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Abstract

In this thesis, a method for determining Fractional Flow Reserve for quantification of functional
reduction in human coronary artery trees have been developed. The method has been produced
in the Computational Fluid Dynamics software ANSYS Fluent and is specialised to handle re-
constructed meshes based on Computed Tomography imaging. The goal was to produce similar
results as previously done in a semi-transient Finite Element Solver, but using Finite Volume
Elements and steady-state conditions. With a resistance analogy representing the hyperemic
conditions of the fluid flow in coronary artery trees. A linearly increasing bias is observed when
trying to simulate values lower then the cut-off value of 0.8, with a maximum observed error at
0.059. The method is performing well in 77 out of 78 available domains and with sufficiently
accurate results to be used for further research in diagnostic tools of Coronary Artery Disease.

Sammendrag

I denne masteroppgaven har det blitt utviklet en metode for å bestemme ”Fractional Flow Re-
serve” indeksen for kvantifisering av funksjonell reduksjon i menneskelige kransarterier. Meto-
den har benyttet seg av den strømningstekniske programvaren ANSYS Fluent, og er spesialisert
for å håndtere rekonstruerte domener basert på CT bilder. Målet har vært å reprodusere resul-
tatene fra en semi-transient løser basert på elementmetoden, men ved bruk av en tidsuavhengig
løser basert på volummetoden. Ved å kvantifisere strømningen basert på perifer motstand har
det lykkes i å reprodusere gode resultater i 77 ut av 78 tilgjengelige domener. En lineært økende
skjevhet er observert ved verdier under grensepunktet på 0.8, med en maksimal feil på 0.059,
men metoden er likevel treffsikker nok til at den kan benyttes videre i forskning på diagnoseme-
toder for koronarsykdom.

i



Table of Contents

Preface 1

Abstract i

Sammendrag i

Table of Contents iii

List of Figures iv

List of Tables v

Abbreviations vi

1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Simplifications and setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Rigid domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Steady-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Laminar flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.4 Newtonian fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.5 Resistance analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.6 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 6
2.1 Coronary physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Collateral circulation and arteriogenesis . . . . . . . . . . . . . . . . . 8
2.2 ANSYS Fluent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 3D Flow in pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Method 10
3.1 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 3D test-case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Preparation of User Defined Functions . . . . . . . . . . . . . . . . . . 11
3.3 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Tetrahedral vs Polyhedral cells . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Patient specific coronary arteries . . . . . . . . . . . . . . . . . . . . . . . . . 12

ii



3.4.1 Mesh independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 Simulation pipeline for each coronary artery tree . . . . . . . . . . . . 13
3.4.3 Reading domain and setting boundaries . . . . . . . . . . . . . . . . . 14
3.4.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.5 Batch setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.6 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.7 Hyperemic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Results and Discussion 17
4.1 3D test-case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Preparation of the User Defined Function . . . . . . . . . . . . . . . . 18
4.2 Patient specific geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Mesh independence study . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3 Hyperemic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.4 Diagnostic relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Conclusion 26

6 Further work 27
6.0.1 Complete the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.0.2 Reverse the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.0.3 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.0.4 Mesh improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendix 32

A Mesh generation 32
A.1 Meshing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

B Simulation files 34
B.1 File generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
B.2 Simulation journal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.3 User Defined Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B.4 Slurm queue file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.5 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

iii



List of Figures

1.1 FFR measurement with pressure wire . . . . . . . . . . . . . . . . . . . . . . 2

2.1 The human heart, as seen from the front . . . . . . . . . . . . . . . . . . . . . 6

3.1 Meshes used for test-case simulation. From right to left: structured, tetrahedral,
re-meshed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 FFR pipeline with the software used for the action (CT image from ). . . . . . . 13
3.3 Example of surfaces created from the domain information. . . . . . . . . . . . 15

4.1 Velocity profile for the structured mesh and pressure drops for all mesh types. . 17
4.2 Comparing polyhedral baseline simulation with the FEM results (D=Mean dif-

ference, SD=Standard deviation, S=success, F=Failed). . . . . . . . . . . . . . 19
4.3 Deviations for resistances in tetrahedral(left) and polyhedral (right). . . . . . . 20
4.4 Comparing resistances calculated based FEM and FVM simulations (D=Mean

difference, SD=Standard deviation, S=success, F=Failed). . . . . . . . . . . . . 22
4.5 Comparing the flow set with (Pi − Pv)Rρ

i and PiR
ρ
i . . . . . . . . . . . . . . . 22

4.6 Comparing tetrahedral hyperemic simulations with FEM results (D=Mean dif-
ference, SD=Standard deviation, S=success, F=Failed). . . . . . . . . . . . . . 23

4.7 Comparing polyhedral hyperemic simulations with FEM results (D=Mean dif-
ference, SD=Standard deviation, S=success, F=Failed). . . . . . . . . . . . . . 23

4.8 Comparing polyhedral hyperemic simulations with clinical results. Notice the
scale is different on the Bland-Altman plot (D=Mean difference, SD=Standard
deviation, S=success, F=Failed). . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



List of Tables

1.1 Software packages used in different parts of this work (ITK-SNAP = Insight
Segmentation and Registration Toolkit, BM = Research group of Biomechanics). 5

3.1 Overview of simulations and purpose (UDF = User Defined Function, PS =
Patient Specific, MI = Mesh independence). . . . . . . . . . . . . . . . . . . . 10

4.1 Difference in FFR from the four meshes (D = Mean difference, SD = Standard
deviation, Max = Max difference) . . . . . . . . . . . . . . . . . . . . . . . . 19

v



Abbreviations

1D-0D = Reduced order 1 to 0 Dimensional
2D = Two Dimensional
3D = Three Dimensional
ANSYS = Software package for numerical simulations
BM = Reasearch group of Biomechanics
CABG = Coronary Artery Bypass Graft
CAD = Coronary Artery Disease
CCTA = Coronary Computed Tomography Angiography
CFD = Computational Fluid Dynamics
CFFR = Computational Fractional Flow Reserve
CO = Cardiac Output
CT = Computed Tomography
FEM = Finite Element Method
FFR = Fractional Flow Reserve
FVM = Finite Volume Method
ITK-SNAP = Insight Segmentation and Registration Toolkit
HPC = High Performance Computing
ICA = Invasive Coronary Angiography
LM = Left Main artery
MD = Mean Difference
MSH = Fluent mesh type
NS = Navier-Stokes equations
OMT = Optimal Medical Therapy
OpenFOAM = Open source Field Operation And Manipulation
PCI = Percutaneous Coronary Intervention
Re = Reynolds number
RM = Right Main artery
SA = Sensitivity Analysis
SD = Standard Deviation
SIMPLE = Semi-Implicit Method for Pressure-Linked Equations
TAG = Transluminal Attenuation Gradient
UDF = User Defined Function
UQ = Uncertainty Quantification
VMTK = Vascular Modeling ToolKit
VTK = Visualization ToolKit

vi



Chapter 1

Introduction

1.1 Background and motivation
In 2016 the World Health Organisation reported 56.9 million deaths in the world. Ischaemic
heart disease [1] caused 9.4 million of these deaths. The most common cause for this is Coro-
nary Artery Disease (CAD). Improvements in the diagnosis and treatment of this disease will
have a massive impact on both general health and fatality rate in the population. CAD is often
materialised as stenotic regions in the coronary arteries in the heart. Stenosis describes a region
where the diameter of the vessel has been reduced or obstructed, either by a buildup of fat,
cholesterol or other waste products. The Fractional Flow Reserve index (FFR) is considered
the gold standard for diagnosing patients suffering from stable CAD [2], and gives a good in-
dication whether the artery is supplying enough blood flow to sufficiently support the muscles
of the heart or not. The index is the ratio of pressure upstream and downstream of the stenotic
region, namely the arterial P̄a and distal pressure P̄d. The measurements are obtained with a
pressure wire, as can be seen in Figure 1.1. When measuring the index, one first has to induce a
hyperemic state of flow, which is a state of maximum coronary flow. Finally, the measurements
are averaged over a series of heart cycles as [3]

FFR =
P̄d
P̄a
. (1.1)

The threshold value is 0.8 [4] and an FFR value lower than this would indicate that the artery
has functionally significant stenosis, meaning further exploration of the patient is necessary to
determine the correct treatment [5]. If the value is above 0.8, the standard action is to advise
Optimal Medical Therapy (OMT)1. When OMT is the preferred action, the patient has already
been through the invasive procedure of measuring coronary pressure, hence exposed to un-
necessary risk and discomfort. To improve patient satisfaction and reduce the overall cost of
medical procedures, the possibility of making these measurements with less invasive procedures
is preferred. Here Computational FFR (CFFR) has been introduced as a very promising option
[6]. Using advanced image techniques within Computed Tomography (CT), a reconstruction
of the coronary arteries can be the basis of Computational Fluid Dynamics (CFD) simulations.
With these simulations, one can predict the result of invasive pressure measurements with far
less invasive procedures, making it possible to exclude many patients from costly and straining
procedures.

Deferring patients from further surgery can mean as much as 30% reduction of cost and 12%
fewer cardiac events [8]. The potential gain when applying this to a global scale is massive.
Similar values have also been found by HeartFlow2, where they report a 26% reduction of cost,
though including their cost of $1500 to produce the CFFR results.

1Treatment with medication or physical activity that can reduce risk factors
2Largest commercial actor using CFFR as a diagnostic tool
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Chapter 1. Introduction

Figure 1.1: FFR measurement with pressure wire [7].

The statistics presented earlier discusses CAD as a whole, but the usage of FFR concentrates
mainly around the diagnosis and treatment of stable CAD. Here the reduction of function and
increase in pain is mainly caused by obstructions. It is also differing from more acute conditions
were inserting a pressure wire is more likely to cause myocardial infarctions or acute pain. Also,
the likelihood of deferring someone in an acute condition is low, which reduces the potential
gain significantly.

When it comes to stable CAD, the evidence base for FFR as a predictor is strong [2, 4, 9, 10,
11, 12], and both American and European guidelines for diagnosis and treatment of CAD [5, 13]
have acknowledged FFR as an important diagnostic tool. Where FFR is mainly proposed as a
test to check whether revascularisation 3 is the preferred action. The most common methods
of revascularisation include Percutaneous Coronary Intervention (PCI)4 and Coronary Artery
Bypass Graft (CABG)5. These two methods are both heavily invasive and cause a greater risk
of harm when performed, therefore only preferable when OMT is not an option for lasting
improvement of the condition.

Introduced in 1993, FFR is still a rather new tool in the medical world. As the rundown by
Pijls. et al. [14] shows, there are multiple challenges and pitfalls when trying to determine the
index. It also requires somewhat expensive equipment, and skilled practitioners to ensure that
the results are correct. These are some of the reasons why it has not taken preference in the
medical community. A study from 2014 [15] showed that from 72% of the respondents, there
was only about 1/3 of the cardiologists that used FFR to guide their decision to perform PCI
surgery. The rest did not use it at all. This was backed up in 2015 [16], where FFR was reported
in only 10% of cases where PCI was the resulting treatment. Showing that there is a need for
simplification of the process, and CFFR can be the simple solution to the complex problem.
By breaking down the different factors of coronary and myocardial physiology, a more holistic
approach to the current state of the patient can be achieved. When enough knowledge about
the individual physiology of the patient is available, the chances of giving a correct diagnosis
increases.

1.2 Objective

There is still much work that needs to be done to have a complete understanding of how individ-
ual factors determine the uncertainty in the computational models that are being used to predict
FFR.

3Invasive surgery to open up the artery in question or bypass the obstructed section.
4Inserting a stent in the artery to increase the diameter and mitigate the flow.
5Moving part of an artery (mainly from the leg) inserting across the stenosis

2



1.3 Simplifications and setup

This thesis will be looking at ways of simplifying the use of CFFR by improving the knowl-
edge of the methods, and also adding to the available tools for prediction. The project is in
collaboration with the Research group of Biomechanics (BM) at NTNU who is working on
implementing a model-based method for FFR determination [17]. With a reduced order model
(1D-0D) FFR predictions can be performed with minimal computational effort. As current
methods often require a full three dimensional (3D) transient simulations there is a lot to gain
on reducing the complexity without losing the validity of the method. In their work, a 3D solver
based on the Finite-Element Method (FEM) [18] has been produced and is used to validate
the results from the 1D-0D solver. To enhance the validity of this solver, and possibly reduce
the computational power required to perform the simulations, a steady-state solver based on
the Finite Volume Method (FVM) will be utilised to solve the same problem. Results will be
compared against the clinical values as well as the FEM results.

1.3 Simplifications and setup
A simple model has the above discussed benefits in terms computational time, however it is
important that the simplifications does not compromise accuracy. A discussion on the relevant
simplifications follows.

1.3.1 Rigid domain
The first assumption is that the domain is not moving. During one heart cycle, the muscular
arteries are expanding and contracting to ease the movement of blood through the domain. In
a 3D simulation, this type of fluid-structure interaction would be immensely computationally
intensive and not preferable. The effect of moving artery walls have been looked into previously
[19] when it comes to blood flow in the brain, and specifically related to brain aneurysms. They
found that personalised methods and compliant tubes showed no difference in the resulting
flow conditions. Related to FFR the same can be found when working with rigid and compliant
tubes [16]. When working in 1D-0D, the radius of a tube is just a property, and changing this
to accommodate the elastic effects of pressure change is much easier. However, this will not be
implemented here when working in 3D.

The domain

The resolution of Computed Tomography (CT) scans limits recreation of arteries with diameter
much smaller than 1 mm, which gives a natural restriction on the size of the domain. This is
problematic, since it is the smaller arteries which has the ability to expand, and thus regulate
the supply of coronary flow, through the resulting change in peripheral resistance. This is an
important feature of coronary circulation and has to be incorporated through boundary condi-
tions. However, studies show that the vasodilating abilities of an artery downstream of stenosis
might be reduced due to the stenosis [20, 21]. While the stenosis is growing more significant,
the downstream arteries are attempting to reduce the peripheral resistance by expanding in size.
Therefore when attempting to dilate these arteries chemically in the clinic, they might already
be experiencing maximum hyperemic conditions. Also, much of the blood flow might be redi-
rected through collateral arteries, as will be explained in Section 2.1.1. All of these effects
are attempted to be covered by the resistance analogy in Section 1.3.5, incorporating it in the
peripheral resistance of the coronary tree.

3



Chapter 1. Introduction

1.3.2 Steady-state
Next, the simulation will be steady-state. There have been some studies indicating that steady-
state should suffice when reproducing the FFR results [22, 23]. Since the FFR index is an
average value over many heart cycles, it is reasonable that the simulations also manages to
represent the flow as an average value. This thesis attempts to support that conclusion with
more data on a large patient population.

1.3.3 Laminar flow
With the complex geometries, the nature of the flow could be approaching turbulent conditions.
With regular flow conditions in a left main (LM) artery the average velocity is U = 0.140m/s
and the average diameter is D = 4.5mm [24, 25]; this gives a Reynolds number of 189 at the
inlet. The flow is therefore clearly laminar at the inlet. However, the regions where the flow
might become turbulent is in proximity to the area with stenosis which should be looked into.

1.3.4 Newtonian fluid
Blood is considered a shear-thinning Non-Newtonian fluid [26], but this is most prominent when
the flow is passing through smaller vessels. When simulating the flow through the coronary
arteries, the Non-Newtonian effects are minimal and can therefore safely be neglected [6].

1.3.5 Resistance analogy
With a real heart in maximum hyperemic condition, the peripheral resistance of the coronary
tree is the most important factor in the flow and pressure relation. The difficult part is to incor-
porate all the important factors influencing the peripheral resistance. Therefore the resistance
is based on the pressure and flow at the outlets. Thereby catching as much of the peripheral
effects as possible. The relation is based on Ohm’s law, and can be stated as

Ri =
Pi − Pv
Qi

, (1.2)

where Pi is the outlet pressure, Pv = 5mmHg = 666.61Pa is the venous pressure, Qi is the
calculated volumetric flow at the given outlet. Resulting in a resistance Ri for each outlet that
can be used to simulate hyperemic conditions.

1.3.6 Tools
Several different softwares will be utilised to perform the operations outlined in this chapter.
They can be seen in Table 1.1 together with the purpose they will be serving in relation to this
thesis.

4



1.3 Simplifications and setup

Software Purpose Where
OpenFOAM CFD Simulations Project
ITK-SNAP Geometry segmentation BM

Vaskular Modelling ToolKit Meshing and surface handling BM
Visualization Toolkit Filehandling and visualization BM
ANSYS SpaceClaim Geometry generation & meshing Thesis

ANSYS Fluent CFD Simulations & meshing Thesis
Matlab Post-processing Thesis
Python Filehandling and postprocessing Thesis

Table 1.1: Software packages used in different parts of this work (ITK-SNAP = Insight Segmentation
and Registration Toolkit, BM = Research group of Biomechanics).

5



Chapter 2

Theory

When simulating what is happening inside human hearts, there is a limitation to what types of
values that can be measured in a clinic. Therefore the amount of validation data is also quite
limited. With this in mind, the theory behind the models will be presented in this chapter to
ensure valid and trustworthy results in the end.

2.1 Coronary physiology

First an introduction to the coronary circulation system of the heart. The two main coronary
arteries of the heart are the Right Coronary Artery (RCA) and Left Coronary Artery (LCA) often
denoted also as Right Main (RM) and Left Main (LM). They comprise the vascular system of
the heart and are providing blood to the muscles of the heart. An example of a heart with the
most important names is shown in Figure 2.1.

Introducing the knowledge of human coronary arteries, the most notable historical develop-
ments have been outlined by Jos A. E. Spaan in collaboration with several others in the book
Coronary Blood Flow: Mechanics, Distribution, and Control [27], which was released in 1991.
This book outlines the developments from the 1600s until 1990 and gives a good background
for the interested reader. A summary was also given in the project work [28]. Here the focus
will be on the LM and RM arteries and following the branches until they get close to the mi-
crovascular circulation. Going this far will be sufficient to understand FFR and its relation to
stable CAD [29] and these larger branches will be possible to reconstruct using CT; specifically
Coronary Computed Tomography Angiography (CCTA).

With the reconstructed artery tree, the work on representing the physics of the flow is the
next step. The different ways to proceed have been discussed thoroughly in the thesis by Bulant

Figure 2.1: The human heart, as seen from the front [30].
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2.1 Coronary physiology

[6]. The chosen method here is using Ultrasound, measuring the amount of blood the heart is
pumping out, namely the Cardiac Output (CO) and then distributing this to the peripheral areas
of the coronary artery tree. Only a small fraction of the CO is entering the coronary arteries.
With the presence of one dominant side of the heart and normal values for flow distribution into
the arteries, one can describe the amount entering the correct artery based on values calculated
from a normal population [24, 25]. When representing the bifurcations in the arterial tree, the
most common method is Murray’s law. Proposed in 1926, the principal of minimal work relates
the flow Q in an artery directly to the radius r of the vessel, where Q ∝ rc and c is Murray’s
exponent [31, 32]. With an average value for CO, this is can be distributed to the peripheral
vessels.

The BM group have tried to determine what factors effet their model the most. This was
done through an Uncertainty Quantification (UQ) and Sensitivity Analysis (SA) of the setup
[33]. This showed that the most important factors were the calculation of the CO, the distribu-
tion of the flow in the peripheral vessel λcor and the reduction factor α. These values were the
three most influential values, with the reduction factor giving the strongest effect.

In this thesis, only one method for determining CO and λcor will be used, with only one
value of α. With most of the uncertainty coming from what happens in the creation of input
parameters, it is even more important to assimilate the FEM results, instead of the clinical ones.
The goal of developing a 1D-0D model is that improving the patient-specific parameters will be
a lot easier when the simulations complete in seconds and not minutes or hours.

With a study showing how important the factors influencing flow can be, a new method for
calculating the flow distribution was tested, namely Transluminal Attenuation Gradient (TAG).
This method has been proven to give even better results in FFR [34], and showed promise
when implemented into this model as well. TAG is based on the gradient of contrast fluid,
which is observed when propagating in the coronary tree. The concentration of contrast fluid is
directly proportionate to the attenuation of the intensities of the CCTA. Therefore it is possible
to measure a gradient propagating in the artery tree. This gradient can then be used to calculate
how much of the flow is exciting through each outlet. The simulations and FEM results for
comparison in this thesis are all based on this calculation.

Clinically measuring FFR

There are also several uncertainties in the values that are measured on patients. Clinical results
will not be a large part of this thesis, but some comparison is relevant, and therefore also some
theory on how certain the methods of gathering data are.

As explained in Section 1.1, there are several ways of getting the wrong values when mea-
suring pressure drops on live patients. The clinical values gathered to support this work is all
performed by skilled practitioners and with sufficiently new equipment [33]. Therefore it can
be assumed that all the known ways of improving the accuracy of the measurements are already
in place. Looking at the factors that cannot be changed, the uncertainty of the measuring tool
[35] is within the range of ±3 mmHg= 400Pa which is not critical when values are low, but
with FFR in the area around the cutoff value of 0.8, this could be of clinical importance. Then
the pressure wire itself, as this is an intrusive method of measuring, the presence of the wire
can alter the state of the flow quite significantly. This alteration is not something that can be
quantified here but should be looked into when expanding the knowledge of the model and its
relation to clinical data.

When it comes to repeatability of the measurements, it has been shown that by using an

7



Chapter 2. Theory

algorithm for extracting the minimum value of FFR, the measured values are highly repeatable
when measuring the same vessel twice during one intervention [36]. The study showed that the
results were even valid when the patient did not experience a stable hyperemic state. However,
the method could be automated to extract the FFR values based on pressure tracing that was
done during the procedure.

2.1.1 Collateral circulation and arteriogenesis

Continuing with the understanding of the heart. The heart in itself has some effects that are
difficult to model and quantify. With reduced flow in one artery, the heart can expand the
network of smaller vessels to redirect the flow to the affected areas [21], this is called collateral
circulation. The phenomena has also be seen in infant’s hearts, meaning it is not only a result of
obstructed arteries. However, the extent of the collateral vessels is much greater in the presence
of a stenosis. It is an important feature of the heart to reduce fatality when experiencing an
infarction. As these collateral vessels can develop over some time, and during an infarction, the
collateral vessel can dilate momentarily and mitigate the reduced blood supply. If the obstructed
artery is still hampering flow after the infarction, they can increase in size and become muscular
arteries. If they later become a regular part of the vascular system, it is termed arteriogenesis.
This thesis will not be covering vessels of that size, but it is notable when it comes to functional
reduction. Moreover, it is important to know about the ability of the heart to mitigate the loss
of blood in one location by redirecting it through other vessels.

2.2 ANSYS Fluent
In this thesis, ANSYS Fluent was chosen as the preferred CFD-solver. As this is commercial
software, the framework is not open to the public. Nonetheless, the solver has been thoroughly
validated, and as long as the setup is reasonable, it should be covered by the Theory Guide [37].
The solver is based on the Finite Volume Method (FVM) making it readily available for handling
unstructured meshes of complex geometries [18]. With a simple batch-based language, going
from one or two functional simulations to adapting it to a population of similar simulations will
be rather simple. It is based on the programming language Scheme, which is a dialect of Lisp,
and passes the arguments linearly.

There is also the option of using polyhedral meshes. A conversion method maintains the
domain boundaries, but reduces the number of total cells by a factor of around 6, thereby im-
proving the runtime of the simulation substantially. Fluent can handle both external polyhedral
meshes, but also convert meshes and combine the cells to construct a polyhedral mesh.

The software provides a pressure based solver, and a density based solver. In the pressure-
based solver a projection method is used to ensure continuity by solving a pressure correction
equation. The governing equations are nonlinear and coupled together. Fluent provides two al-
gorithms for solving this system. Either the segregated way based on the Semi-Implicit Method
for Pressure Linked Equations (SIMPLE) algorithm [38] or a direct solver where the system is
coupled. In the segregated algorithm the equations for each variable is being solved sequen-
tially, then the pressure correction equation is solved and finally updating the fluxes, pressure
and velocity. In the coupled solver, a system of momentum and pressure-based continuity is
solved simultaneously, then mass flux is updated afterwards. The convergence rate of the cou-
pled solver is higher than the segregated solver, but uses 1.5-2 times more in memory allocation.
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In the density based solver, there is only a coupled option for solving the equation. There is
rather the question of solving the equations implicitly or explicitly. Explicit being solved purely
based on known variables, and implicit being solved with variables that are unknown and rather
determined iteratively within each iteration.

2.3 3D Flow in pipes
To validate the setup, the analytical solution of laminar flow in straight pipes is a good way of
starting. In the project work [28], both 2D and 3D flow in pipes were explored. Here only 3D
flow will be the focus, and at first a straight pipe with the lengthwise direction along the z-axis.
As this flow is assumed to be steady, Newtonian, laminar and flowing through a rigid domain,
the Navier-Stokes equations (NS) in cylindrical coordinates are reduced to

µ

r

d

dr

(
r
duz
dr

)
= −dP

dz

1

µ
. (2.1)

Where uz is the axial velocity, dP
dz

is the change in pressure along the z-axis, r the radial
position, and µ is the dynamic viscosity. Integrating and simplifying this relation gives an
analytical expression for the axial velocity profile [26]

uz(r) = −
(
dP

dz

)
1

4µ

(
R2 − r2

)
, (2.2)

where R is the pipe radius. This is called Hagen-Poiseulle flow and has a parabolic shape and
the maximum velocity is located at the centre where r = 0. Integrating over the pipe area and
rearranging, gives an expression for the pressure gradient along the pipe based on the total flow,

dP

dz
=

8µQ

πR4
, (2.3)

where Q is the volumetric flow. This relation can be used to validate the solver and setup
by looking at the change over a specific length of the pipe when the flow is fully developed.
However, the entrance effects of going from a plug profile until the flow is fully developed will
effect the flow. With laminar flow the entrance length is correlated with the Reynolds number
as [39]1

Le ≈ 0.05Re ·D = 0.05
ρūD2

µ
, (2.4)

where ρ is density, ū is the average velocity, µ is the dynamic viscosity and D the diameter.

1Here [39] and [26] disagree on whether it is 0.05 and 0.06. The edition of [39] referred to newer studies and
was therefore chosen.
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Method

A summary of different simulations that will be performed is provided in Table 3.1 to give an
overview of what is to be performed during this thesis.

Simulation Purpose
3D test-case Understand Fluent, prepare UDF
PS Baseline Create setup, calculate resistances

PS Baseline MI Check convergence of results
PS Baseline Res Verify resistances
PS Hyperemic Develop robust setup

Population PS Hyperemic Validate and verify batch setup

Table 3.1: Overview of simulations and purpose (UDF = User Defined Function, PS = Patient Specific,
MI = Mesh independence).

3.1 Solver
During the project work, an attempt was made to solve the same problem using OpenFOAM
[28]. Unfortunately, this did not seem to produce satisfactory results with the geometries and
setup. Therefore a commercial solver was chosen, as it is assumed to have a more complete
package to approach the problem. The opportunities are limited to what NTNU software can
provide. Here, ANSYS package covers all CFD areas this project would need. Within ANSYS
there are two main solvers for regular fluid flow: CFX and Fluent. The original solver of the
BM group is based on FEM. Choosing a FVM solver will then increase the difference between
the two solvers. Therefore achieving the same results will be even more conclusive. As CFX
is based on FEM, Fluent was chosen as the solver. In a similar setup [34], ANSYS Fluent has
also given reasonable results in simulating coronary blood flow.

When the solvers were developed, the pressure-based was intended for lower velocities, and
incompressible flows and the density-based for higher velocities and compressible flow. Lately
they have been rewritten to handle all flow regimes, but to reduce the scope of this work only
the pressure-based solver will be utilised.

Ensuring that solver has the most efficient and robust setup, the two different ways of cou-
pling pressure-velocity schemes were tested. First, a direct way of solving pressure and velocity
is with a coupled system, which is more memory heavy and requires more computational power
for each iteration. Next, the SIMPLE was tested for increasing the simplicity of the solving but
looses some robustness as it might oscillate more before a correct solution is found. The setup
is similar to the one used in the previously mentioned study when using the coupled solver.
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3.2 3D test-case

When working with the 3D test-case, the meshes could be created based directly on precise
geometry provided from ANSYS SpaceClaim. Meshes were created in both hexahedral and
tetrahedral base elements. These were then tested with different boundary conditions to check
internal and boundary effects. Later the tetrahedral mesh was re-meshed using the meshing
tool of Fluent. Here the surface and interior are being re-meshed using scoped sizing functions.
Then by plotting the pressure drop over the length of the pipe, and the velocity profile at dif-
ferent positions, the boundary effects and development of flow profile could be inspected and
compared to the analytical solution. The domain was initially 50mm long, but when calculating
the entrance length using Equation 2.4, Le = 0.03 = 30mm, which would indicate that the
Hagen-Poiseuille profile would only be observable after more than half of the domain. There-
fore a pipe with 100 mm in length was also tested to see if it effected the solution. Figure 3.1
shows a cross-section of the different types of meshes that were used. When trying to test the
re-meshed properties the tetrahedral meshes were tested with very refined meshes to ensure that
no mesh effects would affect the solution when looking at the properties of re-meshing.

Figure 3.1: Meshes used for test-case simulation. From right to left: structured, tetrahedral, re-meshed.

3.2.1 Preparation of User Defined Functions

When working out an understanding of how to use a ”User Defined Function” (UDF), the trial
and error phase is much easier to apply when the mesh is simple and completes the simulations
in seconds. Therefore the initial work of UDF preparation was done with the 3D test-case.
The base language for UDF writing is C, and the UDF can be either compiled or interpreted
to work with the solution. Compilation requires more time to introduce but saves time when
running the simulation, therefore the preferred method. Besides, when moving the simulation
between Windows, Linux and Linux clusters, the safer option is to use compilation as this will
be adapted to the operating system in question.

3.3 Mesh generation

When setting up the mesh independence study, the goal was to be able to read the surface
geometries generated using Insight Segmentation and Registration Toolkit (ITK-SNAP) and
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Vascular Modelling Toolkit (VMTK) modules, but re-mesh the surfaces and volumes with AN-
SYS software. The meshes were provided with tetrahedral cells and also as a more generalised
surface geometry.

Working with this on different test-cases, the tools to perform mesh independence based on
several factors were developed. The different meshes were tested to figure out what was pos-
sible to create using both Fluent Meshing and ICEM Meshing. However, none of the resulting
meshes managed to extrapolate the bounding surfaces and re-mesh independently of the initial
tetrahedral surface. It was making the new mesh only internally re-meshed, and did not increase
the precision of the bounding surface. The internal mesh was possible to change, but without
refinement at the boundary, the chances of improved results were small. Therefore, it was not
possible to provide this method in the scope of this project, especially when the solution had to
be possible to automate to handle an arbitrarily shaped coronary tree. More on the scripts and
journals that was produced can be found in Appendix A.

3.3.1 Tetrahedral vs Polyhedral cells
During the setup of the simulations, the initial solution was based on using the tetrahedral
meshes directly and running the simulations on these. However, as the project developed, the
use of polyhedral cells gained preference in many ways. Firstly for the speed of calculation, as
the number of cells is reduced by almost a factor 6. With this reduction, a faster convergence
is observed as well, as the matrix sizes are reduced. After some testing, it was also observed
that the robustness of the solver also increased with polyhedral cells. Therefore a comparison
between tetrahedral and polyhedral cells will also be presented.

3.4 Patient specific coronary arteries
The rest of this chapter will explain the different parts of the pipeline for determining FFR
values. With initial parameters prepared for the FEM solver, running the case, and presenting
the final result of the solution.

With a working 3D test-case, the simulations can be expanded to include full patient-specific
geometries. Starting with the Pilot 1 vessel as a benchmark for the setup. With six outlets, the
simulation complexity is significantly increased. Different tests were performed with the Pilot
1 case to make sure that the setup is robust. This case was chosen as a starting point because it
had most of the challenges this kind of simulation should manage, which was necessary when
the different aspects of Fluent were to be tested. The complete procedure of determining FFR
is given in Figure 3.2 and the parts that are performed in this project are given in Section 7.

3.4.1 Mesh independence
With no opportunity to do the mesh independence study solely based ANSYS packages, ref-
erence meshes produced with VMTK were utilised to test the converge based on mesh size.
VMTK uses an edge length factor lf as the basis for deciding cell sizes in the mesh generation.
The domain is also altered to smooth the surfaces, and extend the inlet and outlets to reduce the
boundary effects. Here the meshes have been extended with a length equal to two diameters of
the boundary surface. During the early stages of the research on reduced-order models, a mesh
independence study was performed on similar meshes that will be used in this thesis [40]. In
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3.4 Patient specific coronary arteries

CT imaging Domain reconstruction Baseline simulation

Resistance calculation Hyperemic simulation Plot results

External PythonFluent

Figure 3.2: FFR pipeline with the software used for the action (CT image from [33]).

the previous study, necessary refinement level was set to lf = 0.21. Four different levels of
lf = [0.15, 0.18, 0.21, 0.25] were provided for the Pilot 1 mesh, to test the mesh independence
of the solution in Fluent and was used in the same way.

3.4.2 Simulation pipeline for each coronary artery tree
1. Read discretised domain

2. Set boundary conditions

3. Baseline simulation

4. Calculate resistances

5. Reduce resistances by a factor α = 4

6. Hyperemic simulation

7. Plot FFR results

The preferred way is to perform the entire pipeline only on self-sustaining parameters so that
there is no dependency to the 3D FEM solver. Therefore the baseline simulation needs to be
performed even though the values for outlet resistances are present in the configuration files for
the hyperemic simulations.

The value α = 4 is one of the critical parameters in the FEM solver setup, defining the
total reduction in peripheral resistance when inducing hyperemic conditions. During the UQSA
study, this was proven to be the most important parameter as it defines how the artery expansion
is being controlled.
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3.4.3 Reading domain and setting boundaries
Conversion from Visualization Toolkit (VTK) to Fluent mesh (MSH) is necessary to read the
mesh. During this conversion, the numbering of the surfaces is going from 1-9, then starting
on a-f, then continuing further with 10-N. As long as the number of outlets was lower than 10,
everything worked fine. However, for N>10, the indexes had to be manually changed to follow
a normal numerical order from 1-N.

When setting inlet pressures for Fluent, the only option is to set it as a total pressure

Pt = Ps +
1

2
ρU2. (3.1)

For a controlled flow, this is a typical setup when measuring flow, but when measuring blood
pressure, it is normal to get the static pressure. The total flow is known through the configura-
tion, leaving inlet area as the only thing missing for the calculation. If the simulations are to be
completely independent, with no values extracted from the FEM solver, this needs to be taken
from somewhere else. Therefore an average value for all vessel was chosen based on a popu-
lation average [24] giving a standard LM artery diameter of 4.5mm. This results in an average
area of 1.590e-5 m2. The other option would be to write this as a UDF setup that can be run
in the beginning and calculate the total pressure based on the actual inlet area. One could also
argue that getting the radius from the FEM file is not a result, but rather a preparation similar to
the one that has been done to get the outlet flows. Thus the radius at the inlet can also be used
to set specific inlet pressure.

3.4.4 Post-processing
To be able to sample the pressure values at the correct positions in the domain, the FEM solver
is registering flow and pressure in cross-sectional areas in the domain. When working with
Fluent, there is no automatic way of doing this. The closest option is using bounded planes
that are created using a parallelepiped function. The function to create the surfaces takes three
points and calculates a plane. With this function, bounded surfaces could be created based on
the input data and using the location of two following nodes and the given radius in the point.
The resulting planes with a multiplier for the radius of 3.2 can be seen in Figure 3.3. Here the
junction is without surfaces, and there are also some minor discrepancies where a plane extends
outside the desired artery. When checking for average pressure over all the points on the surface,
the deviation is rather small. One can also see some straight edges, as the bounded function is
not directly related to the outer edges of the artery. This discrepancy will cause some loss of
flow near the edges, but the most important value is the pressure. Therefore, it is assumed to be
sufficient. These planes are created before the simulation, enabling the opportunity to monitor
the development during runtime if necessary. With all the information prepared, it is combined
in the Fluent scripting language. Then it is printed out as a journal file that can do all of the
setups and run the simulation; either locally or on an HPC Cluster.

3.4.5 Batch setup
By testing the solver for a larger patient population the solver can be proved functional for
any patient. To connect the simulations, a database was provided with information on which
domains and results matched each other. A script was made to connect the information about
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Figure 3.3: Example of surfaces created from the domain information.

which simulation was related to which mesh and additional information necessary for the file-
handling. The same was done for connecting the correct baseline results with the hyperemic
setup. With this database, the mass-flow-rates and static pressure, as well as surface pointers
and other simulation specific information can be read from the correct configuration file.

Each simulation is not running for long, but with 78 simulations to run, it is natural to make
use of HPC resources. The system of simulations is therefore prepped to be run on the IDUN
cluster of NTNU [41] which is running a Slurm workload manager [42].

3.4.6 Baseline

With the journal setup of Pilot 1, the testing of different inputs was performed to ensure stability
before applying it to the entire patient population. The setup was written in Python and tested
for different boundary definitions, boundary conditions, physical conditions, solver parameters
and initialisation types. The results in the baseline simulations were compared to the values
extracted from the available FEM results.

3.4.7 Hyperemic

Resistance calculation

The calculation of resistances was explained in Section 1.3.5. The pressure and flow variables
will now be based on the results of the baseline simulations. When running tetrahedral simu-
lations, the resistances will be based on the tetrahedral baseline and the other way around for
polyhedral simulations. As the surfaces used for post-processing are not completely reliable for
the flow values, a native function was used to sample the values at the boundaries. This way,
average values for pressure and volumetric flow can be extracted precisely and used to calculate
the resistances.

UDF utilisation

The boundary condition is still going to be a set mass flow at the outlet, but with the resistance
analogy, it is no longer a constant value. The resistance is the constant, but the flow used as
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boundary condition is based on the runtime value of the pressure

ṁ =
Pi − Pv
Ri

. (3.2)

This method can be quite oscillating as the pressure value in each iteration is changing, as well
as the flow that it is supposed to be used as a boundary condition for. In the next iteration,
a new value for the flow has been set, and so on. Optionally, one can adjust the value at a
given number of iterations or to add a relaxation term to only change the value a little for each
iteration, thereby mitigating some of the effects. There are also several other ways to reduce
this. Within the scope of this thesis, there was a rather successful solution with the function
presented in Equation 3.2, and it was therefore not explored further. As the solver is working
with mass flow, but the calculation ofRi is done in volumetric flow, a conversion must be made,
then inverted to get a multiplication, this resistance is denoted Rρ

i . In the initial work this was
done by implementing

ṁ = PiR
ρ
i . (3.3)

Later it became clear that the FEM implementation also used the venous pressure when setting
the boundary conditions during runtime. The final implementation was then to set

ṁ = (Pi − Pv) ∗Rρ
i . (3.4)

Part of one UDF is given below, to show how the implementation is performed for one outlet.

#include "udf.h"
real pressureVenous = 666.61;
real resistance1 = 8.97469967043e-08;
DEFINE_PROFILE(mass_flow_1,t,i)
{

face_t f;
begin_f_loop(f,t)

{F_PROFILE(f,t,i) =(F_P(f,t)-pressureVenous)*resistance1;}
end_f_loop(f,t);

}

The UDF is utilising the built in functions of Fluent to read and set values. Here ”DEFINE PROFILE”
is a general macro to set boundary conditions, ”begin f loop” is looping over all the faces in the
thread that is the boundary and ”F P” is reading the pressure in the given face.

This procedure is then repeated for each outlet with an individual resistance, and adjusting
the boundary condition for mass flow in every iteration. The rest of the setup is identical to the
setup in the baseline simulations, and the script for producing it is the same. The only difference
is the writing of the C file to create boundary conditions and introducing the UDF compilation
and loading in the journal. The hyperemic cases can then be performed locally or on an HPC
cluster.

Some slightly simplified versions of the scripts have been added in Appendix B, to show
one full setup of a simulation.
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Results and Discussion

4.1 3D test-case

Starting with the test-case, the comparison with analytical solutions can be seen in Figure 4.1.
The theoretical entrance length is Le = 0.03m, and looking at the velocity profile plot, this is
aligning well at 30 mm. The profile at 50 mm is overshooting the theoretical. This overshoot
is related to the calculation of the velocity profile and the difference in the discretisation of the
domain. This difference in the area of the outlet is causing some discrepancies between the
theoretical calculations and the simulation results. If the actual area (calculated from the mesh)
is used in the calculation, the velocity profile aligns perfectly.

Looking at the plot of pressure in Figure 4.1, the inlet effects are depicted in the area between
z =[0, 0.02], after this one can see the change slowly approaching the theoretical linear solution.

Figure 4.1: Velocity profile for the structured mesh and pressure drops for all mesh types.

Since the entrance length and the pipe length is only 20 mm apart, a 100 mm pipe was also
tested. The drop in pressure continued along the straight line and is therefore not included.
This feature indicates that somewhere between 30-40 mm pipe would be enough to get a fully
developed profile and not influence the internal results.

Looking at the zoomed in part of the pressure plot, there is a clear difference in the outlet
pressure of the re-meshed surface. Where the original meshes are maintaining the straight line,
the re-meshed version is dropping at the last part of the domain. This discrepancy was another
reason to why the re-meshing of tetrahedral meshes was abandoned, as there were some un-
physical reactions when running with the same boundary conditions.
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4.1.1 Preparation of the User Defined Function

When preparing the UDF for running with the straight, it was a simple one-function based
setup where the programming for one outlet was written with the resistance from a previous
simulation. Here the venous pressure was not introduced, as the resistance in a straight pipe
is far less than in real vessels, and would therefore have changed the flow far more. At this
point, the simulations were set up in Windows and to be able to compile functions in Windows
command line tools as Visual Studio had to be installed for the compilation to be possible. One
important factor for simulation setup is that when running the initialisation, the solver first needs
to be initialised with native boundary conditions before adding the UDF. Without something to
base the initialisation on, the solver crashes.

4.2 Patient specific geometries

There is naturally a long way from the basic straight pipe setup to an arbitrarily shaped geometry
with intricate details. Still, one of the upsides of using a commercial solver is that it should be
able to handle these kinds of difficult cases. Besides the FEM solver to compare the results
with, it is possible to compare the FFR values to the clinical values that have been measured as
explained in Section 1.1.

4.2.1 Mesh independence study

The results of the mesh independence study are summarised in Table 4.1. As the essential
factor in the simulations is the difference in FFR, this is also what is used to check for mesh
independence of the solution. This particular coronary tree has three different lesions that have
been measured and can test both severe and less severe stenosis. Here the solutions for Pilot 1
have been provided for both the tetrahedral and polyhedral versions of the meshes. In all the
different quantifications of error, the polyhedral mesh is approaching the solution in the finest
mesh at a faster rate than the tetrahedral mesh. Comparing to the FEM results, the deviation is
rather large at the most severe stenosis. This deviation might be possible to mitigate with a finer
mesh as the solution is still moving with 0.005 and 0.009 at the last iteration as well. However,
it is not probable that it will reach 0.519.

Increasing the boundary extensions could also benefit the solution, looking at the velocity
profile of the outlets, the flow is not necessarily fully developed at the outlets. This could be
disrupting the way the boundary conditions are interpreting the data as well as effecting the
solution in itself.

When comparing the differences here with the mesh independence study performed on the
FEM solver, the difference is close to one order of magnitude. Where the maximum error for
all refinements are 4e-3 in their study, while here it is 3e-2. With this difference, it is clear that
the Fluent solver is more mesh sensitive.

Unfortunately, only the lf = 0.21 meshes were available for the population when the work
in this thesis was carried out. Reiterating the same with a stronger refinement should be simple
when the batch procedures have been developed.
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Mesh FFR D SD Max NCells
Tetrahedral
lf= 0.25 0.581 0.587 0.948 -0.0189 0.0137 0.0313 991977
lf= 0.21 0.566 0.574 0.948 -0.0096 0.0070 0.0162 1480807
lf= 0.18 0.565 0.571 0.948 -0.0079 0.0062 0.0149 2418239
lf= 0.15 0.550 0.562 0.949 4819054

Polyhedral
lf= 0.25 0.586 0.588 0.948 -0.0148 0.0109 0.0250 180457
lf= 0.21 0.576 0.580 0.948 -0.0088 0.0065 0.0149 262116
lf= 0.18 0.572 0.578 0.948 -0.0067 0.0049 0.0111 418001
lf= 0.15 0.561 0.568 0.948 812261

FEM 0.519 0.538 0.946

Table 4.1: Difference in FFR from the four meshes (D = Mean difference, SD = Standard deviation,
Max = Max difference)

4.2.2 Baseline

The results from the baseline simulations are presented in Figure 4.2. Here the result agrees
very well above the regular cutoff value of 0.8, with the largest difference being 0.02. However,
in the area where the pressure drop is larger over the stenosis, the difference between FVM
and FEM increases1. The FFRFEM − FFRFVM bias is here -0.0036, and the standard deviation
is at 0.0123. Only the graphs for the polyhedral meshes have been presented here, as they are
visually identical to the tetrahedral. The only difference is that the bias is reduced to -0.0035
and the standard deviation increased to 0.0124. When it comes to mitigating the error from
baseline simulations, the extension of the outlets would be relevant, if longer outlets would
provide closer to a fully developed flow.

Figure 4.2: Comparing polyhedral baseline simulation with the FEM results (D=Mean difference,
SD=Standard deviation, S=success, F=Failed).

1This is distributed over several coronary trees
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Resistances

As the baseline simulations are only there to produce a value of resistance for each outlet, the
FFR values are only there to check if it would be reasonable to assume that the simulations are
usable. Another way to check how the simulations are performing, is to compare the resistances
that are being produced from the baseline simulation. The resistances are calculated according
to Equation 1.2, and in Figure 4.3 a log-log plot of the FVM and FEM resistances are showing
where they come out with different results. Here there are some clear differences between the
tetrahedral results (left) and the polyhedral results (right). This difference would indicate that
there are at least two more resistances that have been calculated better with polyhedral results
from baseline. Which shows that even though the FFR values in the baseline simulations do not
align completely, the resulting resistances are correlating in all but one instance2.

Figure 4.3: Deviations for resistances in tetrahedral(left) and polyhedral (right).

Baseline with resistance

With some resistances having larger difference it is natural to check how they perform in the
initial case. After calculating the resistances they can be used to run a simulation of baseline
as well. The resulting difference and standard deviation are only changes slightly in the last
digit giving D = -0.0034 and SD = 0.0120. To test this similarity the results of the baseline with
flow and baseline with resistance were compared to each other as well. This resulted in a mean
difference of -0.0002 and a standard deviation of 0.0004. The graphs are not shown here, as the
first one is visually identical to the baseline results and the last one is just a straight line. With
negligible difference between the two simulations one can conclude that the resistance analogy
is representing the same state as the original baseline simulation.

4.2.3 Hyperemic
With the calculated resistances from the baseline case, the hyperemic conditions were now
introduced in the same meshes, and run for 2000 iterations. The simulations took on average
1157 seconds on the IDUN cluster using one node with 20 cores. However, the mean difference
and the standard deviation did not change from 500 to 2000 iterations, making it possible to

2This instance was in patient CT FFR 44
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complete the simulations a lot faster. Where the runtime at 500 iterations averaged at 320
seconds. Some stability issues were observed with the UDF’s enabled, as they are reading
the pressure during runtime and adjusting the mass-flow at the outlets for each iteration. The
solver is running with absolute pressures as the operating pressure is set to 0, and therefore
an intermediary pressure drop that is higher than the inlet pressure will result in a negative
pressure when reading values from the domain. When using pressure as a relative drop, this
is not a problem, but when using the pressure value as a factor in the direct calculation, it is
not as simple. When the flow is increasing, the solver response is to reduce the pressure, and
when the pressure is negative, this results in an amplifying effect where the flow is increased,
and the pressure is reduced until the floating point exception is invoked. In the beginning, this
was a large issue causing almost half of the vessels to fail during simulations. However, with
a zero-initiation of pressure and reduced relaxation of the solver gave the results in Figure 4.6.
Here, 103 FFR measurements were possible to perform with tetrahedral meshes. The remaining
three are from two meshes that it did not succeed to simulate with tetrahedral cells and FVM
resistances.3

Difference in prescribed pressure

When calculating the pressure at the inlet, some population-based factors were used to set the
total pressure according to Equation 3.1. The initial errors were at maximum 300 Pa. After
running the simulations, a comparison was made and gave an error of 450 Pa at maximum. As
FFR is a relative measurement it is dampening the effects, and for the lower values of FFR, this
is not giving a relevant contribution. If this is related to a simulation for FFR with a value close
to 0.8, this could be of greater importance. However, it is more likely that this is effecting the
stability of the solver, as the possibility for negative pressures increase when the inlet pressure
is reduced. This is more important for the borderline cases where the outlet pressure is very
close to 0. For future versions, this should either be programmed as a UDF or calculated based
on the FEM information.

Differences based on resistances

When calculating the resistances, there were some deviating values, but the vast majority were
indistinguishable. In order to quantify this difference between resistances calculated using FVM
or FEM solver, a simulation using the resistances from the FEM (here denoted Conf) solver
were performed. The results of this can be seen in Figure 4.4. Where the FVMConf − FVMCalc

bias is reduced to 0.0007 and the standard deviation is at 0.0037. The bias from baseline has
propagated when looking at the lower levels of FFR. Which indicates that there could be a lot
to gain in improving the baseline simulation also when it comes to the final results.

Difference in UDF calculation

As presented in Section 3.4.7, two different methods of implementing the boundary conditions
were performed on the patient population. The method which is identical to the FEM solver
is the one depicted in Equation 3.4 and this will be used in the remaining part of the results.
However, as the results from Equation 3.3 are available as well, a small discussion on that
will follow. Looking at Figure 4.5, the difference in FFR is amplified with lower values of

3This was CT FFR 44 and CT FFR 55
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Chapter 4. Results and Discussion

Figure 4.4: Comparing resistances calculated based FEM and FVM simulations (D=Mean difference,
SD=Standard deviation, S=success, F=Failed).

FFR, where the Pi − Pv is simulating a lower amount of flow in the domain. The overall bias
FFRPi−Pv−FFRPi

is 0.0115, and the standard deviation is 0.089. This means that a lower value
of flow is being imposed on the domain, and thereby reducing the drop in pressure. As the
setup is not identical it is not conclusive, but can be something to focus more on in later studies.
Looking at the Bland-Altman plot to the right in Figure 4.5, it is clear that difference is linearly
related.

Figure 4.5: Comparing the flow set with (Pi − Pv)R
ρ
i and PiR

ρ
i .

Tetrahedral cells

The rest of the results will be using the method which is similar to the FEM solver. Using the
tetrahedral mesh provided a clear bias is seen in Figure 4.6. The FVM solver is giving a lower
pressure drop, and therefore, higher values of FFR when going lower than 0.8. This gives a
FFRFEM − FFRFVM bias of -0.0079 and a standard deviation of 0.0152. Looking at the Bland-
Altman plot to the right, the linear relationship is still clear, but with a somewhat larger spread
between the two solvers. However, it is clear that over the cutoff value of 0.8, which is normally
used for diagnostic purposes, the variations are located quite close to zero.
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4.2 Patient specific geometries

Figure 4.6: Comparing tetrahedral hyperemic simulations with FEM results (D=Mean difference,
SD=Standard deviation, S=success, F=Failed).

Polyhedral cells

To increase the number of vessels that gave successful results, the polyhedral function of Fluent
was used to convert the domain to polyhedral cells. Figure 4.7 shows the results with calculated
resistances and a polyhedral mesh. Here one more mesh succeeded, but the final mesh was still
not possible to complete4. Resulting in 104 FFR values. The FFRFEM− FFRFVM bias is slightly
lower than tetrahedral with -0.0075, but the standard deviation have increased to 0.0163. With
77 completed meshes and a bias which is very close to negligible the solver can be said to
perform well. However, some work is needed on reducing the error when the FFR values are
lower than 0.8. With a clear linear relationship this is a systemic error. This can be related to
one of the mesh factors discussed earlier, or the way of prescribing the boundary conditions for
flow in Fluent. To test the boundary conditions, it would be relevant to explore the opposite
way of prescribing outlet conditions. Reading flow across the surface, and setting the pressure,
could help the issues of negative pressures, as well as problems with underdeveloped flow.

Figure 4.7: Comparing polyhedral hyperemic simulations with FEM results (D=Mean difference,
SD=Standard deviation, S=success, F=Failed).

4This was CT FFR 55
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Turbulence

Another issue that was brought up in Section 1.3 is the presence of turbulence. When setting up
the simulations it was assumed that the flow would be laminar based on the inlet flow. Looking
at the results from the FEM solver, the Reynolds number is quite high, with a maximum Re
ranging from 4357 to 10368 in the population. The border between laminar and turbulent is
starting at about Re=2300, indicating that there is at least an intermittent turbulent area in the
domain. With the complex shape of the domain, there might be several areas where the flow is
turbulent, giving some unwanted effects during the simulation. This is something that should
be explored further with different turbulence models to ensure that the assumption of laminar
flow is still valid.

4.2.4 Diagnostic relevance

Comparing the results to the clinical values, the spread is much more visible. The FFRClinical −
FFRFVM bias is -0.0198, and the standard deviation is 0.1154 which means that there will be
many in the range 0.7-0.9 that can be misdiagnosed. As can be seen in Figure 4.8, there are
many positions were the clinical values, and the calculated values disagree whether the stenosis
is significant or not. Take extra notice of the scale in the Bland-Altman plot. The results differed
with close to one order of magnitude compared to the FEM-FVM comparison and was therefore
not possible to present both results with the same axes. The diagnostic accuracy with prediction
sensitivity, prediction specificity, positive predictive value and negative predicted values they
were 70, 92, 77 and 0.88%, respectively.

Figure 4.8: Comparing polyhedral hyperemic simulations with clinical results. Notice the scale is dif-
ferent on the Bland-Altman plot (D=Mean difference, SD=Standard deviation, S=success, F=Failed).

Clinical measurements on the FFR values have been gathered using pressure wire mea-
surements, and are the basis of this comparison. The procedure and possibilities for failure
have been presented in Section 1, and concludes on many problems related to the procedure.
However, it does not discuss the validity of the actual measurements. With an intrusive mea-
surement procedure, the introduction of a pressure wire into the artery may in itself produce
deviating results. The wires in use have a diameter of 0.38mm, which is smaller than the most
severe stenosis, but not that much. To exemplify, the diameter in the strongest stenosis in Pilot
1 is 1.07mm, which makes the pressure wire obstructing 12.6% of the area in the stenosis. This
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obstruction could change the results quite a lot. The effects of this can be tested by introducing
pressure wires in the simulations in the future.
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Chapter 5

Conclusion

A 3D test-case has been produced to develop knowledge of ANSYS and the programming tools
of Python needed to automate the procedure. The simulations were successfully validated with
the analytical solution for Hagen-Poiseuille flow. There were some minor discrepancies in the
magnitude of the velocity profile, but the pressure drop approached the linear relation found in
theory. The knowledge of batch language and large scale simulations in Fluent was developed.

A case for determining Computational Fractional Flow Reserve in human coronary arteries
have been developed. A functional model to compare the results from FVM and FEM solvers
has been performed in 77 out of 78 coronary trees available. With the chosen solver setup, the
FEM-FVM bias was -0.0075 and a standard deviation of 0.0163. The model could produce
accurate FFR results with an average simulation time of down to 320 seconds per case, running
with one node and 20 cores of an HPC cluster.

The work did not succeed in producing individual meshes and had to utilise previously
created meshes to be able to simulate the domain. The case showed some more sensitivity to
mesh refinement, but possibly also the length of the extended areas at each boundary.

The case can be used as a basis for future work in the research on reduced order models and
the improvements of diagnostic tools for stable CAD.

26



Chapter 6

Further work

6.0.1 Complete the model
The current model is useful in the intermediary state, but to be able to include the results in
research, the final vessel should also be possible to simulate. The difficulty of negative pressures
and instabilities when the pressure drop is approaching the level of pressure at the inlet needs to
be addressed. Some simulation managed to bounce back, but the CT FFR 55 coronary tree did
not succeed in any of the simulations. This case can be used as a benchmark in further studies
to finalise the model.

6.0.2 Reverse the method
There is now a difference in methodology between the FEM method and the FVM method.
Where the FVM is reading pressure values and setting the flow values at the boundary. To
increase the similarity between the methods, efforts should be made at producing a case that is
reading flow values and returning a pressure value instead.

6.0.3 Turbulence
Checking the Reynolds numbers in the simulations shows that there can be intermediate turbu-
lent regions. This is something that need to be tested for different turbulence models to ensure
that the assumption of laminar flow is still valid.

6.0.4 Mesh improvement
The mesh independence study showed that there is some potential to reduce the error in FFR
by refining the meshes further. This should be tested to see how the mesh refinement can effect
the results together with increasing the extensions of of the outlets.
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Clinical outcomes and cost-effectiveness of fractional flow reserve–guided percutaneous
coronary intervention in patients with stable coronary artery disease: Three-year follow-up
of the fame 2 trial (fractional flow reserve versus angiography for multivessel evaluation).
Circulation, 137(5):480–487, 2018.

[13] Gilles Montalescot, Udo Sechtem, Stephan Achenbach, Felicita Andreotti, Chris Ar-
den, Andrzej Budaj, Raffaele Bugiardini, Filippo Crea, Thomas Cuisset, Carlo Di Mario,
J Rafael Ferreira, Bernard J Gersh, Anselm K Gitt, Jean-Sebastien Hulot, Nikolaus Marx,
Lionel H Opie, Matthias Pfisterer, Eva Prescott, Frank Ruschitzka, and Manel Sabaté.
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[39] Yunus A Çengel. Fluid mechanics : fundamentals and applications. McGraw-Hill, Boston,
3rd ed. in si units. edition, 2014.

[40] Etienne Boileau, Sanjay Pant, Carl Roobottom, Igor Sazonov, Jingjing Deng, Xianghua
Xie, and Perumal Nithiarasu. Estimating the accuracy of a reduced-order model for the
calculation of fractional flow reserve (ffr. International Journal for Numerical Methods in
Biomedical Engineering, 34(1):n/a–n/a, 2018.

[41] HPC Group NTNU. https://www.hpc.ntnu.no/display/hpc/Hardware,
accessed May 2019.

[42] SchedMD. https://slurm.schedmd.com/documentation.html, accessed
May 2019.

31

http://upload.wikimedia.org/wikipedia/commons/thumb/1/18/Coronary_arteries.svg/758px-Coronary_arteries.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/1/18/Coronary_arteries.svg/758px-Coronary_arteries.svg.png
https://fccid.io/U4L01080410/User-Manual/Users-manual-909001
https://fccid.io/U4L01080410/User-Manual/Users-manual-909001
https://www.sharcnet.ca/Software/Ansys/18.2.2/en-us/help/ai_sinfo/flu_intro.html
https://www.sharcnet.ca/Software/Ansys/18.2.2/en-us/help/ai_sinfo/flu_intro.html
https://www.hpc.ntnu.no/display/hpc/Hardware
https://slurm.schedmd.com/documentation.html


Appendix A

Mesh generation

During the work in this thesis one of the main things that was preferable to explore was the
opportunity to create meshes using the ANSYS package. Mainly because it is natural that the
meshing tools and solver setup have been optimised to work together, and therefore a better
pipeline towards the solution could be achieved. Also to be able to perform more tests on mesh
sensitivity and interaction, it would be preferable to perform this using only ANSYS software.
This was tested with various setups and configurations, but ultimately ended up without any
usable results. The work in setting up and preparing is however something that will be delivered
from this thesis, and will be summed up in this Appendix.

A.1 Meshing pipeline
The overall goal is to create an automated tool that can read mesh generated using VMTK and
prepare a new mesh with a set of meshing parameters that will be able to produce usable meshes.

First the mesh needs to be translated from Vascular Modelling Toolkit (VTK). From VTK
the geometry is based represented by a triangular surface mesh with information regarding inlet,
outlets and wall of the domain. It is then converted to a Fluent meshg (MSH) to be interpreted
by the solver. There are a number of meshing tools in the ANSYS package. Here follows a
rundown of strengths and weaknesses of these packages.

In the ANSYS package one can utilise the following tools for meshing: Workbench Mesh-
ing, TGrid, TurboGrid and ICEM CFD. The Workbench Meshing tool is only accepting CAD
geometry, and was therefore not relevant for the current test. The TurboGrid mesher is opti-
malised for spinning geometries and mostly used alongside CFX, which is also optimised for
turbo-machinery, and hence was not prioritised. Then TGrid mesher is in later version of AN-
SYS been incorporated as Fluent Meshing tool, and was therefore assumed to be the best choice
,as Fluent had already been chosen as the preferred solver. It is made to handle complex ge-
ometries which is essential when handling CT Imagery. TGrid also had the opportunity to read
and re-mesh the surfaces with all the metadata intact from a test on the 3D testcase. As this is
integrated in the Fluent module the programming language is also following the same syntax,
which is preferable when adapting the simulation to batch based simulations.

Then followed the extensive testing of the software to obtain suitable meshes for the 3D
test-case and coronary artery tree domains. The process was developed to be as automated
as possible. The mesh was loaded as boundary mesh, skipping all the internal faces. Then
assigned as both geometry and mesh to attempt different starting points. The patches were read
in with allocated names from mesh file. As the input is only a triangulated surface and not
a geometry representation, it was necessary to re-mesh all the patches at the same time. To
have a reasonable account on how refined the domain should be fluent is utilising size functions
min/max sizes and growth rate for the cell elements. With a bounding box from [0 0 0] to [0.004
0.1 0.004] the element sizes were in the range of [1e-6 , 1e-4].
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A.1 Meshing pipeline

After a long time trying to perfect this method to be able to automate the setup and execute
the mesh generation in a batch-wise manner it was evident that there was no effective way to
interpolate the initial geometry. It was not possible to re-mesh the boundary surfaces in a way
that would be able to generate a finer mesh on the surfaces, which means that the highest point
of refinement would always be the initial mesh.

With no successful method in TGrid efforts were made to utilise ICEM CFD instead. This
module also supports importing of MSH files as a geometrical entity and regain the boundaries
as labelled surfaces for re-meshing. The ICEM CFD had more geometry recognition abilities
than TGrid, but did not support journal writing. As ICEM CFD is based on Tcl/Tk while
Fluent is based on Lisp there was another setup language that needed to be understood in order
to develop batch jobs. With the fact that there was limited time left of the thesis period, the
attempt to produce independent meshes and perform mesh independence testing with ANSYS
meshes was abandoned.

However a script based setup where the scoped functions and simulation generation was
produced in Python to handle batch simulation for three different mesh parameters. This can
easily be expanded to include the other parameters, or changed to handle different ways of
running the simulation. The files created for this purpose can be found here:
https://www.dropbox.com/s/ssx8sek3g5uhlaj/meshGeneration.zip?dl=0
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Appendix B

Simulation files

Here the files for a full regular setup will be presented. The journal file, C file and slurm file
are all generated from the baselineFileGeneration.py. Also, the rest of the Python scripts used
during the setup, simulation and post-processing for this thesis are included here:
https://www.dropbox.com/s/of5gmod6u8jovij/simulationFiles.zip?dl=0

B.1 File generation

Listing B.1: Python script for generating simulation files
.

1 #Python script for generating mesh journal straight pipe
2 import os
3 import math
4 import re
5 import io
6 import numpy as np
7 import sys
8 import copyfilesFromffr_simulationDB as copyScript # import

prepareFFRCases_list_ffr_simulationDB
9 import writeSolutionDataFromCTL as vtkToCSVScript

10

11 def readConfFile(filename, **options):
12 #Procedure to read the configuration file and return the relevant

simulation values
13 with open(filename,’r’)as file:
14 listOfValues = []
15 for line in file:
16 if "mu=" in line:
17 mu = round(float(line.strip().split(’=’)[1])/10,4)
18 if "rho=" in line:
19 rho = float(line.strip().split(’=’)[1])*1000
20 if "wall=" in line:
21 wall = int(line.strip().split(’=’)[1])
22 if "inlet=" in line:
23 inlet = int(line.strip().split(’=’)[1])
24 if "num_outlets=" in line:
25 nOutlets = int(line.strip().split(’=’)[1])
26 if "outletAverageTarget=" in line:
27 flows = line.strip().split(’=’)[1].split(’*’)
28 for d in range (len(flows)): flows[d] = float(flows[d])*1e

-6*rho
29 if "p_initial=" in line:
30 #The pressure is read as static pressure, and from the

calculated flows adding the dynamic pressure.
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B.1 File generation

31 inletPressure= float(line.strip().split(’=’)[1])/10+0.5*rho

*(sum(flows)/(1.590431281e-5*rho))**2 #This number is from Pilot 1. If
not set, need to use UDF to set inletTotalPressure

32 # print(0.5*rho*(sum(flows)/(0.00001661902514*rho))**2)
33 if "meshfile" in line:
34 meshFile = line.strip().split()[2]
35 if options.get(’resistance’):
36 #If it is preferred to run with resistances from the

configuration file
37 if "outletsResistance=" in line:
38 resistances = line.strip().split(’=’)[1].split(’,’)
39 for d in range (len(resistances)): resistances[d]= rho

*1e-5/float(resistances[d])
40 else:
41 resistances = []
42 listOfValues = [mu, rho, wall, inlet, nOutlets, inletPressure,

flows, meshFile, resistances]
43 if nOutlets > 10:
44 #With more then 10 outlets the fluent solver will fail because the

conversion makes 1-9, then a-f, then 10-N
45 #This method should be developed further to change the numeration

of the mesh file if it finds an error. Now it just checks whether it can
be run or not.

46 with open(’../../’+re.sub(r’\/CT.*f’,’’,filename.replace(’../../’,’
’))+’/’+meshFile.replace(’.xml.gz’, ’.msh’).replace(’../../’,’’), ’rb’)
as f:

47 f.seek(-2, os.SEEK_END)
48 while f.read(1) != b’\n’:
49 f.seek(-2, os.SEEK_CUR)
50 lastline = f.readline().strip(’()’).replace(’(’,’’).split()[1]
51 if float(lastline)<=13:
52 print(’../../’+re.sub(r’\/CT.*f’,’’,filename.replace(’../../’,’

’))+’/’+meshFile.replace(’.xml.gz’, ’.msh’).replace(’../../’,’’))
53 sys.exit(’TOO MANY OUTLETS WILL FAIL ON READ’)
54 # print(listOfValues)
55 return listOfValues
56

57 def makeBoundaryNames(wallID, inletID,nOutlets):
58 #Making names to be used in the journal
59 boundaryNames = []
60 outletMarker = 1;
61 for i in range (0,nOutlets+3):
62 if i == wallID:
63 boundaryNames.append("walls")
64 elif i == inletID:
65 boundaryNames.append("inlet")
66 elif i == nOutlets+2:
67 boundaryNames.append("interior")
68 else:
69 boundaryNames.append("outlet"+str(outletMarker))
70 outletMarker+=1;
71 return boundaryNames
72

73 def readCSVFile(filename, **options):
74 #Reading the CSV file with nodes and result to create bounded planes or

surfaces.
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75 #Printing out commands for journal file to create the preferred type.
76 #The bounded planes are made from /surface/plane-bou plane{nodeID} x1

y1 z1 x2 y2 z2 x3 y3 z3 "samplePoints yes/no"
77 #The sphere is made from /surface/sphere-slice sphere{nodeID} x0 y0 z0

radius
78 file = open(filename, "r")
79 nodenames = []
80 # n =[]
81 # p =[]
82 # f =[]
83 # nodeprint = [0, 127, 256, 268, 322, 329, 356]
84 index = 0;
85 radiusMultiplier = 3.2
86 if options.get(’frequency’) != None:
87 frequency = options.get(’frequency’)
88 else:
89 frequency = 500
90

91 journaloutput = """
92 """
93 firstline = file.readline()
94 lineID = -1
95 xyz = np.arange(9).reshape(3,3).astype(np.float)
96 theta = math.radians(70);
97 for line in file:
98 nodenames= np.array(line.strip().split(’,’)).astype(np.float)
99 #If just spheres are wanted everything can be made from:

100 # spherelist = """ {0} {1} {2} {3}""".format(nodenames[2],nodenames
[3],nodenames[4],nodenames[5])

101 # journaloutput+="""/surface/sphere-slice sphere{nodeID} {list}""".
format(nodeID=int(planeID), list = spherelist)

102 # And the skip straight to report definitions, where you have to
change to sphere* and not plane*

103

104 # if nodenames[1] in nodeprint:
105 # n.append(nodenames[1])
106 # f.append(nodenames[6])
107 # p.append(nodenames[7])
108 # print(nodenames)
109

110 # Calculating three positions that can be used to generate bounded
planes.

111 # Checking whether one direction is negative when doing linalg
operations.

112 if lineID == int(nodenames[0]):
113 oldpoint =newpoint
114 newpoint = nodenames[2:5]
115 direction=np.array(newpoint-oldpoint)/np.linalg.norm(np.array(

newpoint-oldpoint))
116 if direction[2]==0:
117 if direction [1]==0:
118 if direction[0]==0:
119 print("all directions =0")
120 else:
121 avec = np.array([-(direction[2]*1 + direction[1]*1)

/direction[0],1,1])
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122 else:
123 avec = np.array([1,-(direction[0]*1 + direction[2]*1)/

direction[1],1])
124 else:
125 avec = np.array([1,1,-(direction[0]*1 + direction[1]*1)/

direction[2]])
126 avec = avec/np.linalg.norm(avec)
127 bvec = np.cross(avec, direction)
128 planeID = nodenames[1]-1
129 radius = nodenames[5]*radiusMultiplier
130 elif lineID ==-1:
131 newpoint = np.array(file.next().strip().split(’,’)[2:5]).astype

(np.float)
132 radius = nodenames[5]*radiusMultiplier
133 oldpoint = nodenames[2:5]
134 direction=np.array(newpoint-oldpoint)/np.linalg.norm(np.array(

newpoint-oldpoint))
135 if direction[2]==0:
136 if direction [1]==0:
137 if direction[0]==0:
138 print("all directions =0")
139 else:
140 avec = np.array([-(direction[2]*1 + direction[1]*1)

/direction[0],1,1])
141 else:
142 avec = np.array([1,-(direction[0]*1 + direction[2]*1)/

direction[1],1])
143 else:
144 avec = np.array([1,1,-(direction[0]*1 + direction[1]*1)/

direction[2]])
145 avec = avec/np.linalg.norm(avec)
146 bvec = np.cross(avec, direction)
147 planeID = nodenames[1]
148 lineID = nodenames[0]
149 elif lineID != int(nodenames[0]):
150 direction = -direction;
151 oldpoint = newpoint
152 if direction[2]==0:
153 if direction [1]==0:
154 if direction[0]==0:
155 print("all directions =0")
156 else:
157 avec = np.array([-(direction[2]*1 + direction[1]*1)

/direction[0],1,1])
158 else:
159 avec = np.array([1,-(direction[0]*1 + direction[2]*1)/

direction[1],1])
160 else:
161 avec = np.array([1,1,-(direction[0]*1 + direction[1]*1)/

direction[2]])
162 avec = avec/np.linalg.norm(avec)
163 bvec = np.cross(avec, direction)
164 planeID +=1
165 lineID = nodenames[0]
166 newpoint=nodenames[2:5]
167 else:
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168 print("something wierd happened")
169

170 journaloutput+="""/surface/plane-bou plane{nodeID} """.format(
nodeID=int(planeID))

171 for i in range (3):
172 for j in range(3):
173 xyz[i][j] = oldpoint[j] + radius*avec[j]*np.cos(theta*(i+1)

) + radius*bvec[j]*np.sin(theta*(i+1))
174 journaloutput+=""" {coord}""".format(coord=xyz[i][j])
175 journaloutput+=""" no
176 """
177

178

179 journaloutput+="""/solve/report-definitions/add pressurePlanes surface-
facetavg field pressure surface-names plane* () per-surface yes /

180 /solve/report-definitions/add flowPlanes surface-volumeflowrate surface-
names plane* () per-surface yes /

181 /solve/report-files/add pressurePlanes-rfile file-name "pressurePlanes.out"
frequency {freq} report-defs pressurePlanes () print? no /

182 /solve/report-files/add flowPlanes-rfile file-name "flowPlanes.out"
frequency {freq} report-defs flowPlanes () print? no /

183 """.format(freq = frequency)
184 # l = [n,p,f]
185 # for i in range (3):
186 # for j in range (len(p)):
187 # print(l[i][j])
188 return journaloutput
189

190 def generateJournalFile(floats, flows, boundaryNames,nodedata,
hyperemicChanges,meshFile, simtype,**options):

191 # Gerenating the journalfile with all paramters in the right place.
192 if simtype <1:
193 conv = 0;
194 iterations = 5000;
195 convergenceLevel = simtype
196 elif (type(simtype) is int):
197 iterations = simtype;
198 conv = 3;
199 convergenceLevel = "1e-06"
200 journal = """/file/set-tui-version "19.1"
201 /file/read-case {meshName}
202 /mesh/scale 0.01 0.01 0.01
203 /define/materials/change-create air blood yes constant {rhoValue} no no yes

constant {muValue} no no no yes
204 /define/operating-conditions/operating-pressure 0
205 """.format(rhoValue=floats[1], muValue=floats[0], meshName=meshFile)
206 # The mesh for CT_FFR_40 was wierd and had to be converted through

openfoam. Therefore some extra had to be done.
207 if meshFile == ’../../CT_FFR_40_Mesh/CT_FFR_40_Mesh_0000/

CT_FFR_40_Mesh_0000_RCA_vol.msh’:
208 for k in range (0,floats[4]+2):
209 journal+="""/define/boundary-conditions/zone-name surface{

surfID} {newName}
210 """.format(surfID=k+3, newName=boundaryNames[k])
211 journal+="""/define/boundary-conditions/zone-name int* interior
212 /define/boundary-conditions/zone-name fl* blood
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213 """
214 else:
215 for k in range (0,floats[4]+3):
216 journal+="""/define/boundary-conditions/zone-name {surfID} {

newName}
217 """.format(surfID=k+3, newName=boundaryNames[k])
218 journal+="""/define/boundary-conditions/modify-zones/zone-type inlet

pressure-inlet
219 """
220 for k in range(floats[4]):
221 journal+="""/define/boundary-conditions/modify-zones/zone-type

outlet{num} mass-flow-outlet
222 """.format(num=k+1);
223 journal+="""
224 /solve/set/p-v-coupling 24
225 /solve/set/p-v-control 100 0.2 0.2"""
226 #P-v coupling is 24 coupled, 20 SIMPLE, 21 SIMPLEC
227 if options.get(’polySim’):
228 journal+="""
229 /mesh/poly/convert-domain yes"""
230 journal +="""
231 /define/boundary-conditions/pressure-inlet inlet yes no {pres} no 0. no yes
232 """.format(pres = floats[5])
233 for k in range(floats[4]):
234 journal+="""/define/boundary-conditions/mass-flow-outlet outlet{num

} yes yes no {flow} no yes
235 """.format(num=k+1, flow= flows[k]);
236 journal+="""
237 /solve/report-definitions/add volumeflow surface-volumeflowrate surface-

names inlet """
238 for k in range(floats[4]):
239 journal+="""outlet{num} """.format(num=k+1);
240 journal+=""", average-over 1 per-surface yes
241 /add pressurerep surface-facetavg surface-names inlet """
242 for k in range(floats[4]):
243 journal+="""outlet{num} """.format(num=k+1);
244 journal+=""" () field pressure per-surface yes
245 /add velocitymax volume-max zone-names blood () field velocity-magnitude /
246

247 /solve/report-files/add volumeflow-rfile file-name "volumeFlows.out"
frequency 1 report-defs volumeflow () print? yes /

248 /solve/report-files/add pressurerep-rfile file-name "surfacepressureFile.
out" frequency 1 report-defs pressurerep () print? yes /"""

249 journal+=nodedata
250 # Adding the surface definitions and sample positions
251 # /solve/report-files/add ffrValues-rfile file-name "ffrValues.out"

frequency 1 report-defs ffrvalues () frequency 1 print? no /
252 journal +="""/solve/report-files/add velocitymax-rfile file-name "

velocitymax.out" frequency 1 report-defs velocitymax () frequency 1
print? yes /

253 /solve/monitor/res/crit-typ 3
254 /solve/initialize/set-hyb-initialization gen-se 10 1 1 relative no no no
255 /solve/initialize/hyb-initialization
256 """
257 #Adding the UDF compilation
258 journal+=hyperemicChanges
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259

260 # /solve/init/hyb-init yes
261 journal+="""
262

263 /solve/iter 10
264 /solve/monitor/residual/crit-typ {convergence}
265 /solve/monitors/residual/convergence-criteria {convergenceLevel} {

convergenceLevel} {convergenceLevel} {convergenceLevel}
266

267 /solve/iterate {iter}
268

269 /report/system/time-sta""".format(convergence = conv, iter = iterations,
convergenceLevel=convergenceLevel)

270 # journal +=""" /file/write-ca-da simResults""" # Can be added if you
want to save the simulation data in addition to the pressure/flow values

271 journal+= """
272

273 /exit yes
274 """
275

276 return (journal)
277

278 def slurmSimulationGeneration(workingDirs, arrayLength, simtype,output):
279 # Generating the batchfile for running on cluster with slurm queue
280 slurm="""#!/bin/bash
281 #SBATCH --partition=WORKQ
282 #SBATCH --time=20:00:00
283 #SBATCH --nodes=1
284 #SBATCH --ntasks=20
285 #SBATCH --array=0-{length}%5
286 #SBATCH --mem=25G
287

288 module load FLUENT/19.2
289

290 A=({listOfDirs})
291

292 cd $""".format(length = arrayLength, listOfDirs=workingDirs)
293 # A will hold al the folders that will be simulated in.
294 slurm+="""{A[${SLURM_ARRAY_TASK_ID}]}
295 rm -r libudf
296 rm *.out log
297 b=($(ls -d */))
298 echo "${b}"
299 """
300 slurm+="""
301 c={outputFolder}
302 fluent 3ddp -i {simulation}.jou""".format(simulation=simtype, outputFolder=

output)
303 slurm+=""" -pinfiniband -t${SLURM_NTASKS} -g >stdout.out 2>error.out

"""
304 #In regular baseline the output should be "" in poly it should be poly/
305 if simtype == ’baseline’:
306 slurm+="""
307

308 mkdir -p ${b}fluentResults/${c}
309 mv *.out *.cas *.dat *.xy *.sh ${b}fluentResults/${c}
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310 """
311 else:
312 slurm+="""
313 mkdir -p ${b}fluentResults/${c}
314 mv *.out log libudf *.cas *.dat *.xy *.sh ${b}fluentResults/${c}
315 cp *.c ${b}fluentResults/${c}
316

317 """
318 return slurm
319

320 def getCaseIndexes(haystack, needle):
321 # To check that all cases also have a directory to work in this method

is checking folders against database
322 if not needle:
323 return
324 # just optimization
325 lengthneedle = len(needle) # print(needle[0])
326 list = []
327 for i in range(len(needle)):
328 firstneedle = needle[i]
329 for idx, item in enumerate(haystack):
330 # print (haystack[1])
331 if item[’patientName’] == firstneedle:
332 # print("haystack")
333 # print(haystack[idx:idx+lengthneedle][1])
334 # if haystack[idx][’patientName’] == needle:
335 list.append(idx);
336 # print(item[’patientName’])
337 # print(tuple(range(idx,idx+lengthneedle)))
338 return list
339

340 def writeSlurm(slurmText, filename):
341 # Was prepared to write slurm files on windows computer with UNIX

endings
342 with io.open (filename, ’w’, newline = ’\n’) as file:
343 file.write(slurmText);
344

345 def writeFile(journalText, filename):
346 print("Writing file {0}".format(filename))
347 with open (filename, ’w’) as file:
348 file.write(journalText);
349

350 def readFFRFiles(filename):
351 with open(filename, ’r’) as f:
352 ffrValues = f.read().splitlines()
353 for i in range (len(ffrValues)): ffrValues[i] = ffrValues[i].split(

’ ’)
354 return ffrValues
355

356 def readResults(resultFolder, **options):
357 # Reading the flow and pressure outlets
358 # When used to postprocess, also reading the flowPlanes and

pressurePlanes files
359 with open(resultFolder+’/volumeFlows.out’, ’rb’) as f:
360 f.seek(-2, os.SEEK_END)
361 while f.read(1) != b’\n’:
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362 f.seek(-2, os.SEEK_CUR)
363 flows =f.readline().decode("utf-8").strip().split()[1:];
364 # print (iteration)
365 for d in range(0,len(flows)): flows[d] = abs(float(flows[d]))
366 # print (massflowstrings)
367 # iteration = int(iteration[0])
368 with open(resultFolder+’/surfacepressureFile.out’, ’rb’) as f:
369 f.seek(-2, os.SEEK_END)
370 while f.read(1) != b’\n’:
371 f.seek(-2, os.SEEK_CUR)
372 pressures =f.readline().decode("utf-8").strip(’\n’).split()[1:];
373 # print(pressures)
374 for d in range(0,len(pressures)): pressures[d] = float(pressures[d])
375 # Addition for postProcessing
376 if options.get("postProcess")!= None:
377 resultFiles = options.get(’postProcess’)
378 results = []
379 for i in range(len(resultFiles)):
380 floatValues = []
381 with open(resultFolder+’/’+resultFiles[i], ’r’) as f:
382 name = resultFiles[i].replace(’Planes.out’,’Values’)
383 linefile = f.read().splitlines()
384 linefile[-1] =linefile[-1].split(’ ’)
385 # print(linefile[2].replace(resultFiles[i].lower().strip(’.

out’),’’).replace(’\"(plane’, ’ID’).replace(’)\"’,’’).split())
386 for d in range(len(linefile[-1])): floatValues.append(abs(

float(linefile[-1][d])))
387 results.append({’filename’ : resultFiles[i],
388 ’planeIDs’ : linefile[2].replace(

resultFiles[i].lower().strip(’.out’),’’).replace(’\"(plane’, ’ID’).
replace(’)\"’,’’).split()[1:],

389 name : floatValues[1:]})
390

391 if os.path.isfile(resultFolder+’/velocitymax.out’)== True:
392 with open(resultFolder+’/velocitymax.out’, ’rb’) as f:
393 f.seek(-2, os.SEEK_END)
394 while f.read(1) != b’\n’:
395 f.seek(-2, os.SEEK_CUR)
396 maxvelocity =float(f.readline().decode("utf-8").strip().

split()[1])
397 if os.path.isfile(resultFolder+’/stdout.out’)== True:
398 with open(resultFolder+’/stdout.out’, "r") as file:
399 lines = file.read().splitlines()
400 linecount = 0
401 for i in range(len(lines)):
402 if "Total wall-clock" in lines[i]:
403 time=lines[i].strip().split()[3]
404 break
405

406 if "/report/system/time-sta" in lines[i]:
407 finalResiduals = lines[i-9].split()[1:5]
408 # print(finalResiduals)
409

410 pressures = [flows, pressures,maxvelocity, time, finalResiduals] #
Sending it as extravalues to the postprocessing
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411 flows = results #Sending the results from the sampled planes to
postprocessing

412 return [flows, pressures]
413

414 def resistanceCalculation (flows, pressures, density):
415 # Calculating the four different types of resistances that was tested
416 # pVAdjustedHyp is the one that is using the venous pressure and

dividing it by four
417 pressureVenous = 666.61
418 regular = []
419 pVAdjusted = []
420 regularHyp = []
421 pVAdjustedHyp = []
422 for i in range(len(flows)):
423 regular.append(density/(pressures[i]/abs(flows[i])))
424 pVAdjusted.append(density/((pressures[i]-pressureVenous)/abs(flows[

i])))
425 regularHyp.append(regular[i]*4)
426 pVAdjustedHyp.append(pVAdjusted[i]*4)
427 return [regular, pVAdjusted,regularHyp, pVAdjustedHyp]
428

429 def udfGeneration (nOutlets, resistances):
430 # Generating the UDF file that is controlling the simulations during

runtime
431 UDFfile = """

/***********************************************************************
432 UDF for setting resistive boundary conditions at all outlets
433 hyperemic conditions
434 ************************************************************************/
435 #include "udf.h"
436 real pressureVenous = 666.61;
437 """
438 for i in range(nOutlets):
439 UDFfile+="""real resistance{numOut} = {resistance};
440 """.format(numOut=i+1, resistance=resistances[i])
441 # Fix for hindering negative pressure values part 1
442 # UDFfile+="""
443 # real presval{numOut};
444 # """.format(numOut=i+1)
445 for i in range (nOutlets):
446 UDFfile +="""
447 DEFINE_PROFILE(mass_flow_{numOut},t,i)""".format(numOut=i+1)
448 UDFfile +="""
449 {
450 face_t f;
451 begin_f_loop(f,t)
452 { """
453 # Fix for hindering negative pressure values part 2
454 # UDFfile+="""
455 # presval{numOut} = F_P(f,t);
456 # if (presval{numOut} < 0) """.format(numOut=i+1)
457 # UDFfile+="""
458 # {"""
459 # UDFfile+="""
460 # presval{numOut} = 100; """.format(numOut=i+1)
461 # UDFfile+= """
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462 # }
463 # UDFfile+="""
464 # F_PROFILE(f,t,i) =presval{numOut}*resistance{numOut}; """.format(

numOut=i+1)
465 # """
466 UDFfile+="""
467 F_PROFILE(f,t,i) =(F_P(f,t)-pressureVenous)*resistance{numOut}; """

.format(numOut=i+1)
468 UDFfile +="""
469 }
470 end_f_loop(f,t);"""
471 UDFfile +="""
472 }
473 """
474 return UDFfile
475

476 def generateHyperemicPart(nOutlets, filename):
477 # Adding the part to introduce the UDF to the calculation
478 journal ="""
479 /define/user-defined/compiled-functions compile "libudf" yes "{name}" "" ""
480 /define/user-defined/compiled-functions load "libudf"
481 """.format(name = filename)
482 for k in range(nOutlets):
483 journal+="""/define/boundary-conditions/mass-flow-outlet outlet{num

} yes yes yes yes "udf" "mass_flow_{num}::libudf" no yes
484 """.format(num=k+1);
485 return journal
486

487 def simulationPrep(patient,arrayLength, **options):
488 # Full method for preparing the simulations
489 # Most of the changes can be made in the main part, but choosing which

resistance is done manually in this method
490

491

492 # folderPath = ’../database/’+patient[’patientName’]+’/’
493 folderPath = ’../../’+patient[’patientName’]+’/’ # added by Fredrik
494 simulationPath = folderPath+patient[’patientName’]+’_Simulation/’+

patient[’simuName’]+’/’
495 #simulationPath = folderPath+patient[’patientName’]+ ’/’+patient[’

patientName’]+ ’_Simulation/’+patient[’simuName’]+’/’ # added by Fredrik
496 CSVPath =simulationPath+patient[’simuName’]+’_out/ctlResults/’
497 meshPath = patient[’patientName’]+’_Mesh/’+patient[’patientName’]+’

_Mesh_’+patient[’meshNumber’]+’/’
498 #meshPath = folderPath+patient[’patientName’]+ ’/’ + patient[’

patientName’]+’_Mesh/’+patient[’patientName’]+’_Mesh_’+patient[’
meshNumber’]+’/’ # added by Fredrik

499 [mu, rho, wall, inlet, nOutlets, inletPressure, flows, meshFile, res] =
readConfFile(simulationPath+patient[’simuName’]+’.conf’, resistance=

options.get(’getconf’))
500 if options.get(’onlyResistance’):
501 resultPath = folderPath+patient[’patientName’]+’_Simulation/’+

options.get("baselinePath")+’/’+options.get("baselinePath")+’_out/
fluentResults/’

502 [flow_results, pressure_results] = readResults(resultPath)
503 [regular, pVAdjusted,regularHyp, pVAdjustedHyp] =

resistanceCalculation(flow_results[1:],pressure_results[1:], rho)

44



B.1 File generation

504 journal = [pVAdjustedHyp, res]
505 for i in range(len(pVAdjustedHyp)):
506 diff = (pVAdjustedHyp[i]-res[i])/res[i]
507 if diff>=0.01:
508 print(diff)
509 print(simulationPath)
510 else:
511 if "baseline" in options.get("simtype"):
512 hyperemicExtra = ""
513 elif options.get("simtype")=="hyperemic" or options.get(’simtype’)

==’hyperemicConf’:
514 resultPath = folderPath+patient[’patientName’]+’_Simulation/’+

options.get("baselinePath")+’/’+options.get("baselinePath")+’_out/
fluentResults/’

515 if options.get(’simtype’)==’hyperemicConf’:
516 udfString = udfGeneration(nOutlets,res)
517 [flows, pressure_results] = readResults(resultPath)
518

519 else:
520 if options.get(’polySim’):
521 resultPath+=’poly/’
522 [flow_results, pressure_results] = readResults(resultPath)
523 [regular, pVAdjusted,regularHyp, pVAdjustedHyp] =

resistanceCalculation(flow_results[1:], pressure_results[1:], rho)
524 udfString = udfGeneration(nOutlets,pVAdjustedHyp)
525 if len(flows) != len(flow_results)-1:
526 print(’Not equal lengths’)
527 print(len(flows))
528 print(len(flow_results))
529 else:
530 for i in range(len(flows)):
531 flows[i] = flow_results[i+1]*rho
532 hyperemicExtra = generateHyperemicPart(nOutlets, options.get("

udfName"))
533 writeFile(udfString, simulationPath+options.get("udfName"))
534 # print (patient)
535 if os.path.isfile(CSVPath+’ctlSol_Average.csv’):
536 nodedata =readCSVFile(CSVPath+’ctlSol_Average.csv’, frequency=

options.get(’iterations’))
537 else:
538 vtkToCSVScript.variableDefinitionAndWrite(CSVPath+’

ctlSol_Average.vtk’,CSVPath+’ctlSol_Average.csv’)
539 nodedata =readCSVFile(CSVPath+’ctlSol_Average.csv’)
540 if os.path.isfile(folderPath+meshPath+patient[’meshNameVTK’].

replace(’.vtk’,’.msh’)):
541 meshFile = (’../../’+meshPath+patient[’meshNameVTK’].replace(’.

vtk’,’.msh’)).strip()
542 else:
543 print("did not find meshfile {0}".format(patient[’simuName’]))
544 commandstring = """vmtk vmtkmeshwriter -f fluent -mode ascii -

ifile {VTKFile} -entityidsarray CellEntityIds -ofile {MSHFile}""".format
(VTKFile=(meshPath+patient[’meshNameVTK’]), MSHFile=meshPath+patient[’
meshNameVTK’].replace(’.vtk’,’.msh’) )

545 # os.system(commandstring)
546 meshFile = meshPath+patient[’meshNameVTK’].replace(’.vtk’,’.msh

’)
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547 boundaries = makeBoundaryNames(wall, inlet, nOutlets)
548 journal = generateJournalFile([mu, rho, wall, inlet, nOutlets,

inletPressure], flows, boundaries, nodedata, hyperemicExtra,meshFile,
options.get(’iterations’), polySim = options.get(’polySim’))

549 return [journal, str(simulationPath)]
550

551 if __name__==’__main__’:
552 listofcases = copyScript.passVar(’1D_3D_TAG_BLN.xlsx’)
553 listofHypCases = copyScript.passVar(’1D_3D_TAG_HYP.xlsx’)
554 # Generating all the cases
555 slurmfolder=’’
556 #target = ’../database/’
557 target = ’../../’ # added by Fredrik
558 directoryList = os.listdir(target)
559 iter = 0
560 indexes = getCaseIndexes(listofcases,directoryList)
561 # Finding the indexes. This could preferable be a sorted list
562 # print indexes, directoryList
563 list = []
564 resList = []
565 simulationType = ’hyperemic’
566 # Simulationtype can be baseline, hyperemic or hyperemicConf. Choosing

three different simulation setups
567 udfName = ’resistanceBaseline.c’
568 outputDirectory = ’poly/resistanceBaseline/’
569 # outputDirectory being sent to the slurmfile ensuring that the

simulation is ending up in the right place
570 polySim = True
571 # polysim to choose where the results are calculated from and or

produced with
572 onlyResistance = False
573 # Small if to check the resistances that will be used
574 simLength = 2000
575 # print(indexes)
576 # print(listofHypCases[12])
577

578 for i in range(len(indexes)): #(len(indexes)):
579 if onlyResistance == False:
580 if simulationType==’baseline’ or simulationType==’baselinePoly’

:
581 [journal, folderPath] = simulationPrep(listofcases[indexes[

i]],len(indexes),simtype = simulationType, iterations = simLength,
polySim = polySim)

582 slurmfolder += folderPath+ ’ ’
583 writeFile(journal, folderPath+simulationType+’.jou’)
584 list.append(indexes[i])
585 iter+=1
586 elif simulationType==’hyperemic’ or simulationType ==’

hyperemicConf’:
587 if simulationType == ’hyperemicConf’:
588 getconf= True
589 else:
590 getconf = False
591 print(’Connecting ’, listofcases[indexes[i]][’simuName’], ’

with ’, listofHypCases[indexes[i]][’simuName’])
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592 if os.path.isfile(target+listofcases[indexes[i]][’
patientName’]+’/’+listofcases[indexes[i]][’patientName’]+’_Simulation/’+
listofcases[indexes[i]][’simuName’]+’/’+listofcases[indexes[i]][’
simuName’]+’_out/fluentResults/pressurePlanes.out’) or simulationType ==
’hyperemicConf’:

593 [journal, folderPath] = simulationPrep(listofHypCases[
indexes[i]],len(indexes),simtype = simulationType,baselinePath=
listofcases[indexes[i]][’simuName’], udfName =udfName, iterations =
simLength, getconf= getconf, polySim = polySim )

594 # print(listofcases[indexes[i]])
595 list.append(indexes[i])
596 # Slurmfolder is the list of folders that will be added

to the slurm file and iterated over in the arraysim
597 slurmfolder+=folderPath+’ ’
598 writeFile(journal, folderPath+simulationType+’.jou’)
599 iter+=1
600 else:
601 print(target+listofcases[indexes[i]][’patientName’]+’/’

+listofcases[indexes[i]][’patientName’]+’_Simulation/’+listofcases[
indexes[i]][’simuName’], ’Failed’)

602 else:
603 # Checking for resistances
604 [journal, folderPath] = simulationPrep(listofHypCases[indexes[i

]],len(indexes),simtype = simulationType,baselinePath=listofcases[
indexes[i]][’simuName’], udfName =udfName, iterations = simLength,
getconf= True, onlyResistance = onlyResistance)

605 resList.append(journal)
606 slurm = slurmSimulationGeneration(slurmfolder,len(list)-1,

simulationType,outputDirectory)
607 print (slurm)
608 # print(resList)
609 writeFile(slurm,simulationType+’Queue.slurm’ )
610 print("Done")
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B.2 Simulation journal

Listing B.2: Ansys Fluent journal for simulation setup

.
1 /file/set-tui-version "19.1"
2 /file/read-case ../../CT_FFR_Pilot_1_Mesh/CT_FFR_Pilot_1_Mesh_0001/

CT_FFR_Pilot_1_Mesh_0001_LM_vol.msh
3 /mesh/scale 0.01 0.01 0.01
4 /define/materials/change-create air blood yes constant 1050.0 no no yes

constant 0.0035 no no no yes
5 /define/operating-conditions/operating-pressure 0
6 /define/boundary-conditions/zone-name 3 walls
7 /define/boundary-conditions/zone-name 4 outlet1
8 /define/boundary-conditions/zone-name 5 outlet2
9 /define/boundary-conditions/zone-name 6 inlet

10 /define/boundary-conditions/zone-name 7 outlet3
11 /define/boundary-conditions/zone-name 8 outlet4
12 /define/boundary-conditions/zone-name 9 outlet5
13 /define/boundary-conditions/zone-name 10 outlet6
14 /define/boundary-conditions/zone-name 11 interior
15 /define/boundary-conditions/modify-zones/zone-type inlet pressure-inlet
16 /define/boundary-conditions/modify-zones/zone-type outlet1 mass-flow-outlet
17 /define/boundary-conditions/modify-zones/zone-type outlet2 mass-flow-outlet
18 /define/boundary-conditions/modify-zones/zone-type outlet3 mass-flow-outlet
19 /define/boundary-conditions/modify-zones/zone-type outlet4 mass-flow-outlet
20 /define/boundary-conditions/modify-zones/zone-type outlet5 mass-flow-outlet
21 /define/boundary-conditions/modify-zones/zone-type outlet6 mass-flow-outlet
22

23 /solve/set/p-v-coupling 24
24 /solve/set/p-v-control 100 0.2 0.2
25 /define/boundary-conditions/pressure-inlet inlet yes no 12829.1904942 no 0.

no yes
26 /define/boundary-conditions/mass-flow-outlet outlet1 yes yes no

0.000267997387085 no yes
27 /define/boundary-conditions/mass-flow-outlet outlet2 yes yes no

0.000464699635851 no yes
28 /define/boundary-conditions/mass-flow-outlet outlet3 yes yes no

0.000649859235945 no yes
29 /define/boundary-conditions/mass-flow-outlet outlet4 yes yes no

0.000149463407609 no yes
30 /define/boundary-conditions/mass-flow-outlet outlet5 yes yes no

7.72099875164e-05 no yes
31 /define/boundary-conditions/mass-flow-outlet outlet6 yes yes no

0.000126197855286 no yes
32

33 /solve/report-definitions/add volumeflow surface-volumeflowrate
surface-names inlet outlet1 outlet2 outlet3 outlet4 outlet5 outlet6 ,
average-over 1 per-surface yes

34 /add pressurerep surface-facetavg surface-names inlet outlet1 outlet2
outlet3 outlet4 outlet5 outlet6 () field pressure per-surface yes

35 /add velocitymax volume-max zone-names blood () field velocity-magnitude /
36

37 /solve/report-files/add volumeflow-rfile file-name "volumeFlows.out"
frequency 1 report-defs volumeflow () print? yes /
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38 /solve/report-files/add pressurerep-rfile file-name "surfacepressureFile.
out" frequency 1 report-defs pressurerep () print? yes /

39

40

41 /surface/plane-bou plane0 0.00363295891004 0.173736718459 -0.183161921588
-0.00335325075306 0.170493443533 -0.190023216298 -0.0104009805418
0.177852272346 -0.191629599233 no

42 /surface/plane-bou plane1 0.00388886579701 0.173959536228 -0.183484448195
-0.00348165074655 0.170351888041 -0.189734542853 -0.0108631545713
0.177453667335 -0.190951693195 no

43 #Repeats for N number of planes
44

45 /solve/report-definitions/add pressurePlanes surface-facetavg field
pressure surface-names plane* () per-surface yes /

46 /solve/report-definitions/add flowPlanes surface-volumeflowrate
surface-names plane* () per-surface yes /

47 /solve/report-files/add pressurePlanes-rfile file-name "pressurePlanes.out"
frequency 2000 report-defs pressurePlanes () print? no /

48 /solve/report-files/add flowPlanes-rfile file-name "flowPlanes.out"
frequency 2000 report-defs flowPlanes () print? no /

49 /solve/report-files/add velocitymax-rfile file-name "velocitymax.out"
frequency 1 report-defs velocitymax () frequency 1 print? yes /

50 /solve/monitor/res/crit-typ 3
51 /solve/initialize/set-hyb-initialization gen-se 10 1 1 relative no no no
52 /solve/initialize/hyb-initialization
53

54 /define/user-defined/compiled-functions compile "libudf" yes "
resistancePVExtraUDF.c" "" ""

55 /define/user-defined/compiled-functions load "libudf"
56 /define/boundary-conditions/mass-flow-outlet outlet1 yes yes yes yes "udf"

"mass_flow_1::libudf" no yes
57 /define/boundary-conditions/mass-flow-outlet outlet2 yes yes yes yes "udf"

"mass_flow_2::libudf" no yes
58 /define/boundary-conditions/mass-flow-outlet outlet3 yes yes yes yes "udf"

"mass_flow_3::libudf" no yes
59 /define/boundary-conditions/mass-flow-outlet outlet4 yes yes yes yes "udf"

"mass_flow_4::libudf" no yes
60 /define/boundary-conditions/mass-flow-outlet outlet5 yes yes yes yes "udf"

"mass_flow_5::libudf" no yes
61 /define/boundary-conditions/mass-flow-outlet outlet6 yes yes yes yes "udf"

"mass_flow_6::libudf" no yes
62

63

64 /solve/iter 10
65 /solve/monitor/residual/crit-typ 3
66 /solve/monitors/residual/convergence-criteria 1e-06 1e-06 1e-06 1e-06
67

68 /solve/iterate 2000
69

70 /report/system/time-sta
71

72 /exit yes
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B.3 User Defined Function

Listing B.3: User Defined Function

.
1 /***********************************************************************
2 UDF for setting resistive boundary conditions at all outlets
3 hyperemic conditions
4 ************************************************************************/
5 #include "udf.h"
6 real pressureVenous = 666.61;
7 real resistance1 = 8.97469967043e-08;
8 real resistance2 = 1.73564631367e-07;
9 real resistance3 = 2.47415051215e-07;

10 real resistance4 = 5.00588852099e-08;
11 real resistance5 = 2.85452564402e-08;
12 real resistance6 = 4.20362641325e-08;
13

14 DEFINE_PROFILE(mass_flow_1,t,i)
15 {
16 face_t f;
17 begin_f_loop(f,t)
18 {
19 F_PROFILE(f,t,i) =(F_P(f,t)-pressureVenous)*resistance1;
20 }
21 end_f_loop(f,t);
22 }
23

24 DEFINE_PROFILE(mass_flow_2,t,i)
25 {
26 face_t f;
27 begin_f_loop(f,t)
28 {
29 F_PROFILE(f,t,i) =(F_P(f,t)-pressureVenous)*resistance2;
30 }
31 end_f_loop(f,t);
32 }
33

34 DEFINE_PROFILE(mass_flow_3,t,i)
35 {
36 face_t f;
37 begin_f_loop(f,t)
38 {
39 F_PROFILE(f,t,i) =(F_P(f,t)-pressureVenous)*resistance3;
40 }
41 end_f_loop(f,t);
42 }
43

44 DEFINE_PROFILE(mass_flow_4,t,i)
45 {
46 face_t f;
47 begin_f_loop(f,t)
48 {
49 F_PROFILE(f,t,i) =(F_P(f,t)-pressureVenous)*resistance4;
50 }
51 end_f_loop(f,t);
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52 }
53

54 DEFINE_PROFILE(mass_flow_5,t,i)
55 {
56 face_t f;
57 begin_f_loop(f,t)
58 {
59 F_PROFILE(f,t,i) =(F_P(f,t)-pressureVenous)*resistance5;
60 }
61 end_f_loop(f,t);
62 }
63

64 DEFINE_PROFILE(mass_flow_6,t,i)
65 {
66 face_t f;
67 begin_f_loop(f,t)
68 {
69 F_PROFILE(f,t,i) =(F_P(f,t)-pressureVenous)*resistance6;
70 }
71 end_f_loop(f,t);
72 }
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B.4 Slurm queue file

Listing B.4: Slurm file for running on cluster
.

1 #!/bin/bash
2 #SBATCH --partition=WORKQ
3 #SBATCH --time=20:00:00
4 #SBATCH --nodes=1
5 #SBATCH --ntasks=20
6 #SBATCH --array=0-78%5
7 #SBATCH --mem=25G
8

9 module load FLUENT/19.2
10

11 A=(../../CT_FFR_55/CT_FFR_55_Simulation/CT_FFR_55_Simulation_0010/ ../../
CT_FFR_Pilot_1/CT_FFR_Pilot_1_Simulation/CT_FFR_Pilot_1_Simulation_0014/
../../CT_FFR_31/CT_FFR_31_Simulation/CT_FFR_31_Simulation_0010/ (and so
on))

12

13 cd ${A[${SLURM_ARRAY_TASK_ID}]}
14 rm -r log libudf *.out
15 b=($(ls -d */))
16 echo "${b}"
17

18 c=noInitPVExtra/
19 fluent 3ddp -i hyperemic.jou -pinfiniband -t${SLURM_NTASKS} -g >stdout.out

2>error.out
20 mkdir -p ${b}fluentResults/${c}
21 mv *.out log libudf *.cas *.dat *.xy *.sh ${b}fluentResults/${c}
22 cp *.c ${b}fluentResults/${c}
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B.5 Post-processing

Listing B.5: Post processing script

.
1 #Python script for generating mesh journal straight pipe
2 import os
3 import math
4 import re
5 import io
6 import openpyxl
7 import numpy as np
8 import matplotlib.pyplot as plt
9 from baselineFileGeneration import *

10

11 def bland_altman_plot(data1, data2, *args, **kwargs):
12 data1 = np.asarray(data1)
13 data2 = np.asarray(data2)
14 mean = np.mean([data1, data2], axis=0)
15 diff = data1 - data2 # Difference between data1

and data2
16 md = np.mean(diff) # Mean of the difference
17 sd = np.std(diff, axis=0) # Standard deviation of the

difference
18

19 plt.scatter(mean, diff, *args, **kwargs)
20 plt.axhline(md, color=’gray’, linestyle=’--’)
21 plt.axhline(md + 1.95*sd, color=’gray’, linestyle=’--’)
22 plt.axhline(md - 1.95*sd, color=’gray’, linestyle=’--’)
23 plt.xlim(0,1)
24 plt.ylim(-0.09 , 0.09)
25 plt.xlabel(’FFR’)
26 plt.ylabel(’Deviation’)
27 return [md, sd]
28

29 def getFinalResults(patient, ffr, planes, **options):
30 # Calculating the FFR values of the simulation
31 # print(planes[’filename’])
32 values = []
33 aorticPressure = float(planes[’pressureValues’][-2])
34 # print(ffr)
35 # print(planes[’planeIDs’])
36 for j in range(len(planes[’planeIDs’])):
37 if planes[’planeIDs’][j].replace(’ID’,’’)==ffr[2]:
38 val = float(planes[’pressureValues’][j])
39 index = j
40 break
41 # print(index)
42 # print(planes[’planeIDs’][j])
43 # print(planes[’values’][j])
44 # print(planes)
45 # print (ffr[5])
46 # print(aorticPressure)
47 if abs(val/aorticPressure) >10 :
48 print("THIS IS NOT OK")
49 # print(val/aorticPressure-float(ffr[5]))
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50 # print(val/aorticPressure-float(ffr[4]))
51 # print([float(ffr[5]), float(ffr[4]),val/aorticPressure,val/

aorticPressure-float(ffr[5]), val/aorticPressure-float(ffr[4]) ])
52 # print (ffr[2], planes[’planeIDs’][j], planes[’pressureValues’][j],

options.get(’indexpoint’))
53

54 return ([float(ffr[5]), float(ffr[4]),val/aorticPressure,val/
aorticPressure-float(ffr[5]), val/aorticPressure-float(ffr[4]) ,
aorticPressure])

55

56 def findCSVPressure(ffrID, ffrPath):
57 # Finding the pressure in the FFR position of the FEM resultfile
58 pout = []
59 with open(ffrPath, ’r’) as f:
60 values = f.read().splitlines()
61 # print (values)
62 pin = float(values[1].split(’,’)[7])
63 # print(pin)
64 for i in range (len(values)):
65 if values[i].split(’,’)[1] == ffrID:
66 # print(ffrID, ’ found at ’, values[i].split(’,’)[1])
67 # print(ffrID, ’ at ’, values[i])
68 pout = float(values[i].split(’,’)[7])
69 break
70 if pout == []:
71 print(ffrID , ffrPath)
72 # print(pin, pout)
73 return [pin, pout]
74

75 def getSimFilesAndWriteFFRResults(xlsxFile, xlsxFileSheetName,ffr, patients
,outputName, **options):

76 # Method to write out results in an EXcel file, currently not in use
77 newSet = True
78 if os.path.isfile(outputName):
79 newSet = False
80 xlsxFile = outputName
81 # print(xlsxFile)
82 wb = openpyxl.load_workbook(xlsxFile)
83 sheetData = wb.get_sheet_by_name(xlsxFileSheetName)
84 max_colum = sheetData.max_column -5
85 else:
86 wb = openpyxl.load_workbook(xlsxFile)
87 sheetData = wb.get_sheet_by_name(xlsxFileSheetName)
88 max_colum = sheetData.max_column
89

90

91 max_row = sheetData.max_row
92 caseList = []
93 caseCount = 0
94

95 names = [’Clinical’,’FEM values’, ’FVM Values’, ’Clinical diff’, ’
Solver diff’]

96 # print(ffrValues[0][0][1])
97 z = [""]*len(ffr[0])
98 for i in range(len(ffr[0])):
99 for j in range(len(ffr)):
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100 z[i]= z[i]+str(ffr[j][i])+’;’
101

102 for row in range(max_row):
103 if newSet == True:
104 print ("newset true")
105 for i in range(len(names)):
106 sheetData.insert_cols(sheetData.max_column+1)
107 sheetData.cell(row=1, column = sheetData.max_column+1,

value = names[i])
108

109 newSet = False
110

111 if str(sheetData.cell(row=row+1, column=1).value) == patients[’
simuName’]:

112 # print(row)
113 # print(sheetData.cell(row=row, column=1).value)
114 # print(sheetData.cell(row=row + 1, column=1).value)
115 # print(’sheetData == simuname = true’)
116 for i in range (len(names)):
117 a = sheetData.cell(row = row+1, column=max_colum+i+1,value

= str(z[i]))
118 #
119 caseCount += 1
120 wb.save(outputName)
121 # print(outputName)
122 return caseList
123

124 def plotFVMFEM (ffrListing, dirout, nFailed, **options):
125 # Method to plot all relevant figures for each simulation
126 if os.path.isdir(dirout)==False:
127 os.system("mkdir -p {dir}".format(dir = dirout))
128 fontsize = 12
129 #plt.rcParams["svg.fonttype"] = "none"
130 # plt.rc(’text’,usetex=True)
131 if options.get(’compare’):
132 # simtype = ’$P_i-P_v$ vs $P_i$’
133 simtype = ’$R_{FEM}$ vs $R_{FVM}$’
134 adj = [0]*len(ffrListing)
135 conf = [0]*len(ffrListing)
136 res1 = [0]*len(ffrListing)
137 res2 = [0]*len(ffrListing)
138 for i in range(len(ffrListing)):
139 if ffrListing[i][0][’patientName’] != ffrListing[i][1][’

patientName’]:
140 print(ffrListing[i][0][’patientName’], "misaligned")
141 print(ffrListing[i][1][’patientName’], "misaligned")
142 break
143 else:
144 adj[i] = ffrListing[i][0][’printValues’][2]
145 conf[i] = ffrListing[i][1][’printValues’][2]
146 res1[i] = ffrListing[i][0][’residuals’][0]
147 res2[i] = ffrListing[i][1][’residuals’][0]
148 plt.figure(4)
149 plt.rcParams["axes.titlesize"] = fontsize
150 [md , sd ] = bland_altman_plot(conf,adj)
151 print(’md’, md, ’sd’, sd)
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152 plt.title(’D={0}, SD={1} S={2} F={3}’.format(np.round(md,4), np.
round(sd,4), len(adj), nFailed))

153 plt.savefig(dirout+’blandAltmanConfvsPV.png’)
154

155 plt.figure(1)
156 plt.rcParams["axes.titlesize"] = fontsize
157 plt.plot(conf,adj,’o’)
158 plt.plot([0.8, 0.8], [0,1],’--’)
159 plt.plot([0,1],[0.8, 0.8],’--’)
160 plt.plot([0,1],[0,1],’-’)
161 plt.axis([0,1,0,1])
162 plt.ylabel(’FFR FVM’)
163 plt.xlabel(’FFR FVM ($R_{FEM}$)’)
164 plt.title (’D={0} SD={1} S={2} F={3}’.format(np.round(md,4), np.

round(sd,4), len(adj), nFailed))
165 plt.savefig(dirout+’ConfvsPV.png’)
166 else:
167 simtype = dirout.replace(’figures/’,’’).replace(’/’,’’).capitalize

()
168 fem = [0]*len(ffrListing)
169 fvm = [0]*len(ffrListing)
170 clin = [0]*len(ffrListing)
171 res = [0]*len(ffrListing)
172 if options.get(’residuals’):
173 resid = options.get(’residuals’);
174 # print(resid)
175 else:
176 resid = [0]*len(ffrListing)
177 for i in range(len(ffrListing)):
178 fem[i]=ffrListing[i][1]
179 fvm[i]= ffrListing[i][2]
180 clin[i] = ffrListing[i][0]
181 res[i] = float(resid[i][0])
182 print (’Clin > 0.8’, sum((np.asarray(clin)>0.8)==True))
183 print (’FEM > 0.8’, sum((np.asarray(fem)>0.8)==True))
184 print (’FVM > 0.8’, sum((np.asarray(fvm)>0.8)==True))
185 print(’Diff = ’,(sum((np.asarray(fvm)>0.8)==True)-sum((np.asarray(

fem)>0.8)==True)) )
186 plt.figure(4)
187 plt.rcParams["axes.titlesize"] = fontsize
188 [md , sd ] = bland_altman_plot(fem,fvm)
189 plt.title(’D={0} SD={1} S={2} F={3}’.format(np.round(md,4), np.

round(sd,4), len(ffrListing), nFailed))
190 plt.savefig(dirout+’blandAltmanFEMvsFVMfloat.png’)
191

192

193 if options.get(’residuals’):
194 diff = np.asarray(fem)-np.asarray(fvm)
195 plt.figure(7)
196 plt.plot(res,diff, ’o’)
197 plt.ylabel(’FFR difference’)
198 plt.xlabel(’Final residual’)
199 plt.title(’Diff and residual ’)
200 plt.xscale(’log’)
201 plt.axhline(md, color=’gray’, linestyle=’--’)
202 plt.axhline(md + 1.645*sd, color=’gray’, linestyle=’--’)
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203 plt.axhline(md - 1.645*sd, color=’gray’, linestyle=’--’)
204 plt.savefig(dirout+’residual.png’)
205 plt.figure(1)
206 plt.rcParams["axes.titlesize"] = fontsize
207 plt.plot(fem,fvm,’o’)
208 plt.plot([0.8, 0.8], [0,1],’--’)
209 plt.plot([0,1],[0.8, 0.8],’--’)
210 plt.plot([0,1],[0,1],’-’)
211 plt.axis([0,1,0,1])
212 plt.ylabel(’FVM FFR’)
213 plt.xlabel(’FEM FFR’)
214 plt.title (’D={0} SD={1} S={2} F={3}’.format(np.round(md,4), np.

round(sd,4), len(ffrListing), nFailed))
215 plt.savefig(dirout+’FVMvsFEM.png’)
216

217 plt.figure(5)
218 plt.rcParams["axes.titlesize"] = fontsize
219 [md , sd ] = bland_altman_plot(clin,fvm)
220 plt.title(’D={0} SD={1} S={2} F={3}’.format(np.round(md,4), np.

round(sd,4), len(ffrListing), nFailed))
221 plt.savefig(dirout+’blandAltmanClinvsFVMfloat.png’)
222

223 plt.figure(2)
224 plt.rcParams["axes.titlesize"] = fontsize
225 plt.plot(clin,fvm,’o’)
226 plt.plot([0.8, 0.8], [0,1],’--’)
227 plt.plot([0,1],[0.8, 0.8],’--’)
228 plt.plot([0,1],[0,1],’-’)
229 plt.axis([0,1,0,1])
230 plt.ylabel(’FVM FFR’)
231 plt.xlabel(’Clinical FFR’)
232 plt.title (’D={0} SD={1} S={2} F={3}’.format(np.round(md,4), np.

round(sd,4), len(ffrListing), nFailed))
233 plt.savefig(dirout+’FVMvsClinical.png’)
234

235 plt.figure(6)
236 [md , sd ] = bland_altman_plot(clin,fem)
237 plt.title(’D={0}, SD ={1}’.format(np.round(md,4), np.round(sd,4)))
238 plt.savefig(dirout+’blandAltmanClinvsFEMfloat.png’)
239

240 plt.figure(3)
241 plt.plot(clin, fem,’o’)
242 plt.plot([0.8, 0.8], [0,1],’--’)
243 plt.plot([0,1],[0.8, 0.8],’--’)
244 plt.plot([0,1],[0,1],’-’)
245 plt.axis([0,1,0,1])
246 plt.ylabel(’FEM FFR’)
247 plt.xlabel(’Clinical FFR’)
248 plt.title(’D={0} SD={1}’.format(np.round(md,4), np.round(sd,4)))
249 plt.savefig(dirout+’FEMvsClinical.png’)
250

251 plt.close(’all’)
252 return("Plotted "+simtype)
253

254

255 def prepCSVresults (oldCSV, results):

57



Chapter B. Simulation files

256 # Method to write out a CSV with the results from the FLUENT
simulations

257 # This method is currently loosing a lot of data. Either because the
lines are to long, or that there are a lot of planes that are not
generated

258 # Using spheres would mitigate the last part, but something with the
method needs to be fixed to handle the first part

259 q = 0
260 count = 0
261 with open(oldCSV, ’r’) as f:
262 csv = f.read().splitlines()
263 for i in range (len(csv)):
264 if i ==0:
265 CSVText = csv[i]
266 else:
267 line = csv[i].split(’,’)
268 if i ==1:
269 CSVText+="""
270 {0},{1},{2},{3},{4},{5},{6},{7}
271 """.format(line[0], line[1], line[2], line[3], line[4], line[5], results

[0][’flowValues’][-1], results[1][’pressureValues’][-1])
272 else:
273 for j in range(q,len(results[0][’flowValues’])):
274 if results[0][’planeIDs’][-j].replace(’ID’,’’)== line

[1]:
275 CSVText+="""{0},{1},{2},{3},{4},{5},{6},{7}
276 """.format(line[0], line[1], line[2], line[3], line[4], line[5], results

[0][’flowValues’][j], results[1][’pressureValues’][j])
277 q=j
278 break
279 if j ==len(results[0][’flowValues’])-1:
280 count+=1
281 print(’Lost ID ’, line[1])
282 if count > 20:
283 print(results[0][’planeIDs’])
284 print(csv)
285 return CSVText
286

287 def checkReNumbers():
288 # method to read Re numbers in FEM results
289 listofHypCases = copyScript.passVar(’1D_3D_TAG_HYP.xlsx’)
290 rmin = [[10000] for d in range(len(listofHypCases))]
291 rmax = [0 for d in range(len(listofHypCases))]
292 # print(rmax)
293 for i in range (len(listofHypCases)):
294 csvPath = ’../../’+listofHypCases[i][’patientName’]+’/’+

listofHypCases[i][’patientName’]+’_Simulation/’+listofHypCases[i][’
simuName’]+’/’+listofHypCases[i][’simuName’]+’_out/ctlResults/
ctlSol_Average.csv’

295 with open(csvPath,’r’) as f:
296 values= f.read().splitlines()
297 for j in range(1,len(values)):
298 # print(values[j].split(’,’))
299 if values[j].split(’,’)[5]==0:
300 continue
301 rad =float(values[j].split(’,’)[5])
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302 u = (float(values[j].split(’,’)[6])*1e-5)/(np.pi*(float(values[
j].split(’,’)[5]))**2)

303 re = 2*rad*1050*u/0.0035
304 # print(rmax[i])
305 if re>=rmax[i]:
306 rmax[i]= re
307 elif re<=rmin[i]:
308 rmin[i]=re
309 # print (rmin[0],rmax[0])
310 return [rmin, rmax]
311 def getDiagnosticRelevance(results):
312 # Interpreting resuls and printing out medically relevant diagnostic

tools
313 TP = 0
314 FP = 0
315 FN = 0
316 TN = 0
317 for i in range(len(results)):
318 # print(results[i][0])
319 # print(results[i][2])
320 if results[i][0]>0.8 and results[i][2]> 0.8:
321 TN+=1
322 elif results[i][0]<0.8 and results[i][2]> 0.8:
323 FN+=1
324 elif results[i][0]<0.8 and results[i][2]< 0.8:
325 TP+=1
326 elif results[i][0]>0.8 and results[i][2]< 0.8:
327 FP+=1
328 print(TP,FP, FN, TN)
329 TPR=float(TP/float(TP+FN))
330 TNR=float(TN/float(TN+FP))
331 PPV=float(TP/float(TP+FP))
332 NPV=float(TN/float(TN+FN))
333 print(’TPR, TNR, PPV, NPV’)
334 return [TPR, TNR, PPV, NPV]
335

336 def processHypCases(sims,**options):
337 # Processing the hyperemic cases based on inputfactors
338 ffrValues = [[]]
339 listofcases = copyScript.passVar(’1D_3D_TAG_BLN.xlsx’)
340 listofHypCases = copyScript.passVar(’1D_3D_TAG_HYP.xlsx’)
341 slurmfolder=’’
342 target = ’../../’
343 directoryList = os.listdir(target)
344 indexes = getCaseIndexes(listofHypCases,directoryList)
345

346 printValues=[]
347

348 # indexes.append(27)
349 print(indexes)
350 # indexes= [69, 0, 41 , 42]
351 filesToProcess = [’flowPlanes.out’, ’pressurePlanes.out’]
352 iter = 0
353 oldit = 0
354 count = 0
355 maxvel = 0
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356 res = []
357 time = []
358 ffrdiff = [0,10000,0,0]
359 pinDiff = [0,10000, [],[]]
360 simVersion = sims
361 printDict = []
362 caselist = []
363 for i in range (len(indexes)): #(len(indexes)):
364 # # resultPath = target+listofcases[indexes[i]][’patientName’]+’/’+

listofcases[indexes[i]][’patientName’]+’_Simulation/’+listofcases[
indexes[i]][’simuName’]+’/’+listofcases[indexes[i]][’simuName’]+’_out/
fluentResults’

365 resultPath = target+listofHypCases[indexes[i]][’patientName’]+’/’+
listofHypCases[indexes[i]][’patientName’]+’_Simulation/’+listofHypCases[
indexes[i]][’simuName’]+’/’+listofHypCases[indexes[i]][’simuName’]+’_out
/fluentResults/’+simVersion

366 meshPath = target+listofHypCases[indexes[i]][’patientName’]+’/’+
listofHypCases[indexes[i]][’patientName’]+’_Mesh/’+listofHypCases[
indexes[i]][’patientName’]+’_Mesh_’+listofHypCases[indexes[i]][’
meshNumber’]+’/’

367 ffrPath = meshPath+listofHypCases[indexes[i]][’patientName’]+’
_Mesh_’+listofHypCases[indexes[i]][’meshNumber’]+’_FFR’

368 if (os.path.isfile(resultPath+’simResults.dat’) and os.path.isfile(
resultPath+’flowPlanes.out’) ) or ((’poly’ in resultPath or ’Init’ in
resultPath) and os.path.isfile(resultPath+’flowPlanes.out’)):

369 # print(listofHypCases[indexes[i]][’simuName’], "with mesh" ,
listofHypCases[indexes[i]][’meshNameVTK’], " Succeeded")

370 # print (listofHypCases[indexes[i]])
371 [planeValues, extraValues] = readResults(resultPath,

postProcess=filesToProcess)
372 if options.get(’writeCSV’):
373 csvPath = ’../../’+listofHypCases[i][’patientName’]+’/’+

listofHypCases[i][’patientName’]+’_Simulation/’+listofHypCases[i][’
simuName’]+’/’+listofHypCases[i][’simuName’]+’_out/ctlResults/
ctlSol_Average.csv’

374 outvalue = prepCSVresults(csvPath, planeValues)
375 # print(outvalue)
376 # writeFile(outvalue, resultPath+’solution.csv’)
377 if extraValues[2]> maxvel:
378 maxvel = extraValues[2]
379 time.append(float(extraValues[3]))
380 ffrValues[0]= readFFRFiles(ffrPath)
381 indexrange = listofHypCases[indexes[i]][’FFR_Num’]
382 if listofHypCases[indexes[i]][’simuName’]==’

CT_FFR_48_Simulation_0010’:
383 indexrange = indexrange[1:]
384 print(indexrange)
385 # if simVersion == ’regular’:
386 # print(indexrange)
387 for j in range(len(indexrange)):
388 if listofHypCases[indexes[i]][’patientName’] == ’CT_FFR_38’

or listofHypCases[indexes[i]][’patientName’] == ’CT_FFR_14’ or
listofcases[indexes[i]][’patientName’] == ’CT_FFR_40’:

389 indexrange[j] = int(indexrange[j])-1
390 # print(ffrValues[0][int(indexrange[j])-1])
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391 csvPressure = findCSVPressure(ffrValues[0][int(indexrange[j
])-1][2], resultPath.replace(’fluentResults/’+simVersion, ’ctlResults/
ctlSol_Average.csv’))

392 # print (csvPressure)
393 printValues.append(getFinalResults(listofHypCases[indexes[i

]], ffrValues[0][int(indexrange[j])-1], planeValues[1], indexpoint = int
(indexrange[j]), floatFFR = csvPressure))

394 printValues[iter][1] = csvPressure[1]/csvPressure[0]
395 if abs(csvPressure[0]-printValues[iter][5]) > abs(pinDiff

[0]):
396 pinDiff[0] =csvPressure[0]-printValues[iter][5]
397 pinDiff[2] = indexes[i]
398 elif abs(csvPressure[0]-printValues[iter][5]) < pinDiff[1]:
399 pinDiff[1] = abs(csvPressure[0]-printValues[iter][5])
400 pinDiff[3] = indexes[i]
401 if abs(printValues[iter][1]-printValues[iter][2])>0.1:
402 print(listofHypCases[indexes[i]][’simuName’], "with

mesh" , listofHypCases[indexes[i]][’meshNameVTK’], " gave diff = ",
printValues[iter][1]-printValues[iter][2], "Residual =", extraValues[4])

403 if abs(printValues[iter][1]-printValues[iter][2])>10:
404 print(listofHypCases[indexes[i]][’simuName’], "was

scrapped")
405 printValues[iter]=[0,0,0,0,0]
406 printDict.append({
407 ’patientName’ : listofHypCases[indexes[i]][’

patientName’]+’_’+str(indexrange[j]),
408 ’printValues’ : printValues[iter],
409 ’residuals’ : extraValues[4],
410 ’simulationTime’ : extraValues[3]
411 })
412 if abs(printValues[iter][1]-printValues[iter][2])>ffrdiff

[0]:
413 ffrdiff[0]= abs(printValues[iter][1]-printValues[iter

][2])
414 ffrdiff[2]= abs(printValues[iter][1]-printValues[iter

][2])/printValues[iter][1]
415 if abs(printValues[iter][1]-printValues[iter][2])<ffrdiff

[0]:
416 ffrdiff[1]= (printValues[iter][1]-printValues[iter][2])
417 ffrdiff[3]= abs(printValues[iter][1]-printValues[iter

][2])/printValues[iter][1]
418 res.append(extraValues[4])
419 iter+=1
420 # getSimFilesAndWriteFFRResults(’1D_3D_TAG_HYP.xlsx’, "Sheet",

printValues[oldit:iter], listofHypCases[indexes[i]], ’output.xlsx’, iter
= i)

421 oldit = iter
422 else:
423 print(listofHypCases[indexes[i]][’simuName’], "did not succeed"

)
424 count +=1
425 # print(ffrValues)
426 # print([’Clinical’,’FEM values’, ’FVM Values’, ’Clinical diff’, ’

Solver diff’])
427 # print([’Vessel’, ’CTL ID’, ’PointID’, ’Stenosis ID’,’FFR FEM’, ’FFR

Measured’])
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428 # print(printValues)
429

430 print(len(printValues), "functional FFR")
431 print(count, "non-functional Sims")
432 print(np.mean(time))
433 print(’Max velocity = ’ , maxvel )
434 print(plotFVMFEM(printValues,’figures/’+simVersion, 106-len(printValues

),residuals=res))
435 print(caselist)
436 print(pinDiff)
437 print(listofHypCases[pinDiff[2]])
438 print(listofHypCases[pinDiff[3]])
439 print(getDiagnosticRelevance(printValues))
440 print(ffrdiff)
441 # ffrValues = ffrValues[0]
442 # print(planeValues[1][’filename’])
443 # print(listofHypCases[27][’simuName’])
444 # print(ffrValues)
445 # if simulationType==’baseline’:
446 # [journal, folderPath] = simulationPrep(listofcases[indexes[i

]],len(indexes),simtype = simulationType, iterations = simLength)
447 # elif simulationType ==’hyperemic’:
448 # [journal, folderPath] = simulationPrep(listofHypCases[27],len

(indexes),simtype = simulationType,baselinePath=listofcases[27][’
simuName’], udfName =udfName, iterations = simLength)

449 # print(listofcases[indexes[i]])
450 # writeFile(journal, folderPath+’/simulation.jou’)
451 # iter+=1
452 # slurmfolder+=folderPath+’ ’
453 # slurm = slurmSimulationGeneration(slurmfolder,len(indexes)-1,

listofcases[indexes[i]])
454 # # print (slurm)
455 # writeFile(slurm,’../slurm/’+simulationType+’Queue.slurm’ )
456 return printDict
457

458 def processBaselineResults(output,**options):
459 # Processing baseline cases with some modifications to not follow

subfolders and print somewhat different
460 ffrValues = [[]]
461 listofcases = copyScript.passVar(’1D_3D_TAG_BLN.xlsx’)
462 slurmfolder=’’
463 target = ’../../’
464 directoryList = os.listdir(target)
465 indexes = getCaseIndexes(listofcases,directoryList)
466 printValues=[]
467

468 # indexes.append(27)
469 # indexes= [69, 0, 41 , 42]
470 filesToProcess = [’flowPlanes.out’, ’pressurePlanes.out’]
471 iter = 0
472 oldit = 0
473 count = 0
474 maxvel = 0
475 res = []
476 time = []
477 simVersion = output
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478 printDict = []
479 for i in range (len(indexes)): #(len(indexes)):
480 # # resultPath = target+listofcases[indexes[i]][’patientName’]+’/’+

listofcases[indexes[i]][’patientName’]+’_Simulation/’+listofcases[
indexes[i]][’simuName’]+’/’+listofcases[indexes[i]][’simuName’]+’_out/
fluentResults’

481 resultPath = target+listofcases[indexes[i]][’patientName’]+’/’+
listofcases[indexes[i]][’patientName’]+’_Simulation/’+listofcases[
indexes[i]][’simuName’]+’/’+listofcases[indexes[i]][’simuName’]+’_out/
fluentResults/’+simVersion

482 meshPath = target+listofcases[indexes[i]][’patientName’]+’/’+
listofcases[indexes[i]][’patientName’]+’_Mesh/’+listofcases[indexes[i]][
’patientName’]+’_Mesh_’+listofcases[indexes[i]][’meshNumber’]+’/’

483 ffrPath = meshPath+listofcases[indexes[i]][’patientName’]+’_Mesh_’+
listofcases[indexes[i]][’meshNumber’]+’_FFR’

484 if (os.path.isfile(resultPath+’simResults.dat’) and os.path.isfile(
resultPath+’flowPlanes.out’) ) or ((’poly’ in resultPath or ’Init’ in
resultPath) and os.path.isfile(resultPath+’flowPlanes.out’)):

485 # print(listofcases[indexes[i]][’simuName’], "with mesh" ,
listofcases[indexes[i]][’meshNameVTK’], " Succeeded")

486 print (listofcases[indexes[i]][’simuName’])
487 [planeValues, extraValues] = readResults(resultPath,

postProcess=filesToProcess)
488 if extraValues[2]> maxvel:
489 maxvel = extraValues[2]
490 time.append(float(extraValues[3]))
491 ffrValues[0]= readFFRFiles(ffrPath)
492 indexrange = listofcases[indexes[i]][’FFR_Num’]
493 if listofcases[indexes[i]][’simuName’]==’

CT_FFR_48_Simulation_0008’:
494 indexrange = indexrange[1:]
495 print(indexrange)
496 for j in range(len(indexrange)):
497 if listofcases[indexes[i]][’patientName’] == ’CT_FFR_38’ or

listofcases[indexes[i]][’patientName’] == ’CT_FFR_14’ or listofcases[
indexes[i]][’patientName’] == ’CT_FFR_40’ :

498 indexrange[j] = int(indexrange[j])-1
499 # print(ffrValues[0][int(indexrange[j])-1])
500 csvPressure = findCSVPressure(ffrValues[0][int(indexrange[j

])-1][2], resultPath.replace(’fluentResults/’+simVersion, ’ctlResults/
ctlSol_Average.csv’))

501 # print (csvPressure)
502 printValues.append(getFinalResults(listofcases[indexes[i]],

ffrValues[0][int(indexrange[j])-1], planeValues[1], indexpoint = int(
indexrange[j]), floatFFR = csvPressure))

503 printValues[iter][1] = csvPressure[1]/csvPressure[0]
504 if abs(printValues[iter][1]-printValues[iter][2])>0.01:
505 print(listofcases[indexes[i]][’simuName’], "with mesh"

, listofcases[indexes[i]][’meshNameVTK’], " gave diff = ", printValues[
iter][1]-printValues[iter][2], "Residual =", extraValues[4])

506 if abs(printValues[iter][1]-printValues[iter][2])>10:
507 print(listofcases[indexes[i]][’simuName’], "was

scrapped")
508 printValues[iter]=[0,0,0,0,0]
509 printDict.append({
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510 ’patientName’ : listofcases[indexes[i]][’
patientName’]+’_’+str(indexrange[j]),

511 ’printValues’ : printValues[iter],
512 ’residuals’ : extraValues[4],
513 ’simulationTime’ : extraValues[3]
514 })
515 res.append(extraValues[4])
516 iter+=1
517 # getSimFilesAndWriteFFRResults(’1D_3D_TAG_HYP.xlsx’, "Sheet",

printValues[oldit:iter], listofcases[indexes[i]], ’output.xlsx’, iter =
i)

518 oldit = iter
519 else:
520 print(listofcases[indexes[i]][’simuName’], "did not succeed")
521 count +=1
522

523 print(len(printValues), "functional FFR")
524 print(count, "non-functional Sims")
525 print(np.mean(time))
526 print(’Maxvel = ’, maxvel)
527 print(plotFVMFEM(printValues,’figures/baseline/’+output, 106-len(

printValues),residuals=res))
528 return "Processed baseline cases"
529

530 if __name__==’__main__’:
531 checkRe = False
532 # Only check the Reynolds numbers
533 writeCSV = False
534 # turn on writing of CSV from results
535 simVersions = ’’
536 subpath = ’’
537 subpath = ’poly/’
538 # simVersions = [’pVAdjusted/’ , ’confFile/’,’regular/’, ’lowInit/’]
539 # simVersions = [’noInit250/’,’noInit500/’, ’noInit1000/’, ’noInit2000

/’, ’noInit/’]
540 # simVersions = [’pVAdjusted/’ , ’confFile/’, ’noInit/’, ’noInitConf/’]
541 # simVersions = [’lowInit/’, ’noInitConf/’]
542 simVersions = [’noInitExtra/’,’noInitConfExtra/’]
543 # simVersions = [’noInitExtra/’, ’noInit/’]
544 results = []
545 if simVersions == ’’:
546 print(processBaselineResults(subpath))
547 elif checkRe == True:
548 [rmin, rmax] = checkReNumbers()
549 plt.figure(1)
550 plt.hist(rmin)
551 plt.xlabel(’Reynold\’s number’)
552 plt.ylabel(’Instances’)
553 plt.title(’Minimum domain value \n Mean = {0}’.format(int(np.mean(

rmin))))
554 print(’Saving figures/RE/rmin.png’)
555 plt.savefig(’figures/RE/rmin.png’)
556 plt.clf()
557 plt.hist(rmax)
558 plt.xlabel(’Reynold\’s number’)
559 plt.ylabel(’Instances’)
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560 print(min(rmax))
561 plt.title(’Maximum domain value \n Mean = {0} Max = {1}’.format(int

(np.mean(rmax)),int(max(rmax))))
562 print(’Saving figures/RE/rmax.png’)
563 plt.savefig(’figures/RE/rmax.png’)
564 else:
565 for i in range (len(simVersions)):
566 results.append(processHypCases(subpath+simVersions[i], writeCSV

=writeCSV))
567 ffrs = []
568 i1 = 0
569 i2 = 1
570 if len(results)>1:
571 for i in range (len(results[i2])):
572 for j in range (len(results[i1])):
573 if results[i2][i][’patientName’] == results[i1][j][’

patientName’]:
574 ffrs.append([ results[i2][i], results[i1][j]])
575 # print(results[i2][i][’patientName’] )
576 # print(results[i1][j][’patientName’])
577 # print(results)
578 plotFVMFEM(ffrs, "figures/"+subpath, 106-len(ffrs), compare=

True)
579 print(len(ffrs))
580 # print(processBaselineResults())
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