.
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The handler will be written to include the source and destination IP of all the
services that should be altered. In addition we will include a RTT measurement
and a target rate to aid the Click element calculations. The Click element we have
implemented will change the window field in the TCP headers of the ACK packets
generated from the video stream. Using the source and destination IPs, Click will be
able to isolate the packets pertaining to the video stream TCP connection. Then it
will calculate a desired window size using the RTT measurements and target video
rate.

This handler information will be periodically updated. If the rate wanted by the
user is changed we will instruct Click to set target rate in between the rate the user
wants and the next rate offered by the content server. Let’s look at an example;
if the stream is offered in 0.5Mbps, 1.5Mbps, 2.5Mbps and 3.5Mbps and the user
selects 2.5Mbps as the target rate. Then we will calculate a target rate between
2.5Mbps (the user specified) and 3.5Mbps (the next available rate), i.e. 3Mbps.

The window adjustment is a effective way to control the throughput, but we
have experienced that there is a large margin of error. The reason we instruct Click
to set the target rate in the middle of two levels is that we then expect it to fall to
the lower one of the two. In our previous example, trying to limit the throughput
of the TCP connection to 3Mbps, we hope to avoid the Silverlight client trying to
obtain the 3.5Mbps quality level. At the same time we try to allow the Silverlight
client to obtain the 2.5Mbps quality level.

After starting in the middle the KP will adjust the window size to allow slightly
more or slightly less throughput depending on observed traffic. When a traffic
limit is set the KP will continuously wait for a new Silverlight measurement to
arrive. If it doesn’t, this means that our efforts are not having effect. The KP
expect to get a DownloadBitrateChanged event with a message that the Silverlight
client has decreased its rate. If this is not the case, then it needs to decrease the
target rate written to the Click element handler. It will do iterative decreases until
the wanted effect is achieved. We have implemented a limit for how often the
Click handler is allowed to be rewritten. This is defined in the Constants class as
CLICK_CHANGE_INTERVAL.

As a default we have tested with a CLICK_CHANGE_INTERVAL set to 10
seconds. We feel that the video player should get 10 seconds to alter its behavior
before getting further punished by bit rate changes. We need to let it converge.

The same procedure is started if the opposite should prove to be the case. That
is, we try to decrease the rate from 3.5Mbps to 2.5Mbps by setting target rate
3Mbps, but the video stream falls below 2.5Mbps. If this is the case, that the video
is streaming at 1.5Mbps while we want it to be 2.5Mbps, then the target rate will
be incrementally increased every CLICK_CHANGE_INTERVAL.

This approach is most effective when the rate difference between the quality
levels is large, as in our example. Then we are allowed larger margins, in this case
0.5Mbps in each direction to closest quality level. Then we will often obtain good
results quickly and be able to stabilize. Some adaptive streams have lots of quality
levels that are very close to each other. We have done testing on a stream that
is offered in 300Kbps and 427Kbps, see figure 5.6 Differentiating between them is
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tricky, and we end up incrementing and decrementing the target rate without the
stream becoming stable.

Figure 5.6: This adaptive stream has four quality levels below 866Kbps. Differenti-
ating between them and obtaining a stable rate is difficult.

5.4 Statistics Server
As mentioned previously we propose that the Silverlight application in addition to
sending information to the home gateway also sends a copy to a statistics server.

The reason for sending a copy of the information to a common server can be as
varied as the service providers are many. We believe that this information could
serve as an important source of QoS/QoE measurement from the clients. Using this
information the service providers can aggregate data from all of their clients. The
addition of more parameters is relatively straight forward in the Silverlight code,
should there be more parameters of interest to the service provider.

The service provider would be able to get statistics of what its users are watching,
for how long and at what quality. As the service provider would have the bit rate
of the client and AS-number of the ISP, one could investigate if users from certain
ISPs experience lower QoE. This is valuable information to a content provider and
could point to a bottle neck in the content delivery network.

We have set up a simple statistics server for proof of concept purposes. In this
section a brief introduction to this server is given.

5.4.1 Receiving Information
As previously stated, we send data from Silverlight by HTTP POST messages. The
message coming from Silverlight to the statistics server should therefore be read and
stored. We use a php script, see Appendix B for source code, to extract the POST
parameters and write them to a log file. The log files will have a daily rotation to
avoid growing too large.

In addition to the parameters passed through the POST message, see table 5.1 for
a complete list, we add some server side parameters. As shown in the source code we
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append sequence numbering, a couple of time stamps and a client id representation
without the hyphens as it is easier to sort by.

5.4.2 Organizing Information
To be able to use the data collected by the statistics server, it needs to be structured.
As both MATLAB[38] and Mathematica[39] have MySQL connectors, storing the
data in a MySQL database became the solution. This way we could allow direct
access to the data from programs that are to analyze the data.

Instead of making the php script to do SQL INSERTs directly to the database,
mainly for performance reasons, we went for a batch insert approach. The log files
written by the log script can be read and inserted as a daily batch. We made an
example application that will read a log file using our syntax and insert all log entries
to a MySQL database. This application was written in Java and is attached to this
report (BatchSqlInsert.jar).

This MySQL database was set up on the same server and all log files were
inserted. This way, the statistics server will write incoming data into log files by
using the batch insert application periodically.

Our master thesis does not address the actual analysis of the data. We have sim-
ply just made the data available. This is in essence a “value-added service” from our
point of view, as our primary objective is the traffic monitoring and manipulation.

5.5 Implementation of the Click Elements
This section contains a detailed description of the implemented Click elements and
how they were developed in C++. These were proposed and discussed on a high
level in section 4.2. The reader should have some programming experience as we
do not explain the code line by line. The focus will lie on the most important
functionality built into the element. Methods are described functionally; we refer to
the code attached to this report for further details. We start by explaining how the
ACK Pacer was developed using C++.

5.5.1 Implementing the ACK Pacer
To avoid confusion while reading, the ACK Pacing Element is referred to as Pack-
etPacer. This is a generic name for its purpose.

5.5.2 Basic Click Element Properties
The first step in implementing a Click element is to make the header and source file
as described in section 3.3.3. These were named PacketPacer.hh and PacketPacer.cc
accordingly. The header file was declared as follows:

#include <click/element.hh>
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class PacketPacer: public Element { public:

PacketPacer();
~PacketPacer();

const char *class_name() const { return "PacketPacer";}
const char *port_count() const { return "1/1";}
const char *processing() const { return "h/lh";}

int initialize(ErrorHandler*);
void push(int port, Packet *p);
Packet * pull(int);
void add_handlers();

It can be seen that the PacketPacer class extends already built in methods from
the Element class. Then the methods from the Element class can be used. The
element.hh file has to be included above the class declaration.

After the class declaration, a constructor and destructor were declared. This
element does not have a configuration string, and the constructor is therefore empty.
A destructor in C++ is usually used to clean memory for a class object and its
contained class members.

After the destructor, mandatory methods for every element in the Click frame-
work are declared. These are addressed stepwise as follows:

class_name

Used by Click tools to retrieve the name of the element.

port_count

Sets and returns the port definition of Click elements. Here, "1/1" means that this
element has exactly one input and one output port. Several other settings can be
used, and these are found in the Click documentation.

processing

Defines element port settings. Here, "h/l" sets the input port to PUSH and the
output port to PULL. Several other options can be used, and examples of these are
found in the Click documentation.

initialize

This method is called just before the router is put online. Hence, it is where all
error checking should be placed in order to avoid logical errors.
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push

A method which implements the logic for processing a packet that is sent to this
element. It is defined with a port number, and a pointer to the packet class. The
packet class contains several useful methods for packet processing.

pull

Defines the pull port of this element. The pull port is where other elements ask
for packets. This method takes a parameter used for numbering the port. As with
PUSH, this method also has a pointer to the packet class.

add_handlers

This method initialize all handlers written within the element code.

5.5.3 Our Functionality
During implementation it is useful to print debug text to check the functionality
of the program. This is offered by the Click framework through the StringAccum
class. It is included and instantiated in the header file. The StringAccum object
can therefore be used in the source file as follows.

* In packetPacer.hh:

#include <click/straccum.hh>

StringAccum sa;

* In packetPacer.cc:

sa << "Printing some debug text" << "\n";

The « operator can be viewed as + for string handling in programming languages
like Java and C#. The debug text ends with a new line operator. Then all text
written after this line will start on a new line. The debug text can be viewed in
Ubuntu by using the dmesg command. Running dmesg prints the message buffer of
the kernel to terminal.

Another important building block of Click elements are the handlers. They are
defined within the add_handlers method in the source file. The main handler used
by the PacketPacer is sessionInfo. It is defined as follows:

add_data_handlers("sessionInfo",
Handler::OP_READ | Handler::OP_WRITE, &_sessionInfo);
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The handler options are set within the parentheses. First, it is given a name. Next,
the read and write options are set. Then a user can access and alter the handler
using a text-editor. Last, the address of the variable which the element code uses
is taken as input. _sessionInfo is declared as a string in the header file and is used
accordingly. The structure of the sessionInfo handler is presented next.

Source IP:Destination IP:Pacing Value, ... , ... ,

Other elements which send packets to the PacketPacer will not know if the Packet-
Pacer is idle or not. A queue and a queue manager are therefore needed to handle
packets that arrive when it is busy.

#include <click/standard/storage.hh>

Storage _primaryStorage;
Storage _secondaryStorage;

The storage class is not described in the standard Click documentation. But the
header file is contained in the Click framework. Hence, an include of the storage
class is placed in the top of the PackedPacers header. The storage class can be
viewed as a queue manager and have variables maintaining the queue state. These
are queue capacity in addition to references for head and tail positions of the queue.
Useful methods for queue management are also contained in the storage class. These
will not be discussed further in this report, but can be found in the storage header
file.

After the queues are created, there is a need for methods that store and extract
packets from them. How packet enters the PacketPacing element is illustrated in
figure 5.7 and the enqueue method is defined as follows:

inline bool enqueue(Packet*);

In the enqueue method, the incoming packets source and destination IP address
is checked against the source and destination address written in the sessionInfo
handler. If there is a match, then the packet is placed in the primary queue. If there
is no match, then the packet is placed in the secondary queue. When a packet is
stored in either queue, then the tail variable in the storage class is updated. The
tail variable is a reference to the queue position of the last packet.

If either the primary or secondary queue is full, then the packet is dropped and
the _drops variable is updated. _drops is the total number of dropped packets from
both queues. The _drops variable has a read handler which enables the element to
being monitored when it is running. We can then check if the element drops a lot
of packets, or if it is performing well with no packet drops. The enqueue method
returns a boolean value to indicate if a packet was stored successfully or not.

When a packet is stored in the primary queue, a method is used to set the pacing
between two packets. This method is defined as follows.

inline void setLeaveTimeForPacket(int);
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Figure 5.7: Flowchart which illustrates how incoming packets are handled. Informa-
tion used to identify packets is retrieved from the serviceInfo handler. If the packet
is identified, then it is stored in the primary queue and its leave time is calculated.
If the packet is not identified, it is stored in the secondary queue.

This method uses the pacing value set in the serviceInfo handler to calculate the
timestamp of when a packet should leave the element. The pacing value is the
amount of time between packets in milliseconds. If the pacing value is set to 5
in the serviceInfo handler, then all packets belonging to this flow should leave the
element 5 milliseconds apart. The pacing between packets is controlled as follows.
The timestamp of when a packet leaves the element is stored. The next packet in
the corresponding flow is then given a leave time of 5 milliseconds + the leave time
of the previous packet. Hence, all packets belonging to this flow will have a leave
time which is 5 milliseconds apart.

Another feature added to the leave time calculation was that we had to consider
if a packet arrives at the element later than the pacing value set in the handler. Then
this packet would pass the element without experiencing any constraints. Because
of the bursty nature of Smooth Streaming, we discovered the need for a solution to
also constrain these packets. Hence, we add a delay equal to the pacing value to
packets which arrive later that the leave time of the previous packet + the pacing
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value.
The calculated leave times for incoming packets are stored in a separate array

called packetLeaveTime. The packetLeaveTime array uses the same indexing as the
primary queue. When a packet is stored at position 5 in the packet queue, then
the calculated leave time for this packet is placed at position 5 in the array which
contain the leave times.

Next, we present the method which select and send packets from the queues.

inline Packet* decreaseQueue(Storage*, Packet**);

This method is used by the pull method to retrieve packets from either the primary
or secondary queue. It takes the storage class and an array of packets as input. The
storage class is the queue manager, while the queue is where the actual packets are
stored. A flowchart of how a received pull is handled can be seen in figure 5.8.

Figure 5.8: Flowchart which illustrates how packets leave the PacketPacer. Every
time a pull is received, the current time is compared to the leave time of the first
packet in the primary queue. The first packet in the primary queue is sent if the
current time is larger than the packet leave time. If not, then a packet is sent from
the secondary queue.

Controlling which packet to send from each queue is done by the storage class.
A head variable is maintained as a reference to the first packet in the queue. First,
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the packet leave time is retrieved from the packetLeaveTime array. This is done by
using the packet queue position as index in the packetLeaveTime array. Next, the
packet leave time is compared to current time. The packet is sent if the leave time
has expired. However, if the leave time has not expired, then a packet is sent from
the secondary queue. After a packet is sent from either of the queues, then the head
variable is updated using the storage class.

Issues with the ACK Pacer Implementation

The implementation of the ACK Pacer has not been done in complete compliance
with the proposal in section 3.3.3. First, the time between incoming packets was not
measured. Instead, we used the leave time of the previously sent packet and added
a delay in milliseconds which decided when the next packet was sent. This way we
kept the time between each packet sent stable and we could adjust it through the
Click handler.

Another issue with implementing this element was the support for altering the
sending rate of several simultaneous TCP flows. We implemented quicksort in order
to sort the array where the packets are stored based on each packet leave time.
This approach failed. This is probably because of how the storage class keeps track
of the first and last packet in the queue. By sorting the queue, we unknowingly
altered some head or tail pointers that made the storage class fail. In our current
implementation, if several TCP flows are altered we risk that they block each other.
A packet from one flow might get a low leave time while another packet is in front
of the queue with a larger leave time. The packet with the low leave time will not
be sent before the blocking packet is sent. This will cause some unwanted behavior
when multiple streams are altered simultaneously. It should be noted that all other
traffic will pass this element through a secondary queue. This implementation deficit
will only affect packets from the streams selected for ACK pacing.

5.5.4 Implementing the Receive Window Manipulator
The mandatory methods required by the Click framework described in section 5.5.2
are equal to the ACK pacing element. The main difference is that this element has
both PUSH input and output ports. The basic functionality of this element is as
follows. If the packet is marked for receive window manipulation, we rewrite the
window field in the TCP header. The new value of the window field is calculated
from parameters given by the KP. Then the packet is sent to the next element in
the forwarding graph.

Because of the push input and output ports there is no need for a queue to store
the incoming packets. This reduces the complexity of implementing the element as
we can just rewrite the header of an incoming packet and then push it to the next
element. We do not wait for an element to pull for a packet, eliminating the need
for queues. A flowchart of the element functionality can be seen in figure 5.9.

As in the section presenting the ACK Pacer, we will only outline main methods
when describing the element code. The method used for handling packets is declared
in the header file as follows:
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Figure 5.9: Flowchart describing the receive window manipulating element.

Packet * TcpWindowFieldReWriter::simple_action(Packet *p);

The class name used for the Receive Window Manipulator is TcpWindowField-
ReWriter. This was again to have a generalized name for the element. The sim-
ple_action command is used when we have a simple element which only handles an
incoming packet and sends it to the next element. All functionality regarding packet
handling is therefore placed in this method. Next, a handler is used to retrieve pa-
rameters needed by this element to identify packets. The handler is declared as
follows in the source file:

add_data_handlers("serviceSessions",
Handler::OP_READ | Handler::OP_WRITE, &serviceSessions);

The handler options where explained in section 5.5.3. It can be seen that this handler
is named serviceSessions and its syntax is as follows:
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Source IP:Destination IP:RTT,Target Bit Rate, ... , ... ,

The RTT is the distance between the source and destination measured in millisec-
onds. When a packet is identified, a new window size for this packets TCP header
is calculated. This is done by using the following method which is declared in the
header file:

inline long TcpWindowFieldReWriter::calculateWindowSize(long,int);

This is where the new window size of the packet is calculated. It takes the RTT and
target bit rate as inputs. These are then used to calculate the new window size. We
have used the general TCP throughput formula for this calculation as described in
section 2.3.2.

Before a new calculated window size can be written in the header, we need to
extract the old TCP header from the packet. This is done using the following built
in Click method.

click_tcp *tcpHeader = p->tcp_header();

Here a pointer is instantiated in the source file which points to the TCP header of
this packet. There are several methods which can be used to retrieve information
contained in the TCP header. These can be found in the Click documentation. The
most important methods used were the method which set the new window size and
the one which updates the checksum of the TCP header. Both are used in the source
file and are presented as follows:

tcpHeader->th_win = ntohs(_newWindowSize);

click_in_cksum((unsigned char *)tcpHeader, plen);

The second method takes the TCP header and packet length as inputs for calculating
a new header checksum. Finally, the checksum is set as follows in the source file.

tcpHeader->th_sum =
click_in_cksum_pseudohdr(packetCheckSum, ipHeader, plen);

Here, the calculated checksum, IP header and the packet length is taken as input.
The packet is now updated with a new window size and checksum. Then it is pushed
out of the element.
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Chapter 6

Testing and Results

In this chapter we will test our proposed solutions in order to outline their charac-
teristics. Individual tests and analysis of our implemented Click elements will be
presented. This is followed by the Silverlight client and KP components.

6.1 Testing the Proposed Click Elements
We will in this section present tests which illustrate how our proposed and imple-
mented Click elements can manipulate the bit rate of a TCP session. First, we
present the results from tests with the ACK Pacing element. Then tests of the TCP
Receive Window element will follow. Tests of both elements are divided into two
sub categories. These are an ordinary FTP file download, and an actual Smooth
Streaming session. It is important to note that all tests are run over the Internet
and not only in a restricted lab environment. The FTP server used is part of the
FreeBSD community distribution network. It was chosen because of its capacity
and its distance, measured in milliseconds, from our testbed. The server IP address
is as follows:

FTP server IP address: 128.205.32.24

The Smooth Streaming service is tested using TV2 Sumo. This is to test how our
proposals will behave in a commercial streaming setting.

The measurements performed in this section are samples and are only performed
once. These tests therefore bare no statistical validity as they are not replicated.
However, they are done in order to illustrate how the elements perform and show
that they can be used to manipulate TCP traffic. To obtain statistical data on
how effective these solutions are, further study and comprehensive testing should be
done.

6.1.1 Test of the ACK Pacer
This section contains tests of the TCP ACK Pacing element developed and presented
in section 5.5.1. The element assumes a close collaboration between the AP and the
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KP. This is because the KP is the entity that regulates the amount of pacing between
each TCP ACK. The pacing value is incremented when the KP is trying to reduce the
TCP senders throughput and oppositely decremented when the throughput should
be increased. In this section we will do the KP reasoning process manually by
inserting the parameters into this elements Click handler. This was done using
nano which is a Linux command-line text editor. Note that this operation needs to
be run in the super-user context.

ACK Pacer: FTP Download Test

We conducted two tests where we incremented the pacing of the TCP ACKs linearly.
In the first test we increased the pacing with 3 ms every 30th second. This was
to see the effect in the transmission throughput when the pacing was gradually
increased. The reason for keeping the increment small is to prevent TCP timeout
from occurring. TCP timeout occurs when a server waits for a segment to be
acknowledged. The TCP session has a timer to determine when it regards the
segment as lost. When a timeout occurs, this triggers a retransmission. We try
to minimize the amount of retransmissions because this is considered as wasted
bandwidth. However, consider a scenario where there is a rapid increase in the
number of TCP sessions flowing through the home gateway. Then there could
occur a need for limiting some of these flows fast in order to protect the ones with
high priority. A TCP timeout could then be an acceptable method, in worst case
scenarios, to slow down TCP sessions.

The second test presented in this section will use an aggressive increase in the
pacing value in order to decrease the bit rate of the TCP session. We increase the
pacing value with 10 ms every 20 seconds. By this aggressive increase we will risk
getting TCP timeouts, but we assume that risk in order to effectively reduce the
bit rate. After reaching our maximum of 50 ms pacing, we gradually decrease the
pacing to observe how the flow restores.
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FTP Download With a Linear Packet Pacing Increase

Figure 6.1: This figure shows the measured bit rate when the pacing between packets
of this flow is increased. It can be seen that the bit rate is gradually decreased as
the pacing is increased. The pacing value can be seen in figure 6.2.

Figure 6.2: This figure illustrates the pacing value between packets leaving the
element.
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FTP Download With a Aggressive Packet Pacing Increase

Figure 6.3: This figure illustrates the bit rate of an FTP download when increas-
ing the pacing between outgoing packets more aggressively than in the previous
test. It can be seen that the throughput is reduced faster. Another feature this
figure outlines is that the bit rate increases when the pacing value is reduced. The
corresponding pacing value is presented in figure 6.4.

Figure 6.4: This figure illustrates the pacing value between packets leaving the
element.
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ACK Pacer: Smooth Streaming Test

This test is done using the TCP pacing element in combination with TV2s Smooth
Streaming service. The goal of this test was to constrain the streaming session to 1.5
Mbps. The pacing between ACK packets were in this test found through thorough
testing in order to find the pacing value that resulted in the bit rate wanted. This
can be regarded as the elements learning phase presented in section 4.2.2. The
pacing value which gave 1.5 Mbps was approximately 19 milliseconds. The test will
first let the TCP flow run unaltered for 60 seconds. Then we will set the pacing
to 19 ms for 180 seconds. Next, we will set the pacing value to 13 ms to constrain
the stream to 2.5 Mbps for 120 seconds. Last, we will remove the constrain on the
stream to let it flow at maximum bit rate again. The total run time of the test was
480 seconds. The resulting bit rate from this test is presented in figure 6.5.

Figure 6.5: This figure illustrates the bit rate when testing the TCP ACK Pacer.
ACK Pacing was activated after 60 seconds. From here the pacing value was set as
illustrated in figure 6.6. The stream constraint was released at 360 seconds.

Discussion of TCP ACK Pacer Test Results

The tests performed in this section show that the ACK pacing element can be used
for decreasing TCP session throughput. However, there is a need for a learning pe-
riod for this element where the controlling entity (KP) acquire some knowledge about
which pacing value that give the wanted throughput. This can be time consuming
and could result in poor element performance if the relation between throughput
and pacing value is not found. Another issue is the TCP timeout, but this can be
considered acceptable and effective as a last resort controlling mechanism. This is
because a TCP session that needs to be limited fast, to protect other sessions, must
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Figure 6.6: This figure illustrates the pacing value between packets leaving the
element.

in worst case scenarios experience a harsh treatment. This will let high priority
TCP sessions maintain an acceptable quality level.

One observation made when we illustrated the bit rate in the bit rate graph was
how the bit rate flucutates between high and low measured throughput. We have
used the same method for measuring the throughput in all tests, so there is a clear
difference in the behavior of the TCP flows used in FTP downloads and Smooth
Streaming. One reason for this behavior in Smooth Streaming can be that the client
repeatively ask for chuncks of two seconds each. If the time it takes to download
one chunk is shorter than 2 seconds, then the client will be idle for a small time
interval. Hence, the result will be a graph which flucuates like the one in presented
in figure 6.5.

6.1.2 Testing the Receive Window Manipulator
This section contains documentation of tests performed using the receive window
manipulating Click element that were proposed in section 4.2.3. At first we used
the general TCP throughput formula to calculate the senders throughput and cor-
responding advertised receive window. The result was no change in bit rate. Hence,
we conducted several tests at different window sizes to find when the sender bit
rate was affected. Therefore, the FTP download test section will first present the
results from using the general TCP throughput formula, followed by a test when
the window size was small enough to give expected decrease in sender throughput.
Both tests start with the Click element deactivated to let the TCP flow run at max-
imum throughput. Next, five different window sizes were set for 60 seconds in order
to check the stability of this approach. Hence, each test total run-time were 360
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seconds.

Figure 6.7: The Ping statistics are retrieved from 750 consecutive echo replies.

An important parameter when calculating the correct window size in order to
obtain a certain bit rate level is the RTT measurement. As elaborated in section
2.4, there are small differences in using a passive or active approach. Hence, to
reduce complexity we used the built-in Windows ping tool to run 750 consecutive
ping echoes. The summary from this can be seen in figure 6.7. In order to use the
result from this measurement, we assume stable network conditions, which mean
that the RTT will not change during the test period.

All collected parameters, including the clients IP address, were inserted manually
into the serviceSession handler. This was done using nano as explained in section
6.1.1. The general structure of the service session Click handler were presented in
section 4.2.3.

Results from FTP Download Without Change in Senders Throughput

This test was started with a calculated maximum throughput of 2.5 Mbps. From
here a gradual decrease of 0.5 Mbps in throughput every 60 seconds was performed.
The window field in the TCP header was checked in order to confirm that the window
field was set to the calculated values.

At first we present the RTT measurement, the summary of the ping measurement
is presented in figure 6.7. After this a summary from this test scenario is presented
in table 6.1. The resulting bit rates are plotted against time and are illustrated in
figure 6.8 and the corresponding calculated window size can be seen in figure 6.9.
It can be seen from the results presented that there were no clear effects of altering
the window size, despite that the general TCP throughput formula was used.

These results provoked testing smaller window sizes in order to discover if this
approach to control TCP traffic could be completely discarded. We therefore con-
ducted several tests to find the window size which gave a resulting throughput of 2.5
Mbps. From this window size we performed a linear decrease to check if the linear
behavior of the general throughput formula was maintained. This is elaborated in
the following subsection.
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Table 6.1: Parameters and achieved bit rate levels from testing the receive window
manipulating element. The window size were calculated using the general TCP
throughput formula, it can be seen there were no change in the achieved senders bit
rate.
Target (Mbps) RTT (ms) Old Win (B) New Win (B) Achieved (Mb/s)

Unlimited 123 32768 32768 12
2.5 123 32768 38437 12
2.0 123 32768 30750 12
1.5 123 32768 23063 12
1.0 123 32768 15375 12
0.5 123 32768 7687 12

Figure 6.8: This figure shows the bit rate when we calculated the target bit rate
with the general TCP throughput formula.
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Figure 6.9: This figure shows the calculated window size when running the test.

Results from FTP Download With Effect on Throughput

After using the general TCP throughput formula to calculate the different bit rate
levels, we performed extended testing in order to find if it was possible to influ-
ence the TCP senders throughput by altering the advertised receive window. After
several tests we discovered a relation between window size and senders throughput.
However, the effect did not become evident before we approached a receive window
field of some hundred bytes. A summary of a test which gave a change in senders
throughput is presented in table 6.2. The bit rate and receivers window size of the
FTP download is illustrated in figure 6.10 and 6.11 accordingly.

Table 6.2: Parameters and achieved bit rate from testing the receive window ma-
nipulating element without using the general TCP throughput formula. In this test
we used parameters which were found through extended testing which gave us the
expected results.

Target (Mbps) RTT (ms) Old Win (B) New Win (B) Achieved (Mb/s)
Unlimited 1 32768 32768 12.00

2.5 1 32768 312 2.55
2.0 1 32768 250 2.1
1.5 1 32768 187 1.6
1.0 1 32768 125 1.0
0.5 1 32768 62 0.5
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Figure 6.10: This figure shows the bit rate when the window size was set to a level
which gave a change in senders bit rate.

Figure 6.11: This figure shows the calculated window size when running the test.
The first 60 seconds are not included because the window was above 30000, scaling
for this would make the graph useless as the other values are below 300.
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Smooth Streaming Test

In this section we present a test to show how the window manipulating element
performs in a Smooth Streaming environment. It was done using the Silverlight
client we developed and presented in section 5.1.1. We select one QL which we will
try to manipulate the sender to distribute the video content at. The parameters
used for this test is presented in table 6.2 and the resulting bit rate in figure 6.13.
The RTT was measured using the built-in Windows Ping tool, and the summary
from this is presented in figure 6.12.

Table 6.3: Parameters used for testing the receive window manipulating element
running TV2s Smooth Streaming service.

Time (s) Target QL (Mbps) RTT (ms) Win Size (B)
0-59 Unlimited 1 55480
60-359 1.5 1 187
360-480 Unlimited 1 16425

Figure 6.12: This figure shows Ping statistics when running 750 consecutive Ping
echoes towards the Smooth Streaming Server.

Discussion of TCP Window Manipulator Test Results

The reason for the fluctuating measurements between 0 and 10 Mbps is the bursty
behavior of the Smooth Streaming technology as discussed earlier.

An issue when using the receive window manipulator is the time it takes for the
client to respond to a receive window adjustment. A Silverlight client is constructed
to maintain maximum bit rate whenever possible. Hence, the streaming client will
be less responsive compared to a FTP download. The FTP download responded
almost instantly after the window size was adjusted. Another reason for the slow
response in the Silverlight client is its buffer, which is used to prevent some bit rate
fluctuations.

The general TCP throughput formula used to calculate receivers advertised win-
dow size and corresponding bit rate needs to be inspected further. This is because
we got a result in the FTP download test where we had to find the relation between
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Figure 6.13: This figure illustrates the bit rate of the streaming client. Receive
window manipulation started at 60 seconds. We see results at 120 seconds. Then
the window is restriced further and we see more immediate effect. At 360 seconds
control is released.

the throughput and window size through testing. This was because the theoretical
approach failed. We have not found any theoretical explanation for this deviation
between our calculated and measured throughput. Neither have we been able to de-
fine exactly when the theoretical approach will fail. For some servers our calculated
throughput is correct, for others it’s not. We therefore expect that this has to do
with the server side implementation of TCP.

Even though there are some issues concerned with fine tuning the receive window
manipulator, we have shown that it is possible to control the bit rate at which a
TCP session runs at through this approach. However, improvements towards tuning
the element should be studied further.

6.2 Testing the Silverlight Client
The first form of testing done on the Silverlight client was printing information from
the media player to the user interface. When a parameter was successfully retrieved
from the Silverlight framework it was presented below the video player in a text
box. After successfully retrieving and printing a parameter, a new parameter was
chosen for implementation. We then implemented a method of retrieving it, and so
on. The Silverlight client was therefore incrementally implemented with focus on
the wanted parameters.

When we had retrieved all the wanted parameters we started implementing a
web client. This contained methods for sending the information to the router and
statistics server. The first server side functionality was to respond to the Silverlight
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client with the parameters received. The response from the server was then displayed
at the Silverlight application page. Figure 6.14 shows the response.

Figure 6.14: This figure illustrates the response message from the first server side
parameter reception script. It sends a response informing the user of the parameters
it received

During the testing of the client, we tried to make sure that the client runs error
free and that the messages are sent correctly and received server side. Another
focus has been on error control. If things go wrong, we want to control the outcome
so that the video streaming does not stop and we want to resume our reporting if
possible.

The message shown in figure 6.14 shows that all parameters are sent and received
successfully. And from the tens of thousands of measurements sent we only got one
error message that came repeatedly. We had a problem when the Silverlight client
could not reach the servers. This is valid both for the home gateway and the statistics
server.

When we tried to send messages to a server that was not running we got an
exception and the further reporting became unstable. If the home gateway was not
responding, a message was sent to the reporting server and from there anything
could happen. We could have continued success in transmitting to the statistics
server or it might crash from the exception. This variation in behavior prompted
us to build in a fail-safe mechanism. If the web client gets a sending error, a new
web client will be created and start with a blank slate. The message that was in
the progress of sending will not be sent again to the server that failed. The next
message will however be sent to all recipients, given that they do not fail again. This
way, all the messages are attempted sent to all recipients. If the server recover to a
running state, messages will be delivered successfully again.

If the Silverlight client receives an HTTP sending error it will notify the user
with a message; “error occurred, restarting web client”. We have tested this by
taking down the home gateway web server which makes the Silverlight web client
send POST messages to a non-existing server. We get our error message displayed,
and the reporting to the statistics server is not affected. All messages will be sent
to the statistics server while the home gateway is down. When we later start up the
home gateway web server, messages are received and normal operation is resumed.
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We believe that our Silverlight client is relatively stable under normal conditions.

Figure 6.15: This screen capture presents the TV2 Sumo service running our infor-
mation gathering code in the background. We can see the KP response to the client
saying that it’s the Click22 server and that the message was received at a given
time stamp. The userRate parameter is used in the application controlled client
described in section 5.2

To test further, in a live environment, we got our client code to be implemented
in TV2 Sumo. This was possible due to cooperation through the R2D2 project that
our thesis is written under. Our client code is like a regular Silverlight application
except for an additional class that does the information gathering. To implement
our functionality in TV2 Sumo, they simply needed to add our class and instantiate
it during startup of their service. Figure 6.15 shows TV2 Sumo running with our
added functionality and is reporting state information to the KP.

After adding our code to the TV2 Sumo player we were able to monitor its state
through the webUI. This also allowed us to do better tests of other aspects of this
project. As TV2 Sumo supports HD quality up to 5Mbps, our scenario was more
realistic when it is supposed to emulate a home network with a television. With
TV2 Sumo as the testing platform, our integration tests also performed better. This
is because the distance between quality levels is larger at the Sumo service than with
the test movie we had used. It is much easier to control bandwidth levels when the
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level below 5Mbps is 3.5Mbps. This allowed us a window of 1.5Mbps between the
two quality levels, which make the job of separating them easier.

6.3 Testing the Knowledge Plane Component
Here we will briefly explain how we have tested that the KP exhibits the wanted
behavior when it comes to receiving information and writing it to the webUI. In
addition we will take a look at the action reasoner, and how it behaves when a bit
rate target is set.

6.3.1 The Data Structure
To test if the KP correctly handles information we will run a test where we start
a Silverlight client and generates a couple of messages by pressing PLAY/PAUSE.
Then we will start a new client and the KP should successfully recognize this as a
new service. The responding output to the webUI should be correct, showing two
clients and their current state. In figure 6.16 we can see that we have started the
KP control application and it is running. The KP then detects a new Silverlight
session by its unique session ID. This session then sends some measurements like
InitialInformation and a few PLAY/PAUSE messages to the KP. We then start a new
client and it is successfully recognized by the KP. Further measurements received
are matched up to the correct session. This is an example of how the KP process
looks from the server side. This process has been running error free for weeks, and
we believe that the data structure for storing and receiving measurements is stable.

Figure 6.16: This is a cropped view of a Linux terminal where the KP control
application is running. We can see that text is printed every time a new measurement
arrives.

The KP takes a lot of information as input and it remembers it for use in statistic
graphs in the webUI and other usage areas that might come up in future develop-
ment. As important as retrieving information correctly, the KP also needs to output
some information to the webUI. This information should at any time be a represen-
tation of each known session with information that it has gotten from the sessions.
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Especially the last measurement is of importance, this is the newest state of the
player.

Having used the KP component extensively in testing traffic manipulation while
observing Silverlight client responses, we are satisfied that this is working as in-
tended.

6.3.2 Action Reasoner
We want to be sure that the action reasoner is behaving as expected. When a user
provides a preference for a download bit rate, the action reasoner should react and
try to limit the bit rate for the given stream. This will be done by rewriting a Click
handler that is linked to the window size manipulation element presented in section
4.2.2. In this test we want to see that the handler is correctly written and that
it is rewritten according to CLICK_CHANGE_INTERVAL. This means that the
handler should not be rewritten more frequently than given by the change interval
constant. In our testing this interval is 10 seconds. We allow this amount of time
to check if our changes have effect and if they don’t, the operation is repeated.

We will start a Silverlight video stream and let it run for 5 minutes. After this it
will run at 5Mbps and we will set the user preference of 3.5Mbps and observe how
the action reasoner is writing the handler. We have a debug-text occurring every
second saying either OK or NO which tells us if the target rate is met or not. Figure
6.17 shows the terminal output of a running action reasoner.

We see that the action reasoner writes a new handler which includes IP addresses,
delay measurements and a target bit rate of 4250000. This rate is chosen because it
is in the middle of 5Mbps and 3.5Mbps. This handler is then kept for 10 seconds,
when the stream actually drops to 3.5Mbps and the handler is not changed. The
rate stays at 3.5Mbps for the next 8 seconds. In the 9th second, the rate drops to
2.5Mbps. This is too low, and since it is over 10 seconds since the handler was last
written, the handler is instantly rewritten with a bit rate increment. We conclude
that this is the wanted behavior and is satisfied with the reasoning at this time.
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Figure 6.17: The action reasoner is set to limit the bit rate from 5Mbps to 3.5Mbps.
We see that it rewrites the Click handler, supplying ip addresses, delay measurements
and a target rate.
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Chapter 7

Future Work

In this chapter we will propose and discuss improvements and new features that
would take our solution further.

7.1 Improving KP Action Reasoner
The KP is functioning well with regards to information gathering from Silverlight
clients and the webUI. Parsing of input data has not been a concern and the Ser-
viceSessionBank entity has until now provided the needed functionality for storing
Silverlight measurements. However, the process of determining actions to improve
network traffic conditions is at the moment extremely simple. This is probably
where the KP is most in need of further development.

Developing a good action reasoner can be a very time consuming task. In the
literature describing autonomic access networks, the KP is envisioned as a learning
instance. It should be able to recognize traffic patterns and act based on experience.
This form of artificial intelligence is of course a vision for the architecture as a whole.
It is not a realistic goal for this implementation in the home gateway during a master
thesis.

It should however be mentioned that improving the current state of the action
reasoner is not a formidable task. At the moment it is only capable of reducing the
rate of a stream. This would allow another stream a higher rate, given that it is
the internet access at the end user side that is the bottle neck. If the reduction of
a stream is imposed to allow higher rate to a competing stream, this is an example
of human reasoning and not the KP itself. There should therefore be implemented
functionality for selecting bit rates above the currently streaming rate. Such a selec-
tion should prompt the action reasoner to automatically lower the rate of competing
video streams and it could also impose some sort of limitation for other traffic.

The action reasoner should also be configured to use a diversity of tools to
affect the network traffic. The current version only supports rewriting the TCP
window fields. As described in section 4.2.2, we have also implemented an element
for ACK pacing. The use of this element in addition to or as a substitute for the
window size manipulation could prove useful and should be tested. In addition,
some simple BandwidthRatedUnqueue elements could be used to limit other traffic
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if this was necessary to obtain an acceptable video QoE. BandwidthRatedUnqueue
is a standard Click element that will empty a queue at a given rate. If the traffic
situation in the home network got bad we could sort all non-video traffic into a
queue that we applied a BandwidthRatedUnqueue element to. This way, other
traffic would be forced to stay below a given bit rate. All traffic exceeding the given
bit rate would be dropped.

The latter is not a very effective way of handling traffic as it results in packet
loss. The lost traffic will probably be retransmitted, as most traffic is sent over TCP.
Even so, having a diverse set of traffic controlling tools available could improve the
total effect achieved by our system.

Given that the rate calculation of the TCP window manipulation has proven to
be less accurate than expected, improvements could be done to increase the accuracy.
As mentioned in section 6.1.2, tests have shown a linear trend between the window
size and the actual throughput. Even if the calculated rate does not correspond
with the real rate, testing show that when the receive window reach a certain level
and the window size is halved. Then the actual rate is halved to.

Let’s say that we set a target rate of 3Mbps and calculate a window size that
should give this rate. If the actual throughput is 5Mbps instead of 3Mbps, testing
shows that a reduction of the window size will give linear results. By setting the
window size to half its original size, we will obtain a bit rate of 2.5Mbps. In our
current system, slowly decrementing to obtain the correct bit rate will be very time
consuming and the user will not see an immediate effect. The throughput calculation
formula does not always give the correct rate. It is still very useful in determining
how to get there.

If we could, by some mechanism, actually know the peak rate allowed by the
manipulated TCP streams we could utilize the linearity to quickly scale down the
window size. Given that we actually want a throughput of 3Mbps, but our calculated
window obtains a bit rate of 5Mbps, if we knew this in run time we could adjust for
it.

Smooth Streaming downloads the video in chunks. During the download of a
chunk, Silverlight measures the bit rate it experiences and uses this information to
decide if it should increase its video bit rate. If we could get access to Silverlights
bandwidth measurements, we could use this to estimate the actual TCP rate. Then
we could make a linear adjustment and calculate our new window size. The easiest
place to access this bandwidth measurement would of course be in the Silverlight
client. We believe that the retrieval and utilization such buffering information could
greatly improve the TCP window size manipulation scheme. How this could be done
is proposed in section 7.2.2.

7.2 Future Work for Silverlight Client
The extra functionality we have built into a Silverlight Smooth Streaming client has
some main functions. These are retrieving relevant application-specific information
and transmitting it to anyone who might be able to utilize it. In addition to the
requirements in what to do, we also have some requirements for how to do it. By
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this we mean that we should be able to expect that the client will obtain and report
information without interrupting the media delivery in any way that harms it. We
do not want it to fail and block or crash the actual video streaming application. In
addition to having a polite way of failing, leaving other processes intact, we want
failure to occur as infrequent as possible. These are, in short, the only goals for
functionality of the Silverlight client we aim to build.

Possible improvements when it comes to retrieving and transmitting the informa-
tion will probably surface as usage of the reporting function progress. There could
be other types of information that could prove useful, that we have yet to consider.
We believe that our application is easy to modify if another parameter is wanted.
The transmission of data could also be changed or complemented by another form
of communication if needed. The .NET framework is no stranger to web services
as a form of machine to machine interaction. As of now, we are satisfied with the
information retrieved from the client and the transmission of the collected data.

In this section we will comment on how far we have come and which parts of the
client code that could use a fine tuning touch. We will first attend to the question
of reliability experienced and what could be done to improve it. Then we will
look at pure functional aspects of what information could be retrieved in a future
version that are not present now. During our testing we have found certain flaws in
controlling the TCP streams. It is our belief that these could be corrected by the
KP if our Silverlight application would supply some additional information.

7.2.1 Reliability of the Additional Code
For our intent and purpose of the code we feel that its reliability is well within
the accepted range. We have mostly experienced uninterrupted service as long
as the code is used as intended. When the code is inserted into other players it
might behave unintentional. By this we refer to the TV2 Sumo client where our
code is implemented where we have some known bugs. The TV2 Sumo player has
implemented a control panel that allows the user to change the video source without
reloading the client. As our client have some of the functions tied to the loading of
the player, this is not correctly reloaded when the source is changed. Also, we have
only implemented support for reporting information when the video is coming from
a Smooth Streaming source. When the stream is not an adaptive stream, we have
not seen a reason to report information from it. For the purpose of controlling the
flow, it would be irrelevant as the user chooses bit rate in the player when it is not
self-adaptive.

Changing the channel from the Silverlight client will cause the code to malfunc-
tion either by not reloading or actually failing. We have implemented some checks
so that a change in media source from Smooth Streaming to regular streaming will
stop the reporting function. This is to avoid unwanted side effects of the client
crashing. It will stop the client in a controlled manner instead of letting it crash.
In a complete system our client should address the changes and adapt.

These compatibility problems we have seen when implementing our code into
the TV2 Sumo player are the result of us not knowing the TV2 code during the
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implementation. We implemented a standalone Silverlight streaming application
that we added our code to. Dynamically changing the source of the stream did
not occur to us. We believe that knowing that such functionality is used by service
providers, one should rewrite the client code to more explicitly say what scenarios
are tolerated and what is not. The support for changing media source should be
added and maybe support for other types of changes. The most important part is
however to code the Silverlight client so that it knows where it will work and not.
If we know that the client will work in a certain environment, then we should check
that that is the environment we’re in before starting. By checking all resources we
plan to use in the code we could prevent unknown failures by simply not loading the
statistics process. Then the code might be updated to support new environments if
needed, instead of things partly working.

7.2.2 Estimating Avaliable Bandwidth
“The client can choose between chunks of different sizes. Because Web
servers usually deliver data as fast as network bandwidth allows them
to, the client can easily estimate user bandwidth and decide to download
larger or smaller chunks ahead of time.”

This is stated in [17], as they describe how Smooth Streaming video is encoded
into different bit rates and the client choosing between them. As previously dis-
cussed, our TCP traffic control parameters have not been easy to calculate exactly.
While testing our solution we have discovered that if we knew what bit rates Sil-
verlight is experiencing, this could greatly improve our estimations. As we try to
estimate how to manipulate TCP window size, if we knew how Silverlight experi-
enced our tampering we could do better.

In section 6.1.2 we see that the receive window manipulation doesn’t always give
the correct rate. It is however shown that if we reduce the window size we will
eventually achieve the desired effect. What’s even more useful from this testing is
that the experienced bandwidth, even when we cannot get our calculations to be
correct, varies linearly with the window size. This inclines us to think of what could
be achieved if we were to obtain Silverlights experienced bandwidth.

Say we wanted to reduce the TCP connection to a maximum throughput of
3Mbps. If we do our calculations and initiate the window manipulation we might
not get any results. If we were to learn that Silverlight experiences a throughput of
6Mbps, we could use the linearity of our results to simply scale for the imperfections.
We could calculate a window size based on the target maximum throughput and then
correct it by comparing it to the reported bandwidth from Silverlight.

Due to the advantage this would give us, we believe that this should be included
in future versions. As far as we can see, the Silverlight framework does not allow us
to read this value directly. There might be a way to retrieve it directly; we have not
done extensive research. If this was possible, it could simply be read and sent to the
KP. If it cannot be directly read, we need to calculate it. The Silverlight Smooth-
StreamingMediaElement has a property named TotalBytesDownloaded. From the
Silverlight documentation we can read that this property is a read-only value that
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is “The number of bytes downloaded”. Using this metric together with a timer, we
should be able to calculate the download rate. Silverlight downloads data in chunks,
and we should take this into consideration. Calculating every 10 seconds would not
give a correct answer because the traffic is bursty and we want the peak load. The
time interval should not be too small either, it may result in sporadic measurements
that are hard to interpret.

Having stated a general idea of how to achieve this, in addition to a few consid-
erations with regards to measurement intervals, we believe that this should point in
the right direction for future development. Silverlight reports its bit rate, the KP
tries to reduce it and Silverlight can continuously inform KP if the reductions are
having an effect. This addition will greatly improve the accuracy of any mechanism
trying to control the video stream.
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Chapter 8

Conclusion

Our task was to investigate and implement new components for the Knowledge and
Action Plane. The work has resulted in a complete system for a content-aware home
gateway with Action Plane components for controlling traffic. The work is divided
into four main areas of work. We will discuss them in order and finally address the
system as a whole.

A Reporting Silverlight Application

To make the home gateway content aware we chose to implement extra functionality
for Silverlight Smooth Streaming video players. The functions are packed in a way
that makes it simple for already existing Silverlight applications to add them. When
added, information relevant to the home gateway will be collected during video
playback. This information includes, but is not limited to, client and server IP
addresses and available bit rates offered by the server.

Our client will report this application specific information to the home gateway
for processing. In addition to sending the information to the home gateway, it also
sends the information to a statistics server. This is thought to represent a value to
the service provider, as they will be able to collect usage statistics from their service.

A Knowledge Plane Implementation

We implemented a minimalistic Knowledge Plane entity that receives information
from the Silverlight clients and processes it. The information is stored and used to
keep track of each video stream originating from behind the home gateway. From
an interface, the user can give its preferences for the videos being streamed to the
network. When a user sets a bit rate target for one of the active streams, the
Knowledge Plane will through a simple reasoning process determine a course of
action. The goal of the Knowledge Plane is to optimize the resource allocation of
the network.

Web Interface

The web interface will serve as a graphical representation of the information con-
tained in the Knowledge Plane. The currently streaming media will be presented
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along with key parameters. This allows the user to set bit rate targets for a given
video stream, making the system optimization user-specific. A user preference will
be communicated to the Knowledge Plane, which in turn will act upon this pref-
erence. The Knowledge Plane will, in addition to key parameters, give the web
interface a list of previous measurements to graph the historical bandwidth on a
per-stream basis.

Click Elements and the Action Plane

To provide the Knowledge Plane with tools to do service differentiation we have
developed two mechanisms for traffic control. Contrary to our previous work, we
now try to avoid hard limits and sectioning of resources. We want to affect video
streaming quality without reserving bandwidth, which is not optimal in regards to
other traffic. One Click element is built to identify and alter the ACK packets coming
from a video stream. We do receive window manipulation to make the streaming
server believe that the client cannot receive data in the current rate. This will force
the server to decrease its sending rate, freeing resources for other streams. The other
Click element tries to obtain the same results by clocking ACK packets back to the
server with greater inter-arrival time than the original. Since TCP tries to limit the
amount of data packets that are not ACK’ed, we will force it to wait for our ACKs
before sending more data. Since we control the rate of the ACK packets, we can
also control the sending rate data packets.

As a Complete System

Our testing and demonstrations have shown effect on the bit rate when using the
Click elements to control video streaming. In addition to this, the Silverlight client
has proven to be a good way of obtaining application-specific information that can be
useful to the Knowledge Plane. TV2 has shown interest in the information gathering
from the Silverlight clients. This has allowed us to implement our reporting function
in their Internet video service TV2 Sumo. Our testing has shown promise for this
kind of application control. The Knowledge Plane, complemented by a user interface
is working well in regards to information gathering and reasoning. We feel that
further complexity should be implemented to the action reasoner to improve the
outcome of the Action Plane component. A challenge for further work is to make
the Knowledge Plane correctly reason how to use Click functionality of clocking out
ACK packets.

With some future development we believe that this form of architecture can
prove useful in a home gateway. It will give the user control of the streaming media.
In addition, it’s a good tool for visualization of traffic. This could improve the users
understanding of video services and available resources in the home network.
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Appendix A

IP and ISP AS number retrieval
script

<html>
<body>
<?php

// Determine C l i en t IP−address
i f ( getenv (HTTP_X_FORWARDED_FOR) ) {

$p ipaddres s = getenv (HTTP_X_FORWARDED_FOR) ;
$ ipaddre s s = getenv (REMOTE_ADDR) ;

echo $p ipaddress . " ( v ia $ ipaddre s s ) " ;
} e l s e {

$ ipaddre s s = getenv (REMOTE_ADDR) ;
echo " $ ipaddre s s " ;

}

// Separate the re turn va lues
echo " ; " ;

// Run whois on the IP−address o f the c l i e n t
$ i sp = she l l_exec ( ’ whois ’ . $ ipaddre s s ) ;

// Need to sub s t r i ng un t i l we only have the AS
$ s t a r t = " o r i g i n : " ;
$ i sp = get_a f t e r ( $ isp , $ s t a r t ) ;

// $ i sp s t a r t s at AS−number but has a l o t more
$ i sp = trim ( $ i sp ) ;

// Now we don ’ t have any whi te spaces in f r on t o f the
AS, s p l i t at white spaces

$array = explode ( " " , $ i sp ) ;
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// The f i r s t element i s now the AS
$ i sp = $array [ 0 ] ;

// The l a s t char o f $ i sp i s supposed to be a d i g i t ,
remove the l a s t char un t i l we see a d i g i t

whi l e ( ! is_numeric ( subs t r ( $ isp , s t r l e n ( $ i sp )−1) ) )
{

$ i sp = subs t r ( $ isp ,0 ,−1) ;
}

// Now, we should have i s o l a t e d the AS number
echo " $ i sp " ;

// Function f o r r e tu rn ing the part o f $ input a f t e r
the pos og $ s t a r t

func t i on get_a f t e r ( $input , $ s t a r t )
{

$subs t r = subs t r ( $input , s t r l e n ( $ s t a r t )+
s t rpo s ( $input , $ s t a r t ) , s t r l e n ( $input ) ) ;

r e turn $subs t r ;
}

?></body></html>
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Appendix B

Statistics Server Log Script

<html><body>
<?php

// Get todays date in ddmmyy format
$date = date (dmy) ;

// Var iab le to hold the path o f the f i l e
$myFile = ’/ var /www/ l ogg e r / l o g s / log ’ . $date . ’ . txt ’ ;

// Need a separa te f i l e to maintain in fo rmat ion o f
l o g s sequence numbering

$ s eqF i l e = ’/ var /www/ l ogg e r /seqNumbering . txt ’ ;

// Make the log s t r i n g f o r t h i s entry
$logEntry = " " ;

// Append a l l s e r v e r s i d e parameters
$logEntry = $logEntry . get_seqNumber ( $ seqF i l e , $date )

. " ; " ;
$ logEntry = $logEntry . get_hexCl ientId ($_POST[ "

c l i e n t I d " ] ) . " ; " ;

l i s t ( $tota lSeconds , $ ex t r aMi l l i s e c ond s ) =
timeAndMil l i seconds ( ) ;

$ logEntry = $logEntry .
get_humanReadableTimeWithMillis ( $tota lSeconds ,
$ ex t r aMi l l i s e c ond s ) . " ; " ;

$ logEntry = $logEntry . get_unixTimeWithMill is (
$tota lSeconds , $ ex t r aMi l l i s e c ond s ) . " ; " ;

// Then the ones passed through POST
$logEntry = $logEntry .$_POST[ " event " ] . " ; " ;
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$logEntry = $logEntry .$_POST[ " eventMessage " ] . " ; " ;
$ logEntry = $logEntry .$_POST[ " p layState " ] . " ; " ;
$ logEntry = $logEntry .$_POST[ " f u l l S c r e e n " ] . " ; " ;
$ logEntry = $logEntry .$_POST[ " c l i e n t I d " ] . " ; " ;
$ logEntry = $logEntry .$_POST[ " avgProcessorLoad

" ] . " ; " ;
$ logEntry = $logEntry .$_POST[ " avgProcessLoad " ] . " ; " ;
$ logEntry = $logEntry .$_POST[ " videoDownloadBitrate

" ] . " ; " ;
$ logEntry = $logEntry .$_POST[ " ava l i ab l eV id eoB i t r a t e s

" ] . " ; " ;
$ logEntry = $logEntry .$_POST[ " myIp " ] . " ; " ;
$ logEntry = $logEntry .$_POST[ " ispAS " ] . " ; " ;
$ logEntry = $logEntry .$_POST[ " sourceIpAndPort " ] . " ; " ;
$ logEntry = $logEntry .$_POST[ " timeIncrement " ] . " \ n " ;

// Open f i l e , wr i t e i t , c l o s e i t
$fh = fopen ( $myFile , ’ a ’ ) or d i e ( " can ’ t open f i l e " ) ;
fw r i t e ( $fh , $ logEntry ) ;
f c l o s e ( $fh ) ;

// −−− FINISHED −−−

// Method d e c l a r a t i o n s :

f unc t i on get_humanReadableTimeWithMillis ( $numSeconds
, $numMil l i sec )

{
re turn date ( "H: i : s " , $numSeconds ) .

" , $numMil l i sec " ;
}

func t i on get_unixTimeWithMill is ( $numSeconds ,
$numMil l i sec )

{
re turn $numSeconds . " , $numMil l i sec " ;

}

// Returns an array with seconds and m i l l i s e c ond s in
that order

func t i on t imeAndMil l i seconds ( )
{

$m = explode ( ’ ’ , microtime ( ) ) ;
r e turn array ($m[ 1 ] , ( i n t ) round ($m
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[ 0 ]∗1000 , 3 ) ) ;
}

// To be more sort−f r i e n d l y we get a p l a i n hex
c l i e n t I d without ’− ’ chars

func t i on get_hexCl ientId ( $ o r i g i n a lC l i e n t I d )
{

// return s t r i n g a f t e r removing −
r e turn s t r_rep l a c e ("−" , " " ,

$ o r i g i n a lC l i e n t I d ) ;
}

// Function to get the c o r r e c t sequence number o f
the day

func t i on get_seqNumber ( $numberFile , $dateToday )
{

// The sequence number and date to re turn
$returnDate = " " ;
$returnSeq = " " ;

// Read the cur rent seqNumber i n f o
$fh = fopen ( $numberFile , ’ r ’ ) ;
$currentData = f r ead ( $fh , f i l e s i z e (

$numberFile ) ) ;
f c l o s e ( $fh ) ;

// Sp l i t the input data in to day and
sequence number

$dataArray = explode ( " ; " , $currentData ) ;
$writtenDate = $dataArray [ 0 ] ;
$wr i t tenSeq = $dataArray [ 1 ] ;

// Check i f the date i s c o r r e c t . I f not , we
need to s t a r t at 1 again

i f ( strcmp ( $writtenDate , $dateToday ) == 0)
{

// It ’ s the same date ,
update seq number

$wr i t t enSeqInt = ( i n t )
$wr i t tenSeq ;

$returnDate = $writtenDate ;
$returnSeq = $wr i t t enSeqInt

+1;

} e l s e {
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// The date has changed ,
update i t and s t a r t over

$returnDate = $dateToday ;
$returnSeq = 1 ;

}

// Write the new in format ion to f i l e
$fh = fopen ( $numberFile , ’w’ ) or d i e ( " can ’ t

open f i l e " ) ;
$s t r ingData = " $returnDate " . " ; " . " $returnSeq

" ;
fw r i t e ( $fh , $st r ingData ) ;
f c l o s e ( $fh ) ;

// Pr int debug i n f o to see that date and seq
numbering i s OK

echo "Read date " . " $writtenDate " . " and seq
" . " $wr i t tenSeq " . " \ n " ;

echo "Wrote date " . " $returnDate " . " and seq
" . " $returnSeq " ;

// And return the seqNumber
re turn $returnSeq ;

}
?>

<p>The f i l e was run</p>
</body></html>
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