
Received June 21, 2013, accepted August 1, 2013, date of publication September 9, 2013, date of current version September 20, 2013.

Digital Object Identifier 10.1109/ACCESS.2013.2281080

GPU-Accelerated Visualization of Scattered
Point Data
THOMAS L. FALCH1, JOSTEIN BØ FLØYSTAD2, DAG W. BREIBY2,
AND ANNE C. ELSTER1 (Senior Member, IEEE)
1Department of Computer and Information Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
2Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

Corresponding authors: T. L. Falch (thomafal@idi.ntnu.no), A. C. Elster (elster@ntnu.no)

ABSTRACT As data sets continue to grow in size, visualization has become a vitally important tool for
extracting meaningful knowledge. Scattered point data, which are unordered sets of point coordinates with
associated measured values, arise in many contexts, such as scientific experiments, sensor networks, and
numerical simulations. In this paper, we present a method for visualizing such scattered point data sets. Our
method is based on volume ray casting, and distinguishes itself by operating directly on the unstructured sam-
ples, rather than resampling them to form voxels. We estimate the intensity of the volume at points along the
rays by interpolation using nearby samples, taking advantage of an octree to facilitate efficient range search.
The method has been implemented on multi-core CPUs, GPUs as well as multi-GPU systems.1 To test our
method, actual X-ray diffraction data sets have been used, consisting of up to 240 million data points. We
are able to generate images of good quality and achieve interactive frame rates in favorable cases. The GPU
implementation (Nvidia Tesla K20) achieves speedups of 8–14 compared with our parallelized CPU version
(4-core, hyperthreaded Intel i7 3770K).

INDEX TERMS GPGPU, multi-GPU, reciprocal space maps, scattered point data, volume visualization,
volume ray casting, X-ray scattering.

I. INTRODUCTION
Due to improving sensor technologies, as well as increasing
size and fidelity of numerical simulations, scientific datasets
are growing dramatically in size. Often, the only viable way of
interpreting such datasets is through visualization. Volumetric
data based on unstructured grids and scattered point data are
becoming increasingly important. Here, the locations of the
available data points (hereafter: samples) from an underlying
(spatial) distribution are irregularly distributed throughout the
volume. This differs from the traditional voxel format, which
requires samples on a rectilinear, uniform grid, as exemplified
by a stack of MRI images.

Scattered point data arises in many areas, including sen-
sor networks, which are used to measure physical and envi-
ronmental conditions at various locations. Examples include
sensors that measure precipitation at various geographical
locations, or the temperature at various locations in a fur-
nace. There is usually no predefined or implied connectivity

1Our source code is available under a BSD license at
https:// github.com/acelster/scatter-pt-viz

between the sensor sites. The output of several numerical
simulations, such as smoothed particle hydrodynamics (SPH)
and n-body simulations can also be regarded as scattered point
data. Finally, even if the data is originally grid based, the
structure can be lost if it is post-processed, of if the data is
streamed over a network.
The result of X-ray diffraction experiments, which are

used to study the structure, chemical composition and phys-
ical properties of materials, is another example of scattered
point data, which motivated this work. In a generic diffrac-
tion experiment, measurements of how a material scatters,
or changes the direction of, X-rays are made. The out-
come of these experiments is samples of the diffracted
X-ray intensity—a three-dimensional scalar field—at loca-
tions determined by details of the experimental setup.
To extract information about the material being studied, it is
often helpful to create high quality 3D visualizations of this
data. This is just one example of the increasing importance of
volume visualization in science.
Well established methods exist for visualizing volumetric

data on structured as well as unstructured grids, but scattered

564 2169-3536 
 2013 IEEE VOLUME 1, 2013



T. L. Falch et al.: GPU-Accelerated Visualization of Point Data

point data remains a challenge. One approach is to resample
the data on a uniform grid, or tetrahedralize it to create an
unstructured grid, and then visualize the resulting grid. This
can, however, be problematic. If resampling is done, a grid
with sufficiently high resolution will require vast amounts of
memory. On the other hand, using a low resolution grid is
equivalent to low-pass filtering, and will cause details to be
lost, resulting in poor image quality. With tetrahedralization,
one can typically only perform interpolation at the cell faces,
which may cause poor results with cells of widely varying
sizes.

In this paper, we present a method for visualizing scattered
point data, primarily developed for X-ray diffraction data, but
applicable also in other contexts. Our method is based on
the well established technique of volume ray casting [1], [2].
However, our method differs by not resampling the data on a
uniform grid, but instead operating directly on the scattered
point data. Due to the highly parallel and computationally
intensive nature of the method, we have implemented it on
single- and multi-GPU systems for increased performance.

The remainder of this article is structured as follows: the
following section presents previous work on volume visu-
alization of scattered data. Section III provides background
information about GPU computing, scattered point data,
and X-ray diffraction. Section IV describes our visualization
method, as well as modifications and optimizations made for
the GPU version. Results are presented in Section V, while
Section VI concludes and describes possibilities for further
research.

II. RELATED WORK
An overview of direct volume visualization can be found
in the book by Hansen and Johnson [1]. The volume ray
casting algorithm was originally proposed by Levoy [2] for
regular grids, and extended by Garrity [3] to irregular grids.
In addition to these image order techniques, the object order
technique of splatting was introduced by Westover [4]. With
the advent of programmable GPUs, this platformwas adopted
for volume visualization. Early efforts emulated ray casting
with texture mapping [5], [6]. As the flexibility of GPUs
increased they were also used for full ray casting [7]–[9], as
well as the related technique of ray tracing [10].

Most volume visualization techniques require the underly-
ing function to be reconstructed based on the samples. This
is fairly straightforward in the case of regular grids, where
trilinear interpolation is used. In addition, several techniques
for modeling and interpolating scattered point data also exist,
for instance the works by Nielson [11] and Amidror [12].

Much work has also been done on visualizing scattered
point data. Some approaches simply resample the data on a
regular grid, and then render this grid using standard tech-
niques [13]–[16]. Other approaches operate directly on the
scattered data. This includes techniques that are based on
splatting, such as the one adopted by Hopf and Ertl [17].

Techniques based on ray casting have also been employed
to directly render scattered point data; Chen [18] used an

approach based on radial basis functions, with one radial
basis function per point. At equidistant positions along
the rays, neighbouring points were found using an octree,
and their radial basis functions were evaluated to find the
value of the underlying function. Jang et al. [19] also used
radial basis functions, but with fewer radial basis functions
than points. Their approach was based on texture map-
ping, but rather than using a 3D texture, the radial basis
functions were evaluated when the volume slices were ras-
terized. Ledergerber et al. [20] proposed a unified frame-
work for both structured and unstructured datasets, based
on moving least squares. At equidistant positions along the
rays, close samples were found and used to compute a
weighted least squares approximation. The method also sup-
ports anisotropic weights. A GPU implementation was also
provided.
While our approach resembles these three last mentioned,

it differs in several ways: We use inverse distance weigh-
ing for interpolation; have developed a novel empty-space
skipping technique to improve performance; and adapted a
filtering approach which can dramatically reduce the size of
the input dataset, without compromising image quality. We
have implemented our method for both single- and multi-
GPU systems, and have developed a load balancing scheme
for the multi-GPU case. Finally, we provide detailed results,
for experimental X-ray diffraction data, for both image qual-
ity and performance.

III. BACKGROUND
In this section, we will provide the background information
about GPU computing, scattered point data and X-ray diffrac-
tion necessary for the full appreciation of our work.

A. GPU COMPUTING
GPUs were originally developed as dedicated coprocessors
for 3D graphics, but their increasing programmability, com-
bined with high performance, low cost and low energy
consumption, havemade them highly popular for general pur-
pose high performance computation [21], [22]. For instance,
GPUs have been used to speed up SPH simulations [23],
as well as applications in biology [24] and medicine [25]–
[27]. In the following, we will give a brief introduction to the
architecture of typical high-end GPUs.
A GPU consists of a number of multiprocessors, each of

which consists of several streaming processors. Each of the
streaming processors of a multiprocessor works in a SIMD
fashion, executing the same instruction in lock-step. Hence,
GPUs are well suited for data parallel problems, where each
thread executes the same program, but with different input
data. Furthermore, the high number of streaming processors,
which range from several hundred to several thousand for
current GPUs, requires a high degree of inherent parallelism
in the problem for GPUs to achieve good efficiency.
However, even high-end GPUs typically lack advanced

features such as branch prediction and out-of-order execution.
In addition, more of the die is devoted to computational units

VOLUME 1, 2013 565



T. L. Falch et al.: GPU-Accelerated Visualization of Point Data

and less to caches, compared to CPUs, and they thus typically
run at lower clock frequencies.

B. SCATTERED POINT DATA
A scattered point dataset can be defined as a set of samples
S = {s1, s2 . . . sN } = {(p1, f1), (p2, f2) . . . (pN , fN )} where
pi ∈ Rm are coordinate vectors in m-dimensional space with
associated scalar values fi ∈ R. In the case of m = 3, we deal
with volumetric scattered point data.

In general, the sample locations are arbitrarily distributed,
and there is no connectivity between samples. However, two
special cases frequently arise in practice: the sample locations
may be on a uniform, rectilinear grid, commonly referred to
as voxel data, or the samples may be located on a m − 1
dimensional manifold (e.g. on the surface of some object in
3D space), commonly referred to as point clouds.
The data can often be regarded as being samples of a

continuous function f . Reconstructing this function from the
samples is often necessary for visualization. Many methods
exist for this problem, see e.g. [11]. Trilinear interpolation is
frequently used with grid data, due to its conceptual and com-
putational simplicity. In the case of scattered point datasets
where the sample locations do not exhibit any particular struc-
ture, inverse distance weighing (IDW) [28] is an applicable
method. In its simplest form, the estimated function value
fe(x) at position x is

fe(x) = B−1
N∑
i=1

d(pi, x)−ufi, (1)

where u > 0 is an adjustable parameter, d(x, y) is the
Euclidean distance between x and y, andB =

∑N
i=1 d(pi, x)

−u.
It is clear that the samples located closest to x has far stronger
influence on the estimated function value fe(x), thus the sums
in equation (1) can be truncated to include only those samples
located close to x.

If it is known that the underlying function varies more
rapidly in one direction than others, it will generally make
sense to weigh samples along the direction of slow change
more heavily compared to samples along the direction of
rapid change [29]. When IDW is used, this can be achieved
by using an anisotropic distance measure, instead of the
Euclidean distance [30]. The anisotropic distance da(x, y)
between two points x and y can be defined as

da(x, y) =
√
(x − y)TA (x − y), (2)

where the symmetric m × m matrix A describes the equidis-
tance ellipsoid.

C. X-RAY DIFFRACTION
To explain the nonuniform distribution of the X-ray data,
used as our motivational test case, we will provide a brief
introduction to X-ray diffraction [31].

The wavelength λ of X-rays (0.01–10 nm) has the same
order of magnitude as the distance between atoms and

molecules in condensed matter. X-rays passing through a
material will be scattered, that is, spread in new and different
directions, and also interfere with each other. We emphasize
that the dataset being scattered point data is not caused by
the X-rays being scattered, but by the way the scattered
X-rays are measured. Measurements of the resulting intensity
distribution as function of direction can be used to extract
detailed information about the structural arrangements inside
the material specimen [31].

FIGURE 1. Generic X-ray scattering experimental setup. X-rays from the
source (direction k̂i) hit the sample, and are scattered into direction k̂f.
The scattered X-rays are measured with a pixelated area detector. The
measured intensity of each pixel I , combined with the corresponding
scattering vector Q results in a sample (Q, I).

The setup of a generic X-ray scattering experiment is
shown in Fig. 1. A 2D sensor array is used to measure
the intensity distribution of scattered X-rays from the beam
incident on the material specimen. For each pixel of the detec-
tor, the corresponding scattering vector Q ≡ 2π (k̂f − k̂i)/λ
can be computed to obtain one sample (Q, I ). The relative
orientation of the detector, material specimen and incom-
ing beam can be varied to cover the region of Q-space of
interest.
If the components of the scattering vector are interpreted

as 3D space coordinates inQ-space, all samples from a single
detector frame will be placed on the same curved 2D surface.
Measuring multiple frames with different sample-detector
configurations will result in multiple surfaces, each with dif-
ferent curvature, orientation and position. Such a set of frames
can be used to effectively map the diffracted intensity in a
volume of Q-space, resulting in a reciprocal space map [32].
The distance between pairs of surfaces in Q-space is typi-
cally different from the distance between samples located on
the same surface, and surfaces may intersect. Although the
structure of the sensor array and the curvature of theQ-space
surface corresponding to a particular frame may be used to
acquire some connectivity between the samples, shadowing
effects from the experimental setup combined with masked
or insensitive detector areas complicate strategies utilizing
connectivity information, suggesting that regarding it as an
unstructured scattered point data set is a viable option.

566 VOLUME 1, 2013



T. L. Falch et al.: GPU-Accelerated Visualization of Point Data

IV. RAY CASTING FOR SCATTERED POINT DATA

FIGURE 2. Overview of implementation. The input is a set of samples,
here shown as dots. Rays are cast from the eye/camera, through each
pixel, and into the volume. The value of the underlying function is
estimated at points along the ray, by interpolating among neighbouring
samples. Here, we show one such ray, and one point, where three
samples are contributing to the local function value.

Fig. 2 illustrates how our ray casting method is used to
generate a single image. A ray is created for each pixel of
the output image. The direction of the ray is defined by the
camera position and the center of its pixel. For each ray,
starting at the camera, wemove along the ray, and estimate the
value of the underlying continuous distribution f at positions
separated by a user-defined distance δ. How the estimation is
performed, is covered later in this section. Next, the estimated
value is mapped to a color and opacity value. This is done
using a user-defined transfer function. Finally, the color and
opacity values of all the positions along a ray are used to
evaluate the volume rendering integral, as described in [33],
in order to find the final color of the pixel. Starting at the
camera, for each point along the ray, we update the color Ci
and opacity Ai using the formulae:

Ci = Ci−1 + (1− Ai−1)ci (3)

Ai = Ai−1 + (1− Ai−1)ai, (4)

where ci = ci(fe(xi)) and ai = ai(fe(xi)) are the color and
opacity contribution of the i’th point, which are functions of
the estimated value fe(xi) of the underlying function at the
position of the i’th point xi, and Ci and Ai are the color and
opacity after processing the i’th point. The initial values of
the color and opacity are C0 = A0 = 0. The final color of the
pixel in the rendered image is CN ·AN , where N is the number
of positions along the ray at which the underlying function is
estimated.

1) FILTERING
Before the ray casting starts, the data is filtered using a sim-
plified version of the filtering proposed by Ljung et al. [34].
For the X-ray data, low intensity values are often noise (or
indistinguishable from noise), making them less interesting
from a physics perspective. Therefore, a transfer function
that suppresses the samples with low values will typically be
used. We can achieve the same effect by simply discarding all
samples whose value lies below a user defined thresholdwhen
the data is loaded, while at the same time treating regions
void of samples as transparent. This will not affect image
quality, but can dramatically reduce the size of the input data
set, and thereby increase performance. This filtering does not
require any changes to our rendering algorithm, since it makes
no assumptions about structure or connectivity of the input
data points.

2) INTERPOLATION
To estimate the value of the underlying function f (x) at point
x, we use IDW interpolation. Rather than using all the sam-
ples of the entire dataset for each point, we only use those
samples closer to the interpolation point than a user specified
search radius rs. How these samples are found is described
later in this section. The user-specified matrix A specifies
the equidistance ellipsoid for anisotropic distance calculation.
Regions with no samples are treated as transparent, i.e., as if
the intensity is zero.

3) NEIGHBOR SEARCH
An accelerating data structure is used to greatly speed up
the search for neighboring samples during interpolation.
Many data structures have been proposed for this prob-
lem [35], [36]. We have chosen to use an octree [37] due
to its conceptual simplicity, ease of implementation, intu-
itive and predictable structure, and good performance. In an
octree, each node in the tree corresponds to a cube, and
the children of a node are the eight octants of the cube.
The root node of our octree is the bounding box of all
the samples. Leaf nodes contain those samples that lie in
their corresponding cube, and may be empty if no such
samples exist. In practice, we store the samples in a sep-
arate array, and the leaf nodes contains pointers to the
samples.
During search, we want to find all samples within a sphere2

of radius rs centered at the search point. At each node, we find
the child nodes intersecting the bounding box of the sphere,
and search those nodes recursively. Thus the search returns all
the leaf nodes of the tree where the intersection between the
node and the bounding box of the search sphere is nonempty.
Finally, all the samples of each of these leaf node must be
checked to see if they fall within the search sphere.

The last step can be made faster by reducing the size of
leaf nodes. There is, however a trade-off, as reducing the

2When anisotropic distances are used, coordinates can be transformed
such that the region to search remains a sphere in the search space.

VOLUME 1, 2013 567



T. L. Falch et al.: GPU-Accelerated Visualization of Point Data

size of the leaf nodes will increase the depth of the tree,
making it more costly to find the leaf nodes in the first
place, and also increasing memory overhead. In our imple-
mentation, we set the maximum tree height to the empirically
chosen

hmax = blog2(R/rs)c + 2, (5)

where R is the smallest dimension of the bounding box of all
the samples. For a cubic bounding box, the volume occupied
by a leaf node will then be from (rs/4)3 to (rs/2)3. To avoid
unnecessarily deep trees in sparse regions, we allow leaf
nodes to contain up to 8 samples.

A. OPTIMIZATIONS
To improve performance, we have adapted two common opti-
mizations techniques for volume ray casting [2].

First, we use early ray termination. Rather than esti-
mating the value at all n points along the ray, we stop
when Ai becomes sufficiently close to 1, which indicates
that the volume between the camera and the current posi-
tion is completely opaque. Hence, the value at further
points will not contribute significantly to the color of the
pixel.

Second, the filtering described above leaves large regions
of the volume empty. Ideally, no search should be per-
formed in such regions, since they are treated as transparent.
This could be done by taking advantage of the acceleration
data structure. If an empty leaf node was encountered, one
could simply jump to the end of it. However, due to the way
we store samples in the tree, this might lead to incorrect
results, as illustrated in Fig. 3. While this problem can be
resolved by organizing the tree differently, we have instead
developed a novel empty-space skipping algorithm. If the
result of a search is empty, we increase the step size, the
distance between positions at which the value of the volume
is sampled, by a factor. After each subsequent empty search
the step size is increased, until a threshold is reached. When
a non-empty search is encountered, we move back to the
previous point, reset the step size to its default value, and
proceed.

The optimal values for the threshold and factor depend,
in the same way as the step size itself, upon the dataset.
Care must be taken to avoid setting the threshold to high,
as the resulting coarseness of the sampling might miss small
structures in the dataset. Currently, these parameter values
must be determined through trial and error.

B. PARALLELIZED CPU IMPLEMENTATION
Since all the rays can be processed independently, ray casting
is regarded as an embarrassingly parallel problem. We have
implemented a parallel version of our method. Rather than
distributing the rays evenly between the threads, which might
cause problems with load balancing as some rays are more
work-intensive than others, we have adopted a work queue
and thread pool approach, which is a technique we have used
successfully in other contexts [38].

FIGURE 3. Illustration of why skipping a empty node might cause
incorrect results. When A is reached and the empty node detected, we
could skip it by jumping to C. This would lead to incorrect results, as
B would be treated as transparent.

C. GPU IMPLEMENTATION
Ray casting is a compute-intensive and highly parallel task,
and is therefore ideally suited for GPUs. Furthermore, the task
of moving the finalized image to the GPU for display is made
superfluous when the entire computation is done on the GPU
itself.
We have created an implementation of our visualization

method where the ray casting is performed on the GPU, using
Nvidia’s CUDAplatform [39].We have implemented a kernel
that processes a single ray. Multiple instances of this kernel
are then run on the GPU in parallel, with one thread for each
ray. The kernel implements the algorithm described above.
Since CUDA allows using a subset of the C programing

language, we only needed to make a few modifications to
our code in order to port it from the CPU to the GPU. Each
of these modifications will be described in the following
paragraphs.

1) REMOVING RECURSION
Older GPUs do not support recursion [39]. Since supporting
a broad range of hardware was a priority for us, we replaced
the recursive octree range search algorithm by iteration in
combination with a manually managed stack. Finding all the
samples within the search sphere is done by initially pushing
the root node of the tree onto the stack. At each step of the
iteration, one node is popped of the stack. If it is a leaf node,
its samples are added to those returned. Otherwise, those child
nodes of the popped node intersecting with the bounding box
of the search sphere are pushed onto the stack. The loop
runs until the stack is empty. The depth-first nature of the
algorithm ensures that the stack size is bounded by O(hmax)
where hmax is the maximum depth of the tree.
In an effort to reduce the memory footprint of the stack,

we used the following compaction technique:When nodes are
pushed on the stack, we always push all the children of a node
that intersects the search box at the same time. Therefore,
rather than pushing a pointer to each of these child nodes, we
can push a pointer to the parent node, along with a description
of which of its child nodes that are pushed. This idea is

568 VOLUME 1, 2013



T. L. Falch et al.: GPU-Accelerated Visualization of Point Data

FIGURE 4. Stack optimization. On the top, a portion of a octree is shown.
The shaded child nodes are to be pushed onto the stack. In the bottom
left is the original stack, and in the bottom right is the optimized stack,
after the shaded nodes have been pushed. The stack grows downwards.

illustrated in Fig. 4. The description can be encoded in one
byte, where each bit indicates whether a child is pushed or
not. By reducing the size of the node pointer to 24 bits, we
can combine the parent node pointer, and child descriptor in
a single 4 byte integer.

2) MEMORY OPTIMIZATIONS
To achieve optimal performance, memory operations
must take the GPU’s explicit memory hierarchy into
account [39], [40]. Texture memory is a logical memory space
which physically resides in the GPUs devicememory (RAM).
This memory is designed to store textures for graphics appli-
cations, and is therefore optimized for 2D spatial locality and
streaming fetches. Furthermore, it is typically cached. We
stored the input samples in this memory, which can increase
performance for a number of reasons.

Firstly, all the samples of a leaf node will be accessed
sequentially, to check if they actually lie within the search
sphere, and if that is the case, be used in the interpolation. As
mentioned, texture memory is optimized for such streaming
access patterns. We therefore sort the samples, so that all
samples belonging to the same leaf node are placed together,
before transferring the data to the GPU. Secondly, special
access patterns are required to get good performance for
global memory. Since these access patterns cannot always
be achieved in our case, texture memory might give better
performance. Finally, as opposed to global memory, texture
memory has its own cache, also on older GPUs without
L2 and L1 caches. Since a thread might access the same
samples at consecutive points along the ray, or neighbouring
threads might access the same samples, this can also increase
performance.

3) MULTI-GPU AND LOAD BALANCING
Multiple GPUs can be used together to increase perfor-
mance [41]. The embarrassingly parallel nature of ray casting
makes this easy, and allows us to further speed up the ren-
dering. Each GPU can simply be assigned a fraction of the
rays/pixels, and process them independently. Achieving good

load balancing, so that all the GPUs finish at the same time,
is challenging, however, for two reasons. Firstly, the amount
of work per ray/pixel is not constant. Hence, distributing
the number of rays/pixels evenly will not cause work to be
distributed evenly. Secondly, different GPUs with different
performance might be used together.
To address these issues, we have developed a load bal-

ancing scheme that uses two techniques. The first is based
on the realization that our application typically will be used
to generate a large number of frames, where each frame is
quite similar to the previous, because the camera will often
be moved smoothly around the object. The relative perfor-
mance of each GPU for one frame can therefore be used to
decide how to distribute work for the next frame. The second
technique uses the length of a ray, that is, the distance the
ray intersects the bounding box of all the samples, as a proxy
for the amount of work required to process it. While clearly
inaccurate, this is a better assumption than that of uniform
ray/pixel work amount. The ray lengths can be computed
fairly cheaply on the CPU prior to work distribution.

V. RESULTS AND DISCUSSION
Two carefully chosen and qualitatively different experimental
X-ray datasets were used to test our method.
Dataset A was obtained for a PbTiO3 thin film on a SrTiO3

substrate [42], measured at the Swiss-Norwegian Beamline
(BM01A) of the European Synchrotron Radiation Facility
using a six-circle κ diffractometer, a 1024 by 1024 pixel CCD
detector, and an X-ray wavelength of 0.097 nm. It consists
of 5.6 million datapoints and was zoomed in on a single
feature known as a crystal truncation rod [43]. A 3D rendering
is provided in Fig. 5a. The central, green appearing, crystal
truncation rod displays clear intensity variations consistent
with the crystalline structure and thickness of the film. The
surrounding magenta torus of lower intensity arises from,
and thus contains information about, ferroelectric domain
structures in the PbTiO3 film [44].
Dataset B is from a single crystal of diaquabis(salicylato)

copper(II) [45], [46], consists of 243 million samples, and
was measured over a much larger region of Q-space than
dataset A. The data was measured using a rotating anode
X-ray source emitting Cu Kα radiation (wavelength
0.154 nm), a four-circle diffractometer and a Dectris Pilatus
1M pixelated detector [47]. A 3D rendering can be found in
Fig. 5c, clearly demonstrating the presence of both regularly
spaced sharp Bragg peaks consistent with a single-crystalline
structure, and the presence of modulated lines of diffuse
intensity in certain directions coinciding with high-symmetry
directions in the sample.3

For both datasets a filtering threshold was applied to
remove samples from low-intensity regions where no mea-

3This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This includes two mp4
format movie clips showing 3D renderings of the two datasets described here,
generated with our method. This material is 36.9 MB in size.

VOLUME 1, 2013 569



T. L. Falch et al.: GPU-Accelerated Visualization of Point Data

FIGURE 5. Visualizations of the two datasets generated with our method. (a, b) Renderings of dataset A showing in normalized
dimensionless units the 10l crystal truncation rod of oscillating intensity and the weaker torus caused by the ferroelectric domain
structure of the PbTiO3 film. The crossed out patches in (a) indicate regions without measurements. (c, d) Renderings of dataset B, in
units of Å−1, showing both sharp Bragg peaks and diffuse line features, oriented along high-symmetry directions in the material.

sureable diffracted intensity was detected. This removed
36.45% and 99.98% of the samples for dataset A and B,
respectively.

For the performance testing, we used a 4-core, hyper-
threaded 3.5 GHz Intel i7 3770K CPU, and three different
Nvidia Tesla GPUs. Hardware details for the GPUs are shown
in Table 1. GCC version 4.6.3 and the Nvidia CUDA Toolkit
version 5.0 with all optimizations enabled were used for com-
pilation. On the CPU, we used twice as many software threads
as physical cores, to take advantage of hyperthreading.
Our code can be compiled to use either single or double
precision floating point numbers; unless otherwise noted,

single precision was used. This is sufficient in our case
due to the limited dynamic range of the X-ray data, but
other applications might require double precision. Perfor-
mance was measured by rendering four representative 1024
× 1024 images from the two datasets, these are shown in Fig.
5. On the GPU, the rendering time reported here includes
the time required to transfer the final image back to the
host (since neither the K20 nor the C2070 has video out-
put), but not the time required to transfer the samples or
tree data structure to the GPU, since this only has be done
once, and the cost typically will be amortized by rendering
a high number of frames. For the same reason, the time

570 VOLUME 1, 2013



T. L. Falch et al.: GPU-Accelerated Visualization of Point Data

required to load and filter the data and to build the tree is not
included.

TABLE 1. Hardware details of Nvidia GPUs used.

A. BENEFITS OF ANISOTROPIC INTERPOLATION
To demonstrate how anisotropic interpolation can improve
image quality, we generated several renderings of dataset
B with various settings for interpolation. The settings
are given in Table 2 and the resulting figures shown in
Figure 6.

To render Fig. 6a, a small search radius rs and isotropic
interpolation were used. The resulting image has quite poor
quality. In particular, the rightmost part of the rods appear
discontinuous, as the search radius is to small to span the
gaps between adjacent samples. This problem can be miti-
gated by simply increasing the search radius, as was done to
render Fig. 6b. While the artifacts of Fig. 6a are removed,
the increased radius increases blurring. In Fig. 6c a small
radius was combined with anisotropic distance measurement.
The anisotropy used compacts distances along the rods. The
discontinuity artifacts are almost completely removed, with-
out introducing the same amount of blurring, resulting in
improved image quality.

In the case of dataset B, the underlying function f (x)
changes much more slowly along the rods than in direc-
tions orthogonal to them. It is therefore unsurprising that
anisotropic distance can be used to improve the image qual-
ity, as explained in Section III-B. Anisotropic interpolation
has, however, the disadvantage that it relies upon a priori

TABLE 2. Settings used in Fig. 6. I3 is the 3× 3 identity matrix.

knowledge about the underlying distribution. Furthermore, in
regions where the underlying function changes uniformly in
all directions, it will introduce artifacts. This can be seen in
Fig. 6c, where the single points in the top and bottom parts of
the image appear stretched, relative to the other figures.

B. PERFORMANCE
Rendering times for the different images on the CPU and
GPUs varied considerably.While interactive frame rates were
achieved for Fig. 5c and 5d (on the fastest GPU), rendering
the other images were orders of magnitude slower, as shown
in Fig. 7. To explain this variance, recall that in Fig. 5b, and to
a lesser extent in Fig. 5a, all rays pass through large regions of
high sample density. This is significantly more computation-
ally demanding than if they had been passing through empty
space, as in Fig. 5c and 5d. In empty space, the range search
will return faster, no interpolation is required, and the empty-
space skipping optimization can be employed. It should also
be noted that the settings used to achieve satisfactory image
quality depends heavily upon the properties of the dataset, as
well as the viewing angle. These different parameter values
have a great impact on the rendering time.
While real-time or interactive frame rates always are

desired, the primary goal of our method was high quality
images, not speed. It should be noted that adjusting the set-
tings easily allows for a trade-off between quality and perfor-
mance. This makes it possible to identify promising viewing
angles at interactive or real-time rates, and then render high
quality images offline.

FIGURE 6. Examples of the effects of varying search radius rs and anisotropy matrix, with settings given in table 2. (a) Small rs and
isotropic interpolation, resulting in the diffuse lines appearing to be broken where there is a lack of samples . (b) Increased rs
compared to (a), making the diffuse lines appear continuous while slightly decreasing the resolution. (c) rs as (a), but with anisotropic
interpolation favoring interpolation along the horizontal direction in the figure, effectively hiding the effects of insufficient sampling
while retaining good resolution.

VOLUME 1, 2013 571



T. L. Falch et al.: GPU-Accelerated Visualization of Point Data

FIGURE 7. Rendering time for the images in Fig. 5, for the parallel CPU
version on a 4-core, hyperthreaded Intel i7 3770K and the GPU versions
on three different Nvidia Tesla GPUs. Note the logarithmic scale.

The speedups on the GPUs compared to the CPU are
shown in Fig. 8. For the K20 we saw speedups between
8 and 14, while the older GPUs achieved speedups between
2 and 9. The significant performance increase on the GPUs
is expected, due to the highly parallel and computationally
demanding nature of our ray casting algorithm. We saw
different speedups for the different images depending upon
how well suited their processing requirements were for the
different GPU architectures.

1) SINGLE AND DOUBLE PRECISION
The results of comparing single and double precision per-
formance for the different images and processing units can
be found in Fig. 9. Here, the texture optimization described
in Section IV-C.2 was disabled, due to lack of support for
texels consisting of four doubles. GPUs typically perform
significantly fewer double precision operations per second
compared to single precision. This difference was more pro-
nounced on older GPUs, as evidenced by the poor results for
the older C1060 on Fig. 5a and 5b, where single precision was
8.3 and 4.6 times faster than double, respectively. However, as
we can see, the situation has improved, for the newer C2070
and K20, single precision was between 1.7 and 3 times faster
than double.

To explain differences in rendering performance between
the images, we must again consider their different processing
requirements. In Fig. 5a and 5b, more rays pass through high
density, medium intensity regions compared to Fig. 5c and 5d.
Hence, more interpolation must be done to render these
images, while, for Fig. 5c and 5d, most of the time is spent
searching. Interpolation is more computationally intensive,
involving expensive floating point operations. Searching is
comparatively simple; the only floating point operations per-
formed are comparisons. Switching from single to double
precision will therefore lead to a larger performance hit for
the images from dataset A.

FIGURE 8. Speedups of the GPU version on three different Nvidia Tesla
GPUs over the parallel CPU version on a 4-core, hyperthreaded Intel
i3770K for the different images in Fig. 5.

FIGURE 9. Speedup of single over double precision for the images in
Fig. 5, for the parallel CPU version on a 4-core, hyperthreaded Intel i7
3770K and the GPU versions on three different Nvidia Tesla GPUs. Lower
speedup values implies better double precision performance.

2) TEXTURE MEMORY
Fig. 10 shows the speedup achieved when the texture opti-
mization described in Section IV-C.2 was applied. The effect
varied, for Figs. 5a and 5b, the K20 and C1060 got speedups
of between 1.2 and 1.6, while the performance for the C2070
degraded slightly. For Figs. 5c and 5d, we saw no signifi-
cant speedups.
The difference between the images can again be explained

by the fact that for Figs. 5a and 5b, the rays pass through
extended regions of high sample density and medium
diffracted intensity. Hence, significantly more samples are
read, compared to Figs. 5c and 5d. Since the texture optimiza-
tion improves the performance of reading samples, higher
speedups were obtained for these images.
To explain the lack of speedup on the C2070, we must

take a closer look at the architecture of the different GPUs.
The C1060 does not have caches, so manual caching, either

572 VOLUME 1, 2013



T. L. Falch et al.: GPU-Accelerated Visualization of Point Data

FIGURE 10. Speedups of texture optimization for the images in Fig. 5 for
the GPU version on three different Nvidia Tesla GPUs.

FIGURE 11. Speedups obtained by empty-space skipping for the images
in Fig. 5, for the parallel CPU version on a 4-core, hyperthreaded Intel i7
3770K and the GPU versions on three different Nvidia Tesla GPUs.

by using shared memory, or, as we do, texture memory,
can therefore increase performance. The newer C2070 has
both L2 and L1 caches. Using these yields slightly better
performance than using the texture cache manually, and is the
cause of the lack of speedup in this case. This can be verified
by disabling the L1 cache at compile time. If this is done,
using texture memory will improve performance. The newest
of the GPUs, the K20, also has L1 and L2 caches, and hence
it might seem surprising that we did not see the same results
as for the C2070. However, on the K20, loads from global
memory are not cached in L1 cache, which is used for local
memory accesses only [48]. Hence, using texture memory
pays off. The GK110 architecture, on which the K20 is based,
also makes it possible to use the cache of the texture pipeline
without having to bind the memory to a texture beforehand.

3) EMPTY-SPACE SKIPPING
In Fig. 11, the effect of the empty-space skipping optimiza-
tion is shown. We saw a significant speedup of 3.2–3.8 for
Fig. 5c and 6.1–7.1 for Fig. 5d, but little or no effect on the
images from dataset A. This is as expected, since dataset

B is more sparse, and has more empty space than dataset
A. The difference between Fig. 5c and Fig. 5d is caused
by the different settings that are used. In order to capture
finer details, the original step size used to render Fig. 5d is
smaller than that used to render Fig. 5c, hence the potential
for speedup is greater in this case.

4) MULTI-GPU SYSTEMS AND LOAD BALANCING
Our multi-GPU load balancer assumes that multiple images
will be rendered, since it uses the performance of one image
to divide work for the next, as explained in Section IV-C.3.
Therefore, to tests its performance, we rendered 4 pairs of
images. Each pair consisted of one of the images used thus far
(as shown in Fig. 5) as well as a slightly zoomed out version
of the same image. For each set, we first rendered the zoomed
out image, and then used the results to dividework for the next
image. The reported results are for the last rendering only.

FIGURE 12. Speedup of the multi-GPU version on the combination of
Nvidia Tesla C2070 and K20 versus the single-GPU version on the K20
alone. Theoretical upper bounds are also indicated.

Fig. 12 shows the speedups obtained when a C2070 was
used together with a K20, compared to just a single K20. The
figure also shows a theoretical upper bound on the speedup.
This upper boundwas computed by assuming that if a fraction
β of the work is assigned to the K20, and 1−β to the C2070,
the rendering time will be max(βTK20, (1−β)TC2070), where
TK20 and TC2070 are the rendering times measured individ-
ually on the K20 and C2070, respectively. The theoretical
lower bound on joint rendering time can then be found solving
the equation βTK20 = (1 − β)TC2070 for β. The theoretical
upper bound on speedup can then trivially be computed.
The combination of C2070 and K20 achieved an average

speedup of 1.4, while the average theoretical upper bound
is 1.58. The cause of this discrepancy is that the amount of
work for a thread is not known in advance. Hence, using
thread count as a proxy for amount of work, even when
ray lengths are adjusted for, leads to inaccurate estimates.
The poor speedup results for Fig. 5c was caused by the fact
that the rendering time was so short that the time to transfer
the image back to the host became significant. The theoretical

VOLUME 1, 2013 573



T. L. Falch et al.: GPU-Accelerated Visualization of Point Data

upper bound does not take this overhead into account, andwas
therefore too high in this case.

FIGURE 13. Fraction of total compute time on each GPU for the
multi-GPU version with two different Nvidia Tesla GPUs.

Fig. 13 shows howwell the load balancing schemewas able
to divide work evenly between the GPUs. The figure shows
the fraction of compute time spent on each GPU. Ideally, the
GPUs should spend the same amount of time, resulting in a
50/50 division. As we can see, for all cases, the division was
fairly close to the ideal.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have developed a method based on
volume ray casting for visualizing volumetric scattered
point data. We have applied the method to two qualita-
tively different experimental X-ray diffraction datasets of
highly crystalline materials containing disorder, showing
that high-quality visualization of intensity distributions in
Q-space are highly useful for extracting information on
complex nanostructures and disorder from X-ray diffraction
experiments. This is one example of the growing importance
of visualization.

The introduced method differs from traditional ray casting
algorithms by not using voxels, but rather operating directly
on the scattered point data. The method finds the value of
the scalar field to be visualized at positions along the rays
by interpolation using nearby samples. We use an octree
to efficiently find the close-by samples. We implemented
standard ray casting optimization techniques such as early
ray termination and empty-space skipping. A novel, accelera-
tion data structure agnostic algorithm for performing empty-
space skipping, suitable for situations where voxels or similar
representations are not used, has been developed. We have
shown that in situations where the average absolute value of
the directional derivatives depends strongly on the directions,
image quality can be improved by using anisotropic interpo-
lation to find values at points along the rays. Versions for
multicore CPUs, GPUs and multi-GPU systems have been
implemented.

Our implementations were tested using actual X-ray
diffraction data, consisting of up to 120 M data points.
Our method is capable of producing images of good qual-
ity. The rendering time varies significantly, between 0.2 s
and 12.7 s, (Nvidia Tesla K20), depending upon dataset,
and settings used. The GPU implementation (on Nvidia
Tesla K20) achieves a speedup between 8 and 14 for
different images, compared to the multithreaded CPU version
(Intel i7-3770K).
In future research, one may investigate how performance

can be improved with further optimizations. Devising meth-
ods to automatically determine optimal parameter settings
is also a possible direction of future research. It would be
interesting to look at how our method compares to a different
algorithm such as splatting. As experimental and simulated
datasets become larger, one idea would be to also look at the
tradeoffs of data compression Aqrawi et al., [49]. Without
doubt, future work will aim at further developing real-time
interactive multi-dimensional visualization tools for interac-
tive analysis and visualization of vast data sets.

ACKNOWLEDGMENT
The authors would like to thank Nvidia’s CUDA Research
Center Program and NTNU for hardware donations,
Thomas Tybell for providing the PbTiO3 sample, Frode
Mo for facilitating the experiments at the Swiss-Norwegian
Beamlines, and Emil J. Samuelsen for providing the
diaquabis(salicylato)copper(II) sample.

REFERENCES
[1] C. Hansen and C. R. Johnson, The Visualization Handbook.

Amsterdam, The Netherlands: Elsevier, 2005.
[2] M. Levoy, ‘‘Efficient ray tracing of volume data,’’ ACM Trans. Graph.,

vol. 9, no. 3, pp. 245–261, Jul. 1990.
[3] M. P. Garrity, ‘‘Raytracing irregular volume data,’’ ACM SIGGRAPH

Comput. Graph., vol. 24, no. 5, pp. 35–40, Nov. 1990.
[4] L. Westover, ‘‘SPLATTING: A parallel, feed-forward volume rendering

algorithm,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. North Carolina
at Chapel Hill, Chapel Hill, NC, USA, 1991.

[5] T. J. Cullip and U. Neumann, ‘‘Accelerating volume reconstruction with
3D texture hardware,’’ Radiat. Oncol., vol. 61, pp. 1–6, Jun. 1994.

[6] B. Cabral, N. Cam, and J. Foran, ‘‘Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware,’’ in Proc.
Symp. Vol. Visualizat., 1994, pp. 91–98.

[7] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl, ‘‘A simple and flex-
ible volume rendering framework for graphics-hardware-based raycast-
ing,’’ in Proc. 4th Eurograph. IEEE VGTC Conf. Vol. Graph., Jun. 2005,
pp. 187–241.

[8] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, ‘‘Gigavoxels:
Ray-guided streaming for efficient and detailed voxel rendering,’’
in Proc. Symp. Interact. 3D Graph. Games, Feb. 2009,
pp. 15–22.

[9] L. Marsalek, A. Hauber, and P. Slusallek, ‘‘High-speed volume ray casting
with CUDA,’’ in Proc. IEEE Symp. Interact. RT, Aug. 2008, p. 185.

[10] H. Ludvigsen and A. C. Elster, ‘‘Real-time ray tracing using nvidia optix,’’
in Eurographics Short Papers, H. P. A. Lensch and S. Seipel, Eds. New
York, NY, USA: Wiley, 2010, pp. 65–68.

[11] G. Nielson, ‘‘Scattered data modeling,’’ IEEE Comput. Graph. Appl.,
vol. 13, no. 1, pp. 60–70, Jan. 1993.

[12] I. Amidror, ‘‘Scattered data interpolation methods for electronic imaging
systems: A survey,’’ J. Electron. Imaging, vol. 11, no. 2, pp. 157–176, 2002.

[13] J. Wihelms, J. Challinger, N. Alper, S. Ramamoorthy, and
A. Vaziri, ‘‘Direct volume rendering of curvilinear volumes,’’
SIGGRAPH Comput. Graph., vol. 24, no. 5, pp. 41–47,
Nov. 1990.

574 VOLUME 1, 2013



T. L. Falch et al.: GPU-Accelerated Visualization of Point Data

[14] P. Navratil, J. Johnson, and V. Bromm, ‘‘Visualization of cosmological
particle-based datasets,’’ IEEE Trans. Visualizat. Comput. Graph., vol. 13,
no. 6, pp. 1712–1718, Nov./Dec. 2007.

[15] R. Fraedrich, S. Auer, and R. Westermann, ‘‘Efficient high-quality volume
rendering of SPH data,’’ IEEE Trans. Visualizat. Comput. Graph., vol. 16,
no. 6, pp. 1533–1540, Nov./Dec. 2010.

[16] S.W. Park, L. Linsen, O. Kreylos, and J. D. Owens, ‘‘A framework for real-
time volume visualization of streaming scattered data,’’ in Proc. Workshop
Vis., Model. Visualizat., 2005, pp. 225–232.

[17] M. Hopf and T. Ertl, ‘‘Hierarchical splatting of scattered data,’’ in Proc.
14th IEEE Visualizat., 2003, pp. 443–440.

[18] M. Chen, ‘‘Combining point clouds and volume objects in volume scene
graphs,’’ in Proc. 4th Int. Workshop Vol. Graph., Jun. 2005, pp. 127–235.

[19] Y. Jang, M. Weiler, M. Hopf, J. Huang, D. S. Ebert, K. P. Gaither, and
T. Ertl, ‘‘Interactively visualizing procedurally encoded scalar fields,’’
in Proc. Eurograph. IEEE Symp. Visualizat., May 2004, pp. 35–44.

[20] C. Ledergerber, G. Guennebaud, M. Meyer, M. Bacher, and H. Pfister,
‘‘Volume MLS ray casting,’’ IEEE Trans. Visualizat. Comput. Graph.,
vol. 14, no. 6, pp. 1372–1379, Nov./Dec. 2008.

[21] J. Owens,M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips, ‘‘GPU
computing,’’ Proc. IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

[22] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and
O. O. Storaasli, ‘‘State-of-the-art in heterogeneous computing,’’ Sci. Pro-
gram., vol. 18, no. 1, pp. 1–33, 2010.

[23] Ø. E. Krog and A. C. Elster, ‘‘Fast GPU-based fluid simulations using
SPH,’’ in Applied Parallel and Scientific Computing (Lecture Notes in
Computer Science), K. Jonasson, Ed. Berlin, Germany: Springer-Verlag,
2012, pp. 98–109.

[24] L. Dematt and D. Prandi, ‘‘GPU computing for systems biology,’’ Briefings
Bioinf., vol. 11, no. 3, pp. 323–333, 2010.

[25] G. Pratx and L. Xing, ‘‘GPU computing in medical physics: A review,’’
Med. Phys., vol. 38, no. 5, pp. 2685–2697, 2011.

[26] E. Smistad, A. C. Elster, and F. Lindseth, ‘‘Real-time gradient
vector flow on GPUs using OpenCL,’’ in Journal of Real-Time
Image Processing. New York, NY, USA: Springer-Verlag, Jun. 2012,
pp. 1–8.

[27] E. Smistad, A. C. Elster, and F. Lindseth, ‘‘Fast surface extraction and
visualization of medical images using OpenCL and GPUs,’’ in Proc. Joint
Workshop High Perform. Distrib. Comput. Med. Imaging, 2011, pp. 1–10.

[28] D. Shepard, ‘‘A two-dimensional interpolation function for irregularly-
spaced data,’’ in Proc. 23rd ACM Nat. Conf., 1968, pp. 517–524.

[29] M. Tomczak, ‘‘Spatial interpolation and its uncertainty using automated
anisotropic inverse distance weighting (IDW)—Cross-validation/jackknife
approach,’’ J. Geograph. Inf. Decision Anal., vol. 2, no. 2, pp. 18–30,
1998.

[30] A. Adamson and M. Alexa, ‘‘Anisotropic point set surfaces,’’ Comput.
Graph. Forum, vol. 25, no. 4, pp. 717–724, 2006.

[31] J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics,
2nd ed. New York, NY, USA: Wiley, 2011.

[32] S. O. Mariager, C. B. Sørensen, M. Aagesen, J. Nygård,
R. Feidenhans’l, and P. R. Willmott, ‘‘Facet structure of GaAs nanowires
grown by molecular beam epitaxy,’’ Appl. Phys. Lett., vol. 91, no. 8,
pp. 083106-1–083106-3, Aug. 2007.

[33] N. Max, ‘‘Optical models for direct volume rendering,’’ IEEE Trans.
Visualizat. Comput. Graph., vol. 1, no. 2, pp. 99–108, Jun. 1995.

[34] P. Ljung, C. Lundstrom, A. Ynnerman, and K. Museth, ‘‘Transfer func-
tion based adaptive decompression for volume rendering of large med-
ical data sets,’’ in Proc. IEEE Symp. Vol. Visualizat. Graph., Oct. 2004,
pp. 25–32.

[35] J. L. Bentley and J. H. Friedman, ‘‘Data structures for range searching,’’
ACM Comput. Surv., vol. 11, no. 4, pp. 397–409, Dec. 1979.

[36] H. Samet, Foundations of Multidimensional and Metic Data Structures.
San Mateo, CA, USA: Morgan Kaufmann, 2006.

[37] R. A. Finkel and J. L. Bentley, ‘‘Quad trees: A data structure for retrieval
on composite keys,’’ Acta Inf., vol. 4, no. 1, pp. 1–9, 1974.

[38] T. L. Falch, J. B. Fløystad, D. W. Breiby, and A. C. Elster, ‘‘Optimization
and parallelization of ptychography reconstruction code,’’ in Proc. 25th
Norwegian Inf. Conf., Jan. 2012, pp. 117–128.

[39] NVIDIA. (2012, Apr. 30). NVIDIA CUDA C Programing Guide, Santa
Clara, CA, USA [Online]. Available: http://developer.nvidia.com/nvidia-
gpu-computing-documentation

[40] NVIDIA. (2012, May 4). CUDA C Best Practices Guide [Online]. Avail-
able: http://developer.nvidia.com/nvidia-gpu-computing-documentation

[41] D. G. Spampinato, A. C. Elster, and T. Natvig, ‘‘Modelling multi-GPU sys-
tems’’ in Advances in Parallel Computing. Amsterdam, The Netherlands:
Ios Press, 2009, pp. 562–569.

[42] R. Takahashi, J. K. Grepstad, T. Tybell, andY.Matsumoto, ‘‘Photochemical
switching of ultrathin PbTiO3 films,’’ Appl. Phys. Lett., vol. 92, no. 11, pp.
112901-1–112901-3, Mar. 2008.

[43] I. K. Robinson, ‘‘Crystal truncation rods and surface roughness,’’ Phys.
Rev. B, vol. 33, no. 6, pp. 3830–3836, Mar. 1986.

[44] D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman,
O. Auciello, P. H. Fuoss, and C. Thompson, ‘‘Ferroelectricity in ultrathin
perovskite films,’’ Science, vol. 304, no. 5677, pp. 1650–1653, Jun. 2004.

[45] S. Jagner, R. G. Hazell, and K. P. Larsen, ‘‘The crystal structure
of diaquabis(salicylato)copper(II), Cu[C6H4(OH)COO]2(H2O)2,’’ Acta
Crystallograph. Sec. B, vol. 32, no. 2, pp. 548–554, Feb. 1976.

[46] S. Tjotta, E. Samuelsen, and S. Jagner, ‘‘Short-range stacking order
in the layered material diaquabis (salicylato) copper (II), studied by
X-ray and Raman scattering,’’ J. Phys., Condensed Matter, vol. 3, no. 20,
pp. 3411–3419, May 1991.

[47] P. Kraft, A. Bergamaschi, C. Bronnimann, R. Dinapoli,
E. Eikenberry, H. Graafsma, B. Henrich, I. Johnson, M. Kobas,
A. Mozzanica, C. Schleputz, and B. Schmitt, ‘‘Characterization and
calibration of PILATUS detectors,’’ IEEE Trans. Nuclear Sci., vol. 56,
no. 3, pp. 758–764, Jun. 2009.

[48] NVIDIA. (2013, Jun. 17). Tuning CUDA Applications
for Kepler, Santa Clara, CA, USA [Online]. Available:
http://docs.nvidia.com/cuda/pdf/Kepler_Tuning_Guide.pdf

[49] A. A. Aqrawi and A. C. Elster, ‘‘Bandwidth reduction through mul-
tithreaded compression of seismic images,’’ in Proc. IEEE IPDPSW,
Jun. 2011, pp. 1730–1739.

THOMAS L. FALCH received the M.Sc. degree in
computer science from the Norwegian University
of Science and Technology, Trondheim, Norway,
where he is currently pursuing the Ph.D. degree
with the Department of Computer Science.

He is currently working on a heterogeneous
computing framework for medical image process-
ing and visualization. His current research interests
include heterogeneous computing and scientific
visualization.

JOSTEIN BØ FLØYSTAD received the M.Sc.
degree in physics from the Norwegian University
of Science and Technology, Trondheim, Norway,
where he is currently pursuing a Ph.D. degree with
the Department of Physics.

His current research interests include in situ X-
ray imaging, ptychography, and other X-ray scat-
tering techniques.

DAG W. BREIBY received the master’s and Ph.D.
degrees in physics from the Norwegian University
of Science and Technology (NTNU), Trondheim,
Norway, in 1999 and 2003, respectively.

He was a Post-Doctoral Fellow with Risoe
National Laboratories, Denmark, from 2003 to
2007, before joining the Department of Physics
at NTNU as Associate Professor in 2007. He has
authored or co-authored over 45 journal papers
and several book chapters. His current research

interests include structure/property relations in functional materials, X-ray
physics, and experimental nanotechnology.

VOLUME 1, 2013 575



T. L. Falch et al.: GPU-Accelerated Visualization of Point Data

ANNE C. ELSTER (S’83–M’95–SM’00) received
the B.S. degree in computer systems engineering
from the University of Massachusetts, Amherst,
MA, USA, in 1985, where she also took several
courses in computer science and honors mathemat-
ics, and the M.S. and Ph.D. degrees in electrical
engineering from Cornell University, Ithaca, NY,
USA.

She explored various HPC systems in the late
80s and early 90s. She worked for Schlumberger in

Austin from 1994 to 1997, then part-time at the University of Texas at Austin
from 1997 to 2000 and founded ACENOR Inc. in 2000. Since January 2001,
she has been with the Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU), Trondheim,
Norway, where she is an Associate Professor. She is the Co-Founder and
Co-Director of NTNUs Computational Science and Visualization Program,
and holds a Visiting Scientist appointment with the University of Texas at
Austin. Her current research interests include high-performance computing
in general, with a current focus on heterogeneous and parallel computing. She
served on the MPI standards committees (MPI and MPI-2), and has served
on several panels and many program committees through the years. She has
supervised 50+ master students, published 50+ technical papers, and given
40+ invited talks and tutorials. She is a member of ACM, AGU, IEEE, SIAM,
Tekna, and several other technical societies.

576 VOLUME 1, 2013


