
Model-Driven Engineering of Dependable Systems

Vidar Slåtten
Department of Telematics, NTNU, Trondheim, Norway

vidarsl@item.ntnu.no

Abstract—Improving the dependability of a computer system
increases the acquisition cost so much that many systems
are built without a cost-effective level of dependability. This
motivates our decision to work on reducing the development
effort and competence required to create dependable, distributed,
reactive systems. The scope is narrowed to extending the SPACE
method with software-implemented fault-tolerance mechanisms
and providing tool-supported fault removal in the form of
model checking. The results so far mainly cover fault removal,
but we also have some early results on providing fault-tolerance
mechanisms at the application layer. We discuss future work
as well.

I. INTRODUCTION

As many of us already depend on computer systems to
lead our lives to a standard we find acceptable, we find it
natural to put a correspondingly strong emphasis on ensuring
that these systems are indeed dependable. In [1], one of the
definitions of the dependability of a system is “the ability to
avoid service failures that are more frequent and more severe
than is acceptable.”, a service failure being a deviation in the
visible system behaviour from that of its specification.

Depending on the likelihood of faults and the conse-
quences of service failures, some share of the development
resources should go towards ensuring the dependability
of any system being developed. However, increasing the
dependability of a system, always comes at a cost, in terms
of the effort and competence required of the developers.

Helvik [2] argues that “the additional investment in extra
hardware and in development of fault handling, maintenance
support etc., may be larger than the cost of the development
of a system with “ordinary” dependability”, but that for a
balanced application of the means for dependability (see next
section) this acquisition cost may be more than offset by
lower operation costs over the system life cycle.

One example of how to increase the dependability is
adding fault-tolerance mechanisms, in order to avoid service
failures even in the presence of active faults. Knowledge
in both the functional and the dependability domain is
required of the developers to correctly implement this. And
in so doing, the system is likely to become more complex,
increasing the chance of software faults being introduced
during development or later maintenance [3].

All in all, we find that it is so hard to create dependable
systems, that developers tend to create systems that have
lower acquisition costs, but unnecessarily high life cycle

costs. The question at hand is then: How can we enable
developers to create dependable systems without paying too
high a price in terms of the effort and competence required?

For the remainder of this paper, to denote a low cost in
terms of both effort and competence, we say that something
can be done easily.

In this work, we concern ourselves with distributed reac-
tive systems. These are systems that are (intended to be)
always running, maintaining an ongoing interaction with
their environment. Such a system is usually not easily reset
to some global initial state, and if so, important state infor-
mation regarding its current sessions with its environment
may be lost. Hence, “restarting” is usually not a good option;
we need to avoid failures instead.

To sum up, we would say that the goal of this work is to
reduce the development effort and competence required to
create dependable, distributed, reactive systems.

A. Scope and Terminology

Avizienis et al. provide a reference work for the depend-
ability field [1]. We will adhere to the definitions therein.

The authors of [1] define the threats to dependability to
be faults, errors and failures. Hereby, a failure is when the
service of a system deviates from the correct service. A
service is defined to be the behaviour of the system that is
visible to its users. Further, an error is the part of the total
state of a system that may lead to a failure, i.e. a deviation
in the state of a system from the correct state. Finally, a fault
is the (hypothesized) cause of an error, e.g. a software bug.

The concept of dependability is further defined to encom-
pass the following attributes: availability, reliability, safety,
integrity and maintainability. While all of these attributes
are worthy of attention when making a distributed reactive
system, we will focus primarily on reliability and availability
while also giving some thought to maintainability. The
attribute of safety could prove an interesting extension, but
this is not in focus at the moment.

We include maintainability as a secondary focus because
we think that creating highly reliable and available systems
also implies creating easily maintainable systems. I.e. if a
system is built using a method that ensures easily under-
standable specifications, we are less likely to introduce faults
both during initial development and later maintenance.

In addition to defining dependability, its attributes and its
threats, the authors of [1] lay out the means for achieving



dependability:
• Fault prevention means to prevent the occur-

rence or introduction of faults.
• Fault tolerance means to avoid service fail-

ures in the presence of faults.
• Fault removal means to reduce the number

and severity of faults.
• Fault forecasting means to estimate the

present number, the future incidence, and the
likely consequences of faults. [1]

Fault prevention is closely related to the maintainability
attribute, as the methods for fault prevention result in easily
maintainable specifications, and easily maintainable specifi-
cations decrease the chance of introducing new faults.

Fault removal can be further divided into verification,
diagnosis and correction [1]. To make fault removal easy
for the developers, these processes should be as automated
as possible. This work focuses on fault removal during
development time only, not during system use.

We will focus on tolerating both hardware and software
faults, but we narrow it down to fault-tolerance mechanisms
that can be implemented in software, using only off-the-shelf
hardware. In [5], the authors define the term software fault
tolerance to mean just this. However, that term is also often
used for mechanisms that aim only at tolerating software
faults. We therefore stress our intended meaning by using
the term software-implemented fault tolerance to denote this
part of our scope.

To efficiently achieve our goal, we choose to extend an
existing tool-supported method already under development
at the Department of Telematics: The SPACE method [4],
accompanied by the Arctis tool suite, provides a novel way
of developing reactive systems. Here, we use UML collab-
orations between two or more roles as the basic building
blocks for composing systems. These collaborations are
further refined by UML activities to describe their behaviour.
Each collaboration is encapsulated in a building block
with an external state machine that describes its interface
behaviour. Hence, each block can can be reused without
looking inside at its detailed behaviour. For deployment, the
collaborative specifications are transformed into component
state machines before a code generator generates the (Java)
code.

These models have a formal semantics defined in temporal
logic, making model checking possible. Model checking can
be highly automated and is hence a suitable choice for
our verification method. Many fault-tolerance mechanisms
can also be thought of as collaborations between two or
more roles, possibly physically distributed. We therefore see
enhancing Arctis with a library of reusable fault-tolerance
mechanisms as a natural step towards achieving our goal.

We argue that the SPACE method already scores high
in fault prevention through its graphical, layered UML
models. We therefore do not emphasize improving on fault

prevention, or maintainability, in this work. However, it
will be a constraint not to worsen maintainability when
attempting to improve on the other targeted dependability
attributes.

Faults can be classified by eight viewpoints, one of
them being the objective, malicious or non-malicious [1].
Removing or tolerating malicious faults (human attacker) is
outside our scope.

B. Related Work

In [5], the authors introduce what is later coined the
SwiFT library of fault-tolerance mechanisms and argue
that, as supported by the end-to-end argument, these fault-
tolerance mechanisms are at least as well included at the
application layer, as in underlying system layers. While they
work at the level of programming languages, we attempt to
bring this idea into the domain of model-driven engineering.

A survey of application-layer fault-tolerance mechanisms
can be found in [3], where the authors argue for tolerating
software faults, not just hardware faults. They also state
that “A number of important choices pertaining to the
adopted fault-tolerance provisions, such as the parameters
of a temporal redundancy strategy, are a consequence of an
analysis of the environment in which the application is to
be deployed and run.” This implies that our approach should
include a description of the deployment environment of the
system.

Bucchiarone et al. [6] present plans for an approach
similar to our own, in that they consider both fault tol-
erance and fault removal important means to increase the
dependability of systems. They specify functional and fault-
tolerance requirements by UML use cases. Then, a system
architecture is created in the form of UML component
diagrams for structure and state machines for their abstract
behaviour. They plan to use model checking to verify
that the system architecture adheres to the fault-tolerance
requirements. Once this is verified, they intend to use
the system architecture model to generate test cases for
a manually implemented executable system. They already
have a tool-supported method, CHARMY, that does this,
but it does not take fault tolerance into account yet. While
combining fault-tolerance mechanisms with model checking
to uncover design faults is similar to what we are planning,
our approach enables us to generate code directly, instead
of manually implementing the system and then testing it.

Domokos and Majzik [7] look at how to incorporate
dependability via aspect-oriented modelling. This aims to
separate the concerns of the functional designer and the
dependability expert. The dependability expert adds reusable
fault-tolerance patterns to the functional design, and a model
weaver then generates an integrated model, as well as an
analysis model that captures the failure and repair processes
of the system components and how errors propagate between
them. This approach is very high-level in that it does not deal



with the actual behaviour of the system, just the structure. It
is hence not possible to generate an executable system from
these models, nor to verify if the system has been composed
correctly with regards to behaviour. It does, however, cover
fault forecasting and could provide useful inspiration should
we go in that direction later.

Guelfi et al. [8] present the DRIP Catalyst approach where
coordinated atomic actions (CAAs) are used to specify all
system behaviour. A CAA is represented by an activity
diagram with each role in its own partition, somewhat
similar to the way we use activity diagrams to describe
the collaboration of roles. They intend to follow the MDA
approach of refining a platform-independent model to a
platform-specific model (PSM) and then generating code,
but currently they write the PSM directly. Verification of
the system behaviour was not implemented at the time of
writing, but was planned as future work.

We have not yet come across any approaches that express
fault-tolerance mechanisms as reusable collaborations. Nor
have we found any that formally verify the system behaviour
after introducing fault-tolerance mechanisms, while still
modelling the system detailed enough that executable code
can be generated automatically.

C. Structure

The rest of this paper is structured as follows: The next
section will outline our research design, including how we
intend to validate our approach. Sect. III summarizes our
results so far, while Sect. IV outlines our future work.

II. RESEARCH DESIGN

We have chosen to focus on using model checking and
software-implemented fault tolerance to increase the de-
pendability of distributed reactive systems built using the
SPACE method. Within this scope, we have come up with
the following research questions and corresponding working
hypotheses:

RQ1: How can we enable developers to easily remove
faults in the functional design of systems?

• H1: The temporal logic semantics of SPACE specifi-
cations enable us to automatically create a behaviour
model of the system so that model checking can be
used to verify a set of functional properties.

• H2: A useful subset of the properties to be verified can
be derived automatically from the model.

• H3: In case of property violations, the error trace from
the model checker can be expressed in terms of the
UML model so that the developer does not need to be
competent in the temporal logic domain.

• H4: It is possible to automate the diagnosis of a useful
subset of design faults.

• H5: It is possible to provide automatic corrections for
a useful subset of diagnosed design faults.

RQ2: How can we enable developers to easily augment
their systems with fault-tolerance mechanisms?

• H6: We can and should provide most fault-tolerance
mechanisms at the application layer.

• H7: Fault-tolerance mechanisms are suitable to be
expressed and encapsulated in reusable collaborative
building blocks.

Many fault-tolerance building blocks will be platform spe-
cific. We must have a way to easily configure them to the
current platform. An example is how the expected round-trip
delay of messages should be taken as input when configuring
some timers.

• H8: A deployment model is sufficient to automatically
configure fault-tolerance mechanisms.

RQ3: How can we answer RQ2 without compromising
the maintainability of the system specifications?

• H9: Encapsulating fault-tolerance mechanisms in build-
ing blocks is sufficient to separate the concerns of
functionality and fault tolerance.

• H9b: If H9 is not true, then separating fault tolerance
into its own aspect of the model will achieve sufficient
separation of concerns.

RQ4: How can we enable developers to easily remove de-
sign faults in a platform-specific, fault-tolerance augmented
system?

• H10: Our current work to answer RQ1 can be extended
to verify a useful subset of functional properties in
the presence of faults, by using a deployment model
to automatically generate platform-specific environment
behaviour in the temporal logic specification.

To fully analyse e.g. a system using replicated instances to
tolerate node crashes, we must model check a model with
several active instances of each type. This can potentially
cause a state space explosion, as the state space can grow
exponentially with every instance. However, the interesting
result is to see how few working nodes a system can manage
with, not how many.

• H11: We can verify sufficiently large models, to be
useful in practise, without the state space exploding.

A. Methodology and Validation of Results

The work done so far has taken the form of extending
Arctis with working implementations of our methods for
both fault removal and fault tolerance. This enables us to
experiment with our methods in practise, and let others
(mainly students, so far) use the same tools and give
feedback on their suitability. We intend to continue creating
working implementations to extend the Arctis tool suite
when possible.

Validation is a matter of using our tools and building
blocks to create working (small scale) systems. Through
the ISIS project [9], industry partners are testing the tool
suite for further use. This will hopefully lead to a much



larger base of users to collect feedback from. Publishing
peer-reviewed papers in related fields is, of course, also a
form of validation; one which we aim to pursue as much as
possible, as the thesis is going to be a paper collection.

III. RESULTS (SO FAR)

In [10], we show how we can automatically transform
collaborative UML specifications of the systems created
in Arctis, to the Temporal Logic of Actions, TLA [11].
We also automatically create theorems for a set of safety
properties that we wish to be informed of any violations
of. These theorems, along with the corresponding system
specifications, are then given as input to a model checker,
which gives a textual error trace in terms of the TLA
specification if any theorem violations are found.

In [4], we outline the whole SPACE approach. Relevant
to this work, is how we have integrated the model checking
into Arctis, so that any error traces are given graphically, in
terms of the original specifications. We further show how a
theorem violation is taken as a symptom, to be used as input
when attempting an automatic diagnosis. In some cases, we
also provide fixes that can be automatically applied to the
system specification.

The work so far, has focused on RQ1. We consider H1-
H3 confirmed, while H4 and H5 can be considered plausible;
some examples have been demonstrated, but the set of faults
to be automatically diagnosed and fixed is not yet very large.

In [12], we introduce symmetric building blocks as a way
to model multiple instances of the same type collaborating
with each other. We further introduce a reusable building
block for a leader election protocol, which itself contains a
reusable failure detector to detect node crashes. This paper
gives an early indication to support hypotheses H6, H7 and
H9.

IV. FUTURE WORK

RQ2 calls for a library of both platform-independent and
platform-specific building blocks that a developer can use to
compose a suitable set of fault tolerance provisions for the
fault model the system is being developed for. We envision
a library that contains building blocks for dealing with the
most typical (failure) semantics of the system’s underlying
platform, as well as software faults.

Some fault-tolerance mechanisms can, however, be more
suitable to place in the platform or the code generator. E.g.,
we may create a code generator for a group communication
system (GCS), like the ones in [13], to take advantage of
the atomic broadcast primitive, which ensures that all group
members receive the same messages in the same order. This
will ease the application development, at the expense of all
nodes having to run a middleware that may be doing more
than the application requires.

To separate the concerns of functionality from fault tol-
erance (see RQ3), we will experiment to see if the current

encapsulation in building blocks will be enough. If not, we
have to add new decomposition techniques so as to avoid
cluttering the functional view of the specifications. Aspect
orientation promises a solution to this, but it remains to be
seen if it can be adopted in this case.

RQ4 leads us to another main focus, which is on further
developing our verification by model checking, introduced in
[4], [10], to also verify the functional properties in the face
of channel and node failures. This can be done by altering
the temporal logic specification to take into account that e.g.
channels may drop messages and nodes may crash. We then
add fault-tolerance mechanisms and run the verification to
track down any new design faults introduced in this process.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic Concepts and Taxonomy of Dependable and Secure
Computing,” IEEE Trans. on Dep. and Sec. Comp., vol. 1,
no. 1, pp. 11–33, 2004.

[2] B. E. Helvik, Dependable Computing Systems and Com-
munication Networks; Design and Evaluation. Trondheim,
Norway: Tapir Academic Press, January 2009.

[3] V. D. Florio and C. Blondia, “A survey of linguistic structures
for application-level fault tolerance,” ACM Comput. Surv.,
vol. 40, no. 2, pp. 1–37, 2008.

[4] F. A. Kraemer, V. Slåtten, and P. Herrmann, “Tool support
for the rapid composition, analysis and implementation of
reactive services,” Journal of Syst. and Soft., 2009, in press.

[5] Y. Huang and C. M. R. Kintala, “Software Implemented Fault
Tolerance: Technologies and Experience,” in Proc. of 23rd
International Symp. on FT Comp., June 1993, pp. 2–9.

[6] A. Bucchiarone, H. Muccini, and P. Pelliccione, “Architecting
Fault-Tolerant Component-Based Systems: From Require-
ments to Testing,” Electron. Notes Theor. Comput. Sci., vol.
168, pp. 77–90, 2007.

[7] P. Domokos and I. Majzik, “Design and analysis of fault
tolerant architectures by model weaving,” in Proc. of the Ninth
IEEE Int. Symp. on High-Assurance Syst. Eng., 2005.

[8] N. Guelfi, R. Razavi, A. Romanovsky, and S. Vandenbergh,
“DRIP Catalyst: an MDE/MDA Method for Fault-tolerant
Distributed Software Families Development,” in OOPSLA
& GPCE workshop on best practices for Model Driven
Development, Vancouver, Canada, 2004.

[9] “ISIS Project,” http://www.isisproject.org/, Oct. 2009.
[10] F. A. Kraemer, V. Slåtten, and P. Herrmann, “Engineering

Support for UML Activities by Automated Model-Checking
— An Example,” in Proc. of the 4th Int. Works. on Rapid
Integration of Software Engineering Tech., November 2007.

[11] L. Lamport, “The temporal logic of actions,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 3, pp. 872–923, 1994.

[12] F. A. Kraemer, V. Slåtten, and P. Herrmann, “Model-Driven
Construction of Embedded Applications based on Reusable
Building Blocks - An Example,” in Proc. of the 14th Int. SDL
Forum, September 2009, pp. 1–18.

[13] N. Carvalho, J. Pereira, and L. Rodrigues, “Towards a generic
group communication service,” in On the Move to Meaningful
Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE,
2006, pp. 1485–1502.


