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Abstract
This master thesis investigates the roll and pitch damping properties of a surface effect
ship with an air cushion that is divided into four separate cushion chambers. This new
four cushion solution makes it possible to generate a counteracting roll and pitch moment
by manipulating the pressure inside each of the cushion chambers.

Umoe Mandal has developed a mathematical model that is used to simulate the cush-
ion dynamics of a single cushion surface effect ship. In this thesis, the model is expanded
to express the cushion dynamics and cushion forces for a vessel with four cushions. In
addition, the existing model is altered to account for varying cushion chamber geometry
as a function of the heave, roll and pitch motion of the vessel. Some additional minor
changes are also made to the mathematical model with respect to the cushion air flow.
The mathematical model is implemented in MATLAB R©/Simulink R© and is combined with
a larger system used to simulate waves and the hydrodynamic forces acting on the vessel
hull. Two simple PID controllers are designed and applied for control of heave, roll and
pitch.

Towards the end of the project several model scale tests are performed in the NTNU
wave basin. The results from these tests confirm that the mathematical model acts as a
good approximation of the physical system. The data from these experiments also confirm
the efficacy of the roll and pitch damping capabilities of the split cushion SES. For the
wave basin tests simulating regular waves, the peak to peak roll angle is reduced by as
much as 76.7%. For irregular JONSWAP sea, the significant roll angle is reduced by as
much as 54.2% . For pitch damping, the same numbers are 66.8% and 49.8% damping re-
spectively. The results generated from the numerical simulations indicate that under more
ideal conditions, as much as 80-90% damping for both roll and pitch may be obtainable.

The model tests take place quite close to the thesis deadline, and further work should
include further analysis of the data from the scale model tests. With respect to the math-
ematical model, the initial results from the scale model tests indicate that further work
should include improving on the modeling of the cushion air flow, specifically the cushion
air leakage. Controlling the airflow within the cushion chambers is key to maintain a good
degree of motion control. For the physical implementation, the cushion separation walls
need to be retractable during transit. In addition, the separation walls must be designed to
minimize the air leakage from chamber to chamber during pitch and roll control. Though
the current solution provides very promising results, further work and improvement on this
design may produce even better results.
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Sammendrag
Denne masteroppgaven undersøker egenskapene for rull og trim demping til et overflat-
effektskip med en luftpute som er delt inn i fire separate putekamre. Denne nye putein-
ndelingen gjør det mulig å generere et motvirkende rull og trim moment ved å manipulere
trykket i hvert av putekamrene.

Umoe Mandal har utviklet en matematisk modell som kan brukes til å simulere pute
dynamikken for et overflateeffektskip med én luftpute. I denne oppgaven blir modellen
utvidet for å uttrykke pute dynamikken og å regne ut de tilhørende putekreftene for en
SES med fire luftputer. I tillegg blir den eksisterende modellen endret for å ta hensyn
til varierende putekammergeometri som en funksjon av hiv, rull og trim. Noen ekstra
endringer i den matematiske modellen gjøres med hensyn til luftstrømmen inn og ut av
putekammerene. Den matematiske modellen er implementert i MATLAB R©/Simulink R©

og innlemmes i et større system som brukes til å simulere bølger og de hydrodynamiske
kreftene som virker på fartøyets skrog. To enkle PID-kontrollere designes og anvendes for
kontroll av hiv, rull og trim.

Mot slutten av prosjektet utføres flere modellskalaforsøk i NTNU sitt bølgebasseng.
Resultatene fra disse testene brukes til å verifisere nøyaktigheten til den matematiske mod-
ellen. Dataene som samles fra disse testene bekrefter at den matematiske modellen fun-
gerer som en god tilnærming av det fysiske systemet. Dataene fra disse forsøkene bekrefter
også at rull- og trimdemping egenskapene til en SES med fire putekammer er betraktelige.
For bølgebassengtestene med regulære bølger reduseres rullbevegelsen med opp til 76,7%.
For irregulær JONSWAP sjø reduseres den signifikante rullevinkelen med så mye som
54,2%. For trimdemping er de tilsvarende tallene henholdsvis 66,8% og 49,8%. Resul-
tater generert fra de numeriske simuleringene indikerer at under mer ideelle forhold kan
så mye som 80-90% demping av rull og trim være oppnåelig.

Modeltestene utføres ganske nær avhandlingsfristen og videre arbeid burde derfor om-
fatte en dypere analyse av dataene fra modellskalatestene. Med hensyn på den matem-
atiske modellen indikerer resultatene fra skalamodelltestene at videre arbeid burde om-
fatte en forbedring av modelleringen av luftstrømmen ut av putene, spesielt med tanke på
luftlekkasje. Kontroll av luftstrømmen inn og ut av putekamrene er kritisk for å oppret-
tholde god kontroll over bevegelsene til skipet. For en fysisk implementering i fullskala
må veggene som inndeler luftputekammerene være mulige å trekke tilbake når skipet skal
forflytte seg. Samtidig må veggene som inndeler luftputekammerene være utformet for
å minimere luftlekkasjen fra kammer til kammer når kontroll av rull og trim er ønsket.
Den nåværende løsningen gir svært lovende resultater, men videre arbeid og forbedring av
denne inndelingen vil trolig kunne gi enda bedre resultater.
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Preface
The objective of this master thesis is to develop a mathematical model of a split cushion
SES, design a control system, and investigate the roll and pitch damping properties. Fur-
thermore, a scale model experiment is carried out to verify the validity of the model and
damping properties of the vessel. A large portion of this thesis has gone into creation and
implementation of the mathematical model. The complete SES-sim model is large and
complex, and troubleshooting in both new and existing parts of the model has shown to be
quite tedious work. A big thanks is owed to Umoe Mandal for letting me work on their
existing model, providing me with documentation and for the close cooperation and help
they have provided.

In addition to the mathematical modeling, the scale model testing as well as analysis
and presentation of the gathered data has been long and painstaking work. The model
has a lot of moving parts and from the testing an immense amount of data was gathered.
Initially, the goal was to do a rudimentary analysis of the scale model data, and a simple
comparison with the mathematical model. However, as the hours went by, the rabbit hole
grew deeper, and it eventually became clear that a swift analysis of the data would neither
become a good nor an accurate analysis. To maintain the accuracy and truthfulness of the
conclusions drawn through the analysis of the scale model data, the analysis contains a lot
of caveats and has become more entangled and convoluted than initially intended.

A big thanks is owed to my supervisor, associate professor Vahid Hassani, for suggest-
ing this thesis for me. Thanks for all your good suggestions and help. In stressing periods
of the thesis work, taking a chat with you would invariably be calming and reassuring.

Finally, a special thanks is owed to Dr. Øyvind Auestad at Umoe Mandal for his role
as a sparring partner and mentor. Thanks for always being available, for all the good tips
and ideas, and for all the time and effort you have dedicated to me and my work through
the span of this thesis.
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Chapter 1
Introduction

The modern surface effect ship can be described as a hybrid between a catamaran and
hovercraft. The hull of a SES is formed like the hull of a catamaran except the bow and
stern is sealed off. Figure 1.1 gives an illustration of a SES cross-section as seen from
the side. The purpose of this special shape, is to create a volume in which the air will be
trapped and the flow of air can be controlled. This volume is referred to as the cushion
chamber, where as the air inside the volume is referred to as the air cushion. This cushion
allows the vessel to glide on the layer of air, rather than floating due to the displacement
of the hull like conventional vessels. The design brings a few benefits such as reduction in
drag, improved ride comfort and added flexibility with respect to heave motions.

Figure 1.1: Cross section of a SES. Illustration by Umoe Mandal.
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Chapter 1. Introduction

The new SES design proposed in this thesis is to further divide the cushion into four
air chambers. This introduce the ability to perform roll and pitch control on a SES. Doing
so, one can add the pitch and roll control to the list of benefits. Due to the low drag
and improved ride comfort of the SES, most SES-vessels are high-speed vessels. The
drawback with the cushion solution is that the seals in the front and aft of the vessel suffer
a lot of wear and tear and can cause additional drag during transit. Depending on use and
the transit velocities of the vessel, these seals will need replacement approximately every
4-5000 engine hours.

This thesis will present modeling and control of a surface effect ship with its air cush-
ion divided into four chambers. The thesis will focus on the mathematical modeling and
control but also highlight some of the thoughts and considerations that has gone into the
split cushion design. The geometrical, and control system, design is experimentally model-
tested at the NTNU Ocean Basin. The data gathered from these tests will be used to in-
vestigate the validity of the mathematical model, and will serve as further verification of
the multi-cushion SES design. This project is done in collaboration with Umoe Mandal,
and is building on some of their previous work. At project start, Umoe Mandal has pro-
vided a Simulink model of a vessel operating with a single cushion. The work at hand is
to become familiar with their current model, and expand it to incorporate a multi-cushion
design. The thesis will also include several improvements and additions to the simulation
model. Finally, the model is verified by comparison to the experimental results.

Two papers based on this thesis are also submitted to CAMS191, [Haukeland et al.
2019a] and [Haukeland et al. 2019b]. The papers are condensed versions of the main work
presented in this thesis. The papers can be found in appendix E.1 and E.2.

1.1 Motivation

The rough seas surrounding offshore structures such as oil platforms, oil-rigs and wind tur-
bines provide a challenge for both crew transport and offshore structure inspections. The
use of surface effect ships has emerged as a competitive alternative to helicopter transport,
proving high levels of safety, comfort, fuel efficiency and overall reduced cost of offshore
logistics, [Mandal 2018]. The main challenge for personnel transfer to an offshore asset
is the safety for the crew and ride comfort at high transit speeds. Motion control provides
the solution to these challenges, and contributes to an expand of the operational window
for marine vessels in harsh weather conditions.

1.2 Existing motion control

The existing systems for motion damping can be divided into passive and active systems.
Passive systems aim only to remove energy from the motion, and can in essence be viewed
as motion resistance. Active systems add energy to the system in counter phase to the
motions, in order to counteract the movement.

1The 12th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles. KAIST,
Daejeon, Korea, 18th to 20th September 2019.
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1.2 Existing motion control

1.2.1 Roll damping
There exist several types of systems for roll damping. The damping of roll movements is
highly relevant for all manned vessels traveling in the open sea. Some examples for the
most used roll damping systems are:

• Bilge keel (passive) is a cheap and effective device for roll damping. The bilge
keel normally stretches 25-50% of the length of a ship, with a depth of 1-3% of the
ship width, [Pettersen 2007]. Though these dimensions will vary pending on the
specific nature of the vessel. Most mono-hulls, regardless of size, are equipped with
a form of bilge keel. Other alternatives similar to the bilge keel are fin keels and
ballast keels. An illustration of the bilge keel can be seen in Figure 1.2. According
to Rawson and Tupper [2001], bilge keels will provide an approximate 35% roll
reduction. The drawback of the bilge keel is that it increases the drag resistance of
the vessel. Though this is not substantial for large slow-going vessels, for smaller
high-speed vessels such as a SES, the drag will be significant and undesired.

• Stabilizing fins (active) acts in the same way as the wings of an airplane. While
the vessel has a forward momentum, the fins can rotate to vary the generated lift.
With proper control, the fins will create a counter moment to the wave induced roll
motion. However in low speeds, traditional stabilizing fins have a small damping
effect. According to Rawson and Tupper [2001], active fin stabilization can reduce
the roll motion as much as 90%.

• Active and passive roll tanks are tanks fitted into a vessel for reducing roll move-
ment. Passive roll tanks, such as u-tube tanks and free surface tanks work by letting
water flow from one side of the ship to the other as the vessel rolls. By careful
design, the roll moment induced by the water flow can be in counter phase to the
roll motion of the vessel, and will generate a damping moment. Alternatively, it
can be designed to pass water at a frequency lower than the vessels natural rolling
frequency to damp out that resonance. Roll tanks are somewhat space consuming
and are generally only used for larger vessels.

• Massive gyroscope (active) provides a stabilizing moment via production of torque.
Gyroscope stabilizers work for stationary vessels, but can only produce a limited
amount of stabilizing moment. They are also quite heavy and costly in comparison
to most of the options listed above.

1.2.2 Pitch damping
Systems for pitch damping are much less widespread than for roll. This is because pitch
motions are generally harder to control [Smith and Thomas 1990]. The pitch motions
are exited over a large range of frequencies, and as the vessel is much longer than it is
wide, pitch motion generate a very large moment, which are therefore harder to counteract.
However, some systems are designed for pitch control such as:

• Anti-pitching fins (passive) have the same mechanism for generating force as the
anti-rolling fins. Instead of being placed around the vessel center of gravity, the

3



Chapter 1. Introduction

Figure 1.2: Bilge keel in the back. Stabilizing fins in the front

fins are placed at the aft or rear end of the ship. Therefore, when the fins generate
lift, they also induce a pitch moment. According to Reguram et al. [2016], the anti-
pitching fins can contribute to a 58-80% reduction in pitch motion. The drawback of
the anti-pitching fins is that they create an increased drag, and like the rolling fins,
they require the vessel to be moving in order to generate any lift.

• Anti-pitching tanks (active) work by the same principle as the active rolling tanks.
They are not nearly as widely used as the anti-rolling tanks, but companies such as
Marine Roll & Pitch Control, [MRPC 2019], do provide a solution for anti-pitching
tanks. The major drawback of such tanks is that the large moment generated by the
pitching motion require large amounts of water, transferred a long distance from aft
to bow to counteract the motion. This is both energy consuming, space consuming
and can be technically challenging to implement.

1.3 Existing SES cushion control systems
In recent years much has happened on motion control for the surface effect ship. Vamråk
et al. [2016] proposed a method for lateral control. Auestad et al. [2014] proposed a system
for stationary motion compensation. And Tønnessen et al. [2018] investigated the effect of
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1.3 Existing SES cushion control systems

roll damping on a SES with a lateral split cushion. Perhaps the two most important systems
for SES cushion control that are the Ride Control System (RCS) and the Boarding Control
System (BCS). Both of these systems are currently in use on several full-scale vessels.

• The Ride Control System was first featured in Kaplan and Davis [1978], and has
since been further developed by Sørensen and Egeland [1995]. The purpose of the
system is to create a more smooth ride at high transit velocities. The system pro-
vides active damping of vertical motions by manipulating and reducing the cushion
pressure fluctuations caused by the encountered sea-wave, non-spatial and spatial
varying cushion pressure resonances.

• The Boarding Control System is presented in Auestad et al. [2015]. The main
use of the boarding control system is to reduce the movements of the vessel bow,
so that it is possible to secure safer transfer from the ship to offshore structures,
specifically, offshore wind-turbines. See Figure 1.3. The boarding control system
relies on manipulating the pressure of the single cushion to counteract wave induce
vertical motions at the location of an accelerometer.

These examples of manipulating the cushion pressure as a way of controlling the vessel
motions have proven to be of essence in the day-to-day operation. As such, they provide a
good basis and motivation for further development within motion control on a SES.

Figure 1.3: An Umoe Mandal vessel used for crew transport and boarding to an offshore wind
turbine. Illustration by Umoe Mandal.

5



Chapter 1. Introduction

Figure 1.4: Concept sketch of a ses crew transfer vessel. Illustration by Umoe Mandal.

1.4 The vessel
This section will cover most of the relevant descriptions and data for the vessel in question.
Physical implementations for many of the things discussed and described here can be seen
in the next section 1.5. The hypothetical full-scale vessel that will be discussed in this
thesis is a 38m long, 200-ton vessel shown in Figure 1.4. The simulation performed in this
thesis does not represent such a full-scale commercial vessel, but is instead a generic SES,
inspired by the design shown in Figure 1.4. The simulation data generated in this thesis
will therefore not represent the performance of any Umoe Mandal vessels.

1.4.1 Cushions

The purpose of the thesis is to investigate the properties and possible advantages and dis-
advantages of a four-chamber solution. As the starting point is a one-chamber solution,
the first task is to divide the cushion chamber into four separate sections. These four
cushion-chambers are separated longitudinally and laterally to provide both roll and pitch
control.

Mono cushion chamber

The design at project start consists of a single cushion. This cushion is contained within
the side-hull of the vessel, as well as the front fingers of and the aft bag. This is illustrated
in Figure 1.1. The fingers consist of a bendable reinforced rubber material that will move
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1.4 The vessel

with the water surface and elevation of the craft. This ensures minimal air-leakage from
the cushion, while the vessel can operate at semi-cushioned mode, without the bow acting
as a plow in the water. The aft separation of the cushion chamber is called the bag. As the
name suggests, this is an inflated bag, holding a slightly higher pressure than that of the
cushion itself. This ensures minimal air leakage, while also allowing the bag move in tact
with the motion of the water surface to ensure low drag.

Multi cushion division

The multiple cushion solution is simply an extension of the single-cushion solution. The
cushion volume encasement as expressed for the single cushion solution remains un-
changed, but is additionally divided into four chambers. As the vessel needs to maintain its
high speed properties, the cushion dividers must be created in a way that does not obstruct
or cause unnecessary drag during the high speed modes for the vessel. A couple of dif-
ferent solutions to this problem have been discussed. Completely solid, retractable, walls
would be ideal with regards to inter-cushion leakage. However, due to structural compli-
cations, this idea has been discarded. The solution the the cushion division problem, is
the combination of a solid wall and pressurized, inflatable bags. The solid wall is placed
longitudinally, stretching from aft to bow, covering the height from the top of the cushion
chamber, also known as the wetdeck, and approximately half way down towards the water
surface. The remaining distance is separated by an inflatable cushion. Figures 1.10 and
1.10 illustrate this implementation for the scale-model.

The lateral dividers consist solely of inflatable bags. These bags are pressurized with
a substantially higher pressure than the pressure in the surrounding chambers to make the
separators stiff enough so that the cushion pressure does not equalize between the cham-
bers. The height of the lateral dividers has been a discussion These are perpendicular to
the direction of movement and will cause substantial drag if they come in contact with
the water during transit. Ultimately, the decision fell on making them stretch all the way
from the wetdeck, to the bottom of the cushion, also known as the baseline. The reasoning
behind this decision is that a shorter separation wall will possibly cause more air leakage
from one chamber to another. This is further addressed in section 2.10.2.

The placement of the longitudinally divider is naturally centered at the middle of the
vessel. The lateral cushion dividers are placed at the position where the single-cushion
center of pressure is when the cushions hold the equilibrium pressure of p0. Because of
this, there is a small distance from the center of gravity to the lateral chamber dividers.
This means that large pitch angles theoretically can contribute to leakage between aft and
stern cushions. Leakage between these cushions would mitigate any pitch stabilization
originating from a pressure differential between the front and aft cushions. This would in
turn increase the pitch angle, and thus further increase the cushion leakage. This is yet
another reason for the lateral cushion dividers to cover the entire height from wetdeck to
baseline. For the remainder of this thesis, the separated cushions will be numbered and
referred to as illustrated in Figure 1.5.
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Figure 1.5: The cushion separation and numbering as seen from above.

1.4.2 Cushion air flow
The air flow in and out of the cushions are controlled via lift fans and ventilation valves.
Each cushion has its own lift fan and ventilation valve. Furthermore, as can be seen in
Figure 1.1, an additional fan is used to inflate the aft bag. For the four chamber solution,
yet one more fan will be used to inflate the bags separating the cushion chambers. While
the lift fans take in air from the atmosphere, the fan inflating the rear seal, as well as the fan
inflating the separation walls will use pressurized air from the cushions. This will reduce
the differential pressure, so that smaller fans can be applied. Figure 1.6 illustrates the cross
section of a surface effect ship as seen from behind. Note that the water column inside the
cushions is lower than that on the outside due to the cushion pressure. This will be further
addressed in chapter 2.

Figure 1.6: Cross section of a SES from behind. Illustration by Faltinsen [2005]

8



1.5 The model-scaled vessel

1.5 The model-scaled vessel

This section contains descriptions and illustrations of the scale model which used for
model testing in the NTNU wave basin, see Figure 1.7.

Figure 1.7: Model-testing at the NTNU wave basin

1.5.1 Instrumentation

Actuation

The actuation and control of roll, pitch and heave motions of the model is through the
use of lift fans and the ventilation valves. These actuators respectively provide airflow,
into and out from, the air cushions. All actuators dimensions and properties are carefully
scaled so that they represent the full-scale design.
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Chapter 1. Introduction

Figure 1.8: Model setup in the NTNU ship towing tank.

• Lift fans: Four lift fans are mounted to the top of the model, one for each cushion.
The lift fans run at a fixed speed. Having a variable speed setup is not favorable since
the full-scale design is not suited for rapid speed variations on such short periods as
the wave period (4-10s).

• Separation and bag fan: For the model test, the separation fan, which is responsi-
ble for inflating the transverse and longitudinal separation bags, does not receive air
from the cushion chambers. Again, this is to reduce the complexity of the model,
and number of moving parts. Unlike the separation fan, the bag fan, which is used
to inflate the aft cushion seal, does gather air from the rear cushion chambers. As
with the lift fans, both of these fans are fixed to an appropriate flow rate.

• Ventilation louvers: The air leakage through the ventilation valves are actuated by
controllable louvers. The actuation of the ventilation valve louvers is designed to
be very fast, so that no notable delay will be introduced into the control. Unlike the
fans, the varying louver positions will constitute the mode of control for the model,
meaning that their position is in no way fixed. The picture in Figure 1.9 shows one
of the model ventilation valve with its louvers fully opened.
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1.5 The model-scaled vessel

Figure 1.9: Fully open ventilation valve.

Data capture

The model data is registered and captured by several different instruments, many of which
create redundancies to ensure that no data is lost. Most important for our system is

• Accelerometers register the accelerations in surge, sway and heave. They provide
the base for calculating the heave velocity which are used for control feedback dur-
ing heave control.

• The gyroscopes register the angular velocity for roll, pitch and yaw. This data is the
base for calculating the roll and pitch angles. The gyroscope data will also be used
as the control feedback for roll and pitch control.

• The OQUS system is a camera system used to capture position and orientation in 6
degrees of freedom. Several cameras recognize and track the relative movements of
several silver spheres, which are highlighted in the picture above in Figure 1.8. By
combining the tracked paths of these spheres, the position and angles of the vessel
can be calculated. The OQUS system is used when evaluating vessel motions.

• Pressure sensors are used to measure the pressure of both the insides the cushions,
and inside the different bags used for sealing the cushion chambers.

• The potentiometer captures the actual louver position of each of the ventilation
valves.
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1.5.2 Scaling
As the model is designed by Umoe Mandal and manifactured by Sintef Ocean, model-
scaling will not be discussed in depth here. However it is important to note that the di-
mensions of the vessel and the model is scaled by 9:1. In other words, the length of the
model is 4.22 meters, while the full-scale vessel is 38 meters. The scaling of time for the
model-scale against the full-scale is given as

√
9 : 1. Meaning that time runs three times

faster in the model basin. Table 1.1 lists the scaling factors for some of the most relevant
parameters. The last three scaling factors in the table are especially important with respect
to the control and signal filtering for the scaled model.

Table 1.1: Parameter scaling, model : full-scale

Unit Scaling factor
Length [m] 1 : 9
Area [m2] 1 : 92

Pressure [Pa] 1 : 92

Force [N] 1 : 93

Moment [Nm] 1 : 94

Weight [Kg] 1 : 93

Time [s] 3 : 1
Heave rate, η̇3 [m/s] 1 : 3
Pitch angle, η5 [deg] 1 : 1
Pitch rate, η̇5 [deg/s] 3 : 1

1.5.3 Cushion seals and separation walls
As briefly mentioned in sections 1.4.1 and 2.10.2, the cushion chambers are divided by the
use of inflatable bags. Figure 1.10 is a picture taken from the underside of the model during
assembly. The picture displays how the separation walls look when they are pressurized.

The picture in Figure 1.11 is taken from inside one of the cushion chambers, and shows
the center separation bag connected to the center separation wall, as explained in section
1.4.1.
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1.5 The model-scaled vessel

Figure 1.10: Underside of model. Bow skirt (front), transverse separation bag (back).

Figure 1.11: The inside of a cushion chamber.
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1.6 Model testing
The model testing takes place in two stages.

Test round 1 - February 2019

The first round of model testing takes place in February 2019 in the NTNU ship towing
tank. The goal for this round of testing is to register pitch control during transit. For this
thesis we are focused on control at zero or low velocities. Therefore only a small amount
of data from the first round of testing is evaluated in this thesis.

Test round 2 - May 2019

The second round of model testing took place at the NTNU ocean basin in late May 2019.
The goal here was to evaluate and verify the efficiency of the four cushion solution while
performing roll, pitch and heave damping. Unfortunately these test are completed quite
close to the deadline for this project, and as such, only a limited time can be devoted to
post-testing data analysis. Figure 1.12 is a picture taken of the model during the second
round of testing in the NTNU ocean basin.

Figure 1.12: Picture from the second round of testing in the NTNU ocean basin.

1.7 Presentations of results
At the request of Umoe Mandal, and to ensure the preservation of intellectual property
rights, all results regarding metrics such as pressures, volume flow, distances and angles
will be normalized. This entails that the y-axis on all graphs will be set at a value of
approximately -1 to 1 instead of the actual values. Though the scaling for each metrics is
different, the scale will be consistent through the paper, so that different graphs and results
may be compared to each other. Furthermore, all pressures are scaled following the same
constant, such that the different cushion pressures can be compared. Roll and pitch angles
will be scaled after different constants and are not 1 to 1.
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Chapter 2
Mathematical model

The purpose of the mathematical model is to model the physical interaction between the
vessel and its relevant surroundings as accurately as possible. This is achieved by express-
ing the known physical interactions through equations. Upon completion, the model is
simulated by calculating the equations in iterations. For the mathematical model to be a
good approximation of the real system, the provided equations must represent the physical
system as closely as possible. An effort has been made to make the mathematical model
presented below as general as possible with respect to the cushions. In other words, ide-
ally, the model can be applied to vessels using either one, two or four cushions by only
making minor input changes in the vessel specifications. Some aspects of this flexibility
in the model is incomplete and untested though most equations given below will be gener-
alized.

The mathematical model that will be developed in this chapter, will be implemented
in the programs Matlab and Simulink. These programs will also be used for simulations
of the model. A layout of the Simulink block diagram covering the vessel dynamics can
be seen in appendix C, and a simplified block diagram of the system structure can be seen
in Figure 2.8. For the equations in this chapter, unless it is specified otherwise, subscript i
will refer to cushion numbering. Here i = {1, 2, 3, 4} refers to the cushions following the
cushion numbering illustration in Figure 1.5.

2.1 Contribution of the thesis
This thesis contributes with new mathematical modelling of a SES and expanding the
current single cushion model provided by Umoe Mandal into a four cushion model. In
addition to this, the sub-chapters 2.3, 2.4, 2.5 and 2.6 are the original work of this thesis.
The air cushion flow in chapter 2.10 has also been further developed to include inter-
cushion air leakage, leakage as a function of varying sea elevation and modified leakage
to account for non-linear compressible air flow. The subsequent sub-chapters, which deals
with process- and control-plant modelling, will also include these contributions.
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Chapter 2. Mathematical model

2.2 Equations of motion
The motions of the vessel are calculated using newtons second law, F = m × a. In the
Matlab/Simulink model, the conversion from forces acting on the ship to the corresponding
motions are mostly handled by the Marine Systems Simulator (MSS) by Fossen and Perez
[2004], with some alterations made by Umoe Mandal. Therefore, the mathematical model
that is created here, will only have to compute the forces acting on the vessel which are
related to the cushions. The coordinate system for the vessel is illustrated in Figure 2.1. In
the implementation of the mathematical model, all three coordinate systems are utilized.
For this thesis, only the body fixed frame, {b} will be used.

The origin of the coordinate frames, Ob and On, are located on the center-line, on the
water surface, and on the longitudinal center of gravity.

Figure 2.1: Coordinate system {b} is used for the mathematical model. Illustration by Umoe Man-
dal.

Considering 6 degrees of freedom (DOF) and non-linear motion, the equations of mo-
tion using a body-fixed coordinate system becomes as stated in equation (2.1). The equa-
tion is collected from Sørensen [2012].

Mν̇ +CRB(ν)ν +CA(νr)νr +D(νr) +G(η) = Στ (2.1)

Here, η̇ = ν, where ν denotes the velocities of the vessel and thus η represents the
position and orientation of the vessel. Since we consider motion in six degrees of freedom,
η is a matrix with six entries. The first three entries of η are translations along the x, y
an z-axes, which are referred to as surge, sway and heave, respectively. The last three
entries of η are rotations around the x, y and z-axes, and are referred to as roll, pitch and
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2.3 Variable cushion length

yaw. Combined, these 6 translations and rotations are denoted as η1 through η6, respec-
tively. Furthermore, the term Mν̇ expresses the generalized inertial forces. The term
CRB(ν)ν +CA(νr)νr expresses the Coriolis and centripetal forces of the vessel. These
forces can be disregarded as they are not relevant to the case of our vessel which will be
regarded as stationary for the scope of this thesis. D(νr) and G(η) are the generalized
damping forces and the generalized restoring forces. The excitation forces acting on the
vessel are noted as τ . For this model, τ c will signify the force originating from the cush-
ions. τ e denote the excitation forces, which for this project will be synonymous with the
wave excitation forces.

2.3 Variable cushion length
In the simulation model provided by Umoe Mandal, the cushion chambers are modeled
as a square right-angled volumes. However, due to the angle of the front skirt and the aft
bag, this is not completely accurate. Figure 2.2 attempts to illustrate how the length of
each chamber will vary with the water-level inside the chamber, and hence with the heave,
pitch and roll of the vessel. The red line represents an imagined chamber separation wall,
while the green and blue lines illustrate the different chamber lengths when the water-level
inside the cushion reaches the wet-deck, and when the cushion chamber is completely free
of water. As the length of the cushion changes, the area of pressure against the water
changes. The pressure force of each cushion can be as described in equation (2.2).

Fi = Acipui (2.2)

Figure 2.2: Cross section of a SES. Length of chambers varies. Illustration by Umoe Mandal.

As stated in the introduction to the mathematical model, i denotes chambers 1 through
4 in equation (2.2). The cushion force from each chamber is dependent on the area of
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the water inside the cushion, and thus it will change as the length of the cushion changes.
Furthermore, the center of pressure in the ship longitudinal direction, noted xcp, will scale
with the length of the cushion chamber. From equation (2.3), it can be seen that the
moment in pitch acting on the vessel will have a non-linear dependence on the length of
the cushion, due to both Ac(i) and xcp(i) depending on the changing cushion length.

F5(i) = xcp(i)Ac(i)Pc(i) (2.3)

For previous models without the lateral cushion chamber divider, modeling the cushion
as a square chamber might have been an adequate approximation. However, when dividing
the chamber laterally, the change in the cushion pressure surface and center of pressure
will especially affect the pitch control of the vessel. For these reasons, it has been opted to
include the variable cushion length in this model of the vessel dynamics.

2.4 Cushion geometry
Each cushion chamber is modeled as a volume enclosed by 5 planes. Four of the planes
represent the surrounding hull and cushion walls, while the fifth plane represents the water
surface. The five planes enclosing an arbitrary chamber are illustrated in Figure 2.3. Here,
the areasA1 throughA4 can be seen as the hull and cushion walls, while areaA5 illustrates
the water plane. In order to generalize the equations to be applicable to both one and
four cushions, both the aft and forward cushion walls must be modeled as non-vertical
planes. That is, the areas A3 and A4 must be able to represent the aft bag and bow fingers,
respectively. The fifth plane, representing the water surface, will be heaved and tilted
corresponding to the heave, roll-angle and pitch-angle of the craft. The mathematical
expression for each of these planes are shown in equations (2.4) through (2.8).

A1; y = y1 (2.4)
A2; y = y2 (2.5)

A3; x = x2 +
x1 − x2
z1 − z2

(z − z1) (2.6)

A4; x = x4 +
x3 − x4
z1 − z2

(z − z1) (2.7)

A5; z = −η3 − y sin(η4) + x sin(η5)− (z2 + h0) (2.8)

The notations used on x, y and z are visualized in Figure 2.4. The term h0 in equa-
tion (2.8) is added to account for the water displaced in the cushion due to the cushion
pressure. This water displacement effect is better illustrated in Figure 1.6, and can be ex-
pressed mathematically as given in equation (2.9). The heave level of the vessel should
be be relative to the initial heave position, given at initial cushion pressure p0. Thus hinit
is added to offset the heave position from the baseline of the vessel to the initial heave
position, relative to the vessel center of gravity. The term hinit can then be expressed as
hinit = CoGz − T , where T is the draught of the vessel at p0, and CoGz is the height
of the center of gravity for the vessel. The initial pressure p0 is further addressed and
explained in chapter 2.8.
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2.5 Pressure area

Figure 2.3: Illustration of planes/areas enclosing an arbitrary cushion chamber. Points of intersec-
tion between the planes are noted P1 through P4.

h0i =
p0i
gρw

(2.9)

In the equation above, p0i is the initial pressure in cushion i. Furthermore, ρw is the
density of the saltwater, and g is the gravitational constant.
The points of intersection, where three of the planes enclosing the chamber meet, are
calculated as points P1, P2, P3 and P4. The placements of these points are illustrated in
Figure 2.3.

Figure 2.4: Definition of constants x, y and z for an arbitrary cushion chamber.

2.5 Pressure area
The area of the water surface in each chamber is calculated by dividing the chamber into
two or four triangles, by drawing a line between points P2 and P4. Figure 2.5 helps to
illustrate this, and shows how the water area can be divided. The height of each triangle is
found through equations (2.10) to (2.14). The surface area in each chamber then becomes
the combined area of the triangles.
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di =
P1 − P4

||P1 − P4||
(2.10)

v = P2 − P4 (2.11)

t = v · d (2.12)

Pp = P4 + t× d (2.13)

h = ||Pp − P2|| (2.14)

Here the d becomes the direction vector of the line from P4 to P1. v is the vector from
P4 to P2. Calculating the dot product of this vector and the directional vector, gives the
distance t, between P4 and the projection of P2 on the line from P4 to P1. Then Pp is the
imagined point on the line P4 to P1, where a perpendicular line on P4P1 will go through
point P2. Finally the distance from the imagined point Pp to P2, and thus the height of the
triangle, is the variable h.

Due to the roll and yaw angles of the vessel, the water area can be decomposed into
three areas, Ax, projected onto the y-z-plane, Ay , projected onto x-z-plane and Az , pro-
jected onto the the x-y-plane. Each of these areas will contribute to pressure forces acting
on the vessel. Ax and Az are calculated following equation (2.15) and (2.16). Ay can
be calculated using equation (2.22), solving this equation becomes a bit more convoluted,
and is further explained in chapter 2.6.

Ax = (P1y − P2y)(z1 −
1

2
(P1z + P2z))− (P4y − P3y)(z1 −

1

2
(P1z + P2z)) (2.15)

Az = (
1

2
(P4x + P3x)− 1

2
(P1x + P2x))(P1y − P2y) (2.16)

In the equations above, the subscripts such as P1x and P2y denote the x-coordinates of
point 1, and the y-coordinates of point 2, respectively.

2.5.1 Center of pressure
The water area inside the cushion can be viewed as illustrated in Figure 2.5. The center of
pressure in x-direction, xcp(t), is calculated as

xcp(t) =

4∑
i=1

Aci(t)(
1
3xri(t) + xcgi(t))

At(t)
. (2.17)

HereAi is the area of the triangle shown in Figure 2.5, and xcgi(t) is the corresponding
distance from the center of gravity to the right angle of the triangle. xri(t) is the distance
from the right angle of the triangle to the corner of each triangle. Because of the angle
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of the front skirt and aft bag, roll angles will also change the center of pressure in the y-
direction, ycp(t). This center of pressure is calculated the same manner as xcp(t), so that
ycp(t) can be expressed as

ycp(t) =

4∑
i=1

Aci(t)(
1
3yri(t) + ycgi(t))

At(t)
. (2.18)

Figure 2.5: Possible shape of water area inside a cushion, as seen from above

2.6 Cushion volume

The traditional way of modelling the air cushion volume (Sørensen 1993) is given accord-
ing to

V (t) = −V0(t) +Ac(t)(−η3(t)− ycp(t)η4(t) + xcp(t)η5(t)). (2.19)

Here V0i is the chamber volume occupied by waves entering or exiting the cushion
chamber. Aci is the surface area of water inside the cushion, and η3(t), η4(t) and η5(t) are
the heave, roll and pitch of the vessel, respectively. Due to the change in the geometry of
the cushion chamber, equation (2.19) can no longer be used to calculate the new cushion
volumes. With the new cushion geometry, the total volume of each of the cushions can
be seen as a 3-dimensional trapezoid. As only the front and aft walls of the chamber are
dependent on the spatial coordinates, and their dependence is linear, the total volume of
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the cushion can be calculated as the average of the top area and the bottom area, multiplied
with the height of the cushion. This is formulated in in equation (2.20).

VTi =
(AT +AB)

2
(z1 − z2) (2.20)

The volume of the water inside a cushion can be calculated as

Vwi(t) =

∫ y1

y0

Ay(y)dy. (2.21)

Here Ay(y) represents the cross section area of the cushion in the x-z-plane that is
under water, moving from y1 to y2. As y becomes a function of time, so does Vwi(t).
To simplify and shorten the equations a little, y(t) will be shortened to only y for the
remainder of this chapter. Ay(y) can be split into two areas, a trapezoid, and a triangle.
Figure 2.6 illustrates these areas. The total area Ay(y) can be expressed as shown in
equation (2.22).

Figure 2.6: Cross section underwater area divided into ATra and ATri

Ayi(y) = L̄Trai (y)HTra
i (y) +

1

2
LTrii (y)HTri

i (y) (2.22)

In equation (2.22), L̄Trai (y) is the average length of the trapezoid, and HTra
i is the

height. These both vary with y as the length and height of the trapezoid varies with the
distance from point P4 to P3. Hence L̄Trai (y) can be described as in equation (2.23)
and HTra

i can be described as in equation (2.24). Furthermore, LTrii (y) and HTri
i (y) is

the length and height of the triangle, respectively. These are also functions of y as the
height and length of the triangle vary with the changing position from P1 to P2 and P4 to
P3. As all the functions of y here are linear, the water volume inside the cushion can be
analytically computed and solved as a 3’rd degree equation. This will contribute to reduce
the simulation time relative to a numerical approximation.

L̄Trai (y) = ATraxi +BTraxi y (2.23)

HTra
i (y) = ATrazi +BTrazi y (2.24)
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2.7 Wave volume and wave volume pumping

LTrii (y) = ATrixi +BTrixi y (2.25)

HTri
i (y) = ATrizi +BTrizi y (2.26)

The equations for the constants A and B used in equations (2.23) to (2.26) are too long
to write here, and can be seen in Appendix B in equations (A.1) to (A.8). Following the
equations stated above, the water volume inside the cushions can be written as

Vwi =

∫ y1

y0

(Ai +Biy + Ciy
2)dy, (2.27)

where the constants Ai, Bi and Ci are calculated following equations (2.28) through
(2.30).

Ai = ATraxi ATrazi +
1

2
ATrixi A

Tri
zi (2.28)

Bi = ATraxi BTrazi +ATrazi BTraxi +
1

2
(ATrixi B

Tri
zi +ATrizi B

Tri
xi ) (2.29)

Ci = BTraxi BTrazi +
1

2
BTrixi B

Tri
zi (2.30)

The cushion volume change, V̇ci , can be calculated by differentiating the formula for
the cushion volume given in equation (2.19). The equation then becomes

V̇ci(t) = Aci(t)(−ν3(t)− ycpi(t)ν4(t) + xcpi(t)ν5(t))− V̇0i(t), (2.31)

where V̇0i(t) is the wave volume pumping. The wave volume pumping is further explained
in chapter 2.8. Furthermore, ν3(t) is the heave velocity, while ν4(t) and ν5(t) is the roll
and pitch-rate. Note that integrating the V̇ci(t) from the equation given in (2.31) will lead
to a minor error, as the area, Aci(t), is not constant over the distance of ν(t)∆t. Since the
simulations will run at 200Hz, the error thatAci(t) introduces is very small. Also, the error
is not cumulative as V̇ci(t) is not integrated to calculate the cushion volume. Therefore it
is assumed that this approximation should not cause any significant deviations from the
accurate solution.

2.7 Wave volume and wave volume pumping
Wave volume pumping is the rate of volume change due to waves passing through the
cushion chambers. The wave volume pumping is calculated according to equation (2.32).
The volume that the wave occupies inside the cushion can be described as in equation
(2.33). These equations are inspired by Auestad [2015], as well as Sørensen and Egeland
[1995].

V̇0i(t) =

∫ y2i

y1i

∫ L2i

L1i

ζ̇(x, y, t)dA (2.32)
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V0i(t) =

∫ y2i

y1i

∫ L2i

L1i

ζ(x, y, t)dA (2.33)

In these equations y1i and y2i constitute the width of cushion i, while L1i to L2i

constitutes the length of cushion i, measured at the current water-level. If the vessel holds
a roll angle, the length of the cushion will be dependent on the y-coordinate, due to the
shape of the cushion chambers. This is simplified here, so that the length L1i to L2i are
taken as an average of the front and aft corner x-positions of the cushion. Thus L1i and
L2i are given as shown in (2.34) and (2.35). This approximation is believed to be close
enough to the real solution as to not cause any significant error.

L1i =
1

2
(P1x + P2x) (2.34)

L2i =
1

2
(P3x + P4x) (2.35)

Finally, in equation (2.32), ζ(x, y, t) is the function expressing the wave elevation at
position x and y, at time t. This wave elevation can be described as given in equation
(2.36), which is gathered from Perez [2005].

ζ(x, y, t) = ζ̄ sin

(
ωt+ ε− k(x cos(χ) + y sin(χ)

)
(2.36)

ζ̇(x, y, t) = ζ̄ω cos

(
ωt+ ε− k(x cos(χ) + y sin(χ)

)
(2.37)

In the equations above, ζ̄ is the wave amplitude, ω is the circular wave frequency, and
k is the wave number, which can be expressed as k = 2π

λ , where λ is the wave length.
Furthermore, ε is the phase of the wave, and the term x cos(χ) + y sin(χ) expresses the
direction of the wave propagation relative to the vessel body-frame.
Differentiating equation (2.36), provides equation (2.37), which is used to calculate the
wave volume pumping in equation (2.32). The wave elevation and corresponding wave-
forces acting on the vessel, outside of the cushion pressure, will be modeled using the
Marine Systems Simulator created by Fossen and Perez [2004], and will not be further
elaborated on here.

2.8 Linearized cushion pressure dynamics
This sub-chapter is greatly inspired by the work done in Sørensen and Egeland [1995] and
Auestad [2015]. Furthermore, the equations for the pressure dynamics of the cushions are
based on equations derived in Sørensen and Egeland [1995] and Auestad [2015].
The linear pressure is considered to be uniform within each cushion chamber. The pressure
in each chamber is denoted pci and is calculated as

pci(t) = pa + pui(t). (2.38)
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2.8 Linearized cushion pressure dynamics

Here pa is the atmospheric pressure, while pui(t) is the uniform excess pressure. As
discussed in the previous chapters, the cushion volume will vary with the elevation of the
water surface, and the heave, pitch and roll of the vessel. When the vessel is in equilib-
rium, meaning it has no movement, the excess pressure pui should equal the equilibrium
pressure, p0i . The excess pressure can be written in a non-dimensional form, as µu, where

µui(t) =
pui(t)− p0

p0
(2.39)

The pressure p0 is considered to be the same for all cushions. As the vessel is initially
designed with a single cushion solution, and the walls of the cushions are considered thin,
assuming equal p0 for all cushions is reasonable. The interaction between the geometry,
volume, air leakage, wave volume pumping of the cushions and the movements of the
vessel can be expressed as shown in equation (2.40).

K1i µ̇ui(t)+K3µui(t) + ρc0Aci η̇3(t)

+ρc0Aciycpi η̇4(t)− ρc0Acixcpi η̇5(t)

= K2i∆A
ctrl
2i (t) + ρc0V̇0i(t)

(2.40)

As explained in chapter 2.5, both the centers of pressure, xcpi(t) and ycpi(t), as well
as the cushion area, Aci(t), are dependent on the heave, roll and pitch of the vessel and
thus are functions of time. Note that these three variables are not seen as functions of time
in this equation. As the the equation is a linear approximation, these values must remain
constant in time for the equation to remain linear. Thus, the Aci used here is the average
cushion area, found as

Aci =
Aci(ztop) +Aci(zbot)

2
. (2.41)

The time invariant xcpi and ycpi can still be calculated from equations (2.17) and
(2.18), only inputting the constant, time-invariant area calculated in (2.41), instead of
Ai(t). Note that as the equation is a linearization, it is only valid for small changes in
angle, and small changes in pressure around the point of the linearization, which is set at
p0.
The calculations of the constants K1i , K2i and K3i are based on equations derived in
Sørensen and Egeland [1995] and Auestad [2015], and are given as shown below.

K1i =
ρc0(z1 − z2)

γ(1 + pa
p0

)
(ATopci +ABotci )

1

2
(2.42)

K2i = ρc0cni

√
2p0
ρa

(2.43)

K3 = ρc0

q∑
j=1

(
Q0j

2
− p0

∂Q

∂p

∣∣∣∣
0j

)
(2.44)

Here ρa is the density of the air collected from the atmosphere, at the atmospheric
pressure pa. Similarly, p0 and ρ0 is the cushion equilibrium pressure and corresponding
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air density, while γ is the ratio of specific heat for air. The term (z1−z2)×(ATopci +ABotci ) 1
2

is an expression for the total volume of the cushion. Q0j is the air flow rate at the fore-
mentioned equilibrium pressure, while ∂Q

∂p |0j is the corresponding linearized fan slope
around the equilibrium point for fan number j. Finally, cn is the leakage coefficient,
which is dependent on the shape of the leakage area. V̇0i(t) is the wave volume pumping,
which is explained in chapter 2.7.

2.9 Non-linear cushion pressure dynamics
The non-linear cushion pressure dynamics is an integral part of the model, and will be
derived and explained in this sub-chapter. The non-linear pressure dynamics equations are
in inspired by Sørensen and Egeland [1995]. These equations are partly by the work done
by Umoe Mandal as implemented part of the model at model take-over. Some assump-
tions regarding the linearization of the air flow, and spatial variations in pressure vary from
Sørensen and Egeland [1995], leading to a few changes to these equations. Further, the
equations are adapted to the current model, such that it includes the four cushion solution.
Another change to these equations is the correction of a minor error with regards to the
pressure-density relation in the cushions, which existed in the current model for one cush-
ion from Umoe Mandal. This correction is highlighted in the derivation below.

The basis for the non-linear pressure dynamics is the equation for continuity of mass
flow and the relation between pressure and density, shown in equations (2.45) and (2.52)
respectively.

ṁini − ṁouti =
d

dt
(ρci(t)Vci(t) (2.45)

In equation (2.45), the left part can be stated as shown below.

ṁini − ṁouti = ρa(Qinj (t)−Qoutj (t)) (2.46)

By completing the differentiation on the right-hand side in equation (2.45), and substi-
tuting the left side with (2.46), we get equation (2.47).

ρa(Qinj (t)−Qoutj (t)) = ρ̇ci(t)Vci(t) + ρci(t)V̇ci(t) (2.47)

Here Vci(t) and V̇ci(t) is the chamber air volume and its rate of change, as calculated
in chapter 2.6. Qj is the air flow caused by fan j, while ρa and ρci are the respective
air-densities in the atmosphere and the cushion.

In the software implementation provided at project start, the pressure-density relation-
ship inside the cushions were stated as

ρci(t) = ρa

(
pa + pui(t)

pa + p0

)1
γ
, (2.48)

which was discovered to be erroneous.
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2.10 Cushion air flow

Provided the assumption of an adiabatic pressure-density relationship, the first law
of thermodynamics, δU + δW = δQ = 0, can be used to derive the pressure-volume
relationship as

P

P0
=

(
V0
V

)γ
. (2.49)

Here γ is the ratio of specific heat for air. Since there is no loss of mass from the
volumes V0 to V , the volume-density relationship between the two spaces can be written
as

V0
V

=
ρ

ρ0
. (2.50)

The pressure-density relationship then becomes

ρ = ρ0

(
P

P0

) 1
γ

. (2.51)

As we are interested in the pressure differential from the atmosphere to the cushion, the
values for the cushion and atmospheric pressure and density are substituted into equation
(2.51). The equation relevant for our system then becomes as shown in equation (2.52), as
opposed to the previously used equation given in (2.48).

ρci(t) = ρa

(
pa + pui(t)

pa

)1
γ

(2.52)

Differentiating equation (2.52) with respect to time, provides the expression for ρ̇ci(t)
as

ρ̇ci(t) =
ρa

p
1
γ
a γ

(pa + pui(t))
1−γ
γ ṗui(t). (2.53)

By combining equations (2.47), (2.52) and (2.53), the final equation expressing the
non-linear cushion pressure can be obtained as

ṗui(t) =
γ(pa + pui(t))

Vci(t)

((
pa

pa + pui(t)

) 1
γ

(Qinj (t)−Qoutj (t))− V̇ci(t)
)
. (2.54)

2.10 Cushion air flow

The amount of air inside the cushions is determined by the rate of the influx of air against
the rate of loss inside the cushion. Varying the air-flow in and out of the cushion is the
only way to exert control over the system, and will be explained in detail in the next sub-
chapters.
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2.10.1 Cushion air gain
The flow of air into the cushions are caused by fans. The volumetric flow rate produced
by each of these fans, can be described as

Qini =
si

smax
Q∗i . (2.55)

Here Q∗i is the flow of the fan for cushion i which is set by the fan characteristics. si and
smax is the current and maximum fan rotation speed. The pressure generated by the lift
fan is given as p = ( si

smax
)2p∗i , where the specific fan pressure p∗i can be substituted with

pui . The flow characteristics Q∗i and the implementation of equation 2.55 are provided by
Umoe Mandal, and is left unchanged in this project.

2.10.2 Cushion air loss, leakage
Airflow out of the cushions is called air leakage. There are two types of leakage to con-
sider, passive leakage and controlled leakage. Controlled air leakage is the airflow that
exits out of the controlled ventilation valves at the sides of the cushion chambers. The
passive leakage is the uncontrolled leakage that occurs when air is forced out from under
the sides of the cushion chambers, or leaves the chamber in any way that is not controlled
or intentional. The amount of air leakage is dependent on the leakage area and the cushion
pressure. The total leakage area ALi(t) can be expressed as

ALi(t) = Api(t) +Actrli (t), (2.56)

where Api(t) is the passive leakage area, and Actrl(t) is the controlled leakage area. All
the controlled leakage will occur from cushion to atmosphere, while the total passive cush-
ion leakage can be expressed as

Api(t) = Aapi(t) +Acpi(t). (2.57)

Here the superscripts a and c denotes the cushion to atmosphere leakage area, and the
cushion to cushion leakage area respectively. We wish to create and expression for the air
flow out of the cushions. According to White [2015], the volumetric flow rate is defined
as

Q = vA = vALcn (2.58)

where v is the velocity of the fluid, whileA is the cross-sectional area. Due to the geometry
of the leakage area some flow reduction will occur, such that A = ALcn, where AL is the
leakage area, and cn is a orifice coefficient for the leakage area. The volumetric flow
determining the rate of the influx and the leakage of air in the cushion can be derived by
starting with eulers equation

dp

ρ
+ vdv + gdz = 0. (2.59)

An expression for Bernoullis principle can be found by integrating the expression above.
We wish to derive an expression for a compressible fluid, and assume an adiabatic pressure-
density relationship, such that

p

ργ
= C −→ 1

ρ
=
C

1
γ

p
1
γ

. (2.60)
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2.10 Cushion air flow

The Bernoulli equation for an adiabatic, compressible flow can be derived by inserting the
right side expression of (2.60) into (2.59) and completing the integration. The first term in
(2.59) can then be written as∫

C
1
γ

p
1
γ

dp+

∫
vdv +

∫
gdz = C1, (2.61)

where ∫
C

1
γ

p
1
γ

dp = C
1
γ

γ

γ − 1
p
γ−1
γ =

p
1
γ

ρ

γ

γ − 1
p
γ−1
γ . (2.62)

Shortening the expression found in (2.62), the integrated density over pressure can be
written as ∫

C
1
γ

p
1
γ

dp =

(
γ

γ − 1

)
p

ρ
. (2.63)

Inserting the expression in the equation above into (2.61), and assuming none, or negligible
elevation change, the simplified Bernoulli equation for adiabatic compressible flow can be
written as (

γ

γ − 1

)
pci(t)

ρci(t)
+

1

2
v2i =

(
γ

γ − 1

)
pa
ρa

+
1

2
v2a. (2.64)

From this, an expression for the air velocity can be derived. We assume no initial air-
velocity in the chambers, such that vi = 0. Further, we assume that all excess pressure in
the ventilated air from a cushion is converted to air-velocity upon release. Thus equation
(2.64) can be rearranged to express the velocity, as shown in equation (2.65).

va(t) =

√
2

(
γ

γ − 1

)(
pci(t)

ρci(t)
− pa
ρa

)
(2.65)

The pressure inside the cushion is described as

pci(t) = pa + pui(t), (2.66)

where pci is the total cushion pressure, which can be split into the atmospheric pressure pa
and the uniform cushion pressure pui . By inserting this expression for pci(t) into (2.65)
and combining with equation (2.58), we get a final expression describing the volumetric
flow from cushion to atmosphere as

Qi(t) = Aa(t)

√
2

(
γ

γ − 1

)(
pui(t) + pa

ρc(t)
− pa
ρa

)
. (2.67)

HereAa(t) represents an arbitrary leakage area from cushion to atmosphere, which can be
substituted to account for the relevant leakage flow.
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Controlled leakage

The controlled leakage area can be expressed as

Actrli (t) = Actrlimax

Actrlimin%
+ (1−Actrlimin%

)ui(t)

100
. (2.68)

Here Actrlimax
is the leakage area at maximum vent valve opening. Actrlimin%

is the lowest
possible area of the vent valve opening, given as a percentage of the maximum vent valve
opening. Finally u(t)i is the control input signal, for the opening of the vent valves. The
controlled volume flow out of louver i can then be expressed as

Qctrli (t) = Actrli (t)cvvni

√
2

(
γ

γ − 1

)(
pui(t) + pa

ρc(t)
− pa
ρa

)
, (2.69)

where cvvni is the orifice coefficient for the ventilation valves.

Passive leakage

The passive leakage area is calculated as the sum of any area that occurs under the hull,
fingers or bag of the vessel that is lifted out of the water.

Figure 2.7: Leakage area for cushion chamber i. Blue area illustrates the water plane, red area
shows the corresponding passive leakage area.

The passive leakage area can be further divided into inter-cushion leakage, and atmo-
spheric leakage. As mentioned in chapter 1.4.1, the cushion dividers were selected to cover
the entire distance from wetdeck to baseline in order to minimize the inter-cushion leakage
area. To calculate the passive leakage area for a chamber, the bottom edge of each wall
surrounding a chamber divided into ten points. At each of these points, the height from
the water to the draft at the given point is calculated following equation (2.70). Figure 2.7
attempts to better illustrate this division and the corresponding leak height. If the height
calculated by (2.70) is negative, leakage occurs.
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2.10 Cushion air flow

HLijk(t) = −T − η3(t)− yijk(t)η4(t) + xijk(t)η5(t) + hpi(t)− ζijk(t) (2.70)

In the equation above, HLijk(t) is the height of point k on line j for cushion i, relative
to the water plane. T is the draught of the vessel at the initial heave position, η3 = 0.
Furthermore yijk(t) and xijk(t) is the distance from the center of gravity to point ijk. The
first four terms in (2.70) are a part of the leakage height for the single-cushion solution at
project start. For the new model, the term hpi(t) is added to account for the lower water-
level in the cushion due to the over-pressure inside the cushion. The effect of hp(t) is
further illustrated in Figure 1.6, and can be expressed as

hp(t) =
pu(t)

gρw
. (2.71)

Finally, the term ζijk(t) is added to account for the sea elevation at the relative position of
point ijk. This elevation can be expressed as

ζijk(t) =
∑
n

(
ζan sin(ωnt− κn(xijk cos(χn) + yijk sin(χn)) + εn)

)
. (2.72)

Most terms in equation (2.72) are previously addressed and explained in chapter 2.7.
Note that in the equation above, the letter k is used as a subscript, therefore the letter κ is
used to denote the wave number. For an irregular seastate, the specific wave elevation at
a point will be the sum of many different regular waves. The elevation for each of these
regular waves are expressed as previously explained in equation (2.36). Therefore, the
total wave elevation at point ijk, becomes the sum of the elevation from every regular
wave at the given time and the given position of the point. The position of point ijk is
expressed by xijk and yijk. Finally, εn represents the phase of regular wave number n.
The leakage area from cushion to atmosphere and cushion to cushion, for each cushion,
can ultimately be calculated as

Aapi(t) =

2∑
ja=1

(
HLija

(t)

10∑
k=1

(∆xijak + ∆yijak)

)
, (2.73)

and

Acpi(t) =
2∑

jc=1

(
HLijc

(t)

10∑
k=1

(∆xijck + ∆yijck)

)
. (2.74)

Here, subscript jc signifies the walls that separate cushions, and subscript ja signifies the
walls j which separate cushion and atmosphere. The volumetric flow rate from cushion
to atmosphere is found by inserting the atmospheric leakage area, Aapi(t)c

p
ni into Aa in

equation (2.67), where cpni is the orifice coefficient for the passive leakage area.

To find the volumetric flow rate for the inter-cushion leakage, we assume that the
pressure in cushion i is higher than the pressure in cushion j. Like before, we also assume
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no initial air-velocity in i, and that all pressure differential between cushions i and j is
converted to air-velocity when the air enters cushion chamber j. By also assuming an
adiabatic pressure density relationship, the expression formed for vj in equation (2.65)
can be applied. The volumetric air-flow between cushions can be expressed by substituting
the areas, pressures and densities in equation (2.69), with the relevant values for the two
cushions affected by the leak. The cushion air density ρci can be calculated from the
expression derived in equation (2.52).

Qi(t) = Acpi(t)c
p
ni

√
2γ

γ − 1

(
pci(t)

ρci(t)
−
pcj (t)

ρcj (t)

)
(2.75)

Equation (2.75) expresses the air flow out from cushion i, due to leakage into cushion
j. There is no loss of mass in the exchange, meaning that the corresponding air-flow out
from cushion j is the same as the air flow expressed in (2.75), but with a negative sign.
Note that if the cushion pressure is reversed, that is cushion j holds a higher pressure than
cushion i, the i and j subscripts in equation (2.75) are switched. Also note that the cushion
separating walls are considered solid, such that no air can pass though them. However, as
best illustrated by the pictures in chapter 1.5, they are in practice inflatable bags. Because
of this, it is believed that a certain amount of leakage between the cushions might occur.
To account for this, a static or height varying leakage area can be set as a parameter input
in the model. This parameter will have to be found empirically from the scale-model data.

2.11 Cushion forces

The cushion forces can be divided into linear and non-linear forces, which are used for the
control plant model and the process plant model, respectively. These two models will be
further explained in the next chapters, 2.13 and 2.12.

2.11.1 Non-linear cushion forces

The forces generated by the cushions and their resulting pressure can be calculated fol-
lowing as F = p× A. In similar fashion, the moments generated by the cushion pressure
is calculated as M = dcp × p× A. Here dcp represents the xcp and ycp distance from the
center of pressure from the center of gravity as calculated in chapter 2.5.1. Summarizing
the force and moments induced by each of the cushions, we get the total forces and mo-
ments acting on the vessel caused by the cushion pressure. The expression for these forces
and moments can be seen below in equations (2.76) to (2.78).
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F3c(t) =

4∑
i=1

−p0µui(t)Azi(t) (2.76)

M4c(t) =

4∑
i=1

−ycpi(t)p0µui(t)Azi(t) (2.77)

M5c(t) =

4∑
i=1

xcpi(t)p0µui(t)Azi(t) (2.78)

Note that because the positive z-direction is defined as down, and a positive pressure
will cause a force working upwards, the heave force, F3c(t) and the roll moment, M4c(t)
will have negative signs. Since both the pressure area, Azi(t), the distance to the center of
pressure, x− and ycpi(t) and the non-dimensional pressure, p0µui(t) are all functions of
time, the corresponding forces will not be linear. Furthermore, the calculation of the pres-
sure used in these equations is done following the equation shown in (2.54), which means
that p0µui(t) is not linear either. For simplicity, only the force in heave, and the resulting
moments caused by force in the z-direction, that is roll and pitch, will be considered.

As an addition to the existing model at project start, we also wish to include the com-
ponents from forces acting on the vessel via the ventilation of cushion pressure. Following
Newton’s third law of motion, every action has an equal and opposite reaction. As the
pressurized air escapes out from the ventilation valves in the cushions, an equal and oppo-
site force caused by the velocity and mass of the escaping air, will act on the vessel. This
force can be calculated as F = ρaA

ctrlv2a, where Actrl is the controlled leakage area of
the chamber, and v is the velocity of the air. Note that v can also be written as Q

A , as these
are the units that have mainly been used through the modeling. The corresponding forces
acting on the vessel from this effect can then be written as

M4Q(t) =−
3∑
i=2

zcaiρai(t)
Q2
outi(t)

Actrli (t)
+

∑
i={1,4}

zcaiρai(t)
Q2
outi(t)

Actrli (t)
, (2.79)

Here Qouti is the volume flow out of the cushion, where only the controlled leakage
is considered. The passive leakage is anticipated to be small enough to be disregarded in
this context. In the equation above, zcai is the distance from the vessel center of gravity
to the center of area for the cushion ventilation valve, Actrl. An expression for ρci has
already been derived, and can be found in equation (2.53). This ventilation of air will also
cause substantial forces in sway and yaw, which are not considered here. The combined
resulting non-linear forces acting on the vessel can be state on vector form as

τ combined = τ c + τQ (2.80)

where τ is a matrix represented as
τ = [F1, F2, F3,M4,M5,M6]T , with the corresponding subscripts of c and Q.
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2.11.2 Linear cushion forces
To create equations for cushion forces that are linear, the area and center of pressure in
equations (2.76) through (2.78) will have to be constant. Thus the cushion area is cal-
culated as shown in equation (2.41), with the centers of pressure calculated by equations
(2.17) and (2.18) with the average area as input. Furthermore, the pressure must be linear,
as expressed by equation (2.66) and discussed in chapter 2.8. Using these time-invariant,
constant expressions for Azi , xcpi and ycpi , as well as the linear non-dimensional pressure
p0µui , the linear forces can be expressed as in the equations below.

F3c(t) =

4∑
i=1

−p0µui(t)Azi (2.81)

M4c(t) =

4∑
i=1

−ycpip0µui(t)Azi (2.82)

M5c(t) =

4∑
i=1

xcpip0µui(t)Azi (2.83)

2.12 Control plant model
The control plant model is the model of the vessel that any controller and observer will
relate to. This is a simplified model, which is both fast to compute, and fairly accurate.
The equations of motion regarding the control plant model can be stated as a mass-spring-
damper system for each of the degrees of freedom, as is discussed in chapter 2.2. For this
thesis, the relevant degrees of freedom are heave, roll and pitch. Thus these movements
can be modeled as shown in equations (2.84), (2.85) and (2.86).

(m+A33)η̈3(t) +B33η̇3 + C33η3 + Fc3(t) = F e3 (t) (2.84)

(I44 +A44)η̈4(t) +B44η̇4 + C44η4 +Mc4(t) = Me
4 (t) (2.85)

(I55 +A55)η̈5(t) +B55η̇3 + C55η5 +Mc5(t) = Me
5 (t) (2.86)

Here, F e3 (t), Me
4 (t) and Me

5 (t) are excitation forces and moments caused by waves and
other external forces. The forces an moments noted with subscript c, are cushion forces
and moments acting on the vessel. The equations for these are derived and listed in (2.81),
(2.82) and (2.83). The constant m represents the vessel mass. The constants A, B and C
represents the hydrodynamic added mass, the potential damping and restoring coefficient
for the mass-spring-damper motion of the vessel. Their subscripts 3, 4 and 5 denote the
movements in heave, roll and pitch, respectively. A double subscript of i.e. 44 means that
the constant contributes to a roll force, due to a roll acceleration, velocity or position. We
assume that none of these forces are coupled, meaning that only subscripts 33, 44 and 55
are required. Finally in the equations above, the inertia governing the roll and pitch motion
of the vessel is given as I . The values for these A, B and C constants have been computed
in ShipX and Veres, and are provided by Umoe Mandal.
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2.12 Control plant model

2.12.1 State space representation

The equations of motion can be expressed in the linear time-invariant state-space form
shown in (2.87) and (2.88).

ẋ(t) = Ax(t) +Bu(t) +Eω(t) (2.87)
y(t) = Cx(t) (2.88)

Here, x(t) is the state vector, which represents the relevant degrees of freedom of the
vessel. The representation of the vector x(t) is listed in the table below. u(t) is the control
input, which will be further discussed in chapter 3. ω(t) is the disturbance vector, which
comprises of external forces and disturbances. y(t) is the output vector, and holds the
values for any measured states such as data from accelerometers or gyros. The value for
the matricesA,B,E andC can be found in appendix A. Note that theK-constants in the
A,B and E matrices have subscripts first denoting which constant it is, with reference to
equations (2.42) through (2.44), while the second number is the reference to the cushion
number, i.e. K23 is the constant K2 for cushion 3.

States x(t)
Number Description Symbol
x1(t) Heave position η3
x2(t) Roll angle η4
x3(t) Pitch angle η5
x4(t) Heave velocity η̇3
x5(t) Roll velocity η̇4
x6(t) Pitch velocity η̇5
x7(t) Non-dim. pressure, chamber 1 µu1

x8(t) Non-dim. pressure, chamber 2 µu2

x9(t) Non-dim. pressure, chamber 3 µu3

x10(t) Non-dim. pressure, chamber 4 µu4

States y(t)
Number Description Symbol
y1(t) Roll angle η4
y2(t) Pitch angle η5
y3(t) Heave velocity η̇3
y4(t) Roll velocity η̇4
y5(t) Pitch velocity η̇5
y6(t) Pressure, chamber 1 pc4
y7(t) Pressure, chamber 2 pc4
y8(t) Pressure, chamber 3 pc4
y9(t) Pressure, chamber 4 pc4
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States ω(t)
Number Description Symbol
ω1(t) Heave force F e3
ω2(t) Roll moment Me

4

ω3(t) Pitch moment Me
4

ω4(t) Diff. volume chamber 1 V̇1
ω5(t) Diff. volume chamber 2 V̇2
ω6(t) Diff. volume chamber 3 V̇3
ω7(t) Diff. volume chamber 4 V̇4

2.13 Process plant model
The process plant model is the model that is used to calculate the actual movements of the
vessel. This model does not have the same requirements for simplicity and computational
speed as the control plant model does. This is because the process plant model will not
have to be computed in real-time for the real vessel, but rather is intended to express the
physical world of and around the real vessel.

Figure 2.8: Diagram of the SES-sim model structure

As previously mentioned in chapter 2.2, the simulated movements of the vessel is
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largely handled by the MSS library, created by Fossen and Perez [2004]. Thus only the
forces induced by the cushions of the vessel have to be calculated. These forces are the
non-linear forces and moments explained in chapter 2.11.1, calculated from equations
(2.76), (2.77) and (2.78). As described in chapter 2.11.1, these forces are a product of
the non-linear cushion pressure, as well as the time variant cushion areas and centers of
pressure. Thus they are the closest representation of the real physical world. The math-
ematical model derived in the chapter above is implemented in MATLAB R©/Simulink R©.
The equations governing the SES-cushion dynamics and the corresponding forces are in-
tegrated into a larger system referred to as SES-sim. An illustration of the structure of
this system is given in Figure 2.8. The orange blocks are taken from the Marine System
Simulator (MSS), created by Fossen and Perez [2004], which contain a few additions and
changes by Umoe Mandal. The blue square contains a simplified overview of the different
equations which are derived in the chapters above and gathered into modules.

2.14 Noise
To emulate realistic testing conditions, noise is added to the output states. Generally, the
measurement noise can be divided into two components:

• Sensor noise: the small fluctuations in the measurement, when no motion is present.
The sensor noise can be seen when the vessel is off cushion and without movement
in still water. Assuming that the sensors are the same for full scale and model scale,
this component of the noise will not have to be scaled for the full scale model.

• Process noise: noise caused by the operation of the SES. The process noise is as-
sumed to constitute the main component of the feedback noise. Pumps, louver actu-
ators, escaping air from the cushions and general pressure fluctuations are assumed
to be the main causes for the process noise. These phenomenons create vibrations
which propagate in the hull and are picked up by the sensors. This component of the
noise is scale dependent, and has be to scaled from model scale to full scale. Thus it
will provide the same challenges for both the model-scale and the full-scale system.

For the mathematical model, the noise is modeled as Gaussian white noise. The mag-
nitude of both the sensor noise and the process noise is determined from the scale-model
tests. There is some uncertainty bound to the scaling the process noise for the ’full-scale’
mathematical model from the model-scale testing. The noise should be proportional to the
respective undisturbed signal, i.e. according to table 1.1, the full-scale gyroscope noise
for roll and pitch rate should be one third of the model scale noise. However, the sensor
noise is mainly due to vibrations and motions in the hull. These vibrations and motions
can be said to be 9 times larger for the full-scale from a 1:9 scale model. Depending on
the workings of the relevant gyroscope, this could result in larger angular disturbances,
even though the angle is a non-scaling dimension. Ultimately, the noise has been scaled
as to attempt to have the same impact on the ’full-scale’ mathematical model as for the
model-scale tests. I.e. during the physical model testing, the gains for the controller were
limited by the feedback noise. We wish to scale the noise, such that the same limitations
will arise for the full-scale model given the same, model scaled, controller gains.

37



Chapter 3
Filter and controller design

Two simple PID-controllers are designed to control the heave, pitch and roll of the vessel.
The control law for a PID-controller can be stated as

u(t) = −Kx(t) + β. (3.1)

Here u(t) is the controller output. This output is a vector containing four values,
which for the mathematical model translates to the ventilation valve opening of each of
the cushions. A controller output of a 100 reads 100% opening on the vent valve, and
thus a minimization of the cushion pressure. The constant K is called the gain matrix,
and x(t) is the state vector as expressed in chapter 2.12.1. Equations (3.2) and (3.3) show
the general structure of the u(t) vector and the K matrix. Finally, β is a constant vector
signifying the bias of the ventilation valve louvers. The bias essentially states how much
lift the vessel should have when no feedback is present.

u(t) =
[
u1(t) u2(t) u3(t) u4(t)

]T
(3.2)

K =
[
KI KP KD

]
(3.3)

In the equation above the KI , KP and KD matrices specify the integrator gains,
the proportional gains, and the derivative gains, respectively. Each of these matrices hold
a value for the gain for each cushion, for each degree of freedom. I.e the KI-matrix can
be expressed as

KI =


KIh KIr KIp
KIh −KIr KIp
KIh −KIr −KIp
KIh KIr −KIp

 (3.4)

where subscripts h, r and p denote heave, roll and pitch, respectively. The general form of
the full K-matrix can be seen in equation (3.5). The negative and positive signs in front
of each gain in theK-matrix in this equation is dependent on which direction the force or
moment generated by the cushion affects the specific degree of freedom. I.e. for roll, a
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positive roll angle should be counteracted by deflating cushions 2 and 3. This means that
the valves for cushion 2 and 3 must open, u2 and u3 must increase. Following equation
(3.1), this means that theK-gains for cushion 2 and 3 in roll become negative. Depending
on which states we want to control, the structures of K and x(t) might be altered and
simplified.

K =


KIh KIr KIp KPh KPr KPp KDh KDr KDp

KIh −KIr KIp KPh −KPr KPp KDh −KDr KDp

KIh −KIr −KIp KPh −KPr −KPp KDh −KDr −KDp

KIh KIr −KIp KPh KPr −KPp KDh KDr −KDp


(3.5)

3.1 Controller 1 - Roll, pitch PD controller
We wish to create a PD-position controller to dampen the vessel roll and pitch motions.
The control law for this controller is on the form stated in equation (3.1). The controller
bias is fixed at β = 55.5. The gains for the controller is found through aid of the Linear
Quadratic Regulator (LQR) optimization. The LQR is a regulator created with the goal of
optimizing the amount of control exerted on the system with respect to the resource cost
of the control. The cost of control is given by a quadratic function. The goal becomes to
minimize the cost function given in equation (3.6) with respect to the control input, u(t).

JLQR =

∫ 0

∞
[x(t)TQx(t) + u(t)TRu(t) + 2x(t)TNu(t)]dt (3.6)

This minimization is found when the control law u(t) = −Kx(t) is used, where
K = R−1(BTP +N). The P -matrix is determined from the solution to the algebraic
Ricatti equation that is shown in equation (3.7). The matrices Q and R can be seen as
the weight of a state and the weight of a control input to the cost function, respectively.
In other words, large values in the Q-matrix will penalize error in the states more, and
the LQR will spend more resources to correct the error. On the other hand, large values
in the R-matrix will penalize the cost of control for correcting the errors, and the LQR
will allow more error in the states. The relative difference between the Q and R matrices
determine whether or not the controller uses cheap or expensive control. A large R is
called expensive control strategy and small values forR is a called cheap control strategy.
Note that the control law is the same as the control law for any PID controller. Thus, the
LQR optimization can be seen as a simplified and more efficient way of tuning the gains
of this controller.

(ATP + PA+Q− (PB +N)R−1(BTP +NT )) = 0 (3.7)

Creating an LQR in Matlab is simply done by using the built in command lqr, which
uses theA,B,Q andRmatrices as input to find the minimal solution to the cost function
in equation 3.6 and outputs the optimal controller gain,K. Through some experimenting,
the optimal values forR and aQ are found. R is set as an otherwise empty, diagonal 4x4
matrix with the values of 10−4 in the diagonal. Q is a 10x10 matrix, which only has any
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values in the diagonal at the roll and pitch angle and the roll and pitch velocity. As these are
the only states we desire to control they are also the only states we wish to penalize error
in. These full matrices can be seen in equations (3.9) and (3.8). The matlab-computed
LQR gains then become as listed in equation (3.10).

R =


10−4 0 0 0

0 10−4 0 0
0 0 10−4 0
0 0 0 10−4

 (3.8)

Q =



0 0 0 0 0 0 0 0 0 0
0 1500 0 0 0 0 0 0 0 0
0 0 3000 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2000 0 0 0 0 0
0 0 0 0 0 3000 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


(3.9)

K =
3× 180

π


0 10.45 13.41 0 13.07 14.21 0 0 0 0
0 −10.45 13.41 0 −13.07 14.21 0 0 0 0
0 −10.63 −16.85 0 −13.32 −17.86 0 0 0 0
0 10.63 −16.85 0 13.32 −17.86 0 0 0 0

 (3.10)

The term 3×180
π is placed outside of the matrix to make a comparison with the gains for

the scale-model easier.
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3.2 Controller 2 - Heave, roll, pitch damping
This controller is a pure position damping controller, meaning thatKI = 0 andKP = 0,
and that only the velocity states, x4, x5 and x6 are relevant. This controller is applied
during the scale model experiments. The gains for the controller are selected in real-
time, during the scale model experiments. Because of this, a simple controller design is
beneficial. The damping gains are symmetric, meaning that they are the same for each
cushion, with the signs for the gains of each cushion varying as expressed in 3, and shown
in (3.5). The non-zero part of the gain matrixK then becomes

K =


KDh KDr KDp

KDh −KDr KDp

KDh −KDr −KDp

KDh KDr −KDp

 (3.11)

The damping gains for heave, KDh vary from 0, meaning no active control, to 200 for
the scale model experiments. The damping gains for roll and pitch, KDr and KDp, vary
from 0 to 6 and 0 to 9 for the model scale, respectively. Since the gains are tuned in real
time during the wave basin experiments, they vary from test to test. When this controller
is applied to the numerical model, the gains are scaled after table 1.1. In addition, the roll
and pitch gains are multiplied by 180/π to convert from an input in degrees to an input in
radians. The complete K-gain matrix for a test with heave, roll and pitch control might
then look like

K =
3× 180

π


0 0 0 200 π

9×180 6 9 0 0 0 0

0 0 0 200 π
9×180 −6 9 0 0 0 0

0 0 0 200 π
9×180 −6 −9 0 0 0 0

0 0 0 200 π
9×180 6 −9 0 0 0 0

 . (3.12)

For the scale model experiments, the terms 3×180
π and π

9×180 would be excluded, as these
are scaling terms.
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3.3 Stability of the closed loop system
An unstable system can easily lead to unexpected and undesired responses. For physical
systems, such responses can easily produce dangerous and harmful situations. Thus, pro-
viding a stability proof for the controlled system gives an assurance that the controlled
system will only act in a certain way, namely converging towards the equilibrium states of
x0 = 0.

3.3.1 Stability of unperturbed system
The unperturbed closed loop system, that is Eω(t) = 0, can be said to be exponentially
stable around x0 if the closed loop system matrix, Acl is Hurwitz. This means that all
the eigenvalues of Acl have strictly negative real parts, i.e R(λi) < 0. By inserting the
expression of our chosen controller in (3.1) into the unperturbed state space representation
of our system in (2.87), the closed loop system can be expressed as

ẋ(t) = Ax(t)−BKx(t) +Bβ = Aclx(t) +Bβ (3.13)

where Acl = A−BK. A generalized expression for which values of K that will
create a stable closed loop system can be devised by choosing an appropriate Lyapunov
function, V (x), and using of the Lyapunov equation. Due to the size of the Acl matrix,
and the number of unique gains in the K-matrix, such a generalization will become long
and tedious. Thus we settle for showing that the selected gains in section 3 will provide
a stable closed loop system. The eigenvalues for the closed loop system are calculated in
MATLAB R©, through the command eig(Acl). The real part of the eigenvalues for controller
1 and for the most aggressive gains for controller 2, as given in (3.12), are given as

R(λC1

Acl
) =



−11.2
−11.2
−21.3
−1.35
−1.35
−0.950
−11.4
−11.4
−0.812
−23.6


R(λC2

Acl
) =



−11.7
−11.7
−11.9
−11.9
−11.8
−11.8
−0.045
−0.018
−0.029
−23.6


. (3.14)

As shown in the equations above, the eigenvalues for both controllers all have negative
real parts, and thus the closed loop unperturbed system will converge exponentially fast
towards the equilibrium states of x0.

3.3.2 Robustness of perturbed system
As the purpose of the system will be to counteract disturbances, the perturbed system,
where ||Eω(t)|| 6= 0, must be shown to be robust. That is, small disturbances will not
result in large steady-state deviations from the equilibrium. The perturbations affecting
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the vessel are time dependent, and do not stop as the system reaches it’s equilibrium point.
This means that the perturbations must be seen as non-vanishing. With non-vanishing
perturbations we can no longer expected the system to converge at the origin as t → ∞.
The best we can hope for is that the system response will be bounded by some small bound,
if the disturbance is small, Khalil [2014]. The closed loop perturbed system can be written
as

ẋ(t) = Aclx(t) +Eω(t) +Bβ. (3.15)

The Lyapunov function candidate for the system, V (x), is set as

V (x) = xTPx. (3.16)

Differentiating V (x) with respect to time will provide an expression for the direction of
the trajectory of the system. Thus if V̇ (x) is negative for all x, the system will be stable.
V̇ (x) can be derived as

V̇ (x) =xTP ẋ+ ẋTPx

=− xTQx+ xTPEω + ωTETPx
(3.17)

where
−Q = PAcl +Acl

TP . (3.18)

Equation 3.18 is called the Lyapunov equation. If there exists a solution for the Lyapunov
equation where both P and Q are square positive definite matrices, that is P = P T > 0
andQ = QT > 0, then V̇ (x) for the unperturbed will be negative, and the system will be
stable. Since the system is perturbed,Q must satisfy the inequality shown below.

−Q ≤ PEω + ωTETP (3.19)

Values for P andQ can be calculated from the unperturbed system. Given that the values
for the disturbance, ω, are small enough to satisfy the inequality in 3.19, the perturbed
closed loop system will produce a bounded response. Lemma 9.2 in Khalil [2014] can be
applied as the nominal system has exponential stability about x0, and because the Lya-
punov function candidate for the nominal system, chosen in 3.16, satisfy the inequalities
3.20 through 3.22 for [0,∞) ×D, where D = {x ∈ Rn | ||x|| < r}. Thus Lemma
9.2 states that the the system response will be bounded by b, following ||x|| ≤ b.

c1||x||2 ≤ V (x) ≤ c2||x||2 (3.20)

∂V

∂x
f(x) ≤ −c3||x||2 (3.21)∣∣∣∣∣∣∣∣∂V∂x

∣∣∣∣∣∣∣∣ ≤ c4||x|| (3.22)

3.4 Filters
The controller feedback signals are filtered through both a high-pass and a low-pass filter.
The low-pass filter aims to remove the components of the signal which stem from the
process and sensor noise. The purpose of the high-pass filter is to remove sensor drift.
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3.4.1 Low-pass filter
A first order low-pass filter is designed. The filter transfer function can be stated as

H(s) =
ω0

s+ ω0
. (3.23)

Here, ω0 is the cutoff frequency of the filter, and s is the system frequency. s can be re-
written written as s = jω. According to Balchen et al. [2003], the gain of the filter, and
the corresponding phase lag can be calculated as

G(jω) = |H(jω)| = 1√
1 +

(
ω
ω0

)2
(3.24)

and
θ(ω) = − arctan(

ω

ω0
). (3.25)

The low-pass filter cutoff frequency is set to 5Hz. The smallest wave period we desire to
control is Tp = 5s. For a wave with this period, the low-pass filter will then create a phase
shift of

θ(1/5) = − arctan(
1

25
) = −2.29deg. (3.26)

The amplitude reduction of Tp = 5s regular waves will be by a factor of G(0.2) = 0.999,
while the amplitude of noise at 50Hz will beG(50) = 0.1. The induced delay is so small as
to be assumed non-pertinent with respect to the closed loop system stability. The reduced
signal amplitude of the wave frequency with a cutoff at 5Hz is considered negligible. The
low-pass filter magnitude response as a function of frequency can be seen in Figure 3.1.

Figure 3.1: Low-pass filter magnitude response as a function of frequency.
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3.4.2 High-pass filter
The high-pass filter is relevant only for the accelerometers and gyros. A steady state offset
in either of these measurements does not physically make sense. Furthermore a steady
offset in these measurements will lead to a drifting error in the heave velocity and roll or
pitch angles, which are found through integration of the accelerometer and gyro feedback.
The high-pass filter cannot be applied to measurements of position and angles, as a steady
state offset here not necessarily is faulty. The transfer function of a first order high-pass
filter can be stated as

H(jω) =
ω
ω0

1 + ω
ω0

. (3.27)

The gain and phase shift caused by the filter can then be expressed as

G(jω) =
ω
ω0√

1 +

(
ω
ω0

)2
and θ(ω) =

π

2
− arctan(

ω

ω0
) (3.28)

The largest waves we can expect to encounter will have a period Tp = 15s or smaller. A
rule of thumb states that we can tune the filters such that we remove frequencies which are
one third of the maximum expected frequencies. Thus, the high-pass filter cutoff frequency
is set to 1

15×3 = 0.022Hz. The corresponding phase delay for a Tp = 5s wave will then
be 5.71 degrees. The filter magnitude response can be seen in figure 3.2.

Figure 3.2: High-pass filter magnitude response as a function of frequency.
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Chapter 4
Results

This chapter will present the results from heave, roll and pitch control of the four cushion
SES in regular and irregular waves. Heave control for the SES is already well documented,
and as such the main focus will be on the control of roll and pitch. Some of the tests will
however include combined control of both heave, roll and pitch. Results from irregular
sea states are presented as significant height and significant angles. This means that the
height/angle represent the expected value of the one third largest heave, roll or pitch dis-
placement. The significant height/angle is calculated through the method expressed in
appendix D. As previously stated in chapter 1.7 the data will be normalized, however,
these values for significant height and significant angels can be compared to similar values
attained from different tests or numerical simulations.

We will present results with waves interacting with the vessel, approaching from dif-
ferent angles. These angles will be referred to as the wave direction, and will be seen as if
the vessel heading is unchanged. As an example, a wave direction of ψ = 180◦ constitutes
head sea for the vessel. A wave direction of 0◦ is following sea, while a wave direction of
90◦ is beam sea from port side. The simulated and experimental data are scaled after the
constants listed in Table 1.1. This is to make a comparison between the scale model tests
and numerical simulations possible. Amongst other things, this entails that waves referred
to 5 second waves, may show in the plots as having a period of 1.67 seconds.

4.1 Numerical simulations
All the numerical simulations in this sub-chapter are performed with a ventilation valve
orifice coefficient of cvvn = 0.8. The cushion separation walls are seen as solid, meaning
that no amount of air is allowed to penetrate through the walls. Controller 1, discussed in
chapter 3.1 will be used for all the numerical simulations in this sub-chapter.
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4.1 Numerical simulations

4.1.1 Regular waves - roll control

Regular waves coming from the side of the vessel, also known as beam sea, are simulated
to investigate the roll-stabilizing properties of the closed loop controlled system. Several
test are performed under the same conditions, but with varying wave periods, Tp, and wave
height, Ha. Table 4.1 provides and overview of the waves generated for these tests.

Table 4.1: Wave description

Regular sea
Wave height, Ha 1 to 2.5 meters
Period, Tp 4 to 12 seconds
Direction, ψ 90◦

The comparative results between the controlled and uncontrolled system are displayed
in table 4.2. The detailed results for one of the simulations is displayed in Figure 4.1.
The first plot in the Figure 4.1 displays the controlled and uncontrolled roll angle for the
simulation of 2.5 meters, Tp = 7s waves. The next two plots display the pressure with and
without control in two adjacent cushions. The final plot displays the valve openings of the
same two adjacent cushions. For the test which is plotted Figure 4.1, the uncontrolled roll
has a maximum normalized peak to peak angle of 0.604. The controlled roll for the same
case, has a peak to peak angle of 0.0864. This constitutes a 86.5% reduction of the peak
to peak roll angle.

Table 4.2: Normalized peak to peak height of roll angle with control OFF/ON

Tp Ha η4-OFF η4-ON Damping
4s 1m 0.609 0.0767 87.4%
5s 1m 0.479 0.0593 87.6%
6s 1m 0.355 0.0461 87.0%
7s 2.5m 0.640 0.0864 86.5%
8s 2.5m 0.500 0.0707 85.8%
9s 2.5m 0.397 0.0600 84.9%
10s 2.5m 0.323 0.0505 84.3%
11s 2.5m 0.268 0.0430 83.9%
12s 2.5m 0.225 0.0386 82.9%
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Figure 4.1: Normalized roll angle, cushion 1 pressure, cushion 3 pressure and valve opening for
regular, bow sea, 2.5 meter Tp = 7s wave.
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4.1 Numerical simulations

4.1.2 Regular waves - pitch control
This sub-chapter present results of numerical simulations where the system is excited with
waves described in Table 4.3.

Table 4.3: Wave description

Regular sea
Wave height, Ha 1 to 2.5 meters
Period, Tp 4 to 12 seconds
Direction, ψ 180◦

The pitch properties of the vessel is tested in the same way as the roll. The waves are
simulated as regular head sea. The closed loop roll motions of the vessel for one specific
wave period and wave height can be seen in Figure 4.2. As with the roll test, table 4.4
shows the overall results from the varying wave heights and periods. The uncontrolled
pitch angle in Figure 4.2 has a normalized peak to peak height of 0.541. The controlled
pitch for the same case, has a normalized peak to peak angle of 0.121, which constitutes a
77.6% reduction of the peak to peak pitch angle.

Table 4.4: Normalized peak to peak height of pitch angle with control OFF/ON

Tp Ha η5-OFF η5-ON Damping
4s 1m 0.122 0.0305 75.1%
5s 1m 0.254 0.0542 78.7%
6s 1m 0.255 0.0513 79.9%
7s 2.5m 0.541 0.121 77.6%
8s 2.5m 0.450 0.0818 81.8%
9s 2.5m 0.372 0.0660 82.3%
10s 2.5m 0.310 0.0541 82.5%
11s 2.5m 0.261 0.0441 83.1%
12s 2.5m 0.222 0.0394 82.2%

The plot in Figure 4.3 shows the percentile reduction in the peak to peak roll and pitch
angles for the simulations stated in this sub-chapter and in sub-chapter 4.1.1. For this plot,
the x-axis is the wave period for the waves which excite the roll and pitch motion. The
wave height corresponding to these periods are the same as listed in Tables 4.2 and 4.4.
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Figure 4.2: Normalized pitch angle, cushion 1 pressure, cushion 3 pressure and valve opening for
regular, head sea, 2.5 meter Tp = 7s wave.
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4.1.3 Irregular sea - combined roll and pitch control

The sea conditions simulated in this sub-chapter are listed in Table 4.5.

Table 4.5: Wave description

JONSWAP, irregular sea
Significant height, Hs 2.5 meters
Peak wave period, Tp Avg. 7 seconds
Wave heading, ψ 0◦ to 360◦ at 22.5◦ increments
Spectral peakedness, γ 3.3

A total of 18, 500 second long simulations are carried out to verify the damping capa-
bilities of the system in irregular sea. The combined results from all of theses simulations
are presented in Figure 4.5. Half of the simulations are with active cushion control, while
the other half are without control. The purpose is to test simultaneous control of both roll
and pitch in a realistic sea-state, and document the efficacy of the control in various head-
ings. A time series of the roll and pitch motion for beam and head sea, with and without
active control can be seen in the plots in Figure 4.4.
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Figure 4.4: Time series for normalized roll and pitch angle in irregular beam and head sea.

The polar-plot in Figure 4.5(a) shows the significant angles for the pitch and roll with
and without active control. The plot is mirrored about the 0 to 180 degree axis as the
vessel is also symmetric around this axis. For wave directions where the excited roll and
pitch angles are small, the control system tends to increases the roll or pitch. The increase
is minor, and is caused by feedback noise in the controller. The Cartesian plot in Figure
4.5(b) illustrates the percentage damping for each wave direction from 0 to 180.
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Figure 4.5: Roll and pitch damping as a function of wave direction.
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Figure 4.6: Controlled and uncontrolled roll and pitch normalized angle power spectral density.

The combined reduction in significant roll height for the 360 degree wave-direction
arch is 57.4%. Similarly, the combined reduction of the significant pitch angle is 75.3%.
Figure 4.6 displays the power spectral density (PSD) of the roll angle for beam sea, and
pitch angle for head sea, with and without active cushion control.
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4.2 Model verification
This chapter will present data from a number of different tests designed to verify the accu-
racy and validity of the numerical model against the scale model tested in the NTNU wave
basin. Though the following sub-chapters, such as chapter 4.3 will also provide useful data
for model verification, the plots in this chapter will focus more on comparing the simu-
lated model response with the experimental data, rather than comparing the controlled and
uncontrolled motions.

Because of some complications with the feedback of the louver position during the
scale model testing, the registered louver position is not completely reliable for many of
the tests. The louver position had to be re-calibrated two times during the testing and
the registered output relative to the actual louver position may therefore vary from test
to test. Figure 4.7 displays the registered louver position, the bias for the same test, and
the corrected louver position with respect to bias and initial louver offset. The figure
shows that when the adjusted, ’correct’, louver opening matches the test bias, β = 75,
the louver position still exceeds a 100% opening, and is limited to a minimum opening of
approximately 50%.
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Figure 4.7: Position of the ventilation louvers and corresponding bias.

The initial louver position, or bias, used in each of the scale model test is not neces-
sarily the same as the bias which is registered for the same test. Therefore, comparing the
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numerical model and the experiments with respect to bias or louver position is not a good
solution. We wish to make sure that the bias used in the numerical simulations is as close
as possible to the actual bias used for each test. The solution to this is to compare the
numerical simulations and the experimental data with respect to average cushion pressure.
Before each scale-model test, the vessel remains stationary in the water such that the aver-
age cushion pressure without any external excitation forces can be found. During this, the
passive leakage is minimal such that the louver position is assumed to correlate directly
to the cushion air-flow and thereby to the cushion pressures and vessel heave. Therefore,
comparing the two models with respect to average cushion pressure instead of matching
bias/louver position is considered to be a reasonable solution to the problem. In the plots
where the ventilation valve position is included, the valve position is adjusted such that
the average valve position equals the bias position for the test. Because of this, the louver
position should be viewed with a sceptical eye in the plots where it is included.

4.2.1 Static heave
Figure 4.8 shows the heave and corresponding average cushion pressure from a simulation
and from a scale model test. The purpose of the comparison is to investigate the rela-
tionship between the cushion pressure and corresponding heave for the numerical model
and the physical scale model. Figure 4.8 displays the average cushion pressure and cor-
responding vessel heave, when the vessel is lifted from zero pressure to a heave position
corresponding to the initial pressure, p0.
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Figure 4.8: Pressure and corresponding heave for simulation and experiment.

Note that as previously stated in chapter 2.2, lifting the vessel up from the water, will
result in a negative heave. The difference in heave at Figure 4.8(b) is an approximately
12% larger heave motion for the simulation over the experiment, when lifted from zero
pressure to p0.
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4.2.2 Static roll
The plot in Figure 4.9 displays the maximum pressure induced static roll angle for the
scale model. The purpose of the test is to investigate the relation between pressure and
induced roll angle for the simulations compared to the scale model experiments. The roll
angle is induced by first fully opening both the port side ventilation valves, while keeping
the starboard valves closed. The process is then reversed to create an opposite roll angle.
For the simulation, the pressure differential between starboard and port side cushions is
matched to the pressure differential attained from the scale model maximum roll angle
test.
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Figure 4.9: Port and starboard pressure differential and corresponding roll angles for simulation and
model testing.

The static offset between the simulated roll angle and the roll angle attained during the
basin testing, as shown in Figure 4.9, is approximately -22% for the negative roll angle,
and -17% for the positive roll angle. As should be clear from Figure 4.9, this means that
the numerical simulation creates a 22% and a 17% smaller response in the maximum roll
angle than the response attained from the scale model experiments.
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4.2.3 Static pitch
As with the heave and roll, the purpose of this test is to investigate the relation between the
induced pitch angle and the corresponding cushion pressure. The maximum static pitch
angle is achieved by fully opening the front louvers and closing the rear louvers. After
a brief period of time, the process is reversed to create an opposite pitch angle. Figure
4.10 shows a comparison of the maximum scale model induced pitch and the simulated
induced pitch under the same aft and rear differential cushion pressure. The pitch angle
offset between the two models is an approximately 27% larger numerical response for the
negative pitch angle, and 17% larger response for the positive pitch angle.

10 20 30 40 50 60 70

-0.5

0

0.5

Pitch angle

Simulated

Experiment

10 20 30 40 50 60 70
-4

-2

0

2

4
Aft/rear pressure differential

Simulated

Experiment

Figure 4.10: Bow and stern pressure differential and corresponding pitch angles for simulation and
model testing.
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4.2.4 Valve leakage coefficient, cvvn
Figure 4.11 is a comparison of the average cushion pressure for a numerical simulation
and a scale model experiment at a constant 75% valve opening, meaning bias β = 75.
This test is performed shortly after the first louver re-calibration, such that the test bias
is assumed to be somewhat closely related to the actual louver opening. The purpose of
the test is to investigate and quantify the active leakage from the cushions for the scale
model experiments relative to the numerical simulation. To find this relation, we look at
the average cushion pressure during the same ventilation valve openings. During this test
in the ocean basin, there was no clear leakage from the sides of the hull, such that all
air-leakage is assumed to originate from the ventilation valves.
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Figure 4.11: Average cushion pressure for simulation and experiment with bias β = 75 and cvvn =
0.8.

Figure 4.12 shows the same experimental data, but with a different ventilation duct
orifice coefficient, cvvn , for the numerical simulation.
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Figure 4.12: Average cushion pressure for simulation and experiment with bias β = 75 and cvvn =
0.4543.
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4.2.5 Non-solid walls

Figure 4.13 shows a comparison of two simulations from the numerical model and data
from a scale model test. The vessel is excited by regular, 1 meter 5 second head sea
waves. In Figure 4.13(a) the numerical simulation uses the assumption of solid walls,
which means that no air is allowed to penetrate through the cushion dividers. For the
numerical simulation with non-solid walls in Figure 4.13(b), a small fixed percentage of
the cushion dividers are modeled as an open leakage area such that some inter-cushion
leakage will occur. These numerical simulations are conducted with cvvn = 0.8, and a bias
which results in a similar average cushion pressure for the simulation and the experimental
data.
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Figure 4.13: Vessel dynamics and pressure for regular head sea, ψ = 180◦. Wave height 1 meter,
wave period 5 seconds.
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4.3 Scale model experiments
This sub-chapter will present data from the scale-model experiments, and will focus on
the efficacy of the roll and pitch damping. Data generated from the numerical model
under the exact same conditions as the scale model tests will be presented alongside the
data from the experiments. The numerical model which is compared to the scale model
experiments in this sub-chapter uses a ventilation duct orifice coefficient of cvvn = 0.58.
It also uses a minor, fixed, inter cushion leakage area, to emulate the non-solid walls
of the scale model. Controller 2, from chapter 3 is used for all the experimental tests
and numerical simulations in this sub-chapter. As explained in chapter 3, the controller
bias and the controller gains will vary from test to test. The controller gains used in the
numerical simulations match the controller gains which are used for each of the different
scale model tests. The bias is generally close to the bias used during the testing, but as
mentioned in chapter 4.2, the ventilation valve opening corresponding to this bias is not
completely reliable for the scale model. Therefore, the bias in the numerical simulations
is altered to generate the same average cushion pressure as that registered in the relevant
scale model test. The scale model is tested for to two different types of regular waves
coming from three different wave directions. Following this, the scale model is tested in
irregular sea, generated after the JONSWAP spectra. The response in irregular sea is tested
over 5 different wave directions, from ψ = 180 to ψ = 0.
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4.3.1 Regular waves - 1 meter
The specifications for the first type of regular waves is listed in Table 4.6.

Table 4.6: Wave description

Regular sea
Wave height, Ha 1 meters (peak to peak)
Period, Tp 5 seconds
Direction, ψ 180◦, 135◦ and 90◦

Figure 4.14 shows the controlled and uncontrolled roll and pitch response for regular
waves coming as bow sea, ψ = 135◦. The plots also show a comparison to the numerical
results from a simulation performed with the same conditions. The figure shows that the
controlled response is substantially smaller than the uncontrolled response. The normal-
ized peak to peak height for the uncontrolled roll form the experimental testing is 0.187.
The same controlled roll motion has a normalized peak to peak height of 0.0514, consti-
tuting a 72.5% reduction. Table 4.7 show the exact normalized peak to peak roll and pitch
angle for each of the wave directions. The simulated peak to peak roll angle averaged over
the three wave directions, is 28.5% smaller than the roll angles obtained from the scale
model experiments. For the pitch angle, the average simulated peak to peak angle is 5.8%
smaller than the pitch angle from the scale model experiments. Note that the error is very
large for the small pitch and roll angles at 90◦ and 180◦, respectively. For the controlled
motion, the equivalent numbers show a 11% smaller average simulated roll angle and a
12.8% smaller simulated pitch.
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Figure 4.14: Controlled and uncontrolled pitch and roll for 1 meter, 5 second bow sea (ψ = 135◦).

Figure 4.15(a) shows a comparison of the uncontrolled numerical simulation and the
data generated from the experiments. Figure 4.15(b) shows the same comparison for the
controlled case. Note that for the controlled case, the heave decreases for the scale model
vessel. This is due to a 15% increase in the average cushion pressure when the vessel
motions are controlled.
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Table 4.7: Experiment data, regular 1 meter, Tp = 5s waves. Peak to peak angle for roll and pitch
with control OFF/ON.

Roll experiment Roll simulation
ψ η4-OFF η4-ON Damping η4-OFF η4-ON Damping
180◦ 0.0455 0.0594 -30.5% 0.0001 0.0001 3.35%
135◦ 0.187 0.0514 72.5% 0.175 0.0509 70.9%
90◦ 0.690 0.161 76.7% 0.542 0.193 64.4%

Pitch experiment Pitch simulation
ψ η5-OFF η5-ON Damping η5-OFF η5-ON Damping
180◦ 0.568 0.189 66.8% 0.605 0.228 62.3%
135◦ 0.581 0.256 56.0% 0.594 0.281 52.6%
90◦ 0.121 0.140 -15.3% 0.0097 0.0095 1.96%
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Figure 4.15: Controlled and uncontrolled vessel dynamics and pressure for 1 meter, 5 second bow
sea (ψ = 135◦).

62



4.3 Scale model experiments

4.3.2 Regular waves - 2.5 meter
As with the 1 meter waves, the vessel is subjected to regular waves specified in Table 4.8.

Table 4.8: Wave description

Regular sea
Wave height, Ha 2.5 meters (peak to peak)
Period, Tp 7 seconds
Direction, ψ 180◦, 135◦ and 90◦

Figure 4.16 shows the controlled roll and pitch compared to the uncontrolled roll and
pitch for ψ = 90◦ and ψ = 180◦ respectively. The uncontrolled numerical roll and pitch
angles are respectively, 7% smaller and 2% larger than the scale model experiment peak
to peak roll and pitch angles. With active cushion control, the difference is a 1% smaller
peak to peak angle for the simulated roll, and 9% larger angle for the simulated pitch when
compared to the experimental data. Table 4.9 shows the exact peak to peak angle height
and damping percentage for each test. The roll damping for the scale model experiments
in Figure 4.16(a) is 62.1%. The pitch damping in head sea in Figure 4.16(b) is 66.4%.
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Figure 4.16: Simulation and experiment pitch and roll with and without cushion control for 2.5
meter, 7 second beam and head sea.

The uncontrolled heave, roll and pitch response for the model and the simulation in
Figure 4.17 show that the heave motions are reduced by 6% for the numerical simulations
in head sea and a 8% in beam sea. The uncontrolled pitch motions are 6.5% larger for
the simulation than for the experimental data during head sea, while the uncontrolled roll
motions are 6.5% smaller for the numerical simulation in beam sea. In the controlled
response in Figure 4.18 only the roll and pitch motions are controlled. For this plot, the
valve opening registered from the experiments is adjusted such that the average valve
opening matches the bias that is registered for the relevant experiment.

63



Chapter 4. Results

Table 4.9: Experiment data, regular 2.5 meter, Tp = 7s waves. Peak to peak angle for roll and pitch
with control OFF/ON.

Roll experiment Roll simulation
ψ η4-OFF η4-ON Damping η4-OFF η4-ON Damping
180◦ 0.0650 0.0681 -4.90% 0.0001 0.0001 -2.64%
135◦ 0.439 0.164 62.8% 0.320 0.102 67.7%
90◦ 0.741 0.281 62.1% 0.696 0.351 49.6%

Pitch experiment Pitch simulation
ψ η5-OFF η5-ON Damping η5-OFF η5-ON Damping
180◦ 1.34 0.451 66.4% 1.29 0.468 63.6%
135◦ 0.950 0.424 55.4% 1.18 0.605 48.9%
90◦ 0.0776 0.0952 -22.9% 0.0220 0.0160 28.7%

4 5 6 7 8 9 10 11 12
-1

-0.5

0

0.5
Heave

Simulated

Experiment

4 5 6 7 8 9 10 11 12
-0.5

0

0.5
Roll

Simulated

Experiment

4 5 6 7 8 9 10 11 12

0.1

0.12

0.14

pitch

Simulated

Experiment

4 5 6 7 8 9 10 11 12

1.6

1.8

2

p
u
 cushion 1

Simulated

Experiment

4 5 6 7 8 9 10 11 12

Time [s]

1.6

1.8

2

p
u
 cushion 3

Simulated

Experiment

(a) 2.5 meter beam sea.

4 5 6 7 8 9 10 11 12
-0.5

0

0.5
Heave

Simulated

Experiment

4 5 6 7 8 9 10 11 12

0

0.01

0.02

Roll

Simulated

Experiment

4 5 6 7 8 9 10 11 12
-1

-0.5

0

0.5

pitch

Simulated

Experiment

4 5 6 7 8 9 10 11 12

1

1.2

1.4

p
u
 cushion 1

Simulated

Experiment

4 5 6 7 8 9 10 11 12

Time [s]

0.8

1

1.2

p
u
 cushion 3

Simulated

Experiment

(b) 2.5 meter head sea.

Figure 4.17: Uncontrolled vessel dynamics and pressure for 2.5 meter, 7 second beam and head sea.

64



4.3 Scale model experiments

The results from Table 4.9 show that the simulated peak to peak roll angle averaged
over the three wave directions, is 22.4% smaller than the roll angles found from the exper-
iments. For the pitch angle, the average simulated peak to peak angle is 5.0% larger than
the pitch angle from the scale model experiments. For the controlled motion, the same
numbers are 13% smaller simulated roll and 11% larger for the simulated pitch.
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Figure 4.18: Controlled vessel dynamics and pressure for 2.5 meter, 7 second beam and head sea.
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4.3.3 Irregular waves

Table 4.10: Wave description

JONSWAP, irregular sea
Significant height, Hs 2.5 meters
Peak wave period, Tp Avg. 7 seconds
Wave heading, ψ 180◦ to 0◦ at 45◦ increments
Spectral peakedness, γ 3.3

The vessel is subjected to the sea state listed in Table 4.10. A total of 10 tests for ir-
regular sea are carried out, 5 with and 5 without active cushion control. The gains for
the controllers are found through tuning during the regular wave experiments. The gains
vary slightly from heading to heading, but remain unchanged for each test once the test is
started. In addition, not all states are controlled for all headings. Table 4.11 show which
modes of control are active at which headings. An irregular sea state can be considered
as a combination of random wave heights and patterns within a set distribution. The wave
pattern generated for the irregular sea which is used in the wave basin experiments is the
exact the same for the tests with and without control. I.e. the exact same randomization
seed and method of random number generation is applied for both cases. The sea con-
ditions are the same for the numerical simulations as during the experiments, however,
the generated random sea pattern is not the same. As with the wave basin experiments,
the generated random sea pattern for the numerical simulations is the exact same for the
simulations with control as for the simulations without control. Through the calculation of
significant height as explained in appendix D, the actual significant height of the random
wave pattern generated in the numerical simulations is found to be 2.17 meters. The re-
sults from Table 4.12 reflect these findings, as the numerical vessel response is consistently
smaller than the response generated in the experiments.

Table 4.11: Modes of control for each heading.

Heading [deg], ψ Heave Roll Pitch
180◦ x x
135◦ x x
90◦ x x
45◦ x x x
0◦ x x

Figure 4.19 shows a 500 second snapshot from the time series for roll and pitch, for
the scale-model with and without active cushion control activated. The time series for the
roll motion is taken during beam sea, ψ = 90◦. The time series for the pitch motion is
taken at head sea, ψ = 180◦. The plots in Figure 4.20 show the equivalent plot generated
from the numerical simulations.
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Figure 4.19: Snapshot of time series for roll and pitch motion in irregular sea for scale model
experiments.
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Figure 4.20: Snapshot of time series for roll and pitch motion in irregular sea for numerical simula-
tion.

The plots in Figure 4.21 show the normalized significant heave motion, and the normal-
ized significant roll and pitch angles for different wave headings. The plots are mirrored
around the half-circle from 180◦ to 0◦. Note that, as shown in Table 4.11, the heave motion
is not controlled at 135◦.

The exact values for the motion damping percentage and the significant height/angle
for each wave direction is listed in Table 4.12. This table also contains comparative data
from the numerical simulations with the same controller gains, and under the same irregu-
lar sea conditions. Figure 4.22 shows two periodogram estimates of the spectral functions
of the roll and pitch angles in beam and head sea for the wave basin experiments.
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Figure 4.21: Radial plot of the significant heave, roll and pitch motion for scale-model experiments.
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Figure 4.22: Power spectral density for roll and pitch motion in irregular sea, for wave basin exper-
iments.

Figure 4.23 is a comparison of the heave, roll and pitch damping achieved in the wave
basin experiments and in the numerical simulations. This plot is based on the damping
percentages show in in Table 4.12.
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Table 4.12: Experiment data, irregular waves. Significant height for heave, and significant angles
for roll and pitch, with control OFF/ON.

Heave experiment Heave simulation
ψ η3s-OFF η3s-ON Damping η3s-OFF η3s-ON Damping
180◦ 0.730 0.470 35.6% 0.598 0.351 41.2%
135◦ 0.881 0.866 1.76% 0.643 0.628 2.30%
90◦ 1.09 0.869 20.1% 0.875 0.585 33.1%
45◦ 0.871 0.582 33.1% 0.658 0.396 39.9%
0◦ 0.751 0.516 31.3% 0.618 0.371 39.9%

Roll experiment Roll simulation
ψ η4s-OFF η4s-ON Damping η4s-OFF η4s-ON Damping
180◦ 0.087 0.093 -6.88% 0.0001 0.0001 0.283%
135◦ 0.456 0.209 54.2% 0.195 0.113 42.3%
90◦ 1.14 0.666 41.5% 0.729 0.327 55.1%
45◦ 0.534 0.297 44.4% 0.150 0.0883 41.0%
0◦ 0.088 0.087 1.27% 0.0001 0.0001 4.05%

Pitch experiment Pitch simulation
ψ η5s-OFF η5s-ON Damping η5s-OFF η5s-ON Damping
180◦ 1.30 0.678 47.7% 1.16 0.568 50.8%
135◦ 1.09 0.545 49.8% 1.09 0.505 53.7%
90◦ 0.234 0.265 -13.2% 0.0242 0.0258 -6.20%
45◦ 1.07 0.655 39.0% 1.10 0.468 57.6%
0◦ 1.37 0.688 49.8% 1.14 0.443 61.2%
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Figure 4.23: Percentage motion damping, irregular sea, experimental data and numerical simulation.
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Chapter 5
Discussion

5.1 Model Verification
In this sub-chapter, the experimental data is analyzed and compared to data gathered form
the numerical model developed in chapter 2. We attempt to do a step by step comparison
of the numerical simulation results against the experimental scale model results. The goal
is to verify and document the validity and accuracy of the mathematical model. Further,
we try to identify the differences in the two models, and address how the mathematical
model can be altered to mitigate these differences.

5.1.1 Pressure - heave relation
The results from the static heave response, Figure 4.8 in chapter 4.2.1, show that when the
vessel is lifted from zero pressure to the initial pressure p0, the same pressures generate
an approximately 12% larger heave response for the simulation compared the experiment.
Following equation (2.84) we see that when the vessel heave is constant, the heave forces
acting on the vessel can be stated as

gm = Fc3 + Fh3 . (5.1)

Here gm constitutes the gravitational force, Fc3 the heave cushion forces and Fh3 the
hydrodynamic heave forces from the hull, which are computed from the hydrodynamic
constants discussed in 2.12. From the equation above, we can say that the difference in
heave can stem from three possible errors.

• Mass: The mass of the scale model might be slightly larger than that of the sim-
ulation, causing the gm term to be larger than anticipated for the scale model. A
possible physical reason for this discrepancy is water-leakage. During the model
testing the scale model had to be drained of water two times. However, the amount
of water drained was not much, and this effect alone should not amount to a 12%
discrepancy.
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• Pressure area: The cushion forces, term Fc3 in equation (5.1), may be smaller than
anticipated due to a decreased pressure area. From chapter 2.11 we know that the
cushion forces can be calculated as the pressure times area. It is possible that the
pressure area for each cushion is smaller than expected due to the area occupied by
the separation walls and the thickness of the hull. On the other hand, these walls will
provide a lift force equal to or greater than the cushions them-self, as the pressure
inside the separation walls will be higher than that inside the cushions.

• Hydrodynamic constants: The hydrodynamic constants used in the numerical
model can never be completely accurate. As previously stated in chapter 2, the
hydrodynamic properties of the vessel are handled by the MSS library, [Fossen and
Perez 2004]. This library is dependant on input values for A33, B33 and C33 as
briefly addressed in chapter 2.12. These values are provided by Umoe Mandal, and
are calculated to be accurate at the heave level corresponding to the initial pressure
p0. Therefore, at heave-levels and pressures not corresponding to pressure pu = p0
these constants may no longer serve as accurate approximations. For equation (5.1)
this means that the term Fh3 may become too large in the numerical model.

5.1.2 Pressure - roll/pitch relation
From the test in chapter 4.2.2, and from Figure 4.9, the difference in the induced static
roll angle is found to be an approximately 22% smaller angle for the negative numerical
roll angle, and 17% smaller angle for positive roll. As with the heave-pressure relation,
we can say that there are no external excitation forces acting on the vessel during this test.
By then applying equation (2.85), there are two possible reasons for the observable steady
state offset. Firstly, the pressure area might be not be correct. Secondly, the hydrodynamic
roll restoring force C44, might be too large for the simulation compared to the scale model
test. The distances from the center of rotation to the different centers of pressure for the
cushions are assumed to be the same for the numerical model and the scale-model.

The static pitch response can be seen in chapter 4.2.3, Figure 4.10. This graph shows
that when the pressure differential between the front and aft cushions are the same for
the numerical model and the scale model, the resulting induced pitch angle gives an ap-
proximately 27% larger response in the numerical model for negative pitch. For positive
pitch, the results show an approximately 17% larger numerical response compared to the
results from the scale model tests. Similar to the static heave and roll, equation (2.86) il-
lustrates that the offset could be due to a reduced pressure area for the scale model relative
to the pressure area in the numerical model. Also similar to the roll angle offset, another
possible effect is that the real restoring coefficient C55 for the scale model is larger than
the one which is applied in the numerical simulation. As previously stated, these hydro-
dynamic coefficients are calculated around p0 and will only be good approximations for
small angles and movements around this equilibrium. In addition, the correct restoring
coefficient for the scale model might also be larger than anticipated due to the buoyancy of
the center cushion divider seen in Figure 1.10. The buoyancy from this divider will create
a restoring-force similar to that of a pressurized cushion. Though the same will be true for
the transverse cushion dividers, the center cushion divider is a lot larger and will create
a larger buoyancy force. In addition, the distance from the center of rotation is larger for
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pitch motions. This results in a larger arm for the restoring moments. The increased dis-
tance from the center of buoyancy will also mean that smaller pitch angles will force the
center bag further down in the water, causing yet a larger buoyancy force and an increased
restoring moment relative to the transverse dividers.

5.1.3 Cushion air flow
By using the results in chapter 4.2.4 and 4.2.5, we wish to quantify the air-flow out from
the cushions in the numerical simulation relative to the scale model experiments. As pre-
viously discussed in sub-chapter 2.10, the air flow in the cushion can be divided into active
and passive leakage.

Active leakage

As discussed in depth in chapter 2.10.2, active leakage only concerns the air-flow out from
the ventilation valves. In the test in chapter 4.2.4 the louver opening is assumed to be the
same position for the simulation and for the model. However, due to the inconsistencies in
the registered louver position, this might not be an accurate assumption. Passive leakage
from the model is largely followed by a spray of water. An example of this can be seen
from the picture in Figure 1.8. None, or only negligible passive leakage could be observed
at this given heave position during the experiment. Therefore we assume that virtually
all of the air leakage from the cushions are due to active leakage. Since the vessel is not
affected by any external excitation forces, and the louver positions are constant, we can
assume both constant cushion pressures and constant cushion volumes. The equation for
the non-linear cushion pressure, (2.54), can then be rewritten as

0 =
γ(pa + pui)

Vci

((
pa

pa + pui

) 1
γ

(Qinj (t)−Qoutj (t))
)
. (5.2)

From this equation we can see that any steady state error in the cushion pressure must
come from either the relationship of the volume flow into the cushion against the flow out
of the cushion, or from a difference in the cushion volume. From Figure 4.11 we can see
that there is a large discrepancy in the pressure for the simulation and the experiment. We
assume that the positive air flow into the cushions, caused by the lift fans, is the same for
the experiment and the simulations. Since the air flow out from the ventilation valves can
be described as shown in equation (2.69), the corresponding discrepancy in the volume
flow out from the cushions is likely to stem from at least one of three factors.

• Louver position: As mentioned in chapter 4.2, during the testing some technical
difficulties occurred with respect to the louver positions. Though the feedback from
the louvers read that they were in a certain position, it was clear from visual inspec-
tions and from the measured cushion pressures that their registered position was
faulty.

• Obstructed flow: From chapter 4.3.1 and Figure 4.15, we observed a 15% increase
in the average cushion pressure from the test without active cushion control to the
test with cushion control. We also observed that some sea states caused a slight
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increase in the average cushion pressure when compared to the initial calm water
measurements. There are a few possible reasons for this. Firstly, we know that
there are some nonlinearities with respect to the ventilation valve leakage area. The
louver opening is seen as a 0-100 percentage opening of the maximum valve duct
area. However, in reality, the projected leakage area from the louver opening will
be a sine function of the angle of the ventilation louvers. This means that when the
louvers are moving evenly around a set bias, a 10 degree increased louver opening
might result in a 14% increased leakage area, while a 10 degree reduction in the
louver opening might result in a 17% decreased leakage area. Therefore the leakage
will not be symmetric around the average, bias opening, which will cause an increase
in the average cushion pressure. Another possibility is that the louver opening is
saturated in one direction. In example, this could mean that from the bias position,
the louvers can rotate to close 60 degrees, but only open another 30 degrees. A third
possibility is that different sea states act to obstruct the flow through the louvers in
different ways, causing an increase in the average cushion pressure. Due to time
limitations, and technical difficulties with the registered louver position relative to
the actual louver position, neither of these theories can be confirmed or excluded.

• Effective valve area: The effective active leakage area is the projected opening onto
the ventilation duct where the air flow unobstructed. The louvers effectively take up
a lot of the leakage area from the ventilation duct, even when they are completely
opened. The effect of this is illustrated in Figure 5.1, which shows the ventilation
duct with fully opened ventilation louvers. Through the use of AutoCAD R©, and the
picture in Figure 5.1, the effective valve leakage area is estimated to be only 61.5%
of the total duct area.

(a) Total ventilation duct leakage area. (b) Effective ventilation duct leakage area

Figure 5.1: Fully open ventilation valves. Green colored area displays the area which is registered
by AutoCAD R© for estimation of effective leakage area.
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This last effect mentioned in the bullet points above is linear and can therefore be incor-
porated into the leakage coefficient for the ventilation duct, cvvn . The initial value for the
ventilation valve leakage coefficient is set to cvvn = 0.8. We wish to find an updated esti-
mate for this coefficient. Assuming that the vessel has zero roll and zero pitch, we know
from chapter 5.1.1 that the pressure relates closely to the heave of the vessel. Because of
this, it is reasonable to assume that the volume of the cushion chambers are close to the
same for the experiment and the simulation under similar cushion pressures. Following
the assumptions stated above and the expression formulated in (5.2), we can say that by
maintaining the same louver positions, we should achieve the same average cushion pres-
sure, provided that the air-flow out from the cushions are the same for the simulation and
the experiment. From equation (2.69) we can see that an increase in pressure will cause
an increase in the volume flow out from the cushions, which in turn should cause a re-
duction in the cushion pressure according to (2.54). Given an equal and constant cushion
leakage area and a constant over-pressure in the numerical model, only a difference in the
ventilation valve leakage coefficient, cvvn , can account for the increased air flow out of the
cushions in the numerical model. Knowing this, we can tune the leakage coefficient for the
ventilation valves, cvvn , until the average cushion pressure is the same in the simulations
and the experiment. Since the value for cvvn incorporates the loss of the effective valve
area as described in the last point in the list above, the absolutely highest cvvn we can hope
for is 0.615. The scale model test presented in 4.12 suggests that a leakage coefficient of
cn = 0.4543 provides a steady pressure equal to the pressure found from the scale model
experiments. Through comparison with other model tests, a final estimate for cnvv was
found as cvvn = 0.58. As mentioned in chapter 4.3, this value has been applied and used
for the numerical model through the remaining comparisons with the scale model tests.

Passive leakage

The passive leakage that occurs during the experimental testing is hard to quantify. The
plots in Figure 4.13 however provide a good illustration for a case where passive leakage
takes place. The orange line, representing the scale model cushion pressure show signif-
icant and rapid drop in the cushion pressure. This rapid reduction in pressure is believed
to be caused by passive cushion to atmosphere leakage. The plots in Figure 4.13(a) are
of the scale model tests and a simulation with the assumption of solid walls for the cush-
ion separators. This means that no air is allowed to penetrate through the inflatable walls
separating the cushion chambers. Figure 4.13(b) shows an experiment comparison against
a simulation with non-solid walls, meaning that there is air leakage between the cushion
chambers as a result of air passing through the non-solid cushion dividers. We can see that
both the pitch angle and the cushion pressures, particularly that of cushion 3, becomes a
much more close fit for the assumption with non-solid walls. Note that though the roll and
heave motions in Figure 4.13 are not accurate, both the heave and roll motions are very
small for this simulation, and therefore this error is not very significant. The picture in Fig-
ure 5.2 shows how the transverse and center cushion dividers look when the scale model
is at full lift capacity. This picture provides a good illustration of why the assumption of
solid walls will not be correct for a physical implementation with the inflatable cushion
dividers. When comparing Figure 1.10 with 5.2, two effects come into play. Firstly, the
increased pressure inside the cushion chambers lifts the model out of the water, causing

74



5.1 Model Verification

a visible leakage area under the separation cushions. Secondly, the increased pressure in-
side the cushion chamber contributes to deflate the separation bag, as the relative pressure
inside the separation bag is now lower. Thus, there is a visible leakage area between the
fingers of the dividers as well as a leakage area under the dividers. In the series with the
solid and the non-solid walls in Figure 4.13, the differences are subtle, but substantial.
Though the pressures and motions are interconnected and it is hard to distinguish cause
from effect, an implementation of non-solid walls is generally observed to equalize the
pressure from chamber to chamber and thus dampen the pressure fluctuations in the cush-
ion chambers. This reduced swing in pressure results in a slightly larger pitching motion,
which results in increased passive cushion to atmosphere leakage. The passive cushion
to atmosphere leakage can clearly be seen in the pressure for cushion 3 at approximately
7 and 8.5 seconds. The induced passive cushion to atmosphere leakage causes yet larger
pitching motions. From the picture in Figure 1.8, we can also see that some leakage will
occur under the bag in the aft of the vessel. Some leakage here is intended as a part of
the design, in order to flush any water that has entered the bag. However, the amount of
leakage observed from the model tests seemed to be in excess of what we should expect.
Not accounting for this could affect the accuracy of the numerical model.

Figure 5.2: Inflated transverse cushion dividers at full cushion lift.

5.1.4 Vessel motion in waves
The response of the numerical model in regular waves is generally very close to the results
achieved during the scale model testing. The largest error occurs when the motions of
the vessel are very small, such as with roll for head sea and pitch for beam sea. Ignor-
ing these entries, the simulated roll angle is between 27% and 6% smaller than the roll
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angle generated from the experiments. The largest error occurs for 2.5 meter waves at a
wave direction of ψ = 135◦, while the smallest error is for 2.5 meter waves coming from
ψ = 90◦. The simulated pitch angle varies from 3.8% smaller to 23.3% larger than the
equivalent scale model response. As with the roll angle, the largest errors occur when the
vessel is subjected to bow sea, while the smallest error occurs when the pitch motion is the
dominant motion, such as for head sea. Since the largest error in both roll and pitch occur
for bow sea, this could indicate that there are some unmodeled coupling effects between
the roll and pitch motions. The heave motions of the vessel generally reflect the same
tendencies as the roll and pitch motions. The error in the numerical simulation is large for
small motions relative to the experimental results. The plot in Figure 4.15 illustrates this,
and shows a large difference in the heave motion when the motions are small. Figure 4.17
and 4.18 illustrate that when the motions are larger, the percentage difference in the heave
motion between the numerical model and the scale model diminishes.

5.2 Motion control
The conditions for the simulations in the sub-chapter 4.1 are more ideal with respect to
cushion leakage and process noise than what we observed during the scale model experi-
ments. Under these conditions, the numerical model indicates that a roll and pitch damping
up towards 80-90% may be possible. These simulations assume that the cushion separation
walls are solid and that the ventilation valve leakage coefficient is cvvn = 0.8. The gains for
controller 1, discussed in sub-chapter 3.1, which is used in the numerical simulations in
sub-chapter 4.1 are also much higher than the gains used in the scale model experiments.
These gains have shown to be too high to be applied for the scale model. During the scale
model tests, the tuning of the controller gains were limited by the feedback process noise
from the sensors. From the experiments we observed that with too high gains the control
system simply amplified the noise. From Figures 4.15 and 4.18 we can observe that the
control output, which is the louver position, is rarely saturated. Ideally we wish to have a
bias of 50%, with controller gains that saturate at 0 and 100 for large excitations. This will
result in a maximum response range with respect to increasing and decreasing the cushion
pressure. Compared to the louver position shown in Figures 4.15 and 4.18 this means that a
smaller bias, and increased controller gains theoretically should produce a better response.
The motion damping achieved from the model test experiments is substantial. For regular
waves the scale model experiments show that we can achieve a roll damping of the peak
to peak roll angle which ranges between 76.7% and 62.1% reduction. The roll damping is
most effective for the smaller, 1 meter waves with a period of Tp = 5s. For irregular sea,
we achieve a reduction in the significant height of the roll angle which is between 41.5%
to 54.2%. For regular waves the peak to peak pitch angle is reduced by more than 66.8%
for head sea, and more than 55% for bow sea. Also for irregular sea, we can observe
that when both the heave, roll and pitch is controlled at ψ = 45◦, the damping in pitch is
smaller than when only two states are controlled. Excluding this test, the significant pitch
angle for irregular sea is reduced by approximately 48-50% when pitch control is active.
From the power spectral density plots in figure 4.22, we can also observe that around the
excitation frequencies of 0.125-0.27 Hz for roll and 0.125-0.2 Hz for pitch, the power is
significantly reduced when cushion control is active.
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Chapter 6
Conclusion

The results from the scale model tests confirm that the mathematical model serves as a
good approximation of the physical system. Accurate modeling of the air flow in the
cushions, specifically air leakage, is crucial in order to generate an accurate response.
With respect to this, there are some known sources for error, such as leakage through the
cushion dividers, which is as of yet only modelled empirically from the results obtained
in the wave basin tests. The scale model tests confirm that the four cushion solution can
be utilized to obtain a significant roll and pitch damping. For the basin tests in regular
sea, the peak to peak roll angles are reduced by as much as 76.7%. For irregular sea,
the significant roll angle is reduced by up to 54.2%. For pitch damping, the equivalent
tests show a 66.8% and 49.8% damping, respectively. The best results generated by the
numerical model indicate that under more ideal conditions with respect to air leakage and
noise, as much as 80-90% damping for both roll and pitch may be obtainable.

The scale model tests were carried out quite close to the thesis deadline and thus further
work should include further analysis of this data. Through further analysis more definite
conclusions may be drawn and additional and improved design criteria may be discov-
ered. With respect to the mathematical model, the initial results from the scale model tests
indicate that further work to improve the model may include additional modelling of the
cushion air flow, specifically the cushion air leakage. Controlling the airflow within the
cushion chambers is key to maintain a high degree of motion control. For a full scale
implementation, the cushion separation walls need to be retractable during transit. In ad-
dition, the separation walls must be designed in a way that minimizes the air leakage from
chamber to chamber during pitch and roll control. The current solution provides very
promising results, but further work and improvement on of the design of the separation
walls is believed to produce even better results. In addition to this, a new design of the
ventilation valves should be considered. By increasing the effective leakage area, the re-
sponse of the control system will increase. In addition, this increase will mean a reduction
in the bias. The vessel can then operate at a louver opening closer to a 50%. This is ideal
because saturation of the louver response is then less likely to occur.
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Appendix A
State space matrices

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
K21

K11
0 0 0

0 K22

K12
0 0

0 0 K23

K13
0

0 0 0 K24

K14


(A.1)

E =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 ρc0

K11
0 0 0

0 0 0 0 ρc0
K12

0 0

0 0 0 0 0 ρc0
K13

0

0 0 0 0 0 0 ρc0
K14


(A.2)
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C =



0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


(A.3)
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Appendix B
Equations for water volume
calculations

ATraxi =
1

2
(−P3y

P4x − P3x

P4y − P3y

+ P3x + x4)

− 1

2
(
x1 − x2
z1 − z2

(−P1z − P3y

P4z − P3z

P4y − P3y

+ P3z ) + P1x + x1)

(A.1)

BTraxi =
1

2

P4x − P3x

P4y − P3y

− 1

2

x1 − x2
z1 − z2

P4z − P3z

P4y − P3y

(A.2)

ATrazi = z1 + P3y

P4z − P3z

P4y − P3y

− P3z (A.3)

BTrazi =
P4z − P3z

P4y − P3y

(A.4)

ATrixi = P3x − P3y

P4x − P3x

P4y − P3y

− (
x1 − x2
z1 − z2

(
P4z − P3z

P4y − P3y

(−P3y ) + P3z − P1z ) + P4x)

(A.5)

BTrixi =
P4x − P3x

P4y − P3y

− x1 − x2
z1 − z2

(
P4z − P3z

P4y − P3y

) (A.6)

ATrizi = −P2y

−P1z + P2z + P4z − P3z

P1y − P2y

− P2z + P3z (A.7)

BTrizi =
−P1z + P2z + P4z − P3z

P1y − P2y

(A.8)
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Appendix C
Simulink block-diagram of the
SES-dynamics
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Appendix D
Calculation of significant heave,
roll and pitch motions

Through the use of the Fast Fourier Transform (FFT) function in MATLAB R© fft, MATLAB R©

[2019a], the time-series for the heave/roll/pitch motion of the vessel can be converted to
the a discrete Fourier transform,

Y (k) =
∑ n

j=1

X(j)e(−2πi/n)(j−1)(k−1) (A.1)

As we are only interested in the motions of the heave, roll and pitch movement we subtract
the average, such that the MATLAB R© fft implementation for in example heave, becomes;
ifft(η3 − η̄3). According to MATLAB R© [2019b], an estimation of the spectral density for
the heave/roll/pitch motions, also known as a periodogram, can then be calculated as

P (f) = ∆t|Y (k)|2 (A.2)

According to Myrhaug and Lian [2009], the moment of the spectrum can be calculated as

mf
n =

∫ ∞
0

fnS(f)df, S(f) ≈ P (f). (A.3)

Also according to Myrhaug and Lian [2009], the significant height of waves in a JON-
SWAP spectrum can be calculated as shown in (A.4). Because the significant angles and
the significant heave response will be directly related to the wave height inducing the mo-
tion, we assume the distribution of these motions and the corresponding wave height to be
the same.

Hs = 4
√
m0 =

∫ ∞
0

P (f)df. (A.4)

Here, the significant height, Hs, signifies the significant heave position, or the significant
roll or pitch angle depending on which degree of freedom is input as the initial time-series,
represented by X(j).
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Dynamic Modeling and Simulation of a
Surface Effect Ship with Four Air Cushions

Ola M. Haukeland ∗ Vahid Hassani ∗,∗∗ Øyvind Auestad ∗∗∗

∗ Centre for autonomous marine operations and systems (AMOS),
Dept. of Marine Technology, Norwegian Univ. of Science and

Technology, Trondheim, Norway.
∗∗Department of Ships and Ocean Structures, SINTEF Ocean,

Trondheim, Norway.
∗∗∗Umoe Mandal AS, Mandal, Vest-Agder, Norway.

Abstract: This paper deals with dynamic modelling and numerical simulations of a Surface
Effect Ship (SES) with split cushion. Traditionally, a SES is a catamaran with front and aft
seals equipped with lift fans that could fill an air cushion with pressurized air to lift up to 90 %
weight of the vehicle. A new SES concept is designed by UMOE Mandal AS that consists of four
air chambers, each one equipped with variable vent valves, through which cushion pressures can
be controlled by adjusting the air out-flow from the cushion. The new designs makes it possible
to actively regulate the motion of the SES in all decrees of freedom but surge. Basic model
scale tests have shown effectiveness of such design in for active motion damping. In this paper,
we develop a dynamic model of the four cushion SES. Furthermore, we present a high fidelity
numerical simulator that can effectively simulates the dynamics of the vessel. Results from early
model test experiments are used to validate the developed simulation model. A companion paper
studies the performance of the control system through numerical simulation using the presented
high fidelity model of SES subject to waves.

Keywords: Surface Effect Ship, Split Cushion, Motion control, Process Plant Model

1. INTRODUCTION

1.1 Motivation

The rough seas surrounding offshore structures such as oil
platforms, oil-rigs and wind turbines provide a challenge
for both crew transport and offshore structure inspections.
The use of surface effect ships has emerged as a competi-
tive alternative to helicopter transport, proving high levels
of safety, comfort, fuel efficiency and overall reduced cost
of offshore logistics, Mandal 2018. The main challenge for
sea transport is safety at crew transfer and ride comfort at
high transit speeds. Increased motion control and motion
damping provides the solution to these challenges, and
contributes to further expand the window of operations
for the surface effect vessels at harsh weather conditions.

1.2 Surface effect ship

The surface effect ship can be described as a hybrid
between a catamaran and hovercraft. The hull of a SES
is formed like the hull of a catamaran except the bow and
stern is sealed off. Figure 1 gives an illustration of a SES
cross-section as seen from the side. The purpose of this
special shape, is to create a volume in which the air will
be trapped and the flow of air can be controlled. This
volume is referred to as the cushion chamber, where as
the air inside the volume is referred to as the air cushion.
This cushion allows the vessel to glide on the layer of
air, rather than floating due to the displacement of the

hull like conventional vessels. The design brings a few
benefits such as reduction in drag, improved ride comfort
and added flexibility with respect to heave. The new SES
design proposed in this paper is to further divide the
cushion into four air chambers. Doing so, one can add
the pitch and roll control to the list of benefits. Due to
the low drag and improved ride comfort of the SES, most
SES-vessels are high-speed vessels. The drawback with the
cushion solution is that the seals in the front and aft of the
vessel suffer a lot of wear and tear. Depending on use and
the transit velocities of the vessel, these seals might need
replacement more than once per year. This project is done
in collaboration with Umoe Mandal. At their request, and
to avoid the publication of sensitive data, the results for
the simulations and experiments will be normalized with
respect to angles, pressure or volume flow.

Fig. 1. Cross section of a SES. Illustration by Umoe
Mandal.



1.3 Ses cushion-control

Other systems for controlling a SES-vessel by manipulat-
ing the cushion pressure are already developed and in use,
among them is the ride control system and the boarding
control system. The ride control system was first featured
in Kaplan and Davis 1978, and has since been further
developed by Sørensen and Egeland 1995. The purpose
of the system is to create a more smooth ride at high
transit velocities. The system provides active damping of
vertical motions by manipulating and reducing the cushion
pressure fluctuations caused by rough sea. The boarding
control system has been developed by Ø. F. Auestad 2015.
The main use of the boarding control system is to reduce
the movements of the vessel’s bow, so that it is possible to
secure safer transfer from the ship to offshore structures,
specifically, offshore wind-turbines. The boarding control
system relies on manipulating the pressure of the single
cushions to induce heave motions, counteracting the wave-
induced motions. These are examples of manipulating the
cushion pressure as a way of controlling the vessel motions,
that have been of great practical importance, and that pro-
vide a good basis and motivation for further development
within the field.

1.4 Cushion division

In this paper, we consider a SES design in which the
single cushion is divided into four sections by the use
of solid walls or inflatable separators. The division and
subsequent cushion numbering can be seen in figure 2.
The implementation of the four chambers solution using
inflatable bags allows for usage of a the traditional one-
cushion solution when the four cushion division is not
needed.

Fig. 2. The cushion separation and numbering as seen from
below.

2. MATHEMATICAL MODELING

The system is modeled around a body-fixed coordinate
system, centered at the center of gravity in the x and
y-direction, and at the center of buoyancy in the z-
direction. The heave center of buoyancy will vary for a
SES, depending on the current cushion pressure. With
respect to the coordinate system, it is defined at the
initial cushion pressure p0, also known as the equilibrium
pressure. The coordinate system is illustrated in figure 3.

Fig. 3. Coordinate system used for the mathematical
model, {b}.

2.1 Air-cushion volume and wave volume pumping

The volume of air inside each of the cushions can be
described as

Vi = −V0i +Aci(−η3 − ycpiη4 + xcpiη5) (1)
Here V0i is the volume occupied by waves entering or
exiting each of the cushion chambers. Aci is the area of
the water surface inside each cushion, while ycpi and xcpi
describe the cushion center point, which is also referred to
as the center of pressure. Lastly, η3, η4 and η5 represent
the heave, roll and pitch of the vessel, respectively. The
cushion volume rate of change, V̇ci , can be calculated by
differentiating the formula for the cushion volume given
in equation (1) with respect to time. The equation then
becomes

V̇ci = Aci(−ν3 − ycpiν4 + xcpiν5)− V̇0i (2)
where V̇0i is called the wave volume pumping and ν3, ν4
and ν5 represent the heave speed, roll rate and pitch rate
of the vessel, respectively. Wave volume pumping is the
rate of volume change due to waves passing through the
cushion chambers. The wave volume pumping is calculated
according to equation (3). The volume that the wave
occupies inside the cushion can be described as in equation
(4). These equations are inspired by Auestad 2015, as well
as Sørensen and Egeland 1995.

V̇0i(t) =
∫ y2i

y1i

∫ L2i

L1i

ζ̇(x, y, t)dA (3)

V0i(t) =
∫ y2i

y1i

∫ L2i

L1i

ζ(x, y, t)dA (4)

In these equations y1i and y2i constitute the width of
cushion i, while L1i to L2i constitutes the length of cushion
i measured at the current water-level. In equation (3), the
term ζ(x, y, t) is the wave elevation function expressing the
wave elevation at position x and y, at time t. According
to Perez 2005, this wave elevation can be described as

ζ(x, y, t) = ζ̄ sin
(
ωt+ ε− k(x cos(χ) + y sin(χ)

)
(5)

ζ̇(x, y, t) = ζ̄ω cos
(
ωt+ ε− k(x cos(χ) + y sin(χ)

)
(6)

In the equations above, ζ̄ is the wave amplitude, ω is the
circular wave frequency, and k is the wave number. The



wave number can be expressed as k = 2π
λ , where λ is the

wave length. Furthermore, ε is the phase of the wave, and
the term x cos(χ) + y sin(χ) expresses the direction of the
wave propagation relative to the vessel body-frame.
Differentiating equation (5), provides equation (6), which
is used to calculate the wave volume pumping in equation
(3). The wave elevation and corresponding wave-forces
acting on the vessel, outside of the cushion pressure, will be
modeled using the Marine Systems Simulator created by
Fossen and Perez 2004, and will not be further elaborated
on in this section.

2.2 Non-linear cushion pressure dynamics

The non-linear pressure dynamics equations are in inspired
by Sørensen and Egeland 1995. Some assumptions regard-
ing linearization of the air flow, and spatial variations in
pressure vary from Sørensen and Egeland 1995, leading to
a few changes to these equations. Further, the equations
are adapted to the current model, such that it includes the
four cushion solution. The basis for the non-linear pres-
sure dynamics is the equation for continuity of mass flow
and the relation between pressure and density, shown in
equations (7) and (13), respectively. The cushion pressure
is considered to be uniform within each of the cushion
chambers.

ṁini − ṁouti = d

dt
(ρci(t)Vci(t)) (7)

In equation (7), the left part of the equation can also be
stated as

ṁini − ṁouti = ρa(Qinj (t)−Qoutj (t)). (8)
By performing the differentiation of the right side expres-
sion in equation (7), and substituting the left side with
(8), we get equation (9).
ρa(Qinj (t)−Qoutj (t)) = ρ̇ci(t)Vci(t) + ρci(t)V̇ci(t) (9)

Here Vci(t) and V̇ci(t) is the chamber air volume and its
rate of change, which can be expressed as derived in section
2.1. Qj is the air flow caused by fan j, while ρa and ρci
are the respective air-densities of the atmosphere and the
cushion. Assuming an adiabatic process, the first law of
thermodynamics, δU + δW = δQheat = 0, can be used to
derive the adiabatic pressure-volume relationship

p

p0
=
(
V0
V

)γ
. (10)

where γ is the ratio of specific heat for air. Since there is
no loss of mass in the air flow traveling from the volumes
V0 to V , the volume-density relationship between the two
spaces can be written as

V0
V

= ρ

ρ0
. (11)

The pressure-density relationship then becomes

ρ = ρ0

(
p

p0

) 1
γ

. (12)

As we are interested in the pressure differential from the
atmosphere to the cushion, the values for the cushion
and atmospheric pressure and density are substituted into
equation (12).

ρci(t) = ρa

(
pa + pui(t)

pa

)1
γ

(13)

Differentiating equation (13) with respect to time leads to

ρ̇ci(t) = ρa

p
1
γ
a γ

(pa + pui(t))
1−γ
γ ṗui(t). (14)

By combining equations (9), (13) and (14), the final
equation representing the non-linear cushion pressure can
be expressed as shown in equation (15).

ṗui(t) =γ(pa + pui(t))
Vci(t)

×
(

pa
pa + pui(t)

1
γ (Qinj (t)−Qoutj (t))− V̇ci(t)

)

(15)

2.3 Cushion air flow

The flow of air into the cushions are caused by fans. The
volumetric flow rate produced by each of these fans, can
be described as

Qini = si
smax

Q∗i . (16)

Here Q∗i is the flow of the fan for cushion i which is set
by the fan characteristics. si and smax is the current and
maximum fan rotation speed. The pressure generated by
the lift fan is given as p = ( si

smax
)2p∗i , where the specific

fan pressure p∗i can be substituted with pui .
Airflow out of a cushion is called air leakage. There are
two types of leakages to consider, passive leakage and
controlled leakage. Controlled air leakage is the airflow
that exits out of the controlled ventilation valves at the
sides of the cushion chambers. The passive leakage is the
uncontrolled leakage that occurs when air is forced out
from under the sides of the cushion chambers, or leaves the
chamber in any way that is not controlled or intentional.
The amount of air leakage is dependent on the leakage
area and the cushion pressure. The total air leakage of a
chamber can be described as:

ALi(t) = Api(t) +Actrli (t). (17)
ALi(t) represents the total leakage area, Api is the passive
leakage area, and Actrli is the controlled leakage area.

Controlled leakage The controlled leakage area can be
described as

Actrli (t) = Actrlimax

Actrlimin%
+ (1−Actrlimin%

)ui(t)
100 (18)

Here Actrlimax
is the leakage area at maximum vent valve

opening. Actrlimin%
is the lowest possible area of the vent

valve opening, given as a percentage of the maximum vent
valve opening. Lastly u(t)i is the control input signal, for
the opening of the vent valves.
We wish to express the flow out of the cushion. The
volumetric flow rate is defined as

Q = vA (19)
where v is the velocity of the fluid, while A is the cross-
sectional area. Due to the geometry of the leakage area
some flow reduction will occur, such that A = ALcn, where
AL is the leakage area, and cn is a orifice coefficient for
the leakage area. Starting with the Euler equation,

dp

ρ
+ vdv + gdz = 0, (20)



and assuming an adiabatic pressure-density relationship,
such that

p

ργ
= C, (21)

the Bernoulli equation for an adiabatic, compressible flow
can be derived. Assuming none, or negligible elevation
change, the simplified Bernoulli equation for adiabatic
compressible flow can be written as(

γ

γ − 1

)
pci(t)
ρci(t)

+ 1
2v

2
ci =

(
γ

γ − 1

)
pa
ρa

+ 1
2v

2
a. (22)

From this, an expression for the air velocity can be
derived. We assume no initial air-velocity in the chambers,
such that vci = 0. Further, we assume that all excess
pressure in the ventilated air from a cushion is converted
to air-velocity upon release. Thus equation (22) can be
rearranged to express the velocity, as shown in equation
(23).

va(t) =

√
2
(

γ

γ − 1

)(
pci(t)
ρci(t)

− pa
ρa

)
(23)

The pressure inside the cushion is described as;
pci(t) = pa + pui(t) (24)

where pci is the total cushion pressure, which can be split
into the atmospheric pressure pa and the uniform cushion
pressure pui . By inserting this expression for pci(t) into
(23) and combining with equation (19), we get a final
expression describing the volumetric flow of the controlled
leakage as shown in (25).

Qi(t) = Actrli (t)cn(i)

√
2γ
γ − 1

(
pui(t) + pa
ρci(t)

− pa
ρa

)
(25)

Here ρc(t) is found from the expression derived in (13).

Passive leakage The passive leakage area is calculated
as the sum of any area that occurs under the hull, fingers
or bag of the vessel that is no longer below water-level,
as seen from inside the cushion. The passive leakage area
can be further divided into inter-cushion leakage, and
atmospheric leakage. To calculate the passive atmospheric
leakage area for a chamber, the bottom edge of every wall
surrounding a chamber is represented as a line. Each of
these four lines enclosing a chamber are divided into ten
points from the start of the wall to the the end of the
wall. At each of these points, the height from the water-
surface to the draft of the given point is calculated. This
height is calculated following equation (26). If the height
is negative, leakage occurs.

HLijk(t) =− T − η3(t)− yijkη4(t)
+ xijkη5(t) + hpi(t)− ζijk(t) (26)

In the equation above, HLijk is the height of point k on
line j for cushion i, relative to the water plane. T is the
draught of the vessel at the initial heave position, η3 = 0.
Furthermore yijk and xijk is the distance from the center
of gravity to point ijk. The term hpi is added to equation
(26) as the cushion pressure leakage will be dependent on
the height of the water column inside the cushion. The
over-pressure inside the cushion will displace water from
inside the cushion, such that the water-level inside the
cushion will be lower than that on the outside. The term
hpi can be expressed as shown in equation (27), and can

simply be explained as a pressure to water-column height
conversion.

hpi(t) = pui(t)
gρw

(27)

In equation (26), ζijk represents the sea level elevation at
the relative position of point ijk. This elevation can be
expressed as

ζijk(t) =
∑

n

(
ζan sin(ωnt− κn(xijk cos(χn)

+yijk sin(χn)) + εn)
) (28)

Most terms in equation (28) are previously addressed and
explained in section 2.1. Note that in the equation above,
the letter k is used as a subscript, therefore the letter κ is
used to denote the wave number. For an irregular seastate,
the specific wave elevation at a point will be the sum of
many different regular waves. The elevation for each of
these regular waves are expressed as previously explained
in equation (5). Therefore, the total wave elevation at
point ijk, becomes the sum of the elevation from every
regular wave at the given time and the given position of
the point. The position of point ijk is expressed by xijk
and yijk. Lastly, εn represents the phase of regular wave
number n. The total passive cushion leakage area can be
expressed as

Api(t) = Aapi(t) +Acpi(t) (29)
where the superscripts a and c denotes the cushion to
atmosphere leakage area, and the cushion to cushion
leakage area, respectively. The passive leakage area from
cushion to atmosphere can be expressed as

Aapi(t) =
2∑

ja=1

(
HLija

(t)
10∑

k=1
(∆xijak + ∆yijak)

)
, (30)

where subscript ja signifies the lines j which represent a
wall separating the cushions from the atmosphere. Simi-
larly, the passive leakage area from cushion to cushion, can
be expressed as

Acpi(t) =
2∑

jc=1

(
HLijc

(t)
10∑

k=1
(∆xijck + ∆yijck)

)
, (31)

where subscript jc signifies the lines j separating cushions.
The volumetric flow for passive cushion to atmosphere
leakage can be expressed in the same way as the controlled
leakage in equation (25), by simply substituting the leak-
age area Actrli (t)cn(i) with Aapi .
For the volumetric flow for the inter-cushion leakage, we
assume that the pressure in cushion i is higher than the
pressure in cushion j. Like before, we also assume no
initial air-velocity in i, and that all pressure differential
between cushions i and j is converted to air-velocity when
the air enters cushion chamber j. The expression formed
for vj in (23) can then be applied. The volumetric air-
flow between cushions can be expressed by substituting
the areas, pressures and densities in equation (25) with
the relevant values for the two cushions affected by the
leak. The cushion air density ρci can be calculated from
the expression derived in equation (13).

Qi(t) = Acpi(t)cn

√
2γ
γ − 1

(
pci(t)
ρci(t)

− pcj (t)
ρcj (t)

)
(32)



Equation (32) expresses the air flow out from cushion i,
due to leakage into cushion j. There is no loss of mass
in the exchange, and so the corresponding air-flow out
from cushion j is the same as in (32), with a negative
sign. Note that if the cushion pressure is reversed, that
is cushion j holds a higher pressure than cushion i, the i
and j subscripts in equation (32) are switched. Also note
that the cushion separating walls are considered solid, such
that no air can pass though them. However in practice, as
previously explained, they are inflatable bags, such that
some unknown leakage might occur. The sealing properties
of these dividers will not be known until a model is created.
To account for this, the model includes the option of
adding a percentage, fixed or varying leakage area for each
of the cushion dividers.

2.4 Cushion forces

The model is created for stationary or very low vessel
speeds. Therefore only the forces in heave, roll and pitch
are considered. The forces generated by the pressure in the
cushions is calculated following the pressure force relation,
F = pA. In similar fashion, the moments generated by the
cushion pressures is calculated as M = dcpipA, where dcpi
represents the distance from the vessel center of gravity to
the center of pressure in cushion i. Adding the forces and
moments induced by each of the cushions, provides the
total forces and moments acting on the vessel caused by
the cushion pressures. The resulting expression for these
forces and moments are given below in equations (33) to
(35).

F3c(t) =
4∑

i=1
−p0µui(t)Axyi (33)

M4c(t) =
4∑

i=1
−ycpip0µui(t)Axyi (34)

M5c(t) =
4∑

i=1
xcpip0µui(t)Axyi (35)

In the equations above, Axyi is the area of the water
surface, mapped onto the x-y-plane. Note that because
the positive z-direction is defined as down, and a positive
pressure will cause a force working upwards, the heave
force, F3c(t) and the roll moment, M4c(t) have a negative
sign.
The last force caused on the vessel from the cushions
is caused by the ventilation of cushion air through the
ventilation valves. Following Newton’s third law of motion,
as the pressurized air escapes out from the ventilation
valves in the cushions, an equal and opposite force caused
by the velocity and mass of the escaping air, will act on
the vessel. This force can be calculated as

F = ρaA
ctrlv2

a (36)
where Actrl is the controlled leakage area of the chamber,
and v is the velocity of the air. Note that v can also be
written as Q

A , as these are the units that have mainly
been used through the modeling. This generates a force in
sway as well as a moment in roll and yaw. As previously
mentioned, only the generated moment in roll, which can
be described by equation (37), is regarded in this model.

M4Q(t) = −
3∑

i=2
zcaiρci(t)

Q2
outi(t)

Actrli (t)

+
∑

i={1,4}
zcaiρci(t)

Q2
outi(t)

Actrli (t)

(37)

In the equation above, Qouti is the volumetric flow out
of the cushion, as expressed in equation (25). xcai and
zcai is the distance from the vessel center of gravity to
the center of area for the cushion ventilation valve, also
known as the controlled leakage area, Actrl. The combined
resulting forces acting on the vessel from the cushions and
corresponding air-flow can be written as

τcombined = τc + τQ. (38)
Here τ is a vector represented as
τ = [F1, F2, F3,M4,M5,M6], with the corresponding sub-
scripts of c and Q.

3. SES-SIM

The mathematical model derived in the section above is
implemented in MATLAB®/Simulink®. The equations gov-
erning the SES-cushion dynamics and the corresponding
forces are integrated into a larger system referred to as
SES-sim. An illustration of the structure of this system is
given in figure 4.

Fig. 4. Diagram of the SES-sim model structure

The orange blocks are taken from the Marine System
Simulator (MSS), created by Fossen and Perez 2004,
with a few additions and changes by Umoe Mandal.
The blue square contains a simplified overview of the
different equations derived above gathered into modules.
The MSS toolbox takes forces acting on the vessel as input,
and returns the 6 degrees of freedom movement for the
vessel. It is also used to generate the waves and other
environmental forces acting on the vessel.

3.1 Simulated pitch movement

Figure 5 shows the results from a pitch induced motion
caused by opening and closing the aft and bow ventila-
tion by using two sinusoidal functions in counter-phase.



Fig. 5. Vessel dynamics from two sinusoidal vent valve
signals

The purpose of the test is to confirm that the mathe-
matical model developed above and its implementation
into Simulink® produces a reasonable vessel response. The
valves and cushions are numbered as illustrated by figure
2. Opening the aft valves causes a reduced pressure in the
aft cushions, which leads to an induced pitch angle. When
the pitch angle becomes too large, the front of the vessel is
lifted out of the water, and passive air leakage occurs from
the front chambers. As expected, this causes a pressure
drop in the front cushions. From the graph displaying pitch
angle, it’s possible to recognize that the pitch velocity
changes at this point. Furthermore, as the pressure drops
in the front cushions, the vessel heave increases, which is
expected as the positive heave direction is defined as down.
The following pressure spike can be explained by the vessel
bow accelerating downwards due to the pressure loss, and
subsequently being cushioned by the air cushion as the
leakage stops.

3.2 Scale model comparison

An early experimental results with scale model of SES
with split cushions is used to validate the developed model.
For this test a minor leakage area is added to the cushion
dividers. Since the scale model visibly had leakage between
the cushions during testing, in the developed model a
minor leakage area is added to the cushion dividers i.e.
the cushion dividers could not be assumed to be solid.
The first comparative test is a test of the maximum static
pitch angle. The simulation is shown with and without the
solid walls assumption. In the test for figure 7, the model
had a slight steady roll angle, which results in a pressure
increase in cushion 1, and a slight pressure drop in cushion
4. The variation in cushion pressure for the simulation is
slightly higher than for the physical model. The cushion
pressure lifts approximately 70% of the weight of the vessel
for this test.

Fig. 6. Maximum static pitch angle for physical model and
simulation with and without ’solid walls’.

Fig. 7. Vessel dynamics in 1.5 meter 8s period waves.
4. CONCLUSION

The mathematical model seems to provide a good repre-
sentation of the physical response for a surface effect ship.
The exactness of the model seems to be quite dependent
on factors regarding the leakage of air from the cushion
chambers. Unfortunately these factors are hard to know
before any physical testing has been done. Over all, the
tests show that a four cushion solution provides a very
potent solution to vessel pitch control. Due to the limited
length of this paper, and limited experimental data, the
focus for model verification has been on pitch. Similar
results are expected for roll, with further experimental
data planned for near future.
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Abstract: This paper introduce damping of roll and pitch motion on a Surface Effect Ship
(SES) in low vessel speeds. The SES consist of two side-hulls, a reinforced rubber bow and stern
seal skirt system and four air cushion. The air cushions can lift 20-85 % of the total vessel mass
depending on the output of the controller. The pressure in the air cushions are controlled using
feedback from gyros which results in heavily reduced motions in roll and pitch. The effectiveness
of the proposed system is examined through numerical simulation in a high fidelity simulator
as well as experimental model tests with scale SES model at SINTEF Ocean’s Basin.

Keywords: Surface Effect Ship, Split Cushion, Process Plant Model

1. INTRODUCTION

The Surface Effect Ship (SES) is a seagoing vehicle that
traditionally operates at high-speed at the interface area
between air and water. This is possible due lift fan(s) that
blows air into an air cushion and thereby pressurizing it.
The air cushion is a trapped volume underneath the vessel
enclosed by the water surface, side-hulls, bow and stern
seals. The seals inhabit the same structural properties
found on the seals of a hovercraft but with a different
geometry. Figure 1 gives an illustration of a SES cross-
section, as seen from the side.

Fig. 1. Cross section of a SES. Illustration by Umoe
Mandal.

The SES discussed in this paper is slightly modified com-
pared to the traditional SES since the volume underneath
the vessel is divided into four air cushions and not one. In
addition to inheriting the high-speed, the SES discussed
in this paper also present roll and pitch motion control at
low speeds which is the topic of this work. Roll and pitch
damping is possible by altering the pressures individual
in the four chambers. For instance, if the two starboard
cushions have higher pressure then on the port side, then

the motion induced by a sea wave crest encountering the
port deck-side can be damped.
Though this project is done in collaboration with Umoe
Mandal, the properties of the simulated model are generic.
The results given in chapter 4 do not represent any one of
Umoe Mandal’s vessels in particular.

1.1 Motivation

The rough seas surrounding offshore structures such as oil
platforms, oil-rigs and wind turbines provide a challenge
for both crew transport and offshore structure inspections.
The use of surface effect ships has emerged as a competi-
tive alternative to helicopter transport, proving high levels
of safety, comfort, fuel efficiency and overall reduced cost
of offshore logistics, Mandal 2018. The main challenge for
sea transport is safety at crew transfer and ride comfort at
high transit speeds. Increased motion control and motion
damping provides the solution to these challenges, and
contributes to an expand of the operational window for
marine vessels at harsh weather conditions.

1.2 Simulation environment

The numerical simulations will be carried out in a pro-
cess plant model referred to as SESSim, Haukeland
2019. This is a mathematical model implemented in
MATLAB®/Simulink®, created to accurately depict the
dynamics of the surface effect ship. The model is expanded
to include the four cushion solution, and also provides
the basis for the derivation of the control plant model in
section 2.

1.3 SES Cushion-control

Other systems for controlling a SES-vessel by manipulat-
ing the cushion pressure are already developed and in use,



among them is the ride control system and the boarding
control system. The ride control system was first featured
in Kaplan and Davis 1978, and has since been further
developed by Sørensen and Egeland 1995. The purpose
of the system is to create a more smooth ride at high
transit velocities. The system provides active damping of
vertical motions by manipulating and reducing the cushion
pressure fluctuations caused by rough sea. The boarding
control system has been developed by Ø. F. Auestad 2015.
The main use of the boarding control system is to reduce
the movements of the vessel’s bow, so that it is possible to
secure safer transfer from the ship to offshore structures,
specifically, offshore wind-turbines. The boarding control
system relies on manipulating the pressure of the single
cushions to counteract the wave-induced motions.

1.4 Cushion division

In this paper, we consider a SES design in which the
single cushion is divided into four sections by the use
of solid walls or inflatable separators. The division and
subsequent cushion numbering can be seen in figure 2.
The implementation of the four chambers solution using
inflatable bags allows for usage of a the traditional one-
cushion solution when the four cushion division is not
needed.

Fig. 2. The cushion separation and numbering as seen from
above.

2. MATHEMATICAL MODEL

A linear time-invariant mathematical model is developed
for the system to act as a control plant model. Ultimately
the model will be expressed on the LTI-state space form.
The derivation of the linear representation of the four
cushion SES dynamics is based on the non-linear process
plant model derived in Haukeland 2019.

2.1 Cushion pressure dynamics

The cushion pressure is considered to be uniform within
each cushion chamber. The pressure in each chamber is
denoted pci

and can be expressed as shown in equation 1.
pci

(t) = pa + pui
(t) (1)

Here pa is the atmospheric pressure, while pui(t) is the
uniform excess pressure. When the vessel is in equilibrium,
meaning it has no movement, the excess pressure pui

is defined as the equilibrium pressure, p0i . The excess

pressure can be written in a non-dimensional form as µu,
where

µui
(t) = pui

(t)− p0
p0

(2)

As the vessel is designed for a single cushion solution with
the option of four cushions, and the walls of the cushions
are considered thin, assuming that the equilibrium pres-
sure p0 is the same for all of the cushions is reasonable.
The volume of air inside each cushion will vary with the
elevation of the water surface as well as the heave, pitch
and roll of the vessel. The interaction between the volume,
air leakage, wave volume pumping of the cushions and
the equations of motion for the vessel can be expressed as
shown in equation 3. This equation is based on the uniform
pressure equation derived in Sørensen and Egeland 1995.
The equation has since been altered and expanded to fit
the current system and four cushion solution. Note that
the equation is a linearization, and is only valid for small
changes in pressure around the linearization point at p0.

K1i
µ̇ui

(t)+K3µui
(t) + ρc0Aci

η̇3(t)
+ρc0Aciycpi η̇4(t)− ρc0Acixcpi η̇5(t)

= K2i∆Actrl
2i

(t) + ρc0V̇0i(t)
(3)

Here Aci is the area of cushion i, projected onto the
water plane. The constants xcpi and ycpi are the centers
of pressure, or center of area for each of the cushions. The
constants K1i

, K2i
and K3 are calculated as shown in the

equations below.

K1i = ρc0Vc0i

γ(1 + pa

p0
) (4)

K2i = ρc0cni

√
2p0
ρa

(5)

K3 = ρc0

q∑

j=1

(
Q0j

2 − p0
∂Q

∂p

∣∣∣∣
0j

)
(6)

Here ρa is the atmospheric air density, and pa is the
atmospheric pressure. Similarly, p0 and ρ0 is the cushion
equilibrium pressure and air density, while γ is the ratio
of specific heat for air. Q0j is the air flow rate at the fore-
mentioned equilibrium pressure, while ∂Q

∂p |0j is the corre-
sponding linearized fan slope around the equilibrium point
0j. Here subscript j denotes the numbering of the fans,
providing air-flow Q. Lastly, cn is the leakage coefficient,
which is dependent on the shape of the leakage area. V̇0i

(t)
is the wave volume pumping, which is further explained
and derived in Haukeland 2019, but can be expressed as
shown in equation 7. Note that Vc0i

denotes the cushion
volume for cushion i at the equilibrium pressure, and is
not related to the wave volume pumping.

V̇0i(t) =
∫ y2i

y1i

∫ L2i

L1i

ζ̇(x, y, t)dA (7)

V0i
(t) =

∫ y2i

y1i

∫ L2i

L1i

ζ(x, y, t)dA (8)



Here y1i
and y2i

constitute the width of cushion i, while
L1i

to L2i
constitutes the length of cushion i, measured at

the current water-level. ζ̇(x, y, t) is the function expressing
the rate of change in the wave elevation at position x and
y, at time t. This rate of change can be expressed as shown
in equation 9, and is further detailed in Haukeland 2019.

ζ̇(x, t) = ζ̄ω cos
(
ωt+ ε− k(x cos(χ) + y sin(χ)

)
(9)

2.2 Equations of motion

Only the forces in heave, roll and pitch will be of relevance
to the control and simulations of the vessel dynamics in
this paper. The vessel is considered stationary, such that
the forces and moments in surge, sway and yaw will be
negligible. The sum of forces acting on the vessel can be
split into two components. Forces generated by the excess
pressure in the cushions, and forces generated as a result
of the buoyancy and hydrodynamic properties of the hull.
Equations 10 through 12 express the forces and moments
generated by the cushions in heave, roll and pitch.

F3c
(t) =

4∑

i=1
−p0µui

(t)Azi
(10)

M4c
(t) =

4∑

i=1
−ycpi

p0µui
(t)Azi

(11)

M5c(t) =
4∑

i=1
xcpip0µui(t)Azi (12)

Equations 13 through 15 express the equations of motion
for the vessel. The hydrodynamic forces acting on the
vessel are expressed through the first three terms on the
left hand side of the equations. These forces and moments
and the corresponding movements of the vessel can be
stated as a mass-spring-damper system for each of the
degrees of freedom.

(m+A33)η̈3(t) +B33η̇3 + C33η3 + Fc3(t) = F e
3 (t) (13)

(I44 +A44)η̈4(t) +B44η̇4 +C44η4 +Mc4(t) = Me
4 (t) (14)

(I55 +A55)η̈5(t) +B55η̇3 +C55η5 +Mc5(t) = Me
5 (t) (15)

The forces and moments F e
3 (t), Me

4 (t) and Me
5 (t) are

excitation forces and moments caused by waves and other
external forces. The constant m represents the vessel
mass, and the constants A, B and C represents the
hydrodynamic added mass, the potential damping and
restoring coefficient for the mass-spring-damper motion
of the vessel. Their subscripts 3, 4 and 5 denote the
movements in heave, roll and pitch, respectively. Lastly
the vessel inertia governing the roll and pitch motion of
the vessel is given as I. The values for these constants
are been computed in ShipX and Veres, and have been
provided and Umoe Mandal.

2.3 State space representation

The equations of motion can be represented in the linear
time-invariant state-space form shown in 16 and 17.

ẋ(t) = Ax(t) +Bu(t) +Eω(t) (16)
y(t) = Cx(t) (17)

Here, x(t) is the state vector, which represents the relevant
degrees of freedom of the vessel. The representation of
the vector x(t) is listed in the table below. u(t) is the
control input, which will be further discussed in section 3.
ω(t) is the disturbance vector, which comprises of external
forces and disturbances. y(t) is the output vector, and
holds the values for any measured states such as data
from accelerometers or gyros. The expressions for the
matrices A, B, E and C can be found in the thesis,
Suggestions on thesis title?

States x(t)
State Description Symbol
x1(t) Heave position η3
x2(t) Roll angle η4
x3(t) Pitch angle η5
x4(t) Heave velocity η̇3
x5(t) Roll velocity η̇4
x6(t) Pitch velocity η̇5
x7(t) Non-dim. pressure, chamber 1 µu1
x8(t) Non-dim. pressure, chamber 2 µu2
x9(t) Non-dim. pressure, chamber 3 µu3
x10(t) Non-dim. pressure, chamber 4 µu4

States y(t)
State Description Symbol
y1(t) Roll angle η4
y2(t) Pitch angle η5
y3(t) Heave velocity η̇3
y4(t) Roll velocity η̇4
y5(t) Pitch velocity η̇5
y6(t) Pressure, chamber 1 pc4
y7(t) Pressure, chamber 2 pc4
y8(t) Pressure, chamber 3 pc4
y9(t) Pressure, chamber 4 pc4

3. CONTROLLER DESIGN

We wish to device a simple but reliable controller which
ultimately can be applied to a real vessel similar to the one
described by our model. We desire to control the roll and
pitch of the vessel, and so a simple P-velocity controller
is applied. The control law is formulated as shown in
equation 18 below.

u(t) = −Kx(t) + β (18)

The controller output, u(t), returns the opening percent-
ages of the cushion ventilation valves. A controller output
of 100 reads 100% opening on the vent valve, and thus
the corresponding cushion pressure is minimized. β is a
constant matrix signifying the bias of the ventilation valve
louvers. The bias essentially states how much lift the vessel
should have when no feedback is present. The structure of
the control output matrix is shown below. The subscripts
denote the ventilation valve louvers corresponding to the
equally numbered cushion chamber.

u(t) = [u1(t) u2(t) u3(t) u4(t)] (19)

3.1 Stability of the closed loop system

An unstable system can easily lead to unexpected and
undesired responses. For physical systems, such responses



can easily produce dangerous and harmful situations.
Thus, providing a stability proof for the controlled system
gives an assurance that the controlled system will only
act in a certain way, namely converging towards the
equilibrium states of x0 = 0.

Stability of unperturbed system The unperturbed closed
loop system, that is Eω(t) = 0, can be said to be
exponentially stable around x0 if the closed loop system
matrix,Acl is Hurwitz. This means that all the eigenvalues
of Acl have strictly negative real parts, i.e R(λi) < 0. By
inserting the expression of our chosen controller in 18 into
the unperturbed state space representation of our system
in 16, the closed loop system can be expressed as
ẋ(t) = Ax(t)−BKx(t) +Bβ = Aclx(t) +Bβ (20)

whereAcl = A−BK. A general expression for the values
of K which create a stable closed loop system can be
devised by choosing an appropriate Lyapunov function,
V (x) through use of the Lyapunov equation. Due to the
size of the matrix Acl and the number of unique gains in
the K-matrix, such a generalization will become long and
tedious. Thus we settle for showing that the selected gains
in section 3 will provide a stable closed loop system. The
eigenvalues for the closed loop system are calculated in
MATLAB®, through the command eig(Acl). The resulting
eigenvalues all have negative real parts. Thus the closed
loop unperturbed system will converge exponentially fast
towards the equilibrium states of x0.

Robustness of perturbed system As the purpose of the
system will be to counteract disturbances, the perturbed
system, where ||Eω(t)|| 6= 0, must be shown to be robust.
That is, small disturbances will not result in large steady-
state deviations from the equilibrium. The perturbations
affecting the vessel are time dependent, and do not stop
as the system reaches it’s equilibrium point, thus the
perturbations can be seen as non-vanishing. This means
that we can no longer expected the system to converge at
the origin as t→∞. The best we can hope for is that the
system response will be bounded by some small bound,
if the disturbance is small, Khalil 2014. The closed loop
perturbed system can be written as

ẋ(t) = Aclx(t) +Eω(t) +Bβ (21)
The Lyapunov function candidate for the system, V (x), is
set as

V (x) = xTPx (22)
Differentiating V (x) with respect to time will provide an
expression for the direction of the trajectory of the system.
Thus if V̇ (x) is negative for all x, the system will be stable.
V̇ (x) can be derived as

V̇ (x) =xTP ẋ+ ẋTPx

=− xTQx+ xTPEω + ωTETPx
(23)

where
−Q = PAcl +Acl

TP (24)
Equation 24 is called the Lyapunov equation. If there
exists a solution for the Lyapunov equation where both
P and Q are square positive definite matrices, that is
P = P T > 0 and Q = QT > 0, then V̇ (x) for the
unperturbed will be negative, and the system will be

stable. Since the system is perturbed, Q must satisfy the
inequality shown below.

−Q ≤ PEω + ωTETP (25)
Values for P and Q can be calculated from the unper-
turbed system. Given that the values for the disturbance,
ω, are small enough to satisfy the inequality in 25, the
perturbed closed loop system will produce a bounded
response. Lemma 9.2 in Khalil 2014 can be applied as the
nominal system has exponential stability about x0, and
because the Lyapunov function candidate for the nominal
system, chosen in 22, satisfy the inequalities 26 through
28 for [0,∞) × D, where D = {x ∈ Rn | ||x|| < r}.
Thus Lemma 9.2 states that the the system response will
be bounded by b, following ||x|| ≤ b.

c1||x||2 ≤ V (x) ≤ c2||x||2 (26)

∂V

∂x
f(x) ≤ −c3||x||2 (27)

∣∣∣∣
∣∣∣∣
∂V

∂x

∣∣∣∣
∣∣∣∣ ≤ c4||x|| (28)

4. NUMERICAL SIMULATIONS

The simulations are carried out in the environment ex-
pressed by the process plant model derived in Haukeland
2019. Zero perforating air leakage is assumed, i.e. all cham-
ber walls are considered solid. The focus of the numerical
simulations will be on control of roll and pitch. All the
simulations below will have a fixed bias of β = 42.8, which
corresponds to the equilibrium pressure, p0, for this vessel.
The control gains will be fixed as found in section 3. All
the tests will be simulated with and without the closed
loop controlled system, in order to generate comparative
data.

4.1 Pitch control

This section present results of numerical simulations where
the system is excited with waves described in Table 1.

Table 1. Wave description

Regular sea
Wave height, Ha 1 to 2.5 meters
Period, Tp 4 to 12 seconds
Direction, ψ 0◦

Regular oncoming waves generating only pitch momentum
are simulated to investigate the pitch-stabilizing properties
of the closed loop controlled system. Several test are
performed under the same conditions, but with varying
wave periods, Tp, and wave height, Ha. The comparative
results between the controlled and uncontrolled system
are displayed in table 2. The detailed results for one of
the simulations is displayed in Figure 3. The first plot in
the Figure above displays the controlled and uncontrolled
pitch angle for the simulation of Tp = 8s waves. The second
plot displays the valve openings of two adjacent cushions.
The bottom two graphs display the pressure with and
without control in one of the two aft and and one of the
two rear cushions, respectively. The uncontrolled pitch has
a maximum significant angle of 9.64 degrees, meaning that
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Fig. 3. Pitch angle, valve opening, cushion 1 pressure,
cushion 4 pressure, for a Tp = 8s wave.

one third of the largest pitch angles will be 9.64 degrees
peak to peak height or larger. The controlled pitch for the
same case, has a significant angle of 2.11 degrees. This
constitutes a 78.1% reduction of the significant peak to
peak pitch angle, and a reduction of roughly 7.5 degrees
from peak to peak.

Table 2. Significant angle pitch movement with
control OFF/ON

Tp Ha Hs-OFF Hs-ON Damping
4s 1m 3.17 0.783 75.3 %
5s 1m 3.72 0.804 78.4 %
6s 1m 3.98 0.855 78.8 %
7s 2.5m 9.64 2.11 78.1 %
8s 2.5m 9.08 2.05 77.4 %
9s 2.5m 8.53 2.03 76.1 %
10s 2.5m 7.94 1.95 75.5 %
11s 2.5m 7.48 1.92 74.3 %
12s 2.5m 6.98 1.84 73.8 %

4.2 Roll control

This section present results of numerical simulations where
the system is excited with waves described in Table 3

Table 3. Wave description

Regular sea
Wave height, Ha 1 to 2.5 meters
Period, Tp 4 to 12 seconds
Direction, ψ 90◦

The roll properties of the vessel is tested in the same way
as the pitch, with a regular wave, but coming from the
side. The closed loop roll movements of the vessel for one
specific wave period and height can be seen in Figure 4. As
with the pitch test, table 4 displays the overall results from
the varying wave height and periods. The uncontrolled
roll has a maximum significant angle of 15.0 degrees. The
controlled pitch for the same case, has a significant angle
of 2.51 degrees. This constitutes a 83.4% reduction of the
significant peak to peak pitch angle, and a reduction of
roughly 12.5 degrees from peak to peak.
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Fig. 4. Roll angle, valve opening, cushion 1 pressure,
cushion 2 pressure, for a Tp = 8s wave.

Table 4. Significant angle of roll movement
with control OFF/ON

Tp Ha Hs-OFF Hs-ON Damping
4s 1m 9.95 1.20 88.0 %
5s 1m 9.23 1.20 87.0 %
6s 1m 7.66 1.12 85.4 %
7s 2.5m 15.0 2.51 83.4 %
8s 2.5m 12.3 2.28 81.5 %
9s 2.5m 10.2 2.10 79.5 %
10s 2.5m 8.54 1.93 77.4 %
11s 2.5m 7.29 1.78 75.5 %
12s 2.5m 6.22 1.69 72.8 %

4.3 Roll and pitch control in irregular seas

The sea conditions tested in this section is given as in Table
5.

Table 5. Wave description

JONSWAP, irregular sea
Significant height, Hs 2.5 meters
Peak wave period, Tp Avg. 7 seconds
Wave heading, ψ 0◦ to 360◦ at 22.5◦ incre-

ments
Spectral peakedness, γ 3.3

A total of 18 simulations are presented in Figure 8. Half of
them are with control on, the other half with control off.
Each simulation is 500 seconds long. The aim is to test
simultaneous control of both pitch and roll in a realistic
sea-state, and document the efficiency of the controller in
various headings. The roll and pitch time series of the
controlled and the uncontrolled vessel for ψ = 135◦ can
be seen in Figures 5 and 6.
The over all reduction in roll for the 360 degree wave-
direction arch is 74.9%. Similarly, the error of the pitch
angle is reduced by 73.1%.
The radial plot in Figure 8 shows that for angles where no
roll or no pitch should occur, the control system tends to
increases the roll or pitch. This is because both pitch and
roll movement can be induced by the cushions via noise
or small amplified excitation forces. Figure 7 displays the
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Fig. 5. Roll angle with and without cushion control, ψ =
135◦.
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ψ = 135◦.
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Fig. 7. Roll and pitch angle power spectral density, ψ =
135◦.

power spectral density (PSD) of the roll and pitch angle
with and without active cushion control.

5. EXPERIMENTAL MODEL TEST

A scaled model of a SES design by UMOE Manadal AS
is built in SINTEF Ocean and a series of experiment
are carried out in SINTEF Ocean’s Laboratory (more
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Fig. 8. Roll and pitch angles for all headings. The angles of
the radial plot show ψ[◦]. The radius shows significant
roll and pitch magnitude.

test to be carried in near future). Fig. 9 shows the scale
model in SINTEF Ocean’s Basin. A soft mooring system
is designed to keep the model at center of the basin
without influencing the dynamics of the vessel. The Table
6 summarizes the wave description that was created during
the model test.

Fig. 9. Scale model SES in the ocean basin at SINTEF
Ocean.

Table 6. Wave description in experimental test

Regular sea
Wave height, Ha 2.5 meters
Period, Tp 8 seconds
Direction, ψ 180◦

The plot in Figure 10 shows the efficacy of a four cushion
scale-model SES that has been used for experiments in the
SINTEF Ocean’s ocean basin. To maintain the preserva-
tion of intellectual property rights, the scale of the y-axis
has been normalized on a scale of approximately 1 to -1.
The significant height of the uncontrolled pitching motion
on this normalized scale is 1.76. The corresponding sig-
nificant height of the controlled pitching motion is 0.663,
constituting a 62.3% reduction. This early experimental



results agrees with our numerical simulation. The experi-
mental results confirms high performance of split cushion
concept for motion regulation in SES.
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Fig. 10. Uncontrolled and controlled pitch movement in
2.5m, 8s head sea.

6. CONCLUSION

This paper presented active pitch and roll damping algo-
rithm for motion regulation in a Surface Effect Ship (SES)
with split cushion. The roll and pitch angles were reduced
as much as 13 and 7 degrees, constituting more than a
83% and 78% reduction, respectively. The roll damping
is especially efficient around the roll eigenperiod of the
vessel. The results are predicated on the assumption that
the cushion separation walls can be seen as solid. Early
experimental testing in the SINTEF Ocean’s Basin with
scale model of SES agrees with numerical simulations
studies and shows superior performance of split cushion
SES in motion regulation.
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