
Master of Science in Communication Technology
July 2010
Svein Johan Knapskog, ITEM
Øystein Sekse Øie, Kantega AS
Nils Tesdal, Signicat AS

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Security in Single Sign-On Web
Applications
An Assessment of the Security in and Between Web Applications
Sharing a Common Single Sign-On User Session

Jo Grimstad

Problem Description
Single Sign-On (SSO) is a mechanism which gives users the control over their usernames across
multiple Web sites. This way, they do not have to create a new account with a username/password
combination at every Web site they wish to use. There are many benefits of only having to sign in
using one digital identity on the Internet, like simple registration, less passwords to remember,
reduced information maintenance (e.g. postal and e-mail address), and reduced time spent on the
actual login to Web applications. Today, more and more Web sites support SSO. However, using a
SSO protocol also has its drawbacks, like phishing weaknesses and being a single point of failure.
Also, the fact that a user will be logged in at many places at once is not good, at least not from a
Web security point of view.
 The work will include investigation of security vulnerabilities and threats related to the usage of
SSO in Web applications. As part of the thesis, the student will implement two Web applications
using OpenID, which is a decentralized authentication protocol. These applications will act as
OpenID relying parties, i.e. providing user registration and login via OpenID providers (e.g. Google
or myOpenID). Experimenting will be performed on both sample applications individually, but the
main focus will be on how information security is safeguarded between two Web applications that
belong to the same SSO user session. In this case, the student will examine the feasibility of
attacks that are of relevance, like Cross-Site Request Forgery (CSRF). Security assessments will
be performed for the various phases of a user's SSO session; mainly where the user is logged in,
but also for the login and logout phase (single logout).

Assignment given: 15. February 2010
Supervisor: Svein Johan Knapskog, ITEM

Abstract

Single Sign-On (SSO) is a solution where the authentication pro-
cess is taken care of once by a third-party Web site rather than at each
of the the Web sites providing services to their users. This new way of
separating user identities from the service-providing Web sites leads to
different security requirements. As an approach towards assessing the
security of Web applications utilizing SSO, this thesis investigates the
concepts and functionality of OpenID, a decentralized authentication
protocol. The assessment addresses vulnerabilities and threats related
to SSO, using real Web applications as examples. Development of an
OpenID-enabled Web application is a part of the security assessment.

The thesis includes experimenting with various OpenID-enabled
Web sites and Identity Providers (IdPs), and observing how they are
affected by different kinds of Web security threats. The results of the
thesis shows how security weaknesses were discovered at two major
IdPs by performing Clickjaking attacks. Also, the thesis outlines some
attacks that are threatening the concept of SSO in general.

i

ii

Preface

This thesis was written as part of the 5 year MSc in Communication Technol-
ogy (Department of Telematics) with a specialization in Information Secu-
rity at the Norwegian University of Science and Technology (NTNU) in the
spring semester of 2010. The Master’s thesis was written with the support
from Kantega AS, a consulting, technology services and application outsourc-
ing company located in Trondheim, providing me with co-supervising of the
work.

I would like to thank my supervisor at NTNU, professor Svein Johan
Knapskog, for valuable feedback and guidance during the work. Furthermore,
I wish to thank my co-supervisors for valuable input throughout my work;
Øystein Sekse Øie at Kantega AS, and Nils Tesdal at Signicat AS.

Trondheim, July 12, 2010

Jo Grimstad

jogrimst@stud.ntnu.no

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

1.3 Refinements and Limitations 2

1.4 Thesis Outline and Methodology 3

2 Theoretical Background 7

2.1 Goal . 7

2.2 Single Sign-On (SSO) . 7

2.2.1 Components . 8

2.2.2 Possible Applications 9

2.3 Single Logout (SLO) . 10

2.4 Identity Providers (IdPs) . 12

2.4.1 Multi-Factor Authentication 15

2.5 Web Security Threats . 16

2.5.1 Cross-Site Request Forgery (CSRF) 17

2.5.2 Clickjacking . 19

2.5.3 Man-in-the-Middle (MITM) 19

2.5.4 Phishing . 21

2.6 Summary . 23

3 OpenID 25

3.1 Goal . 25

3.2 Introduction to OpenID . 25

3.3 Basic Elements in OpenID 2.0 28

3.4 Creating an OpenID . 30

3.4.1 OpenID Providers (OPs) 30

3.5 Using OpenID . 32

3.5.1 Simple Registration Extension (SREG) 40

3.6 Multi-Factor Authentication 42

3.6.1 One-Time Password (OTP) 42

3.6.2 Digital Certificates . 47

3.6.3 Other Methods . 49

3.7 Provider Authentication Policy Extension (PAPE) 49

3.7.1 Defined Authentication Policies 50

3.8 Phishing Protection . 53

3.9 Certification of OPs . 55

3.10 Summary . 56

v

4 Security Assessment 57
4.1 Goal . 57
4.2 Application Development . 57

4.2.1 Java Library: openid4java 58
4.2.2 Spring Security . 59
4.2.3 Functionality . 60

4.3 Security Assessment . 62
4.3.1 Attacking an RP Using CSRF 62
4.3.2 Countermeasures Against CSRF 70
4.3.3 Attacking an OP Using Clickjacking 70
4.3.4 Countermeasures Against Clickjacking 78

4.4 Summary . 81
4.5 Discussion . 81

5 Conclusion and Further Work 83
5.1 Evaluation and Conclusion . 83
5.2 Further Work . 85

A OpenID 89
A.1 Signature Calculation in OP Response 89

B eXtensible Resource Descriptor Sequence 89
B.1 Supported Authentication Policies at VeriSign 89

C YubiKey 90

D Cross-Site Request Forgery (CSRF) 93
D.1 Countermeasures . 93

E Clickjacking 94
E.1 Clickjacking Attack Against Google OP 94
E.2 Protection Mechanisms . 96

F Web Application 97
F.1 Log Messages During Sign-On 97
F.2 Attached Source Code . 97

vi

List of Figures

1 Sign-on at two SPs using a FEIDE identity 10
2 SLO example . 11
3 A selection of some popular IdPs 13
4 CSRF scenario . 18
5 Clickjacking [15] . 19
6 Man-in-the-Middle [16] . 20
7 Original IdP: https://pip.verisignlabs.com/login.do . . 22
8 IdP phishing: http://pip.verisignlabsc.com/login.do . . 22
9 Example of an OpenID URL 27
10 Basic elements of OpenID . 29
11 VeriSign Labs PIP - Create Account 33
12 VeriSign Labs PIP - My Information 34
13 https://sourceforge.net/account/login.php 34
14 VeriSign Labs PIP - Sign In 35
15 VeriSign PIP requesting verification 36
16 New account created using an OpenID 38
17 Signing into a second OpenID-enabled Web site 39
18 VeriSign VIP on Sony Ericsson mobile phone 43
19 YubiKey USB-key connected to key chain 44
20 Using the YubiKey at clavid.com 45
21 Multi-factor authentication using a digital certificate 48
22 Multi-factor authentication with CallVerifID 49
23 Yahoo! OP with and without sign-on seal 54
24 Web application sign-on page 60
25 Agreement to share information at OP 61
26 RP account details . 62
27 “Manage My OpenIDs” . 64
28 CSRF attack . 66
29 Results of CSRF attack using HTTP GET 67
30 Results of CSRF attack using HTTP POST 69
31 Authentication with Google OP 71
32 Authentication with Google OP located inside an iframe . . . 72
33 Fake page presented to the victim 73
34 Reducing opacity of OP authentication form layer 74
35 Successful Clickjacking attack 75
36 Password settings at clavid.com 76
37 A fake page with a commenting form 77
38 Partially opaque iframe containing clavid page 78
39 YubiKey control flow [14] . 92

vii

https://pip.verisignlabs.com/login.do
http://pip.verisignlabsc.com/login.do
https://sourceforge.net/account/login.php
clavid.com
clavid.com

40 The HTTP X-FRAME-OPTIONS header 96

viii

List of Tables

1 OpenID SREG fields . 40
2 NIST authentication mechanism levels 52
3 The Same Origin Policy . 63
4 OP comparison of Clickjacking vulnerabilities 80

ix

List of Listings

1 CSRF using an img element 17
2 XRDS document example . 51
3 Spring Security configuration example 59
4 Form used for associating additional OpenIDs 65
5 CSRF using HTTP GET . 65
6 CSRF using HTTP POST . 68
7 Inclusion of Google OP in an iframe 71
8 Frame busting code . 79
9 The contents of VeriSign PIP’s XRDS file 90
10 CSRF examples . 93
11 Usage of unpredictable token to avoid CSRF 94
12 Code used during Clickjacking attack against Google OP . . . 94
13 Logging produced during sign-on 97

x

Abbreviations

AES Advanced Encryption Standard

AJAX Asynchronous JavaScript and XML

ARP Address Resolution Protocol

CA Certification Authority

CSP Content Security Policy

CSRF Cross-Site Request Forgery

ECB Electronic Codebook

HMAC Hash-based Message Authentication Code

IdP Identity Provider

MITM Man-in-the-Middle

NIST National Institute of Standards and Technology

OIDF OpenID Foundation

OP OpenID Provider

OTP One-Time Password

PAPE Provider Authentication Policy Extension

RP (OpenID) Relying Party

OWASP Open Web Application Security Project

SAML Security Assertion Markup Language

SLO Single Logout

SOP Same Origin Policy

SP Service Provider

SPOF Single Point of Failure

SREG Simple Registration Extension

xi

SSL Secure Socket Layer

SSO Single Sign-On

VIP VeriSign Identity Protection

XRDS eXtensible Resource Descriptor Sequence

XRI eXtensible Resource Identifier

xii

1 INTRODUCTION

1 Introduction

1.1 Motivation

A large problem of today’s Internet is how many of its users are forced to
handle a large number of user accounts spread around at different domains.
A common way for Web sites to create such accounts is to make the user
choose a username accompanied by a password. The username normally
consists of an e-mail address, or simply a nickname. Web sites often re-
quire more pieces of information during registration than these, but what
the user needs to remember to be able to log in at a later time is basically
the username/password combination.

Some users have only a few such accounts, and for them it is relatively
easy to remember the username/password combinations. For other users,
however, the total amount of accounts might grow so large that even remem-
bering just the usernames at every Web site becomes too hard. Imagine a
user having 40-50 different Web site accounts. It is obvious that remembering
a completely different password for each site in such a situation is something
that very few people can handle.

Some people solve this problem by using the same password at every Web
site they use. Obviously, this is not a secure way of managing passwords.
Most information security experts encourage users not to reuse identical
passwords for several Web sites. The reason for this is that once it is com-
promised on one of the sites, it is easy for an attacker to login with any of
the other accounts belonging to the user. Also, one cannot trust that every
Web site has implemented password handling in a secure manner. Some sites
even store passwords in plaintext!

Another solution is to pick a relatively strong password, and use variants
of it for each user account. As an example, let us say that a user has chosen
P8$Tr7@mP as a default password. Now, if this user wants to register a new
account at google.com, a variant could be made by picking the leading char-
acter and substituting the first and the last character, hence producing the
password G8$Tr7@mG. Another example would be Y8$Tr7@mY for an account
at yahoo.com. Following this rule, the user would have only one fixed pass-
word to remember, and at least it would not be identical across every Web
site (except for those starting with the same letter, of course). However, it
is still not impossible for an attacker to figure out this way of doing it. By
stealing two or more passwords from a user, it would eventually be possible
to figure out the adopted pattern.

As we see, there are many ways people can manage their passwords. And
some people choose safer methods than others. However, there will always

1

1.2 Related Work 1 INTRODUCTION

be those who choose weak passwords and those who use the same password
with every Web site. In addition, there are different password requirements
at different Web sites. Some sites actually allow weak passwords like asdf

or 1234, while other sites have requirements like a minimum-length of 8
characters and the inclusion of both numbers and letters. For users with
little experience using the Internet, writing down complex passwords instead
of memorizing them might seem like the easiest solution. But having dozens
of post-its floating around with different username/password combinations
is not exactly the most secure way to go either.

1.2 Related Work

Several articles and theses addressing information security related to SSO
exist. One example is [12], a thesis which discusses various threats against
SSO mechanisms. It focuses on which types of Web security threats that can
be realized, or that become more apparent, as a result of adoption of SSO.
Three threats were identified:

1. Exploitation of IdPs as Single Point of Failure (SPOF).

2. Lacking or insufficient implementation of Single Logout (SLO).

3. Increased danger of phishing.

Note that terms like IdPs, SLO, and phishing will be described in Section 2
(Theoretical Background).

Another related work, [16], consists of a security evaluation of the OpenID
protocol,1 which is an implementation of SSO. The work puts emphasis on
evaluating the protocol using an analysis tool, and attempts to discover se-
curity weaknesses. During the analysis, a security weakness of the OpenID
protocol was discovered. This weakness makes it possible for an attacker to
impersonate a user during authentication (Man-in-the-Middle). The thesis
concluded that the OpenID protocol messages need integrity protection to
avoid the attack, which can be done by applying the Secure Socket Layer
(SSL) protocol.

1.3 Refinements and Limitations

The practical part of the thesis (4. Security Assessment) includes implemen-
tation of example applications utilizing SSO, more specifically the OpenID
protocol. In this case, the implementation only includes development of

1http://openid.net

2

http://openid.net

1 INTRODUCTION 1.4 Thesis Outline and Methodology

OpenID Relying Parties (RPs), and not development of OpenID Providers
(OPs). Instead, existing providers available on the Internet are used. Also
note that a security assessment directed towards the OpenID protocol itself is
out of scope for this thesis, as the focus is rather directed at SSO-functionality
in general.

The thesis will not cover details about every single attack that can pos-
sibly be performed against an SSO Web application. Instead, some of the
most relevant threats will be chosen, and later used for attack scenarios in
the practical part. Also, note that the thesis focuses on the investigation and
identification of security threats, but not as much on their corresponding
countermeasures. That is, countermeasures for each attack will be men-
tioned, but using a relatively low level of details. Instead, the main efforts
will be put into showing how to actually perform the attacks.

Also, it is well worth pointing out that certain discrepancies based on
the problem description have arised during the process of writing this thesis.
While the original problem description states that the thesis is “An Assess-
ment of the Security in and Between Web Applications Sharing a Common
Single Sign-On User Session”, the focus switched gradually to Web applica-
tions not necessarily belonging to the same SSO session as the Web applica-
tion under attack. The original idea was defined as the following, according
to the text in the problem description:

“[. . .] the main focus will be on how information security is safe-
guarded between two Web applications that belong to the same
SSO user session. [. . .]”.

Hence, it should be noted that other scenarios are investigated as well, e.g. a
situation where the same user first logs into an SSO-enabled Web application,
and later visits a malicious Web site that is not utilizing SSO. So, it should be
taken into account that there are certain contradictions between the problem
description and the contents of the thesis, as the work has progressed and
focus has changed throughout the process. These new directions of focus
have been made in accordance with guidance from the supervisor.

1.4 Thesis Outline and Methodology

The primary content of the thesis is roughly divided into three parts:

1. Theoretical Background

2. OpenID

3. Security Assessment

3

1.4 Thesis Outline and Methodology 1 INTRODUCTION

The main part of the thesis begins with theoretical background material
(Section 2). This part explains the concept of SSO and IdPs. Additionally,
an introduction to relevant Web security threats is given.

The part that follows is dedicated to the OpenID protocol alone (Section
3). OpenID is an example of a popular implementation of SSO, and this
section gives an introduction to the way it works and what elements it is
comprised of. As part of the introduction, this part starts by giving a step-
by-step explanation of how to create an OpenID identity and how to use it.
Also, this part addresses various parts of the OpenID specification, e.g. two
extensions; Simple Registration Extension (SREG) and Provider Authentica-
tion Policy Extension (PAPE). Also, the part describes how Diffie-Hellman
(DH) key exchange is used during authentication. A known challenge for
the OpenID protocol is that it is vulnerable to phishing attacks. For this
reason, a section is dedicated to demonstrating ways IdPs can prevent such
attacks. OpenID is also the protocol that will be used for the application
implementation in the section that follows.

The last part (Section 4) deals with the practical pieces of the thesis.
Here, there is given a description of a Web application developed as part of
the thesis, and this implementation is used for security assessment of SSO.
The application enables users to sign on using an OpenID identity. The
security assessment consists of experimenting with Web attacks like Cross-
Site Request Forgery (CSRF) and Clickjacking. The attacks will mainly
address the following two scenarios:

1. A malicious Web site attacks an SSO-enabled Web site, i.e. a Service
Provider (SP).

2. A malicious Web site attacks an IdP.

In both of these cases, the malicious Web site might itself be utilizing SSO.
The assessment also includes looking at phishing attacks, as well as looking
at how information is exchanged between SSO Web applications and IdPs.

Methodology The main results in this thesis have been achieved through
Web application implementation and experimentation, being backed up by
theoretical background material. In the beginning of the thesis, basic theory
about SSO is presented, as well as the motivation behind the work. Some
time was reserved for gathering reference material related to SSO, with a
focus on finding information about potential attacks.

A significant amount of time has also been used to get acquainted with
the OpenID protocol and its specifications. Additionally, quite a lot of effort
has been put into testing different types of IdPs available on the Internet.

4

1 INTRODUCTION 1.4 Thesis Outline and Methodology

Since a part of the thesis consists of assessing information security between
Web applications and IdPs, it was considered necessary to register with and
use a relatively high number of different providers in order to get an overview
of the most known providers that exist today.

A central part that has been focused on throughout the thesis is a collec-
tion of questions defined at the very beginning of the writing process. Some
of the questions can be considered as assumptions, looking for confirmation
(or falsification) as the level of knowledge were to increase throughout the
work. Other questions are more open, addressing topics that are pretty much
unknown, i.e things that are desired to be clarified underway. These are all
the questions that were defined (presented in groups):

• New users of SSO

– Is it easy to make security mistakes as a new user of SSO?

– Is it necessary with a thorough education of new users?

• Information disclosure

– Will SSO Web applications be able to access private information
from the IdP where the user is currently logged in?

• SSO-related technology

– How is user information (e.g. name/e-mail) transferred from an
IdP to an SSO Web application?

– Which technologies are being used?

• Security requirements

– Is SSL encryption required by most IdPs, or is this optional?

– If so, are there any requirements regarding the strength of SSL
encryption?

– Might poor handling of security at one IdP affect other IdPs?

• Provider filtering

– Can an SSO Web application choose to allow only certain IdPs?

– Is it possible to filter those that fullfil a certain degree of security
requirements during authentication (e.g. two-factor authentica-
tion)?

• Differences from traditional Web applications

5

1.4 Thesis Outline and Methodology 1 INTRODUCTION

– When a user signs out of an SSO Web site, is she signed out of all
the others at the same time?

– Does signing out of an SSO Web applications entail a sign-out
from the IdP?

• SSO security threats

– What kind of Web security threats are SSO Web applications
typically suffering from?

– Are traditional attacks like Man-in-the-Middle (MITM), phishing,
and CSRF still relevant?

Note that each question is not necessarily covered using an equal amount
of text and time. As an example, Web security attacks have received more
attention than topics like user-friendliness and user-education. The goal has
been to prioritize themes most relevant for the thesis, while still including
information that is useful in order to gain a good overview.

6

2 THEORETICAL BACKGROUND

2 Theoretical Background

2.1 Goal

This section will give an introduction to some theory relevant to SSO. This
will provide the background information necessary for the sections that follow
(Section 3 OpenID and Section 4 Security Assessment). First of all, this part
will describe the concept of SSO and how it can be applied. Next, Single
Logout (SLO) will be discussed, as well as multi-factor authentication at
IdPs.

The section will then continue with a part that addresses security threats
on the Internet, i.e. those that are most relevant to SSO systems. Theoretical
background will then be given for attacks like CSRF and Clickjacking. The
section ends with a description of phishing.

2.2 Single Sign-On (SSO)

As explained in the introduction, there is obviously a craving need for better
management of user accounts on the Internet. This is where Single Sign-On
(SSO) comes into play. SSO is a solution where a user only needs to login
with a username/password combination once for each browser session, no
matter how many different Web sites are being visited. The idea is that the
Web sites supporting SSO do not store the passwords of its users; they rather
obtain user information from an IdP. When a user wishes to login to an SP,
a redirection to an IdP is performed. If the user has not already created an
identity with the IdP, she has to go through the registration process before
proceeding. Next, the user types the username/password combination2 to
login with the IdP. During this step, the user is prompted for which pieces
of information to share with the requesting Web site. Next, the user is redi-
rected back to the original Web site, and provided information like nickname
and e-mail address can be handled. At this point, the Web site can consider
the user as authenticated.

If the same user later decides to use another SP, then the login process
will be even easier. Since the user has already signed on with the IdP, no
username/password is needed since she is considered to be authenticated for
the current session. So, for subsequent logins at Web sites supporting SSO,
all that is needed is confirmation from the user that the requesting Web site
is being signed into using her identity. This is why it is called Single Sign-On;
the user only has to provide login details once for each browser session.

2The authentication can be performed using other methods than a username/password
combination, e.g. usage of digital certificates. This depends on the current IdP.

7

2.2 Single Sign-On (SSO) 2 THEORETICAL BACKGROUND

A goal of SSO is to improve user-friendliness. It is beneficial for users to be
presented with a login and registration process that is faster and easier. The
frustration of not remembering username/password combinations can also be
reduced. And as mentioned above, the password management will be a less
demanding task for the average user. Not only the users might benefit from
the usage of SSO; also the Web sites themselves might experience advantages
while offering their services:

• The conversion of visiting users into registered users might increase its
frequency due to a simpler registration procedure.

• Reduced number of inquiries from users/customers regarding forgotten
passwords (i.e. lower help desk costs).

• Users can easily share as much of their existing personal profile as they
want with the Web sites. This increases the probability that the Web
site will obtain additional information about a user (e.g. date of birth).

• The Web site can provide a more personalized user experience (as a
result of the gathering of additional user data).

Obviously, there are not only advantages related to the usage of SSO;
several drawbacks exist as well. One of them is that IdPs might become bot-
tlenecks in the systems, and SPs are depending on a relatively high up-time
with regards to their functionality. This means that IdPs might represent
Single Points of Failure (SPOFs). And, of course, if they were to be compro-
mised, this might result in enormous damage. Security threats against IdPs
and SPs will be addressed throughout the rest of the thesis.

2.2.1 Components

Jan De Clercq (Security Consultant, HP) defines SSO as the following [4]:

“SSO is the ability for a user to authenticate once to a single au-
thentication authority, and then access other protected resources
without re-authenticating.”

According to this quoted definition, and as indicated earlier, an SSO system
consists of various components. We can say that there is a “circle of trust”
[3], containing the various participants. This is a federation of SPs and IdPs
that have business relationships, and with whom End Users can transact
business. Basically, each of the classified participants can be described like
this:

8

2 THEORETICAL BACKGROUND 2.2 Single Sign-On (SSO)

1. End User - An End User is an actual human being, whose goal is to
prove his/her identity to an SP.

2. Service Provider (SP) - An SP (also known as “Consumer”) is a
service-providing Web site that is looking for proof that a given End
User owns the provided Identifier.

3. Identity Provider (IdP) - An IdP (also referred to as “Server”) is
the authentication server that an SP contacts for proof that the End
User owns the claimed identity.

2.2.2 Possible Applications

The concept of SSO spans a wide area of technologies and application areas.
Companies might choose to implement SSO as part of their Intranet, while
others focus on the usage of SSO on the Internet (being the case in this
thesis). Some people have only one SSO identity, and others might choose to
use several different identities; one for each category of Web sites. Different
Web sites might not have equal security requirements, so using one identity
system for all the sites might lead to problems because of different needs.
So a user could decide to choose between several identies, depending on the
current usage area. As an example, an End User might pick an IdP with a
high security level for usage with some SPs, while choosing a less secure, but
more user-friendly, IdP for SPs that handle less sensitive information.

SSO systems can be distinguished between two main types; pseudo-SSO
and true SSO [5]. In a pseudo-SSO system, there are still being used multiple
username/password combinations, one for each SP. The difference is that
there is a component dedicated to storing every combination for later use.
So, the first time a user visits a Web site requiring authentication, she types in
her username/password for the current site. Depending on the SSO system,
the credentials are stored at a given location, e.g. on a server or locally on
the computer (obviously, the storage needs to be done in a secure manner).
And when the user re-visits one of the SPs stored in the system, the sign-on
procedure is performed automatically. This means that the user needs to
know the SP credentials for the first time she signs on, but not afterwards.
To gain access to the whole system, the user needs to authenticate herself.
This step is called primary authentication [5]. A pseudo-SSO system can be
a browser plugin, OS software, etc. One example is LastPass,3 which is a
password manager that works with multiple browsers and operating systems.
Other alternatives exist as well.

3http://lastpass.com

9

http://lastpass.com

2.3 Single Logout (SLO) 2 THEORETICAL BACKGROUND

Hence, pseudo-SSO does not implement a complete authentication so-
lution [16]. The true SSO system, however, requires that the participants
all use the same authentication solution when interacting with each other.
This is the type of SSO that is adddressed in this thesis. In such a system,
the service-providing Web sites do not need to have their own authentication
system; instead only one set of credentials is needed. I.e., no passwords are
shared with SPs in a real SSO system. Examples of true SSO systems are
OpenID, Kerberos, and Microsoft Windows Live ID.

2.3 Single Logout (SLO)

As it is closely related to SSO, it is also important to mention the concept of
Single Logout (SLO). When a user has finished her task at an SP, she might
want to log out from that particular Web site. Imagine a scenario where an
End User has used an account at an IdP in order to sign on at two different
SPs. If the current SSO system supports SLO, a logout from the IdP or one
one of the SPs would entail a logout from the other RP and the IdP itself.

An example of an SSO system supporting SLO is FEIDE,4 a Norwegian
IdP. First, consider a scenario where a user signs on at two different SPs
utilizing an identity from FEIDE, as demonstrated in Figure 1.

Figure 1: Sign-on at two SPs using a FEIDE identity

4 http://www.feide.no/

10

http://www.feide.no/

2 THEORETICAL BACKGROUND 2.3 Single Logout (SLO)

Figure 2: SLO example

When signed on, the user can choose to log out from one of the Web sites.
Figure 2 shows that after clicking the “Log off” button at the BIBSYS Web
site, the user is presented with the following logout alternatives:

1. Log out from all the services.

2. Log out from the current SP only.

If the user chooses “Yes, all services”, she will be logged out from both of the
SPs and from the IdP (FEIDE). If she chooses “No, only BIBSYS”, she will
be logged out from BIBSYS and the IdP, but not from NTNU StudentWeb.

Actually, SLO functionality depends on the SSO system that is being
used. As an example, OpenID does not support SLO, while others do (e.g.

11

2.4 Identity Providers (IdPs) 2 THEORETICAL BACKGROUND

OpenSSO5). With OpenID, the logout scenario above (a user being signed on
at two SPs via an IdP) would require the user to act in a completely different
way. As above, she would have to start by logging out of the current Web
site. However, this does not mean that the user should be satisfied and leave
the computer. Actually, when using OpenID, she would still be signed on
to the other SP, as well as the IdP! Hence, for a complete logout, she would
have to manually visit the other SP and the IdP in order to log out, or close
the browser.

Obviously, a lack of SLO functionality might be confusing for users that
are not familiar with the concept of SSO. And the fact that some SSO sys-
tems support it while others do not, is also a problem. When logging in at
traditional Web sites using username/password credentials, most users are
aware that they should log out from the sites when they are finished. But
with the spread of SSO Web applications, users might feel confused since
SLO functionality might be implemented in some systems, while missing at
others. A possible scenario is the usage of SSO at public computers. A user
might use her OpenID identity to sign on with an SP, then log out from the
SP, and leave the computer. In this case, the session at the IdP remains
active, available for misuse. Hence, it is clear that the transition from tra-
ditional Web applications to SSO Web applications requires some form of
education of new users, and that a lack of support for SLO might lead to
security threats [12].

2.4 Identity Providers (IdPs)

When someone wants to use SSO in order to authenticate with an SP, an
identity must have been created first. An identity is provided by an IdP, so
the first thing that is needed to be done, is to choose which IdP to use. Here,
there are a lot of different possibilities. Figure 3 shows a selection of various
IdPs. This is a screenshot grabbed from a social widget interface called
Engage, created by Janrain6 - a company specializing in user management
for the social Web. It illustrates how End Users can choose amongst different
IdPs when signing on at an SP. An advantage of this solution is that there is
a very large propability that the users already have a registered account at
one or more of those providers, thus eliminating the need for going through
with a new registration.

However, if a user has not registered with any of the IdPs, she needs
to choose one. This might be difficult for a completely new user with little

5OpenSSO: https://opensso.dev.java.net
6Janrain: http://www.janrain.com

12

https://opensso.dev.java.net
http://www.janrain.com

2 THEORETICAL BACKGROUND 2.4 Identity Providers (IdPs)

Figure 3: A selection of some popular IdPs

or no experience with SSO systems (or Internet in general). At least, with
Janrain’s solution, the user is presented with a range of alternatives to choose
between. If using OpenID, on the other hand, the End User has to look for
OpenID IdPs herself in order to obtain an identity. Considering the fact that
OpenID IdPs vary quite a lot with regards to the offered security level, this
might be experienced as problematic for a fresh user.

Many Web sites have also chosen to introduce
sign-on buttons for only a few, but well-known, IdPs
(e.g. Facebook). It is entirely up to the SP in ques-
tion which IdPs that should be allowed. Consider
a Web site containing blog articles, where readers are allowed to post com-
ments. In this case, the site owner might wish to only allow Facebook users
to post comments, thus removing the problem of spam produced by anony-
mous users (and robots). So, if visiting End Users are already signed on with
their Facebook account, they can post comments immediately. Otherwise,
they are typically provided with a login popup when clicking the “Login
with Facebook” button. Similar functionality is available at other IdPs, like
Yahoo! and Twitter.

IdPs for governmental services also exist. As an example, in Norway, a
provider named MinID7 (eng: MyID) has been established by the govern-
ment. Norwegian citizens above the age of 13 can register with this IdP in
order to gain access to various public services, like student loan, medical ser-
vices, and tax services. The number of End Users registered with this IdPs
is currently approaching half of Norway’s population.

FEIDE 8 is another Norwegian IdP, and stands for Felles Elektronisk
IDEntitet (eng: Joint Electronic Identity). The Ministry of Education has

7MinID: http://minid.difi.no
8FEIDE: http://www.feide.no

13

http://minid.difi.no
http://www.feide.no

2.4 Identity Providers (IdPs) 2 THEORETICAL BACKGROUND

decided that every school in the country is to be offered usage of FEIDE
by the end of year 2010. Using this IdP, students can gain access to SPs
like library services, gradings, etc. The previous section (2.3 Single Logout)
showed an example where FEIDE was used.

When picking an IdP, a user’s trust in the provider is essential. After all,
the chosen IdP gets a lot of information about its End Users:

• User data like name, e-mail, postal address, etc.

• Information about which sites the users visit, i.e. which SPs users sign
on with using their identity provided by the IdP.

• User habits, e.g. how frequently and at what time of the day SPs are
visited.

With such information in hand, the IdP can create a collection of complete
user profiles to be used as recipients of marketing, spam, etc. IdPs also
holds sign-on credentials belonging to their users, so a security breach would
obviously be fatal, as this might enable attackers to sign on at Web sites
associated with the identity at the compromised IdP. Also, if sufficient user
information is stored at the IdP (e.g. date of birth, postal address, and social
security number), a security breach might result in identity theft [1].

For this reason, End Users face a trust issue when they find themselves in
the process of choosing an IdP. First of all, they need to feel confident that
the IdP will not misuse the registered user information, nor share it with any
third-party companies. Also, many users expect their choice of IdP to be of
one that takes security seriously, i.e. one that has implemented protection
mechanisms sufficient enough to withstand common attacks.

When speaking of trust, many users might choose an IdP that is a large
and well-known company over a smaller, and relatively unknown, IdP. For
instance, people might decide to use Google as IdP instead of VeriSign, even
though VeriSign is the only one of them which provides multi-factor authenti-
cation (multi-factor authentication will be described in the following section).
In this case, it can be said that Google is picked because the user knows that
Google is a large company, while VeriSign is a company that she has never
heard about. VeriSign actually provides better security during authentica-
tion than Google, but that does not help if users have never heard about the
better alternative, or if they do not have any trust in it.

So, a good rule is to pick an IdP that has a good reputation from a security
perspective [1]. This, however, depends on user knowledge about the many
different alternatives that exist all over the Internet. Also, for those who
have little or no trust in third-party IdPs, it is possible to run your own

14

2 THEORETICAL BACKGROUND 2.4 Identity Providers (IdPs)

IdP. This way, privacy issues related to third-parties would be eliminated,
but the responsibility of securing the data in a proper manner would then be
transferred to you, as being the owner of the identity server.

2.4.1 Multi-Factor Authentication

When signing on with an IdP, a user needs to be authenticated before she
is given access to her account. There are several different ways users can be
authenticated; it is up to the IdP how to implement it. However, it is natural
to categorize some factors of authentication [1]:

1. Ownership factor
Something the user has, e.g. mobile phone or hardware token.

2. Knowledge factor
Something the user knows, e.g. a password or a PIN-code.

3. Inherence factor
Something the user is or does, e.g. fingeprint or voice.

Each of these three authentication factors cover their range of elements that
can be used for authentication of users. As of today, the knowledge factor
is the factor that is most used on the Internet, normally in the form of a
username/password combination.

To gain access to applications that contain sensitive information (e.g.
banks), usage of the knowledge factor alone is normally not enough. In
this situation, applications may require a combination of two authentication
factors. An example is to combine a password (knowledge factor) with a
hardware token (ownership factor), which is an application of the term two-
factor authentication. Basically, multi-factor authentication is the situation
in which two or more authentication factors are combined. Multi-factor au-
thentication can also be replaced with strong authentication, which can be
defined as the following:9

“Layered authentication approach relying on two or more au-
thenticators to establish the identity of an originator or receiver
of information.”

Some real-life examples of uses of multi-factor authentication will be given
in Section 3.6, where authentication techniques of various OpenID IdPs will
be presented.

9CNSS National Information Assurance (IA) Glossary: http://www.cnss.gov/

Assets/pdf/cnssi_4009.pdf

15

http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf
http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf

2.5 Web Security Threats 2 THEORETICAL BACKGROUND

2.5 Web Security Threats

The benefits of using SSO are many, but what about the security? Does the
increased user-friendliness affect the security handling in any way? And are
there any Web security threats that become more severe if SSO is in use?
These questions form the basis of this Master thesis.

SSO can make the life easier for many End Users, but there are also
criticisms. The fact that all of a user’s accounts can be accessed through one
single authentication mechanism means that this particular entrance becomes
more vulnerable to attacks. Because a user’s SSO identity functions as a
way to access all of her SSO-enabled Web site accounts, this “Single Point
of Failure” (SPOF) should be secured in a good manner. When comparing
with a single (traditional) Web site account, the login using an SSO identity
should be protected using stronger authentication. As an example, a two-
factor authentication method using password and one-time passwords via
SMS might be useful in some situations where improved security is desirable.
The degree of security depends, however, on what type of Web sites the
identity is used for. An account used for blog commenting does not require
as much protection as an account used for e-commerce.

Additionally, as of today the concept of SSO is still not widely known
to the average user. Assumably, this will change during the next years, but
until then there will be many users who might react in a skeptical way to
this new way of signing on to Web sites. Some might hesitate because of
the fact that someone with access to their SSO identity can access all their
Web sites. For people who are using the same password for every site this
would not be a security degradation, since an attacker would still be able
to access all the user’s accounts by obtaining the password from one of the
sites. But for people who are more security-aware, it might be harder to find
a way to inform how using an SSO identity might be a better solution than
having several (strong) passwords spread around. In order for these users
to feel secure, it is more important to inform that the IdP in question is
trustworthy and that it supports strong authentication, which was described
in the previous section (2.4.1 Multi-Factor Authentication).

This also leads us to the problem with user-friendliness contra security.
Higher security requirements normally leads to degraded user-friendliness and
vice versa. For SSO to be widely adopted, it is necessary to find solutions
that cover the security needs for most users without being to invasive. To
be able to determine what security measures that should be employed in
SSO Web applications, it is first necessary to get an overview of the types of
attacks that are relevant. In the following, some Web security threats related
to SSO Web applications will be outlined.

16

2 THEORETICAL BACKGROUND 2.5 Web Security Threats

2.5.1 Cross-Site Request Forgery (CSRF)

One of the Web security threats that SSO Web applications are facing is
Cross-Site Request Forgery (CSRF). This is an attack that tries to exploit
the fact that users are authenticated and logged in at other pages [10]. As
an example, assume that an innocent user has been authenticated to access
her account at http://bank.com/account.php. For the simplicity of the
example, let us assume that a request to the following URL would execute a
money transfer:

http://bank.com/account.php?transferTo=1234.12.1234&amount=100

If the user goes to visit a malicious page (without logging out of the bank),
great damage can be done if the bank has failed to handle CSRF attacks.
An attacker could simply trick the user into requesting the URL above, e.g.
by including an image on the page:

Listing 1: CSRF using an img element

1 <img src=”http://bank.com/account .php
2 ?transferTo=1234.12.1234&amount=100”
3 width=”0” height=”0” />

This would have caused a transfer to be executed without the victim knowing
about it, given that no countermeasures were employed beforehand. Also,
since the width and height of the image is set to zero, the user would not see
anything, only a blank page.

Such an attack is possible when Web applications wrongly assume that
all requests coming from authenticated users are to be trusted. As shown in
Figure 4, the attack basically requires the following steps to happen, in the
given order:

1. A user authenticates with a Web site, bank.com (which will be attacked
later on).

2. Using the same browser, the user visits another Web site,
attacker.com, without first logging out of bank.com, thus leaving an
active user session.

3. The current Web site, attacker.com, forces the user’s browser to make
a request to bank.com (without the user knowing about it).

The visit to attacker.com can be made either voluntary by the user, or it can
be forced. Assuming that attacker.com is hosted on some server controlled
by the attacker, the goal is to somehow make the user visit this site. As
an example, the user might be directed to this site via hyperlinks placed on

17

bank.com
attacker.com
bank.com
attacker.com
bank.com
attacker.com
attacker.com

2.5 Web Security Threats 2 THEORETICAL BACKGROUND

Figure 4: CSRF scenario

numerous sites, appearing to be a site being harmless to visit (the attacker
might even fill it with ordinary content, making it appear more trustworthy).
Another way to make users visit a page, is to place scripts at other Web sites,
forcing redirection of users to the wanted URL. Also, an attacker might be
able to send e-mail to a large number of recipients, hoping for some of them
to click a link in the e-mail leading to the malicious Web site. Sending users
links via Instant Messenger (IM) programs is another option. These are just
a few examples of numerous ways to trick people into visiting a particular
Web site.

Note that it is not only images (as demonstrated above) that can be
used to forge requests; also iframes, scripts, and stylesheets are potential
means (see Appendix D for code examples). And CSRF attacks are not
exclusively related to SSO Web applications; it has been a threat on the
Internet for several years already. However, the situation typically found
with SSO, where users are signed on at multiple Web sites at once, makes
CSRF a highly relevant attack vector.

Section 4.3.1 will provide real-life examples of how CSRF attacks might
be performed against an OpenID-enabled Web site. For an introduction
to countermeasures that can be used against CSRF, please take a look at
Appendix D.1.

18

2 THEORETICAL BACKGROUND 2.5 Web Security Threats

2.5.2 Clickjacking

As with CSRF, Clickjacking is another attack that can be used to force a
user’s Web browser into making a request to a site without the user’s knowl-
edge. While CRSF can be executed as a page loads its contents, Clickjacking
is actually not initiated until the user submits the request herself. Using a
combination of Cascading Style Sheets (CSS) and iframes (i.e. sub-frames),
Clickjacking is able to redress the User Interface (UI) presented to the user,
hence the synonym “UI redress attack” [11]. Clickjacking can also be used to
circumvent the CSRF nonce protection mechanism (this concept is explained
in Appendix D.1).

What happens in a Clickjacking attack is that the site under attack (the
victim site) is included in a transparent iframe and put on top of a page that
is apparently normal [15]. This is visualized in Figure 5; when users believe

Figure 5: Clickjacking [15]

that they are interacting with the normal page, they are in fact interacting
with the overlapped victim site.

Theoretically, this attack might fool users into interacting with SSO Web
applications without knowing about it. If a user has already signed on to
her IdP, it might be possible to use Clickjacking in order to make her sign
into and share data with a malicious SP. Section 4.3.3 of the practial part of
the thesis will address this possibility in detail, followed by a description of
countermeasures against Clickjacking in Section 4.3.4.

2.5.3 Man-in-the-Middle (MITM)

Another type of attack that is threatening SSO Web applications is Man-in-
the-Middle (MITM). Unlike phishing (described in Section 2.5.4), an MITM
attack does not attempt to imitate an SP or an IdP; instead the attacker’s

19

2.5 Web Security Threats 2 THEORETICAL BACKGROUND

focus is directed towards intercepting data that is sent between the End User
and the IdP.

One way to achieve an MITM attack is through spoofing of the Ad-
dress Resolution Protocol (ARP) in order to change the mapping of the IP
addresses belonging to the victim [16]. This way it is possible to perform
eavesdropping of traffic that pass through. Figure 6 illustrates the scenario.
First, the user sends her identifier to the RP. Next, the RP establishes an

Figure 6: Man-in-the-Middle [16]

association with the IdP, and an authentication request message is sent. At
this point, the IdP will eiter return a negative validation response or a pos-
itive validation response. Here, the attacker (the Man-in-the-Middle) can
intercept a negative response, change it into a positive one, and then sending
it to the RP. This would make the user signed in to the RP without actually
authenticating with the IdP.

There are two different scenarios of an MITM attack in a SSO system; the
MITM could be located at the RP, or it could be located at the IdP. If the
MITM is located at the RP, it is possible to sign in a user at that particular
RP using any IdP as a provider. Otherwise, if the MITM is located at the
IdP, then users registered with that particular IdP could be authenticated to
any RP [16].

20

2 THEORETICAL BACKGROUND 2.5 Web Security Threats

2.5.4 Phishing

Because an SSO identity is the only entry point a user would have to her
Web sites, attackers might consider it as lucrative to perform phishing (also
known as Web site spoofing), i.e. misleading users into believing that they
are in fact visiting the login page of an original IdP Web site when they
are not. Depending on the implementation, this could also be considered as
some kind of an MITM attack; the phishing site could simply forward the
provided user credentials to the genuine IdP after saving them. This way of
doing it would also make it less probable that the End Users would notice
the attack.

A phishing site normally has a similar (or identical) design as the original,
while the URL is slightly different from the original, yet hard to spot if not
paying attention. When a user is tricked into visiting a fake site, she might
end up providing login information that should only be shared with the
genuine IdP.

The process of creating a Web page that looks exactly like the page that
is being imitated is actually very easy. It can be done by performing the
following steps:

1. Copy the HTML source code of the genuine IdP login page.

2. Copy images, stylesheets, etc., needed for the design and layout to look
complete.

It is that simple. It is a really quick process, and requires a minimum of
technical skills. Note, however, that the attacker also probably would like to
have the page located at a domain name looking very much alike the original
one, e.g. something like this:

Original IdP: https://pip.verisignlabs.com/login.do
Spoofed IdP: http://pip.verisignlabsc.com/login.do

Note that if the spoofed IdP uses HTTPS as protocol at the login page (which
most IdPs do), then the attacker should also obtain a digital server certificate
in order to be able to present the login page at a URL starting with https://.
This would make it even harder for the user to become aware that something
is wrong.

Figure 7 shows the original VeriSign IdP, while Figure 8 shows a phishing
attempt. In this example, the phishing site lacks encryption, which might
make users suspicous. But other than that, it is easy to understand that
it can be hard to see the difference from the original. (Note that for this
example, I did not actually register the domain verisignlabsc.com; for

21

https://pip.verisignlabs.com/login.do
verisignlabsc.com

2.5 Web Security Threats 2 THEORETICAL BACKGROUND

Figure 7: Original IdP: https://pip.verisignlabs.com/login.do

Figure 8: IdP phishing: http://pip.verisignlabsc.com/login.do

22

https://pip.verisignlabs.com/login.do
http://pip.verisignlabsc.com/login.do

2 THEORETICAL BACKGROUND 2.6 Summary

the simplicity of the example, I rather created a file locally, opened it in
a browser, and simply changed the URL in the navigation bar into http:

//pip.verisignlabsc.com/login.do before taking the screenshot.)
For the attack to actually succeed, the attacker also needs to create a way

to collect the credentials provided by victims of the attack, e.g. by saving
them in a database or using some other storage mechanism. This, and domain
registration and configuration, would probably be to most time-consuming
part of such a phishing attack.

As will be described in Section 3.8 (Phishing Protection), there are things
Web sites can do in order to make it easier for their users to protect them-
selves against phishing.

2.6 Summary

The traditional way of registering with a new username/password combina-
tion at every Web site requiring authentication is stuck in time; this way
of user account management has not changed in over a decade, while the
number of new services we use online has increased rapidly. Obviously, an-
other technique for signing on at Web sites is needed, and SSO might be the
solution.

However, there is a lack of user-familiarity with SSO. It is still not com-
mon place on most Web sites out there. This might change in the future,
but no matter what, it is still necessary to assess the security of SSO Web
applications. If the information security is not handled properly, the solution
should never become common place. One security issue is the fact that an
SSO identity would function as a single entry point to many accounts, thus
requiring a higher level of security.

This part has provided a theoretical background to some of the concepts
related to SSO. First, there was given an introduction to the functionality
of SSO itself (Section 2.2). Then, a description was given for each of the
components that are part of an SSO system; the End User, SP, and IdP. Also,
different variants of SSO were described, as well as the functionality of SLO.
Section 2.4 was dedicated to giving a description of IdPs. And multi-factor
authentication, a way to increase the security during IdP authentication, was
explained as well.

In Section 2.5, various Web security threats related to SSO were out-
lined. First, CSRF was explained, a technique for forging requests to Web
sites where a user has already been authenticated. And then the concept
of Clickjacking was clarified, which is an attack that can be used to make a
user click something without actually being aware of it. Next, MITM was
explained, as well as phishing, which is a significant threat to SSO systems.

23

http://pip.verisignlabsc.com/login.do
http://pip.verisignlabsc.com/login.do

2.6 Summary 2 THEORETICAL BACKGROUND

24

3 OPENID

3 OpenID

3.1 Goal

The goal of this part is to give an introduction to the OpenID protocol, as
it will be used later in the practical part (Section 4). This introduction is
aimed at people with no previous knowledge of the protocol, so first of all, a
walk-through will be given of how to create and use an OpenID identity.

Following such a basic introduction, the focus will switch to a more tech-
nical level, describing various parts of the protocol’s specification. As an
example, there will be given a detailed explanation of what happens during
an OpenID authentication request/response. This includes an overview of
the types of messages that are being exchanged during authentication.

There will be given explanations of various extensions to the OpenID pro-
tocol that are used during authentication. Also, real-life examples of multi-
factor authentication will be given, as well as a part dedicated to phishing
protection. And another goal is to answer questions that were outlined in
Section 1.4 (Thesis Outline and Methodology). Note that the questions are
not answered in this part alone; they are addressed in Section 2 and Section
4 as well.

3.2 Introduction to OpenID

As part of the application development in this thesis, the
utilization of SSO will be implemented using a protocol
called OpenID. OpenID is a decentralized authentication
protocol which was first introduced in 2005,10 which allows
users to use an existing account to sign on to multiple Web sites without the
need to create a new password for each site. This is the concept of SSO, as
described previously (in Section 2.2). As of today, there have been published
two final specifications of OpenID; OpenID Authentication 1.1 and OpenID
Authentication 2.0.

A user’s OpenID may have various pieces of associated information (e.g.
name and e-mail address), and each time a user signs on to a new Web site,
this information can be shared. It is up to the user to decide how much of
the information to share with a Web site. Normally, the user controls this
by being presented by a list of requested information and then tick the fields
that she allows. This functionality will be described further in Section 3.5.1
(Simple Registration Extension).

10http://openid.net/get-an-openid/what-is-openid

25

http://openid.net/get-an-openid/what-is-openid

3.2 Introduction to OpenID 3 OPENID

The OpenID IdP confirms the identity of a user each time she signs on to
a Web site. The IdP is the only party with which the user needs to share a
password. This means that no password is transferred between an OpenID-
enabled Web application and IdPs; passwords are only given to IdPs. Thus,
the user does not have to worry about unscrupulous password management
by the Web sites.

OpenID Prevalence According to Janrain, a company offering OpenID
solutions, there are today over 1 billion OpenID-enabled users and more than
9 million OpenID-enabled Web sites (as of December 2009). The number of
Web sites accepting OpenID is still growing fast, and one of the reasons why
the growth is so strong, is that many of the world’s largest Internet compa-
nies are adopting (or planning) support for OpenID. As giants like America
Online (AOL), Twitter, MySpace, and Yahoo! integrate OpenID support for
their enormous user bases, it is obvious that the potential growth increases
dramatically. Google also supports OpenID. Note that some large actors have
only joined the OpenID foundation without yet implementing the protocol
(e.g. PayPal).

When users see that they actually have an existing identity present on the
Web that also can be used as an OpenID, the threshold for adopting OpenID
functionality becomes much lower. Obviously, the future prevalence of SSO
strongly depends on the help from companies holding large user bases.

The OpenID Foundation OpenID is not owned by anyone; it is cre-
ated by an open source community. The protocol is decentralized, and the
idea is that anyone who wishes to can use their OpenID at Relying Parties
(RPs) or become an OpenID Provider (OP) without paying for it. If someone
wants to host their own OP, there are no particular approval procedures to
pass, nor any form of registration.

The OpenID Foundation (OIDF) was created to assist the open source
model of OpenID. Basically, this is done by:

• Providing needed infrastructure

• Promoting and supporting expanded adoption of OpenID

The goal of the foundation is to promote, protect, and nurture the OpenID
community and the OpenID technologies.11 The foundation consists of both
private individuals and companies. It is a non-profit organization, and it is

11OpenID Foundation: http://openid.net/foundation

26

http://openid.net/foundation

3 OPENID 3.2 Introduction to OpenID

backed by a group of sponsoring members, like Google, Yahoo!, Microsoft,
VeriSign, PayPal, and Facebook.

The foundation itself will not interfere with the technical decisions made
by the OpenID community; it will rather help to enable and protect what
the community creates. The OIDF does not dictate the technical direction
of the OpenID protocol, so its development is purely community-driven.

OpenID URL Just like a person can use her driver’s license as a form
of identity, OpenID lets you use a URL (Web address) as the identity. An
OpenID URL can look something like username.myopenid.com, which is
pointing to a page that the user controls. Obviously, knowledge of the URL
alone is not sufficient in order to be gained access to an OpenID-enabled
Web site; the user has to provide further proof of ownership (like passwords,
digital certificates, or hardware tokens). There is a large number of different
OPs on the Internet. So if a user wants to use more than one OpenID (e.g.
one for work and one for private purposes), that is also possible.

When a user wants to sign in at an OpenID-enabled Web site, he types
the OpenID URL into the sign-in form, as shown in Figure 9 (the whole
process will be described in detail in Section 3.4 and 3.5). Actually, there are

Figure 9: Example of an OpenID URL

no restrictions on how an OpenID URL should be composed [1]. This means
that it does not matter if a URL looks like

http://john.myopenidprovider.com/

or
http://myopenidprovider.com/some-long-path/?username=john

It is the Identity Provider who decides its composition. However, it is still
important that the providers try to follow some guidelines when deciding
how the identity URLs should be created:

27

http://john.myopenidprovider.com/
http://myopenidprovider.com/some-long-path/?username=john

3.3 Basic Elements in OpenID 2.0 3 OPENID

• It should be consistent (i.e. not dynamically changing over time)

• It should be user-friendly (i.e. easy to remember). This normally
means that it is better to have a short URL. As an example, it seems
quite a lot easier to remember username.myopenid.com than to re-
member username.pip.verisignlabs.com.

When speaking of user-friendliness, many OPs today use identity URLs that
are long and quite hard to remember, e.g. Google’s https://www.google.

com/profiles/<username>. However, it is not always necessary for the End
Users to actually remember the whole URL; many OpenID-enabled Web sites
have added the possibility for users to click the logo of the company that
provides their identity, as shown in Figure 3 and Figure 13. This way, users
can simply click on their provider and then type in the username, instead of
having to remember the whole Identifier URL.

3.3 Basic Elements in OpenID 2.0

The OpenID 1.1 specification and the OpenID 2.0 specification are slightly
different in terms of terminology [1]. The definitions in this thesis will match
those set for the OpenID 2.0 specification (see [6]). There are basically three
main elements in OpenID 2.0:12

1. End User The End User is a real user who is using an OpenID to sign
on to one or more Web sites. The credentials of this user are stored
with the OP.

2. Relying Party (RP) The RP in an OpenID system is the Web site
where the End User is logging in using her OpenID. Such a site wants
proof that a user controls an OpenID URL, so the RP asks the user
to provide a URL and then consumes it. This is why RPs also can be
called Consumers.

3. OpenID Provider (OP) The OP is the server where the OpenID
credentials of users are stored. This is where an OpenID URL points
to when an End User attemps to login at an RP. As an example, in
the URL john.myopenid.com, the OP is myopenid.com. When an
RP consumes an OpenID URL, messages are exchanged with the OP.
Depending on the response returned from the OP as part of the au-
thentication process, the RP will know if the given ID was valid or not.
An OP can also be called OpenID Server.

12Note the resemblance with the terms outlined in Section 2.2.1.

28

username.myopenid.com
username.pip.verisignlabs.com
https://www.google.com/profiles/<username>
https://www.google.com/profiles/<username>

3 OPENID 3.3 Basic Elements in OpenID 2.0

While SP and IdP were used in Section 2 (Theoretical Background), the
OpenID-specific terms RP and OP will be used in this part and in Section
4 (Security Assessment). In addition to those mentioned above, there are
other terms that should be taken note of:

User-Agent A User-Agent is simply what the End User interacts with when
accessing RPs and OPs, i.e. a Web browser. This is a browser which
implements the HTTP/1.1 protocol [6].

Identifier An Identifier is the OpenID URL. The Identifier identifies the
digital identity of an End User. This URL must begin with http or
https, or it can be an Extensible Resource Identifier (XRI) [6].13

Endpoint URL An OpenID Endpoint URL is the URL which accepts OpenID
authentication protocol messages. This must be an absolute URL be-
ginning with http or https, and it is obtained by performing discovery
on the Identifier supplied by the user. Discovery is a process where the
RP uses the user-supplied Identifier to look up information that is nec-
essary for initiating authentication requests to the OP [6].

Figure 10 illustrates how the various elements interact with each other. The

Figure 10: Basic elements of OpenID

following explains each step:

13Refer to http://www.oasis-open.org/committees/xri/faq.php for more informa-
tion about XRI.

29

http://www.oasis-open.org/committees/xri/faq.php

3.4 Creating an OpenID 3 OPENID

1. A User-Agent is used to sign on at the RP with an OpenID URL as an
Identifier.

2. The RP contacts the OP in order to verify ownership of the Identifier.

3. The OP requests authentication from the User-Agent (unless the User-
Agent is already signed on at the OP).

4. If/when the user authenticates, the OP sends requested user data (e.g.
name and e-mail) to the RP, and the user is signed on at the RP Web
site.

3.4 Creating an OpenID

Now that the basic terminology is in place, a description will be given of how
to create an OpenID. Before a user on the Internet can enjoy the advantages
of SSO, a unique OpenID URL must exist at some OpenID server for RPs to
communicate with. This OP will authenticate the user. The first step will
be to choose an OP, as will be described in the following.

3.4.1 OpenID Providers (OPs)

As mentioned earlier, there is a large number of OpenID Providers to choose
from. As OpenID emerges as a standard for SSO on the Internet, more and
more OPs will be created, and it might seem like a daunting task to pick the
best one.

The OpenID protocol does not mandate that any particular form of au-
thentication should be supported by OPs. For this reason, there is a large
span of different OP implementations to choose from; some might use simple
username/password credentials, while others might require smart cards, etc.

The following are some, of many more, examples of OPs that a user on
the Internet can choose to register with:

• VeriSign Labs - Personal Identity Portal (PIP)
https://pip.verisignlabs.com

• myOpenID
https://www.myopenid.com

• Yahoo!
http://openid.yahoo.com

• Google
https://www.google.com/profiles

30

https://pip.verisignlabs.com
https://www.myopenid.com
http://openid.yahoo.com
https://www.google.com/profiles

3 OPENID 3.4 Creating an OpenID

• Certifi.ca
https://certifi.ca

• clavid (Swiss provider)
https://www.clavid.com/portal

• nettId.no (Norwegian provider)
https://nettid.no

• Feide OpenIdP (Norwegian provider)
https://openidp.feide.no

These providers vary among themselves in the way they work. As an exam-
ple, it is possible to sign on with a Yahoo! OpenID using only a username/-
password combination, while the Certifi.ca OP uses SSL certificates instead
of passwords. An additional comparative example is myOpenID, which sup-
ports multi-factor authentication (this will be demonstrated in Section 3.6.3)
and Google, which does not.

It is also possible for anyone to become an OP themselves. This, of course,
requires a certain degree of technical skills. The complexity varies, depending
on the chosen way of implementation:14

1. The simplest approach is to outsource the development to a third-party,
e.g. Janrain’s Engage solution.15 This might suite enterprises which
have existing user management systems.

2. A presumably more time-consuming approach is to develop and host
an OP solution yourself using OpenID-capable libraries, plugins, or
software packages, e.g. Java OpenID Server (JOS).16

3. The most difficult way of becoming an OP would be to implement sup-
port for the OpenID protocol directly, without any usage of libraries
or plugins. This is a risky approach, and is not recommended for de-
velopers without heavy experience within Web security [1].

For most people, simply looking for a way to obtain their own OpenID, the
easiest solution will be to just choose one of the existing OPs on the Internet,
rather than setting up their own.

The way the OpenID system works, users are completely free to choose
any OP of their own choice. This means that it is entirely up to the user

14http://openid.net/add-openid/become-a-provider
15http://www.janrain.com/products/engage
16http://code.google.com/p/openid-server/

31

https://certifi.ca
https://www.clavid.com/portal
https://nettid.no
https://openidp.feide.no
http://openid.net/add-openid/become-a-provider
http://www.janrain.com/products/engage
http://code.google.com/p/openid-server/

3.5 Using OpenID 3 OPENID

to decide how security-aware her OP should be. An Internet novice might
not care much how an OP handles her data, while another user might have
requirements like encryption, multi-factor authentication, etc. A common
factor, however, is the fact that most people would prefer to register with
OPs that have an established reputation on the Internet. It is reasonable
to believe that the majority of users would rather create an OpenID with
a large and well-known company (e.g. Yahoo! or VeriSign) than with some
company they have never heard about.

VeriSign Labs PIP As an example, the following will demonstrate
how to create an OpenID with VeriSign Labs PIP. VeriSign is most known
as a Certification Authority (CA) for digital certificates and has currently an
established reputation on the Internet.

The first step of registering with VeriSign’s PIP consists in typing in a
username, password, and e-mail address, just like any registration form on
the Internet (see Figure 11).

Next, after verifying the registered e-mail address, the user can sign in.
Once signed in, it is possible to navigate to a page displaying My Informa-
tion (see Figure 12). This page shows a list of information associated with
the OpenID account. All of these fields, if containing a value, can easily
be shared with OpenID-enabled Web sites (RPs). Note, however, that this
information will not automatically be shared with sites a user signs on to;
the user first needs to confirm that it is ok to share certain pieces of infor-
mation. For this reason, it is no problem to fill out all of the fields under My
Information (unless the OP itself is not trustworthy). After all, one of the
major advantages of using an OpenID is to not having to fill in commonly
requested pieces of information over and over again for each new Web site
registration. Note that these fields match those listed in the OpenID Simple
Registration Extension (SREG). This extension will be described further in
Section 3.5.1.

3.5 Using OpenID

With an OpenID at hand, let us see how it can be utilized. There are many
OpenID-enabled Web sites out there, one of which is sourceforge.net, the
world’s largest open source software development Web site. For the sake of
demonstration, the user created earlier has been signed out from the VeriSign
PIP OP before proceeding.

As shown in Figure 13, the OpenID URL jogrimst.pip.verisignlabs.

com is typed into the login page of SourceForge.net. When clicking “Log in”,

32

sourceforge.net
jogrimst.pip.verisignlabs.com
jogrimst.pip.verisignlabs.com

3 OPENID 3.5 Using OpenID

Figure 11: VeriSign Labs PIP - Create Account

33

3.5 Using OpenID 3 OPENID

Figure 12: VeriSign Labs PIP - My Information

Figure 13: https://sourceforge.net/account/login.php

34

https://sourceforge.net/account/login.php

3 OPENID 3.5 Using OpenID

the user is eventually redirected to http://pip.verisignlabs.com/server,
and the following parameters are passed along in an HTTP GET request:

http://pip.verisignlabs.com/server

?openid.ns=http://specs.openid.net/auth/2.0

&openid.mode=checkid setup

&openid.identity=http://jogrimst.pip.verisignlabs.com/

&openid.claimed id=http://jogrimst.pip.verisignlabs.com/

&openid.assoc handle=a8843e90-4d6c-11df-a273-d702551e809e

&openid.return to=https://sourceforge.net/account/openid verify.php

&openid.realm=https://sourceforge.net

&openid.ns.sreg=http://openid.net/extensions/sreg/1.1

&openid.sreg.optional=nickname,email,fullname,country,language,timezone

&openid.sreg.policy url=http://p.sf.net/sourceforge/privacy

In this case, sourceforge.net is the RP, and pip.verisignlabs.com is the
OP. By sending the request above, the goal of the RP is to obtain an assertion
from the OP, which can be a negative assertion or a positive assertion. When
a user authorized with the OP wishes to complete the authentication, a
positive assertion should be returned to the RP [6].

Next, as long as the given OpenID (the value of the openid.identity

parameter) is found in the system of VeriSign Labs PIP, a sign in form
appears, requesting a username/password combination (see Figure 14). After

Figure 14: VeriSign Labs PIP - Sign In

35

http://pip.verisignlabs.com/server
sourceforge.net
pip.verisignlabs.com

3.5 Using OpenID 3 OPENID

supplying the required credentials, the user is logged in at the VeriSign PIP
account and is presented with a page where it is possible to choose which
information to share with the RP (see Figure 15). Also, the user is able
to choose for how long time this trust relationship should last. The user is

Figure 15: VeriSign PIP requesting verification

presented with 3 options for expiration:

1. Never expire

2. Expire on a given future date

36

3 OPENID 3.5 Using OpenID

3. Expire immediately after signing in to the RP

If the user chooses “Never expire”, this particular verification step will be
skipped the next time the user signs in to the Web site sourceforge.net.

Once the user has agreed to the RP’s request, the OP returns the user to
the URL that was specified as part of the request:

openid.return to=https://sourceforge.net/account/openid verify.php

This is the location where the OP will indicate the status of the RP’s request
for user authentication. In this example, the VeriSign PIP OP passed along
the following data to the SourceForge RP when the user was sent back to
the openid.return to URL:

https://sourceforge.net/account/openid verify.php
?openid.sreg.fullname=Jo Grimstad
&openid.sreg.timezone=Europe/Oslo
&openid.sreg.language=nor
&openid.assoc handle=a8843e90-4d6c-11df-a273-d702551e809e
&openid.response nonce=2010-04-21T17:08:49ZjN+sHA==
&openid.sreg.email=jogrimst@stud.ntnu.no
&openid.sreg.country=NO
&openid.sreg.nickname=jogrimst
&openid.ns=http://specs.openid.net/auth/2.0
&openid.mode=id res
&openid.op endpoint=http://pip.verisignlabs.com/server
&openid.pape.auth policies=http://schemas.openid.net/pape/policies/[. . .]
&openid.claimed id=http://jogrimst.pip.verisignlabs.com/
&openid.sig=QA1pZ+Y9GNmr+mrwvO2wlsGTJ5eNepHEQFIibWGs1e0=
&openid.identity=http://jogrimst.pip.verisignlabs.com/
&openid.ns.pape=http://specs.openid.net/extensions/pape/1.0
&openid.pape.auth time=2010-04-21T14:02:47Z
&openid.signed=assoc handle,identity,response nonce,return to,claimed id,[. . .]
&openid.ns.sreg=http://openid.net/extensions/sreg/1.1
&openid.return to=https://sourceforge.net/account/openid verify.php

Through this positive assertion, the RP knows that the user was sucessfully
authenticated. And since the RP has been supplied with personal info like
name, e-mail, nickname, etc, it is possible to automatically create an account
for the user.

And that is also exactly what has happened in this example. As the user
clicked “Allow” at the VeriSign PIP verification page, the Consumer Web
site (SourceForge) performed some operations behind the scenes:

37

sourceforge.net

3.5 Using OpenID 3 OPENID

1. Created a new user account (assigned user id, nickname, etc).

2. Logged in the new user.

Figure 16 shows the Web page that is presented to the user after authenti-
cating with the Identity Provider. Note that the RP has picked information

Figure 16: New account created using an OpenID

like nickname and e-mail address returned from the OP in order to create a
new user. As the figure shows, the user is immediately given the possibility
to modify account details, as well as logging out of the initiated user session.

Using OpenID when Already Signed On Now, consider the situa-
tion in which the user has signed on to the OP (Verisign PIP) and whishes
to access another Consumer Web site. As an example, assume that the user
would like to login with another OpenID-enabled Web application located at
http://demand.openid.net.17 First, the user types in the OpenID URL, as
shown in Figure 17. The next thing that happens, is that the user is taken
directly to the VeriSign PIP verification page. What is important to note
in this case, is that the user did not need to sign on with the OP (i.e. no

17This is a Web page where people (with OpenIDs) can cast their vote of which Web
sites they want to add OpenID as a login option.

38

http://demand.openid.net

3 OPENID 3.5 Using OpenID

Figure 17: Signing into a second OpenID-enabled Web site

39

3.5 Using OpenID 3 OPENID

username/password combination was requested) once more. Since a sign-on
had been performed with a RP earlier (SourceForge), the user did not have
to repeat this step with the second RP. This is an important part of the
OpenID system, and gives a clear understanding of why it is called Single
Sign-On. It is not necessary to provide the OP with login credentials once
more when already signed on.

The steps above have basically shown how easy it is to create and use
an OpenID. Obviously, it simplifies the life of End Users, being both a time-
saver and a user-friendly solution. In the following, we will dig a little deeper
into the technicalities; first of all, there will be given explanations of some
extensions to the OpenID protocol that are used during authentication.

3.5.1 Simple Registration Extension (SREG)

The OpenID protocol offers several extensions. Among these is one called
Simple Registration Extension (SREG). The purpose of SREG is to allow for
light-weight profile exchange [7]. When Internet users sign up with various
Web sites, they are often asked to provide more information about themselves
than just a username and a password. Information like full name, e-mail
address, and country are typically requested as well.

The SREG extension has defined a collection of 9 such commonly re-
quested pieces of information (see Table 1). When an RP performs an au-
thentication request towards an OP on behalf of a user, it must pass along
either openid.sreg.required or openid.sreg.optional parameter values.
These fields both contain a comma-separated list of field names matching
those in Table 1. As an example, consider the request parameters described

Parameter Name Information

openid.sreg.nickname Nickname
openid.sreg.email E-mail address
openid.sreg.fullname Full name
openid.sreg.dob Date of birth (“YYYY-MM-DD”)
openid.sreg.gender Gender (“M”/“F”)
openid.sreg.postcode Postcode
openid.sreg.country Country
openid.sreg.language Language
openid.sreg.timezone Time zone

Table 1: OpenID SREG fields

in Section 3.5, where the SourceForge RP sent an authentication request

40

3 OPENID 3.5 Using OpenID

to the VeriSign PIP OP. There, the SREG parameter defined the following
fields:

openid.sreg.optional=nickname,email,fullname,country,language,timezone

In this partical case, the user was asked by the RP to provide nickname, e-
mail address, full name, country, language, and timezone, as was shown in
Figure 15. None of the fields were compulsory to fill out, so if the user would
have left them all blank, it would still be possible to proceed. However, the
authentication request could also consist of SREG attributes looking some-
thing like this:

openid.sreg.required=nickname,email
openid.sreg.optional=fullname,country,language,timezone

In such a case the user would have been presented with an asterisk (‘*’) next
to the nickname and e-mail fields, symbolizing that these are compulsory to
fill. If the user is not willing to share the required pieces of information,
it is impossible to proceed the authentication procedure. For this reason,
RPs should only mark user profile information as required if it is absolutely
necessary for account creation.

In addition to the request parameters defining required and optional data
fields, there is an SREG parameter called openid.sreg.policy url. During
an OpenID verification, the RP can pass along a URL pointing to a privacy
policy document. Here, the RP would inform about how profile data retrieved
from the OP will be used. In the example above, the SourceForge RP sent
the following URL value:

openid.sreg.policy url=http://p.sf.net/sourceforge/privacy

The idea is that the OP will display a link to this policy document at the same
page as where the OpenID verification happens. This way, the user gains easy
access to the policies of the Web site she is signing up with, without having
to browse back to the RP and search for it manually. However, even though
an RP includes the openid.sreg.policy url parameter, it is still up to the
OP whether to display the URL or not; it is not a mandatory part of the
OpenID protocol. As an example, the VeriSign PIP OP does not display
policy URLs, while others (like myOpenID) do.

In an authentication response coming back from an OP, the requested
SREG fields defined in openid.sreg.required and/or openid.sreg.optional
are returned. The comma-separated fields that are listed in the request pa-
rameter(s) are returned as separate values. For example, consider once more
the request that was made by the SourceForge RP above:

openid.sreg.optional=nickname,email,fullname,country,language,timezone

41

3.6 Multi-Factor Authentication 3 OPENID

This resulted in a response containing, amongst others, the following values:

openid.sreg.nickname=jogrimst
openid.sreg.email=jogrimst@stud.ntnu.no
openid.sreg.fullname=Jo Grimstad
etc. . .

In addition to these values, the response also contains two fields called
openid.signed and openid.sig. For a description of these parameters,
please take a look at Appendix A.1.

3.6 Multi-Factor Authentication

Several OpenID Providers support authentication mechanisms that are con-
sidered stronger than a basic username/password combination. There are
many different methods to choose from, some of which will be presented
in the following. As mentioned in Section 2.4.1, multi-factor authentication
consists of combining two ore more authentication factors. The OPs that will
be used as examples utilize a password as one of the factors when authenti-
cating their users. To achieve multiple factors, the following authentication
methods are examples of what can be used (in addition to a password):

3.6.1 One-Time Password (OTP)

A One-Time Password (OTP) is often used in addition to a main password
in order to keep malicious users out of the system even if they have been
able to obtain a user’s password. An OTP functions as a second barrier,
which reduces the severity of a compromised main password. Obviously, it
is important not to keep the main password anywhere near the device that
is being used for OTP generation. Then the point of using OTPs would be
pretty much useless.

As the name implies, OTPs have to change in some way, each time a user
wants to obtain one. There are a lot of different ways to generate OTPs.
Still, the techniques can be roughly categorized depending on the manual
involvement of the user. Basically, OTPs can be generated in one of two
ways:

1. In specified time intervals (e.g. a new one every minute)

2. By a user-initiated action (e.g. by the press of a button on some device),
i.e. not in specified time intervals.

The following shows some examples of both of these techniques:

42

3 OPENID 3.6 Multi-Factor Authentication

OTP Generation Using Mobile Phone The VeriSign PIP OP, which
has been used as an example earlier, also offers a way to obtain OTPs using
a mobile phone. VeriSign has called it VeriSign Identity Protection (VIP).
And this is something that users of VeriSign PIP can choose to activate in
order to further protect their account. Figure 18 shows how the sign-on pro-
cess works with PIP activated. As before, the user is first asked to provide
a username and a password. At the next page, the user is prompted for the
OTP; in this case a six-digit security code. To obtain this OTP, the user
can install an application on her mobile phone which generates OTPs for her
corresponding VeriSign PIP account.18 Each time the user signs on, she has
to start the application and type the OTP into the input field of the VeriSign
Web site. A new OTP is generated automatically every 30 seconds.

Figure 18: VeriSign VIP on Sony Ericsson mobile phone

There are many ways a mobile phone can be used to obtain OTPs. As
an example, another way to do it is sending OTPs as text messages to the
mobile phone belonging to the user currently being authenticated.

18The application can be downloaded from https://vipmobile.verisign.com/home.v

43

https://vipmobile.verisign.com/home.v

3.6 Multi-Factor Authentication 3 OPENID

OTP Generation Using Hardware Token Another way to generate
OTPs is through the usage of hardware tokens, like USB devices. These are
normally small electronic devices that can be carried with your key chain.
An example of such a device is the YubiKey,19 a USB-dongle manufactured in
Sweden. The YubiKey is illustrated in Figure 19. YubiKey is a unique USB-

Figure 19: YubiKey USB-key connected to key chain

key which can be used for strong authentication, i.e. it can generate OTPs.
The YubiKey can be used to generate OTPs that consist of 44 characters,
of which the first 12 characters are fixed. Each Yubikey is identified by the
first 12 characters of the OTPs it generates. Every YubiKey that is produced
gets its own, unique, 12 characters long identifier, which is prepended to a
cryptographically secured OTP consisting of 32 characters. This means that
it is impossible for two different YubiKeys to ever generate identical OTPs.

Usage of the YubiKey is not widely spread amongst OpenID Providers
as of today, but this might change in the future. Some of the OPs that have
implemented support for YubiKey is nettId.no and clavid.com. In the
following, there will be given a brief introduction to how the YubiKey can
be used when signing on using the clavid.com server as OP. First, the user
behaves as in the examples given earlier, e.g. typing the OpenID URL into
some Web site in order to sign on. Let us once more use the OpenID-enabled
Web site sourceforge.net as an example. Figure 20 shows the Web page
at clavid.com that is presented to the user as part of the sign-on process.
In this case, the sign-on form consists of an additional field, namely one
reserved for a YubiKey OTP. At this stage, the user
types in the password. Next, he has to utilize the
YubiKey to generate an OTP. This is not a compli-
cated procedure; the user simply inserts the YubiKey
into an available USB-port and presses the button.

19http://www.yubico.com/products/yubikey

44

nettId.no
clavid.com
clavid.com
sourceforge.net
clavid.com
http://www.yubico.com/products/yubikey

3 OPENID 3.6 Multi-Factor Authentication

Figure 20: Using the YubiKey at clavid.com

45

clavid.com

3.6 Multi-Factor Authentication 3 OPENID

In fact, the YubiKey is configured to identify itself to computers as a USB
keyboard.20 When the user presses the button, an OTP is generated and au-
tomatically inserted into the input field currently in focus. At this point, a
string of 44 characters is typed into the YubiKey input field, just as if it was
done manually using a regular keyboard, completed with the Enter button.

Next, when the user has been authenticated using the YubiKey, the
sign-on process continues as normal, through information sharing with the
sourceforge.net Web site. As demonstrated, obtaining multi-factor au-
thentication is not necessarily a procedure that has to be complex and ex-
hausting. The YubiKey uses techniques that makes the OTP generation fast
and easy. Many users (my self included) might find usage of the YubiKey
easier and more elegant than other OTP solutions, like VeriSign’s VIP ap-
plication for mobile phones described previously.

A large difference between the YubiKey and many other hardware tokes
for OTP generation is the fact that the user is relieved from the burden of
manually reading and typing in the OTP. The YubiKey comes with many
other advantages:

• No client software to install (it works on all computers, platforms, and
browsers).

• Portable (small and easy to carry), weighs only 2.5 grams.

• Battery-free (it obtains the needed electricity from the USB-port).

• Low-cost ($25 per piece, or $15 if bought in bulk).

• Supports both the OpenID and the Security Assertion Markup Lan-
guage (SAML) standard.

There are of course disadvantages with such a solution as well:

• A computer with a USB-port is needed. Many people would probably
miss having a simple way to use the UbiKey with mobile phones lacking
USB-port.

• The YubiKey has to be ordered and mailed to the user. This process is
slow, in comparison to the situation in which users can utilize something
they already possess for immediate OTP generation, e.g. their mobile
phone.

20http://www.yubico.com/products/description

46

sourceforge.net
http://www.yubico.com/products/description

3 OPENID 3.6 Multi-Factor Authentication

• If a user already owns hardware tokens from several other providers,
she might eventually end up carrying too many tokens at once, hence
being forced to remove some of them.

Do note that the YubiKey is not restricted to be used in conjunction with
OpenID only; even though it has been used in OpenID examples here, it can
be used with many other systems as well, e.g. TrueCrypt21 and LastPass.22

For technical details of how the YubiKey works, see Appendix C.

3.6.2 Digital Certificates

An alternative to OTPs as a way to achieve multi-factor authentication is
the usage of digital certificates. Instead of using OTPs, a user can present
a digital certificate installed in the browser. This requires that the user
is logged into a computer with the certificate installed; each time the user
changes the computer (or browser), the certificate needs to be reinstalled.

As an example, the VeriSign OP offers its users to use a browser certificate
as one of the additional account protection mechanisms. As with OTPs, a
malicious user would not be able to gain unauthorized access to a user’s
account due to a compromised username/password combination unless he is
also in possession of the digital certificate associated with the account.

VeriSign PIP is one of the OPs that offer strong authentication using
digital certificates. The user simply logs into her account and enables the
feature. As part of the process, a certificate is generated on-the-fly and
installed in the browser that is currently being used. Having enabled this

21http://www.truecrypt.org
22http://lastpass.com

47

http://www.truecrypt.org
http://lastpass.com

3.6 Multi-Factor Authentication 3 OPENID

protection, the subsequent logins performed by the user will include a check
to make sure that the correct certificate is installed in the browser. Figure 21
shows how the login process looks like at the VeriSign PIP OP when browser
certificate authentication has been activated. If the user wishes to sign in
with a different computer or with a browser that does not have the certificate
installed, VeriSign PIP offers a temporary way of signing in. In this case a
PIN code can be sent to the e-mail address or mobile phone associated with
the account. Once logged in, the user can install the certificate.

Figure 21: Multi-factor authentication using a digital certificate

48

3 OPENID 3.7 Provider Authentication Policy Extension (PAPE)

3.6.3 Other Methods

There are also other methods for multi-factor authentication; e.g. some-
thing called CallVerifID.23 This is a security measure offered to users of the
myOpenID OP. When signing into myOpenID, CallVerifID can be used to
make the user instantly receive a call. Then, to authenticate, the user simply
answers the call, and presses #. To enable this type of two-factor authen-
tication, the user first needs to sign on at her myOpenID account, go to
“Authentication Settings” (see Figure 22), and then add the phone number

Figure 22: Multi-factor authentication with CallVerifID

that shall be used. There are, however, only a handfull of countries where
this solution is available to use with mobile phones; only Canada, China,
Hong Kong, Puerto Rico, Singapore, USA, and the Vatican City.24 It should
be mentioned that CallVerifID is available through land line telephones in
most countries (Norway included), but as less and less people continue using
land line phones, this alternative is a relatively impractical one.

3.7 Provider Authentication Policy Extension (PAPE)

The Provider Authentication Policy Extension (PAPE) is an optional ex-
tension to the OpenID authentication protocol, but the OpenID community
strongly recommends it [8]. The purpose of the PAPE extension is to allow
RPs to request that certain authentication policies should be applied by the
OP during authentication of an End User [8]. Also, the extension allows OPs
to inform RPs which policies that were used during a certain authentication
procedure. For example, the RP can request that the End User authenticates
using a phishing-resistant method or a multi-factor authentication method.

23CallVerifID: https://www.myopenid.com/about_callverifid
24https://www.myopenid.com/callverifid_availability

49

https://www.myopenid.com/about_callverifid
https://www.myopenid.com/callverifid_availability

3.7 Provider Authentication Policy Extension (PAPE) 3 OPENID

First of all, an authentication policy can be defined as the following [8]:

“An Authentication Policy is a plain-text description of require-
ments that dictate which Authentication Methods can be used
by an End User when authenticating to their OpenID Provider.
An Authentication Policy is defined by a URI which must be
previously agreed upon by one or more OPs and RPs.”

A policy description can be added by OPs to an End User’s eXtensible Re-
source Descriptor Sequence (XRDS) document. This, however, is an optional
part of the extension. These are the steps that follow:

• When sending an authentication request, the RP includes parameters
that describe its preferences regarding the authentication policy.

• The OP processes the received request, and prompts the End User to
fulfill the requested policies during the authentication process.

• In the response returned to the RP, the OP includes PAPE information
related to the End User’s authentication.

• The RP processes the OP’s response, and determines if the End User
should be allowed to log in or not.

Because the OpenID protocol allows anyone to create OPs, it is up to the
RPs to decide whether to trust the returned policy claims or not. I.e., the RP
itself is responsible for deciding which OPs are to be considered trustworthy.

3.7.1 Defined Authentication Policies

As mentioned above, authentication policies describe how End Users may
authenticate to an OP. The following are defined policies (and corresponding
policy identifiers) in the OpenID protocol [8]:

• Phishing-resistant authentication
http://schemas.openid.net/pape/policies/2007/06/phishing-resistant

An authentication mechanism where the End User does not provide
credentials to a party that might possibly be under the control of the
RP.

• Multi-factor authentication
http://schemas.openid.net/pape/policies/2007/06/multi-factor

An authentication mechanism where the End User provides more than
one authentication factor (see Section 2.4.1).

50

http://schemas.openid.net/pape/policies/2007/06/phishing-resistant
http://schemas.openid.net/pape/policies/2007/06/multi-factor

3 OPENID 3.7 Provider Authentication Policy Extension (PAPE)

• Physical multi-factor authentication
http://schemas.openid.net/pape/policies/2007/06/multi-factor-physical

An authentication mechanism where the End User provides more than
one authentication factor (see Section 2.4.1), and where at least one of
these factors is a physical factor.

Additional policies can be specified; the ones mentioned are just designed
to be a starting point. As an example, CallVerifID (mentioned in Section
3.6.3) can be added as authentication policy (by defining the policy identifier
http://janrain.com/pape/callverifid.html).

If an RP wants to find out which authentication policies a particular OP
supports, it is possible to do so via the use of Yadis25 within OpenID. As
an example, an OP supporting the phishing-resistant authentication policy,
would have an XRDS document looking like this:

Listing 2: XRDS document example

1 <xrd>
2 <Service>
3 <Type>http://specs . openid . net/auth/2.0/signon</Type>
4 <Type>
5 http://schemas . openid . net/pape/pol ic ies/2007/06/phishing−resistant
6 </Type>
7 <URI>https://example .com/server</URI>
8 </Service>
9 </xrd>

As we see on line 5, the policy identifier for phishing-resistancy has been
added as the value of a Type element. For a detailed real-life example of
an XRDS document describing the supported authentication policies at the
VeriSign PIP OP, see Appendix B.1.

If an RP wants to make an OP aware that the PAPE extension is used,
the following parameter must be included in an authentication request.

openid.ns.pape=http://specs.openid.net/extensions/pape/1.0

If an RP wants the user to go through with certain authentication policies
during authentication at the OP, the RP needs to include this information as
part of the request, here with with phishing-resistant and multi-factor

used as example:

openid.pape.preferred auth policies=
http://schemas.openid.net/pape/policies/2007/06/phishing-resistant

25Yadis is an XML-based simple protocol which is able to discover services at a particular
URL [1].

51

http://schemas.openid.net/pape/policies/2007/06/multi-factor-physical
http://janrain.com/pape/callverifid.html

3.7 Provider Authentication Policy Extension (PAPE) 3 OPENID

http://schemas.openid.net/pape/policies/2007/06/multi-factor

Another (optional) PAPE parameter is openid.pape.max auth age. It
makes it possible for an RP to require an End User to re-authenticate with
the OP if she has not actively authenticated within the specified number
of seconds. For example, including the following in a request would require
an End User to authenticate to the OP at least every half hour (using the
requested authentication policies):

openid.pape.max auth age=1800

When an OP returns an authentication response to the RP, it includes
the openid.pape.preferred auth policies parameter, and the value of
this parameter informs which authentication policies the OP satisfied when
authenticating the End User. Also, the OP can return a parameter named
openid.pape.auth time. This is the most recent time when the End User
authenticated to the OP using a way conforming to the authentication poli-
cies requested by the RP. The authentication response example provided in
Section 3.5 contained this parameter, with the following value:

openid.pape.auth time=2010-04-21T14:02:47Z

Optionally, a custom assurance level can be used as well, i.e. assurance
levels defined by country-specific or industry-specific standards bodies. As
an example, a parameter named openid.pape.auth level.ns.nist indi-
cates usage of a set of assurance levels defined by the National Institute of
Standards and Technology (NIST):26

Assurance level Factor count

1 1
2 1
3 2
4 2

Table 2: NIST authentication mechanism levels

The right colum specifies the minimun number of authentication factors re-
quired at each level. So, when an OP has satisfied a certain level, it can
return its value to the RP, e.g:

openid.pape.auth level.nist=2

26NIST Electronic Authentication Guideline: http://csrc.nist.gov/publications/

nistpubs/800-63/SP800-63V1_0_2.pdf

52

http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf

3 OPENID 3.8 Phishing Protection

Note that this is just a simple string value in the range 1-4, and there
is no problem at all for a malicious OP to simply change this value to a
higher one even though the level has not been accomplished. Once again;
these values rely on the RP’s trust in the OP and in the parameter values it
returns. From a security perspective, PAPE is a very interesting extension
to the OpenID protocol. However, it relies on the RPs to decide which OPs
to trust, so there is a need for some kind of public whitelisting of approved
OPs. Section 3.9 will discuss this possibility.

As stated previously, the PAPE extension contains a defined policy ex-
tension named phishing-resistant. So obviously, phishing is one of the attacks
that can be mitigated using the extension. When an RP requires a phishing-
resistant authentication policy to be followed, an OP could authenticate End
Users by using one of the following methods [8]:

• PIN and digital certificate via HTTPS.

• PIN and hardware cryptography token via HTTPS.

• Information card27 via HTTPS.

For a complete list of the possible request and response parameters in the
PAPE extension, please refer to the specification [8].

3.8 Phishing Protection

As mentioned in Section 3.7, the PAPE extension can be used for anti-
phishing (and other purposes) [1]. To reduce the risk of phishing, there
are several other protection mechanisms available as well. First, consider the
main phishing scenario threatening OpenID:

1. An End User visits a malicious RP.

2. The RP forwards the End User to a bogus OP, where the End User is
asked to provide her credentials.

3. The malicious OP (controlled by the owner of the malicious RP) obtains
the End User’s login credentials for her OpenID account.

In this case, an anti-phishing solution is for the OP to require that the user
authenticates with it before authenticating with the RP. OPs that mandate
this solution do not allow users to authenticate if they have been redirected

27A “card” used for login [1]. As an example, the VeriSign PIP OP offers creation and
usage of information cards.

53

3.8 Phishing Protection 3 OPENID

from another Web site, i.e. a possibly malicious RP. This protection mech-
anism requires more manual work by the user, but it is effective against
phishing. WordPress28 is an example of an OP which mandates users to
pre-authenticate.

Another way to reduce the risk of phishing is to use a sign-on seal. This
method is commonly used at OPs, e.g. at myOpenID, Yahoo! ID, and
nettId.no, to mention a few. For instance, at the Yahoo! OP, the sign-on
seal is either a secret message or a photo that will only be displayed on the
user’s computer.29 An example is shown in Figure 23. When a user has

Figure 23: Yahoo! OP with and without sign-on seal

activated the sign-on seal, e.g. using a personal icon, he knows that he must
look for it every time he signs on with the Yahoo! ID. If the seal is missing,
or if it looks different, then the user knows that he might have landed on
a phishing site. A sign-on seal is a secret between the browser where it is
activated and the OP; it is not associated with the OpenID itself (this way,
attackers cannot discover your sign-on seal even if they know your OpenID
Identifier). For this reason, if other browsers or computers are used, the seal
must be activated there as well.

28http://wordpress.com
29https://protect.login.yahoo.com

54

http://wordpress.com
https://protect.login.yahoo.com

3 OPENID 3.9 Certification of OPs

Also, the OpenID specification states that RPs only should redirect End
Users to OPs in a top-level browser window where all controls are visible [6].
Obviously, with the address bar being visible, it would be easier for users to
reveal an ongoing phishing attack. The specification also encourages RPs to
educate their End Users about the potential for OpenID phishing attacks,
accompanied by tools and techniques for defeating such attacks.

Note that today, blacklisting is the primary mode of phishing defense
[9]; many browsers come shipped with lists of Web sites that cannot be
trusted, i.e. known phishing sites. The sites in such lists are automatically
blacklisted, so that users will receive warnings about them if accessed. To
keep the list current, the browsers receive updates continously. Also, many
browsers allow their users to rate sites for trust and reputation, so that the
browser can display alerts when potential phishing scam Web sites are being
visited.

3.9 Certification of OPs

Section 3.7 (Provider Authentication Policy Extension) explained how RPs
themselves are responsible for identifying trustworthy OPs since there is no
trust model specified by the OpenID protocol [8]. It was also indicated that
this situation introduces a need for some type of whitelisting, or certification,
of OPs that over time have proven to be trustworthy. This way, RPs would
feel more secure that their users are not tricked into interacting with OP
look-a-likes during authentication. A whitelisting solution, however, would
require a continuous maintenance of the list of trustworthy OPs.

Note that IdP whitelisting is not directly relevant to OpenID alone; SSO
systems in general also suffer from attacks like phishing, so some kind of
certification of trusted IdPs would also be needed in other SSO systems
where malicious IdPs are a problem. With OpenID, the PAPE extension
makes it possible for RPs to look up supported authentication policies of
OPs, thus aiding RPs in choosing between multiple listed OPs depending
on their authentication requirements [8]. This helps RPs to create their
own whitelist, but still, a public list might be a better alternative. One
suggestion is to use so-called reputation brokers, which will publish lists of
prestigious OPs on demand from an RP [12]. An RP would also be able to
ask a reputation broker about which PAPE authentication policies a certain
OP has implemented.

55

3.10 Summary 3 OPENID

3.10 Summary

This part has given an introduction to OpenID, a decentralized authentica-
tion protocol that can be used by SSO Web applications. The basic elements
of the protocol were explained in Section 3.3; the End User, the Relying
Party (RP), and the OpenID Provider (OP). Additional terms like Identifier
and Endpoint URL were described as well.

The section that followed (3.4 Creating an OpenID) gave an explanation
of how to proceed in order to obtain an OpenID. Some popular OPs were
outlined, and the VeriSign PIP OP was used as an example for how to create
and use an OpenID. Real-life scenarios of how to use the OpenID with various
RPs were described. Also, the request and response parameters exchanged
between an RP and OP were explained.

Next, some useful extensions to the OpenID protocol were described;
the SREG extension (Section 3.5.1), an extension for easy exchange of user
profile information, and the PAPE extension (Section 3.7), an extension for
managing authentication policies.

Also, a section described usage of multi-factor authentication in OpenID
(Section 3.6). Here, the concept of One-Time Passwords (OTPs) was ex-
plained, including various examples of how it can be applied. One example
that was demonstrated is OTP generation using a hardware token named Yu-
biKey. Usage of digital certificates and other methods were also mentioned.

The part ended with an explanation of various anti-phishing mechanisms
(Section 3.8 Phishing Protection), and a discussion of ways to whitelist OPs
(Section 3.9) as a solution to the problem with OPs that cannot be trusted.

56

4 SECURITY ASSESSMENT

4 Security Assessment

4.1 Goal

The goal of this part of the thesis is to perform security assessment of Web ap-
plications utilizing SSO. As described in the following section, an application
will be developed for the purpose of the assessment, and this application will
utilize the OpenID protocol (which was described in Section 3). As stated in
the introduction, the development will result in a running RP, and this will
be signed into using various existing OPs, e.g. the Google OP. The objective
of this part is basically to perform experimenting in order to reveal security
vulnerabilities related to the usage of RPs and OPs in an SSO system.

The part starts by giving a description of the Web application, i.e. its
functionality and the various technologies that it uses. Next, performing
exploitation using some of the attacks described in Section 2 (Theoretical
Background) will be attempted. First, CSRF will be executed against the
RP. And then, Clickjacking attacks will be attempted against various OPs.
Brief countermeasures to each of these attacks will be mentioned as well, and
details can be found in Appendix D.1 and E.2. Note that theory explaining
these attacks were given in the following sections: 2.5.1 Cross-Site Request
Forgery (CSRF) and 2.5.2 Clickjacking.

4.2 Application Development

As part of the security assessment in this thesis, a Web application utilizing
SSO will be used for demonstrating various security threats. What is impor-
tant to note about this application is that it is an RP, allowing users to sign
on using their OpenID Identifier. Additional development of an OP is out
of scope for this work. Instead, existing OPs on the Internet (e.g. VeriSign
PIP, Yahoo! ID, MyOpenID, and Google) will be used during the course of
the assessment.

The Java programming language is used for the development, as well as
together with the following technologies related to Java Web development:

• Apache Maven (project management tool)
http://maven.apache.org

• Spring Framework (open source Java Web application framework)
http://www.springsource.org/about

• Spring Security (open source framework providing authentication and
access-control services). Note that Spring Security does not require

57

http://maven.apache.org
http://www.springsource.org/about

4.2 Application Development 4 SECURITY ASSESSMENT

usage of the Spring Framework.
http://static.springsource.org/spring-security

• openid4java (library for OpenID-enabling of Java Web applications)
http://code.google.com/p/openid4java

In addition, Trac30 was used for handling wiki and issue tracking, as well as
milestones during the development.

4.2.1 Java Library: openid4java

In order to make it possible for users to sign on to the Web
application using their OpenID, it is necessary to somehow
make the application able to communicate with the OpenID
protocol. For this purpose, openid4java is being used. The
openid4java package is an open source library which allows
to OpenID-enable Web applications written in Java. It also
offers support for implementing OP servers.

The openid4java package supports specifications like OpenID Authenti-
cation 2.0, and the ones described in the previous section (3. OpenID), e.g.
SREG and PAPE. The library helps developers exchange messages between
RPs and OPs, but they still need to do the following themselves:

• Obtain the OpenID (URL) Identifier from the users of the Web site.

• Create authentication request for the identifier, and redirect the user
to the OP using this request.

• Receive and verify the authentication response returned from the OP.

30Issue tracking system for software development projects: http://trac.edgewall.org

58

http://static.springsource.org/spring-security
http://code.google.com/p/openid4java
http://trac.edgewall.org

4 SECURITY ASSESSMENT 4.2 Application Development

4.2.2 Spring Security

These steps listed above can be simplified further using a framework. Spring
Security is one such framework, which uses openid4java and supports authen-
tication of users logging in using an OpenID URL instead of a username/-
password combination. The framework offers several configuration options.
As an example, Listing 3 shows how it is possible to define which attributes
a user should be requested to provide when authenticating with an OP.

Listing 3: Spring Security configuration example

1 <openid−login>
2 <attribute−exchange>
3 <openid−attribute name=”email” required=”true”
4 type=”http://axschema. org/contact/email” />
5 <openid−attribute name=”fullname”
6 type=”http://axschema. org/namePerson” />
7 <openid−attribute name=”nickname”
8 type=”http://axschema. org/namePerson/friendly” />
9 <openid−attribute name=”dob”

10 type=”http://axschema. org/birthDate” />
11 <openid−attribute name=”gender”
12 type=”http://axschema. org/person/gender” />
13 </attribute−exchange>
14 </openid−login>

As described in Section 3.5.1 (Simple Registration Extension), it is possible
for the developer of the Consumer Web site (i.e. the RP) to mark which
attributes that should be compulsory.

When using Spring Security for this purpose, one of two outcomes are
possible. Either the user refuses to share personal information marked as
required by the Web site, thus leaving the user unauthenticated and not
signed in to the Web site in question. Or, the user successfully authenticates
with the OP, hence causing a positive authentication response to be returned
to the RP. In the latter case, Spring Security verifies the OP response and
provides the user with a fresh session identifier. At this point, the RP would
have access to the OpenID attributes returned from the OP, i.e. the e-mail
address and, if provided, full name, nickname, date of birth, and gender.

59

4.2 Application Development 4 SECURITY ASSESSMENT

4.2.3 Functionality

In the following, there will be given a brief introduction to the functionality
of the Web application developed for this thesis. First of all, when the
users want to sign on, they are presented with a page requesting an OpenID
Identifier, as shown in Figure 24. Next, the user types in an OpenID URL and

Figure 24: Web application sign-on page

is then redirected to the OP associated with the given OpenID. This example
uses Yahoo! as OP, as seen in Figure 25. The user types in the credentials,
and that leads directly to the point where the user has to agree to share
information with the RP.31 When clicking “Agree”, the user is redirected
back to the Web application together with the authentication response. After
having been successfully authenticated, the user is presented with his account
details at the Web site (the RP), as shown in Figure 26. At this point, the
RP has access to the user’s information, i.e. the attributes that the user
agreed to share in Figure 25.

To see some of the log messages that were produced during this sign-on
example, please take a look at Appendix F.1. Further explanation of the
Web application will also be given in the section that follows (4.3 Security
Assessment).

31Notice how the authentication steps with the Yahoo! OP are basically the same as
those performed earlier using the VeriSign OP (Section 3.5).

60

4 SECURITY ASSESSMENT 4.2 Application Development

Figure 25: Agreement to share information at OP

61

4.3 Security Assessment 4 SECURITY ASSESSMENT

Figure 26: RP account details

4.3 Security Assessment

Having shown the core functionality of the Web application, let us begin
with the assessment of its security. As indicated in the introductory part
(Section 1.4), there are several different scenarios that can be considered when
performing an investigation of security vulnerabilities in an SSO system.

A possible scenario is one where a malicious Web site is visited by a user
who is signed on at an RP. If the RP, i.e. the service-providing Web site, has
not implemented sufficient protection mechanisms, it might be susceptible to
CSRF attacks. Another scenario is one where a user has authenticated at an
OP, and then visits a malicious Web site which intents to trick the user into
sharing information from her OP account without knowing about it (using
Clickjacking).

Each attacker might have a different motivation for exploiting Web sites;
some might have financial motivations, and some might be attempting to
sabotage the work of a competitor, while others might be doing it to gain
respect within a certain community, etc. In this part of the thesis, the
assumption is that an attacker is interested in gaining access to a user’s RP
account or OP account. The following will describe scenarios where CSRF
and Clickjacking can be utilized achieve such goals.

4.3.1 Attacking an RP Using CSRF

A typical scenario with OpenID-enabled Web sites is the fact that a user
often will be logged in at many different places at once. This is inherent in

62

4 SECURITY ASSESSMENT 4.3 Security Assessment

the nature of OpenID, and unless the users are so security-aware that they
sign out each time they have been using a Web site, it is very likely that a
user at some point in time will have multiple active sessions against different
domains.

This situation facilitates CSRF attacks. As explained in Section 2.5.1, a
CSRF attack is exploiting the situation where users are signed on at the page
under attack, while visiting a malicious page. According to the Same Origin
Policy (SOP) described in Table 3, Web sites with different protocols, hosts,

URL Access allowed? Reason

http://www.domain.com/ Yes Triplet fullfilled
http://www.domain.com/dir/ Yes Triplet fullfilled
https://www.domain.com/ No Different protocol
http://sub.domain.com/ No Different host
http://domain.com/ No Different host
http://www.domain.com:8080/ No Different port

Table 3: The Same Origin Policy

or ports cannot access or manipulate each other’s data using script languages
[9]. So while JavaScript (as an example) cannot be used to access data from
a different origin, we can still use CSRF to forge requests against it.

Several OpenID-enabled Web sites allow users to associate multiple OpenID
Identifiers with a user account. One such example is SourceForge.net,
which was referred to in Section 3 OpenID. Another solution is to allow two
OpenIDs; one primary and one alternative OpenID, like the way it is done
at stackoverflow.com (a Web site for questions and answers about pro-
gramming). Others only allow to associate one OpenID identifier with each
user account, but offer their users a way to change this to another one if
needed. And there are also OpenID-enabled Web sites that only allows one,
fixed, OpenID Identifier associated with each user account, without any way
of changing it to another one.

The OpenID protocol does not dictate how RPs should handle the way
OpenID Identifiers are to be associated with the Web site user accounts, so
it is up to themselves how to implement this functionality. However, RPs
should keep in mind that there are situations in which users might need to
change or use another Identifier. Some people might use different OpenIDs for
different purposes (e.g. work and personal), while others might have changed
to an OP they felt was a better choice than the current one. Additionally,
there might be occasions where OPs decide to end their service. For this

63

SourceForge.net
stackoverflow.com

4.3 Security Assessment 4 SECURITY ASSESSMENT

reason, users left without access to their accounts, should be provided with
some way to recover the access which does not rely on an obsolete OpenID
Identifier.

Figure 27 shows how such functionality has been added to the Web ap-
plication developed for this thesis. By clicking “Manage My OpenIDs”, and

Figure 27: “Manage My OpenIDs”

then “Add an OpenID”, the user is able to associate additional OpenID
URLs to the user account that is currently signed on. The Figure shows how
the OpenID jogrimst.pip.verisignlabs.com is being associated with the
account. Now, assume that an attacker tries to exploit this functionality.
Depending on the degree of security implemented at the RP, the attacker
might be able to perform a CSRF.

64

jogrimst.pip.verisignlabs.com

4 SECURITY ASSESSMENT 4.3 Security Assessment

The RP Web application is located at https://localhost:8443, so we
will use another origin (protocol, host, port), http://127.0.0.1:8080, when
running the malicious Web site. Assume that the latter URL is owned by
the attacker. Before being able to conduct a CSRF against the OpenID
management site of the RP, the attacker needs to take a look at the form
that is being filled by users when they are adding new OpenIDs. She could
sign on, herself, and see that the HTML code looks like this:

Listing 4: Form used for associating additional OpenIDs

1 <form id=”newOpenId”
2 action=”/sso−webapp/user/manage−openids/add−an−openid”
3 method=”GET”>
4 <input type=”text” name=”openid identifier” />
5 </form>

So far, she knows that submitting the form would produce an HTTP GET

request made to the following URL:

https://localhost:8443/sso-webapp/user/manage-openids/

add-an-openid?openid_identifier=<OpenID>

This means that the attacker could set whatever she likes as value for the
identifier parameter, and thus initiate an OpenID authentication request
against the OP belonging to the given OpenID Identifier.

HTTP GET Example Assume that the attacker has created a Web
site within another origin, http://127.0.0.1:8080/sso-webapp/csrf/http-get,
and that this site contains the following code:

Listing 5: CSRF using HTTP GET

1 <img src=”https:// localhost :8443/sso−webapp/user/manage−openids/
2 add−an−openid?openid identifier=http://trudy . ev i l s i te .com/”
3 width=”0” height=”0” />

Now, the goal of the attacker is to make the user visit this page. This can
be achieved in several different ways, e.g. through social engineering, placing
redirect scripts at other Web sites, etc. If she somehow succeeds in tricking
the user into visiting the page, the user would just be presented with an
empty white page, and would probably navigate back to the previous page
or do something else. However, as shown in Figure 28, an HTTP GET request
was made in the background against the following URL:

https://localhost:8443/sso-webapp/user/manage-openids/add-

an-openid?openid_identifier=http://trudy.evilsite.com/

65

https://localhost:8443
http://127.0.0.1:8080
https://localhost:8443/sso-webapp/user/manage-openids/
add-an-openid?openid_identifier=<OpenID>
http://127.0.0.1:8080/sso-webapp/csrf/http-get
https://localhost:8443/sso-webapp/user/manage-openids/add-
an-openid?openid_identifier=http://trudy.evilsite.com/

4.3 Security Assessment 4 SECURITY ASSESSMENT

Figure 28: CSRF attack

And if the user at this point were to navigate back to the OpenID association
overview, he would be presented with a list, as demonstrated in Figure 29.
The figure shows that the malicious OpenID URL has been added to the col-
lection of OpenIDs associated with the victim’s account. Thus, the attacker
is able to sign on with her OpenID to gain access to the compromised user
account.

Note that http://trudy.evilsite.com/ is not an existing OpenID; a
functioning OP server has not been developed at evilsite.com for the pur-
pose of this demonstration. But assume, in this case, that the attacker
could have created an OP for the sole purpose of handling authentication
requests for her own OpenID Identifier. In such a scenario, it is up to the
attacker how to perform the authentication at the OP. What this means, is
that the attacker could configure the malicious OP to simply return a pos-
itive authentication response when an RP requests authentication of http:
//trudy.evilsite.com/. This is possible because RPs has no control of
what OPs does during authencation on the server side. As long as the mali-
cious OP manages to communicate with RPs using the OpenID protocol, it
can fake positive authentications.

Obviously, this type of attack would require a lot of work, including rel-
atively advanced programming skills possessed by the attacker. However, if
the attacker discovers an RP allowing users to have multiple OpenIDs with
their accounts and that Web site contains valuable information, it might be

66

http://trudy.evilsite.com/
evilsite.com
http://trudy.evilsite.com/
http://trudy.evilsite.com/

4 SECURITY ASSESSMENT 4.3 Security Assessment

Figure 29: Results of CSRF attack using HTTP GET

worth it to construct a fake OP. As in any other case, the attacker will need
to compare the possible profit up against the time required to develop it.

Also note that a variant of this attack might succeed even if the user is
not already authenticated! This, however, presupposes that the RP under
attack utilizes a technique for remembering the original requests performed
by unauthenticated users. As an example, the Spring Security holds this
capability. So theoretically, the CSRF attack might succeed in a slightly
different order as well: 1) the user is tricked into visiting the malicious site;
2) the malicious site forges a request against the RP; and 3) the user signs
on at the RP. . In such a scenario, the CSRF does not actually succeed at
the exact moment when the request is first performed. Instead, if the user
decides to sign on with the RP within its session expiration time, the RP
will retry the original request that was previously forbidden. This variant,
however, is a lot easier for the user to discover because she will be redirected
to the “Manage My OpenIDs” page and see a message saying that the http:

//trudy.evilsite.com/ Identifier was successfully added.

67

http://trudy.evilsite.com/
http://trudy.evilsite.com/

4.3 Security Assessment 4 SECURITY ASSESSMENT

HTTP POST Example The example above has demonstrated a rel-
atively simple way to perform CSRF, where the RP had not added any kind
of protection against this form of attack. As a basic form of defense against
CSRF attacks where GET requests are forged using the src (or href) attribute
of elements like images, iframes, scripts, and stylesheets, a Web site can re-
quire that the form must be submitted using POST as request method [2].
This way, accessing the URL manually or including it as source of some ele-
ment would not work because the server would be expecting another method.
For instance, trying to access the URL used in the example above after hav-
ing modified the server-side code to require HTTP POST, would result in an
error message looking something like this:

org.springframework.web.HttpRequestMethodNotSupportedException:
Request method “GET” not supported

At first sight, introduction of HTTP method restrictions might work as a
reasonable protection mechanism. Unfortunately, it is also possible to forge
POST requests [2]. For instance, JavaScript can be used to circumvent the
restriction. The attacker can simply copy the code of the original form into
her own malicious site, pre-fill it with the fake OpenID Identifier, and then
point it to its destination under attack, and submit it using JavaScript:

Listing 6: CSRF using HTTP POST

1 <form id=”newOpenId” method=”POST” style=”display : none”
2 action=”https:// localhost :8443/sso−webapp/user/
3 manage−openids/add−an−openid”
4 <input type=”text” name=”openid identifier”
5 value=”http://trudy . ev i l s i te .com/” />
6 </form>
7 <script>
8 document.getElementById(”newOpenId”) . submit () ;
9 </script>

This code would actually submit the form as if done by the user. That
would redirect the user to the “Manage My OpenIDs” page, where she would
probably notice that a new Identifier has been added (see Figure 30). In this
case, it seems more probable that the user would reveal the attack, and thus
perform some action to restore the damage that was done. So, to summarize,
CSRF is still possible to perform even though the page under attack only
accepts HTTP POST requests, but pages that can be invoked with HTTP
GET are often easier to exploit.

68

4 SECURITY ASSESSMENT 4.3 Security Assessment

Figure 30: Results of CSRF attack using HTTP POST

69

4.3 Security Assessment 4 SECURITY ASSESSMENT

4.3.2 Countermeasures Against CSRF

There are many protection mechanisms that can be employed in order to
prevent, or at least, reduce the risk of CSRF attacks. Section 4.3.1 (Attacking
an RP Using CSRF) showed how usage of POST as the HTTP method would
make it a little more difficult for an attacker to perform CSRF, while certainly
not impossible.

Another common way for Web developers to prevent CSRFs is to check
the HTTP Referer32 header. This header specifies where a user comes from.
If a user clicked on a link, or was redirected from another Web site, then
that site’s URL will be the value of the header. So, many Web sites simply
performs a check whether the value of the Referer header is a URL located
at the same domain, and not some external one. However, as this header
is user-defined input (like cookies or form values), its value might easily by
tampered with [9].

Another, and more secure, solution would be to force users to re-authenticate
each time an important request is made to the Web site. E.g. a request for
changing user information could require the user to type her password to
confirm the change. This might be experienced as obtrusive, so to improve
user-friendliness, a better solution (depending on the situation) might be to
use unpredictable tokens included in each request. Appendix D.1 explains
this protection mechanism in detail.

4.3.3 Attacking an OP Using Clickjacking

Section 2.5.2 explained the theoretical background for Clickjacking. In this
part, there will be a demonstration of how it was possible to perform an
actual Clickjacking attack against an OP (Google). The Web application
developed as part of the thesis will be used to provoce the attack.

As with CSRF, Clickjacking also exploits Web sites where users already
have authenticated. First of all, let us assume that the malicious Web site
in this example knows the OpenID URL of the user,33 and that the URL
ends with google.com. To be able to successfully execute the attack, the
malicious Web site first needs to take a look at the authentication form of
the Google OP.

In order to be redirected to the Google OP authentication form, a user
could simply type his OpenID Identifier into the input field on the sign-on

32The name of the header is not spelled correctly; it uses one r instead of two. The
W3C standard itself misspelled the word [9].

33Note that OpenID URLs can be easily collected many places. As an example, they
are often found publicly available as part of user comments at various Web sites.

70

google.com

4 SECURITY ASSESSMENT 4.3 Security Assessment

page (shown in Figure 24). This would redirect the user to the page shown
in Figure 31. However, if the malicious Web application already knows the

Figure 31: Authentication with Google OP

OpenID Identifier of the user, the same authentication page could be reached
simply by sending the user to the following URL:

https://localhost:8443/sso-webapp/j spring openid security check

?openid identifier=https://www.google.com/profiles/jogrimst

Requesting this URL would entail the OpenID authentication process to be
handled as before, equivalent to the scenario where the user types in his
OpenID Identifier himself. This also means that the Web site could actually
include the Google OP authentication form in an iframe like this:

Listing 7: Inclusion of Google OP in an iframe

1 <iframe src=”https:// localhost :8443/sso−webapp/j spring openid security check
2 ?openid identifier=https://www. google .com/prof i les/jogrimst”>
3 </iframe>

This way, the external OP authentication form (located at https://www.

google.com/accounts/o8/[...]) would be presented to the user who is
still located on the original insidious domain, i.e. localhost. Figure 32
shows how the Google authentication form is presented to the user in an
iframe at the localhost domain.

71

https://www.google.com/accounts/o8/ [...]
https://www.google.com/accounts/o8/ [...]
localhost
localhost

4.3 Security Assessment 4 SECURITY ASSESSMENT

Figure 32: Authentication with Google OP located inside an iframe

Next, assume that an attacker has created some Web page that is meant
to work as a diversionary maneuver, like the one shown in Figure 33. This
is a Web page that tries to present some fake content to the user. To view
the rest of the text, the user is encouraged to click the button at the bottom
of the page. This element does not necessarily have to be a button; it could
easily be substituted by a link, an image, or a checkbox, etc. The goal of
the attack is to make the user perform a click at a given location. There are
many different ways to achieve this. To make a user click something, it is
important to make the page seem trustworthy. Basically, the attacker needs
to use social engineering to fool the user into doing the following:

1. Visit the cloaked page.

2. Click some element on the page.

With the iframe (Figure 32) and the fake page (Figure 33) in hand, the
attacker can assemble the two into a mixture that can be used to mislead the
user. By default, iframes and their contents are opaque, but by using CSS
(as described in Section 2.5.2), the attacker can make them appear invisible
to the user. Figure 34 explains the concept. First of all, there are two layers
of content; a lower layer, and an upper layer (the one closest to the user).
In this example, the iframe containing the Google OP authentication form

72

4 SECURITY ASSESSMENT 4.3 Security Assessment

Figure 33: Fake page presented to the victim

is the layer located at the top, while the fake page is located at the bottom.
The upper part of Figure 34 shows a scenario where the opacity of the iframe
is set to 100% (default). The lower part of the figure shows a scenario where
the opacity has been reduced, thus making the iframe partially invisible.

Using CSS’s z-index property, the iframe layer has been placed directly
above the fake page layer (for code details of the attack, please see Listing
12 in Appendix E.1). Now, if the opacity of the iframe is set all the way to
zero (also with the help of CSS), a user would think that he is clicking on the
“Click here” button that he sees on the screen, while actually it is the form
in the background that is being interacted with! In this particular example,
it is the “Allow” button for allowing user information to be shared with the
malicious RP that is pressed. At this point, given that the localhost domain
is controlled by an attacker, the user actually authenticates the malicious
RP with his account without knowing about it (since it all happens in the
background).

The main consequence of such an attack is that the malicious RP can
steal user information (e.g. e-mail, full name, date of birth, etc) from the
victim’s OpenID account. This happens completely hidden from the user,
so unless the victim at some later point takes a look at the OP’s account
history showing all of the user’s visited sites, there is little probability that
the attack will be discovered afterwards.

To demonstrate the success of the Clickjacking attack, take a look at
Figure 35. This shows how a click on the “Allow” button redirected the
victim to the, in this case malicious, RP. Note that the opacity of the iframe

73

localhost

4.3 Security Assessment 4 SECURITY ASSESSMENT

Figure 34: Reducing opacity of OP authentication form layer

74

4 SECURITY ASSESSMENT 4.3 Security Assessment

in the figure has been increased for the purpose of the demonstration. With
a real attack, however, this would be set to zero, thus presenting the user
with the fake page (given in Figure 33) even after the success of the attack.
This means that she will notice that nothing happens when she tries to click
the button located at the fake page, since it is not possible to interact with
it directly. At this point, she might become suspicious, or she might give up
and just navigate back or somewhere else.

In this particular example, the RP developed for this thesis was used for
playing the role as a malicious Web site controlled by an attacker, while my
Google OpenID account (https://www.google.com/profiles/jogrimst)
was the one under attack. Note that an attacker is free to choose which
Web application to use, but there are two main requirements that should be
fulfilled:

1. It must support the OpenID protocol; e.g. successfully handle authen-
tication requests according to the protocol.

2. It must exist in a location controlled by the attacker, in such a way
that the attacker is able to obtain the stolen user information.

Figure 35: Successful Clickjacking attack

75

https://www.google.com/profiles/jogrimst

4.3 Security Assessment 4 SECURITY ASSESSMENT

Gaining Access to User Account at the clavid OP The scenario
above showed how an attacker can manages to obtain access to a user account
at an RP. In the following, we will consider an even more lucrative attack,
namely gaining access to the OP account of an End User. If this can be done,
the attacker would not only have access to one RP Web sites, but all RPs
associated with that particular OP account.

First of all, let us use the clavid OP as an example, and look at the page
where an authenticated user can edit their account settings. Figure 36 shows
the page where a user can change his password. The user simply types in

Figure 36: Password settings at clavid.com

the new password, then once more in the confirmation field, and clicks the
“Change Settings” button. If the given password matches the requirements
set by clavid, a confirmation message is shown, stating that the settings
where successfully changed:

As it turns out, this page is vulnerable to a Clickjacking attack. In this
case, the goal of an attacker would be to trick an already authenticated user
into typing in a known text string into the input fields (using an invisible
iframe) and click the button.

An example scenario could be that the victim user is presented with
a form for commenting on some article, etc. Then, when submitting the

76

clavid.com

4 SECURITY ASSESSMENT 4.3 Security Assessment

comment, the spoof Web site would ask her to type in a CAPTCHA34 code
twice in order for the comment to be submitted, as shown in Figure 37. Most

Figure 37: A fake page with a commenting form

people are familiar with the fact that CAPTCHA often is used on order for
Web sites to avoid problems with spam robots. This way, it is reasonable
to believe that it would be possible to make a user type the characters into
the two fields and hit the button (given that the content of the article is of
interest to the user).

Normally, a new CAPTCHA image is generated each time the page is
loaded. However, the attacker needs to know the value of the password that
as written into the clavid form. For this reason, the CAPTCHA image on this

34A CAPTCHA code is an image with jumbled characters. It stands for Completely
Automated Public Turing test to tell Computers and Humans Apart [1]

77

4.3 Security Assessment 4 SECURITY ASSESSMENT

spoof page would never change. I.e., the attacker knows that if an End User
authenticated with clavid is tricked into filling this form, the new password
of that user’s clavid account would be 1Z7KD5C4.

To demonstrate the concept, Figure 38 gives a visualization of what the
page would have looked like for a user if the opacity of the iframe had been
adjusted to about 30%. It illustrates how the pair of input fields and the
button are located directly above the clavid Web page.

Figure 38: Partially opaque iframe containing clavid page

4.3.4 Countermeasures Against Clickjacking

The level of technical skills needed to perform a Clickjacking attack is rel-
atively low; only basic HTML and CSS skills are needed in order to place

78

4 SECURITY ASSESSMENT 4.3 Security Assessment

an iframe above another page and make it transparent. This makes im-
plementation of proctection mechanisms even more important. However, a
higher level of skills might be needed to create the page to be included in the
iframe, especially if it is supposed to support authentication mechanisms of
the OpenID protocol, like in the example above. This will, of course, depend
on the specifics of each attack.

The most common defense for Clickjacking is called frame busting [15].
When frame busting defense has been added to a Web page, it will not work
inside an iframe. This means that if any site tries to include such a page
in a sub-frame, the included page will refuse to work, and bust out of the
frame. Obivously, without a functioning iframe, a Clickjacking attack would
no longer be possible.

There are many different ways to implement frame busting. The following
method can be used to break page framing [11]:

Listing 8: Frame busting code

1 i f (parent . frames . length > 0) {
2 top . location . replace (document. location) ;
3 }

This script is contained within the Web site that wants to avoid being in-
cluded in iframes. It checks if there are any parent frames, and if this
is the case, it tells the browser to redirect to the URL of the Web site
(document.location). This way, the Web site is presented directly in the
browser instead of being included inside a frame at another page. Actually,
this countermeasure (and others) can be circumvented [15], but details about
that is out of scope for this thesis. However, it is important to note that us-
ing frame busting is a lot better than using no defense mechanisms against
Clickjacking at all. Another possibility is to use an HTTP header named
X-FRAME-OPTIONS in order to restrict the usage of iframes. Details about
the functionality of this header can be found in Appendix E.2.

As expected, there are differences between OPs with regards to protection
against Clickjacking attacks. As an example, in Section 4.3.3 the Google OP
was demonstrated to be vulnerable to the attack, while experimenting showed
that VeriSign PIP and others were not vulnerable to the same attack. Table
4 shows the varying degree of Clickjacking defense for a group of popular
OPs. The experimentation has looked at the ability of each OP to break out
of iframes when using various browser types, and shows that some OPs lack
such a defense mechanism.

79

4.3 Security Assessment 4 SECURITY ASSESSMENT

Context Browser Attack possible?

Firefox 3.6 Yes
IE 7 Yes

Google IE 8 No
Chrome 5 No
Opera 10.6 No
Firefox 3.6 No
IE 7 No

VeriSign PIP IE 8 No
Chrome 5 No
Opera 10.6 No
Firefox 3.6 Yes
IE 7 Yes

clavid IE 8 No
Chrome 5 Yes
Opera 10.6 Yes
Firefox 3.6 No
IE 7 No

Yahoo! ID IE 8 No
Chrome 5 No
Opera 10.6 No
Firefox 3.6 No
IE 7 No

myOpenID IE 8 No
Chrome 5 No
Opera 10.6 No

Table 4: OP comparison of Clickjacking vulnerabilities

80

4 SECURITY ASSESSMENT 4.4 Summary

4.4 Summary

This part has shown how a security assessment of SSO Web applications was
performed. The part started by giving a description of the Web application
that was developed as part of the thesis (4.2). This application is in practice
an RP, where End Users can use their OpenID in order to sign on. It is up
to the user which OP to use; the application allows for any OP to be used
(as long as it has implemented support for the OpenID protocol).

Next, in Section 4.3, there was performed experimenting with Web se-
curity threats like CSRF and Phishing. It was shown how an RP could be
attacked using CSRF in order for an attacker to gain access to a user’s ac-
count. The difference between the effect of GET and POST requests was
discussed, as well as various countermeasures to CSRF.

Section 4.3.3 showed how Clickjacking could be used to attack an OP. By
including the authentication form of OPs in sub-frames, it was demonstrated
how it is possible to trick users into authenticating malicious RPs using their
active OP account session. The same section also demonstrated a more
complex form of Clickjacking, which made it possible to actually gain access
to a user’s OP account. An overview of OPs vulnerable to Clickjacking was
made for various browser versions. And possible countermeasures against
the attack were explained at the end.

4.5 Discussion

The results of the security assessment shows that out of a group of 5 chosen
OPs, two of them suffered from security vulnerabilities (Google and clavid).
The vulnerabilities that were discovered made it possible for an attacker to
do the following:

• Take over RP account of victim.

• Take over OP account of victim.

Obviously, gaining access to a user’s OP account is a lot more attractive for
an attacker, since this would make it possible to access all the RPs associated
with that OP account.

The success of the attacks explained in Section 4.3.1 (Attacking an RP
Using CSRF) and Section 4.3.3 (Attacking an OP Using Clickjacking) relied
on certain assumptions. First of all, it was assumed that the attacker some-
how knew (or guessed) that the user was already authenticated at the sites
under attack. Also, when demonstrating OP attacks (Section 4.3.3), it was
assumed that the attacker knew the OpenID Identifier of the victim user.

81

4.5 Discussion 4 SECURITY ASSESSMENT

It is also worth pointing out that OpenID Identifiers in most cases are not
considered sensitive information, so it is assumed that these can be obtained
easily, e.g. by using robots to scan Web sites.

When the security vulnerabilities were discovered at Google and clavid,
the companies were contacted by e-mail and notified about the possible at-
tack (using an extract from the thesis). A security issue report was filed
in Google’s reporting system, and a few days later Google responded and
acknowledged the vulnerability. They informed that they had considered
Clickjacking protection via use of the X-FRAME-OPTIONS header (described
in Appendix E.2). As demonstrated in this thesis, users of browsers like Fire-
fox 3.6 and IE 7.0 (or earlier versions) are still vulnerable to the attack, and
as of today this is a significant number of users. I have shared my thoughts
on how to protect against Clickjacking for the users of these browser ver-
sion, and Google informed me that they would use an internally developed
framebusting script for the particular vulnerability discovered in this thesis.

The possible Clickjacking scenarios discovered at the clavid OP have also
been reported. The OP was notified about the attacks explained in Section
4.3.3, where it was shown how it is possible to use Clickjacking in order
to gain access to a user’s RP account or OP account by including pages
at clavid.com in an iframe. After some e-mail correspondance in order to
clarify the concept for clavid, they have informed me that they will implement
a fix for the security hole in a future release of the clavid.com OP.

82

clavid.com
clavid.com

5 CONCLUSION AND FURTHER WORK

5 Conclusion and Further Work

5.1 Evaluation and Conclusion

This Master’s thesis has explained the concept of SSO, and it has made an
assessment of the information security in Web applications that are utilizing
SSO for user management. The results of the thesis show how it is possible
for an attacker to trick users into performing requests without actually being
aware of it. As an example, it was demonstrated that CSRF could be used
to make a victim unknowingly perform harmful requests against a Web site
where she is already authenticated. Also, usage of Clickjacking demonstrated
how it was possible to successfully hijack SP and IdP accounts by placing an
invisible content layer between the user and a fake Web page.

Obviously, the success of these attacks relies on the fact that the victim
users have authenticated with the sites under attack before they are executed.
The goal of an attacker utilizing CSRF and Clickjacking is to somehow per-
form an interaction with a Web site where a user has already signed on. If
the user has not signed on anywhere, the attacker cannot use the mentioned
techniques in order to hijack a user’s Web site accounts.

Security Responsibilities The success of the attacks shows that all of
the participants in a SSO system have a security responsibility, i.e. the End
User, SP, and IdP. All of them should abide to certain best practices regarding
information security. As mentioned earlier, the End User is responsible for
picking a suitable IdP. The users should be aware that as the number of
SPs associated with an IdP account increases, it seems more attractive for
attackers to gain access to it. In order to avoid their IdP account to be
compromised, users should ensure that the password they pick is strong,
and they should consider using multi-factor authentication as an additional
mean of protection. Not all IdPs support multi-factor authentication, so
this is also related to the correct choice of IdP. Also, End Users should be
aware of phishing when using SSO Web applications, and they might protect
themselves with techniques like sign-on seals or manually typing in the URL
of their IdP when authenticating. In addition, users should manually place
https:// in front of their Identifiers to avoid DNS poisoning attacks against
their SP. Also, users should never share their password with sites other than
their IdP. As mentioned in Section 2.3, SLO is implemented in some SSO
systems, but not in all (e.g. OpenID). So if using a SSO system where SLO
is lacking, a user should be aware that it is also necessary to log out of the
IdP after logging out of an SP (especially if using a public computer).

SPs also have a security responsibility when it comes to protecting their

83

5.1 Evaluation and Conclusion5 CONCLUSION AND FURTHER WORK

users. First of all, they need to be aware of the danger of CSRF. If an End
Users signs up at a large number of SPs using her IdP account, there is a
possibility that some of those sites might be malicious ones. State-changing
user operations (e.g. update of e-mail address or password) that might enable
an attacker to gain access to the account must be protected against CSRF. A
solution could be to force users to re-authenticate when performing sensitive
operations like changing password, etc. Usage of unpredictable tokens is
another protection mechanism RPs can use (as mentioned in Section 4.3.2
and described in Appendix D.1).

Needless to say, IdPs have a huge security responsibility. First of all, they
are responsible for protecting data stored about all of their users. Addition-
ally, IdPs depend on a good reputation amongst SPs in order to be included
at the SPs as one of the alternative IdPs for users to choose between during
sign-on. As with SPs, IdPs are also encouraged to educate their users about
phishing, i.e. to teach them how to best separate the genuine IdP login site
from phishing attempts. Also, IdPs should use HTTPS as the preferred pro-
tocol for their login page. Since the user accounts protected by the IdPs are
entrance points to multiple associated SP accounts, user credentials should
always be over HTTPS. The thesis has also demonstrated that Clickjacking
is a severe threat against IdPs. For this reason, IdPs should not allow for
their login pages to be included in sub-frames of SPs (or any other external
Web site). Also, a practice of including IdP login pages in frames at external
Web sites is contradictory to the training of users to avoid phishing; to sep-
arate genuine IdP login pages with fakes ones, End Users should in general
be presented with the URL bar of the current login page.

Multi-Factor Authentication Section 2.4.1 gave a theoretical intro-
duction to the concept of multi-factor authentication, and Section 3.6 ex-
plained practical examples used in the OpenID protocol, e.g. the physical
YubiKey OTP dongle. When using multi-factor authentication, it becomes
a lot harder for attackers to sign on at a victim’s account, even though he
has knowledge of the password. However, in SSO systems, a very common
scenario is that users are already authenticated with an IdP which is used
to sign on at multiple SPs. In such a situation, the thesis has shown that
an attacker can interact with IdP Web pages without actually stealing the
user’s login credentials (e.g. password) beforehand. As shown in Section 4.3.3
(Attacking an OP Using Clickjacking), multi-factor authentication does not
help at all if an IdP is vulnerable to CSRF or Clickjacking. Multi-factor
authentication is functioning as an additional security factor during the au-
thentication with the IdP, but after the actual sign-on has been performed,

84

5 CONCLUSION AND FURTHER WORK 5.2 Further Work

it is absolutely necessary to implement protection mechanisms against the
mentioned attacks. As an example, the clavid offers an excellent way for their
users to sign on using the YubiKey for extra security, but once the user is
authenticated, multi-factor authentication cannot prevent attacks like CSRF
and clickjacking. This underlines the importance of implementing counter-
measures against such attacks.

5.2 Further Work

Further work for this Master’s thesis might be to consider the possibility of
implementing SLO functionality in the OpenID protocol. It is problematic
that certain SSO systems lack this functionality, so a support for SLO would
make it easier for users of the protocol. Such a work might consist in in-
vestigating ongoing efforts for OpenID SLO, and maybe a commitment to
working with the creation of a specification. A first step could be to add it
as an optional extension (like PAPE and SREG) to the OpenID protocol.

Another problem with the OpenID protocol is the fact that usage of
HTTPS is not required during authentication. Here, a practical topic for
further work could be to consider ways to check for usage of HTTPS by
utilizing the PAPE extension. As mentioned in Section 3.7.1 (Defined Au-
thentication Policies), the PAPE extension has pre-defined authentication
policies for phishing-resistancy and multi-factor authentication. So, a topic
might be to look for existing policies addressing HTTPS requirements, and
implementation of an addition to the PAPE extension.

Also, if the student is familiar with Java Web development, then an-
other possible future work could be to make an enhancement to the se-
curity framework that was used for the development in this thesis. The
Spring Security framework supports usage of the OpenID protocol, but it
does not support usage of the PAPE extension. Adding this is actually
planned by the Spring Security community,35 as can be seen at https:

//jira.springsource.org/browse/SEC-1332. Spring Security is an open
source project, so anyone with interest is able to contribute with development.
For access to the project, the first step would be to contact the project lead
(Luke Taylor).

35https://jira.springsource.org/browse/SEC

85

https://jira.springsource.org/browse/SEC-1332
https://jira.springsource.org/browse/SEC-1332
https://jira.springsource.org/browse/SEC

5.2 Further Work 5 CONCLUSION AND FURTHER WORK

86

REFERENCES REFERENCES

References

[1] Rafeeq Rehman, “Get Ready for OpenID”, Conformix Technologies Inc.,
2008

[2] Shreeraj Shah, “Web 2.0 Security: Defending Ajax, RIA, and SOA”,
Course Technology, 2007, pp. 137-158 (“Cross-Site Request Forgery with
Web 2.0 Applications”)

[3] Elisa Bertino, Lorenzo D. Martino, Federica Paci, and Anna C. Squic-
ciarini, “Security for Web Services and Service-Oriented Architectures”,
Springer, 2010, pp. 80-82 (“Overview of Digital Identity Management”)

[4] Jan De Clercq, “Single Sign-On Architectures”, Infrastructure Security
(InfraSec) International Conference, Bristol, UK, 2002 pp. 40-58

[5] Andreas Pashalidis and Chris J. Mitchell, “A Taxonomy of Single Sign-
On Systems”, Royal Holloway, University of London, UK, 2003,
http://www.isg.rhul.ac.uk/~xrtc/cv/ssotax.pdf

[6] The OpenID Community, Specification: “OpenID Authentication
2.0” (final), OpenID Foundation, 2007, http://openid.net/specs/

openid-authentication-2_0.html

[7] The OpenID Community, Specification: “OpenID Simple Registration
Extension 1.0” (final), OpenID Foundation, 2006, http://openid.net/
specs/openid-simple-registration-extension-1_0.html

[8] The OpenID Community, Specification: “OpenID
Provider Authentication Policy Extension 1.0” (final),
OpenID Foundation, 2008, http://openid.net/specs/

openid-provider-authentication-policy-extension-1_0.html

[9] Billy Hoffman and Bryan Sullivan, “Ajax Security”, Addison-Wesley,
2007, pp. 75-77 (“Cross-Site Request Forgery (CSRF)” and “Phishing”)

[10] Jeremiah Grossman, Robert Hansen, Petko Petkov, and Anton Rager,
“XSS Attacks: Cross Site Scripting Exploits and Defense”, Syngress,
2007, pp. 93-97 (“CSRF”), pp. 238-248 (“CSFR Proof of Concepts”)

[11] Mike Shema, “Seven Deadliest Web Application Attacks”, Syngress,
2010, ch. 2 (“Cross-Site Request Forgery”)

87

http://www.isg.rhul.ac.uk/~xrtc/cv/ssotax.pdf
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-simple-registration-extension-1_0.html
http://openid.net/specs/openid-simple-registration-extension-1_0.html
http://openid.net/specs/openid-provider-authentication-policy-extension-1_0.html
http://openid.net/specs/openid-provider-authentication-policy-extension-1_0.html

REFERENCES REFERENCES

[12] Per Rynning, “Trusler mot Single Sign-On mekanismer” (eng: Threats
Against Single Sign-On Mechanisms), University of Bergen, 2008,
https://bora.uib.no/handle/1956/3007, ch. A5 (“Cross-Site Re-
quest Forgery (CSRF)”)

[13] The OWASP Community, “OWASP Top 10 2010 - The Ten
Most Critical Web Application Security Risks”, OWASP Foun-
dation, 2010, http://owasptop10.googlecode.com/files/OWASP%

20Top%2010%20-%202010.pdf

[14] Simon Josefsson, “Security Evaluation of Yubico Authentication De-
vices”, Datakonsult, 2007, http://www.yubico.com/files/YubiKey_

Security_Review.pdf

[15] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson,
“Busting Frame Busting: a Study of Clickjacking Vulnerabilities on
Popular Sites”, Stanford University, Carnegie Mellon University, 2010,
http://seclab.stanford.edu/websec/framebusting

[16] Alexander Lindholm, “Security Evaluation of the OpenID Proto-
col”, Royal Institute of Technology, CSC (Stockholm), 2009, http:

//www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/

2009/rapporter09/lindholm_alexander_09076.pdf

88

https://bora.uib.no/handle/1956/3007
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://www.yubico.com/files/YubiKey_Security_Review.pdf
http://www.yubico.com/files/YubiKey_Security_Review.pdf
http://seclab.stanford.edu/websec/framebusting
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2009/rapporter09/lindholm_alexander_09076.pdf
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2009/rapporter09/lindholm_alexander_09076.pdf
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2009/rapporter09/lindholm_alexander_09076.pdf

B EXTENSIBLE RESOURCE DESCRIPTOR SEQUENCE

Appendices

A OpenID

A.1 Signature Calculation in OP Response

In an authentication response returned from an OP (see Section 3.5.1 for
an example), there are (amongst others) two fields called openid.signed

and openid.sig. The value of openid.signed is a comma-separated list
of signed fields [6]. The value of openid.sig is the result of a signature
calculation of the fields defined in openid.signed:

openid.signed=ns.sreg,sreg.nickname,sreg.email,sreg.fullname,[. . .]
openid.sig=QA1pZ+Y9GNmr+mrwvO2wlsGTJ5eNepHEQFIibWGs1e0=

The value of the openid.sig parameter is a Hash-based Message Authenti-
cation Code (HMAC), which is encoded using Base64:

base64
(
HMAC(secret(assoc handle), token contents)

)
Here, token contents is a string in key-value format containing all of the
keys defined in the openid.signed parameter, listed in the same order. The
parameter assoc handle is the one named openid.assoc handle in the au-
thentication requests and responses. It is being used to find the HMAC key
for the signature [6]. In the example shown earlier, the value looked like this:

openid.assoc handle=a8843e90-4d6c-11df-a273-d702551e809e

This value remains the same for both the authentication request and the
authentication response.

B eXtensible Resource Descriptor Sequence

The eXtensible Resource Descriptor Sequence (XRDS) format is an XML
format that can be used for discovery of metadata about a resource, in par-
ticular discovery of services offered by IdPs [1]. When IdPs receives discovery
requests from SPs, XRDS documents are returned, containing the necessary
information.

B.1 Supported Authentication Policies at VeriSign

The following shows the contents of the XRDS document at the VeriSign
PIP OP for the user jogrimst (located at https://pip.verisignlabs.

com/user/jogrimst/yadisxrds):

89

https://pip.verisignlabs.com/user/jogrimst/yadisxrds
https://pip.verisignlabs.com/user/jogrimst/yadisxrds

C YUBIKEY

Listing 9: The contents of VeriSign PIP’s XRDS file

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <xrds:XRDS xmlns:xrds=”xr i ://$xrds”
3 xmlns:openid=”http://openid . net/xmlns/1.0” xmlns=”xr i ://$xrd∗($v∗2.0)”>
4 <XRD>
5 <Service priority=”0”>
6 <Type>http://specs . openid . net/auth/2.0/signon</Type>
7 <Type>http://openid . net/sreg/1.0</Type>
8 <Type>http://openid . net/extensions/sreg/1.1</Type>
9 <Type>http://schemas . openid . net/pape/pol ic ies/2007/06/phishing−resistant</Type>

10 <Type>http://schemas . openid . net/pape/pol ic ies/2007/06/multi−factor</Type>
11 <Type>http://schemas . openid . net/pape/pol ic ies/2007/06/multi−factor−physical</Type>
12 <URI>https://pip . verisignlabs .com/server</URI>
13 <LocalID>https://jogrimst . pip . verisignlabs .com/</LocalID>
14 </Service>
15
16 <Service priority=”1”>
17 <Type>http://openid . net/signon/1.1</Type>
18 <Type>http://openid . net/sreg/1.0</Type>
19 <Type>http://openid . net/extensions/sreg/1.1</Type>
20 <URI>https://pip . verisignlabs .com/server</URI>
21 <openid:Delegate>https://jogrimst . pip . verisignlabs .com/</openid:Delegate>
22 </Service>
23 </XRD>
24 </xrds:XRDS>

C YubiKey

As explained in Section 3.6.1 One-Time Password (OTP), the YubiKey36

is a hardware device that can be used to obtain multi-factor authentication
(described in Section 2.4.1). It looks like a small USB memory stick, but it
is actually a keyboard, i.e. it can send a code as if it was typed in from a
keyboard. The device can be used for various authentication purposes, but
the focus in this thesis is on authentication in SSO systems, i.e. at IdPs.

Each YubiKey has its unique per-device key (also called Device ID). This
key is the first 12 characters of the OTPs that the device generates. The
following shows 10 sample OTPs generated by the YubiKey that was used
during the writing of this thesis:

cccccccblteicguebdcgbdvgedihvudteiujjihfbhku

36The YubiKey is created by the company Yubico (http://www.yubico.com)

90

http://www.yubico.com

C YUBIKEY

cccccccblteihhledenelcjjdkvtcdggfhukfnchrdth
cccccccblteirjkutdknunkurvvfjgdhlcifgdervekc
cccccccblteilcnejbehggngccilrjfidefhtihfdnen
cccccccblteiigvnnbguufrcchluilllnvivgfkndrnt
cccccccblteiiuknrgucnlkvhiutcgnktrcdkiucbhnj
cccccccblteiucjffuunijvngfbgkenjgtihhihrkfcl
cccccccblteieggjulgrtbbtecihnedldneundtvcbtt
cccccccblteigerkjhkcdrtfnvjdnkuhrduelrdbngfg
cccccccblteiljkftcvlltjcuuvlidetethbdnggrvnt

In this case, we see that the unique key for this particular YubiKey device is
cccccccbltei.

The authentication process is initiated by the user connecting the Yu-
biKey to her computer using an available USB port. When the button is
pressed, the following happens [14]:

1. A plaintext authentication token is generated.

2. The device then uses the unique key described above and encrypts the
token using the Advanced Encryption Standard (AES) algorithm.

3. Next, it encodes the ciphertext with ModHex, which is a variant of
base16 encoding.

4. The textual token is then transmitted to the computer by emulating a
USB keyboard which types in the characters of the encoded token.

Figure 39 shows the control flow of these steps. The reason why ModHex
(base16) encoding is used instead of regular Hex (base64) encoding is to make
the YubiKey device independent of language settings in operating systems
[14]. In some languages, keyboard layouts switch some keys, e.g. QWERTY
on a US computer and QWERTZ on a German computer. The YubiKey uses
the alphabet “cbdefghijklnrtuv” because these characters were found to be
unswitched on all keyboards.

The plaintext token that is generated is 16 bytes (128 bits) long, i.e. the
same size as one AES block. During encryption, the YubiKey uses a 128-bit

91

C YUBIKEY

Figure 39: YubiKey control flow [14]

92

D CROSS-SITE REQUEST FORGERY (CSRF)

block length AES cipher with 128-bit keys in Electronic Codebook (ECB)
mode. This gives a key space of 2128. The generated string is sent to a Web
server or or host application for verification. This includes:

1. Convert back to a byte string.

2. Decrypt the byte string using the same (symmetric) 128-bit AES key.

3. If the checksum of the string is verified, the OTP is considered valid.
If not, the OTP is rejected.

D Cross-Site Request Forgery (CSRF)

As explained in Section 2.5.1, CSRF (also known as XSRF or hostile linking)
is an attack that can happen behind the scenes of a Web browser, hidden
from what is presented to the user. This can be achieved by including HTML
elements like img, link, iframe, script, etc. The following shows some
examples that all performs the same HTTP GET request:

Listing 10: CSRF examples

1 <img src=”http://bank.com/account .php
2 ?transferTo=1234.12.1234&amount=100” width=”0” height=”0” />
3
4 <link rel=”stylesheet” type=”text/css” href=”http://bank.com/account .php
5 ?transferTo=1234.12.1234&amount=100” />
6
7 <iframe src=”http://bank.com/account .php
8 ?transferTo=1234.12.1234&amount=100”></iframe>
9

10 <script type=”text/javascript” src=”http://bank.com/account .php
11 ?transferTo=1234.12.1234&amount=100”></script>

D.1 Countermeasures

As details of protection mechanisms is not the focus of this thesis, it is placed
here in this appendix instead of in the main text.

To prevent CSRF, an unpredictable token can be used (also called nonce).
This token can be included in the body of the HTTP request, or in the header.
For the highest level of security, this token should be unique per request, but
it can also be unique per user session [13]. The preferred way to include a
token is to use a hidden form field, and send it as part of the body of an

93

E CLICKJACKING

HTTP POST request. This way, the value of the token does not become a part
of the URL, and the probability of disclosure is smaller. Listing 11 shows an
example of how a secret token value can be included in a form in order to
avoid CSRF attacks:

Listing 11: Usage of unpredictable token to avoid CSRF

1 <form action=”/user/change−password” method=”POST”>
2 <input name=”token” type=”hidden”
3 value=”692c730d783a50127faee4543b8bcd74” />
4 New password : <input type=”text” name=”password1” />

5 Confirm new password : <input type=”text” name=”password2” />
6 <input type=”submit” value=”Save” />
7 </form>

Now, every time this form is submitted, the server would verify that a pa-
rameter named token exists, and that its value is correct. This way, it is
possible to differentiate between legal requests and forged requests. So, if an
attacker tries to request the URL without the expected token, no harm can
be made. Several ready-to-use libraries for creation of such tokens exist, e.g.
the CSRFGuard Project37 initiated by the Open Web Application Security
Project (OWASP). This is a filter (available in Java, .NET, and PHP) that
can be used to append unique request tokens to each form and link in a Web
application.

Note, however, that Clickjacking can be used to get around CSRF nonce
protections (see Section 2.5.2 Clickjacking).

E Clickjacking

E.1 Clickjacking Attack Against Google OP

Listing 12: Code used during Clickjacking attack against Google OP

1 <!DOCTYPEhtml>
2 <html lang=”en”>
3 <head>
4 <title>Clickjacking example (Google)</title>
5 <meta http−equiv=”Content−Type”
6 content=”text/html ; charset=UTF−8”>
7 <style>
8 iframe {

37OWASP CSRFGuard Project: http://www.owasp.org/index.php/CSRFGuard

94

http://www.owasp.org/index.php/CSRFGuard

E CLICKJACKING E.1 Clickjacking Attack Against Google OP

9 position : absolute ;
10 width : 740px;
11 height : 350px;
12 border : 0;
13 opacity : .5 ; /∗ 50% opacity ∗/
14 z−index : 1; /∗ The stack level ∗/
15 /∗ The fake page has z−index : 0 (default) ∗/
16 }
17
18 div {
19 padding−top : 75px;
20 padding−l e f t : 74px;
21
22 }
23 div#text {
24 width : 525px;
25 }
26 div :not(#text) {
27 /∗ The element containing the button is
28 ∗ positioned directly above Google ’ s button ∗/
29 position : absolute ;
30 top : 155px;
31 }
32 div :not(#text) input {
33 /∗ Match the width of the button with the
34 ∗ width of Google ’ s button ∗/
35 width : 110px;
36 }
37 </style>
38 </head>
39 <body>
40 <iframe src=”https:// localhost :8443/sso−webapp/
41 j spring openid security check?openid identifier=
42 https://www. google .com/prof i les/jogrimst”>
43 </iframe>
44 <div id=”text”>
45 Lorem ipsum dolor s i t amet, consectetur adipisicing
46 el i t , sed do eiusmod tempor incididunt ut labore et
47 dolore magna aliqua . Ut enim ad minim veniam, quis
48 nostrud exercitation ullamco laboris nis i ut aliquip
49 ex ea commodo consequat . Duis aute irure dolor in
50 reprehenderit in voluptate vel it esse cillum dolore
51 eu fugiat nulla pariatur . Excepteur sint occaecat

95

E.2 Protection Mechanisms E CLICKJACKING

52 cupidatat non proident , sunt in culpa qui o f f i c ia
53 deserunt mollit anim id est laborum. . . .
54 </div>
55 <div>
56 <input type=”submit” value=”Click here” />
57 to view the rest of the text .
58 </div>
59 </body>
60 </html>

E.2 Protection Mechanisms

As indicated in Section 4.3.4 Countermeasures Against Clickjacking, it is
possible to use an HTTP header named X-FRAME-OPTIONS in order to indicate
to browsers that certain pages are not allowed to be displayed inside iframes.
Figure 40 shows an example where the Google OP login page is requested.
When its value is set to SAMEORIGIN, it is not possible for Web sites to include

Figure 40: The HTTP X-FRAME-OPTIONS header

this page in a frame unless the Web site is at the same origin as the included
page. An alternative value of the header is DENY, which would never allow
the content to be rendered within a frame, even not at the same domain [11].

The X-FRAME-OPTIONS header was introduced by Microsoft in version 8
of Internet Explorer [11, 15]. The header is supported by today’s versions of
the browsers Safari, Chrome, Opera, and IE. Firefox does not support it as
of today, but the future version (Firefox 4) will support it [15].

96

F WEB APPLICATION

F Web Application

F.1 Log Messages During Sign-On

Log messages produced during the sign-on example described in Section 4.2.3:

Listing 13: Logging produced during sign-on

1 [INFO, Discovery] Starting discovery on URL
2 identi f ier : http://me.yahoo.com/jogrimst
3 [INFO, YadisResolver] Yadis discovered 1 endpoints from:
4 http://me.yahoo.com/jogrimst
5 [INFO, Discovery] Discovered 1 OpenID endpoints .
6 [INFO,ConsumerManager] Trying to associate with
7 https ://open. login . yahooapis .com/openid/op/auth
8 attempts l e f t : 4
9 [WARN,HttpMethodBase] Going to buffer response body of

10 large or unknown size . Using getResponseBodyAsStream
11 instead is recommended.
12 [INFO,ConsumerManager] Associated with
13 https ://open. login . yahooapis .com/openid/op/auth handle :
14 Ng.45DcOvbL23FlTFHpFL9v51cZy4buHOqj1EGmf0Zt6IHE7j [. . .]
15 [INFO,ConsumerManager] Creating authentication request for OP−
16 endpoint : https://open. login . yahooapis .com/openid/op/auth
17 claimedID: https ://me.yahoo.com/jogrimst
18 OP−speci f ic ID: https://me.yahoo.com/jogrimst
19 [INFO, RealmVerifier] Return URL:
20 https :// localhost :8443/sso−webapp/j spring openid security check
21 matches realm : https :// localhost :8443/
22 [INFO,ConsumerManager] Verifying authentication response . . .
23 [INFO,ConsumerManager] Received positive auth response .
24 [INFO,ConsumerManager] Found association : Ng.45DcOvbL2
25 3FlTFHpFL9v51cZy4buHOqj1EGmf0Zt [. . .]
26 verifying signature locally . . .
27 [INFO,ConsumerManager] Verification succeeded for :
28 https ://me.yahoo.com/jogrimst#16cb4

F.2 Attached Source Code

The source code of the SSO Web application that was developed as part of
this thesis has been attached in a ZIP file. If desired, it is possible to run
this application locally on a computer. This, however, requires that certain
software is installed:

97

F.2 Attached Source Code F WEB APPLICATION

• Java

• Maven

The ZIP file contains a folder named sso-webapp. In order to run the ap-
plication, unzip the file, and navigate into this folder. The folkder contains
a file named README.txt. This file contains the commands that need to be
executed in order to start the application. Commands for both Windows and
Linux are provided.

98

	Title Page
	Problem Description
	Introduction
	Motivation
	Related Work
	Refinements and Limitations
	Thesis Outline and Methodology

	Theoretical Background
	Goal
	Single Sign-On (SSO)
	Components
	Possible Applications

	Single Logout (SLO)
	Identity Providers (IdPs)
	Multi-Factor Authentication

	Web Security Threats
	Cross-Site Request Forgery (CSRF)
	Clickjacking
	Man-in-the-Middle (MITM)
	Phishing

	Summary

	OpenID
	Goal
	Introduction to OpenID
	Basic Elements in OpenID 2.0
	Creating an OpenID
	OpenID Providers (OPs)

	Using OpenID
	Simple Registration Extension (SREG)

	Multi-Factor Authentication
	One-Time Password (OTP)
	Digital Certificates
	Other Methods

	Provider Authentication Policy Extension (PAPE)
	Defined Authentication Policies

	Phishing Protection
	Certification of OPs
	Summary

	Security Assessment
	Goal
	Application Development
	Java Library: openid4java
	Spring Security
	Functionality

	Security Assessment
	Attacking an RP Using CSRF
	Countermeasures Against CSRF
	Attacking an OP Using Clickjacking
	Countermeasures Against Clickjacking

	Summary
	Discussion

	Conclusion and Further Work
	Evaluation and Conclusion
	Further Work

	OpenID
	Signature Calculation in OP Response

	eXtensible Resource Descriptor Sequence
	Supported Authentication Policies at VeriSign

	YubiKey
	Cross-Site Request Forgery (CSRF)
	Countermeasures

	Clickjacking
	Clickjacking Attack Against Google OP
	Protection Mechanisms

	Web Application
	Log Messages During Sign-On
	Attached Source Code

