
Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

1 | P a g e

Detecting Windows Based Exploit Chains by Means

of Event Correlation and Process Monitoring

Muhammad Mudassar Yamiun

Norwegian University of Science

and Technology,

Department of Information Security

and Communication Technology

Gjøvik, Norway

muhammad.m.yamin@ntnu.no

Basel Katt

Norwegian University of Science

and Technology,

Department of Information Security

and Communication Technology

Gjøvik, Norway

basel.katt@ntnu.no

Vasileios Gkioulos

Norwegian University of Science

and Technology,

Department of Information Security

and Communication Technology

Gjøvik, Norway

vasileios.gkioulos@ntnu.no

 This article presents a novel algorithm for the detection of

exploit chains in a Windows based environment. An exploit chain

is a group of exploits that executes synchronously, in order to

achieve the system exploitation. Unlike high-risk vulnerabilities

that allow system exploitation using only one execution step, an

exploit chain takes advantage of multiple medium and low risk

vulnerabilities. These are grouped, in order to form a chain of

exploits that when executed achieve the exploitation of the system.

Experiments were performed to check the effectiveness of

developed algorithm against multiple anti-virus/anti-malware

solutions available in the market.

Keywords—Exploit Chain, Event Correlation, Process

Monitoring, Windows, process correlation

I. INTRODUCTION

Recently, the Pwn2own 2018 researchers introduced
multiple Zero Day exploits, which were primarily based on a
chain of multiple exploits for the exploitation of systems and
services [1]. Traditional anti-virus and anti-malware software
uses process monitoring and process isolation techniques for
detection, according to suspicious process behavior pattern [2].
Yet, as we see in the Pwn2Own 2018 results, the researchers
were able to break such process isolation and sandboxing
process protection techniques. Examples of exploits that cannot
be detected using traditional techniques are the guest-to-host
exploits [3], and the macro-less DDE (dynamic data execution)
in an MS office application [4]. In this article, we present a novel
technique for the detection of such exploits using process
execution monitoring my means of event correlation. The
technique performs detection in a signature free and fully
autonomous manner, using only the process names for
monitoring and detection of exploitations. We use event
correlation with respect to events extracted from process
monitoring logs to create a chain of suspicious processes
generated by the application to identify a detection. This article
is organized in six sections. The first section introduces the
problem, while in the second section we discuss related work
and provide additional information about the problem
background. The following sections present the proposed
algorithm and initial experimentation results, while in the last
sections we provide a discussion, future work and conclude the
article.

II. RELATED WORK

 The authors were not able to identify in the literature any
viable existing technique for the detection of complex exploit
chains such as guest-to-host exploits, while most cloud security
vendors use defense in depth architectures to avoid security
incidents involving guest-to-host exploits [5]. Existing
techniques for securing a host from guest-to-host exploits use a
multistep approach. Initially, an external process hook or agent
is added in each virtual machine, which is then updated for
malware and virus definitions from an external source [6].
Another technique used for securing virtual machines, relies on
VMI (Virtual Machine Introspection) based process monitoring,
for malware detection on a virtual machine from an external
source [7]. Graph based event correlation (on the virtual
machine) for anomaly detection using machine learning
techniques [8]. The problem faced by existing techniques, is that
they mostly focus on the protection of the virtual machine,
without taking into account the new guest-to-host exploits,
which exploit guest isolation using an exploit chain and allow
the guest virtual machine to access the host operating system.
Furthermore, in respect to the macro-less DDE in MS office
applications [4], the research focus is on using malicious
PowerShell commands for exploiting the system. For the
detection of malicious PowerShell commands, researchers are
currently using machine-learning techniques [9]. Yet, such
existing detection techniques are vulnerable to the use of
command line obfuscation for avoiding detection [10].

III. PROBLEM BACKGROUND

To further explain the problem a brief technical background is

given.

A. Exploit Chains

In a normal IT security environment one vulnerability is enough

to compromise the security of a system. However, due to

continue system security improvements finding such

vulnerabilities is becoming harder day by day. On the other

hand low impact vulnerabilities are usually easy to find,

researcher demonstrated multiple exploits which use these low

impact vulnerabilities [4][5], and chain them together to

compromise system security. To further explain the flow of a

single exploit and an exploit chain we created a simple flow

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

2 | P a g e

chart for easy understating. Flow chart showing comparison of

traditional exploits and an exploit chain flow is given in figure

1:

Fig (1) Example of traditional exploit with a single

vulnerability

In comparison to a vulnerability that is exploited by a single

exploit, in an exploit chain multiple vulnerabilities are

involved. Each exploit uses the output of the previous to

accomplish the objectives. A flow chart representation of

exploit chain is seen in the figure 2:

Fig (2) Example of exploit chain with multiple vulnerability

Similar concepts exists in literature such as attack chain or

attack paths which is set of possible steps that an attacker could

take to compromise a system, involving multiple nodes on

which exploitation is performed. In contrast, exploit chaining is

the process of linking multiple vulnerabilities of one node

which are present in a system and executing them in a specific

order to compromise security.

B. Window Event logging Mechanism

The Microsoft Security Event logging mechanism is present in

every new release of Windows since Windows XP. This event

logging mechanism allows the identification of the type of

computer events happening in Windows based systems when

an exploit is executed. Researchers at JPCERT [15] provided

details of such security events in there technical report. In this

research paper we focus on Event ID 4688 [11]. Which is a

Windows new process creation event. Each 4688 event contains

the following fields

• SubjectUserSid : Security id of account from where

the process is executed

• SubjectUserName : Account name from where the

process is executed

• SubjectDomainName : Domain Name

• SubjectLogonId : Logon id of account from where

the process is executed

• NewProcessId : Unique hexadecimal new process

identifier

• NewProcessName : New process name executed by

parent process

• ProcessId : Unique hexadecimal process identifier

• CommandLine : Command which is executed

• TargetUserSid : Security id of account on which

process executed

• TargetUserName : User name

• TargetDomainName : Computer name

• TargetLogonId : Login id of account on which

process executed

• ParentProcessName : Name of process which

executes new process

• MandatoryLabel : Secure object control integrity

label assigned to new process

 From the information present in the fields of 4688 event we

used NewProcessId, ProcessId, TargetDomainName in our

detection algorithm. The ProcessId is a unique identifier issued

by computer operating system to a running process.

NewProcessId is a unique identifier issued by computer

operating system to a process that is executed by another

running process.TargetDomainName is the unique name of the

computer on the domain.

C. Guest-to-host exploit

A recent report from SpiceWork [13] shows that server

virtualization adoption reached 85% in comparison to 15% of

physical IT infrastructure in 2017, as seen in figure 3.

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

3 | P a g e

Fig (3) [13] Server virtualization trends

This trend leads security researchers to develop exploits that

can break guest isolation and compromise the host machine. A

list of few vulnerabilities is given below

• CVE-2017-4924: An out of bound memory corruption

vulnerability in Vmware 12.x to 12.5.7 Implementation of

SVGA(Virtual graphic card) allows attackers to execute

code host system

• CVE-2017-4934: An heap buffer overflow vulnerability in

Vmware 12.x to 12.5.8 Implementation of VMNET

(virtual machine network) allows attackers to execute code

host system

• CVE-2017-4936: An out-of-bounds read vulnerability in

Vmware 12.x to 12.5.8 JPEG2000 parser in the TPView.dll

allows guest to execute code or perform a DOS (Denial of

Service) on the Windows OS.

 A detailed list of guest-to-host escape vulnerabilities can

be found online [14]. An example of these vulnerabilities is

CVE-2017-4924 in which an out of bound memory corruption

in vmwar-vmx.exe with incorrect memory mapping exists. This

allows Data Execution Prevention bypass which leads to code

execution on host from virtual machine.

 Exploit writers were able to exploit this vulnerability and

they created a POC (Proof of Concept) [17] for its exploitation.

In the POC first the guest isolation is escaped by out of bound

memory corruption and then CMD is executed by exploiting

host Windows task registry. From CMD, PowerShell is

executed to achieve remote shell level access on host.

Schematically the exploit chain presented in figure 4.

 Memory Corruption exploit (CVE-2017-4936)

Task Registry exploit (CVE-2017-0103)

 Host CMD executes

 PowerShell for further exploitation

Fig (4) Guest to host escape exploit chain

 Ideally the virtualization provide isolation between Guest

OS and Host OS, where only the relevant services are shared as

seen in the figure 5:

Fig (5) Isolated guest and host in virtualized environment

Fig (6) Broken isolation between guest and host

D. Macro-less DDE Attacks

To transfer data between different applications Windows

provides the functionality of Dynamic Data Execution. The

communication or COM Objects of Microsoft word and

Microsoft excel, have public access to this DDE functionality.

The functionality allows Microsoft Word and Excel to execute

system commands legitimately. Exploit writers misused this

functionality and were able to develop complex exploits such

as macro-less DDE code execution [4]. It is also very difficult

to detect with traditional detection techniques since the

functionality is legitimate feature and is not blocked and

patched by Microsoft [4]. Anti-virus and anti-malware

solutions are using signature-based detection mechanism for

the detection of macro-less DDE but the signature-based

detection was also easily bypass able using command

obfuscation techniques [9]. The exploit execution of macro-less

DDE is similar to guest-to-host escape but in this case

Microsoft Word or Excel is used to create exploit chain. First

DDE on Microsoft Word or Excel is exploited which allows

Guest OS

Host CMD

Host PowerShell

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

4 | P a g e

the exploited process to use COM object in Windows and pass

data related to secondary logon elevation vulnerability in

windows through which CMD is executed. Now when the

CMD process is started a command line argument containing

malicious PowerShell script is passed to obtain a remote shell

of the host a schematic repression of the explication chain is

seen in figure 7:

 Macro-less DDE Exploit (CVE-2017-11826)

Secondary logon elevation (CVE-2016-0099)

 Host CMD executes

 PowerShell for further exploitation

Fig (7) Guest to host escape exploit chain

IV. DETECTION METHODOLGH

The detection algorithm is developed by analyzing Windows

security logs. Consider the following Windows security logs of

Vmware guest-to-host Escape exploit. It breaks the Guest

isolation, executes a CMD command on the host to run a

PowerShell Exploit. The logs generated by the exploit can be

seen in the figure 8:

Fig (8) Windows event logs generated from a guest to host

exploit

After analyzing the logs a clear link is established between the
processes generated by the exploit, as the ProcessID of a process
is the NewProcessID of previous process involved in the exploit
chain. We identified that by co-relating multiple events based
upon the relation of ProcessID and NewProcessID we can create
a process execution chain of the exploit. Accordingly a detection
algorithm has been developed based on this finding. The
proposed algorithm works in the following manner:

Exploit Chain Detector (ECD) Algorithm

Input: a list of ordered Windows event logs A; a list of process names to be monitored B

/* an event logs has the following attributes: NewProcessId, ProcessId, ProcessName, TargetDomainName*/

/* B contains a list of process names that are executed after a vulnerability is exploited retrieved from report1 [15] */

Output: a list of string stacks D, a Boolean represents if exploit chains are detected c

/* D will contain all exploit chains detected by the algorithm, and c is true if one chain is found*/

Initialization: create an empty event log a ; initialize c with the value false ; create integer m with initial value 0

1 for (i=0; i<Size(A); i++) do

2 if (Ai.ProcessId ∈B) then

3 a=Ai

4 for (j=i; i<Size(A); j++) do

5 if (a. ProcessId == Aj.NewProcessId && a.TargetDomainName == Aj.TargetDomainName) then

6 Dm.Push(a.ProcessName)

7 a=Aj

8 if(A(j+m).NewProcessId==Null) then

9 c=true

10 m=m+1

11 end if

12 end if

13 end for

14 end if

15 end for

1 (The list is created according to the JPCERT report Detecting Lateral Movement through Tracking Event Logs, which

suggest the following processes for active tracking: cmd, powershell, regsvr32, rundll32, mshta)

MS Word

Host CMD

Host PowerShell

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

5 | P a g e

 The ECD (Exploit Chain Detector) algorithm requires only

two inputs for execution. First is the security monitoring logs

on which detection is performed A, and second is the list of

process names that need to be monitored B. A is directly

retrieved from host which contains individual events with

multiple fields like ProcessId, NewProcessId ,ProcessName,

TargetDomainName etc. B is the list of process names given by

JPCERT[15] that are executed after a vulnerability is exploited.

In output the algorithm returns whether an exploit chain is

detected or not in a boolean variable c. If detected then it also

shows the exploit chains in a stack D. For initializing the

algorithm we need an empty event log a, an integer m with

value 0 and c will be initialized with the value false..

 When the algorithm starts processing it reads all the event

logs available in A, then it start checking one by one if the

ProcessName of an event in A is present in B. If a match is

found the single event of A is stored in a and ProccessName is

pushed to the stack D. Now a second comparison is performed

on those events of A which are present after a, in the comparison

ProcessId of a and ComputerName of a is compared with the

ProcessId of the next event of A and ComputerName of that

event in the coming logs. If a match is found ProccessName is

pushed to a stack D and value of a is updated with current value

of event at A .This process is performed until there is no

NewProcessID in A. When this happens true value is assigned

to c while the stack D contains the whole exploit chain. We

calculated the algorithm complexity and it was

O (n log n)
The algorithm complexity is good for detection of exploit chain

in environment with small or medium amount of security logs

data but in an environment with large amount of event log data

the algorithm will take considerable amount of time for

detection of exploit chains.

V. IMPLEMENTATION

We developed our proposed algorithm on a simple python

based Windows logging mechanism. It is based on the standard

pywin32 library presented at python library blog post [12],

while the detection algorithm is built around this logging

mechanism. The logs come in a recursive manner, as post

exploitation is done after the initial exploitation with respect to

time. We developed our detection algorithm POC on Microsoft

Visual Studio 20172 on python environment 3.6. Our

implementation contains the following primary functions.

1) Get-All-System-Events

This function takes all event logs from system which include

application events, security events, setup events, system events

and forwarder events and write them to separate files on disk.

2) Event-Parser

Event log parser read the event from the disk and parse them to

individual readable events and forward it to next function Get

All Event Logs

3) Get-All-Event Logs

 Get-All-Event-Logs is the core function of our detection

algorithm. It takes parsed events from Event-parser, then

performs event process comparison and event corelation for the

detetction of exploit chains.

To test the algorithm we run the developed tool on a Core i5

3320M 2.60 ghz system with 16 gb of RAM against 17098

Windows security events and two executed exploits guest-to-

host, macro-less DDE. The Execution took 7.3s for the

detection of the exploit chains, which can be seen in the figure

9:

Fig (9) Implemented algorithm process execution time and

function calls

The implementation works without any malware, virus or

malicious command signature for the detection of the exploit

chain. We performed detailed experimentation on the

developed algorithm to check the effeteness of our algorithm.

The following section elaborates the experimental details and

results:

VI. EXPERIMENTATAION AND RESULTS

Two experiments were performed to check the effectiveness of

the developed algorithm one is a guest-to-host exploit the other

is a macro-less DDE exploit details of which are given below:

A. Guest-to-host exploit

1. Experimental Setup

We created our experimental setup on a 64-bit Windows 10
machine running on a VMware Workstation 12.5.5. A Guest
Windows 10 operating system is installed on the Vmware. For
detection comparison analysis we installed Bit Defender Home,
Avira Home, Kasper Sky Home, Avast Home and Panda
Security Suite on the Host OS and deactivated them.

2. Controlled Exploit Execution

We executed a guest-to-host proof of concept for CVE-2017-
4924 [16], [17] on Guest windows 10 operating system. The
exploit breaks the Guest isolation and executed an CMD on host
machine and then executed PowerShell. Execution of exploit on
Process Hacker can be seen in the figure 10:

2 https://www.visualstudio.com/

https://www.visualstudio.com/

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

6 | P a g e

Fig (10) Guest to host exploit execution

3. Scenarios

We created two scenarios for comparison of our developed
algorithm with different anti-virus/anti-malware solution
available in the market. In the first scenario we executed the
exploit only against our detection algorithm. In the second
scenario we executed the exploit against different anti-
virus/anti-malware solution available in the market. Details of
which is given below:

a) Detection against developed algorithm

We executed our detection algorithm on the Windows 10 Host

OS and executed the exploit on Windows 10 Guest OS and we

were able to detect the exploit chain in the first run successfully.

Vmware CMD PowerShell

 The detection of the exploit chain by the developed algorithm

can be seen in the figure 11:

Fig (11) Guest-to-host exploit detection

The exploit chain detected by our algorithm is according to the

process execution tree shown at process hacker. However, due

to the event correlation capabilities of the developed algorithm

with respect to malicious process monitoring, we are able to

mark the chain as being malicious.

b) Detection against anti-virus/anti-malware solutions

We ran Bit Defender Home, Avira Home, Kasper Sky Home,
Avast Home and Panda Security Suite on the Windows 10 Host
OS one by one while executing the guest-to-host exploit on a
Window 10 Guest OS for the possible detection of exploit chain
we weren’t able to identify any malicious activity.

4. Experimental Results

We ran a comparative analysis of our detection techniques with

different anti-virus and anti-malware solution available in the

market. The table 1 shows the result of detection by different

security software.

Solution Detection Yes/No

Proposed Algorithm Yes

Windows Defender No

Bit Defender Home No

Avira Home No

Kasper Sky Home No

Avast Home No

Panda Security Suite No

Table (1) Result of Comparative Detection Analysis of

Developed algorithm and Different Software Security

Software

B. Macro-less DDE exploit

1. Experimental Setup

We used Microsoft Office 2013 running on 64-bit Window 10
for the experimentation purpose.

2. Controlled Exploit Execution

For macro-less DDE Exploit we developed an obfuscated DDE
Exploit for CVE-2017-11826.The exploit first executes CMD
from MS Word then from CMD it executes PowerShell for
further exploitation. The exploit execution on Process Hacker
can be seen in the figure 12:

Fig (12) Macro-less DDE exploit execution

3. Scenarios

We created two scenarios for the evaluation of our developed
algorithm in the first scenario we executed the exploit on the
Experimental setup to check the detection against our developed
algorithm. In the second scenario we used online service
VIrustototal3 which performed detection analysis against 59
anti-virus/anti-malware solution details of the scenarios is given
below:

a) Detection against developed algorithm

We executed our detection algorithm on the Windows 10

running MS Word and we were able to detect the exploit chain

in the first run successfully.

Word CMD PowerShell

The detection of the exploit chain by the developed algorithm

can be seen in the figure 13:

Fig (13) Macro-less DDE exploit detection

3 https://www.virustotal.com/#/file/27c058180a47a5f73ac013e908dde0ec823a28a561408749872e54e6944a4c3f/detection

https://www.virustotal.com/#/file/27c058180a47a5f73ac013e908dde0ec823a28a561408749872e54e6944a4c3f/detection

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

7 | P a g e

The exploit chain detected by our algorithm is according to the

process execution tree shown at Process Hacker. However, due

to the event correlation capabilities of the developed algorithm

with respect to malicious process monitoring, we are able to

mark the chain as being malicious.

b) Detection against anti-virus/anti-malware solutions

As stated earlier we developed an obfuscated macro-less DDE

exploit which have zero detection signature against 59 anti-

virus and anti-malware solution on Virus Total3 as seen in the

figure 14:

Fig (14) Obfuscated macro-less DDE exploit

4. Experimental Results

Our analysis is being performed on 59 anti-virus and anti-
malware solution for saving space few results are omitted but
details of analysis can be found online*. Table 2 presenting the
detection result compare to different anti-virus and anti-malware
solution is given below:

Solution Detection Yes/No

Proposed Algorithm Yes

Ad-Aware No

AegisLab No

AhnLab-V3 No

ALYac No

Antiy-AVL No

Arcabit No

Avast No

Avast Mobile Security No

AVG No

Table (2) Result of comparative detection analysis of

developed algorithm and different software security software

VII. DISCUSSION

 The key factor of failure of other detection techniques

compare to our techniques is that other detection techniques

focus on signature and illegitimate behavior of processes that

are being executed. As shown above legitimate behavior of an

application can be used for malicious purposes. Similarly

signatures of malicious code can be obfuscated as well to avoid

detection. Our detection technique works completely different

in comparison to other techniques it tries to identify the chain

of processes that are being executed by a process and then co-

relate them for the identification of malicious processes in the

chain. Therefore it has the capability to detect those exploits

which are not detected by other available solutions.

 We believe that the algorithm complexity is not ideal and

there is a lot of room for improvement. But the approach which

the algorithm use is quite unique for detection of malicious

exploit chains. We intend to further refine the technique for

other detection like the detection malicious activates of user by

means of event correlation.

VIII. CONCLUSION AND FUTURE WROK

With the proposed detection technique we are able to identify

complex exploit chains. We assume that some complex user

administration automation scripts may cause false positives due

to their complex execution nature, but overall the detection

technique is satisfactory in detecting complex exploit chains.

A significant benefit of this technique is that it works

completely blindly, without any signature and behavior metrics.

In the future, we intent to further refine our technique to trace

the exploit chain when the process migrates to another process.

Furthermore we will perform our experiments in a large

network for identification of false positives in our detection

algorithm.

REFERENCES

[1] Pwn2own 2018 – Day Two Results and Master Of Pwn

https://www.zerodayinitiative.com/blog/2018/3/15/pwn2own-2018-day-
two-results-and-master-of-pwn Accessed 17 May 2018

[2] Srinivasan, Deepa, Zhi Wang, Xuxian Jiang, and Dongyan Xu. "Process
out-grafting: an efficient out-of-vm approach for fine-grained process
execution monitoring." In Proceedings of the 18th ACM conference on
Computer and communications security, pp. 363-374. ACM, 2011.

[3] Mandal, Debasish, and Yakun Zhang. THE GREAT ESCAPES OF
VMWARE: A RETROSPECTIVE CASE STUDY OF VMWARE
GUEST-TO-HOST ESCAPE VULNERABILITIES. PDF. London:
Blackhat, December, 2017.

[4] Sensepost

https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/
Accessed 17 May 2018

[5] Neumann, William C., Thomas E. Corby, and Gerald Allen Epps.
"System for secure computing using defense-in-depth architecture." U.S.
Patent 7,428,754, issued September 23, 2008.

[6] Win, Thu Yein, Huaglory Tianfield, and Quentin Mair. "Big data based
security analytics for protecting virtualized infrastructures in cloud
computing." IEEE Transactions on Big Data 4, no. 1 (2018): 11-25.

[7] Wang, Xiaoguang, Yong Qi, Zhi Wang, Yue Chen, and Yajin Zhou.
"Design and Implementation of SecPod, A Framework for Virtualization-
based Security Systems." IEEE Transactions on Dependable and Secure
Computing (2017).

[8] Ucci, Daniele, Leonardo Aniello, and Roberto Baldoni. "Survey on the
Usage of Machine Learning Techniques for Malware Analysis." arXiv
preprint arXiv:1710.08189 (2017).

[9] Hendler, Danny, Shay Kels, and Amir Rubin. "Detecting Malicious
PowerShell Commands using Deep Neural Networks." arXiv preprint
arXiv:1804.04177 (2018).

[10] Dosfuscation: Exploring the Depths Of Cmd.exe Obfuscation and
Detection Techniques « Dosfuscation: Exploring the Depths Of Cmd.exe
Obfuscation and Detection Techniques

https://www.zerodayinitiative.com/blog/2018/3/15/pwn2own-2018-day-two-results-and-master-of-pwn
https://www.zerodayinitiative.com/blog/2018/3/15/pwn2own-2018-day-two-results-and-master-of-pwn
https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/

Future of Information and Communications Conference (FICC) 2019

14-15 March 2019 | San Francisco

8 | P a g e

Daniel Bohannon - https://www.fireeye.com/blog/threat-
research/2018/03/dosfuscation-exploring-obfuscation-and-detection-
techniques.html Accessed 19 May 2018

[11] 4688(s) A New Process Has Been Created. (windows 10)

Mir0sh - https://docs.microsoft.com/en-us/windows/security/threat-
protection/auditing/event-4688 Accessed 19 May 2018

[12] URLhttps://www.blog.pythonlibrary.org/2010/07/27/pywin32-getting-
windows-event-logs/ Website TitleThe Mouse Vs. The Python Date
Accessed May 27, 2018

[13] Server Virtualization and Os Trends

Spiceworks, Inc -
https://community.spiceworks.com/networking/articles/2462-server-
virtualization-and-os-trends Accessed 24 May 2018

[14] Virtual Machine Escape

https://en.wikipedia.org/wiki/Virtual_machine_escape Accessed 17 May
2018

[15] Research Report Released: Detecting Lateral Movement Through
Tracking Event Logs (version 2)

https://blog.jpcert.or.jp/2017/12/research-report-released-detecting-
lateral-movement-through-tracking-event-logs-version-2.htm Accessed
17 May 2018

[16] Comsecuris/vgpu_shader_pocs

Comsecuris - https://github.com/Comsecuris/vgpu_shader_pocs
Accessed 18 May 2018

[17] 0patch Blog Luka Treiber -
http://blog.0patch.com/2017/10/micropatching-hypervisor-with-
running.html Accessed 18 May 2018

https://www.fireeye.com/blog/threat-research/2018/03/dosfuscation-exploring-obfuscation-and-detection-techniques.html
https://www.fireeye.com/blog/threat-research/2018/03/dosfuscation-exploring-obfuscation-and-detection-techniques.html
https://www.fireeye.com/blog/threat-research/2018/03/dosfuscation-exploring-obfuscation-and-detection-techniques.html
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4688
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4688
https://community.spiceworks.com/networking/articles/2462-server-virtualization-and-os-trends
https://community.spiceworks.com/networking/articles/2462-server-virtualization-and-os-trends
https://en.wikipedia.org/wiki/Virtual_machine_escape
https://blog.jpcert.or.jp/2017/12/research-report-released-detecting-lateral-movement-through-tracking-event-logs-version-2.htm
https://blog.jpcert.or.jp/2017/12/research-report-released-detecting-lateral-movement-through-tracking-event-logs-version-2.htm
https://github.com/Comsecuris/vgpu_shader_pocs
http://blog.0patch.com/2017/10/micropatching-hypervisor-with-running.html
http://blog.0patch.com/2017/10/micropatching-hypervisor-with-running.html

