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Abstract—A crucial problem of Social Sciences is under what
conditions agreement, or disagreement, emerge in a network of
interacting agents. This topic has application in many contexts,
including business and marketing decisions, with potential impact
on information and technological networks. In this paper we
consider a particular model of interaction between a group of
individuals connected through a network of acquaintances.

In the first model, a node waits an exponentially time with
parameter one, and when it expires it chooses one of its
neighbors’ at random and adopts its decision. In the second one,
the node chooses the opinion which is the most adopted by its
neighbors (hence, majority rule). We show how different updating
rule of the agent’ state lead to different emerging patterns,
namely, agreement and disagreement. In addition, in the case
of agreement, we provide bounds on the time to convergence for
various types of graphs.

I. INTRODUCTION

Networks of interacting agents play a fundamental role in
modeling physical structures as well as social, information,
technological and biological phenomena. In Social Sciences,
a considerable effort has been made in deriving models aimed
at describing the statistical properties and emergence of large
networks, from both an empirical and a theoretical point of
view. One of the first studies in this arena, by Watts and
Strogatz [1], showcased common features observed in neural
networks (of the worm Caenorhabditis Elegans), man-made
networks (power grids), and social networks (film actors). The
similarities in the characteristic path length, clustering coeffi-
cient (network topology), and the existence of critical points
for cascading behavior are not a coincidence. Such properties,
along with the degree distribution and maximum degree, the
maximum separation among nodes and many other features,
are strictly related to these systems growth mechanisms over
time (see [2] and references therein). Some of the implications
of such models have been studied in the context of routing
data over large networks [3], and to analyze the diffusion of
innovations in social networks [4], [5], [6]. These insights can
potentially have implications on economics issues related to
technological networks, and marketing of new products as well
of ideas. For example, suppose that a group of individuals
interconnected together by a network of acquaintances' are
using different cell phones. All different devices have different
properties, and it is not clear whether one would be preferred
over the other ones. Can social interaction eventually convince
the society to reach a consensus on a single product? If so
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how fast is the process of convincing the others? Obviously,
the answer depends on the way the individuals interact, which
is the main issue of modeling in social sciences. In general,
there is no consensus on what is the most appropriate choice,
and to what level one can derive quantitative answers.

Contribution

In this paper, we consider a particular model of interaction,
known as the voter algorithm [7], in which a node in the
network chooses to adopt the same behavior of one of its
neighbors taken uniformly at random in the neighborhood.
We focus on the case where the possible behaviors form a
discrete set. We note that in the original voter algorithm,
there are only two possible behaviors, i.e., binary opinions [?].
In that sense, our analysis is more general since we do not
make that particular assumption. We prove convergence to
a consensus, and provide an upper-bound on the time to
convergence in both deterministic and random topologies. We
note that it has been already proved that the voter algorithm
converges to a network wide consensus in finite networks
and 1 — 2 dimensional infinite lattices [7], [8]. Moreover,
similar algorithms with uncountable behavior sets have also
been studied in the literature.

We then compare this interaction approach with another
model: this is the same as the previous one, except for
the fact that a node chooses the opinion corresponding to
the most adopted in its neighborhood (majority rule). We
show that the outcome changes completely: in particular, the
emerging pattern is the division of the nodes according to the
communities they belong to rather than consensus. We report
an example performed on the European Power Grid.

II. VOTING ON A GRAPH: AGREEMENT

We consider a network G(V, £) where V is the set of nodes
and & the set of edges. We focus on undirected simple graphs,
i.e., no self-loops and multiple edges. Thus, the neighborhood
of a node in the network, say node i € V, is defined as N; =
{jl|(,7) € E£}. The degree of node i is then the cardinality of
the set \V;, that we indicate with d; = |N;|. The degree matrix
D is a diagonal matrix whose i-th element is the degree of
node 7, i.e., D; ; = d;. The adjacency matrix A is a matrix that
contains information about the connections among the nodes.
Specifically, A; ; = A;; = 1 if there is a link between nodes
1 and 7, and zero otherwise.
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A. General model

The algorithms we study are asynchronous. Each node
schedule the next update of its own opinion according to a
Poisson process with rate 1. Therefore, we can use a discrete
index k to denote the updating events (each of which involve
only one node) and follow the evolution of the system at
discrete times.

The state of a node is indicated by c¢;[k], where 4 is the node
index. Opinions, or nodes’ states, are chosen among a finite set
of elements. In particular, we assume that initially, at iteration
k = 0, all nodes have different opinions that we can think
of as colors. Hence, node 1 is colored with 1, node 2 with 2
and so on and so forth, so that the initial set of opinions is
S ={1,2,..., N}. Of note is that the voter model with binary
opinions is a special of this setup since in that particular case
S = {1,2}. Our case is the most general one since there may
be at most N different opinions in a network with N agents.
We use an index function Z : Nt — V that associates any
iteration k to the nodes currently performing the update.

We formulate the algorithm in the most general case. At
iteration k + 1, node Z[k + 1] updates its state as follows:

crppaylk + 1] = fleinlk], cizlk], - .., cia,[K]) (IL1)

where f(-) is the updating function (equal for all nodes), and
c; ;K] is the color (at iteration k) of the j*® neighbor of node
i. The other nodes, instead, do not change their opinion, i.e.,
cjlk+1] = ¢;[k] for all j # Z[k + 1]. In the rest of the paper
we assume that the following conditions hold true:
1) The number of nodes in the network |V| = N is finite.
2) The underlying topology G is strongly connected, i.e.,
there exists a path (not necessarily single hop) between
any given node pairs.

B. Randomization and Agreement

The algorithm we consider for reaching agreement is as
follows. Assume node ¢ wakes up at iteration k, i.e., Z[k] = i.
Let us define as Q; .[k], the number of neighbors of node 4
colored with c at iteration k. The updating rule used by node
3, as defined in II.1, becomes:

1
Ci[/{i+1]=X, X ~ —

7

Y Qiclklé(x—c) (12)

ce{1,2,..,N}

and c;[k+1] = ¢;[k] for all j # i. Basically, node ¢ constructs
a histogram where for each colors there are as many units as
the number of its neighbors currently adopting that color, and
chooses the new state based on the probability mass function
induced by the histogram. We note that (II.2) is equivalent to
saying that node ¢ copies the opinion of one of its neighbors
uniformly at random, i.e.

1
clk+1]=X, X ~ @ Z 3z — c;[k]).
JEN;

The algorithm constructed above is called the voter algorithm.

C. Convergence Properties

Since the the updating sequence is random, and the evolu-
tion only depends on the most recent update, the entire system
can be viewed as a Markov chain. The state of the network is
then given by an /N-dimensional vector, given by the nodes’
states. Clearly, the condition where all nodes have the same
color is an absorbing state, since a node cannot choose a color
that does not appear in the network.

Theorem 2.1: Consider a connected network composed of
N nodes performing the voter algorithm. For any iteration
k > 0, condition

Pr(cilk+ N]=c¢jlk+ N], Vi,je€{l,2,...,N}) >0

holds true.

Proof: We need to prove that there always exists at
least one sequence of N consecutive updates leading to an
absorbing state. We pick the node who performed the k!
iteration and call it v. Consider the set of nodes defined by
the following recursion

Tk+0)=Tk+1-1Uu (IL.3)

subject to the constraint
ugTk+1—-1]:3Fe(u,v),v e T[k+1-1]

with | = 0,1,...,N — 1 and 7[k] = {v}. Equation (IL3)
states that, at each step, we choose a node that has at least
one edge connected to at least one node in 7 [k + 1 — 1]. If
there are, let us say, 1 < m < N such nodes, the probability
that this situation actually happens is m/N > 1/N > 0. At
iteration k + 1, the probability that the new node u, added to
T [k] = {v}, chooses the same color as v is at least 1/Q, =
(32, Qum)~' > 0, where Q,, is the total number of colors
used by node u. Conditioned to this event, the probability that
the second node, say z, added to 7 [k + 1] = {v, u}, chooses
the same color is at least 1/Q, = (3, Qzm) ' > 0, and so
on and so forth, for NV — 1 times. Therefore, given any initial
color of v, the probability that after N —1 consecutive updates
all nodes have that particular color is at least

1
11 NQu>0

ueN —{v}

which is always positive, so long as N < oo. Since node v
and iteration k are arbitrary, the color of node v could be any
color in the set S, and, thus, the result follows. |
We can now use the result provided by Theorem 2.1 to
establish the following convergence result.

Theorem 2.2: Consider a connected network composed of
N nodes performing the voter algorithm, with initial condi-
tions {c1[0],¢2[0],...,cn[0]} and ¢;[0] € S,Vi. The event

JkceS: VE >k, ¢[k']=cVi

occurs almost surely.

Proof: As described above, the state of the network is
given by an N-dimensional vector containing the n colors
of the nodes. Since this process is a Markov chain, and
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Fig. 1. A sample update path for the voter algorithm.

the absorbing set is a condition where all nodes have the
same color, a sufficient condition for convergence is that there
always exists a strictly positive probability of reaching the
absorbing set. From Theorem 2.1 we know that this situation
always occurs, and, therefore, the result follows. [ |

III. BOUNDS ON THE TIME TO CONVERGENCE

One of the major approaches in the analysis of the voter
model is so called the dual approach, where the voting
problem is being mapped into coalescing random walks on
the graph G. While the reader may refer to [7] for detailed
discussions and proofs of the duality, we will discuss them
briefly in the following for the sake of completeness and clarity
of our proofs.

In the coalescing random walks process, there is a single
particle at each vertex of the graph G at time ¢t = 0. These
particles perform independent continuous random walks on
the graph, i.e., each particle jumps to one of its neighbors
independently according to a rate 1 Poisson process. When
two or more particles meet on a vertex, they coalesce and form
a single particle. Thereafter, these particles perform a single
random walk on G, possible colliding with other particles.

Assuming nodes have been initialized by different types
(opinions) in the voter model, the convergence of time of
the voter model (to a consensus) has the same distribution as
the convergence time of the coalescing random walk process
(to a single particle). While reader may refer to [8], [7] for
rigorous proofs, the idea is based on the following: for each
vertex ¢ € V and time 7' > 0, one can define a dual process
{yF'(s) : 0 < s < T}, which traces the origin of the opinion
at node ¢ at time 7" > 0. The primal and the dual processes
will have the property:

ci(T) = cyrp_s)(s). (IL.1)

In other words, the origin of the opinion at node 7 at time
T > 0, is the opinion at node y! (T — s) at time s. We note
that y'(0) = 4, and the process {y(s) : 0 < s < T} will
jump according to the arrival times of the primal process ¢;(t).
For instance, if ¢; < T is the last time before (and including)
T that node ¢ has copied one of its neighbors decision (say

neighbor j), then y! will jump to the neighbor j at time
T — t;. A sample update path is given in Fig. 1. In this
example, the x-axis denotes different nodes in the network,
and the y-axis denotes continuous time interval. Whenever
a node copies its neighbor’s decision, it will be denoted by
an arrow from the node itself to its neighbor. As we have
discussed above, node i has copied node j’s decision at time
t1, and there is a corresponding arrow in the figure. We note
that one can track the origin of the node ¢’s decision at time
T by following arrows backwards in time, i.e., by the dual
process. In our example, node ¢’s decision at time 7' is node
k’s initial decision.

Moreover, if we want to track the origins of opinions at
more than one location, i.e., at B C V), then we can define an
independent dual process for each element ¢ € B. The crucial
point is that if two or more dual processes reside at the same
location at the same time, they will collide and move together,
since the origin of the decision at that point and time will be
exactly the same for both processes. Thus, these dual processes
form a coalescing random walk on G.

At this point, it should be clear to our readers that the dual
process for the voter model is indeed a coalescing random
walks process, and assuming nodes have been initialized by
different types, voter model will converge to a consensus when
coalescing random walks process initialized at all nodes on GG
collapses to a single particle.

The following result is an upper-bound of the expected
convergence time FE[T..,] for a coalescing random walk
process on a given graph.

Lemma 3.1 (Aldous [8]): Assume E;[T;] is the mean hit-
ting time of a regular random walk to node j on graph G,
given that the walk is initialized at node i. Then

E[Tcrw] < elog(N + 2) max FE; [T]]
3

The mean hitting time is given by the following lemma.

Lemma 3.2 (Lovasz [9]): The mean hitting time of a reg-
ular random walk to node j on graph G, when the walk is
initialized at node 1, is equal to

N 1 Uk UkjVki

El[TJ}_2|5‘ kX::Q 1— )\k<D_1/2AD_1/2> (Djj /Dijii
where vy, is the eigenvector of D~1/2AD~1/2
to eigenvalue \.

Hence, based on Lemmas 3.1 and 3.2, we are able to bound
the convergence time of the voter model.

Theorem 3.3: Given a network G(V, ), its adjacency and
degree matrices A and D respectively, the expected time for
the voter model to convergence is upper bounded by:

4elog(N +2)|&]
E[T] <
= 1=, D-72aD 173

Proof: Since the coalescing random walk process is the
dual of the voter model, by Lemma 3.1,

Z’j

corresponding

max D (I11.2)
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Fig. 2. The deterministic topologies we consider are 1) the complete graph,
2) the star graph, 3) the cycle graph and 4) the line graph.

Moreover, denoting M = D 1/2AD~1/2 and by Lemma 3.2,

N 2
1 Vkj Vkj Uk
maxEZ-T- = max 2 5 e — _Rky _ _TRITRT
e = o (52 Vi)

N 2
< 2l max Uki _ _UkjUki
> 1— )\Q(M) .7 P Djj m
2|5| 1 —VkjVki
<O __ =" | max — + max —L
= 1- (M) ( i Djj i = \/Dj;Di
2|€] 1 V150154

= 2 [ max — 4 max ——2——

1 — A (M) < i Djj i \/DjDi )’

@ _ A€l 1

———— max —,

- 1-XM) 5 Dy
where (a) follows from the fact that Ao(M) is the second
largest eigenvalue, (b) is due to ijﬂ v,%j =1, (¢) follows
from Zszl Vg = 0 and v1; > 0, and (d) is since vyv1; <
1. If we combine the upper bound with Lemma 3.1, we obtain
the final bound:

4elog(N +2)|€]
E[T) <
< =, D72aD 173

Finally, we note that A;(.)’s and vy’s are well defined since
D~'/2AD~'/2 is a real symmetric matrix. [

max D!
j JJ

IV. SCALING LAWS FOR DIFFERENT GRAPHS

We now derive the scaling laws for various types of graphs,
from deterministic graph topologies, to 2-dimensional random
graphs, Erdos-Renyi and small-world graphs. We show how
the connectivity impacts the final result on the time to conver-
gence.

A. Deterministic Network Topologies

In the context of deterministic network topologies we con-
sider five types of graph, namely, 1) the complete graph, 2) the
star graph, 3) the cycle graph and 4) the line graph, sketched in
Fig. 2. Consider, for example, the complete graph. In this case,

the number of edges is equal to || = N (N —1)/2. The degree
is equal to N —1 for all nodes, and 1 — A\y(D~'/2AD~1/2 =
N/(N —1). By using the result in Theorem 3.3, we obtain

E[T] < e(N — 1) log (N +2).

In a similar fashion one can compute the bound on the time
to convergence for the other cases, that are reported in Table
L

B. Random Geometric Graph

Let us consider the case of 2-dimensional random geometric
graphs (which is the case of interest), where N nodes are
randomly placed (w.l.o.g.) in a 1-by-1 square, and two nodes
communicate if their distance is less than r. The following
result holds true.

Theorem 4.1: Given a 2-dimensional random geometric
graph with v > %, there exists a finite N' > 0 such
that for all N > N’, the expected time to reach consensus is

upper-bounded by

2elog(N + 2)N

< — 2
Proof: We first note that for » > (4log(N)/N)/?
and large enough NN, the graph will be connected with high
probability (w.h.p.). Moreover, there exists n’ > 0 such
that for all N € [n/,00) the degree of every node in the
network is equal to some «(N) w.h.p. [10]. Thus, the ratio
of |€]/min;; D;; is equal to N w.h.p. Moreover, the term
[1 — Xo(D~1/2AD~1/2)]=1 upper bounded by is 1/r2 for
large enough N [10]. Combining these results with Theorem
3.3, the result follows. [ ]
In order to see how the performances of this algorithm

scale as the network grows, we may set the transmission

radius to r = 2 IOJgVN ; that is, as the network becomes large,

the connectivity remains constant [10]. By substitution, from
(IV.4) we obtain

E[T] (IV.1)

E[T] < gNQ = O(N?).

In Figure 3 we report, as an example, the evolution of the
network state (the nodes’ colors) over time, with a network
composed of N = 100 nodes and normalized communication
radius r = 0.2.

C. Erdos-Renyi Graphs

The Erdos-Renyi graph (also known as ER graph) is one of
the most famous, and still used, random graph used to model
social networks, because of its simplicity of analysis due to the

TABLE I
TIME TO CONVERGENCE

Graph Bounds on Expected Time to Convergence
Complete Graph e(N —1)log (N +2)

Star Graph e(2N — 2)log (N +2)

Cycle Graph eN?log (N +2)

Line Graph e(N —1)2log (N +2)
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Fig. 3. Voting algorithm performed on a network composed of N = 100
nodes, with normalized transmission radius » = 0.2.

independence of the links between the nodes. The construction
of an ER graph is simple: pick a set of N nodes with no
edges. For each pair of nodes, out of N(N — 1)/2 possible
combinations, establish a link with probability p (coin flip).
In this context, we wish to derive a bound of the time to
convergence for the voter model when the network grows, but
the connectivity remains constant. To accomplish this task we
introduce a dependency of p on the network size V. In order to
bound the convergence time for ER graphs, we first introduce
the following result.

Lemma 4.2: Assume random variables X1, X5, ..., Xy are
iid with X; € {0,1}. Then,
N 2
NE[X,;]5
P (Z X;> (14 5)NE[XA> <e s,  (IV2)
i=1
N
NE[X;]52
P <Z X;<(1- 6)NE[XZ-}> <e =z,  (IV3)
i=1

where 0 < 6 < 1.
Of note is that the above lemma gives exponentially decaying
bounds on the tail distributions of sums of independent binary
random variables.

For a given node ¢, the number of neighbors of that
particular node is equal to:

N
j=1

We note that above definition introduces self-loops, i.e., each
node is neighbor to itself. Such an assumption is for the
mathematical brevity, and does not change the validity of our
analysis. We note that due to the independent nature of the
link generations, A;;’s are i.i.d. binomial with mean p for a
given 1.

We can now apply the result of Theorem 3.3 to bound the
expected time to consensus for ER graphs.

Theorem 4.3: Given an Erdos-Renyi graph with p >>
log?(N)/N, the expected time to reach consensus scales as:

delog(N +2)N (14 24/log(N)/Np)
1 8 _ g(m)log?(N) ’
Np Np
(Iv.4)
where g(n) is a function tending to infinity arbitrary slowly.
Proof: Using (IV.2), one can show that

E[T] ~ O

Nps2

P(d; < Np+6Np)>1—¢ 5 .
Moreover, if we choose § = 31log(N?)/Np:
1
P (d; < Np+ /3Nplog(N)) > 1 - -
Since above equation holds for all ¢ € V, then:
1
P (\5\ < N%p+ N\/SNplog(N)) >1- .

To bound max; Dj_jl, we first note that D;; = |N;| = d;.
Then, by (IV.3):

IV.5)

1

By choosing § = 2log(N?)/Np:

oo -t 1
P(mijjjlg (Np—\/QNplog(N)) ) Zl_ﬁ
(IV.6)

To bound 1 — X\p(D~/2AD~'/2), we utilize Theorem 3.6
in [11]. By noting that w,,;, = w = mnp in our case and
assuming Np >> log”(N), the bound simplifies to:

1 —Ay_1(I —D Y2ADY/2)| <

4 log?(N)
1 1)— —
(14 o(1)) 5 + 9l 5
where g(n) is an a function tending to infinity arbitrary slowly.
Since Ay = 1—Ay_1(I —D~/2AD~1/2), we can bound the
last term in II1.2 as:

g(n) log?(N)\ '
Np

1 8
<(1-—=——

1— A(D-1/2AD-1/2) = ( Np
(IV.7)

Combining (IV.5), (IV.6) and (IV.7), our result follows. |

V. VOTING ON A GRAPH: DISAGREEMENT

As we have seen from the specifications of the model de-
scribed in Section II, the nodes are always driven to consensus
by means of local interactions. One might ask what happens if
the updating rule is changed. After all, equation (II.3) simply
means that the updating node copies the color of one of
its neighbors, chosen at random. The vote is biased towards
becoming the vote of the majority, but is not necessarily
that of the majority. Hence, a straightforward modification
of such dynamics is the majority rule, also known as Label
Propagation Algorithm (LPA) [12]. This particular scheme is
somewhat similar to the one we discussed above. Each node
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Fig. 4. Label Propagation Algorithm (LPA) applied to the European Power
Grid.

wakes-up and collect the colors of its neighbors. Instead of
picking one at random, the node chooses the color with the
most number of occurrences (hence, majority rule). Suppose
node ¢ wakes up at iteration k. Recalling that Q; .[k] is the
number of neighbors of node ¢ colored with ¢, the new state
of node ¢ is given by the following updating rule

cilk + 1] = argmax Q; ([k]. V.1)

If two or more colors satisfy Eq. (V.1), node i chooses one
of such colors at random. We can see that, as opposed to
Eq. (IL.3), the updating rule is deterministic, since the node
chooses the opinion adopted by the majority of its neighbors.
The LPA algorithm does not lead the nodes to consensus, nor
(in general) guarantees convergence. However, an interesting
pattern emerges as the node keep updating their colors using
Eq. (V.1). The number of colors reduces, and nodes within a
community end up sharing the same color. By community in
a graph, we mean a subgraph of GG such that the number of
edges within the subgraph is much bigger than the number
of edges connecting the subgraph to the rest of the network.
Alternatively, one may define the concept of community in a
graph as a region where the number of links is much bigger
with respect to a reference graph (the so called null model),
corresponding to what we would expect by adding edges
between nodes at random [2].

In Figure 4 we show the result of the LPA algorithm applied
to a large graph, the European Power Grid. We can see that
“dense” regions of nodes are identified by one color. Although
there are not many theoretical results about the properties
of LPA, the algorithm seems to be working quite well with
many graphs of interest. Potential applications of this scheme
include self-organization for mobile robots and power control
in wireless networks.

The LPA algorithm has been improved quite significantly
since its discovery. In [13] an modified version of the LPA

for finding communities of similar size has been proposed. In
[14] the Authors designed an LPA-based algorithm to detect
the extent to which a node belongs to one of the surrounding
communities. An interesting feature offered by that alternative
is this weighted and bipartite networks are handled as well. In
[15] it has been shown that the LPA algorithm is equivalent
to finding the local minima of a simple Potts model.

The Label Propagation Algorithm has also potential appli-
cations in the engineering panorama. This scheme can, in fact,
be used for formation control problems. In this context, one of
the main problems is keeping the network “well” connected
over the time; this means that the formation of communities is
not desirable. If the nodes perform the LPA scheme, some of
them will know that they lie over the borders between different
communities, allowing them to inform the others to get closer.
The same idea can be employed to improve the connectivity
of low-density networks.

VI. CONCLUSIONS

In this paper we have discussed two voting algorithms, both
based on voting mechanisms. In one case, a node adopts the
opinion of one of its neighbors; in the other, the majority rule
is applied. Although both these two algorithms make use of
local information only, their behavior is completely different,
and this is determined by the specific updating rule they use.
In the first case we have consensus: as the time evolves, the
nodes are driven to the same color, meaning that they have
the same opinion. In the second one there is no consensus,
and we call this situation disagreement. The number of colors
reduces, and they distribute in a way such that nodes belong-
ing to the same community share the same opinion. These
coloring games have potential applications in the engineering
arena for coordinating mobile agents interconnected through a
communication networks, to modeling collective behavior in
human societies.
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