
June 2010
Danilo Gligoroski, ITEM

Master of Telematics - Communication Networks and
Networked Services (2 year)
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

RFID implementation and performance
analysis of a short MQQ digital
signature

Kamran Saleem Soomro

June 2010
Danilo Gligoroski, ITEM

Master of Telematics - Communication Networks and
Networked Services (2 year)
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

RFID implementation and performance
analysis of a short MQQ digital
signature

Kamran Saleem Soomro

June 2010
Danilo Gligoroski, ITEM

Master of Telematics - Communication Networks and
Networked Services (2 year)
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

RFID implementation and performance
analysis of a short MQQ digital
signature

Kamran Saleem Soomro

June 2010
Danilo Gligoroski, ITEM

Master of Telematics - Communication Networks and
Networked Services (2 year)
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

RFID implementation and performance
analysis of a short MQQ digital
signature

Kamran Saleem Soomro

Problem Description
Recently an algorithm called MQQ-SIG for producing short and very fast digital signatures was
proposed. As the RFID based contactless smart cards are becoming more popular and they have
limited computational and storage resources, it is important to have good performance of digital
signature in that technology too.

Assignment given: 11. January 2010
Supervisor: Danilo Gligoroski, ITEM

Problem Description
Recently an algorithm called MQQ-SIG for producing short and very fast digital signatures was
proposed. As the RFID based contactless smart cards are becoming more popular and they have
limited computational and storage resources, it is important to have good performance of digital
signature in that technology too.

Assignment given: 11. January 2010
Supervisor: Danilo Gligoroski, ITEM

Problem Description
Recently an algorithm called MQQ-SIG for producing short and very fast digital signatures was
proposed. As the RFID based contactless smart cards are becoming more popular and they have
limited computational and storage resources, it is important to have good performance of digital
signature in that technology too.

Assignment given: 11. January 2010
Supervisor: Danilo Gligoroski, ITEM

Problem Description
Recently an algorithm called MQQ-SIG for producing short and very fast digital signatures was
proposed. As the RFID based contactless smart cards are becoming more popular and they have
limited computational and storage resources, it is important to have good performance of digital
signature in that technology too.

Assignment given: 11. January 2010
Supervisor: Danilo Gligoroski, ITEM

Abstract

Contactless smart cards (RFID cards) have been widely used for many
applications such as epassport, ebanking, transit fare payment and access
control systems. These cards have limited resources for performing arith-
metic and logical operations and storing data along with program code. As
asymmetric cryptographic algorithms, performs time consuming complex
operations and demands more resources therefore these operations are per-
formed in the special co-processors inside smart cards. The implementation
of these extra co-processors increase the cost of smart cards.

Recently a new algorithm Multivariate Quadratic Quasigroup (MQQ) has
been proposed for asymmetric cryptography and it is claimed that decryp-
tion oprations are faster than already existing algorithms (RSA, ECC) [17].
Eventually, a digital signature scheme based on MQQ has been proposed
and it is named as MQQ-SIG [28]. In original MQQ public key algorithm
the size of private and public key was quite large in (KBytes). The size of
private key has been significantly reduced in MQQ-SIG scheme. Due to
this improvement in the private key size, it becomes possible to implement
signing procedure of MQQ-SIG inside contactless smart card. The fast
signing speed and simple operations performed in signing makes MQQ-
SIG an appealing choice for smart cards which has constrained resources
comparatively to other devices such as mobile cell phones and personal
computers (PC).

In this thesis we have implemented the digital signature part of MQQ-SIG
algorithm in Java for the 8-bit contactless smart card from the NXP family
JCOP 41 V2.2.1. These cards have Java Card Virtual Machine (JCVM)
which enables limited features of Java. This is a completely original work
and as far as we know there are no other Java implementations of MQQ-
SIG digital signature.

Key generation part of MQQ is quite time consuming and therefore can not
be implemented inside smart cards. Similarly, verification part of MQQ-
SIG utilize public key for verification of signed message. The public key
of MQQ scheme is quite large in hundreds of KBytes and therefore can
not be stored inside smart cards. These two parts of MQQ-SIG has been
implemented on desktop computers and are not part of our Master thesis.

i

Abstract

Contactless smart cards (RFID cards) have been widely used for many
applications such as epassport, ebanking, transit fare payment and access
control systems. These cards have limited resources for performing arith-
metic and logical operations and storing data along with program code. As
asymmetric cryptographic algorithms, performs time consuming complex
operations and demands more resources therefore these operations are per-
formed in the special co-processors inside smart cards. The implementation
of these extra co-processors increase the cost of smart cards.

Recently a new algorithm Multivariate Quadratic Quasigroup (MQQ) has
been proposed for asymmetric cryptography and it is claimed that decryp-
tion oprations are faster than already existing algorithms (RSA, ECC) [17].
Eventually, a digital signature scheme based on MQQ has been proposed
and it is named as MQQ-SIG [28]. In original MQQ public key algorithm
the size of private and public key was quite large in (KBytes). The size of
private key has been significantly reduced in MQQ-SIG scheme. Due to
this improvement in the private key size, it becomes possible to implement
signing procedure of MQQ-SIG inside contactless smart card. The fast
signing speed and simple operations performed in signing makes MQQ-
SIG an appealing choice for smart cards which has constrained resources
comparatively to other devices such as mobile cell phones and personal
computers (PC).

In this thesis we have implemented the digital signature part of MQQ-SIG
algorithm in Java for the 8-bit contactless smart card from the NXP family
JCOP 41 V2.2.1. These cards have Java Card Virtual Machine (JCVM)
which enables limited features of Java. This is a completely original work
and as far as we know there are no other Java implementations of MQQ-
SIG digital signature.

Key generation part of MQQ is quite time consuming and therefore can not
be implemented inside smart cards. Similarly, verification part of MQQ-
SIG utilize public key for verification of signed message. The public key
of MQQ scheme is quite large in hundreds of KBytes and therefore can
not be stored inside smart cards. These two parts of MQQ-SIG has been
implemented on desktop computers and are not part of our Master thesis.

i

Abstract

Contactless smart cards (RFID cards) have been widely used for many
applications such as epassport, ebanking, transit fare payment and access
control systems. These cards have limited resources for performing arith-
metic and logical operations and storing data along with program code. As
asymmetric cryptographic algorithms, performs time consuming complex
operations and demands more resources therefore these operations are per-
formed in the special co-processors inside smart cards. The implementation
of these extra co-processors increase the cost of smart cards.

Recently a new algorithm Multivariate Quadratic Quasigroup (MQQ) has
been proposed for asymmetric cryptography and it is claimed that decryp-
tion oprations are faster than already existing algorithms (RSA, ECC) [17].
Eventually, a digital signature scheme based on MQQ has been proposed
and it is named as MQQ-SIG [28]. In original MQQ public key algorithm
the size of private and public key was quite large in (KBytes). The size of
private key has been significantly reduced in MQQ-SIG scheme. Due to
this improvement in the private key size, it becomes possible to implement
signing procedure of MQQ-SIG inside contactless smart card. The fast
signing speed and simple operations performed in signing makes MQQ-
SIG an appealing choice for smart cards which has constrained resources
comparatively to other devices such as mobile cell phones and personal
computers (PC).

In this thesis we have implemented the digital signature part of MQQ-SIG
algorithm in Java for the 8-bit contactless smart card from the NXP family
JCOP 41 V2.2.1. These cards have Java Card Virtual Machine (JCVM)
which enables limited features of Java. This is a completely original work
and as far as we know there are no other Java implementations of MQQ-
SIG digital signature.

Key generation part of MQQ is quite time consuming and therefore can not
be implemented inside smart cards. Similarly, verification part of MQQ-
SIG utilize public key for verification of signed message. The public key
of MQQ scheme is quite large in hundreds of KBytes and therefore can
not be stored inside smart cards. These two parts of MQQ-SIG has been
implemented on desktop computers and are not part of our Master thesis.

i

Abstract

Contactless smart cards (RFID cards) have been widely used for many
applications such as epassport, ebanking, transit fare payment and access
control systems. These cards have limited resources for performing arith-
metic and logical operations and storing data along with program code. As
asymmetric cryptographic algorithms, performs time consuming complex
operations and demands more resources therefore these operations are per-
formed in the special co-processors inside smart cards. The implementation
of these extra co-processors increase the cost of smart cards.

Recently a new algorithm Multivariate Quadratic Quasigroup (MQQ) has
been proposed for asymmetric cryptography and it is claimed that decryp-
tion oprations are faster than already existing algorithms (RSA, ECC) [17].
Eventually, a digital signature scheme based on MQQ has been proposed
and it is named as MQQ-SIG [28]. In original MQQ public key algorithm
the size of private and public key was quite large in (KBytes). The size of
private key has been significantly reduced in MQQ-SIG scheme. Due to
this improvement in the private key size, it becomes possible to implement
signing procedure of MQQ-SIG inside contactless smart card. The fast
signing speed and simple operations performed in signing makes MQQ-
SIG an appealing choice for smart cards which has constrained resources
comparatively to other devices such as mobile cell phones and personal
computers (PC).

In this thesis we have implemented the digital signature part of MQQ-SIG
algorithm in Java for the 8-bit contactless smart card from the NXP family
JCOP 41 V2.2.1. These cards have Java Card Virtual Machine (JCVM)
which enables limited features of Java. This is a completely original work
and as far as we know there are no other Java implementations of MQQ-
SIG digital signature.

Key generation part of MQQ is quite time consuming and therefore can not
be implemented inside smart cards. Similarly, verification part of MQQ-
SIG utilize public key for verification of signed message. The public key
of MQQ scheme is quite large in hundreds of KBytes and therefore can
not be stored inside smart cards. These two parts of MQQ-SIG has been
implemented on desktop computers and are not part of our Master thesis.

i

iiii

iiii

Preface

This thesis has been accomplished and submitted for the final requirement
in the Master Degree of Technology program at the Norwegian University
of Science and Technology (NTNU). Thesis work has been performed at
the Department of Telematics in the Spring semester 2010 under the super-
vision of Danilo Gligoroski.

The topic of this thesis represents implementation of a new fast digital sig-
nature algorithm along with programming skills required for the implemen-
tation inside java based contactless smart card.

iii

Preface

This thesis has been accomplished and submitted for the final requirement
in the Master Degree of Technology program at the Norwegian University
of Science and Technology (NTNU). Thesis work has been performed at
the Department of Telematics in the Spring semester 2010 under the super-
vision of Danilo Gligoroski.

The topic of this thesis represents implementation of a new fast digital sig-
nature algorithm along with programming skills required for the implemen-
tation inside java based contactless smart card.

iii

Preface

This thesis has been accomplished and submitted for the final requirement
in the Master Degree of Technology program at the Norwegian University
of Science and Technology (NTNU). Thesis work has been performed at
the Department of Telematics in the Spring semester 2010 under the super-
vision of Danilo Gligoroski.

The topic of this thesis represents implementation of a new fast digital sig-
nature algorithm along with programming skills required for the implemen-
tation inside java based contactless smart card.

iii

Preface

This thesis has been accomplished and submitted for the final requirement
in the Master Degree of Technology program at the Norwegian University
of Science and Technology (NTNU). Thesis work has been performed at
the Department of Telematics in the Spring semester 2010 under the super-
vision of Danilo Gligoroski.

The topic of this thesis represents implementation of a new fast digital sig-
nature algorithm along with programming skills required for the implemen-
tation inside java based contactless smart card.

iii

iviv

iviv

Acknowledgements

I would like to thanks my supervisor Danilo Gligoroski for providing me
all the motivation, technical help and friendly environment throughout the
duration of Master thesis. Without his kind help it would have not been
possible to achieve the required objectives.

I also would like to thanks my wife and children for making me feel a
perfect and happy man of this world. This gives me enormous amount of
energy and dedication for the successful completion of Master thesis.

Kamran Saleem Soomro

Trondheim, June 14, 2010

v

Acknowledgements

I would like to thanks my supervisor Danilo Gligoroski for providing me
all the motivation, technical help and friendly environment throughout the
duration of Master thesis. Without his kind help it would have not been
possible to achieve the required objectives.

I also would like to thanks my wife and children for making me feel a
perfect and happy man of this world. This gives me enormous amount of
energy and dedication for the successful completion of Master thesis.

Kamran Saleem Soomro

Trondheim, June 14, 2010

v

Acknowledgements

I would like to thanks my supervisor Danilo Gligoroski for providing me
all the motivation, technical help and friendly environment throughout the
duration of Master thesis. Without his kind help it would have not been
possible to achieve the required objectives.

I also would like to thanks my wife and children for making me feel a
perfect and happy man of this world. This gives me enormous amount of
energy and dedication for the successful completion of Master thesis.

Kamran Saleem Soomro

Trondheim, June 14, 2010

v

Acknowledgements

I would like to thanks my supervisor Danilo Gligoroski for providing me
all the motivation, technical help and friendly environment throughout the
duration of Master thesis. Without his kind help it would have not been
possible to achieve the required objectives.

I also would like to thanks my wife and children for making me feel a
perfect and happy man of this world. This gives me enormous amount of
energy and dedication for the successful completion of Master thesis.

Kamran Saleem Soomro

Trondheim, June 14, 2010

v

vivi

vivi

Contents

Abstract i

Preface iii

Acknowledgements v

Contents ix

List of Tables xi

List of Figures xiv

1 Introduction 1
1.1 Motivation . 1
1.2 MQQ . 2

1.2.1 MQQ-SIG Digital Signature 2
1.3 Different Technologies inside Plastic cards 3

1.3.1 Smart Cards . 3
1.3.2 Contactless Smart Cards 3
1.3.3 Dual Interface or Combi Smart Cards 4

1.4 Security features of contactless smart cards 4
1.4.1 Mutual Authentication 5
1.4.2 Data Security . 6
1.4.3 Contactless smart card physical security 6

1.5 Benefits of Contactless Technology 6
1.5.1 Saving of time and Easy to Use 6
1.5.2 Dependability . 7

1.6 Digital signature for contactless smart card 7

vii

Contents

Abstract i

Preface iii

Acknowledgements v

Contents ix

List of Tables xi

List of Figures xiv

1 Introduction 1
1.1 Motivation . 1
1.2 MQQ . 2

1.2.1 MQQ-SIG Digital Signature 2
1.3 Different Technologies inside Plastic cards 3

1.3.1 Smart Cards . 3
1.3.2 Contactless Smart Cards 3
1.3.3 Dual Interface or Combi Smart Cards 4

1.4 Security features of contactless smart cards 4
1.4.1 Mutual Authentication 5
1.4.2 Data Security . 6
1.4.3 Contactless smart card physical security 6

1.5 Benefits of Contactless Technology 6
1.5.1 Saving of time and Easy to Use 6
1.5.2 Dependability . 7

1.6 Digital signature for contactless smart card 7

vii

Contents

Abstract i

Preface iii

Acknowledgements v

Contents ix

List of Tables xi

List of Figures xiv

1 Introduction 1
1.1 Motivation . 1
1.2 MQQ . 2

1.2.1 MQQ-SIG Digital Signature 2
1.3 Different Technologies inside Plastic cards 3

1.3.1 Smart Cards . 3
1.3.2 Contactless Smart Cards 3
1.3.3 Dual Interface or Combi Smart Cards 4

1.4 Security features of contactless smart cards 4
1.4.1 Mutual Authentication 5
1.4.2 Data Security . 6
1.4.3 Contactless smart card physical security 6

1.5 Benefits of Contactless Technology 6
1.5.1 Saving of time and Easy to Use 6
1.5.2 Dependability . 7

1.6 Digital signature for contactless smart card 7

vii

Contents

Abstract i

Preface iii

Acknowledgements v

Contents ix

List of Tables xi

List of Figures xiv

1 Introduction 1
1.1 Motivation . 1
1.2 MQQ . 2

1.2.1 MQQ-SIG Digital Signature 2
1.3 Different Technologies inside Plastic cards 3

1.3.1 Smart Cards . 3
1.3.2 Contactless Smart Cards 3
1.3.3 Dual Interface or Combi Smart Cards 4

1.4 Security features of contactless smart cards 4
1.4.1 Mutual Authentication 5
1.4.2 Data Security . 6
1.4.3 Contactless smart card physical security 6

1.5 Benefits of Contactless Technology 6
1.5.1 Saving of time and Easy to Use 6
1.5.2 Dependability . 7

1.6 Digital signature for contactless smart card 7

vii

1.7 Applications of contactless smart card 8
1.7.1 Access Control Systems 8
1.7.2 National Identity Cards 9
1.7.3 E-Passport . 9
1.7.4 E-payment . 9

1.8 Thesis Structure . 10

2 Background 13
2.1 Quasigroups and MQQ 13
2.2 Description of the MQQ-SIG algorithm 16

2.2.1 Nonsingular Boolean matrices in MQQ-SIG 17
2.3 RFID from Beginning till Today 19
2.4 RF-Enabled Tecnology 20
2.5 RFID tag . 21

2.5.1 Passive RFID tag 21
2.5.2 Active RFID tag 21

2.6 Digital Signature . 22
2.6.1 Standards for digital signature 23
2.6.2 Signing and Verification of Digital Signature . . . 23
2.6.3 Certificates . 24

2.7 Cryptographic Algorithms 25
2.7.1 RSA . 25
2.7.2 ECDSA . 30
2.7.3 Secure Hash Algorithm SHA1 33

2.8 Attacks on smart cards 37
2.8.1 Invasive Attacks 37
2.8.2 Non-invasive Attacks 38

3 Java Cards Technology 41
3.1 JC Application Architecture 42
3.2 Architecture of Java Card 43

3.2.1 Applets . 43
3.2.2 Java Card Runtime Environment (JCRE) 45
3.2.3 Java Card Virtual Machine (JCVM) 46

3.3 APDU . 47

4 Implmentation 53
4.1 NXP JCOP 41 V2.2.1 72K Java Card 53

viii

1.7 Applications of contactless smart card 8
1.7.1 Access Control Systems 8
1.7.2 National Identity Cards 9
1.7.3 E-Passport . 9
1.7.4 E-payment . 9

1.8 Thesis Structure . 10

2 Background 13
2.1 Quasigroups and MQQ 13
2.2 Description of the MQQ-SIG algorithm 16

2.2.1 Nonsingular Boolean matrices in MQQ-SIG 17
2.3 RFID from Beginning till Today 19
2.4 RF-Enabled Tecnology 20
2.5 RFID tag . 21

2.5.1 Passive RFID tag 21
2.5.2 Active RFID tag 21

2.6 Digital Signature . 22
2.6.1 Standards for digital signature 23
2.6.2 Signing and Verification of Digital Signature . . . 23
2.6.3 Certificates . 24

2.7 Cryptographic Algorithms 25
2.7.1 RSA . 25
2.7.2 ECDSA . 30
2.7.3 Secure Hash Algorithm SHA1 33

2.8 Attacks on smart cards 37
2.8.1 Invasive Attacks 37
2.8.2 Non-invasive Attacks 38

3 Java Cards Technology 41
3.1 JC Application Architecture 42
3.2 Architecture of Java Card 43

3.2.1 Applets . 43
3.2.2 Java Card Runtime Environment (JCRE) 45
3.2.3 Java Card Virtual Machine (JCVM) 46

3.3 APDU . 47

4 Implmentation 53
4.1 NXP JCOP 41 V2.2.1 72K Java Card 53

viii

1.7 Applications of contactless smart card 8
1.7.1 Access Control Systems 8
1.7.2 National Identity Cards 9
1.7.3 E-Passport . 9
1.7.4 E-payment . 9

1.8 Thesis Structure . 10

2 Background 13
2.1 Quasigroups and MQQ 13
2.2 Description of the MQQ-SIG algorithm 16

2.2.1 Nonsingular Boolean matrices in MQQ-SIG 17
2.3 RFID from Beginning till Today 19
2.4 RF-Enabled Tecnology 20
2.5 RFID tag . 21

2.5.1 Passive RFID tag 21
2.5.2 Active RFID tag 21

2.6 Digital Signature . 22
2.6.1 Standards for digital signature 23
2.6.2 Signing and Verification of Digital Signature . . . 23
2.6.3 Certificates . 24

2.7 Cryptographic Algorithms 25
2.7.1 RSA . 25
2.7.2 ECDSA . 30
2.7.3 Secure Hash Algorithm SHA1 33

2.8 Attacks on smart cards 37
2.8.1 Invasive Attacks 37
2.8.2 Non-invasive Attacks 38

3 Java Cards Technology 41
3.1 JC Application Architecture 42
3.2 Architecture of Java Card 43

3.2.1 Applets . 43
3.2.2 Java Card Runtime Environment (JCRE) 45
3.2.3 Java Card Virtual Machine (JCVM) 46

3.3 APDU . 47

4 Implmentation 53
4.1 NXP JCOP 41 V2.2.1 72K Java Card 53

viii

1.7 Applications of contactless smart card 8
1.7.1 Access Control Systems 8
1.7.2 National Identity Cards 9
1.7.3 E-Passport . 9
1.7.4 E-payment . 9

1.8 Thesis Structure . 10

2 Background 13
2.1 Quasigroups and MQQ 13
2.2 Description of the MQQ-SIG algorithm 16

2.2.1 Nonsingular Boolean matrices in MQQ-SIG 17
2.3 RFID from Beginning till Today 19
2.4 RF-Enabled Tecnology 20
2.5 RFID tag . 21

2.5.1 Passive RFID tag 21
2.5.2 Active RFID tag 21

2.6 Digital Signature . 22
2.6.1 Standards for digital signature 23
2.6.2 Signing and Verification of Digital Signature . . . 23
2.6.3 Certificates . 24

2.7 Cryptographic Algorithms 25
2.7.1 RSA . 25
2.7.2 ECDSA . 30
2.7.3 Secure Hash Algorithm SHA1 33

2.8 Attacks on smart cards 37
2.8.1 Invasive Attacks 37
2.8.2 Non-invasive Attacks 38

3 Java Cards Technology 41
3.1 JC Application Architecture 42
3.2 Architecture of Java Card 43

3.2.1 Applets . 43
3.2.2 Java Card Runtime Environment (JCRE) 45
3.2.3 Java Card Virtual Machine (JCVM) 46

3.3 APDU . 47

4 Implmentation 53
4.1 NXP JCOP 41 V2.2.1 72K Java Card 53

viii

4.2 Reader OMNIKEY 5321 55
4.3 Development Tool IDE (Eclipse SDK 3.2) 57
4.4 Implementation of MQQ-SIG 59

5 Evaluation and Discussion of Results 71
5.1 Results . 71
5.2 Evaluation . 75

6 Conclusion and Future Work 77

Glossary 78

References 81

A Program Code for MQQ-SIG Digital Signature 87

B (Program Code for RSA Digital Signature 99

C Program Code for ECDSA Digital Signature 107

ix

4.2 Reader OMNIKEY 5321 55
4.3 Development Tool IDE (Eclipse SDK 3.2) 57
4.4 Implementation of MQQ-SIG 59

5 Evaluation and Discussion of Results 71
5.1 Results . 71
5.2 Evaluation . 75

6 Conclusion and Future Work 77

Glossary 78

References 81

A Program Code for MQQ-SIG Digital Signature 87

B (Program Code for RSA Digital Signature 99

C Program Code for ECDSA Digital Signature 107

ix

4.2 Reader OMNIKEY 5321 55
4.3 Development Tool IDE (Eclipse SDK 3.2) 57
4.4 Implementation of MQQ-SIG 59

5 Evaluation and Discussion of Results 71
5.1 Results . 71
5.2 Evaluation . 75

6 Conclusion and Future Work 77

Glossary 78

References 81

A Program Code for MQQ-SIG Digital Signature 87

B (Program Code for RSA Digital Signature 99

C Program Code for ECDSA Digital Signature 107

ix

4.2 Reader OMNIKEY 5321 55
4.3 Development Tool IDE (Eclipse SDK 3.2) 57
4.4 Implementation of MQQ-SIG 59

5 Evaluation and Discussion of Results 71
5.1 Results . 71
5.2 Evaluation . 75

6 Conclusion and Future Work 77

Glossary 78

References 81

A Program Code for MQQ-SIG Digital Signature 87

B (Program Code for RSA Digital Signature 99

C Program Code for ECDSA Digital Signature 107

ix

xx

xx

List of Tables

2.1 Definition of the nonlinear mapping P ′ : {0, 1}n → {0, 1}n
[28] . 16

2.2 Algorithm for generating the public and private key [28] . 17
2.3 Algorithm for signing [28] 17
2.4 Algorithm for verification [28] 18
2.5 NIST Recommended K-163 Curve Values [11] 32

3.1 CLA field Values by ISO 7816-4 48
3.2 INS field Values by ISO 7816-4 49
3.3 Field Values of Processing Status (SW1, SW2) 51

5.1 Number of operations and Time of Three Parts of MQQ-SIG 72
5.2 Memory used in the Signing of MQQ-SIG 72
5.3 Comparisons of three algorithm in NXP JCOP 41 V2.2. . . 73

xi

List of Tables

2.1 Definition of the nonlinear mapping P ′ : {0, 1}n → {0, 1}n
[28] . 16

2.2 Algorithm for generating the public and private key [28] . 17
2.3 Algorithm for signing [28] 17
2.4 Algorithm for verification [28] 18
2.5 NIST Recommended K-163 Curve Values [11] 32

3.1 CLA field Values by ISO 7816-4 48
3.2 INS field Values by ISO 7816-4 49
3.3 Field Values of Processing Status (SW1, SW2) 51

5.1 Number of operations and Time of Three Parts of MQQ-SIG 72
5.2 Memory used in the Signing of MQQ-SIG 72
5.3 Comparisons of three algorithm in NXP JCOP 41 V2.2. . . 73

xi

List of Tables

2.1 Definition of the nonlinear mapping P ′ : {0, 1}n → {0, 1}n
[28] . 16

2.2 Algorithm for generating the public and private key [28] . 17
2.3 Algorithm for signing [28] 17
2.4 Algorithm for verification [28] 18
2.5 NIST Recommended K-163 Curve Values [11] 32

3.1 CLA field Values by ISO 7816-4 48
3.2 INS field Values by ISO 7816-4 49
3.3 Field Values of Processing Status (SW1, SW2) 51

5.1 Number of operations and Time of Three Parts of MQQ-SIG 72
5.2 Memory used in the Signing of MQQ-SIG 72
5.3 Comparisons of three algorithm in NXP JCOP 41 V2.2. . . 73

xi

List of Tables

2.1 Definition of the nonlinear mapping P ′ : {0, 1}n → {0, 1}n
[28] . 16

2.2 Algorithm for generating the public and private key [28] . 17
2.3 Algorithm for signing [28] 17
2.4 Algorithm for verification [28] 18
2.5 NIST Recommended K-163 Curve Values [11] 32

3.1 CLA field Values by ISO 7816-4 48
3.2 INS field Values by ISO 7816-4 49
3.3 Field Values of Processing Status (SW1, SW2) 51

5.1 Number of operations and Time of Three Parts of MQQ-SIG 72
5.2 Memory used in the Signing of MQQ-SIG 72
5.3 Comparisons of three algorithm in NXP JCOP 41 V2.2. . . 73

xi

xiixii

xiixii

List of Figures

1.1 Dual Interface or Combi Cards 5

2.1 RFID Passive Tags . 22
2.2 Signing Process of Digital Signature 24
2.3 Verification Process of Digital Signature 25
2.4 SHA-1 module [13] . 34
2.5 SHA-1 Single Step Operation [13] 35
2.6 The Power Consumption of an RSA with Square and Mul-

tiply Algorithm [21] . 39

3.1 Java Card Application Architecture [22] 42
3.2 Java Card Architecture [23] 44
3.3 Java Card Applet Structure 45
3.4 Application Identifier (AID) Format 45
3.5 Java Card Virtual Machine Architecture 46
3.6 Command APDU . 48
3.7 Response APDU . 50

4.1 Architecture of device P5CT072 [24] 54
4.2 Three Memory Configurations of P5CT072 device [24] . . 56
4.3 MQQ-SIG signing algorithm [28] 60
4.4 Flow Chart of MQQ-SIG signing algorithm Implementation 61
4.5 Manipulation of the hash using RP1 62
4.6 Manipulation of the hash using RP5 62
4.7 Structure of Quasigroup (∗) vector A1 64
4.8 Multiplication and Addition among A1, Xj−1 and C 65
4.9 Structure of Result Byte vector in columns of bits 66
4.10 Multiplication and Addition among B, Xj−1, Yj and D . . 67
4.11 Structure of byte F in bits as a colomn 68

xiii

List of Figures

1.1 Dual Interface or Combi Cards 5

2.1 RFID Passive Tags . 22
2.2 Signing Process of Digital Signature 24
2.3 Verification Process of Digital Signature 25
2.4 SHA-1 module [13] . 34
2.5 SHA-1 Single Step Operation [13] 35
2.6 The Power Consumption of an RSA with Square and Mul-

tiply Algorithm [21] . 39

3.1 Java Card Application Architecture [22] 42
3.2 Java Card Architecture [23] 44
3.3 Java Card Applet Structure 45
3.4 Application Identifier (AID) Format 45
3.5 Java Card Virtual Machine Architecture 46
3.6 Command APDU . 48
3.7 Response APDU . 50

4.1 Architecture of device P5CT072 [24] 54
4.2 Three Memory Configurations of P5CT072 device [24] . . 56
4.3 MQQ-SIG signing algorithm [28] 60
4.4 Flow Chart of MQQ-SIG signing algorithm Implementation 61
4.5 Manipulation of the hash using RP1 62
4.6 Manipulation of the hash using RP5 62
4.7 Structure of Quasigroup (∗) vector A1 64
4.8 Multiplication and Addition among A1, Xj−1 and C 65
4.9 Structure of Result Byte vector in columns of bits 66
4.10 Multiplication and Addition among B, Xj−1, Yj and D . . 67
4.11 Structure of byte F in bits as a colomn 68

xiii

List of Figures

1.1 Dual Interface or Combi Cards 5

2.1 RFID Passive Tags . 22
2.2 Signing Process of Digital Signature 24
2.3 Verification Process of Digital Signature 25
2.4 SHA-1 module [13] . 34
2.5 SHA-1 Single Step Operation [13] 35
2.6 The Power Consumption of an RSA with Square and Mul-

tiply Algorithm [21] . 39

3.1 Java Card Application Architecture [22] 42
3.2 Java Card Architecture [23] 44
3.3 Java Card Applet Structure 45
3.4 Application Identifier (AID) Format 45
3.5 Java Card Virtual Machine Architecture 46
3.6 Command APDU . 48
3.7 Response APDU . 50

4.1 Architecture of device P5CT072 [24] 54
4.2 Three Memory Configurations of P5CT072 device [24] . . 56
4.3 MQQ-SIG signing algorithm [28] 60
4.4 Flow Chart of MQQ-SIG signing algorithm Implementation 61
4.5 Manipulation of the hash using RP1 62
4.6 Manipulation of the hash using RP5 62
4.7 Structure of Quasigroup (∗) vector A1 64
4.8 Multiplication and Addition among A1, Xj−1 and C 65
4.9 Structure of Result Byte vector in columns of bits 66
4.10 Multiplication and Addition among B, Xj−1, Yj and D . . 67
4.11 Structure of byte F in bits as a colomn 68

xiii

List of Figures

1.1 Dual Interface or Combi Cards 5

2.1 RFID Passive Tags . 22
2.2 Signing Process of Digital Signature 24
2.3 Verification Process of Digital Signature 25
2.4 SHA-1 module [13] . 34
2.5 SHA-1 Single Step Operation [13] 35
2.6 The Power Consumption of an RSA with Square and Mul-

tiply Algorithm [21] . 39

3.1 Java Card Application Architecture [22] 42
3.2 Java Card Architecture [23] 44
3.3 Java Card Applet Structure 45
3.4 Application Identifier (AID) Format 45
3.5 Java Card Virtual Machine Architecture 46
3.6 Command APDU . 48
3.7 Response APDU . 50

4.1 Architecture of device P5CT072 [24] 54
4.2 Three Memory Configurations of P5CT072 device [24] . . 56
4.3 MQQ-SIG signing algorithm [28] 60
4.4 Flow Chart of MQQ-SIG signing algorithm Implementation 61
4.5 Manipulation of the hash using RP1 62
4.6 Manipulation of the hash using RP5 62
4.7 Structure of Quasigroup (∗) vector A1 64
4.8 Multiplication and Addition among A1, Xj−1 and C 65
4.9 Structure of Result Byte vector in columns of bits 66
4.10 Multiplication and Addition among B, Xj−1, Yj and D . . 67
4.11 Structure of byte F in bits as a colomn 68

xiii

4.12 Structure of T matrix by combining R and F 68
4.13 T matrix after applying Guassion Elimination 69

5.1 Program Code for Revealing Consumed RAM 74

xiv

4.12 Structure of T matrix by combining R and F 68
4.13 T matrix after applying Guassion Elimination 69

5.1 Program Code for Revealing Consumed RAM 74

xiv

4.12 Structure of T matrix by combining R and F 68
4.13 T matrix after applying Guassion Elimination 69

5.1 Program Code for Revealing Consumed RAM 74

xiv

4.12 Structure of T matrix by combining R and F 68
4.13 T matrix after applying Guassion Elimination 69

5.1 Program Code for Revealing Consumed RAM 74

xiv

Chapter 1

Introduction

1.1 Motivation

Digital signature has been utilizing in many applications like e-banking, e-
procurement and e-approval for user authentication and message integrity.
With the increasing legal validity of digital signature in many countries
including USA and Germany, it has been becoming widely used in sign-
ing electronic mails and orders. Digital signature offers businesses more
secure, paperless and efficient working environment by reducing cost and
time. Smart cards provide ideal environment to store user’s private key
securely and to generate digital signature inside the card without any exter-
nal interference. As digital signature uses PKI (Public Key Infrastructure)
which uses different key for encryption and decryption and is much slower
than symmetric cryptography which uses same key for both encryption and
decryption. Smart cards have limited resources unlike PC (Personal Com-
puter). Therefore, special co-processor is required in smart cards to perform
complex operations of digital signature which increases the cost of smart
card. Recently an ultrafast new MQQ (Multivariate Quadratic Quasigroup)
algorithm has been developed which has 10,000 times faster signing speed
and 17,000 times more verification speed than other existing Asymmetric
cryptographic algorithm (RSA and ECC) [1]. MQQ-SIG is digital signature
scheme based on MQQ algorithm and we want to observe how MQQ-SIG
digital signature part performs on 8-bit contactless smart card such as NXP

1

Chapter 1

Introduction

1.1 Motivation

Digital signature has been utilizing in many applications like e-banking, e-
procurement and e-approval for user authentication and message integrity.
With the increasing legal validity of digital signature in many countries
including USA and Germany, it has been becoming widely used in sign-
ing electronic mails and orders. Digital signature offers businesses more
secure, paperless and efficient working environment by reducing cost and
time. Smart cards provide ideal environment to store user’s private key
securely and to generate digital signature inside the card without any exter-
nal interference. As digital signature uses PKI (Public Key Infrastructure)
which uses different key for encryption and decryption and is much slower
than symmetric cryptography which uses same key for both encryption and
decryption. Smart cards have limited resources unlike PC (Personal Com-
puter). Therefore, special co-processor is required in smart cards to perform
complex operations of digital signature which increases the cost of smart
card. Recently an ultrafast new MQQ (Multivariate Quadratic Quasigroup)
algorithm has been developed which has 10,000 times faster signing speed
and 17,000 times more verification speed than other existing Asymmetric
cryptographic algorithm (RSA and ECC) [1]. MQQ-SIG is digital signature
scheme based on MQQ algorithm and we want to observe how MQQ-SIG
digital signature part performs on 8-bit contactless smart card such as NXP

1

Chapter 1

Introduction

1.1 Motivation

Digital signature has been utilizing in many applications like e-banking, e-
procurement and e-approval for user authentication and message integrity.
With the increasing legal validity of digital signature in many countries
including USA and Germany, it has been becoming widely used in sign-
ing electronic mails and orders. Digital signature offers businesses more
secure, paperless and efficient working environment by reducing cost and
time. Smart cards provide ideal environment to store user’s private key
securely and to generate digital signature inside the card without any exter-
nal interference. As digital signature uses PKI (Public Key Infrastructure)
which uses different key for encryption and decryption and is much slower
than symmetric cryptography which uses same key for both encryption and
decryption. Smart cards have limited resources unlike PC (Personal Com-
puter). Therefore, special co-processor is required in smart cards to perform
complex operations of digital signature which increases the cost of smart
card. Recently an ultrafast new MQQ (Multivariate Quadratic Quasigroup)
algorithm has been developed which has 10,000 times faster signing speed
and 17,000 times more verification speed than other existing Asymmetric
cryptographic algorithm (RSA and ECC) [1]. MQQ-SIG is digital signature
scheme based on MQQ algorithm and we want to observe how MQQ-SIG
digital signature part performs on 8-bit contactless smart card such as NXP

1

Chapter 1

Introduction

1.1 Motivation

Digital signature has been utilizing in many applications like e-banking, e-
procurement and e-approval for user authentication and message integrity.
With the increasing legal validity of digital signature in many countries
including USA and Germany, it has been becoming widely used in sign-
ing electronic mails and orders. Digital signature offers businesses more
secure, paperless and efficient working environment by reducing cost and
time. Smart cards provide ideal environment to store user’s private key
securely and to generate digital signature inside the card without any exter-
nal interference. As digital signature uses PKI (Public Key Infrastructure)
which uses different key for encryption and decryption and is much slower
than symmetric cryptography which uses same key for both encryption and
decryption. Smart cards have limited resources unlike PC (Personal Com-
puter). Therefore, special co-processor is required in smart cards to perform
complex operations of digital signature which increases the cost of smart
card. Recently an ultrafast new MQQ (Multivariate Quadratic Quasigroup)
algorithm has been developed which has 10,000 times faster signing speed
and 17,000 times more verification speed than other existing Asymmetric
cryptographic algorithm (RSA and ECC) [1]. MQQ-SIG is digital signature
scheme based on MQQ algorithm and we want to observe how MQQ-SIG
digital signature part performs on 8-bit contactless smart card such as NXP

1

1.2. MQQ Chapter 1. Introduction

JCOP 41 V2.2.

1.2 MQQ

In 2008, a new algorithm MQQ (Multivariate Quadratic Quasigroups) was
proposed for asymmetric cryptography by Gligoroski, Markovski and Knap-
skog which was based on a new trapdoor function of multivariate quadratic
polynomials obtained by quasigroups and quasigroup string transforma-
tions. The security of MQQ has been analyzed by Perret using Groebner ba-
sis approach, and Emam M. who has also analyzed MQQ using MutantXL
(an improved variant of XL algorithm). Original MQQ is considered bro-
ken, but by removing certain percentage of the public key authors claimed
that they have a signature scheme MQQ-SIG which is not vulnerable on
the previous successful attacks on the full MQQ scheme. MQQ and MQQ-
SIG are considered very fast and highly parallelizable public key algorithm
compare to RSA and ECC. It is claimed that they are around 10,000 times
faster than RSA [16, 17, 28].

1.2.1 MQQ-SIG Digital Signature

MQQ signature variant is called MQQ-SIG [28] and it is constructed by re-
moving one quarter of equations from original MQQ public key algorithm.
This signature scheme is believed to be secure against Groenber bases ap-
proach which could not solve the remaining known equations. Some char-
acteristics of MQQ-SIG signature scheme is given below:

• It does not provide message expansion therefore it is digital signature
with appendix.

• It has length of n bits where n = 160, 192, 224, 256.

• Its speculated security is 2n/2.

• Its verification speed is almost equivalent to other multivariate quadratic
public key algorithms.

• In software implementation, signing speed is 500 to 5000 times faster
than other popular public key algorithms.

2

1.2. MQQ Chapter 1. Introduction

JCOP 41 V2.2.

1.2 MQQ

In 2008, a new algorithm MQQ (Multivariate Quadratic Quasigroups) was
proposed for asymmetric cryptography by Gligoroski, Markovski and Knap-
skog which was based on a new trapdoor function of multivariate quadratic
polynomials obtained by quasigroups and quasigroup string transforma-
tions. The security of MQQ has been analyzed by Perret using Groebner ba-
sis approach, and Emam M. who has also analyzed MQQ using MutantXL
(an improved variant of XL algorithm). Original MQQ is considered bro-
ken, but by removing certain percentage of the public key authors claimed
that they have a signature scheme MQQ-SIG which is not vulnerable on
the previous successful attacks on the full MQQ scheme. MQQ and MQQ-
SIG are considered very fast and highly parallelizable public key algorithm
compare to RSA and ECC. It is claimed that they are around 10,000 times
faster than RSA [16, 17, 28].

1.2.1 MQQ-SIG Digital Signature

MQQ signature variant is called MQQ-SIG [28] and it is constructed by re-
moving one quarter of equations from original MQQ public key algorithm.
This signature scheme is believed to be secure against Groenber bases ap-
proach which could not solve the remaining known equations. Some char-
acteristics of MQQ-SIG signature scheme is given below:

• It does not provide message expansion therefore it is digital signature
with appendix.

• It has length of n bits where n = 160, 192, 224, 256.

• Its speculated security is 2n/2.

• Its verification speed is almost equivalent to other multivariate quadratic
public key algorithms.

• In software implementation, signing speed is 500 to 5000 times faster
than other popular public key algorithms.

2

1.2. MQQ Chapter 1. Introduction

JCOP 41 V2.2.

1.2 MQQ

In 2008, a new algorithm MQQ (Multivariate Quadratic Quasigroups) was
proposed for asymmetric cryptography by Gligoroski, Markovski and Knap-
skog which was based on a new trapdoor function of multivariate quadratic
polynomials obtained by quasigroups and quasigroup string transforma-
tions. The security of MQQ has been analyzed by Perret using Groebner ba-
sis approach, and Emam M. who has also analyzed MQQ using MutantXL
(an improved variant of XL algorithm). Original MQQ is considered bro-
ken, but by removing certain percentage of the public key authors claimed
that they have a signature scheme MQQ-SIG which is not vulnerable on
the previous successful attacks on the full MQQ scheme. MQQ and MQQ-
SIG are considered very fast and highly parallelizable public key algorithm
compare to RSA and ECC. It is claimed that they are around 10,000 times
faster than RSA [16, 17, 28].

1.2.1 MQQ-SIG Digital Signature

MQQ signature variant is called MQQ-SIG [28] and it is constructed by re-
moving one quarter of equations from original MQQ public key algorithm.
This signature scheme is believed to be secure against Groenber bases ap-
proach which could not solve the remaining known equations. Some char-
acteristics of MQQ-SIG signature scheme is given below:

• It does not provide message expansion therefore it is digital signature
with appendix.

• It has length of n bits where n = 160, 192, 224, 256.

• Its speculated security is 2n/2.

• Its verification speed is almost equivalent to other multivariate quadratic
public key algorithms.

• In software implementation, signing speed is 500 to 5000 times faster
than other popular public key algorithms.

2

1.2. MQQ Chapter 1. Introduction

JCOP 41 V2.2.

1.2 MQQ

In 2008, a new algorithm MQQ (Multivariate Quadratic Quasigroups) was
proposed for asymmetric cryptography by Gligoroski, Markovski and Knap-
skog which was based on a new trapdoor function of multivariate quadratic
polynomials obtained by quasigroups and quasigroup string transforma-
tions. The security of MQQ has been analyzed by Perret using Groebner ba-
sis approach, and Emam M. who has also analyzed MQQ using MutantXL
(an improved variant of XL algorithm). Original MQQ is considered bro-
ken, but by removing certain percentage of the public key authors claimed
that they have a signature scheme MQQ-SIG which is not vulnerable on
the previous successful attacks on the full MQQ scheme. MQQ and MQQ-
SIG are considered very fast and highly parallelizable public key algorithm
compare to RSA and ECC. It is claimed that they are around 10,000 times
faster than RSA [16, 17, 28].

1.2.1 MQQ-SIG Digital Signature

MQQ signature variant is called MQQ-SIG [28] and it is constructed by re-
moving one quarter of equations from original MQQ public key algorithm.
This signature scheme is believed to be secure against Groenber bases ap-
proach which could not solve the remaining known equations. Some char-
acteristics of MQQ-SIG signature scheme is given below:

• It does not provide message expansion therefore it is digital signature
with appendix.

• It has length of n bits where n = 160, 192, 224, 256.

• Its speculated security is 2n/2.

• Its verification speed is almost equivalent to other multivariate quadratic
public key algorithms.

• In software implementation, signing speed is 500 to 5000 times faster
than other popular public key algorithms.

2

Chapter 1. Introduction 1.3. Different Technologies inside Plastic cards

• In hardware implementation, signing speed is around 10,000 times
faster than other popular public key algorithms.

Due to all above characteristics, it is very tempting alternative for producing
digital signature on smart cards and RFIDs.

1.3 Different Technologies inside Plastic cards

In our daily life, we have been exposed by different plastic cards for access-
ing academics and its resources, while traveling in bus, tram and metro,
withdrawal of money from bank ATM or doing shopping using debit or
credit cards. All these applications uses different technologies according
to their required parameters of processing power, storage capacity, level of
security, types of card accessing interface, and amount of cost. Here these
technologies have been discussed.

1.3.1 Smart Cards

These cards are most advanced cards providing many features to high de-
manding applications. These cards include processor and different types of
memories: RAM, ROM and EEPROM and optionally co-processor for per-
forming complex operations of cryptography. ROM contains the operating
system for the smart card, RAM stores volatile data required for processing
inside processor and EEPROM is non-volatile and contains program spe-
cific to application requirement. Many applications like e-passport, bank
credit and debit cards and access control system for government and cor-
porate workers demands smart cards. These cards also provide resistance
against known attacks and are very difficult to forge or copy and also pro-
vide standard encryption protocols (RSA, ECC, SHA-1, 3DES and AES)
for data security and privacy.

1.3.2 Contactless Smart Cards

These cards are used in applications demanding more security and privacy
just like human identification and electronic payment. These RF-enabled

3

Chapter 1. Introduction 1.3. Different Technologies inside Plastic cards

• In hardware implementation, signing speed is around 10,000 times
faster than other popular public key algorithms.

Due to all above characteristics, it is very tempting alternative for producing
digital signature on smart cards and RFIDs.

1.3 Different Technologies inside Plastic cards

In our daily life, we have been exposed by different plastic cards for access-
ing academics and its resources, while traveling in bus, tram and metro,
withdrawal of money from bank ATM or doing shopping using debit or
credit cards. All these applications uses different technologies according
to their required parameters of processing power, storage capacity, level of
security, types of card accessing interface, and amount of cost. Here these
technologies have been discussed.

1.3.1 Smart Cards

These cards are most advanced cards providing many features to high de-
manding applications. These cards include processor and different types of
memories: RAM, ROM and EEPROM and optionally co-processor for per-
forming complex operations of cryptography. ROM contains the operating
system for the smart card, RAM stores volatile data required for processing
inside processor and EEPROM is non-volatile and contains program spe-
cific to application requirement. Many applications like e-passport, bank
credit and debit cards and access control system for government and cor-
porate workers demands smart cards. These cards also provide resistance
against known attacks and are very difficult to forge or copy and also pro-
vide standard encryption protocols (RSA, ECC, SHA-1, 3DES and AES)
for data security and privacy.

1.3.2 Contactless Smart Cards

These cards are used in applications demanding more security and privacy
just like human identification and electronic payment. These RF-enabled

3

Chapter 1. Introduction 1.3. Different Technologies inside Plastic cards

• In hardware implementation, signing speed is around 10,000 times
faster than other popular public key algorithms.

Due to all above characteristics, it is very tempting alternative for producing
digital signature on smart cards and RFIDs.

1.3 Different Technologies inside Plastic cards

In our daily life, we have been exposed by different plastic cards for access-
ing academics and its resources, while traveling in bus, tram and metro,
withdrawal of money from bank ATM or doing shopping using debit or
credit cards. All these applications uses different technologies according
to their required parameters of processing power, storage capacity, level of
security, types of card accessing interface, and amount of cost. Here these
technologies have been discussed.

1.3.1 Smart Cards

These cards are most advanced cards providing many features to high de-
manding applications. These cards include processor and different types of
memories: RAM, ROM and EEPROM and optionally co-processor for per-
forming complex operations of cryptography. ROM contains the operating
system for the smart card, RAM stores volatile data required for processing
inside processor and EEPROM is non-volatile and contains program spe-
cific to application requirement. Many applications like e-passport, bank
credit and debit cards and access control system for government and cor-
porate workers demands smart cards. These cards also provide resistance
against known attacks and are very difficult to forge or copy and also pro-
vide standard encryption protocols (RSA, ECC, SHA-1, 3DES and AES)
for data security and privacy.

1.3.2 Contactless Smart Cards

These cards are used in applications demanding more security and privacy
just like human identification and electronic payment. These RF-enabled

3

Chapter 1. Introduction 1.3. Different Technologies inside Plastic cards

• In hardware implementation, signing speed is around 10,000 times
faster than other popular public key algorithms.

Due to all above characteristics, it is very tempting alternative for producing
digital signature on smart cards and RFIDs.

1.3 Different Technologies inside Plastic cards

In our daily life, we have been exposed by different plastic cards for access-
ing academics and its resources, while traveling in bus, tram and metro,
withdrawal of money from bank ATM or doing shopping using debit or
credit cards. All these applications uses different technologies according
to their required parameters of processing power, storage capacity, level of
security, types of card accessing interface, and amount of cost. Here these
technologies have been discussed.

1.3.1 Smart Cards

These cards are most advanced cards providing many features to high de-
manding applications. These cards include processor and different types of
memories: RAM, ROM and EEPROM and optionally co-processor for per-
forming complex operations of cryptography. ROM contains the operating
system for the smart card, RAM stores volatile data required for processing
inside processor and EEPROM is non-volatile and contains program spe-
cific to application requirement. Many applications like e-passport, bank
credit and debit cards and access control system for government and cor-
porate workers demands smart cards. These cards also provide resistance
against known attacks and are very difficult to forge or copy and also pro-
vide standard encryption protocols (RSA, ECC, SHA-1, 3DES and AES)
for data security and privacy.

1.3.2 Contactless Smart Cards

These cards are used in applications demanding more security and privacy
just like human identification and electronic payment. These RF-enabled

3

1.4. Security features of contactless smart cards Chapter 1. Introduction

smart cards are almost equivalent to contact smart cards that we use in our
daily life in order to withdraw money from bank ATM by physically insert-
ing smart card into reader. Only difference is the mechanism of accessibil-
ity which takes advantage of RF interface in case of contactless smart card
and no physical connection is required between card and reader. Contact-
less smart cards provide more advanced security features along with short
range (under 4 inches) of accessibility from RFID reader. Nowadays, Many
emerging applications are taking benefit of this technology including Tran-
sit fare payment systems, electronic payment cards, electronic passport and
visas, government personal identity verification systems, and confidential
building access systems. Contactless smart card contains microcontroller,
read/write memory and RF interface for contactless communication with
RFID reader and performs complex operations (encryption and authentica-
tion). Like contact smart card it does not include power supply rather it
takes power from RFID reader. As with the increasing use of this technol-
ogy, international standards for contactless smart cards (ISO/IEC 14443)
has been set up and followed by all contactless smart card applications.

1.3.3 Dual Interface or Combi Smart Cards

Dual Interface cards, also called Combi Cards (Combination cards), pro-
vides dual interfaces for contact and contactless access to reader. These
both interfaces use same Integrated Circuit and hence provide more flexi-
bility for applications. Figure 1.1(a) describe Combi cards combines two
interfaces: contact and contactless in one card. Contacts are provided for
contact access and Antenna is provided for contactless access and both in-
terfaces are using same IC Chip. Combi cards adhere to standards ISO/IEC
14443 for contactless interface and ISO/IEC 7816 for contact interface. In
our implementation dual interface java card has been used as shown in fig-
ure 1.1(b).

1.4 Security features of contactless smart cards

As we have mentioned above contactless smart card exploit RF technology
for wireless communication with the reader and operate at a lower distance

4

1.4. Security features of contactless smart cards Chapter 1. Introduction

smart cards are almost equivalent to contact smart cards that we use in our
daily life in order to withdraw money from bank ATM by physically insert-
ing smart card into reader. Only difference is the mechanism of accessibil-
ity which takes advantage of RF interface in case of contactless smart card
and no physical connection is required between card and reader. Contact-
less smart cards provide more advanced security features along with short
range (under 4 inches) of accessibility from RFID reader. Nowadays, Many
emerging applications are taking benefit of this technology including Tran-
sit fare payment systems, electronic payment cards, electronic passport and
visas, government personal identity verification systems, and confidential
building access systems. Contactless smart card contains microcontroller,
read/write memory and RF interface for contactless communication with
RFID reader and performs complex operations (encryption and authentica-
tion). Like contact smart card it does not include power supply rather it
takes power from RFID reader. As with the increasing use of this technol-
ogy, international standards for contactless smart cards (ISO/IEC 14443)
has been set up and followed by all contactless smart card applications.

1.3.3 Dual Interface or Combi Smart Cards

Dual Interface cards, also called Combi Cards (Combination cards), pro-
vides dual interfaces for contact and contactless access to reader. These
both interfaces use same Integrated Circuit and hence provide more flexi-
bility for applications. Figure 1.1(a) describe Combi cards combines two
interfaces: contact and contactless in one card. Contacts are provided for
contact access and Antenna is provided for contactless access and both in-
terfaces are using same IC Chip. Combi cards adhere to standards ISO/IEC
14443 for contactless interface and ISO/IEC 7816 for contact interface. In
our implementation dual interface java card has been used as shown in fig-
ure 1.1(b).

1.4 Security features of contactless smart cards

As we have mentioned above contactless smart card exploit RF technology
for wireless communication with the reader and operate at a lower distance

4

1.4. Security features of contactless smart cards Chapter 1. Introduction

smart cards are almost equivalent to contact smart cards that we use in our
daily life in order to withdraw money from bank ATM by physically insert-
ing smart card into reader. Only difference is the mechanism of accessibil-
ity which takes advantage of RF interface in case of contactless smart card
and no physical connection is required between card and reader. Contact-
less smart cards provide more advanced security features along with short
range (under 4 inches) of accessibility from RFID reader. Nowadays, Many
emerging applications are taking benefit of this technology including Tran-
sit fare payment systems, electronic payment cards, electronic passport and
visas, government personal identity verification systems, and confidential
building access systems. Contactless smart card contains microcontroller,
read/write memory and RF interface for contactless communication with
RFID reader and performs complex operations (encryption and authentica-
tion). Like contact smart card it does not include power supply rather it
takes power from RFID reader. As with the increasing use of this technol-
ogy, international standards for contactless smart cards (ISO/IEC 14443)
has been set up and followed by all contactless smart card applications.

1.3.3 Dual Interface or Combi Smart Cards

Dual Interface cards, also called Combi Cards (Combination cards), pro-
vides dual interfaces for contact and contactless access to reader. These
both interfaces use same Integrated Circuit and hence provide more flexi-
bility for applications. Figure 1.1(a) describe Combi cards combines two
interfaces: contact and contactless in one card. Contacts are provided for
contact access and Antenna is provided for contactless access and both in-
terfaces are using same IC Chip. Combi cards adhere to standards ISO/IEC
14443 for contactless interface and ISO/IEC 7816 for contact interface. In
our implementation dual interface java card has been used as shown in fig-
ure 1.1(b).

1.4 Security features of contactless smart cards

As we have mentioned above contactless smart card exploit RF technology
for wireless communication with the reader and operate at a lower distance

4

1.4. Security features of contactless smart cards Chapter 1. Introduction

smart cards are almost equivalent to contact smart cards that we use in our
daily life in order to withdraw money from bank ATM by physically insert-
ing smart card into reader. Only difference is the mechanism of accessibil-
ity which takes advantage of RF interface in case of contactless smart card
and no physical connection is required between card and reader. Contact-
less smart cards provide more advanced security features along with short
range (under 4 inches) of accessibility from RFID reader. Nowadays, Many
emerging applications are taking benefit of this technology including Tran-
sit fare payment systems, electronic payment cards, electronic passport and
visas, government personal identity verification systems, and confidential
building access systems. Contactless smart card contains microcontroller,
read/write memory and RF interface for contactless communication with
RFID reader and performs complex operations (encryption and authentica-
tion). Like contact smart card it does not include power supply rather it
takes power from RFID reader. As with the increasing use of this technol-
ogy, international standards for contactless smart cards (ISO/IEC 14443)
has been set up and followed by all contactless smart card applications.

1.3.3 Dual Interface or Combi Smart Cards

Dual Interface cards, also called Combi Cards (Combination cards), pro-
vides dual interfaces for contact and contactless access to reader. These
both interfaces use same Integrated Circuit and hence provide more flexi-
bility for applications. Figure 1.1(a) describe Combi cards combines two
interfaces: contact and contactless in one card. Contacts are provided for
contact access and Antenna is provided for contactless access and both in-
terfaces are using same IC Chip. Combi cards adhere to standards ISO/IEC
14443 for contactless interface and ISO/IEC 7816 for contact interface. In
our implementation dual interface java card has been used as shown in fig-
ure 1.1(b).

1.4 Security features of contactless smart cards

As we have mentioned above contactless smart card exploit RF technology
for wireless communication with the reader and operate at a lower distance

4

Chapter 1. Introduction 1.4. Security features of contactless smart cards

(a) Dual Interface Card Components

(b) Dual Interface Java Card

Figure 1.1: Dual Interface or Combi Cards

around 4 inches. Contactless smart cards and reader conform to interna-
tional standards ISO/IEC 14443 and can include many standard crypto-
graphic protocols such as RSA, ECC, 3DES and AES. Many applications
can use these security protocols in order to maintain mutual authentication,
confidentiality, integrity and privacy of data either stored inside card or data
transmitted between card and reader. These security features are further ex-
plained below:

1.4.1 Mutual Authentication

This feauture provides very important security functionality for both card
and reader before taking place any real transaction. It is important to know

5

Chapter 1. Introduction 1.4. Security features of contactless smart cards

(a) Dual Interface Card Components

(b) Dual Interface Java Card

Figure 1.1: Dual Interface or Combi Cards

around 4 inches. Contactless smart cards and reader conform to interna-
tional standards ISO/IEC 14443 and can include many standard crypto-
graphic protocols such as RSA, ECC, 3DES and AES. Many applications
can use these security protocols in order to maintain mutual authentication,
confidentiality, integrity and privacy of data either stored inside card or data
transmitted between card and reader. These security features are further ex-
plained below:

1.4.1 Mutual Authentication

This feauture provides very important security functionality for both card
and reader before taking place any real transaction. It is important to know

5

Chapter 1. Introduction 1.4. Security features of contactless smart cards

(a) Dual Interface Card Components

(b) Dual Interface Java Card

Figure 1.1: Dual Interface or Combi Cards

around 4 inches. Contactless smart cards and reader conform to interna-
tional standards ISO/IEC 14443 and can include many standard crypto-
graphic protocols such as RSA, ECC, 3DES and AES. Many applications
can use these security protocols in order to maintain mutual authentication,
confidentiality, integrity and privacy of data either stored inside card or data
transmitted between card and reader. These security features are further ex-
plained below:

1.4.1 Mutual Authentication

This feauture provides very important security functionality for both card
and reader before taking place any real transaction. It is important to know

5

Chapter 1. Introduction 1.4. Security features of contactless smart cards

(a) Dual Interface Card Components

(b) Dual Interface Java Card

Figure 1.1: Dual Interface or Combi Cards

around 4 inches. Contactless smart cards and reader conform to interna-
tional standards ISO/IEC 14443 and can include many standard crypto-
graphic protocols such as RSA, ECC, 3DES and AES. Many applications
can use these security protocols in order to maintain mutual authentication,
confidentiality, integrity and privacy of data either stored inside card or data
transmitted between card and reader. These security features are further ex-
plained below:

1.4.1 Mutual Authentication

This feauture provides very important security functionality for both card
and reader before taking place any real transaction. It is important to know

5

1.5. Benefits of Contactless Technology Chapter 1. Introduction

for both parties involved in a transaction about each other. This feature
avoids any duplicate card or reader to take part in transaction. Both card
and reader authenticate each other by providing some secret that is only
known by them individually.

1.4.2 Data Security

This feature provides protection of communication between contactless
smart card and reader against eavesdropping by encrypting the data. This
feature provides complete protection of data stored in card or communi-
cated through air. Digital signature can be used to authenticate the card
and information provided by card along with integrity of information and
cryptographically random number generators can be used to produce keys
inside card in order to prevent replay attack.

1.4.3 Contactless smart card physical security

This feature in contactless smart card is equivalent to contact smart card and
it is quite difficult to make a duplicate card. The chip inside card has in-
telligent logic to prevent all tampering attempts and it has sensors to detect
thermal and UV light attacks and special circuitry for preventing differen-
tial power analysis attack.

1.5 Benefits of Contactless Technology

Contactless technology is expanding with the passage of time in many ap-
plications like access control, e-passport and e-payment due to its following
benefits:

1.5.1 Saving of time and Easy to Use

Some applications require fast identification of users especially in transit
payment systems and e-passport where many people stay in a queue at a

6

1.5. Benefits of Contactless Technology Chapter 1. Introduction

for both parties involved in a transaction about each other. This feature
avoids any duplicate card or reader to take part in transaction. Both card
and reader authenticate each other by providing some secret that is only
known by them individually.

1.4.2 Data Security

This feature provides protection of communication between contactless
smart card and reader against eavesdropping by encrypting the data. This
feature provides complete protection of data stored in card or communi-
cated through air. Digital signature can be used to authenticate the card
and information provided by card along with integrity of information and
cryptographically random number generators can be used to produce keys
inside card in order to prevent replay attack.

1.4.3 Contactless smart card physical security

This feature in contactless smart card is equivalent to contact smart card and
it is quite difficult to make a duplicate card. The chip inside card has in-
telligent logic to prevent all tampering attempts and it has sensors to detect
thermal and UV light attacks and special circuitry for preventing differen-
tial power analysis attack.

1.5 Benefits of Contactless Technology

Contactless technology is expanding with the passage of time in many ap-
plications like access control, e-passport and e-payment due to its following
benefits:

1.5.1 Saving of time and Easy to Use

Some applications require fast identification of users especially in transit
payment systems and e-passport where many people stay in a queue at a

6

1.5. Benefits of Contactless Technology Chapter 1. Introduction

for both parties involved in a transaction about each other. This feature
avoids any duplicate card or reader to take part in transaction. Both card
and reader authenticate each other by providing some secret that is only
known by them individually.

1.4.2 Data Security

This feature provides protection of communication between contactless
smart card and reader against eavesdropping by encrypting the data. This
feature provides complete protection of data stored in card or communi-
cated through air. Digital signature can be used to authenticate the card
and information provided by card along with integrity of information and
cryptographically random number generators can be used to produce keys
inside card in order to prevent replay attack.

1.4.3 Contactless smart card physical security

This feature in contactless smart card is equivalent to contact smart card and
it is quite difficult to make a duplicate card. The chip inside card has in-
telligent logic to prevent all tampering attempts and it has sensors to detect
thermal and UV light attacks and special circuitry for preventing differen-
tial power analysis attack.

1.5 Benefits of Contactless Technology

Contactless technology is expanding with the passage of time in many ap-
plications like access control, e-passport and e-payment due to its following
benefits:

1.5.1 Saving of time and Easy to Use

Some applications require fast identification of users especially in transit
payment systems and e-passport where many people stay in a queue at a

6

1.5. Benefits of Contactless Technology Chapter 1. Introduction

for both parties involved in a transaction about each other. This feature
avoids any duplicate card or reader to take part in transaction. Both card
and reader authenticate each other by providing some secret that is only
known by them individually.

1.4.2 Data Security

This feature provides protection of communication between contactless
smart card and reader against eavesdropping by encrypting the data. This
feature provides complete protection of data stored in card or communi-
cated through air. Digital signature can be used to authenticate the card
and information provided by card along with integrity of information and
cryptographically random number generators can be used to produce keys
inside card in order to prevent replay attack.

1.4.3 Contactless smart card physical security

This feature in contactless smart card is equivalent to contact smart card and
it is quite difficult to make a duplicate card. The chip inside card has in-
telligent logic to prevent all tampering attempts and it has sensors to detect
thermal and UV light attacks and special circuitry for preventing differen-
tial power analysis attack.

1.5 Benefits of Contactless Technology

Contactless technology is expanding with the passage of time in many ap-
plications like access control, e-passport and e-payment due to its following
benefits:

1.5.1 Saving of time and Easy to Use

Some applications require fast identification of users especially in transit
payment systems and e-passport where many people stay in a queue at a

6

Chapter 1. Introduction 1.6. Digital signature for contactless smart card

time. Contactless technology offers fast access without swapping the card
inside the reader and it is also possible to bring the card within close prox-
imity of reader without taking the card outside of purse due to RF technol-
ogy used for contactless access.

1.5.2 Dependability

Some applications as mentioned earlier have heavy usage all day long and
in that case both cards and readers are utilized more frequently causing
damage to reader and card. Contactless cards and readers are properly cov-
ered and that’s why provide more durability are reliability against heavy
usage along with humidity, dirt, cold and other harsh weather elements.

1.6 Digital signature for contactless smart card

Signing a document is not a new concept and has been used since many
decades in order to authenticate the identity of the signer. Nowadays, many
applications have adopted new technology to secure and speed up the pro-
cess. One of them is digital signature, it is based on same concept of signing
a document and provide authentication of signer but provide more security
because it is hard to forge digital signature than hand-made signature. Dig-
ital signature is used to provide authentication of signer and integrity of
message. It offers benefit of authentication along with non-repudiation so
that once the document is signed then any effort of editing document will
lead to failure in verification process of digital signature. Digital signature
can be generated inside a contactless smart card. This will bind the spe-
cific user to a particular contactless smart card. All the transactions made
through the contactless smart card then can be authenticated and their in-
tegrity can also be verified with the help of digital signature.

7

Chapter 1. Introduction 1.6. Digital signature for contactless smart card

time. Contactless technology offers fast access without swapping the card
inside the reader and it is also possible to bring the card within close prox-
imity of reader without taking the card outside of purse due to RF technol-
ogy used for contactless access.

1.5.2 Dependability

Some applications as mentioned earlier have heavy usage all day long and
in that case both cards and readers are utilized more frequently causing
damage to reader and card. Contactless cards and readers are properly cov-
ered and that’s why provide more durability are reliability against heavy
usage along with humidity, dirt, cold and other harsh weather elements.

1.6 Digital signature for contactless smart card

Signing a document is not a new concept and has been used since many
decades in order to authenticate the identity of the signer. Nowadays, many
applications have adopted new technology to secure and speed up the pro-
cess. One of them is digital signature, it is based on same concept of signing
a document and provide authentication of signer but provide more security
because it is hard to forge digital signature than hand-made signature. Dig-
ital signature is used to provide authentication of signer and integrity of
message. It offers benefit of authentication along with non-repudiation so
that once the document is signed then any effort of editing document will
lead to failure in verification process of digital signature. Digital signature
can be generated inside a contactless smart card. This will bind the spe-
cific user to a particular contactless smart card. All the transactions made
through the contactless smart card then can be authenticated and their in-
tegrity can also be verified with the help of digital signature.

7

Chapter 1. Introduction 1.6. Digital signature for contactless smart card

time. Contactless technology offers fast access without swapping the card
inside the reader and it is also possible to bring the card within close prox-
imity of reader without taking the card outside of purse due to RF technol-
ogy used for contactless access.

1.5.2 Dependability

Some applications as mentioned earlier have heavy usage all day long and
in that case both cards and readers are utilized more frequently causing
damage to reader and card. Contactless cards and readers are properly cov-
ered and that’s why provide more durability are reliability against heavy
usage along with humidity, dirt, cold and other harsh weather elements.

1.6 Digital signature for contactless smart card

Signing a document is not a new concept and has been used since many
decades in order to authenticate the identity of the signer. Nowadays, many
applications have adopted new technology to secure and speed up the pro-
cess. One of them is digital signature, it is based on same concept of signing
a document and provide authentication of signer but provide more security
because it is hard to forge digital signature than hand-made signature. Dig-
ital signature is used to provide authentication of signer and integrity of
message. It offers benefit of authentication along with non-repudiation so
that once the document is signed then any effort of editing document will
lead to failure in verification process of digital signature. Digital signature
can be generated inside a contactless smart card. This will bind the spe-
cific user to a particular contactless smart card. All the transactions made
through the contactless smart card then can be authenticated and their in-
tegrity can also be verified with the help of digital signature.

7

Chapter 1. Introduction 1.6. Digital signature for contactless smart card

time. Contactless technology offers fast access without swapping the card
inside the reader and it is also possible to bring the card within close prox-
imity of reader without taking the card outside of purse due to RF technol-
ogy used for contactless access.

1.5.2 Dependability

Some applications as mentioned earlier have heavy usage all day long and
in that case both cards and readers are utilized more frequently causing
damage to reader and card. Contactless cards and readers are properly cov-
ered and that’s why provide more durability are reliability against heavy
usage along with humidity, dirt, cold and other harsh weather elements.

1.6 Digital signature for contactless smart card

Signing a document is not a new concept and has been used since many
decades in order to authenticate the identity of the signer. Nowadays, many
applications have adopted new technology to secure and speed up the pro-
cess. One of them is digital signature, it is based on same concept of signing
a document and provide authentication of signer but provide more security
because it is hard to forge digital signature than hand-made signature. Dig-
ital signature is used to provide authentication of signer and integrity of
message. It offers benefit of authentication along with non-repudiation so
that once the document is signed then any effort of editing document will
lead to failure in verification process of digital signature. Digital signature
can be generated inside a contactless smart card. This will bind the spe-
cific user to a particular contactless smart card. All the transactions made
through the contactless smart card then can be authenticated and their in-
tegrity can also be verified with the help of digital signature.

7

1.7. Applications of contactless smart card Chapter 1. Introduction

1.7 Applications of contactless smart card

The most popular contactless smart card applications are Access Control,
National Identity cards, E-passports and E-payments. The overview of each
application is described below:

1.7.1 Access Control Systems

These applications are getting popularity both in government and in private
sector. Contactless smart card stores enough information in order to show
legitimate identity of user to access control system so that system can ver-
ify the real user. Sometimes, contactless smart cards also contain biometric
data of user to provide more security.

USA government has taken steps to standardize the personal identity veri-
fication for their federal employees and contractors which provide security
related specifications required for smart card in order to implement more
secure access control system [3]. In this regard, FIPS 201 (Federal Informa-
tion Processing Standards 201) is published by NIST (National Institute for
Standards and Technology) in order to satisfy the requirements of HSPD-
12 (Homeland Security Presidential Directive 12) regarding PIV (Personal
Identity Verification). It is approved by secretary of commerce and issued
on 25th February 2005.

Other identity verification smart cards in US are: CAC-C (Common Ac-
cess Card with Contactless) which is being issued by DOD (Department
of Defense), USA, for the identity verification of on-duty military person-
nel [4] and TWIC (Transportation Worker Identification Credential) issued
by the Transportation Security Administration and FRAC (First Responder
Authentication Card) issued by Department of Homeland Security . FRAC,
an identity management system, provides first responders easy access to
government buildings and emergency areas in case of disaster.

8

1.7. Applications of contactless smart card Chapter 1. Introduction

1.7 Applications of contactless smart card

The most popular contactless smart card applications are Access Control,
National Identity cards, E-passports and E-payments. The overview of each
application is described below:

1.7.1 Access Control Systems

These applications are getting popularity both in government and in private
sector. Contactless smart card stores enough information in order to show
legitimate identity of user to access control system so that system can ver-
ify the real user. Sometimes, contactless smart cards also contain biometric
data of user to provide more security.

USA government has taken steps to standardize the personal identity veri-
fication for their federal employees and contractors which provide security
related specifications required for smart card in order to implement more
secure access control system [3]. In this regard, FIPS 201 (Federal Informa-
tion Processing Standards 201) is published by NIST (National Institute for
Standards and Technology) in order to satisfy the requirements of HSPD-
12 (Homeland Security Presidential Directive 12) regarding PIV (Personal
Identity Verification). It is approved by secretary of commerce and issued
on 25th February 2005.

Other identity verification smart cards in US are: CAC-C (Common Ac-
cess Card with Contactless) which is being issued by DOD (Department
of Defense), USA, for the identity verification of on-duty military person-
nel [4] and TWIC (Transportation Worker Identification Credential) issued
by the Transportation Security Administration and FRAC (First Responder
Authentication Card) issued by Department of Homeland Security . FRAC,
an identity management system, provides first responders easy access to
government buildings and emergency areas in case of disaster.

8

1.7. Applications of contactless smart card Chapter 1. Introduction

1.7 Applications of contactless smart card

The most popular contactless smart card applications are Access Control,
National Identity cards, E-passports and E-payments. The overview of each
application is described below:

1.7.1 Access Control Systems

These applications are getting popularity both in government and in private
sector. Contactless smart card stores enough information in order to show
legitimate identity of user to access control system so that system can ver-
ify the real user. Sometimes, contactless smart cards also contain biometric
data of user to provide more security.

USA government has taken steps to standardize the personal identity veri-
fication for their federal employees and contractors which provide security
related specifications required for smart card in order to implement more
secure access control system [3]. In this regard, FIPS 201 (Federal Informa-
tion Processing Standards 201) is published by NIST (National Institute for
Standards and Technology) in order to satisfy the requirements of HSPD-
12 (Homeland Security Presidential Directive 12) regarding PIV (Personal
Identity Verification). It is approved by secretary of commerce and issued
on 25th February 2005.

Other identity verification smart cards in US are: CAC-C (Common Ac-
cess Card with Contactless) which is being issued by DOD (Department
of Defense), USA, for the identity verification of on-duty military person-
nel [4] and TWIC (Transportation Worker Identification Credential) issued
by the Transportation Security Administration and FRAC (First Responder
Authentication Card) issued by Department of Homeland Security . FRAC,
an identity management system, provides first responders easy access to
government buildings and emergency areas in case of disaster.

8

1.7. Applications of contactless smart card Chapter 1. Introduction

1.7 Applications of contactless smart card

The most popular contactless smart card applications are Access Control,
National Identity cards, E-passports and E-payments. The overview of each
application is described below:

1.7.1 Access Control Systems

These applications are getting popularity both in government and in private
sector. Contactless smart card stores enough information in order to show
legitimate identity of user to access control system so that system can ver-
ify the real user. Sometimes, contactless smart cards also contain biometric
data of user to provide more security.

USA government has taken steps to standardize the personal identity veri-
fication for their federal employees and contractors which provide security
related specifications required for smart card in order to implement more
secure access control system [3]. In this regard, FIPS 201 (Federal Informa-
tion Processing Standards 201) is published by NIST (National Institute for
Standards and Technology) in order to satisfy the requirements of HSPD-
12 (Homeland Security Presidential Directive 12) regarding PIV (Personal
Identity Verification). It is approved by secretary of commerce and issued
on 25th February 2005.

Other identity verification smart cards in US are: CAC-C (Common Ac-
cess Card with Contactless) which is being issued by DOD (Department
of Defense), USA, for the identity verification of on-duty military person-
nel [4] and TWIC (Transportation Worker Identification Credential) issued
by the Transportation Security Administration and FRAC (First Responder
Authentication Card) issued by Department of Homeland Security . FRAC,
an identity management system, provides first responders easy access to
government buildings and emergency areas in case of disaster.

8

Chapter 1. Introduction 1.7. Applications of contactless smart card

1.7.2 National Identity Cards

These are also being implemented in contactless smart cards. Several coun-
tries are planning to adopt this technology including Germany. Malaysia is
the first country in the world that deployed National ID smart card (MyKad)
for their citizens in 2001. Now china is becoming a largest implementer of
contactless National ID card [5].

1.7.3 E-Passport

This is one of the most crucial and growing applications of contactless
smart cards in identity verification. Many countries have already take ben-
efit of this technology for passport. E-passport complies with technical
standards published by the ICAO (International Civil Aviation Organiza-
tion) [6]. In addition to guidelines provided for MRTD (Machine Readable
Travel Documents) that are mentioned in ISO 7501. ICAO is planning that
all countries will convert their existing non-digital passport into digital ver-
sion (e-passport) that stores encrypted biometric data on a contactless smart
card. Earlier e-passports were implementing BAC (Basic Access control)
scheme that protects owner’s data including facial image stored inside e-
passport contactless smart card being accessed without holder’s consent.
A shared key is derived from the data: passport number, expiry date and
holder’s birthday obtained by OCR (Optical Character Recognition) reader
and then the generated key is used to access the data stored inside contact-
less smart card. In order to provide data integrity data inside contactless
card is digitally signed by home country. BAC also provides protection
against eavesdropping and skimming attacks. EU (European Union) coun-
tries have implemented EAC (Extended Access Control) [7] scheme that
includes additional biometric data (fingerprints) in the e-passport. EAC
uses PKI (Public Key Infrastructure) for participating parties and provide
mutual authentication.

1.7.4 E-payment

This is another growing application of contactless smart card which pro-
vides time saving and easy to use. Major financial entities have already

9

Chapter 1. Introduction 1.7. Applications of contactless smart card

1.7.2 National Identity Cards

These are also being implemented in contactless smart cards. Several coun-
tries are planning to adopt this technology including Germany. Malaysia is
the first country in the world that deployed National ID smart card (MyKad)
for their citizens in 2001. Now china is becoming a largest implementer of
contactless National ID card [5].

1.7.3 E-Passport

This is one of the most crucial and growing applications of contactless
smart cards in identity verification. Many countries have already take ben-
efit of this technology for passport. E-passport complies with technical
standards published by the ICAO (International Civil Aviation Organiza-
tion) [6]. In addition to guidelines provided for MRTD (Machine Readable
Travel Documents) that are mentioned in ISO 7501. ICAO is planning that
all countries will convert their existing non-digital passport into digital ver-
sion (e-passport) that stores encrypted biometric data on a contactless smart
card. Earlier e-passports were implementing BAC (Basic Access control)
scheme that protects owner’s data including facial image stored inside e-
passport contactless smart card being accessed without holder’s consent.
A shared key is derived from the data: passport number, expiry date and
holder’s birthday obtained by OCR (Optical Character Recognition) reader
and then the generated key is used to access the data stored inside contact-
less smart card. In order to provide data integrity data inside contactless
card is digitally signed by home country. BAC also provides protection
against eavesdropping and skimming attacks. EU (European Union) coun-
tries have implemented EAC (Extended Access Control) [7] scheme that
includes additional biometric data (fingerprints) in the e-passport. EAC
uses PKI (Public Key Infrastructure) for participating parties and provide
mutual authentication.

1.7.4 E-payment

This is another growing application of contactless smart card which pro-
vides time saving and easy to use. Major financial entities have already

9

Chapter 1. Introduction 1.7. Applications of contactless smart card

1.7.2 National Identity Cards

These are also being implemented in contactless smart cards. Several coun-
tries are planning to adopt this technology including Germany. Malaysia is
the first country in the world that deployed National ID smart card (MyKad)
for their citizens in 2001. Now china is becoming a largest implementer of
contactless National ID card [5].

1.7.3 E-Passport

This is one of the most crucial and growing applications of contactless
smart cards in identity verification. Many countries have already take ben-
efit of this technology for passport. E-passport complies with technical
standards published by the ICAO (International Civil Aviation Organiza-
tion) [6]. In addition to guidelines provided for MRTD (Machine Readable
Travel Documents) that are mentioned in ISO 7501. ICAO is planning that
all countries will convert their existing non-digital passport into digital ver-
sion (e-passport) that stores encrypted biometric data on a contactless smart
card. Earlier e-passports were implementing BAC (Basic Access control)
scheme that protects owner’s data including facial image stored inside e-
passport contactless smart card being accessed without holder’s consent.
A shared key is derived from the data: passport number, expiry date and
holder’s birthday obtained by OCR (Optical Character Recognition) reader
and then the generated key is used to access the data stored inside contact-
less smart card. In order to provide data integrity data inside contactless
card is digitally signed by home country. BAC also provides protection
against eavesdropping and skimming attacks. EU (European Union) coun-
tries have implemented EAC (Extended Access Control) [7] scheme that
includes additional biometric data (fingerprints) in the e-passport. EAC
uses PKI (Public Key Infrastructure) for participating parties and provide
mutual authentication.

1.7.4 E-payment

This is another growing application of contactless smart card which pro-
vides time saving and easy to use. Major financial entities have already

9

Chapter 1. Introduction 1.7. Applications of contactless smart card

1.7.2 National Identity Cards

These are also being implemented in contactless smart cards. Several coun-
tries are planning to adopt this technology including Germany. Malaysia is
the first country in the world that deployed National ID smart card (MyKad)
for their citizens in 2001. Now china is becoming a largest implementer of
contactless National ID card [5].

1.7.3 E-Passport

This is one of the most crucial and growing applications of contactless
smart cards in identity verification. Many countries have already take ben-
efit of this technology for passport. E-passport complies with technical
standards published by the ICAO (International Civil Aviation Organiza-
tion) [6]. In addition to guidelines provided for MRTD (Machine Readable
Travel Documents) that are mentioned in ISO 7501. ICAO is planning that
all countries will convert their existing non-digital passport into digital ver-
sion (e-passport) that stores encrypted biometric data on a contactless smart
card. Earlier e-passports were implementing BAC (Basic Access control)
scheme that protects owner’s data including facial image stored inside e-
passport contactless smart card being accessed without holder’s consent.
A shared key is derived from the data: passport number, expiry date and
holder’s birthday obtained by OCR (Optical Character Recognition) reader
and then the generated key is used to access the data stored inside contact-
less smart card. In order to provide data integrity data inside contactless
card is digitally signed by home country. BAC also provides protection
against eavesdropping and skimming attacks. EU (European Union) coun-
tries have implemented EAC (Extended Access Control) [7] scheme that
includes additional biometric data (fingerprints) in the e-passport. EAC
uses PKI (Public Key Infrastructure) for participating parties and provide
mutual authentication.

1.7.4 E-payment

This is another growing application of contactless smart card which pro-
vides time saving and easy to use. Major financial entities have already

9

1.8. Thesis Structure Chapter 1. Introduction

adopted contactless payment solution including American Express (Ex-
pressPay), MasterCard (PayPass) and Visa (payWave) in their credit and
debit cards. In Hong Kong, Octopus cards, implemented with Sony Fel-
ica technology which is similar but not exactly comply with ISO 14443.
Octopus cards, rechargeable payment cards, are issued in 1997 for travel
payments and hence are considered as most mature implementation of con-
tactless smart card. Nowadays, these cards are also used in stores, super-
markets, restaurants, parking garages and other point of sale applications.
The popularity of Octopus card in can be examined by following facts: uti-
lized by 95% population of Hong Kong, 9 million Octopus cards along with
150,000 smart watches have been issued; 7 million daily transactions are
made worth 6.5 million US dollar [8].

In the UK (United Kingdom), the Barclays’ OnePulse card , developed
with Visa, provides multi-application facilities including transit and pay-
ment. OnePulse card is three in one and can be used as London travel
card (Oyster card), contactless payment card with limited purchasing op-
tion within 10 British pounds using Visa payWave and chip-and-pin contact
credit and debit card similar like Barclay bank card. This card complies to
ISO 14443 standards for contactless communication which is specified in
EMV (Europay, MasterCard and Visa) specification.

1.8 Thesis Structure

Brief Description of the rest of thesis:

Chapter 2: (Backgroud) This chapter provides background information for
used elements in our thesis. These elements are MQQ-SIG algorithm used
for signing of message, RFID tags used for contactless access of smart
cards, other used cryptographic algorithms (RSA, ECDSA) and hash func-
tion (SHA1) and some known attacks on smart cards are also discussed in
the end.

Chapter 3: (Java Cards Technology) In order to implement a software over a
system, it is necessary to have knowledge about the system architecture and
its limitations. This chapter provides some basic and necessary information
required to write a software over used contactless smart card. Here the

10

1.8. Thesis Structure Chapter 1. Introduction

adopted contactless payment solution including American Express (Ex-
pressPay), MasterCard (PayPass) and Visa (payWave) in their credit and
debit cards. In Hong Kong, Octopus cards, implemented with Sony Fel-
ica technology which is similar but not exactly comply with ISO 14443.
Octopus cards, rechargeable payment cards, are issued in 1997 for travel
payments and hence are considered as most mature implementation of con-
tactless smart card. Nowadays, these cards are also used in stores, super-
markets, restaurants, parking garages and other point of sale applications.
The popularity of Octopus card in can be examined by following facts: uti-
lized by 95% population of Hong Kong, 9 million Octopus cards along with
150,000 smart watches have been issued; 7 million daily transactions are
made worth 6.5 million US dollar [8].

In the UK (United Kingdom), the Barclays’ OnePulse card , developed
with Visa, provides multi-application facilities including transit and pay-
ment. OnePulse card is three in one and can be used as London travel
card (Oyster card), contactless payment card with limited purchasing op-
tion within 10 British pounds using Visa payWave and chip-and-pin contact
credit and debit card similar like Barclay bank card. This card complies to
ISO 14443 standards for contactless communication which is specified in
EMV (Europay, MasterCard and Visa) specification.

1.8 Thesis Structure

Brief Description of the rest of thesis:

Chapter 2: (Backgroud) This chapter provides background information for
used elements in our thesis. These elements are MQQ-SIG algorithm used
for signing of message, RFID tags used for contactless access of smart
cards, other used cryptographic algorithms (RSA, ECDSA) and hash func-
tion (SHA1) and some known attacks on smart cards are also discussed in
the end.

Chapter 3: (Java Cards Technology) In order to implement a software over a
system, it is necessary to have knowledge about the system architecture and
its limitations. This chapter provides some basic and necessary information
required to write a software over used contactless smart card. Here the

10

1.8. Thesis Structure Chapter 1. Introduction

adopted contactless payment solution including American Express (Ex-
pressPay), MasterCard (PayPass) and Visa (payWave) in their credit and
debit cards. In Hong Kong, Octopus cards, implemented with Sony Fel-
ica technology which is similar but not exactly comply with ISO 14443.
Octopus cards, rechargeable payment cards, are issued in 1997 for travel
payments and hence are considered as most mature implementation of con-
tactless smart card. Nowadays, these cards are also used in stores, super-
markets, restaurants, parking garages and other point of sale applications.
The popularity of Octopus card in can be examined by following facts: uti-
lized by 95% population of Hong Kong, 9 million Octopus cards along with
150,000 smart watches have been issued; 7 million daily transactions are
made worth 6.5 million US dollar [8].

In the UK (United Kingdom), the Barclays’ OnePulse card , developed
with Visa, provides multi-application facilities including transit and pay-
ment. OnePulse card is three in one and can be used as London travel
card (Oyster card), contactless payment card with limited purchasing op-
tion within 10 British pounds using Visa payWave and chip-and-pin contact
credit and debit card similar like Barclay bank card. This card complies to
ISO 14443 standards for contactless communication which is specified in
EMV (Europay, MasterCard and Visa) specification.

1.8 Thesis Structure

Brief Description of the rest of thesis:

Chapter 2: (Backgroud) This chapter provides background information for
used elements in our thesis. These elements are MQQ-SIG algorithm used
for signing of message, RFID tags used for contactless access of smart
cards, other used cryptographic algorithms (RSA, ECDSA) and hash func-
tion (SHA1) and some known attacks on smart cards are also discussed in
the end.

Chapter 3: (Java Cards Technology) In order to implement a software over a
system, it is necessary to have knowledge about the system architecture and
its limitations. This chapter provides some basic and necessary information
required to write a software over used contactless smart card. Here the

10

1.8. Thesis Structure Chapter 1. Introduction

adopted contactless payment solution including American Express (Ex-
pressPay), MasterCard (PayPass) and Visa (payWave) in their credit and
debit cards. In Hong Kong, Octopus cards, implemented with Sony Fel-
ica technology which is similar but not exactly comply with ISO 14443.
Octopus cards, rechargeable payment cards, are issued in 1997 for travel
payments and hence are considered as most mature implementation of con-
tactless smart card. Nowadays, these cards are also used in stores, super-
markets, restaurants, parking garages and other point of sale applications.
The popularity of Octopus card in can be examined by following facts: uti-
lized by 95% population of Hong Kong, 9 million Octopus cards along with
150,000 smart watches have been issued; 7 million daily transactions are
made worth 6.5 million US dollar [8].

In the UK (United Kingdom), the Barclays’ OnePulse card , developed
with Visa, provides multi-application facilities including transit and pay-
ment. OnePulse card is three in one and can be used as London travel
card (Oyster card), contactless payment card with limited purchasing op-
tion within 10 British pounds using Visa payWave and chip-and-pin contact
credit and debit card similar like Barclay bank card. This card complies to
ISO 14443 standards for contactless communication which is specified in
EMV (Europay, MasterCard and Visa) specification.

1.8 Thesis Structure

Brief Description of the rest of thesis:

Chapter 2: (Backgroud) This chapter provides background information for
used elements in our thesis. These elements are MQQ-SIG algorithm used
for signing of message, RFID tags used for contactless access of smart
cards, other used cryptographic algorithms (RSA, ECDSA) and hash func-
tion (SHA1) and some known attacks on smart cards are also discussed in
the end.

Chapter 3: (Java Cards Technology) In order to implement a software over a
system, it is necessary to have knowledge about the system architecture and
its limitations. This chapter provides some basic and necessary information
required to write a software over used contactless smart card. Here the

10

Chapter 1. Introduction 1.8. Thesis Structure

protocol (APDU) used for cummunication between contactless smart card
and reader is also discussed.

Chapter 4: (Implementation) This chapter provides information about the
specifications of used contactless smart card and reader. It also discuss
about the tool used for programming the signing algorithm for contactless
smart card. Here we have discussed the implementation details of MQQ-
SIG signing algorithm along with left and right parastrophes of quasigroup.

Chapter 5: (Evaluation and Discussion of Results) This chapter provides
obtained results of our implementation

Chapter 6: (Conclusion and Future Work) This chapter provides conclusion
of our Master thesis and Future Work

Appendix A: (Program Code for MQQ-SIG Digital Signature) Appendix
A includes the programmig code of MQQ-SIG signing algorithm which is
developed for contactless smart card.

Appendix B: (Program Code for RSA Digital Signature) Appendix B in-
cludes the programming code for 1024 bits RSA-CRT digital signature.
RSA-CRT algorithm is already implemented inside the co-processor of
used contactless smart card. The only version of Secure Hash Function
given inside used contactless smart card for RSA-CRT is SHA1.

Appendix C: (Program Code for ECDSA Digital Signature) Appendix C in-
cludes the programming code for 163 bits ECDSA digital signature. RSA-
CRT algorithm is already implemented inside the co-processor of used con-
tactless smart card. The only version of Secure Hash Function given inside
used contactless smart card for ECDSA is SHA1.

11

Chapter 1. Introduction 1.8. Thesis Structure

protocol (APDU) used for cummunication between contactless smart card
and reader is also discussed.

Chapter 4: (Implementation) This chapter provides information about the
specifications of used contactless smart card and reader. It also discuss
about the tool used for programming the signing algorithm for contactless
smart card. Here we have discussed the implementation details of MQQ-
SIG signing algorithm along with left and right parastrophes of quasigroup.

Chapter 5: (Evaluation and Discussion of Results) This chapter provides
obtained results of our implementation

Chapter 6: (Conclusion and Future Work) This chapter provides conclusion
of our Master thesis and Future Work

Appendix A: (Program Code for MQQ-SIG Digital Signature) Appendix
A includes the programmig code of MQQ-SIG signing algorithm which is
developed for contactless smart card.

Appendix B: (Program Code for RSA Digital Signature) Appendix B in-
cludes the programming code for 1024 bits RSA-CRT digital signature.
RSA-CRT algorithm is already implemented inside the co-processor of
used contactless smart card. The only version of Secure Hash Function
given inside used contactless smart card for RSA-CRT is SHA1.

Appendix C: (Program Code for ECDSA Digital Signature) Appendix C in-
cludes the programming code for 163 bits ECDSA digital signature. RSA-
CRT algorithm is already implemented inside the co-processor of used con-
tactless smart card. The only version of Secure Hash Function given inside
used contactless smart card for ECDSA is SHA1.

11

Chapter 1. Introduction 1.8. Thesis Structure

protocol (APDU) used for cummunication between contactless smart card
and reader is also discussed.

Chapter 4: (Implementation) This chapter provides information about the
specifications of used contactless smart card and reader. It also discuss
about the tool used for programming the signing algorithm for contactless
smart card. Here we have discussed the implementation details of MQQ-
SIG signing algorithm along with left and right parastrophes of quasigroup.

Chapter 5: (Evaluation and Discussion of Results) This chapter provides
obtained results of our implementation

Chapter 6: (Conclusion and Future Work) This chapter provides conclusion
of our Master thesis and Future Work

Appendix A: (Program Code for MQQ-SIG Digital Signature) Appendix
A includes the programmig code of MQQ-SIG signing algorithm which is
developed for contactless smart card.

Appendix B: (Program Code for RSA Digital Signature) Appendix B in-
cludes the programming code for 1024 bits RSA-CRT digital signature.
RSA-CRT algorithm is already implemented inside the co-processor of
used contactless smart card. The only version of Secure Hash Function
given inside used contactless smart card for RSA-CRT is SHA1.

Appendix C: (Program Code for ECDSA Digital Signature) Appendix C in-
cludes the programming code for 163 bits ECDSA digital signature. RSA-
CRT algorithm is already implemented inside the co-processor of used con-
tactless smart card. The only version of Secure Hash Function given inside
used contactless smart card for ECDSA is SHA1.

11

Chapter 1. Introduction 1.8. Thesis Structure

protocol (APDU) used for cummunication between contactless smart card
and reader is also discussed.

Chapter 4: (Implementation) This chapter provides information about the
specifications of used contactless smart card and reader. It also discuss
about the tool used for programming the signing algorithm for contactless
smart card. Here we have discussed the implementation details of MQQ-
SIG signing algorithm along with left and right parastrophes of quasigroup.

Chapter 5: (Evaluation and Discussion of Results) This chapter provides
obtained results of our implementation

Chapter 6: (Conclusion and Future Work) This chapter provides conclusion
of our Master thesis and Future Work

Appendix A: (Program Code for MQQ-SIG Digital Signature) Appendix
A includes the programmig code of MQQ-SIG signing algorithm which is
developed for contactless smart card.

Appendix B: (Program Code for RSA Digital Signature) Appendix B in-
cludes the programming code for 1024 bits RSA-CRT digital signature.
RSA-CRT algorithm is already implemented inside the co-processor of
used contactless smart card. The only version of Secure Hash Function
given inside used contactless smart card for RSA-CRT is SHA1.

Appendix C: (Program Code for ECDSA Digital Signature) Appendix C in-
cludes the programming code for 163 bits ECDSA digital signature. RSA-
CRT algorithm is already implemented inside the co-processor of used con-
tactless smart card. The only version of Secure Hash Function given inside
used contactless smart card for ECDSA is SHA1.

11

1.8. Thesis Structure Chapter 1. Introduction

12

1.8. Thesis Structure Chapter 1. Introduction

12

1.8. Thesis Structure Chapter 1. Introduction

12

1.8. Thesis Structure Chapter 1. Introduction

12

Chapter 2

Background

This chapter provides background information about used cryptographic
algorithms in our implementation and RFID tags used for contactless smart
card and digital signature.

2.1 Quasigroups and MQQ

Here we give a brief overview of quasigroups and quasigroup string trans-
formations. A more detailed explanation is found in [27, 26].

Definition 1. A quasigroup (Q, ∗) is a groupoid satisfying the law

(∀u, v ∈ Q)(∃!x, y ∈ Q) u ∗ x = v & y ∗ u = v. (2.1)

This implies the cancelation laws x∗y = x∗z =⇒ y = z, y∗x = z∗x =⇒
y = z and the equations a ∗ x = b, y ∗ a = b have unique solutions x, y
for each a, b ∈ Q.

Given a quasigroup (Q, ∗) five so called parastrophes (or conjugate opera-
tions) can be adjoint to ∗, and here we will use only two of them, denoted
by \ and / and defined by

x ∗ y = z ⇐⇒ y = x \ z ⇐⇒ x = z/y (2.2)

13

Chapter 2

Background

This chapter provides background information about used cryptographic
algorithms in our implementation and RFID tags used for contactless smart
card and digital signature.

2.1 Quasigroups and MQQ

Here we give a brief overview of quasigroups and quasigroup string trans-
formations. A more detailed explanation is found in [27, 26].

Definition 1. A quasigroup (Q, ∗) is a groupoid satisfying the law

(∀u, v ∈ Q)(∃!x, y ∈ Q) u ∗ x = v & y ∗ u = v. (2.1)

This implies the cancelation laws x∗y = x∗z =⇒ y = z, y∗x = z∗x =⇒
y = z and the equations a ∗ x = b, y ∗ a = b have unique solutions x, y
for each a, b ∈ Q.

Given a quasigroup (Q, ∗) five so called parastrophes (or conjugate opera-
tions) can be adjoint to ∗, and here we will use only two of them, denoted
by \ and / and defined by

x ∗ y = z ⇐⇒ y = x \ z ⇐⇒ x = z/y (2.2)

13

Chapter 2

Background

This chapter provides background information about used cryptographic
algorithms in our implementation and RFID tags used for contactless smart
card and digital signature.

2.1 Quasigroups and MQQ

Here we give a brief overview of quasigroups and quasigroup string trans-
formations. A more detailed explanation is found in [27, 26].

Definition 1. A quasigroup (Q, ∗) is a groupoid satisfying the law

(∀u, v ∈ Q)(∃!x, y ∈ Q) u ∗ x = v & y ∗ u = v. (2.1)

This implies the cancelation laws x∗y = x∗z =⇒ y = z, y∗x = z∗x =⇒
y = z and the equations a ∗ x = b, y ∗ a = b have unique solutions x, y
for each a, b ∈ Q.

Given a quasigroup (Q, ∗) five so called parastrophes (or conjugate opera-
tions) can be adjoint to ∗, and here we will use only two of them, denoted
by \ and / and defined by

x ∗ y = z ⇐⇒ y = x \ z ⇐⇒ x = z/y (2.2)

13

Chapter 2

Background

This chapter provides background information about used cryptographic
algorithms in our implementation and RFID tags used for contactless smart
card and digital signature.

2.1 Quasigroups and MQQ

Here we give a brief overview of quasigroups and quasigroup string trans-
formations. A more detailed explanation is found in [27, 26].

Definition 1. A quasigroup (Q, ∗) is a groupoid satisfying the law

(∀u, v ∈ Q)(∃!x, y ∈ Q) u ∗ x = v & y ∗ u = v. (2.1)

This implies the cancelation laws x∗y = x∗z =⇒ y = z, y∗x = z∗x =⇒
y = z and the equations a ∗ x = b, y ∗ a = b have unique solutions x, y
for each a, b ∈ Q.

Given a quasigroup (Q, ∗) five so called parastrophes (or conjugate opera-
tions) can be adjoint to ∗, and here we will use only two of them, denoted
by \ and / and defined by

x ∗ y = z ⇐⇒ y = x \ z ⇐⇒ x = z/y (2.2)

13

2.1. Quasigroups and MQQ Chapter 2. Background

Then (Q, \) and (Q, /) are quasigroups too and the algebra (Q, ∗, \, /) sat-
isfies the identities

x\ (x∗ y) = y, (x∗ y)/y = x, x∗ (x\ y) = y, (x/y)∗ y = x (2.3)

Conversely, if an algebra (Q, ∗, \, /) with three binary operations satisfies
the identities (2.3), then (Q, ∗), (Q, \), (Q, /) are quasigroups and (2.2)
holds.

To define a multivariate quadratic PKC for our purpose, we will use the
following Lemma:

Lemma 1. For every quasigroup (Q, ∗) of order 2d and for each bijec-
tion Q → {0, 1 . . . , 2d − 1} there are a uniquely determined vector valued
Boolean functions ∗vv and d uniquely determined 2d-ary Boolean functions
f1, f2, . . . , fd such that for each a, b, c ∈ Q

a ∗ b = c⇐⇒
∗vv(x1, . . . , xd, y1, . . . , yd) = (f1(x1, . . . , xd, y1, . . . , yd), ...,

fd(x1, . . . , xd, y1, . . . , yd)).
(2.4)

Recall that each k-ary Boolean function f(x1, . . . , xk) can be represented in
a unique way by its algebraic normal form (ANF), i.e., as a sum of products

ANF (f) = α0 +
k∑

i=1

αixi +
∑

1≤i<j≤k

αi,jxixj +
∑

1≤i<j<s≤k

αi,j,sxixjxs + . . . , (2.5)

where the coefficients α0, αi, αi,j, . . . are in the set {0, 1} and the addition
and multiplication are in the field GF (2). The ANFs of the functions fi
give us information about the complexity of the quasigroup (Q, ∗) via the
degrees of the Boolean functions fi. It can be observed that the degrees of
the polynomialsANF (fi) rise with the order of the quasigroup. In general,
for a randomly generated quasigroup of order 2d, d ≥ 4, the degrees are
higher than 2. Such quasigroups are not suitable for our construction of
multivariate quadratic PKC.

Definition 2. A quasigroup (Q, ∗) of order 2d is called Multivariate Quadratic
Quasigroup (MQQ) of type Quadd−kLink if exactly d − k of the polyno-
mials fi are of degree 2 (i.e., are quadratic) and k of them are of degree 1
(i.e., are linear), where 0 ≤ k < d.

14

2.1. Quasigroups and MQQ Chapter 2. Background

Then (Q, \) and (Q, /) are quasigroups too and the algebra (Q, ∗, \, /) sat-
isfies the identities

x\ (x∗ y) = y, (x∗ y)/y = x, x∗ (x\ y) = y, (x/y)∗ y = x (2.3)

Conversely, if an algebra (Q, ∗, \, /) with three binary operations satisfies
the identities (2.3), then (Q, ∗), (Q, \), (Q, /) are quasigroups and (2.2)
holds.

To define a multivariate quadratic PKC for our purpose, we will use the
following Lemma:

Lemma 1. For every quasigroup (Q, ∗) of order 2d and for each bijec-
tion Q → {0, 1 . . . , 2d − 1} there are a uniquely determined vector valued
Boolean functions ∗vv and d uniquely determined 2d-ary Boolean functions
f1, f2, . . . , fd such that for each a, b, c ∈ Q

a ∗ b = c⇐⇒
∗vv(x1, . . . , xd, y1, . . . , yd) = (f1(x1, . . . , xd, y1, . . . , yd), ...,

fd(x1, . . . , xd, y1, . . . , yd)).
(2.4)

Recall that each k-ary Boolean function f(x1, . . . , xk) can be represented in
a unique way by its algebraic normal form (ANF), i.e., as a sum of products

ANF (f) = α0 +
k∑

i=1

αixi +
∑

1≤i<j≤k

αi,jxixj +
∑

1≤i<j<s≤k

αi,j,sxixjxs + . . . , (2.5)

where the coefficients α0, αi, αi,j, . . . are in the set {0, 1} and the addition
and multiplication are in the field GF (2). The ANFs of the functions fi
give us information about the complexity of the quasigroup (Q, ∗) via the
degrees of the Boolean functions fi. It can be observed that the degrees of
the polynomialsANF (fi) rise with the order of the quasigroup. In general,
for a randomly generated quasigroup of order 2d, d ≥ 4, the degrees are
higher than 2. Such quasigroups are not suitable for our construction of
multivariate quadratic PKC.

Definition 2. A quasigroup (Q, ∗) of order 2d is called Multivariate Quadratic
Quasigroup (MQQ) of type Quadd−kLink if exactly d − k of the polyno-
mials fi are of degree 2 (i.e., are quadratic) and k of them are of degree 1
(i.e., are linear), where 0 ≤ k < d.

14

2.1. Quasigroups and MQQ Chapter 2. Background

Then (Q, \) and (Q, /) are quasigroups too and the algebra (Q, ∗, \, /) sat-
isfies the identities

x\ (x∗ y) = y, (x∗ y)/y = x, x∗ (x\ y) = y, (x/y)∗ y = x (2.3)

Conversely, if an algebra (Q, ∗, \, /) with three binary operations satisfies
the identities (2.3), then (Q, ∗), (Q, \), (Q, /) are quasigroups and (2.2)
holds.

To define a multivariate quadratic PKC for our purpose, we will use the
following Lemma:

Lemma 1. For every quasigroup (Q, ∗) of order 2d and for each bijec-
tion Q → {0, 1 . . . , 2d − 1} there are a uniquely determined vector valued
Boolean functions ∗vv and d uniquely determined 2d-ary Boolean functions
f1, f2, . . . , fd such that for each a, b, c ∈ Q

a ∗ b = c⇐⇒
∗vv(x1, . . . , xd, y1, . . . , yd) = (f1(x1, . . . , xd, y1, . . . , yd), ...,

fd(x1, . . . , xd, y1, . . . , yd)).
(2.4)

Recall that each k-ary Boolean function f(x1, . . . , xk) can be represented in
a unique way by its algebraic normal form (ANF), i.e., as a sum of products

ANF (f) = α0 +
k∑

i=1

αixi +
∑

1≤i<j≤k

αi,jxixj +
∑

1≤i<j<s≤k

αi,j,sxixjxs + . . . , (2.5)

where the coefficients α0, αi, αi,j, . . . are in the set {0, 1} and the addition
and multiplication are in the field GF (2). The ANFs of the functions fi
give us information about the complexity of the quasigroup (Q, ∗) via the
degrees of the Boolean functions fi. It can be observed that the degrees of
the polynomialsANF (fi) rise with the order of the quasigroup. In general,
for a randomly generated quasigroup of order 2d, d ≥ 4, the degrees are
higher than 2. Such quasigroups are not suitable for our construction of
multivariate quadratic PKC.

Definition 2. A quasigroup (Q, ∗) of order 2d is called Multivariate Quadratic
Quasigroup (MQQ) of type Quadd−kLink if exactly d − k of the polyno-
mials fi are of degree 2 (i.e., are quadratic) and k of them are of degree 1
(i.e., are linear), where 0 ≤ k < d.

14

2.1. Quasigroups and MQQ Chapter 2. Background

Then (Q, \) and (Q, /) are quasigroups too and the algebra (Q, ∗, \, /) sat-
isfies the identities

x\ (x∗ y) = y, (x∗ y)/y = x, x∗ (x\ y) = y, (x/y)∗ y = x (2.3)

Conversely, if an algebra (Q, ∗, \, /) with three binary operations satisfies
the identities (2.3), then (Q, ∗), (Q, \), (Q, /) are quasigroups and (2.2)
holds.

To define a multivariate quadratic PKC for our purpose, we will use the
following Lemma:

Lemma 1. For every quasigroup (Q, ∗) of order 2d and for each bijec-
tion Q → {0, 1 . . . , 2d − 1} there are a uniquely determined vector valued
Boolean functions ∗vv and d uniquely determined 2d-ary Boolean functions
f1, f2, . . . , fd such that for each a, b, c ∈ Q

a ∗ b = c⇐⇒
∗vv(x1, . . . , xd, y1, . . . , yd) = (f1(x1, . . . , xd, y1, . . . , yd), ...,

fd(x1, . . . , xd, y1, . . . , yd)).
(2.4)

Recall that each k-ary Boolean function f(x1, . . . , xk) can be represented in
a unique way by its algebraic normal form (ANF), i.e., as a sum of products

ANF (f) = α0 +
k∑

i=1

αixi +
∑

1≤i<j≤k

αi,jxixj +
∑

1≤i<j<s≤k

αi,j,sxixjxs + . . . , (2.5)

where the coefficients α0, αi, αi,j, . . . are in the set {0, 1} and the addition
and multiplication are in the field GF (2). The ANFs of the functions fi
give us information about the complexity of the quasigroup (Q, ∗) via the
degrees of the Boolean functions fi. It can be observed that the degrees of
the polynomialsANF (fi) rise with the order of the quasigroup. In general,
for a randomly generated quasigroup of order 2d, d ≥ 4, the degrees are
higher than 2. Such quasigroups are not suitable for our construction of
multivariate quadratic PKC.

Definition 2. A quasigroup (Q, ∗) of order 2d is called Multivariate Quadratic
Quasigroup (MQQ) of type Quadd−kLink if exactly d − k of the polyno-
mials fi are of degree 2 (i.e., are quadratic) and k of them are of degree 1
(i.e., are linear), where 0 ≤ k < d.

14

Chapter 2. Background 2.1. Quasigroups and MQQ

In [17] first sufficient conditions were given one quasigroup to be MQQ and
an algorithm for finding MQQs up to the order of 25 was given there. That
work was later extended in [29] for constructing MQQs of order 2d for any
d. The common characteristic of MQQs produced by those two methods is
that the quasigroups are bilinear. Namely, for a given multivariate quadratic
quasigroup (Q, ∗) given by the equations:

∗vv(x1, . . . , xd, y1, . . . , yd) = (f1(x1, . . . , xd, y1, . . . , yd), ..., fd(x1, . . . , xd, y1, . . . , yd))

we can rewrite those equations in the following form:

A1 · (y1, . . . , yd)T + b1 ≡ A2 · (x1, . . . , xd)T + b2 (2.6)

where A1 = [fij]d×d is a d× d matrix and b1 = [ui]d×1 is a d× 1 vector of
linear Boolean expressions of the variables x1, . . . , xd, while A2 = [gij]d×d
is a d × d matrix and b2 = [vi]d×1 is a d × 1 vector of linear Boolean
expressions of the variables y1, . . . , yd.

The description of the algorithm for producing bilinear MQQs of order 2d

given in [29] can be described shortly by the following expression:

x ∗ y ≡ B ·U(x) ·A2 · y + B ·A1 · x + c (2.7)

where x = (x1, . . . , xd), y = (y1, . . . , yd), the matrices A1, A2 and B are
nonsingular inGF (2), of size d×d, the vector c is a random d-dimensional
vector with elements inGF (2) and all of them are generated by a uniformly
random process. The matrix U(x) is an upper triangular matrix with all
diagonal elements equal to 1, and the elements above the main diagonal are
linear expressions of the variables of x = (x1, . . . , xd). It is computed by
the following expression:

U(x) = I +
d−1∑
i=1

Ui ·A1 · x, (2.8)

where the matrices Ui have all elements 0 except the elements in the rows
from {1, . . . , i} that are strictly above the main diagonal. Those elements
can be either 0 or 1.

Once we have a multivariate quadratic quasigroup

∗vv(x1, . . . , xd, y1, . . . , yd) = (f1(x1, . . . , xd, y1, . . . , yd), ..., fd(x1, . . . , xd, y1, . . . , yd))

15

Chapter 2. Background 2.1. Quasigroups and MQQ

In [17] first sufficient conditions were given one quasigroup to be MQQ and
an algorithm for finding MQQs up to the order of 25 was given there. That
work was later extended in [29] for constructing MQQs of order 2d for any
d. The common characteristic of MQQs produced by those two methods is
that the quasigroups are bilinear. Namely, for a given multivariate quadratic
quasigroup (Q, ∗) given by the equations:

∗vv(x1, . . . , xd, y1, . . . , yd) = (f1(x1, . . . , xd, y1, . . . , yd), ..., fd(x1, . . . , xd, y1, . . . , yd))

we can rewrite those equations in the following form:

A1 · (y1, . . . , yd)T + b1 ≡ A2 · (x1, . . . , xd)T + b2 (2.6)

where A1 = [fij]d×d is a d× d matrix and b1 = [ui]d×1 is a d× 1 vector of
linear Boolean expressions of the variables x1, . . . , xd, while A2 = [gij]d×d
is a d × d matrix and b2 = [vi]d×1 is a d × 1 vector of linear Boolean
expressions of the variables y1, . . . , yd.

The description of the algorithm for producing bilinear MQQs of order 2d

given in [29] can be described shortly by the following expression:

x ∗ y ≡ B ·U(x) ·A2 · y + B ·A1 · x + c (2.7)

where x = (x1, . . . , xd), y = (y1, . . . , yd), the matrices A1, A2 and B are
nonsingular inGF (2), of size d×d, the vector c is a random d-dimensional
vector with elements inGF (2) and all of them are generated by a uniformly
random process. The matrix U(x) is an upper triangular matrix with all
diagonal elements equal to 1, and the elements above the main diagonal are
linear expressions of the variables of x = (x1, . . . , xd). It is computed by
the following expression:

U(x) = I +
d−1∑
i=1

Ui ·A1 · x, (2.8)

where the matrices Ui have all elements 0 except the elements in the rows
from {1, . . . , i} that are strictly above the main diagonal. Those elements
can be either 0 or 1.

Once we have a multivariate quadratic quasigroup

∗vv(x1, . . . , xd, y1, . . . , yd) = (f1(x1, . . . , xd, y1, . . . , yd), ..., fd(x1, . . . , xd, y1, . . . , yd))

15

Chapter 2. Background 2.1. Quasigroups and MQQ

In [17] first sufficient conditions were given one quasigroup to be MQQ and
an algorithm for finding MQQs up to the order of 25 was given there. That
work was later extended in [29] for constructing MQQs of order 2d for any
d. The common characteristic of MQQs produced by those two methods is
that the quasigroups are bilinear. Namely, for a given multivariate quadratic
quasigroup (Q, ∗) given by the equations:

∗vv(x1, . . . , xd, y1, . . . , yd) = (f1(x1, . . . , xd, y1, . . . , yd), ..., fd(x1, . . . , xd, y1, . . . , yd))

we can rewrite those equations in the following form:

A1 · (y1, . . . , yd)T + b1 ≡ A2 · (x1, . . . , xd)T + b2 (2.6)

where A1 = [fij]d×d is a d× d matrix and b1 = [ui]d×1 is a d× 1 vector of
linear Boolean expressions of the variables x1, . . . , xd, while A2 = [gij]d×d
is a d × d matrix and b2 = [vi]d×1 is a d × 1 vector of linear Boolean
expressions of the variables y1, . . . , yd.

The description of the algorithm for producing bilinear MQQs of order 2d

given in [29] can be described shortly by the following expression:

x ∗ y ≡ B ·U(x) ·A2 · y + B ·A1 · x + c (2.7)

where x = (x1, . . . , xd), y = (y1, . . . , yd), the matrices A1, A2 and B are
nonsingular inGF (2), of size d×d, the vector c is a random d-dimensional
vector with elements inGF (2) and all of them are generated by a uniformly
random process. The matrix U(x) is an upper triangular matrix with all
diagonal elements equal to 1, and the elements above the main diagonal are
linear expressions of the variables of x = (x1, . . . , xd). It is computed by
the following expression:

U(x) = I +
d−1∑
i=1

Ui ·A1 · x, (2.8)

where the matrices Ui have all elements 0 except the elements in the rows
from {1, . . . , i} that are strictly above the main diagonal. Those elements
can be either 0 or 1.

Once we have a multivariate quadratic quasigroup

∗vv(x1, . . . , xd, y1, . . . , yd) = (f1(x1, . . . , xd, y1, . . . , yd), ..., fd(x1, . . . , xd, y1, . . . , yd))

15

Chapter 2. Background 2.1. Quasigroups and MQQ

In [17] first sufficient conditions were given one quasigroup to be MQQ and
an algorithm for finding MQQs up to the order of 25 was given there. That
work was later extended in [29] for constructing MQQs of order 2d for any
d. The common characteristic of MQQs produced by those two methods is
that the quasigroups are bilinear. Namely, for a given multivariate quadratic
quasigroup (Q, ∗) given by the equations:

∗vv(x1, . . . , xd, y1, . . . , yd) = (f1(x1, . . . , xd, y1, . . . , yd), ..., fd(x1, . . . , xd, y1, . . . , yd))

we can rewrite those equations in the following form:

A1 · (y1, . . . , yd)T + b1 ≡ A2 · (x1, . . . , xd)T + b2 (2.6)

where A1 = [fij]d×d is a d× d matrix and b1 = [ui]d×1 is a d× 1 vector of
linear Boolean expressions of the variables x1, . . . , xd, while A2 = [gij]d×d
is a d × d matrix and b2 = [vi]d×1 is a d × 1 vector of linear Boolean
expressions of the variables y1, . . . , yd.

The description of the algorithm for producing bilinear MQQs of order 2d

given in [29] can be described shortly by the following expression:

x ∗ y ≡ B ·U(x) ·A2 · y + B ·A1 · x + c (2.7)

where x = (x1, . . . , xd), y = (y1, . . . , yd), the matrices A1, A2 and B are
nonsingular inGF (2), of size d×d, the vector c is a random d-dimensional
vector with elements inGF (2) and all of them are generated by a uniformly
random process. The matrix U(x) is an upper triangular matrix with all
diagonal elements equal to 1, and the elements above the main diagonal are
linear expressions of the variables of x = (x1, . . . , xd). It is computed by
the following expression:

U(x) = I +
d−1∑
i=1

Ui ·A1 · x, (2.8)

where the matrices Ui have all elements 0 except the elements in the rows
from {1, . . . , i} that are strictly above the main diagonal. Those elements
can be either 0 or 1.

Once we have a multivariate quadratic quasigroup

∗vv(x1, . . . , xd, y1, . . . , yd) = (f1(x1, . . . , xd, y1, . . . , yd), ..., fd(x1, . . . , xd, y1, . . . , yd))

15

2.2. Description of the MQQ-SIG algorithm Chapter 2. Background

we will be interested in those quasigroups that will satisfy the following
condition:

Rank(Bfi) ≥ 2d− 4, (2.9)

where matrices Bfi are 2d× 2d Boolean matrices defined from the expres-
sions fi as

Bfi = [bj,k], bj,8+k = b8+k,j = 1, iff xjyk is a term in fi. (2.10)

Proposition 1. A multivariate quadratic quasigroup that satisfies the con-
ditions (2.7), . . . , (2.10) can be encoded in a unique way with 81 bytes.

2.2 Description of the MQQ-SIG algorithm

A generic description for our scheme can be expressed as a typical multi-
variate quadratic system: S◦P ′◦S′ : {0, 1}n → {0, 1}n where S′ = S·x+v
(i.e. S′ is a bijective affine transformation), S is a nonsingular linear trans-
formation, and P ′ is a bijective multivariate quadratic mapping on {0, 1}n.

First we will describe how the mapping P ′ : {0, 1}n → {0, 1}n is defined
by the algorithm described in Table 2.1.

P ′(x)
Input: A vector x = (f1, . . . , fn) of n linear Boolean functions of n variables. We
implicitly suppose that a multivariate quadratic quasigroup ∗ is previously defined,
and that n = 32k, k = 5, 6, 7, 8 is also previously determined.
Output: 8 linear expressions P ′i (x1, . . . , xn), i = 1, . . . , 8 and n − 8 multivariate
quadratic polynomials P ′i (x1, . . . , xn), i = 9, . . . , n
1. Represent a vector x = (f1, . . . , fn) of n linear Boolean functions of n variables
x1, . . . , xn, as a string x = X1 . . . Xn

8
where Xi are vectors of dimension 8;

2. Compute y = Y1 . . . Yn
8

where: Y1 = X1, Yj+1 = Xj ∗ Xj+1, for even j =
2, 4, . . ., and Yj+1 = Xj+1 ∗Xj , for odd j = 3, 5, . . .
3. Output: y.

Table 2.1: Definition of the nonlinear mapping P ′ : {0, 1}n → {0, 1}n [28]

The algorithm for generating the public and private key is defined in the
Table 2.2.

16

2.2. Description of the MQQ-SIG algorithm Chapter 2. Background

we will be interested in those quasigroups that will satisfy the following
condition:

Rank(Bfi) ≥ 2d− 4, (2.9)

where matrices Bfi are 2d× 2d Boolean matrices defined from the expres-
sions fi as

Bfi = [bj,k], bj,8+k = b8+k,j = 1, iff xjyk is a term in fi. (2.10)

Proposition 1. A multivariate quadratic quasigroup that satisfies the con-
ditions (2.7), . . . , (2.10) can be encoded in a unique way with 81 bytes.

2.2 Description of the MQQ-SIG algorithm

A generic description for our scheme can be expressed as a typical multi-
variate quadratic system: S◦P ′◦S′ : {0, 1}n → {0, 1}n where S′ = S·x+v
(i.e. S′ is a bijective affine transformation), S is a nonsingular linear trans-
formation, and P ′ is a bijective multivariate quadratic mapping on {0, 1}n.

First we will describe how the mapping P ′ : {0, 1}n → {0, 1}n is defined
by the algorithm described in Table 2.1.

P ′(x)
Input: A vector x = (f1, . . . , fn) of n linear Boolean functions of n variables. We
implicitly suppose that a multivariate quadratic quasigroup ∗ is previously defined,
and that n = 32k, k = 5, 6, 7, 8 is also previously determined.
Output: 8 linear expressions P ′i (x1, . . . , xn), i = 1, . . . , 8 and n − 8 multivariate
quadratic polynomials P ′i (x1, . . . , xn), i = 9, . . . , n
1. Represent a vector x = (f1, . . . , fn) of n linear Boolean functions of n variables
x1, . . . , xn, as a string x = X1 . . . Xn

8
where Xi are vectors of dimension 8;

2. Compute y = Y1 . . . Yn
8

where: Y1 = X1, Yj+1 = Xj ∗ Xj+1, for even j =
2, 4, . . ., and Yj+1 = Xj+1 ∗Xj , for odd j = 3, 5, . . .
3. Output: y.

Table 2.1: Definition of the nonlinear mapping P ′ : {0, 1}n → {0, 1}n [28]

The algorithm for generating the public and private key is defined in the
Table 2.2.

16

2.2. Description of the MQQ-SIG algorithm Chapter 2. Background

we will be interested in those quasigroups that will satisfy the following
condition:

Rank(Bfi) ≥ 2d− 4, (2.9)

where matrices Bfi are 2d× 2d Boolean matrices defined from the expres-
sions fi as

Bfi = [bj,k], bj,8+k = b8+k,j = 1, iff xjyk is a term in fi. (2.10)

Proposition 1. A multivariate quadratic quasigroup that satisfies the con-
ditions (2.7), . . . , (2.10) can be encoded in a unique way with 81 bytes.

2.2 Description of the MQQ-SIG algorithm

A generic description for our scheme can be expressed as a typical multi-
variate quadratic system: S◦P ′◦S′ : {0, 1}n → {0, 1}n where S′ = S·x+v
(i.e. S′ is a bijective affine transformation), S is a nonsingular linear trans-
formation, and P ′ is a bijective multivariate quadratic mapping on {0, 1}n.

First we will describe how the mapping P ′ : {0, 1}n → {0, 1}n is defined
by the algorithm described in Table 2.1.

P ′(x)
Input: A vector x = (f1, . . . , fn) of n linear Boolean functions of n variables. We
implicitly suppose that a multivariate quadratic quasigroup ∗ is previously defined,
and that n = 32k, k = 5, 6, 7, 8 is also previously determined.
Output: 8 linear expressions P ′i (x1, . . . , xn), i = 1, . . . , 8 and n − 8 multivariate
quadratic polynomials P ′i (x1, . . . , xn), i = 9, . . . , n
1. Represent a vector x = (f1, . . . , fn) of n linear Boolean functions of n variables
x1, . . . , xn, as a string x = X1 . . . Xn

8
where Xi are vectors of dimension 8;

2. Compute y = Y1 . . . Yn
8

where: Y1 = X1, Yj+1 = Xj ∗ Xj+1, for even j =
2, 4, . . ., and Yj+1 = Xj+1 ∗Xj , for odd j = 3, 5, . . .
3. Output: y.

Table 2.1: Definition of the nonlinear mapping P ′ : {0, 1}n → {0, 1}n [28]

The algorithm for generating the public and private key is defined in the
Table 2.2.

16

2.2. Description of the MQQ-SIG algorithm Chapter 2. Background

we will be interested in those quasigroups that will satisfy the following
condition:

Rank(Bfi) ≥ 2d− 4, (2.9)

where matrices Bfi are 2d× 2d Boolean matrices defined from the expres-
sions fi as

Bfi = [bj,k], bj,8+k = b8+k,j = 1, iff xjyk is a term in fi. (2.10)

Proposition 1. A multivariate quadratic quasigroup that satisfies the con-
ditions (2.7), . . . , (2.10) can be encoded in a unique way with 81 bytes.

2.2 Description of the MQQ-SIG algorithm

A generic description for our scheme can be expressed as a typical multi-
variate quadratic system: S◦P ′◦S′ : {0, 1}n → {0, 1}n where S′ = S·x+v
(i.e. S′ is a bijective affine transformation), S is a nonsingular linear trans-
formation, and P ′ is a bijective multivariate quadratic mapping on {0, 1}n.

First we will describe how the mapping P ′ : {0, 1}n → {0, 1}n is defined
by the algorithm described in Table 2.1.

P ′(x)
Input: A vector x = (f1, . . . , fn) of n linear Boolean functions of n variables. We
implicitly suppose that a multivariate quadratic quasigroup ∗ is previously defined,
and that n = 32k, k = 5, 6, 7, 8 is also previously determined.
Output: 8 linear expressions P ′i (x1, . . . , xn), i = 1, . . . , 8 and n − 8 multivariate
quadratic polynomials P ′i (x1, . . . , xn), i = 9, . . . , n
1. Represent a vector x = (f1, . . . , fn) of n linear Boolean functions of n variables
x1, . . . , xn, as a string x = X1 . . . Xn

8
where Xi are vectors of dimension 8;

2. Compute y = Y1 . . . Yn
8

where: Y1 = X1, Yj+1 = Xj ∗ Xj+1, for even j =
2, 4, . . ., and Yj+1 = Xj+1 ∗Xj , for odd j = 3, 5, . . .
3. Output: y.

Table 2.1: Definition of the nonlinear mapping P ′ : {0, 1}n → {0, 1}n [28]

The algorithm for generating the public and private key is defined in the
Table 2.2.

16

Chapter 2. Background 2.2. Description of the MQQ-SIG algorithm

Algorithm for generating Public and Private key for the MQQ-SIG scheme
Input: Integer n, where n = 32× k and k = {5, 6, 7, 8}.
Output: Public key P: n − bn4 c multivariate quadratic polynomials
Pi(x1, . . . , xn), i = 1 + bn4 c, . . . , n, Private key: Two permutations of the
numbers {1, . . . , n}, and 81 bytes for encoding a quasigroups ∗
1. Generate an MQQ ∗ according to equations (2.7) . . . (2.10).
2. Generate a nonsingular n× n Boolean matrix S and affine transformation S′ ac-
cording to equations (2.11), . . . , (2.14).
3. Compute y = S(P ′(S′(x))), where x = (x1, . . . , xn).
4. Output: The public key is y as n − bn4 c multivariate quadratic polynomials
Pi(x1, . . . , xn) i = 1 + bn4 c, . . . , n, and the private key is the tuple (σ1, σk, ∗).

Table 2.2: Algorithm for generating the public and private key [28]

Algorithm for digital signature with the private key (σ1, σk, ∗)
Input: A document M to be signed.

Output: A signature sig = (x1, . . . , xn).
1. Compute y = (y1, . . . , yn) = H(M)|n, whereM is the message to be signed, H()
is a standardized cryptographic hash function such as SHA-1, or SHA-2, with a hash
output of not less than n bits. The notation H(M)|n denotes the least significant n
bits from the hash output H(M).
2. Set y′ = S−1(y).
3. Represent y′ as y′ = Y1 . . . Yn

8
where Yi are Boolean vectors of dimension 8.

4. By using the left and right parastrophes \ and / of the quasigroup ∗ compute
x′ = X1 . . . Xn

8
, such that: X1 = Y1, Xj = Xj−1 \ Yj , for even j = 2, 4, . . ., and

Xj = Yj/Xj−1, for odd j = 3, 5,
5. Compute x = S−1(x′) + v = (x1, . . . , xn).
6. A digital signature of the document M is the vector sig = (x1, . . . , xn).

Table 2.3: Algorithm for signing [28]

The algorithm for signing by the private key (σ1, σk, ∗) is defined in Table
2.3.

The algorithm for signature verification with the public key
P = {Pi(x1, . . . , xn) | i = 1 + bn

4
c, . . . , n} is given in Table 2.4.

2.2.1 Nonsingular Boolean matrices in MQQ-SIG

In order to sign a message in MQQ-SIG scheme non-singular matrices are
required. The procedure is mentioned in [28].

17

Chapter 2. Background 2.2. Description of the MQQ-SIG algorithm

Algorithm for generating Public and Private key for the MQQ-SIG scheme
Input: Integer n, where n = 32× k and k = {5, 6, 7, 8}.
Output: Public key P: n − bn4 c multivariate quadratic polynomials
Pi(x1, . . . , xn), i = 1 + bn4 c, . . . , n, Private key: Two permutations of the
numbers {1, . . . , n}, and 81 bytes for encoding a quasigroups ∗
1. Generate an MQQ ∗ according to equations (2.7) . . . (2.10).
2. Generate a nonsingular n× n Boolean matrix S and affine transformation S′ ac-
cording to equations (2.11), . . . , (2.14).
3. Compute y = S(P ′(S′(x))), where x = (x1, . . . , xn).
4. Output: The public key is y as n − bn4 c multivariate quadratic polynomials
Pi(x1, . . . , xn) i = 1 + bn4 c, . . . , n, and the private key is the tuple (σ1, σk, ∗).

Table 2.2: Algorithm for generating the public and private key [28]

Algorithm for digital signature with the private key (σ1, σk, ∗)
Input: A document M to be signed.

Output: A signature sig = (x1, . . . , xn).
1. Compute y = (y1, . . . , yn) = H(M)|n, whereM is the message to be signed, H()
is a standardized cryptographic hash function such as SHA-1, or SHA-2, with a hash
output of not less than n bits. The notation H(M)|n denotes the least significant n
bits from the hash output H(M).
2. Set y′ = S−1(y).
3. Represent y′ as y′ = Y1 . . . Yn

8
where Yi are Boolean vectors of dimension 8.

4. By using the left and right parastrophes \ and / of the quasigroup ∗ compute
x′ = X1 . . . Xn

8
, such that: X1 = Y1, Xj = Xj−1 \ Yj , for even j = 2, 4, . . ., and

Xj = Yj/Xj−1, for odd j = 3, 5,
5. Compute x = S−1(x′) + v = (x1, . . . , xn).
6. A digital signature of the document M is the vector sig = (x1, . . . , xn).

Table 2.3: Algorithm for signing [28]

The algorithm for signing by the private key (σ1, σk, ∗) is defined in Table
2.3.

The algorithm for signature verification with the public key
P = {Pi(x1, . . . , xn) | i = 1 + bn

4
c, . . . , n} is given in Table 2.4.

2.2.1 Nonsingular Boolean matrices in MQQ-SIG

In order to sign a message in MQQ-SIG scheme non-singular matrices are
required. The procedure is mentioned in [28].

17

Chapter 2. Background 2.2. Description of the MQQ-SIG algorithm

Algorithm for generating Public and Private key for the MQQ-SIG scheme
Input: Integer n, where n = 32× k and k = {5, 6, 7, 8}.
Output: Public key P: n − bn4 c multivariate quadratic polynomials
Pi(x1, . . . , xn), i = 1 + bn4 c, . . . , n, Private key: Two permutations of the
numbers {1, . . . , n}, and 81 bytes for encoding a quasigroups ∗
1. Generate an MQQ ∗ according to equations (2.7) . . . (2.10).
2. Generate a nonsingular n× n Boolean matrix S and affine transformation S′ ac-
cording to equations (2.11), . . . , (2.14).
3. Compute y = S(P ′(S′(x))), where x = (x1, . . . , xn).
4. Output: The public key is y as n − bn4 c multivariate quadratic polynomials
Pi(x1, . . . , xn) i = 1 + bn4 c, . . . , n, and the private key is the tuple (σ1, σk, ∗).

Table 2.2: Algorithm for generating the public and private key [28]

Algorithm for digital signature with the private key (σ1, σk, ∗)
Input: A document M to be signed.

Output: A signature sig = (x1, . . . , xn).
1. Compute y = (y1, . . . , yn) = H(M)|n, whereM is the message to be signed, H()
is a standardized cryptographic hash function such as SHA-1, or SHA-2, with a hash
output of not less than n bits. The notation H(M)|n denotes the least significant n
bits from the hash output H(M).
2. Set y′ = S−1(y).
3. Represent y′ as y′ = Y1 . . . Yn

8
where Yi are Boolean vectors of dimension 8.

4. By using the left and right parastrophes \ and / of the quasigroup ∗ compute
x′ = X1 . . . Xn

8
, such that: X1 = Y1, Xj = Xj−1 \ Yj , for even j = 2, 4, . . ., and

Xj = Yj/Xj−1, for odd j = 3, 5,
5. Compute x = S−1(x′) + v = (x1, . . . , xn).
6. A digital signature of the document M is the vector sig = (x1, . . . , xn).

Table 2.3: Algorithm for signing [28]

The algorithm for signing by the private key (σ1, σk, ∗) is defined in Table
2.3.

The algorithm for signature verification with the public key
P = {Pi(x1, . . . , xn) | i = 1 + bn

4
c, . . . , n} is given in Table 2.4.

2.2.1 Nonsingular Boolean matrices in MQQ-SIG

In order to sign a message in MQQ-SIG scheme non-singular matrices are
required. The procedure is mentioned in [28].

17

Chapter 2. Background 2.2. Description of the MQQ-SIG algorithm

Algorithm for generating Public and Private key for the MQQ-SIG scheme
Input: Integer n, where n = 32× k and k = {5, 6, 7, 8}.
Output: Public key P: n − bn4 c multivariate quadratic polynomials
Pi(x1, . . . , xn), i = 1 + bn4 c, . . . , n, Private key: Two permutations of the
numbers {1, . . . , n}, and 81 bytes for encoding a quasigroups ∗
1. Generate an MQQ ∗ according to equations (2.7) . . . (2.10).
2. Generate a nonsingular n× n Boolean matrix S and affine transformation S′ ac-
cording to equations (2.11), . . . , (2.14).
3. Compute y = S(P ′(S′(x))), where x = (x1, . . . , xn).
4. Output: The public key is y as n − bn4 c multivariate quadratic polynomials
Pi(x1, . . . , xn) i = 1 + bn4 c, . . . , n, and the private key is the tuple (σ1, σk, ∗).

Table 2.2: Algorithm for generating the public and private key [28]

Algorithm for digital signature with the private key (σ1, σk, ∗)
Input: A document M to be signed.

Output: A signature sig = (x1, . . . , xn).
1. Compute y = (y1, . . . , yn) = H(M)|n, whereM is the message to be signed, H()
is a standardized cryptographic hash function such as SHA-1, or SHA-2, with a hash
output of not less than n bits. The notation H(M)|n denotes the least significant n
bits from the hash output H(M).
2. Set y′ = S−1(y).
3. Represent y′ as y′ = Y1 . . . Yn

8
where Yi are Boolean vectors of dimension 8.

4. By using the left and right parastrophes \ and / of the quasigroup ∗ compute
x′ = X1 . . . Xn

8
, such that: X1 = Y1, Xj = Xj−1 \ Yj , for even j = 2, 4, . . ., and

Xj = Yj/Xj−1, for odd j = 3, 5,
5. Compute x = S−1(x′) + v = (x1, . . . , xn).
6. A digital signature of the document M is the vector sig = (x1, . . . , xn).

Table 2.3: Algorithm for signing [28]

The algorithm for signing by the private key (σ1, σk, ∗) is defined in Table
2.3.

The algorithm for signature verification with the public key
P = {Pi(x1, . . . , xn) | i = 1 + bn

4
c, . . . , n} is given in Table 2.4.

2.2.1 Nonsingular Boolean matrices in MQQ-SIG

In order to sign a message in MQQ-SIG scheme non-singular matrices are
required. The procedure is mentioned in [28].

17

2.2. Description of the MQQ-SIG algorithm Chapter 2. Background

Algorithm for signature verification with a public key P = {Pi(x1, . . . , xn) | i =
1 + bn4 c, . . . , n}
Input: A document M and its signature sig = (x1, . . . , xn).
Output: TRUE or FALSE.
1. Compute y = (y1+bn4 c, . . . , yn) = H(M)|n−bn4 c, where M is the signed message,
H() is a standardized cryptographic hash function such as SHA-1, or SHA-2, with a
hash output of not less than n bits, and the notation H(M)|n−bn4 c denotes the least
significant n− bn4 c bits from the hash output H(M).
2. Compute z = (z1+bn4 c, . . . , zn) = P(sig).
3. If z = y then return TRUE, else return FALSE.

Table 2.4: Algorithm for verification [28]

In general, if we just simply generate a nonsingular Boolean matrix S of
size n × n to store such a matrix or its inverse S−1 (that we need for the
process of signing), we would need n2 bits. Having in mind that our target
sizes for the size of the digital signatures are n = 160, 192, 224, 256 bits
(i.e. n = 32×k and k = {5, 6, 7, 8}), for storing S−1 we would need 3.125
Kbytes, 4.5 Kbytes, 6.125 Kbytes or 8.0 Kbytes.

In order to reduce the private information for the linear and affine transfor-
mations that is perform in MQQ-SIG scheme, nonsingular matrices S are
defined by the following expression [28]:

S−1 =
k∑
i=1

Iσi , (2.11)

where Iσi , i = {1, . . . , 5, 6, 7, 8} are permutation matrices of size n =
32 × k and where permutations σi are permutations on n elements. They
are defined by the following expressions:

σ1 − random permutation on {1, 2, . . . n} satisfying the condition (2.13),
σ2 = RotateLeft(σ1, 32) satisfying the condition (2.13),
σ3 = RotateLeft(σ2, 64) satisfying the condition (2.13),
σj = RotateLeft(σj−1, 32), forj = 4, . . . , k − 1, satisfying the condition (2.13),
σk − random permutation on {1, 2, . . . n} satisfying the condition (2.13)

(2.12)

σν =

(
1 2 . . . 8 9 n− 1 n

s
(ν)
1 s

(ν)
2 . . . s

(ν)
8 s

(ν)
9 s

(ν)
n−1 s

(ν)
n

)
, {s(ν)1 , s

(ν)
2 , . . . , s

(ν)
8 }

⋂
{1, 2, . . . , 8} = ∅

(2.13)

18

2.2. Description of the MQQ-SIG algorithm Chapter 2. Background

Algorithm for signature verification with a public key P = {Pi(x1, . . . , xn) | i =
1 + bn4 c, . . . , n}
Input: A document M and its signature sig = (x1, . . . , xn).
Output: TRUE or FALSE.
1. Compute y = (y1+bn4 c, . . . , yn) = H(M)|n−bn4 c, where M is the signed message,
H() is a standardized cryptographic hash function such as SHA-1, or SHA-2, with a
hash output of not less than n bits, and the notation H(M)|n−bn4 c denotes the least
significant n− bn4 c bits from the hash output H(M).
2. Compute z = (z1+bn4 c, . . . , zn) = P(sig).
3. If z = y then return TRUE, else return FALSE.

Table 2.4: Algorithm for verification [28]

In general, if we just simply generate a nonsingular Boolean matrix S of
size n × n to store such a matrix or its inverse S−1 (that we need for the
process of signing), we would need n2 bits. Having in mind that our target
sizes for the size of the digital signatures are n = 160, 192, 224, 256 bits
(i.e. n = 32×k and k = {5, 6, 7, 8}), for storing S−1 we would need 3.125
Kbytes, 4.5 Kbytes, 6.125 Kbytes or 8.0 Kbytes.

In order to reduce the private information for the linear and affine transfor-
mations that is perform in MQQ-SIG scheme, nonsingular matrices S are
defined by the following expression [28]:

S−1 =
k∑
i=1

Iσi , (2.11)

where Iσi , i = {1, . . . , 5, 6, 7, 8} are permutation matrices of size n =
32 × k and where permutations σi are permutations on n elements. They
are defined by the following expressions:

σ1 − random permutation on {1, 2, . . . n} satisfying the condition (2.13),
σ2 = RotateLeft(σ1, 32) satisfying the condition (2.13),
σ3 = RotateLeft(σ2, 64) satisfying the condition (2.13),
σj = RotateLeft(σj−1, 32), forj = 4, . . . , k − 1, satisfying the condition (2.13),
σk − random permutation on {1, 2, . . . n} satisfying the condition (2.13)

(2.12)

σν =

(
1 2 . . . 8 9 n− 1 n

s
(ν)
1 s

(ν)
2 . . . s

(ν)
8 s

(ν)
9 s

(ν)
n−1 s

(ν)
n

)
, {s(ν)1 , s

(ν)
2 , . . . , s

(ν)
8 }

⋂
{1, 2, . . . , 8} = ∅

(2.13)

18

2.2. Description of the MQQ-SIG algorithm Chapter 2. Background

Algorithm for signature verification with a public key P = {Pi(x1, . . . , xn) | i =
1 + bn4 c, . . . , n}
Input: A document M and its signature sig = (x1, . . . , xn).
Output: TRUE or FALSE.
1. Compute y = (y1+bn4 c, . . . , yn) = H(M)|n−bn4 c, where M is the signed message,
H() is a standardized cryptographic hash function such as SHA-1, or SHA-2, with a
hash output of not less than n bits, and the notation H(M)|n−bn4 c denotes the least
significant n− bn4 c bits from the hash output H(M).
2. Compute z = (z1+bn4 c, . . . , zn) = P(sig).
3. If z = y then return TRUE, else return FALSE.

Table 2.4: Algorithm for verification [28]

In general, if we just simply generate a nonsingular Boolean matrix S of
size n × n to store such a matrix or its inverse S−1 (that we need for the
process of signing), we would need n2 bits. Having in mind that our target
sizes for the size of the digital signatures are n = 160, 192, 224, 256 bits
(i.e. n = 32×k and k = {5, 6, 7, 8}), for storing S−1 we would need 3.125
Kbytes, 4.5 Kbytes, 6.125 Kbytes or 8.0 Kbytes.

In order to reduce the private information for the linear and affine transfor-
mations that is perform in MQQ-SIG scheme, nonsingular matrices S are
defined by the following expression [28]:

S−1 =
k∑
i=1

Iσi , (2.11)

where Iσi , i = {1, . . . , 5, 6, 7, 8} are permutation matrices of size n =
32 × k and where permutations σi are permutations on n elements. They
are defined by the following expressions:

σ1 − random permutation on {1, 2, . . . n} satisfying the condition (2.13),
σ2 = RotateLeft(σ1, 32) satisfying the condition (2.13),
σ3 = RotateLeft(σ2, 64) satisfying the condition (2.13),
σj = RotateLeft(σj−1, 32), forj = 4, . . . , k − 1, satisfying the condition (2.13),
σk − random permutation on {1, 2, . . . n} satisfying the condition (2.13)

(2.12)

σν =

(
1 2 . . . 8 9 n− 1 n

s
(ν)
1 s

(ν)
2 . . . s

(ν)
8 s

(ν)
9 s

(ν)
n−1 s

(ν)
n

)
, {s(ν)1 , s

(ν)
2 , . . . , s

(ν)
8 }

⋂
{1, 2, . . . , 8} = ∅

(2.13)

18

2.2. Description of the MQQ-SIG algorithm Chapter 2. Background

Algorithm for signature verification with a public key P = {Pi(x1, . . . , xn) | i =
1 + bn4 c, . . . , n}
Input: A document M and its signature sig = (x1, . . . , xn).
Output: TRUE or FALSE.
1. Compute y = (y1+bn4 c, . . . , yn) = H(M)|n−bn4 c, where M is the signed message,
H() is a standardized cryptographic hash function such as SHA-1, or SHA-2, with a
hash output of not less than n bits, and the notation H(M)|n−bn4 c denotes the least
significant n− bn4 c bits from the hash output H(M).
2. Compute z = (z1+bn4 c, . . . , zn) = P(sig).
3. If z = y then return TRUE, else return FALSE.

Table 2.4: Algorithm for verification [28]

In general, if we just simply generate a nonsingular Boolean matrix S of
size n × n to store such a matrix or its inverse S−1 (that we need for the
process of signing), we would need n2 bits. Having in mind that our target
sizes for the size of the digital signatures are n = 160, 192, 224, 256 bits
(i.e. n = 32×k and k = {5, 6, 7, 8}), for storing S−1 we would need 3.125
Kbytes, 4.5 Kbytes, 6.125 Kbytes or 8.0 Kbytes.

In order to reduce the private information for the linear and affine transfor-
mations that is perform in MQQ-SIG scheme, nonsingular matrices S are
defined by the following expression [28]:

S−1 =
k∑
i=1

Iσi , (2.11)

where Iσi , i = {1, . . . , 5, 6, 7, 8} are permutation matrices of size n =
32 × k and where permutations σi are permutations on n elements. They
are defined by the following expressions:

σ1 − random permutation on {1, 2, . . . n} satisfying the condition (2.13),
σ2 = RotateLeft(σ1, 32) satisfying the condition (2.13),
σ3 = RotateLeft(σ2, 64) satisfying the condition (2.13),
σj = RotateLeft(σj−1, 32), forj = 4, . . . , k − 1, satisfying the condition (2.13),
σk − random permutation on {1, 2, . . . n} satisfying the condition (2.13)

(2.12)

σν =

(
1 2 . . . 8 9 n− 1 n

s
(ν)
1 s

(ν)
2 . . . s

(ν)
8 s

(ν)
9 s

(ν)
n−1 s

(ν)
n

)
, {s(ν)1 , s

(ν)
2 , . . . , s

(ν)
8 }

⋂
{1, 2, . . . , 8} = ∅

(2.13)

18

Chapter 2. Background 2.3. RFID from Beginning till Today

There is required an additional condition to be fulfilled by the permutations
σ1, . . . , σk:

L =

σ1
σ2

...σk−1
σk

 , is a Latin Rectangle. (2.14)

Once a nonsingular matrix S−1 is obtained then its inverse is obtained by
computing

S = (S−1)−1

and from there the affine transformation is obtained

S′(x) = S · x + v, (2.15)

where the vector v is n–dimensional Boolean vector defined from the val-
ues of the permutation σk by the following expression:

v = (v1, v2, . . . , vn), where vi =

 s
(k)

d i
4
e

2i mod 4

 mod 2. (2.16)

In words: the bits of the vector v are constructed by taking the four least
significant bits of the first n

4
values in the permutation σk.

Proposition 2. The linear transformations S−1 can be encoded in a unique
way with 2n bytes.

Simple Power Analysis (SPA), Differential Power Analysis (DPA) and High
Order DFA

2.3 RFID from Beginning till Today

RFID (Radio Frequency Identification) is a technology that is used to track
or identify different kind of objects like animals, goods in supply chain, and
weapons in military. The simplest RFID system can consist of transponder
(electronic tag) for storing information required for tracking objects and
transceiver (reader) for receiving response sent by transponder. It is said

19

Chapter 2. Background 2.3. RFID from Beginning till Today

There is required an additional condition to be fulfilled by the permutations
σ1, . . . , σk:

L =

σ1
σ2

...σk−1
σk

 , is a Latin Rectangle. (2.14)

Once a nonsingular matrix S−1 is obtained then its inverse is obtained by
computing

S = (S−1)−1

and from there the affine transformation is obtained

S′(x) = S · x + v, (2.15)

where the vector v is n–dimensional Boolean vector defined from the val-
ues of the permutation σk by the following expression:

v = (v1, v2, . . . , vn), where vi =

 s
(k)

d i
4
e

2i mod 4

 mod 2. (2.16)

In words: the bits of the vector v are constructed by taking the four least
significant bits of the first n

4
values in the permutation σk.

Proposition 2. The linear transformations S−1 can be encoded in a unique
way with 2n bytes.

Simple Power Analysis (SPA), Differential Power Analysis (DPA) and High
Order DFA

2.3 RFID from Beginning till Today

RFID (Radio Frequency Identification) is a technology that is used to track
or identify different kind of objects like animals, goods in supply chain, and
weapons in military. The simplest RFID system can consist of transponder
(electronic tag) for storing information required for tracking objects and
transceiver (reader) for receiving response sent by transponder. It is said

19

Chapter 2. Background 2.3. RFID from Beginning till Today

There is required an additional condition to be fulfilled by the permutations
σ1, . . . , σk:

L =

σ1
σ2

...σk−1
σk

 , is a Latin Rectangle. (2.14)

Once a nonsingular matrix S−1 is obtained then its inverse is obtained by
computing

S = (S−1)−1

and from there the affine transformation is obtained

S′(x) = S · x + v, (2.15)

where the vector v is n–dimensional Boolean vector defined from the val-
ues of the permutation σk by the following expression:

v = (v1, v2, . . . , vn), where vi =

 s
(k)

d i
4
e

2i mod 4

 mod 2. (2.16)

In words: the bits of the vector v are constructed by taking the four least
significant bits of the first n

4
values in the permutation σk.

Proposition 2. The linear transformations S−1 can be encoded in a unique
way with 2n bytes.

Simple Power Analysis (SPA), Differential Power Analysis (DPA) and High
Order DFA

2.3 RFID from Beginning till Today

RFID (Radio Frequency Identification) is a technology that is used to track
or identify different kind of objects like animals, goods in supply chain, and
weapons in military. The simplest RFID system can consist of transponder
(electronic tag) for storing information required for tracking objects and
transceiver (reader) for receiving response sent by transponder. It is said

19

Chapter 2. Background 2.3. RFID from Beginning till Today

There is required an additional condition to be fulfilled by the permutations
σ1, . . . , σk:

L =

σ1
σ2

...σk−1
σk

 , is a Latin Rectangle. (2.14)

Once a nonsingular matrix S−1 is obtained then its inverse is obtained by
computing

S = (S−1)−1

and from there the affine transformation is obtained

S′(x) = S · x + v, (2.15)

where the vector v is n–dimensional Boolean vector defined from the val-
ues of the permutation σk by the following expression:

v = (v1, v2, . . . , vn), where vi =

 s
(k)

d i
4
e

2i mod 4

 mod 2. (2.16)

In words: the bits of the vector v are constructed by taking the four least
significant bits of the first n

4
values in the permutation σk.

Proposition 2. The linear transformations S−1 can be encoded in a unique
way with 2n bytes.

Simple Power Analysis (SPA), Differential Power Analysis (DPA) and High
Order DFA

2.3 RFID from Beginning till Today

RFID (Radio Frequency Identification) is a technology that is used to track
or identify different kind of objects like animals, goods in supply chain, and
weapons in military. The simplest RFID system can consist of transponder
(electronic tag) for storing information required for tracking objects and
transceiver (reader) for receiving response sent by transponder. It is said

19

2.4. RF-Enabled Tecnology Chapter 2. Background

that necessity is the mother of invention. During World War II there was
a need to identify the coming airplanes status as friend or foe and this ne-
cessity invent the first RFID system called IFF (Identification of Friend or
Foe) under the heading of Sir Robert Alexander Watsen-Watt, a Scottish
physicist, who also discovered radar in 1935. A California entrepreneur
Charles Walton obtained copyrights for passive transponder used for ac-
cessing the building without key in 1973. Automated toll payment system
was commercialized in mid 1980 with the contribution of scientists of Los
Alamos National Laboratory, New Mexico, who have also developed pas-
sive transponder based systems that used UHF (Ultra-High Frequency) in
order to track cows for vaccination purpose. Eventually, the cow tracking
system is replaced by a LF (Low Frequency) (125 KHz) small transpon-
der. These transponders are being used today into access cards of building
and also injected in cows after encapsulating in glass. Now days, compa-
nies are shifted towards HF (High Frequency) (13.56 MHz) because this
frequency provides more data rate than previously used 125 KHz and is
unregulated. These systems are being used today in many applications like
payment systems (Mobile Speedpass), access control and contactless smart
cards, which is the one we are going to use in our thesis [9].

2.4 RF-Enabled Tecnology

RF-enabled technology offers different services to fulfill the specific re-
quirements of applications like storage capacity, operational frequency, com-
putational power, access range, security and privacy of data. Some appli-
cations such as animal identification and inventory tracking requires wide
range of communication between reader and transponder but less necessity
of security and privacy while other applications like human identity veri-
fication and payment systems demands more security and privacy and less
communication distance. Following are examples of RF-enabled technolo-
gies:

20

2.4. RF-Enabled Tecnology Chapter 2. Background

that necessity is the mother of invention. During World War II there was
a need to identify the coming airplanes status as friend or foe and this ne-
cessity invent the first RFID system called IFF (Identification of Friend or
Foe) under the heading of Sir Robert Alexander Watsen-Watt, a Scottish
physicist, who also discovered radar in 1935. A California entrepreneur
Charles Walton obtained copyrights for passive transponder used for ac-
cessing the building without key in 1973. Automated toll payment system
was commercialized in mid 1980 with the contribution of scientists of Los
Alamos National Laboratory, New Mexico, who have also developed pas-
sive transponder based systems that used UHF (Ultra-High Frequency) in
order to track cows for vaccination purpose. Eventually, the cow tracking
system is replaced by a LF (Low Frequency) (125 KHz) small transpon-
der. These transponders are being used today into access cards of building
and also injected in cows after encapsulating in glass. Now days, compa-
nies are shifted towards HF (High Frequency) (13.56 MHz) because this
frequency provides more data rate than previously used 125 KHz and is
unregulated. These systems are being used today in many applications like
payment systems (Mobile Speedpass), access control and contactless smart
cards, which is the one we are going to use in our thesis [9].

2.4 RF-Enabled Tecnology

RF-enabled technology offers different services to fulfill the specific re-
quirements of applications like storage capacity, operational frequency, com-
putational power, access range, security and privacy of data. Some appli-
cations such as animal identification and inventory tracking requires wide
range of communication between reader and transponder but less necessity
of security and privacy while other applications like human identity veri-
fication and payment systems demands more security and privacy and less
communication distance. Following are examples of RF-enabled technolo-
gies:

20

2.4. RF-Enabled Tecnology Chapter 2. Background

that necessity is the mother of invention. During World War II there was
a need to identify the coming airplanes status as friend or foe and this ne-
cessity invent the first RFID system called IFF (Identification of Friend or
Foe) under the heading of Sir Robert Alexander Watsen-Watt, a Scottish
physicist, who also discovered radar in 1935. A California entrepreneur
Charles Walton obtained copyrights for passive transponder used for ac-
cessing the building without key in 1973. Automated toll payment system
was commercialized in mid 1980 with the contribution of scientists of Los
Alamos National Laboratory, New Mexico, who have also developed pas-
sive transponder based systems that used UHF (Ultra-High Frequency) in
order to track cows for vaccination purpose. Eventually, the cow tracking
system is replaced by a LF (Low Frequency) (125 KHz) small transpon-
der. These transponders are being used today into access cards of building
and also injected in cows after encapsulating in glass. Now days, compa-
nies are shifted towards HF (High Frequency) (13.56 MHz) because this
frequency provides more data rate than previously used 125 KHz and is
unregulated. These systems are being used today in many applications like
payment systems (Mobile Speedpass), access control and contactless smart
cards, which is the one we are going to use in our thesis [9].

2.4 RF-Enabled Tecnology

RF-enabled technology offers different services to fulfill the specific re-
quirements of applications like storage capacity, operational frequency, com-
putational power, access range, security and privacy of data. Some appli-
cations such as animal identification and inventory tracking requires wide
range of communication between reader and transponder but less necessity
of security and privacy while other applications like human identity veri-
fication and payment systems demands more security and privacy and less
communication distance. Following are examples of RF-enabled technolo-
gies:

20

2.4. RF-Enabled Tecnology Chapter 2. Background

that necessity is the mother of invention. During World War II there was
a need to identify the coming airplanes status as friend or foe and this ne-
cessity invent the first RFID system called IFF (Identification of Friend or
Foe) under the heading of Sir Robert Alexander Watsen-Watt, a Scottish
physicist, who also discovered radar in 1935. A California entrepreneur
Charles Walton obtained copyrights for passive transponder used for ac-
cessing the building without key in 1973. Automated toll payment system
was commercialized in mid 1980 with the contribution of scientists of Los
Alamos National Laboratory, New Mexico, who have also developed pas-
sive transponder based systems that used UHF (Ultra-High Frequency) in
order to track cows for vaccination purpose. Eventually, the cow tracking
system is replaced by a LF (Low Frequency) (125 KHz) small transpon-
der. These transponders are being used today into access cards of building
and also injected in cows after encapsulating in glass. Now days, compa-
nies are shifted towards HF (High Frequency) (13.56 MHz) because this
frequency provides more data rate than previously used 125 KHz and is
unregulated. These systems are being used today in many applications like
payment systems (Mobile Speedpass), access control and contactless smart
cards, which is the one we are going to use in our thesis [9].

2.4 RF-Enabled Tecnology

RF-enabled technology offers different services to fulfill the specific re-
quirements of applications like storage capacity, operational frequency, com-
putational power, access range, security and privacy of data. Some appli-
cations such as animal identification and inventory tracking requires wide
range of communication between reader and transponder but less necessity
of security and privacy while other applications like human identity veri-
fication and payment systems demands more security and privacy and less
communication distance. Following are examples of RF-enabled technolo-
gies:

20

Chapter 2. Background 2.5. RFID tag

2.5 RFID tag

It contains a chip along with an antenna which receives signal from RFID
reader and returns back signal with data stored (tag Id number) inside the
tag. It is inserted in an object which is supposed to be track or identify and
it has minimal support for data security and privacy. RFID Tags are divided
into following two types:

2.5.1 Passive RFID tag

It does not contain a power supply. As an alternative, It generates power
from the electromagnetic waves of RFID reader when tag is exposed in it
and then tag circuit is activated and transmits back the stored information
in memory. The size of passive RFID tag is very small as shown in Figure
2.1(b), sometime equal to a grain of rice or thinner like a paper, due to
absence of power supply. Figure 2.1(a) shows the RFID attached in a label
that in turn can be attached to the tracking item. Figure 2.1(b) shows RFID
passive tag and antenna in a substrate. The RFID reader can access passive
RFID tags from the length of 10 millimeters to 6 meters. Many applications
utilize passive RFID tags because of low cost related to them.

2.5.2 Active RFID tag

This variant of RFID tag, on the other hand includes an internal power sup-
ply, which helps to maintain a longer access range from RFID reader along
with large memory to hold more data. These tags can also store information
transmitted by RFID reader and also are bigger in size, around the size of a
coin, because of presence of power supply. The accessibility of these tags is
extended many meters and as far as their battery life time is concern, It can
be used around 10 years. Active RFID tags provide many benefits such as
precision, dependability, and higher performance in adverse environments,
such as humid or harsh

21

Chapter 2. Background 2.5. RFID tag

2.5 RFID tag

It contains a chip along with an antenna which receives signal from RFID
reader and returns back signal with data stored (tag Id number) inside the
tag. It is inserted in an object which is supposed to be track or identify and
it has minimal support for data security and privacy. RFID Tags are divided
into following two types:

2.5.1 Passive RFID tag

It does not contain a power supply. As an alternative, It generates power
from the electromagnetic waves of RFID reader when tag is exposed in it
and then tag circuit is activated and transmits back the stored information
in memory. The size of passive RFID tag is very small as shown in Figure
2.1(b), sometime equal to a grain of rice or thinner like a paper, due to
absence of power supply. Figure 2.1(a) shows the RFID attached in a label
that in turn can be attached to the tracking item. Figure 2.1(b) shows RFID
passive tag and antenna in a substrate. The RFID reader can access passive
RFID tags from the length of 10 millimeters to 6 meters. Many applications
utilize passive RFID tags because of low cost related to them.

2.5.2 Active RFID tag

This variant of RFID tag, on the other hand includes an internal power sup-
ply, which helps to maintain a longer access range from RFID reader along
with large memory to hold more data. These tags can also store information
transmitted by RFID reader and also are bigger in size, around the size of a
coin, because of presence of power supply. The accessibility of these tags is
extended many meters and as far as their battery life time is concern, It can
be used around 10 years. Active RFID tags provide many benefits such as
precision, dependability, and higher performance in adverse environments,
such as humid or harsh

21

Chapter 2. Background 2.5. RFID tag

2.5 RFID tag

It contains a chip along with an antenna which receives signal from RFID
reader and returns back signal with data stored (tag Id number) inside the
tag. It is inserted in an object which is supposed to be track or identify and
it has minimal support for data security and privacy. RFID Tags are divided
into following two types:

2.5.1 Passive RFID tag

It does not contain a power supply. As an alternative, It generates power
from the electromagnetic waves of RFID reader when tag is exposed in it
and then tag circuit is activated and transmits back the stored information
in memory. The size of passive RFID tag is very small as shown in Figure
2.1(b), sometime equal to a grain of rice or thinner like a paper, due to
absence of power supply. Figure 2.1(a) shows the RFID attached in a label
that in turn can be attached to the tracking item. Figure 2.1(b) shows RFID
passive tag and antenna in a substrate. The RFID reader can access passive
RFID tags from the length of 10 millimeters to 6 meters. Many applications
utilize passive RFID tags because of low cost related to them.

2.5.2 Active RFID tag

This variant of RFID tag, on the other hand includes an internal power sup-
ply, which helps to maintain a longer access range from RFID reader along
with large memory to hold more data. These tags can also store information
transmitted by RFID reader and also are bigger in size, around the size of a
coin, because of presence of power supply. The accessibility of these tags is
extended many meters and as far as their battery life time is concern, It can
be used around 10 years. Active RFID tags provide many benefits such as
precision, dependability, and higher performance in adverse environments,
such as humid or harsh

21

Chapter 2. Background 2.5. RFID tag

2.5 RFID tag

It contains a chip along with an antenna which receives signal from RFID
reader and returns back signal with data stored (tag Id number) inside the
tag. It is inserted in an object which is supposed to be track or identify and
it has minimal support for data security and privacy. RFID Tags are divided
into following two types:

2.5.1 Passive RFID tag

It does not contain a power supply. As an alternative, It generates power
from the electromagnetic waves of RFID reader when tag is exposed in it
and then tag circuit is activated and transmits back the stored information
in memory. The size of passive RFID tag is very small as shown in Figure
2.1(b), sometime equal to a grain of rice or thinner like a paper, due to
absence of power supply. Figure 2.1(a) shows the RFID attached in a label
that in turn can be attached to the tracking item. Figure 2.1(b) shows RFID
passive tag and antenna in a substrate. The RFID reader can access passive
RFID tags from the length of 10 millimeters to 6 meters. Many applications
utilize passive RFID tags because of low cost related to them.

2.5.2 Active RFID tag

This variant of RFID tag, on the other hand includes an internal power sup-
ply, which helps to maintain a longer access range from RFID reader along
with large memory to hold more data. These tags can also store information
transmitted by RFID reader and also are bigger in size, around the size of a
coin, because of presence of power supply. The accessibility of these tags is
extended many meters and as far as their battery life time is concern, It can
be used around 10 years. Active RFID tags provide many benefits such as
precision, dependability, and higher performance in adverse environments,
such as humid or harsh

21

2.6. Digital Signature Chapter 2. Background

(a) RFID Tag in Label

(b) RFID Tag Components

Figure 2.1: RFID Passive Tags

2.6 Digital Signature

In order to use digital signature in broad spectrum, it is required to store
private key of signer in safe place to sign a message and legal framework
that bind all parties involved in digital signature application. Smart card
provide has potential to store private key and with the help of co-processor
a digital signature can also be generated inside the card. In 1995, Utah
state in USA has developed legal framework for the digital signature and
many other countries including Germany signature legislation adopted it as
a guideline [10].

22

2.6. Digital Signature Chapter 2. Background

(a) RFID Tag in Label

(b) RFID Tag Components

Figure 2.1: RFID Passive Tags

2.6 Digital Signature

In order to use digital signature in broad spectrum, it is required to store
private key of signer in safe place to sign a message and legal framework
that bind all parties involved in digital signature application. Smart card
provide has potential to store private key and with the help of co-processor
a digital signature can also be generated inside the card. In 1995, Utah
state in USA has developed legal framework for the digital signature and
many other countries including Germany signature legislation adopted it as
a guideline [10].

22

2.6. Digital Signature Chapter 2. Background

(a) RFID Tag in Label

(b) RFID Tag Components

Figure 2.1: RFID Passive Tags

2.6 Digital Signature

In order to use digital signature in broad spectrum, it is required to store
private key of signer in safe place to sign a message and legal framework
that bind all parties involved in digital signature application. Smart card
provide has potential to store private key and with the help of co-processor
a digital signature can also be generated inside the card. In 1995, Utah
state in USA has developed legal framework for the digital signature and
many other countries including Germany signature legislation adopted it as
a guideline [10].

22

2.6. Digital Signature Chapter 2. Background

(a) RFID Tag in Label

(b) RFID Tag Components

Figure 2.1: RFID Passive Tags

2.6 Digital Signature

In order to use digital signature in broad spectrum, it is required to store
private key of signer in safe place to sign a message and legal framework
that bind all parties involved in digital signature application. Smart card
provide has potential to store private key and with the help of co-processor
a digital signature can also be generated inside the card. In 1995, Utah
state in USA has developed legal framework for the digital signature and
many other countries including Germany signature legislation adopted it as
a guideline [10].

22

Chapter 2. Background 2.6. Digital Signature

2.6.1 Standards for digital signature

Due to open usage of digital signature, it is required to follow standards for
all commercial applications. ISO/IEC 7816-4 provides guidelines for gen-
eral smart card commands, ISO/IEC 7816-8 provide guidelines for com-
mands required to generate digital signature in smart cards. Standards for
smart card plastic body, electrical properties and data transmission are also
provided in ISO/IEC 7816. Authentication process between smart card and
rest of the world is provided in ISO/IEC 9796-2. Basic methods and mech-
anisms for digital signature are provided in ISO/IEC 14888. The structure
and coding mechanism of PKI certificate is provided in X.509.

2.6.2 Signing and Verification of Digital Signature

After signing a message, the digital signature can be used as a security
token that provide user authentication and data integrity anywhere in the
world to verify the sender of the message and the originality of the message.
This becomes possible because of asymmetric cryptography that provides
different private and public keys to a user. User can sign a message with
own private key and any one can verify the origin of message using user’s
public. Figure 2.2 shows signing process of typical digital signature. Plain
text message is supplied to hash algorithm that return short hash of mes-
sage typically 20 bytes. The hash of message provides defense mechanism
against message modification with fraudulent intention and also provides
short data to complex, time consuming cryptographic operations. Sender’s
private key is used to decrypt the hash of the message which in turn provide
authentication of the sender. Finally the decrypted hash (digital signature)
plus plain message are sent to receiver.

Figure2.3 shows verification process of typical digital signature. The re-
ceived message can be verified with the help of digital signature. Hash of
the plain message will be calculated and then digital signature will be en-
crypted using public key of the sender. After encryption the hash of the
digital signature will be compared with the hash of plain message. If both
hashes matches with each other then we can say that message is arrived
from the original sender and no one has modified the original message oth-
erwise if both hashes do not match then message is fake.

23

Chapter 2. Background 2.6. Digital Signature

2.6.1 Standards for digital signature

Due to open usage of digital signature, it is required to follow standards for
all commercial applications. ISO/IEC 7816-4 provides guidelines for gen-
eral smart card commands, ISO/IEC 7816-8 provide guidelines for com-
mands required to generate digital signature in smart cards. Standards for
smart card plastic body, electrical properties and data transmission are also
provided in ISO/IEC 7816. Authentication process between smart card and
rest of the world is provided in ISO/IEC 9796-2. Basic methods and mech-
anisms for digital signature are provided in ISO/IEC 14888. The structure
and coding mechanism of PKI certificate is provided in X.509.

2.6.2 Signing and Verification of Digital Signature

After signing a message, the digital signature can be used as a security
token that provide user authentication and data integrity anywhere in the
world to verify the sender of the message and the originality of the message.
This becomes possible because of asymmetric cryptography that provides
different private and public keys to a user. User can sign a message with
own private key and any one can verify the origin of message using user’s
public. Figure 2.2 shows signing process of typical digital signature. Plain
text message is supplied to hash algorithm that return short hash of mes-
sage typically 20 bytes. The hash of message provides defense mechanism
against message modification with fraudulent intention and also provides
short data to complex, time consuming cryptographic operations. Sender’s
private key is used to decrypt the hash of the message which in turn provide
authentication of the sender. Finally the decrypted hash (digital signature)
plus plain message are sent to receiver.

Figure2.3 shows verification process of typical digital signature. The re-
ceived message can be verified with the help of digital signature. Hash of
the plain message will be calculated and then digital signature will be en-
crypted using public key of the sender. After encryption the hash of the
digital signature will be compared with the hash of plain message. If both
hashes matches with each other then we can say that message is arrived
from the original sender and no one has modified the original message oth-
erwise if both hashes do not match then message is fake.

23

Chapter 2. Background 2.6. Digital Signature

2.6.1 Standards for digital signature

Due to open usage of digital signature, it is required to follow standards for
all commercial applications. ISO/IEC 7816-4 provides guidelines for gen-
eral smart card commands, ISO/IEC 7816-8 provide guidelines for com-
mands required to generate digital signature in smart cards. Standards for
smart card plastic body, electrical properties and data transmission are also
provided in ISO/IEC 7816. Authentication process between smart card and
rest of the world is provided in ISO/IEC 9796-2. Basic methods and mech-
anisms for digital signature are provided in ISO/IEC 14888. The structure
and coding mechanism of PKI certificate is provided in X.509.

2.6.2 Signing and Verification of Digital Signature

After signing a message, the digital signature can be used as a security
token that provide user authentication and data integrity anywhere in the
world to verify the sender of the message and the originality of the message.
This becomes possible because of asymmetric cryptography that provides
different private and public keys to a user. User can sign a message with
own private key and any one can verify the origin of message using user’s
public. Figure 2.2 shows signing process of typical digital signature. Plain
text message is supplied to hash algorithm that return short hash of mes-
sage typically 20 bytes. The hash of message provides defense mechanism
against message modification with fraudulent intention and also provides
short data to complex, time consuming cryptographic operations. Sender’s
private key is used to decrypt the hash of the message which in turn provide
authentication of the sender. Finally the decrypted hash (digital signature)
plus plain message are sent to receiver.

Figure2.3 shows verification process of typical digital signature. The re-
ceived message can be verified with the help of digital signature. Hash of
the plain message will be calculated and then digital signature will be en-
crypted using public key of the sender. After encryption the hash of the
digital signature will be compared with the hash of plain message. If both
hashes matches with each other then we can say that message is arrived
from the original sender and no one has modified the original message oth-
erwise if both hashes do not match then message is fake.

23

Chapter 2. Background 2.6. Digital Signature

2.6.1 Standards for digital signature

Due to open usage of digital signature, it is required to follow standards for
all commercial applications. ISO/IEC 7816-4 provides guidelines for gen-
eral smart card commands, ISO/IEC 7816-8 provide guidelines for com-
mands required to generate digital signature in smart cards. Standards for
smart card plastic body, electrical properties and data transmission are also
provided in ISO/IEC 7816. Authentication process between smart card and
rest of the world is provided in ISO/IEC 9796-2. Basic methods and mech-
anisms for digital signature are provided in ISO/IEC 14888. The structure
and coding mechanism of PKI certificate is provided in X.509.

2.6.2 Signing and Verification of Digital Signature

After signing a message, the digital signature can be used as a security
token that provide user authentication and data integrity anywhere in the
world to verify the sender of the message and the originality of the message.
This becomes possible because of asymmetric cryptography that provides
different private and public keys to a user. User can sign a message with
own private key and any one can verify the origin of message using user’s
public. Figure 2.2 shows signing process of typical digital signature. Plain
text message is supplied to hash algorithm that return short hash of mes-
sage typically 20 bytes. The hash of message provides defense mechanism
against message modification with fraudulent intention and also provides
short data to complex, time consuming cryptographic operations. Sender’s
private key is used to decrypt the hash of the message which in turn provide
authentication of the sender. Finally the decrypted hash (digital signature)
plus plain message are sent to receiver.

Figure2.3 shows verification process of typical digital signature. The re-
ceived message can be verified with the help of digital signature. Hash of
the plain message will be calculated and then digital signature will be en-
crypted using public key of the sender. After encryption the hash of the
digital signature will be compared with the hash of plain message. If both
hashes matches with each other then we can say that message is arrived
from the original sender and no one has modified the original message oth-
erwise if both hashes do not match then message is fake.

23

2.6. Digital Signature Chapter 2. Background

Figure 2.2: Signing Process of Digital Signature

2.6.3 Certificates

It can be observed from figure 2.3 that public key of sender is used to verify
that origin of message. It is therefore, necessary to make sure about the
authenticity of the public key used in verification of digital signature. For
this purpose, Certification Authority (CA) sign the public key of the user
and act as a third party which can authenticate that public key really belongs
to the original user. Certificate contains public key of the user, name of
the user, signature of user’s public key signed by CA and other parameters
according to X.509 standards. As smart card has limited resources therefore
public key certificate for smart card typically has size of 1 kilo Byte [10].

24

2.6. Digital Signature Chapter 2. Background

Figure 2.2: Signing Process of Digital Signature

2.6.3 Certificates

It can be observed from figure 2.3 that public key of sender is used to verify
that origin of message. It is therefore, necessary to make sure about the
authenticity of the public key used in verification of digital signature. For
this purpose, Certification Authority (CA) sign the public key of the user
and act as a third party which can authenticate that public key really belongs
to the original user. Certificate contains public key of the user, name of
the user, signature of user’s public key signed by CA and other parameters
according to X.509 standards. As smart card has limited resources therefore
public key certificate for smart card typically has size of 1 kilo Byte [10].

24

2.6. Digital Signature Chapter 2. Background

Figure 2.2: Signing Process of Digital Signature

2.6.3 Certificates

It can be observed from figure 2.3 that public key of sender is used to verify
that origin of message. It is therefore, necessary to make sure about the
authenticity of the public key used in verification of digital signature. For
this purpose, Certification Authority (CA) sign the public key of the user
and act as a third party which can authenticate that public key really belongs
to the original user. Certificate contains public key of the user, name of
the user, signature of user’s public key signed by CA and other parameters
according to X.509 standards. As smart card has limited resources therefore
public key certificate for smart card typically has size of 1 kilo Byte [10].

24

2.6. Digital Signature Chapter 2. Background

Figure 2.2: Signing Process of Digital Signature

2.6.3 Certificates

It can be observed from figure 2.3 that public key of sender is used to verify
that origin of message. It is therefore, necessary to make sure about the
authenticity of the public key used in verification of digital signature. For
this purpose, Certification Authority (CA) sign the public key of the user
and act as a third party which can authenticate that public key really belongs
to the original user. Certificate contains public key of the user, name of
the user, signature of user’s public key signed by CA and other parameters
according to X.509 standards. As smart card has limited resources therefore
public key certificate for smart card typically has size of 1 kilo Byte [10].

24

Chapter 2. Background 2.7. Cryptographic Algorithms

Figure 2.3: Verification Process of Digital Signature

2.7 Cryptographic Algorithms

The strength of underlying cryptographic algorithm relied on the solution
of hard mathematical problems like integer factorization and discrete log-
arithm. Based on these mathematical problems different cryptographic al-
gorithms have been realized today.

2.7.1 RSA

It is the first public key cryptographic algorithm published in 1978 [14].
Its security strength is based on hardness of factorizing large integer num-
bers and therefore secret key of RSA should be large enough to be broken
by modern computers processing power and advanced factorization algo-
rithms.

25

Chapter 2. Background 2.7. Cryptographic Algorithms

Figure 2.3: Verification Process of Digital Signature

2.7 Cryptographic Algorithms

The strength of underlying cryptographic algorithm relied on the solution
of hard mathematical problems like integer factorization and discrete log-
arithm. Based on these mathematical problems different cryptographic al-
gorithms have been realized today.

2.7.1 RSA

It is the first public key cryptographic algorithm published in 1978 [14].
Its security strength is based on hardness of factorizing large integer num-
bers and therefore secret key of RSA should be large enough to be broken
by modern computers processing power and advanced factorization algo-
rithms.

25

Chapter 2. Background 2.7. Cryptographic Algorithms

Figure 2.3: Verification Process of Digital Signature

2.7 Cryptographic Algorithms

The strength of underlying cryptographic algorithm relied on the solution
of hard mathematical problems like integer factorization and discrete log-
arithm. Based on these mathematical problems different cryptographic al-
gorithms have been realized today.

2.7.1 RSA

It is the first public key cryptographic algorithm published in 1978 [14].
Its security strength is based on hardness of factorizing large integer num-
bers and therefore secret key of RSA should be large enough to be broken
by modern computers processing power and advanced factorization algo-
rithms.

25

Chapter 2. Background 2.7. Cryptographic Algorithms

Figure 2.3: Verification Process of Digital Signature

2.7 Cryptographic Algorithms

The strength of underlying cryptographic algorithm relied on the solution
of hard mathematical problems like integer factorization and discrete log-
arithm. Based on these mathematical problems different cryptographic al-
gorithms have been realized today.

2.7.1 RSA

It is the first public key cryptographic algorithm published in 1978 [14].
Its security strength is based on hardness of factorizing large integer num-
bers and therefore secret key of RSA should be large enough to be broken
by modern computers processing power and advanced factorization algo-
rithms.

25

2.7. Cryptographic Algorithms Chapter 2. Background

Encrytion and Decryption

In order to perform encryption on message M, RSA cryptosystem uses fol-
lowing formula:

C = M e mod N

where C = Cipher text, M = plaint text message, e = public exponent, N=
length of bits in RSA cryptosystem. While decryption is performed using
following formula:

M = Cd mod N

where M = Plain text message, C = cipher text, d = private exponent and N
= length of bits in RSA cryptosystem.

Key Pair Generation

Key generation process in RSA has been performed in following way:

• Two different large prime numbers p and q are being selected.

• Both prime numbers p and q are being multiplied to generate another
number n (n = p ∗ q) equivalent to the length of RSA cryptosys-
tem. For example 1024 bit RSA cryptosystem should contain 1024
bit after multiplication of both selected prime numbers p and q. This
number will be publicly available and is used for both encryption and
decryption.

• Euler Tortient function of n will be calculated (Φ(n) = (p − 1)(q −
1)).

• Public exponent, e, will be selected such as e should be relatively
prime to Euler Tortient function calculated in previous step or great-
est common divisor of e and Φ(n) should be equal to one. gcd(Φ(n), e) =
1. The value of e should be greater than 1 and less than Φ(n).
(1 < e < Φ(n)). Public exponent e will be available publicly and
it is used along with n (e, n) for encryption. Typical values used for
public exponent are 3 and 216 + 1 because both values have only two
one bits which helps in fast calculation of encryption.

26

2.7. Cryptographic Algorithms Chapter 2. Background

Encrytion and Decryption

In order to perform encryption on message M, RSA cryptosystem uses fol-
lowing formula:

C = M e mod N

where C = Cipher text, M = plaint text message, e = public exponent, N=
length of bits in RSA cryptosystem. While decryption is performed using
following formula:

M = Cd mod N

where M = Plain text message, C = cipher text, d = private exponent and N
= length of bits in RSA cryptosystem.

Key Pair Generation

Key generation process in RSA has been performed in following way:

• Two different large prime numbers p and q are being selected.

• Both prime numbers p and q are being multiplied to generate another
number n (n = p ∗ q) equivalent to the length of RSA cryptosys-
tem. For example 1024 bit RSA cryptosystem should contain 1024
bit after multiplication of both selected prime numbers p and q. This
number will be publicly available and is used for both encryption and
decryption.

• Euler Tortient function of n will be calculated (Φ(n) = (p − 1)(q −
1)).

• Public exponent, e, will be selected such as e should be relatively
prime to Euler Tortient function calculated in previous step or great-
est common divisor of e and Φ(n) should be equal to one. gcd(Φ(n), e) =
1. The value of e should be greater than 1 and less than Φ(n).
(1 < e < Φ(n)). Public exponent e will be available publicly and
it is used along with n (e, n) for encryption. Typical values used for
public exponent are 3 and 216 + 1 because both values have only two
one bits which helps in fast calculation of encryption.

26

2.7. Cryptographic Algorithms Chapter 2. Background

Encrytion and Decryption

In order to perform encryption on message M, RSA cryptosystem uses fol-
lowing formula:

C = M e mod N

where C = Cipher text, M = plaint text message, e = public exponent, N=
length of bits in RSA cryptosystem. While decryption is performed using
following formula:

M = Cd mod N

where M = Plain text message, C = cipher text, d = private exponent and N
= length of bits in RSA cryptosystem.

Key Pair Generation

Key generation process in RSA has been performed in following way:

• Two different large prime numbers p and q are being selected.

• Both prime numbers p and q are being multiplied to generate another
number n (n = p ∗ q) equivalent to the length of RSA cryptosys-
tem. For example 1024 bit RSA cryptosystem should contain 1024
bit after multiplication of both selected prime numbers p and q. This
number will be publicly available and is used for both encryption and
decryption.

• Euler Tortient function of n will be calculated (Φ(n) = (p − 1)(q −
1)).

• Public exponent, e, will be selected such as e should be relatively
prime to Euler Tortient function calculated in previous step or great-
est common divisor of e and Φ(n) should be equal to one. gcd(Φ(n), e) =
1. The value of e should be greater than 1 and less than Φ(n).
(1 < e < Φ(n)). Public exponent e will be available publicly and
it is used along with n (e, n) for encryption. Typical values used for
public exponent are 3 and 216 + 1 because both values have only two
one bits which helps in fast calculation of encryption.

26

2.7. Cryptographic Algorithms Chapter 2. Background

Encrytion and Decryption

In order to perform encryption on message M, RSA cryptosystem uses fol-
lowing formula:

C = M e mod N

where C = Cipher text, M = plaint text message, e = public exponent, N=
length of bits in RSA cryptosystem. While decryption is performed using
following formula:

M = Cd mod N

where M = Plain text message, C = cipher text, d = private exponent and N
= length of bits in RSA cryptosystem.

Key Pair Generation

Key generation process in RSA has been performed in following way:

• Two different large prime numbers p and q are being selected.

• Both prime numbers p and q are being multiplied to generate another
number n (n = p ∗ q) equivalent to the length of RSA cryptosys-
tem. For example 1024 bit RSA cryptosystem should contain 1024
bit after multiplication of both selected prime numbers p and q. This
number will be publicly available and is used for both encryption and
decryption.

• Euler Tortient function of n will be calculated (Φ(n) = (p − 1)(q −
1)).

• Public exponent, e, will be selected such as e should be relatively
prime to Euler Tortient function calculated in previous step or great-
est common divisor of e and Φ(n) should be equal to one. gcd(Φ(n), e) =
1. The value of e should be greater than 1 and less than Φ(n).
(1 < e < Φ(n)). Public exponent e will be available publicly and
it is used along with n (e, n) for encryption. Typical values used for
public exponent are 3 and 216 + 1 because both values have only two
one bits which helps in fast calculation of encryption.

26

Chapter 2. Background 2.7. Cryptographic Algorithms

• Private exponent, d, will be calculated by performing modulo inverse
multiplication over public exponent e. Such as d = e−1 (mod Φ(n)).
Therefore, ed = 1 (mod Φ(n)). Like e, d should be relatively prime
to Φ(n) and d will be present securely only to the person who keeps
private key. Private exponent, d, has typically same length of bits as
n.

• Public key is: PU = (e, n)

• Private key is: PR = (d, n)

Digital Signature

In order to sign a message user utilize her own private key and in verifi-
cation process public key of the user has been used. Following equations
explain RSA signing action:

S = Md mod N

Where S is the signature, M is plain text message, d is private exponent
and N is length of cryptosystem constructed by prime number p and q.
Following is the verification process of RSA signature:

M = Se mod N

where M is plain text, S is signature, e is public exponent and N is length
of RSA cryptosystem.

In order to sign a message, modular exponentiation is performed over mes-
sage which is quite complex and large operation due to the length of private
exponent, d. therefore it is quite hard to implement an modular exponenti-
ation algorithm in constrained environment of smart card. In JCOP smart
card RSA signature is generated using CRT (Chinese Remainder Theorem)
which is four times faster than a typical modular exponentiation algorithm.

27

Chapter 2. Background 2.7. Cryptographic Algorithms

• Private exponent, d, will be calculated by performing modulo inverse
multiplication over public exponent e. Such as d = e−1 (mod Φ(n)).
Therefore, ed = 1 (mod Φ(n)). Like e, d should be relatively prime
to Φ(n) and d will be present securely only to the person who keeps
private key. Private exponent, d, has typically same length of bits as
n.

• Public key is: PU = (e, n)

• Private key is: PR = (d, n)

Digital Signature

In order to sign a message user utilize her own private key and in verifi-
cation process public key of the user has been used. Following equations
explain RSA signing action:

S = Md mod N

Where S is the signature, M is plain text message, d is private exponent
and N is length of cryptosystem constructed by prime number p and q.
Following is the verification process of RSA signature:

M = Se mod N

where M is plain text, S is signature, e is public exponent and N is length
of RSA cryptosystem.

In order to sign a message, modular exponentiation is performed over mes-
sage which is quite complex and large operation due to the length of private
exponent, d. therefore it is quite hard to implement an modular exponenti-
ation algorithm in constrained environment of smart card. In JCOP smart
card RSA signature is generated using CRT (Chinese Remainder Theorem)
which is four times faster than a typical modular exponentiation algorithm.

27

Chapter 2. Background 2.7. Cryptographic Algorithms

• Private exponent, d, will be calculated by performing modulo inverse
multiplication over public exponent e. Such as d = e−1 (mod Φ(n)).
Therefore, ed = 1 (mod Φ(n)). Like e, d should be relatively prime
to Φ(n) and d will be present securely only to the person who keeps
private key. Private exponent, d, has typically same length of bits as
n.

• Public key is: PU = (e, n)

• Private key is: PR = (d, n)

Digital Signature

In order to sign a message user utilize her own private key and in verifi-
cation process public key of the user has been used. Following equations
explain RSA signing action:

S = Md mod N

Where S is the signature, M is plain text message, d is private exponent
and N is length of cryptosystem constructed by prime number p and q.
Following is the verification process of RSA signature:

M = Se mod N

where M is plain text, S is signature, e is public exponent and N is length
of RSA cryptosystem.

In order to sign a message, modular exponentiation is performed over mes-
sage which is quite complex and large operation due to the length of private
exponent, d. therefore it is quite hard to implement an modular exponenti-
ation algorithm in constrained environment of smart card. In JCOP smart
card RSA signature is generated using CRT (Chinese Remainder Theorem)
which is four times faster than a typical modular exponentiation algorithm.

27

Chapter 2. Background 2.7. Cryptographic Algorithms

• Private exponent, d, will be calculated by performing modulo inverse
multiplication over public exponent e. Such as d = e−1 (mod Φ(n)).
Therefore, ed = 1 (mod Φ(n)). Like e, d should be relatively prime
to Φ(n) and d will be present securely only to the person who keeps
private key. Private exponent, d, has typically same length of bits as
n.

• Public key is: PU = (e, n)

• Private key is: PR = (d, n)

Digital Signature

In order to sign a message user utilize her own private key and in verifi-
cation process public key of the user has been used. Following equations
explain RSA signing action:

S = Md mod N

Where S is the signature, M is plain text message, d is private exponent
and N is length of cryptosystem constructed by prime number p and q.
Following is the verification process of RSA signature:

M = Se mod N

where M is plain text, S is signature, e is public exponent and N is length
of RSA cryptosystem.

In order to sign a message, modular exponentiation is performed over mes-
sage which is quite complex and large operation due to the length of private
exponent, d. therefore it is quite hard to implement an modular exponenti-
ation algorithm in constrained environment of smart card. In JCOP smart
card RSA signature is generated using CRT (Chinese Remainder Theorem)
which is four times faster than a typical modular exponentiation algorithm.

27

2.7. Cryptographic Algorithms Chapter 2. Background

Chinese Remainder Theorem (CRT)

CRT speed up signing process is achieved using following operations:

Sp = (M mod p)(dmod(p−1)) mod p
Sq = (M mod q)(dmod(q−1)) mod q

Then, combining both calculated Sp and Sq, signature S can be obtained:

S = aSp+ bSq mod n

where

a = 1(mod p) and b = 0(mod p)
a = 0(mod q) and b = 1(mod q)

Alternatively, RSA signature can be generated using CRT scheme as:

S = Sq + ((Sp− Sq)q−1 mod p) ∗ q

Here, each one of two exponentiations in CRT (d mod (p− 1)) and (d mod
(q − 1)) takes eight times faster than modular exponentiation, d, which
is twice in length than both exponentiations of CRT. The disadvantage of
CRT scheme is to store pre-calculated more information (p, q, d mod (p −
1), d mod (q − 1), q−1 mod p) in the smart card than only (d, n) in case of
modular exponentiation. In JCOP smart card, following variables represent
all five components of RSA_CRT scheme:

• P = p (prime factor of n)

• Q = q (prime factor of n)

• DP1 = d mod (p− 1) (CRT exponent 1)

• DQ1 = d mod (q − 1) (CRT exponent 2)

• PQ = q−1 mod p (CRT co-efficient)

Padding Scheme

It is not considered secure to simply apply RSA operations on plain text.
Message should be padded with some value or should be converted into

28

2.7. Cryptographic Algorithms Chapter 2. Background

Chinese Remainder Theorem (CRT)

CRT speed up signing process is achieved using following operations:

Sp = (M mod p)(dmod(p−1)) mod p
Sq = (M mod q)(dmod(q−1)) mod q

Then, combining both calculated Sp and Sq, signature S can be obtained:

S = aSp+ bSq mod n

where

a = 1(mod p) and b = 0(mod p)
a = 0(mod q) and b = 1(mod q)

Alternatively, RSA signature can be generated using CRT scheme as:

S = Sq + ((Sp− Sq)q−1 mod p) ∗ q

Here, each one of two exponentiations in CRT (d mod (p− 1)) and (d mod
(q − 1)) takes eight times faster than modular exponentiation, d, which
is twice in length than both exponentiations of CRT. The disadvantage of
CRT scheme is to store pre-calculated more information (p, q, d mod (p −
1), d mod (q − 1), q−1 mod p) in the smart card than only (d, n) in case of
modular exponentiation. In JCOP smart card, following variables represent
all five components of RSA_CRT scheme:

• P = p (prime factor of n)

• Q = q (prime factor of n)

• DP1 = d mod (p− 1) (CRT exponent 1)

• DQ1 = d mod (q − 1) (CRT exponent 2)

• PQ = q−1 mod p (CRT co-efficient)

Padding Scheme

It is not considered secure to simply apply RSA operations on plain text.
Message should be padded with some value or should be converted into

28

2.7. Cryptographic Algorithms Chapter 2. Background

Chinese Remainder Theorem (CRT)

CRT speed up signing process is achieved using following operations:

Sp = (M mod p)(dmod(p−1)) mod p
Sq = (M mod q)(dmod(q−1)) mod q

Then, combining both calculated Sp and Sq, signature S can be obtained:

S = aSp+ bSq mod n

where

a = 1(mod p) and b = 0(mod p)
a = 0(mod q) and b = 1(mod q)

Alternatively, RSA signature can be generated using CRT scheme as:

S = Sq + ((Sp− Sq)q−1 mod p) ∗ q

Here, each one of two exponentiations in CRT (d mod (p− 1)) and (d mod
(q − 1)) takes eight times faster than modular exponentiation, d, which
is twice in length than both exponentiations of CRT. The disadvantage of
CRT scheme is to store pre-calculated more information (p, q, d mod (p −
1), d mod (q − 1), q−1 mod p) in the smart card than only (d, n) in case of
modular exponentiation. In JCOP smart card, following variables represent
all five components of RSA_CRT scheme:

• P = p (prime factor of n)

• Q = q (prime factor of n)

• DP1 = d mod (p− 1) (CRT exponent 1)

• DQ1 = d mod (q − 1) (CRT exponent 2)

• PQ = q−1 mod p (CRT co-efficient)

Padding Scheme

It is not considered secure to simply apply RSA operations on plain text.
Message should be padded with some value or should be converted into

28

2.7. Cryptographic Algorithms Chapter 2. Background

Chinese Remainder Theorem (CRT)

CRT speed up signing process is achieved using following operations:

Sp = (M mod p)(dmod(p−1)) mod p
Sq = (M mod q)(dmod(q−1)) mod q

Then, combining both calculated Sp and Sq, signature S can be obtained:

S = aSp+ bSq mod n

where

a = 1(mod p) and b = 0(mod p)
a = 0(mod q) and b = 1(mod q)

Alternatively, RSA signature can be generated using CRT scheme as:

S = Sq + ((Sp− Sq)q−1 mod p) ∗ q

Here, each one of two exponentiations in CRT (d mod (p− 1)) and (d mod
(q − 1)) takes eight times faster than modular exponentiation, d, which
is twice in length than both exponentiations of CRT. The disadvantage of
CRT scheme is to store pre-calculated more information (p, q, d mod (p −
1), d mod (q − 1), q−1 mod p) in the smart card than only (d, n) in case of
modular exponentiation. In JCOP smart card, following variables represent
all five components of RSA_CRT scheme:

• P = p (prime factor of n)

• Q = q (prime factor of n)

• DP1 = d mod (p− 1) (CRT exponent 1)

• DQ1 = d mod (q − 1) (CRT exponent 2)

• PQ = q−1 mod p (CRT co-efficient)

Padding Scheme

It is not considered secure to simply apply RSA operations on plain text.
Message should be padded with some value or should be converted into

28

Chapter 2. Background 2.7. Cryptographic Algorithms

their equivalent hash form. There are two popular schemes for providing
padding with RSA signature:

• RSASSA-PSS (Signature with appendix based on Probabilistic Sig-
nature Scheme)

• RSASSA-PKCS1-V1_5 (Signature with appendix based on version
1.5 of PKCS#1)

In our implementation of RSA-CRT 1024 bit digital signature, RSASSA-
PKCS1-V1_5 padding scheme is used which combines RSASP1 and RSAVP1
primitives with the EMSA-PKCS1-V1_5 encoding method along with SHA1
hash function. In RSASP1, private key is quintuple of (p, q, dP, dQ, qInv)
and in RSAVP1, public key is (n, e) [15].

Encoding method

It converts a message into encoded message of specific length. In our case,
1024 bit RSA_CRT_SHA1, 20 bytes (160 bits) hash of message will be
converted to 128 bytes (1024 bits) encoded message before performing
signing operation. Following is the details of encoding method:

• K = 1024 bits (intended length of encoded message for RSA 1024
bits key)

• M = Plain text message

• H = SHA1(M) (hash of message using SHA1 hash function)

• EM = 00 || 01 || PS || 00 || T

Where EM is encoded message, || is concatenation operator, T is an ASN.1
value of type DigestInfo encoded using the DER (Distinguished Encoding
Rules) and is combination of hash function identifier along with hash value
of message, PS is a string of octets consisting of values 0xff and the length
of PS is K - (length of T +3).

The value of T with hash function SHA1:

T = hash function identifier || hash

29

Chapter 2. Background 2.7. Cryptographic Algorithms

their equivalent hash form. There are two popular schemes for providing
padding with RSA signature:

• RSASSA-PSS (Signature with appendix based on Probabilistic Sig-
nature Scheme)

• RSASSA-PKCS1-V1_5 (Signature with appendix based on version
1.5 of PKCS#1)

In our implementation of RSA-CRT 1024 bit digital signature, RSASSA-
PKCS1-V1_5 padding scheme is used which combines RSASP1 and RSAVP1
primitives with the EMSA-PKCS1-V1_5 encoding method along with SHA1
hash function. In RSASP1, private key is quintuple of (p, q, dP, dQ, qInv)
and in RSAVP1, public key is (n, e) [15].

Encoding method

It converts a message into encoded message of specific length. In our case,
1024 bit RSA_CRT_SHA1, 20 bytes (160 bits) hash of message will be
converted to 128 bytes (1024 bits) encoded message before performing
signing operation. Following is the details of encoding method:

• K = 1024 bits (intended length of encoded message for RSA 1024
bits key)

• M = Plain text message

• H = SHA1(M) (hash of message using SHA1 hash function)

• EM = 00 || 01 || PS || 00 || T

Where EM is encoded message, || is concatenation operator, T is an ASN.1
value of type DigestInfo encoded using the DER (Distinguished Encoding
Rules) and is combination of hash function identifier along with hash value
of message, PS is a string of octets consisting of values 0xff and the length
of PS is K - (length of T +3).

The value of T with hash function SHA1:

T = hash function identifier || hash

29

Chapter 2. Background 2.7. Cryptographic Algorithms

their equivalent hash form. There are two popular schemes for providing
padding with RSA signature:

• RSASSA-PSS (Signature with appendix based on Probabilistic Sig-
nature Scheme)

• RSASSA-PKCS1-V1_5 (Signature with appendix based on version
1.5 of PKCS#1)

In our implementation of RSA-CRT 1024 bit digital signature, RSASSA-
PKCS1-V1_5 padding scheme is used which combines RSASP1 and RSAVP1
primitives with the EMSA-PKCS1-V1_5 encoding method along with SHA1
hash function. In RSASP1, private key is quintuple of (p, q, dP, dQ, qInv)
and in RSAVP1, public key is (n, e) [15].

Encoding method

It converts a message into encoded message of specific length. In our case,
1024 bit RSA_CRT_SHA1, 20 bytes (160 bits) hash of message will be
converted to 128 bytes (1024 bits) encoded message before performing
signing operation. Following is the details of encoding method:

• K = 1024 bits (intended length of encoded message for RSA 1024
bits key)

• M = Plain text message

• H = SHA1(M) (hash of message using SHA1 hash function)

• EM = 00 || 01 || PS || 00 || T

Where EM is encoded message, || is concatenation operator, T is an ASN.1
value of type DigestInfo encoded using the DER (Distinguished Encoding
Rules) and is combination of hash function identifier along with hash value
of message, PS is a string of octets consisting of values 0xff and the length
of PS is K - (length of T +3).

The value of T with hash function SHA1:

T = hash function identifier || hash

29

Chapter 2. Background 2.7. Cryptographic Algorithms

their equivalent hash form. There are two popular schemes for providing
padding with RSA signature:

• RSASSA-PSS (Signature with appendix based on Probabilistic Sig-
nature Scheme)

• RSASSA-PKCS1-V1_5 (Signature with appendix based on version
1.5 of PKCS#1)

In our implementation of RSA-CRT 1024 bit digital signature, RSASSA-
PKCS1-V1_5 padding scheme is used which combines RSASP1 and RSAVP1
primitives with the EMSA-PKCS1-V1_5 encoding method along with SHA1
hash function. In RSASP1, private key is quintuple of (p, q, dP, dQ, qInv)
and in RSAVP1, public key is (n, e) [15].

Encoding method

It converts a message into encoded message of specific length. In our case,
1024 bit RSA_CRT_SHA1, 20 bytes (160 bits) hash of message will be
converted to 128 bytes (1024 bits) encoded message before performing
signing operation. Following is the details of encoding method:

• K = 1024 bits (intended length of encoded message for RSA 1024
bits key)

• M = Plain text message

• H = SHA1(M) (hash of message using SHA1 hash function)

• EM = 00 || 01 || PS || 00 || T

Where EM is encoded message, || is concatenation operator, T is an ASN.1
value of type DigestInfo encoded using the DER (Distinguished Encoding
Rules) and is combination of hash function identifier along with hash value
of message, PS is a string of octets consisting of values 0xff and the length
of PS is K - (length of T +3).

The value of T with hash function SHA1:

T = hash function identifier || hash

29

2.7. Cryptographic Algorithms Chapter 2. Background

Hash function identifier for SHA1 is following 15 Octets in hexadecimal
format:

SHA1 = 30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14

This will be combined with 20 byte hash value of message:

T = 30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H

The length of T is 15 + 20 = 35 bytes and the length of PS is 128 - (35+3)
= 90 bytes.

2.7.2 ECDSA

In 1985, Neal Koblitz and Victor Miller had invented Elliptic Curve Cryp-
tosystems (ECC) and security of ECC is based on computational diffi-
culty of Elliptic Curve Discrete Logarithm Problem (ECDLP). In 1992,
Scott Vanstone proposed ECDSA against the National Institute of Stan-
dards and Technology (NIST) proposal for Digital Signature Standards
(DSS). In 1998, ECDSA had been included in International standards Or-
ganization (ISO) as ISO 18888-3. In 1999, ECDSA had been included in
American National Standards Institute (ANSI) as ANSI X9.62 and in 2000;
it is included in Institute of Electrical and Electronic Engineering (IEEE)
as IEEE 1363-2000 and also included in U.S. Government Federal Infor-
mation Processing Standards (FIPS) as FIPS 186-2.

Advantage of ECC over RSA is smaller key size with equivalent security to
large key size of RSA. Smaller key size reflects less time in the processing
of complex crypto operations and also smaller certificates for public key au-
thentication can be used. Hence ECC provides faster execution and require
less storage medium for keys. These benefits make ECDSA more suitable
choice for environments where processing power and storage is constrained
like smart cards. Elliptic curves are defined over finite fields Fq where q is
the order of finite field F. There are Prime Finite Fields Fp where q=p and
Binary Finite Field Fm

2 where q = 2m . Binary finite fields have two basis
representations: Polynomial Basis Representation and Normal Basis Rep-
resentation. In our case we have utilized elliptic curve over binary finite

30

2.7. Cryptographic Algorithms Chapter 2. Background

Hash function identifier for SHA1 is following 15 Octets in hexadecimal
format:

SHA1 = 30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14

This will be combined with 20 byte hash value of message:

T = 30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H

The length of T is 15 + 20 = 35 bytes and the length of PS is 128 - (35+3)
= 90 bytes.

2.7.2 ECDSA

In 1985, Neal Koblitz and Victor Miller had invented Elliptic Curve Cryp-
tosystems (ECC) and security of ECC is based on computational diffi-
culty of Elliptic Curve Discrete Logarithm Problem (ECDLP). In 1992,
Scott Vanstone proposed ECDSA against the National Institute of Stan-
dards and Technology (NIST) proposal for Digital Signature Standards
(DSS). In 1998, ECDSA had been included in International standards Or-
ganization (ISO) as ISO 18888-3. In 1999, ECDSA had been included in
American National Standards Institute (ANSI) as ANSI X9.62 and in 2000;
it is included in Institute of Electrical and Electronic Engineering (IEEE)
as IEEE 1363-2000 and also included in U.S. Government Federal Infor-
mation Processing Standards (FIPS) as FIPS 186-2.

Advantage of ECC over RSA is smaller key size with equivalent security to
large key size of RSA. Smaller key size reflects less time in the processing
of complex crypto operations and also smaller certificates for public key au-
thentication can be used. Hence ECC provides faster execution and require
less storage medium for keys. These benefits make ECDSA more suitable
choice for environments where processing power and storage is constrained
like smart cards. Elliptic curves are defined over finite fields Fq where q is
the order of finite field F. There are Prime Finite Fields Fp where q=p and
Binary Finite Field Fm

2 where q = 2m . Binary finite fields have two basis
representations: Polynomial Basis Representation and Normal Basis Rep-
resentation. In our case we have utilized elliptic curve over binary finite

30

2.7. Cryptographic Algorithms Chapter 2. Background

Hash function identifier for SHA1 is following 15 Octets in hexadecimal
format:

SHA1 = 30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14

This will be combined with 20 byte hash value of message:

T = 30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H

The length of T is 15 + 20 = 35 bytes and the length of PS is 128 - (35+3)
= 90 bytes.

2.7.2 ECDSA

In 1985, Neal Koblitz and Victor Miller had invented Elliptic Curve Cryp-
tosystems (ECC) and security of ECC is based on computational diffi-
culty of Elliptic Curve Discrete Logarithm Problem (ECDLP). In 1992,
Scott Vanstone proposed ECDSA against the National Institute of Stan-
dards and Technology (NIST) proposal for Digital Signature Standards
(DSS). In 1998, ECDSA had been included in International standards Or-
ganization (ISO) as ISO 18888-3. In 1999, ECDSA had been included in
American National Standards Institute (ANSI) as ANSI X9.62 and in 2000;
it is included in Institute of Electrical and Electronic Engineering (IEEE)
as IEEE 1363-2000 and also included in U.S. Government Federal Infor-
mation Processing Standards (FIPS) as FIPS 186-2.

Advantage of ECC over RSA is smaller key size with equivalent security to
large key size of RSA. Smaller key size reflects less time in the processing
of complex crypto operations and also smaller certificates for public key au-
thentication can be used. Hence ECC provides faster execution and require
less storage medium for keys. These benefits make ECDSA more suitable
choice for environments where processing power and storage is constrained
like smart cards. Elliptic curves are defined over finite fields Fq where q is
the order of finite field F. There are Prime Finite Fields Fp where q=p and
Binary Finite Field Fm

2 where q = 2m . Binary finite fields have two basis
representations: Polynomial Basis Representation and Normal Basis Rep-
resentation. In our case we have utilized elliptic curve over binary finite

30

2.7. Cryptographic Algorithms Chapter 2. Background

Hash function identifier for SHA1 is following 15 Octets in hexadecimal
format:

SHA1 = 30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14

This will be combined with 20 byte hash value of message:

T = 30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H

The length of T is 15 + 20 = 35 bytes and the length of PS is 128 - (35+3)
= 90 bytes.

2.7.2 ECDSA

In 1985, Neal Koblitz and Victor Miller had invented Elliptic Curve Cryp-
tosystems (ECC) and security of ECC is based on computational diffi-
culty of Elliptic Curve Discrete Logarithm Problem (ECDLP). In 1992,
Scott Vanstone proposed ECDSA against the National Institute of Stan-
dards and Technology (NIST) proposal for Digital Signature Standards
(DSS). In 1998, ECDSA had been included in International standards Or-
ganization (ISO) as ISO 18888-3. In 1999, ECDSA had been included in
American National Standards Institute (ANSI) as ANSI X9.62 and in 2000;
it is included in Institute of Electrical and Electronic Engineering (IEEE)
as IEEE 1363-2000 and also included in U.S. Government Federal Infor-
mation Processing Standards (FIPS) as FIPS 186-2.

Advantage of ECC over RSA is smaller key size with equivalent security to
large key size of RSA. Smaller key size reflects less time in the processing
of complex crypto operations and also smaller certificates for public key au-
thentication can be used. Hence ECC provides faster execution and require
less storage medium for keys. These benefits make ECDSA more suitable
choice for environments where processing power and storage is constrained
like smart cards. Elliptic curves are defined over finite fields Fq where q is
the order of finite field F. There are Prime Finite Fields Fp where q=p and
Binary Finite Field Fm

2 where q = 2m . Binary finite fields have two basis
representations: Polynomial Basis Representation and Normal Basis Rep-
resentation. In our case we have utilized elliptic curve over binary finite

30

Chapter 2. Background 2.7. Cryptographic Algorithms

field Fm
2 with polynomial basis for element representation of chosen finite

field.

Domain Parameters

It is important that all parties involved in ECDSA signature generation and
verification should comply with similar set of domain parameters. These
domain parameters define the elliptic curve over finite field, order of finite
field and a base point G over elliptic curve finite field. There are seven
ECDSA domain parameters: D = (q, FR, a, b, G, n, h)

• Q: It is field size of elliptic curve; possible values of q can be p (an
odd prime) or 2m. In our case q = 2m, here m is extension degree of
binary field Fm

2 .

• FR: It is field representation of the elements of finite field Fm
2 ; possi-

ble values can be polynomial representation and normal representa-
tion. In our case FR = polynomial representation.

• A, B: These two parameters are field elements in Fq and these defines
the equation of elliptic curve over Fq.

• G: It defines a base point (xG, yG) over chosen elliptic curve.

• N: It defines the order of base point G.

• H: the co-factor.

In our case of ESDSA, we implemented SHA-1 as hash function and NIST
recommended Koblitz curve K-163 with polynomial basis representation
as elliptic curve [11]. Details of K-163 curve’s parameters and their corre-
sponding values are mentioned below:

Key Pair Generation

ECDSA keys are generated by using a specific set of domain parameters
defined in previous section D = (q, FR, a, b, G, n, h). A certificate can be
used to authenticate the used domain parameters or mutual agreement of
all involving parties on similar set of domain parameters is required. Key
generation in ECDSA has following steps:

31

Chapter 2. Background 2.7. Cryptographic Algorithms

field Fm
2 with polynomial basis for element representation of chosen finite

field.

Domain Parameters

It is important that all parties involved in ECDSA signature generation and
verification should comply with similar set of domain parameters. These
domain parameters define the elliptic curve over finite field, order of finite
field and a base point G over elliptic curve finite field. There are seven
ECDSA domain parameters: D = (q, FR, a, b, G, n, h)

• Q: It is field size of elliptic curve; possible values of q can be p (an
odd prime) or 2m. In our case q = 2m, here m is extension degree of
binary field Fm

2 .

• FR: It is field representation of the elements of finite field Fm
2 ; possi-

ble values can be polynomial representation and normal representa-
tion. In our case FR = polynomial representation.

• A, B: These two parameters are field elements in Fq and these defines
the equation of elliptic curve over Fq.

• G: It defines a base point (xG, yG) over chosen elliptic curve.

• N: It defines the order of base point G.

• H: the co-factor.

In our case of ESDSA, we implemented SHA-1 as hash function and NIST
recommended Koblitz curve K-163 with polynomial basis representation
as elliptic curve [11]. Details of K-163 curve’s parameters and their corre-
sponding values are mentioned below:

Key Pair Generation

ECDSA keys are generated by using a specific set of domain parameters
defined in previous section D = (q, FR, a, b, G, n, h). A certificate can be
used to authenticate the used domain parameters or mutual agreement of
all involving parties on similar set of domain parameters is required. Key
generation in ECDSA has following steps:

31

Chapter 2. Background 2.7. Cryptographic Algorithms

field Fm
2 with polynomial basis for element representation of chosen finite

field.

Domain Parameters

It is important that all parties involved in ECDSA signature generation and
verification should comply with similar set of domain parameters. These
domain parameters define the elliptic curve over finite field, order of finite
field and a base point G over elliptic curve finite field. There are seven
ECDSA domain parameters: D = (q, FR, a, b, G, n, h)

• Q: It is field size of elliptic curve; possible values of q can be p (an
odd prime) or 2m. In our case q = 2m, here m is extension degree of
binary field Fm

2 .

• FR: It is field representation of the elements of finite field Fm
2 ; possi-

ble values can be polynomial representation and normal representa-
tion. In our case FR = polynomial representation.

• A, B: These two parameters are field elements in Fq and these defines
the equation of elliptic curve over Fq.

• G: It defines a base point (xG, yG) over chosen elliptic curve.

• N: It defines the order of base point G.

• H: the co-factor.

In our case of ESDSA, we implemented SHA-1 as hash function and NIST
recommended Koblitz curve K-163 with polynomial basis representation
as elliptic curve [11]. Details of K-163 curve’s parameters and their corre-
sponding values are mentioned below:

Key Pair Generation

ECDSA keys are generated by using a specific set of domain parameters
defined in previous section D = (q, FR, a, b, G, n, h). A certificate can be
used to authenticate the used domain parameters or mutual agreement of
all involving parties on similar set of domain parameters is required. Key
generation in ECDSA has following steps:

31

Chapter 2. Background 2.7. Cryptographic Algorithms

field Fm
2 with polynomial basis for element representation of chosen finite

field.

Domain Parameters

It is important that all parties involved in ECDSA signature generation and
verification should comply with similar set of domain parameters. These
domain parameters define the elliptic curve over finite field, order of finite
field and a base point G over elliptic curve finite field. There are seven
ECDSA domain parameters: D = (q, FR, a, b, G, n, h)

• Q: It is field size of elliptic curve; possible values of q can be p (an
odd prime) or 2m. In our case q = 2m, here m is extension degree of
binary field Fm

2 .

• FR: It is field representation of the elements of finite field Fm
2 ; possi-

ble values can be polynomial representation and normal representa-
tion. In our case FR = polynomial representation.

• A, B: These two parameters are field elements in Fq and these defines
the equation of elliptic curve over Fq.

• G: It defines a base point (xG, yG) over chosen elliptic curve.

• N: It defines the order of base point G.

• H: the co-factor.

In our case of ESDSA, we implemented SHA-1 as hash function and NIST
recommended Koblitz curve K-163 with polynomial basis representation
as elliptic curve [11]. Details of K-163 curve’s parameters and their corre-
sponding values are mentioned below:

Key Pair Generation

ECDSA keys are generated by using a specific set of domain parameters
defined in previous section D = (q, FR, a, b, G, n, h). A certificate can be
used to authenticate the used domain parameters or mutual agreement of
all involving parties on similar set of domain parameters is required. Key
generation in ECDSA has following steps:

31

2.7. Cryptographic Algorithms Chapter 2. Background

Curve Parameters Values of Parameters
m 163
FR Polynomial basis f(x) = x163 + x7 + x6 + x3 + 1

n 5846006549323611672814741753598448348329118574063
h 2

a2,b2 1,1
xG 0x 2 fe13c053 7bbc11ac aa07d793 de4e6d5e 5c94eee8
yG 0x 2 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9

Table 2.5: NIST Recommended K-163 Curve Values [11]

• Randomly choose an integer number d within the range [1, n− 1].

• Calculate Q = dG.

Here, ECDSA private key is d and public key is Q.

Signature Generation

In order to sign a message, m, domain parameters along with key pair
(Q, d) should be initialized and then following operations are performed.

1. Randomly choose an integer number k within the range [1, n− 1].

2. Perform computation kG = (x1, y1).

3. Perform computation r = x1 mod n, if this results zero jump to step
1

4. Perform computation k−1 mod n.

5. Perform computation e = SHA1(m). where SHA1 is hash function.

6. Perform computation s = k−1(e + dr) mod n. if this results zero
jump to step 1.

7. Signature for message m is (r, s).

32

2.7. Cryptographic Algorithms Chapter 2. Background

Curve Parameters Values of Parameters
m 163
FR Polynomial basis f(x) = x163 + x7 + x6 + x3 + 1

n 5846006549323611672814741753598448348329118574063
h 2

a2,b2 1,1
xG 0x 2 fe13c053 7bbc11ac aa07d793 de4e6d5e 5c94eee8
yG 0x 2 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9

Table 2.5: NIST Recommended K-163 Curve Values [11]

• Randomly choose an integer number d within the range [1, n− 1].

• Calculate Q = dG.

Here, ECDSA private key is d and public key is Q.

Signature Generation

In order to sign a message, m, domain parameters along with key pair
(Q, d) should be initialized and then following operations are performed.

1. Randomly choose an integer number k within the range [1, n− 1].

2. Perform computation kG = (x1, y1).

3. Perform computation r = x1 mod n, if this results zero jump to step
1

4. Perform computation k−1 mod n.

5. Perform computation e = SHA1(m). where SHA1 is hash function.

6. Perform computation s = k−1(e + dr) mod n. if this results zero
jump to step 1.

7. Signature for message m is (r, s).

32

2.7. Cryptographic Algorithms Chapter 2. Background

Curve Parameters Values of Parameters
m 163
FR Polynomial basis f(x) = x163 + x7 + x6 + x3 + 1

n 5846006549323611672814741753598448348329118574063
h 2

a2,b2 1,1
xG 0x 2 fe13c053 7bbc11ac aa07d793 de4e6d5e 5c94eee8
yG 0x 2 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9

Table 2.5: NIST Recommended K-163 Curve Values [11]

• Randomly choose an integer number d within the range [1, n− 1].

• Calculate Q = dG.

Here, ECDSA private key is d and public key is Q.

Signature Generation

In order to sign a message, m, domain parameters along with key pair
(Q, d) should be initialized and then following operations are performed.

1. Randomly choose an integer number k within the range [1, n− 1].

2. Perform computation kG = (x1, y1).

3. Perform computation r = x1 mod n, if this results zero jump to step
1

4. Perform computation k−1 mod n.

5. Perform computation e = SHA1(m). where SHA1 is hash function.

6. Perform computation s = k−1(e + dr) mod n. if this results zero
jump to step 1.

7. Signature for message m is (r, s).

32

2.7. Cryptographic Algorithms Chapter 2. Background

Curve Parameters Values of Parameters
m 163
FR Polynomial basis f(x) = x163 + x7 + x6 + x3 + 1

n 5846006549323611672814741753598448348329118574063
h 2

a2,b2 1,1
xG 0x 2 fe13c053 7bbc11ac aa07d793 de4e6d5e 5c94eee8
yG 0x 2 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9

Table 2.5: NIST Recommended K-163 Curve Values [11]

• Randomly choose an integer number d within the range [1, n− 1].

• Calculate Q = dG.

Here, ECDSA private key is d and public key is Q.

Signature Generation

In order to sign a message, m, domain parameters along with key pair
(Q, d) should be initialized and then following operations are performed.

1. Randomly choose an integer number k within the range [1, n− 1].

2. Perform computation kG = (x1, y1).

3. Perform computation r = x1 mod n, if this results zero jump to step
1

4. Perform computation k−1 mod n.

5. Perform computation e = SHA1(m). where SHA1 is hash function.

6. Perform computation s = k−1(e + dr) mod n. if this results zero
jump to step 1.

7. Signature for message m is (r, s).

32

Chapter 2. Background 2.7. Cryptographic Algorithms

Signature Verification

Signature verification process requires domain parameters. In order to
verify ECDSA signature, receiver will acquire domain parameters D =
(q, FR, a, b, G, n, h) along with public key Q. Receiver can authenticate
the domain parameters D along with public key and then following opera-
tions are performed.

• Verify that r and s are within the range of [1, n− 1].

• Perform computation e = SHA1(m).

• Perform computation w = s−1 mod n.

• Perform computation u1 = ew mod n.

• Perform computation u2 = rw mod n.

• Perform computation X(x2, y2) = u1G+ u2Q.

• Perform computation v = x2 mod n.

• Verification successful if v = r.

2.7.3 Secure Hash Algorithm SHA1

In our implementation of 20 byte short and fast digital signature, we have
used SHA1 as hash function because it generates 20 bytes hash of message
and also used by other signatures (based on ECC and RSA), implemented
inside special co-processors in JCOP smart card. SHA1 was published by
NIST and issued by FIPS 180-1 in 1995. SHA-1 hash function converts
a message having maximum length less than of 264 bits into short hash
value also called message digest and the length of message digest is 160
bits (20 bytes). In digital signature, hash function (SHA1) provides data in-
tegrity and compression of message which results fast generation of digital
signature. It is computationally hard to find collision, two messages hav-
ing same hash value, therefore if an adversary try to change signed message
then verification will fail due to change in computed hash value on received
message. Birth day attack on message digest improves the chances of col-
lision to 2n/2 hash operations where n is length of message digest in bits

33

Chapter 2. Background 2.7. Cryptographic Algorithms

Signature Verification

Signature verification process requires domain parameters. In order to
verify ECDSA signature, receiver will acquire domain parameters D =
(q, FR, a, b, G, n, h) along with public key Q. Receiver can authenticate
the domain parameters D along with public key and then following opera-
tions are performed.

• Verify that r and s are within the range of [1, n− 1].

• Perform computation e = SHA1(m).

• Perform computation w = s−1 mod n.

• Perform computation u1 = ew mod n.

• Perform computation u2 = rw mod n.

• Perform computation X(x2, y2) = u1G+ u2Q.

• Perform computation v = x2 mod n.

• Verification successful if v = r.

2.7.3 Secure Hash Algorithm SHA1

In our implementation of 20 byte short and fast digital signature, we have
used SHA1 as hash function because it generates 20 bytes hash of message
and also used by other signatures (based on ECC and RSA), implemented
inside special co-processors in JCOP smart card. SHA1 was published by
NIST and issued by FIPS 180-1 in 1995. SHA-1 hash function converts
a message having maximum length less than of 264 bits into short hash
value also called message digest and the length of message digest is 160
bits (20 bytes). In digital signature, hash function (SHA1) provides data in-
tegrity and compression of message which results fast generation of digital
signature. It is computationally hard to find collision, two messages hav-
ing same hash value, therefore if an adversary try to change signed message
then verification will fail due to change in computed hash value on received
message. Birth day attack on message digest improves the chances of col-
lision to 2n/2 hash operations where n is length of message digest in bits

33

Chapter 2. Background 2.7. Cryptographic Algorithms

Signature Verification

Signature verification process requires domain parameters. In order to
verify ECDSA signature, receiver will acquire domain parameters D =
(q, FR, a, b, G, n, h) along with public key Q. Receiver can authenticate
the domain parameters D along with public key and then following opera-
tions are performed.

• Verify that r and s are within the range of [1, n− 1].

• Perform computation e = SHA1(m).

• Perform computation w = s−1 mod n.

• Perform computation u1 = ew mod n.

• Perform computation u2 = rw mod n.

• Perform computation X(x2, y2) = u1G+ u2Q.

• Perform computation v = x2 mod n.

• Verification successful if v = r.

2.7.3 Secure Hash Algorithm SHA1

In our implementation of 20 byte short and fast digital signature, we have
used SHA1 as hash function because it generates 20 bytes hash of message
and also used by other signatures (based on ECC and RSA), implemented
inside special co-processors in JCOP smart card. SHA1 was published by
NIST and issued by FIPS 180-1 in 1995. SHA-1 hash function converts
a message having maximum length less than of 264 bits into short hash
value also called message digest and the length of message digest is 160
bits (20 bytes). In digital signature, hash function (SHA1) provides data in-
tegrity and compression of message which results fast generation of digital
signature. It is computationally hard to find collision, two messages hav-
ing same hash value, therefore if an adversary try to change signed message
then verification will fail due to change in computed hash value on received
message. Birth day attack on message digest improves the chances of col-
lision to 2n/2 hash operations where n is length of message digest in bits

33

Chapter 2. Background 2.7. Cryptographic Algorithms

Signature Verification

Signature verification process requires domain parameters. In order to
verify ECDSA signature, receiver will acquire domain parameters D =
(q, FR, a, b, G, n, h) along with public key Q. Receiver can authenticate
the domain parameters D along with public key and then following opera-
tions are performed.

• Verify that r and s are within the range of [1, n− 1].

• Perform computation e = SHA1(m).

• Perform computation w = s−1 mod n.

• Perform computation u1 = ew mod n.

• Perform computation u2 = rw mod n.

• Perform computation X(x2, y2) = u1G+ u2Q.

• Perform computation v = x2 mod n.

• Verification successful if v = r.

2.7.3 Secure Hash Algorithm SHA1

In our implementation of 20 byte short and fast digital signature, we have
used SHA1 as hash function because it generates 20 bytes hash of message
and also used by other signatures (based on ECC and RSA), implemented
inside special co-processors in JCOP smart card. SHA1 was published by
NIST and issued by FIPS 180-1 in 1995. SHA-1 hash function converts
a message having maximum length less than of 264 bits into short hash
value also called message digest and the length of message digest is 160
bits (20 bytes). In digital signature, hash function (SHA1) provides data in-
tegrity and compression of message which results fast generation of digital
signature. It is computationally hard to find collision, two messages hav-
ing same hash value, therefore if an adversary try to change signed message
then verification will fail due to change in computed hash value on received
message. Birth day attack on message digest improves the chances of col-
lision to 2n/2 hash operations where n is length of message digest in bits

33

2.7. Cryptographic Algorithms Chapter 2. Background

Figure 2.4: SHA-1 module [13]

(n = 160). Another attach published by Wang in 2005 in which a collision
of SHA1 is found by performing 269 hash operations [12].

Operations of SHA1

Figure 2.4 depicts SHA-1 architecture having 4 rounds; each round has 20
steps, and total 80 steps are processed in order to generate 160-bit message
digest from input message. Input message is divided into exactly 512-bit
blocks, Mn, where number of blocks, n, depends on size of input message.
The block is further divided into Wn words, where n = 16 and each word is
32 bit long.

34

2.7. Cryptographic Algorithms Chapter 2. Background

Figure 2.4: SHA-1 module [13]

(n = 160). Another attach published by Wang in 2005 in which a collision
of SHA1 is found by performing 269 hash operations [12].

Operations of SHA1

Figure 2.4 depicts SHA-1 architecture having 4 rounds; each round has 20
steps, and total 80 steps are processed in order to generate 160-bit message
digest from input message. Input message is divided into exactly 512-bit
blocks, Mn, where number of blocks, n, depends on size of input message.
The block is further divided into Wn words, where n = 16 and each word is
32 bit long.

34

2.7. Cryptographic Algorithms Chapter 2. Background

Figure 2.4: SHA-1 module [13]

(n = 160). Another attach published by Wang in 2005 in which a collision
of SHA1 is found by performing 269 hash operations [12].

Operations of SHA1

Figure 2.4 depicts SHA-1 architecture having 4 rounds; each round has 20
steps, and total 80 steps are processed in order to generate 160-bit message
digest from input message. Input message is divided into exactly 512-bit
blocks, Mn, where number of blocks, n, depends on size of input message.
The block is further divided into Wn words, where n = 16 and each word is
32 bit long.

34

2.7. Cryptographic Algorithms Chapter 2. Background

Figure 2.4: SHA-1 module [13]

(n = 160). Another attach published by Wang in 2005 in which a collision
of SHA1 is found by performing 269 hash operations [12].

Operations of SHA1

Figure 2.4 depicts SHA-1 architecture having 4 rounds; each round has 20
steps, and total 80 steps are processed in order to generate 160-bit message
digest from input message. Input message is divided into exactly 512-bit
blocks, Mn, where number of blocks, n, depends on size of input message.
The block is further divided into Wn words, where n = 16 and each word is
32 bit long.

34

Chapter 2. Background 2.7. Cryptographic Algorithms

Figure 2.5: SHA-1 Single Step Operation [13]

Padding is required in order to make last block of message equivalent to
512 bits block. The length of original message is also added in the end of
last block using 2 words and space between end of message and length of
message is filled by 1 followed by zeros. For example: last block contains
only two words and last two words are filled with the length of message
then remaining 12 words (16 - 2 - 2) are filled with 1 followed by zeros
(10000000. . .).

Each block, Mi is repetitively processed 80 times (0 ≤ t ≤ 79). Figure
2.5 shows operation performed on a single step of SHA-1 out of 80 steps.
The operations performed on single block, Mi, are explained in following
5 steps:

1. Divide Mi in 16 words W0,W1,,W15.

2. For t = 16 to 79 let Wt = S1(Wt−3 XOR Wt−8 XOR Wt−14 XOR
Wt−16)

3. Let A = H0, B = H1, C = H2, D = H3, E = H4.

4. For t = 0 to 79 do

TEMP = S5(A) + ft(B;C;D) + E +Wt +Kt

E = D; D = C; C = S30(B); B = A; A = TEMP

35

Chapter 2. Background 2.7. Cryptographic Algorithms

Figure 2.5: SHA-1 Single Step Operation [13]

Padding is required in order to make last block of message equivalent to
512 bits block. The length of original message is also added in the end of
last block using 2 words and space between end of message and length of
message is filled by 1 followed by zeros. For example: last block contains
only two words and last two words are filled with the length of message
then remaining 12 words (16 - 2 - 2) are filled with 1 followed by zeros
(10000000. . .).

Each block, Mi is repetitively processed 80 times (0 ≤ t ≤ 79). Figure
2.5 shows operation performed on a single step of SHA-1 out of 80 steps.
The operations performed on single block, Mi, are explained in following
5 steps:

1. Divide Mi in 16 words W0,W1,,W15.

2. For t = 16 to 79 let Wt = S1(Wt−3 XOR Wt−8 XOR Wt−14 XOR
Wt−16)

3. Let A = H0, B = H1, C = H2, D = H3, E = H4.

4. For t = 0 to 79 do

TEMP = S5(A) + ft(B;C;D) + E +Wt +Kt

E = D; D = C; C = S30(B); B = A; A = TEMP

35

Chapter 2. Background 2.7. Cryptographic Algorithms

Figure 2.5: SHA-1 Single Step Operation [13]

Padding is required in order to make last block of message equivalent to
512 bits block. The length of original message is also added in the end of
last block using 2 words and space between end of message and length of
message is filled by 1 followed by zeros. For example: last block contains
only two words and last two words are filled with the length of message
then remaining 12 words (16 - 2 - 2) are filled with 1 followed by zeros
(10000000. . .).

Each block, Mi is repetitively processed 80 times (0 ≤ t ≤ 79). Figure
2.5 shows operation performed on a single step of SHA-1 out of 80 steps.
The operations performed on single block, Mi, are explained in following
5 steps:

1. Divide Mi in 16 words W0,W1,,W15.

2. For t = 16 to 79 let Wt = S1(Wt−3 XOR Wt−8 XOR Wt−14 XOR
Wt−16)

3. Let A = H0, B = H1, C = H2, D = H3, E = H4.

4. For t = 0 to 79 do

TEMP = S5(A) + ft(B;C;D) + E +Wt +Kt

E = D; D = C; C = S30(B); B = A; A = TEMP

35

Chapter 2. Background 2.7. Cryptographic Algorithms

Figure 2.5: SHA-1 Single Step Operation [13]

Padding is required in order to make last block of message equivalent to
512 bits block. The length of original message is also added in the end of
last block using 2 words and space between end of message and length of
message is filled by 1 followed by zeros. For example: last block contains
only two words and last two words are filled with the length of message
then remaining 12 words (16 - 2 - 2) are filled with 1 followed by zeros
(10000000. . .).

Each block, Mi is repetitively processed 80 times (0 ≤ t ≤ 79). Figure
2.5 shows operation performed on a single step of SHA-1 out of 80 steps.
The operations performed on single block, Mi, are explained in following
5 steps:

1. Divide Mi in 16 words W0,W1,,W15.

2. For t = 16 to 79 let Wt = S1(Wt−3 XOR Wt−8 XOR Wt−14 XOR
Wt−16)

3. Let A = H0, B = H1, C = H2, D = H3, E = H4.

4. For t = 0 to 79 do

TEMP = S5(A) + ft(B;C;D) + E +Wt +Kt

E = D; D = C; C = S30(B); B = A; A = TEMP

35

2.7. Cryptographic Algorithms Chapter 2. Background

5. Make

H0 = H0 + A;H1 = H1 + B;H2 = H2 + C;H3 = H3 + D;H4 =
H4 + E

Steps 1 and 2

In step1 block of message is divided into 16 words.

In step2 each word from W16 to W79 is calculated from previous words of
block.

Step 3

In step 3 five variablesA,B,C,D,E are initialized withH0, H1, H2, H3, H4,
each one is 32 bit word and initialized with following values:

H0 = 0x67452301

H1 = 0xEFCDAB89

H2 = 0x98BADCFE

H3 = 0x10325476

H4 = 0xC3D2E1F0

Step 4

In Step 4 operations performed, depicted in Figure 2.5 are mentioned. It
takes input A,B,C,D,E,Wt, Kt and after processing gives output
A,B,C,D,E which are used as input for next step of SHA1. Operations
performed in this step are explained below:

Sn(A) is circular left shift operation performed on word A. It shift n bits of
A towards left and already existing bits on occupied left side will be shifted
toward right.

Ft(B,C,D) is a sequence of logical operations performed on words B, C
and D:

36

2.7. Cryptographic Algorithms Chapter 2. Background

5. Make

H0 = H0 + A;H1 = H1 + B;H2 = H2 + C;H3 = H3 + D;H4 =
H4 + E

Steps 1 and 2

In step1 block of message is divided into 16 words.

In step2 each word from W16 to W79 is calculated from previous words of
block.

Step 3

In step 3 five variablesA,B,C,D,E are initialized withH0, H1, H2, H3, H4,
each one is 32 bit word and initialized with following values:

H0 = 0x67452301

H1 = 0xEFCDAB89

H2 = 0x98BADCFE

H3 = 0x10325476

H4 = 0xC3D2E1F0

Step 4

In Step 4 operations performed, depicted in Figure 2.5 are mentioned. It
takes input A,B,C,D,E,Wt, Kt and after processing gives output
A,B,C,D,E which are used as input for next step of SHA1. Operations
performed in this step are explained below:

Sn(A) is circular left shift operation performed on word A. It shift n bits of
A towards left and already existing bits on occupied left side will be shifted
toward right.

Ft(B,C,D) is a sequence of logical operations performed on words B, C
and D:

36

2.7. Cryptographic Algorithms Chapter 2. Background

5. Make

H0 = H0 + A;H1 = H1 + B;H2 = H2 + C;H3 = H3 + D;H4 =
H4 + E

Steps 1 and 2

In step1 block of message is divided into 16 words.

In step2 each word from W16 to W79 is calculated from previous words of
block.

Step 3

In step 3 five variablesA,B,C,D,E are initialized withH0, H1, H2, H3, H4,
each one is 32 bit word and initialized with following values:

H0 = 0x67452301

H1 = 0xEFCDAB89

H2 = 0x98BADCFE

H3 = 0x10325476

H4 = 0xC3D2E1F0

Step 4

In Step 4 operations performed, depicted in Figure 2.5 are mentioned. It
takes input A,B,C,D,E,Wt, Kt and after processing gives output
A,B,C,D,E which are used as input for next step of SHA1. Operations
performed in this step are explained below:

Sn(A) is circular left shift operation performed on word A. It shift n bits of
A towards left and already existing bits on occupied left side will be shifted
toward right.

Ft(B,C,D) is a sequence of logical operations performed on words B, C
and D:

36

2.7. Cryptographic Algorithms Chapter 2. Background

5. Make

H0 = H0 + A;H1 = H1 + B;H2 = H2 + C;H3 = H3 + D;H4 =
H4 + E

Steps 1 and 2

In step1 block of message is divided into 16 words.

In step2 each word from W16 to W79 is calculated from previous words of
block.

Step 3

In step 3 five variablesA,B,C,D,E are initialized withH0, H1, H2, H3, H4,
each one is 32 bit word and initialized with following values:

H0 = 0x67452301

H1 = 0xEFCDAB89

H2 = 0x98BADCFE

H3 = 0x10325476

H4 = 0xC3D2E1F0

Step 4

In Step 4 operations performed, depicted in Figure 2.5 are mentioned. It
takes input A,B,C,D,E,Wt, Kt and after processing gives output
A,B,C,D,E which are used as input for next step of SHA1. Operations
performed in this step are explained below:

Sn(A) is circular left shift operation performed on word A. It shift n bits of
A towards left and already existing bits on occupied left side will be shifted
toward right.

Ft(B,C,D) is a sequence of logical operations performed on words B, C
and D:

36

Chapter 2. Background 2.8. Attacks on smart cards

ft(B,C,D) = (B AND C) OR ((NOT B) AND D), (0 ≤ t ≤ 19)

ft(B;C;D) = B XOR C XOR D, (20 ≤ t ≤ 39)

ft(B;C;D) = (B AND C) OR (B AND D) OR (C AND D), (40 ≤ t ≤ 59)

ft(B;C;D) = B XOR C XOR D, (60 ≤ t ≤ 79)

Kt is constant word and its values are:

Kt = 5A827999, (0 ≤ t ≤ 19)

Kt = 6ED9EBA1, (20 ≤ t ≤ 39)

Kt = 8F1BBCDC, (40 ≤ t ≤ 59)

Kt = CA62C1D6, (60 ≤ t ≤ 79)

Step 5

Finally, In Step5, 160 bits message digest (H0, H1, H2, H3, H4) is gener-
ated by adding the values of words (A,B,C,D,E) generated in the last
step with the initial values of the words (H0, H1, H2, H3, H4) in respective
order.

2.8 Attacks on smart cards

Smart cards are different than other platforms by means of limited compu-
tation power, memory and they are dependent on the reader which provides
power to smart cards. As smart cards are also implementing co-processor
for encryption algorithm in order to provide secure communication. It is
necessary to know the relevant attacks on smart cards. Smart card attacks
can be categorized in to two major classes.

2.8.1 Invasive Attacks

In this attack, smart card chip is removed from the plastic card and then
it is placed in a test bed where micro probing is applied on the chip sur-

37

Chapter 2. Background 2.8. Attacks on smart cards

ft(B,C,D) = (B AND C) OR ((NOT B) AND D), (0 ≤ t ≤ 19)

ft(B;C;D) = B XOR C XOR D, (20 ≤ t ≤ 39)

ft(B;C;D) = (B AND C) OR (B AND D) OR (C AND D), (40 ≤ t ≤ 59)

ft(B;C;D) = B XOR C XOR D, (60 ≤ t ≤ 79)

Kt is constant word and its values are:

Kt = 5A827999, (0 ≤ t ≤ 19)

Kt = 6ED9EBA1, (20 ≤ t ≤ 39)

Kt = 8F1BBCDC, (40 ≤ t ≤ 59)

Kt = CA62C1D6, (60 ≤ t ≤ 79)

Step 5

Finally, In Step5, 160 bits message digest (H0, H1, H2, H3, H4) is gener-
ated by adding the values of words (A,B,C,D,E) generated in the last
step with the initial values of the words (H0, H1, H2, H3, H4) in respective
order.

2.8 Attacks on smart cards

Smart cards are different than other platforms by means of limited compu-
tation power, memory and they are dependent on the reader which provides
power to smart cards. As smart cards are also implementing co-processor
for encryption algorithm in order to provide secure communication. It is
necessary to know the relevant attacks on smart cards. Smart card attacks
can be categorized in to two major classes.

2.8.1 Invasive Attacks

In this attack, smart card chip is removed from the plastic card and then
it is placed in a test bed where micro probing is applied on the chip sur-

37

Chapter 2. Background 2.8. Attacks on smart cards

ft(B,C,D) = (B AND C) OR ((NOT B) AND D), (0 ≤ t ≤ 19)

ft(B;C;D) = B XOR C XOR D, (20 ≤ t ≤ 39)

ft(B;C;D) = (B AND C) OR (B AND D) OR (C AND D), (40 ≤ t ≤ 59)

ft(B;C;D) = B XOR C XOR D, (60 ≤ t ≤ 79)

Kt is constant word and its values are:

Kt = 5A827999, (0 ≤ t ≤ 19)

Kt = 6ED9EBA1, (20 ≤ t ≤ 39)

Kt = 8F1BBCDC, (40 ≤ t ≤ 59)

Kt = CA62C1D6, (60 ≤ t ≤ 79)

Step 5

Finally, In Step5, 160 bits message digest (H0, H1, H2, H3, H4) is gener-
ated by adding the values of words (A,B,C,D,E) generated in the last
step with the initial values of the words (H0, H1, H2, H3, H4) in respective
order.

2.8 Attacks on smart cards

Smart cards are different than other platforms by means of limited compu-
tation power, memory and they are dependent on the reader which provides
power to smart cards. As smart cards are also implementing co-processor
for encryption algorithm in order to provide secure communication. It is
necessary to know the relevant attacks on smart cards. Smart card attacks
can be categorized in to two major classes.

2.8.1 Invasive Attacks

In this attack, smart card chip is removed from the plastic card and then
it is placed in a test bed where micro probing is applied on the chip sur-

37

Chapter 2. Background 2.8. Attacks on smart cards

ft(B,C,D) = (B AND C) OR ((NOT B) AND D), (0 ≤ t ≤ 19)

ft(B;C;D) = B XOR C XOR D, (20 ≤ t ≤ 39)

ft(B;C;D) = (B AND C) OR (B AND D) OR (C AND D), (40 ≤ t ≤ 59)

ft(B;C;D) = B XOR C XOR D, (60 ≤ t ≤ 79)

Kt is constant word and its values are:

Kt = 5A827999, (0 ≤ t ≤ 19)

Kt = 6ED9EBA1, (20 ≤ t ≤ 39)

Kt = 8F1BBCDC, (40 ≤ t ≤ 59)

Kt = CA62C1D6, (60 ≤ t ≤ 79)

Step 5

Finally, In Step5, 160 bits message digest (H0, H1, H2, H3, H4) is gener-
ated by adding the values of words (A,B,C,D,E) generated in the last
step with the initial values of the words (H0, H1, H2, H3, H4) in respective
order.

2.8 Attacks on smart cards

Smart cards are different than other platforms by means of limited compu-
tation power, memory and they are dependent on the reader which provides
power to smart cards. As smart cards are also implementing co-processor
for encryption algorithm in order to provide secure communication. It is
necessary to know the relevant attacks on smart cards. Smart card attacks
can be categorized in to two major classes.

2.8.1 Invasive Attacks

In this attack, smart card chip is removed from the plastic card and then
it is placed in a test bed where micro probing is applied on the chip sur-

37

2.8. Attacks on smart cards Chapter 2. Background

face in order to extract secret information. In modern smart cards, applying
invasive attacks is extremely expensive and difficult due to more metal lay-
ers and having features below the wave length of visible light. In order to
apply invasive attacks on these cards, one needs extremely expensive tools
like Ion Beam Testers and Electron Beam Testers [18].

2.8.2 Non-invasive Attacks

These attacks do not damage the smart card chip or its plastic body like In-
vasive attacks. These attacks are more harmful because user of the card has
no idea when the secret information has been stolen and this information
can be used for bad intentions. Once the security of smart card is compro-
mised then It is also easy to implement these kind of attacks on large scale
because of low cost involved. Some examples of Non-invasive attacks are
mentioned below:

Timing Analysis

In this attack, time taken by a specific unit to perform a sequence of op-
erations is measured carefully and then this information can be helpful for
cryptanalysts in order to obtain the secret key. In smart cards, this attack
is considered more effective as more precisely timings can be obtained by
using a proprietary reader. In [19], this attack is implemented over RSA
signature by carefully measuring the difference in time taken by signatures
of various messages. This difference of time is then used to produce secret
key.

Power Analysis

Instantaneous power consumption of smart card can be analyzed while it
performs cryptographic operations and then this information can be useful
in deriving the secret key. This attack can be implemented on smart card by
connecting a resistor in series with a smart card and power supply. An os-
cilloscope is then can be used to analyze the potential difference across the

38

2.8. Attacks on smart cards Chapter 2. Background

face in order to extract secret information. In modern smart cards, applying
invasive attacks is extremely expensive and difficult due to more metal lay-
ers and having features below the wave length of visible light. In order to
apply invasive attacks on these cards, one needs extremely expensive tools
like Ion Beam Testers and Electron Beam Testers [18].

2.8.2 Non-invasive Attacks

These attacks do not damage the smart card chip or its plastic body like In-
vasive attacks. These attacks are more harmful because user of the card has
no idea when the secret information has been stolen and this information
can be used for bad intentions. Once the security of smart card is compro-
mised then It is also easy to implement these kind of attacks on large scale
because of low cost involved. Some examples of Non-invasive attacks are
mentioned below:

Timing Analysis

In this attack, time taken by a specific unit to perform a sequence of op-
erations is measured carefully and then this information can be helpful for
cryptanalysts in order to obtain the secret key. In smart cards, this attack
is considered more effective as more precisely timings can be obtained by
using a proprietary reader. In [19], this attack is implemented over RSA
signature by carefully measuring the difference in time taken by signatures
of various messages. This difference of time is then used to produce secret
key.

Power Analysis

Instantaneous power consumption of smart card can be analyzed while it
performs cryptographic operations and then this information can be useful
in deriving the secret key. This attack can be implemented on smart card by
connecting a resistor in series with a smart card and power supply. An os-
cilloscope is then can be used to analyze the potential difference across the

38

2.8. Attacks on smart cards Chapter 2. Background

face in order to extract secret information. In modern smart cards, applying
invasive attacks is extremely expensive and difficult due to more metal lay-
ers and having features below the wave length of visible light. In order to
apply invasive attacks on these cards, one needs extremely expensive tools
like Ion Beam Testers and Electron Beam Testers [18].

2.8.2 Non-invasive Attacks

These attacks do not damage the smart card chip or its plastic body like In-
vasive attacks. These attacks are more harmful because user of the card has
no idea when the secret information has been stolen and this information
can be used for bad intentions. Once the security of smart card is compro-
mised then It is also easy to implement these kind of attacks on large scale
because of low cost involved. Some examples of Non-invasive attacks are
mentioned below:

Timing Analysis

In this attack, time taken by a specific unit to perform a sequence of op-
erations is measured carefully and then this information can be helpful for
cryptanalysts in order to obtain the secret key. In smart cards, this attack
is considered more effective as more precisely timings can be obtained by
using a proprietary reader. In [19], this attack is implemented over RSA
signature by carefully measuring the difference in time taken by signatures
of various messages. This difference of time is then used to produce secret
key.

Power Analysis

Instantaneous power consumption of smart card can be analyzed while it
performs cryptographic operations and then this information can be useful
in deriving the secret key. This attack can be implemented on smart card by
connecting a resistor in series with a smart card and power supply. An os-
cilloscope is then can be used to analyze the potential difference across the

38

2.8. Attacks on smart cards Chapter 2. Background

face in order to extract secret information. In modern smart cards, applying
invasive attacks is extremely expensive and difficult due to more metal lay-
ers and having features below the wave length of visible light. In order to
apply invasive attacks on these cards, one needs extremely expensive tools
like Ion Beam Testers and Electron Beam Testers [18].

2.8.2 Non-invasive Attacks

These attacks do not damage the smart card chip or its plastic body like In-
vasive attacks. These attacks are more harmful because user of the card has
no idea when the secret information has been stolen and this information
can be used for bad intentions. Once the security of smart card is compro-
mised then It is also easy to implement these kind of attacks on large scale
because of low cost involved. Some examples of Non-invasive attacks are
mentioned below:

Timing Analysis

In this attack, time taken by a specific unit to perform a sequence of op-
erations is measured carefully and then this information can be helpful for
cryptanalysts in order to obtain the secret key. In smart cards, this attack
is considered more effective as more precisely timings can be obtained by
using a proprietary reader. In [19], this attack is implemented over RSA
signature by carefully measuring the difference in time taken by signatures
of various messages. This difference of time is then used to produce secret
key.

Power Analysis

Instantaneous power consumption of smart card can be analyzed while it
performs cryptographic operations and then this information can be useful
in deriving the secret key. This attack can be implemented on smart card by
connecting a resistor in series with a smart card and power supply. An os-
cilloscope is then can be used to analyze the potential difference across the

38

Chapter 2. Background 2.8. Attacks on smart cards

resistor [20]. Examples of power analysis attacks are Simple Power Analy-
sis (SPA), Differential Power Analysis (DPA) and High Order DFA. Figure
2.6 gives an example of power analysis graph of RSA implementation with
square and multiply algorithm.

Figure 2.6: The Power Consumption of an RSA with Square and Multiply
Algorithm [21]

39

Chapter 2. Background 2.8. Attacks on smart cards

resistor [20]. Examples of power analysis attacks are Simple Power Analy-
sis (SPA), Differential Power Analysis (DPA) and High Order DFA. Figure
2.6 gives an example of power analysis graph of RSA implementation with
square and multiply algorithm.

Figure 2.6: The Power Consumption of an RSA with Square and Multiply
Algorithm [21]

39

Chapter 2. Background 2.8. Attacks on smart cards

resistor [20]. Examples of power analysis attacks are Simple Power Analy-
sis (SPA), Differential Power Analysis (DPA) and High Order DFA. Figure
2.6 gives an example of power analysis graph of RSA implementation with
square and multiply algorithm.

Figure 2.6: The Power Consumption of an RSA with Square and Multiply
Algorithm [21]

39

Chapter 2. Background 2.8. Attacks on smart cards

resistor [20]. Examples of power analysis attacks are Simple Power Analy-
sis (SPA), Differential Power Analysis (DPA) and High Order DFA. Figure
2.6 gives an example of power analysis graph of RSA implementation with
square and multiply algorithm.

Figure 2.6: The Power Consumption of an RSA with Square and Multiply
Algorithm [21]

39

2.8. Attacks on smart cards Chapter 2. Background

40

2.8. Attacks on smart cards Chapter 2. Background

40

2.8. Attacks on smart cards Chapter 2. Background

40

2.8. Attacks on smart cards Chapter 2. Background

40

Chapter 3

Java Cards Technology

Java card is just like any smart card that can execute java applications. Due
to the limited processing power and limited memory available on the smart
cards only restricted java language features are available on java card lan-
guage. This implies that both Java Card Virtual Machine (JCVM) and java
card API do not have all the functionality of normal Java Virtual Machine
(JVM) and Java API. Java cards have been introduced in market first in
1996 by Schlumberger which then transferred the java card specification to
the Sun Microsystems.

Java source code contains java programs written by the java developer. The
source file is then converter into java class using java compiler. Java class
contains byte codes which are independent of underlying machine archi-
tecture. Java byte codes are then interpreted into native program code
of underlying machine using java virtual machine (JVM). This program-
ming technique offers rapid development of applications without having
knowledge of underlying platform complexities and also application pro-
gram portability due to underlying platform independent java byte codes.
All these advantages make java an appropriate choice for smart card appli-
cations development.

41

Chapter 3

Java Cards Technology

Java card is just like any smart card that can execute java applications. Due
to the limited processing power and limited memory available on the smart
cards only restricted java language features are available on java card lan-
guage. This implies that both Java Card Virtual Machine (JCVM) and java
card API do not have all the functionality of normal Java Virtual Machine
(JVM) and Java API. Java cards have been introduced in market first in
1996 by Schlumberger which then transferred the java card specification to
the Sun Microsystems.

Java source code contains java programs written by the java developer. The
source file is then converter into java class using java compiler. Java class
contains byte codes which are independent of underlying machine archi-
tecture. Java byte codes are then interpreted into native program code
of underlying machine using java virtual machine (JVM). This program-
ming technique offers rapid development of applications without having
knowledge of underlying platform complexities and also application pro-
gram portability due to underlying platform independent java byte codes.
All these advantages make java an appropriate choice for smart card appli-
cations development.

41

Chapter 3

Java Cards Technology

Java card is just like any smart card that can execute java applications. Due
to the limited processing power and limited memory available on the smart
cards only restricted java language features are available on java card lan-
guage. This implies that both Java Card Virtual Machine (JCVM) and java
card API do not have all the functionality of normal Java Virtual Machine
(JVM) and Java API. Java cards have been introduced in market first in
1996 by Schlumberger which then transferred the java card specification to
the Sun Microsystems.

Java source code contains java programs written by the java developer. The
source file is then converter into java class using java compiler. Java class
contains byte codes which are independent of underlying machine archi-
tecture. Java byte codes are then interpreted into native program code
of underlying machine using java virtual machine (JVM). This program-
ming technique offers rapid development of applications without having
knowledge of underlying platform complexities and also application pro-
gram portability due to underlying platform independent java byte codes.
All these advantages make java an appropriate choice for smart card appli-
cations development.

41

Chapter 3

Java Cards Technology

Java card is just like any smart card that can execute java applications. Due
to the limited processing power and limited memory available on the smart
cards only restricted java language features are available on java card lan-
guage. This implies that both Java Card Virtual Machine (JCVM) and java
card API do not have all the functionality of normal Java Virtual Machine
(JVM) and Java API. Java cards have been introduced in market first in
1996 by Schlumberger which then transferred the java card specification to
the Sun Microsystems.

Java source code contains java programs written by the java developer. The
source file is then converter into java class using java compiler. Java class
contains byte codes which are independent of underlying machine archi-
tecture. Java byte codes are then interpreted into native program code
of underlying machine using java virtual machine (JVM). This program-
ming technique offers rapid development of applications without having
knowledge of underlying platform complexities and also application pro-
gram portability due to underlying platform independent java byte codes.
All these advantages make java an appropriate choice for smart card appli-
cations development.

41

3.1. JC Application Architecture Chapter 3. Java Cards Technology

3.1 JC Application Architecture

Figure 3.1 shows architecture of typical Java Card application comprising
of three parts which are discussed below:

Back-end side Applications in back end side provide access to secure in-
formation stored in databases or files. Back end applications are connected
with host applications residing in reader side

Reader side This part comprises of Host application and Card Acceptance
Device (CAD). Host Application provides connectivity among users Java
card applet and Back end application.CAD provide power to the java card
and also electrical or contactless communication based on RF. CAD can
be attached to PC through serial port or it can be a connected to terminal
like bank payment terminal along with keypad and screen. Communication
between host application and java card applet is performed in Application
Protocol Data Unit (APDU).

Card side Java card comprises of java applets, Java card Runtime Environ-
ment and Javacard virtual machine and java card operating system. Appli-
cation functionality resides in java applets. Java card architecture supports
multiple applications in the same card.

Figure 3.1: Java Card Application Architecture [22]

42

3.1. JC Application Architecture Chapter 3. Java Cards Technology

3.1 JC Application Architecture

Figure 3.1 shows architecture of typical Java Card application comprising
of three parts which are discussed below:

Back-end side Applications in back end side provide access to secure in-
formation stored in databases or files. Back end applications are connected
with host applications residing in reader side

Reader side This part comprises of Host application and Card Acceptance
Device (CAD). Host Application provides connectivity among users Java
card applet and Back end application.CAD provide power to the java card
and also electrical or contactless communication based on RF. CAD can
be attached to PC through serial port or it can be a connected to terminal
like bank payment terminal along with keypad and screen. Communication
between host application and java card applet is performed in Application
Protocol Data Unit (APDU).

Card side Java card comprises of java applets, Java card Runtime Environ-
ment and Javacard virtual machine and java card operating system. Appli-
cation functionality resides in java applets. Java card architecture supports
multiple applications in the same card.

Figure 3.1: Java Card Application Architecture [22]

42

3.1. JC Application Architecture Chapter 3. Java Cards Technology

3.1 JC Application Architecture

Figure 3.1 shows architecture of typical Java Card application comprising
of three parts which are discussed below:

Back-end side Applications in back end side provide access to secure in-
formation stored in databases or files. Back end applications are connected
with host applications residing in reader side

Reader side This part comprises of Host application and Card Acceptance
Device (CAD). Host Application provides connectivity among users Java
card applet and Back end application.CAD provide power to the java card
and also electrical or contactless communication based on RF. CAD can
be attached to PC through serial port or it can be a connected to terminal
like bank payment terminal along with keypad and screen. Communication
between host application and java card applet is performed in Application
Protocol Data Unit (APDU).

Card side Java card comprises of java applets, Java card Runtime Environ-
ment and Javacard virtual machine and java card operating system. Appli-
cation functionality resides in java applets. Java card architecture supports
multiple applications in the same card.

Figure 3.1: Java Card Application Architecture [22]

42

3.1. JC Application Architecture Chapter 3. Java Cards Technology

3.1 JC Application Architecture

Figure 3.1 shows architecture of typical Java Card application comprising
of three parts which are discussed below:

Back-end side Applications in back end side provide access to secure in-
formation stored in databases or files. Back end applications are connected
with host applications residing in reader side

Reader side This part comprises of Host application and Card Acceptance
Device (CAD). Host Application provides connectivity among users Java
card applet and Back end application.CAD provide power to the java card
and also electrical or contactless communication based on RF. CAD can
be attached to PC through serial port or it can be a connected to terminal
like bank payment terminal along with keypad and screen. Communication
between host application and java card applet is performed in Application
Protocol Data Unit (APDU).

Card side Java card comprises of java applets, Java card Runtime Environ-
ment and Javacard virtual machine and java card operating system. Appli-
cation functionality resides in java applets. Java card architecture supports
multiple applications in the same card.

Figure 3.1: Java Card Application Architecture [22]

42

Chapter 3. Java Cards Technology 3.2. Architecture of Java Card

3.2 Architecture of Java Card

Figure 3.2 discuss details of Java card architecture. Each element of java
card architecture is discussed in detail.

3.2.1 Applets

An applet is a java program that conforms the rule defined by Java Card
Runtime Environment (JCRE) and is not similar to java applet that run in a
web browser. Applets can be stored and updated in a java card even after
manufacturing process of the card which is not the case in other embed-
ded systems where applications are burned in ROM during manufacturing
process. Applet class javacard.framework.Applet is the super class of all
applets placed in java card and it is necessary that all applet classes in java
card extend this super class. JCRE supports multi-applications on the same
java card which implies that many applets can reside inside the card. As
shown in the Figure 3.2 there are loyalty applet, wallet applet and authen-
tication applet. Each applet application can be initialized as a different
object. For example authentication applet can be used as an instance user
authentication for banking payment and as an instance of user authentica-
tion for transit payment.

A typical structure of an applet is defined in figure 3.3 which exhibits im-
portant elements of java card applet class (MyApplet). Each applet class
must extends from javacard.framework.Applet which contains methods used
by JCRE when action from an applet is required. There are five important
elements of java card applet class which are discussed below:

install() This method is called by JCRE during applet installation. It creates
an instance of Applet subclass.

register() This method is called by JCRE after an applet is installed on java
card. It registers the installed applet with JCRE. This method can be called
either from install method or from Applet subclass constructor.

select() This method is called by JCRE when a specific applet is need to be
selected. This method can also be used for initialization.

43

Chapter 3. Java Cards Technology 3.2. Architecture of Java Card

3.2 Architecture of Java Card

Figure 3.2 discuss details of Java card architecture. Each element of java
card architecture is discussed in detail.

3.2.1 Applets

An applet is a java program that conforms the rule defined by Java Card
Runtime Environment (JCRE) and is not similar to java applet that run in a
web browser. Applets can be stored and updated in a java card even after
manufacturing process of the card which is not the case in other embed-
ded systems where applications are burned in ROM during manufacturing
process. Applet class javacard.framework.Applet is the super class of all
applets placed in java card and it is necessary that all applet classes in java
card extend this super class. JCRE supports multi-applications on the same
java card which implies that many applets can reside inside the card. As
shown in the Figure 3.2 there are loyalty applet, wallet applet and authen-
tication applet. Each applet application can be initialized as a different
object. For example authentication applet can be used as an instance user
authentication for banking payment and as an instance of user authentica-
tion for transit payment.

A typical structure of an applet is defined in figure 3.3 which exhibits im-
portant elements of java card applet class (MyApplet). Each applet class
must extends from javacard.framework.Applet which contains methods used
by JCRE when action from an applet is required. There are five important
elements of java card applet class which are discussed below:

install() This method is called by JCRE during applet installation. It creates
an instance of Applet subclass.

register() This method is called by JCRE after an applet is installed on java
card. It registers the installed applet with JCRE. This method can be called
either from install method or from Applet subclass constructor.

select() This method is called by JCRE when a specific applet is need to be
selected. This method can also be used for initialization.

43

Chapter 3. Java Cards Technology 3.2. Architecture of Java Card

3.2 Architecture of Java Card

Figure 3.2 discuss details of Java card architecture. Each element of java
card architecture is discussed in detail.

3.2.1 Applets

An applet is a java program that conforms the rule defined by Java Card
Runtime Environment (JCRE) and is not similar to java applet that run in a
web browser. Applets can be stored and updated in a java card even after
manufacturing process of the card which is not the case in other embed-
ded systems where applications are burned in ROM during manufacturing
process. Applet class javacard.framework.Applet is the super class of all
applets placed in java card and it is necessary that all applet classes in java
card extend this super class. JCRE supports multi-applications on the same
java card which implies that many applets can reside inside the card. As
shown in the Figure 3.2 there are loyalty applet, wallet applet and authen-
tication applet. Each applet application can be initialized as a different
object. For example authentication applet can be used as an instance user
authentication for banking payment and as an instance of user authentica-
tion for transit payment.

A typical structure of an applet is defined in figure 3.3 which exhibits im-
portant elements of java card applet class (MyApplet). Each applet class
must extends from javacard.framework.Applet which contains methods used
by JCRE when action from an applet is required. There are five important
elements of java card applet class which are discussed below:

install() This method is called by JCRE during applet installation. It creates
an instance of Applet subclass.

register() This method is called by JCRE after an applet is installed on java
card. It registers the installed applet with JCRE. This method can be called
either from install method or from Applet subclass constructor.

select() This method is called by JCRE when a specific applet is need to be
selected. This method can also be used for initialization.

43

Chapter 3. Java Cards Technology 3.2. Architecture of Java Card

3.2 Architecture of Java Card

Figure 3.2 discuss details of Java card architecture. Each element of java
card architecture is discussed in detail.

3.2.1 Applets

An applet is a java program that conforms the rule defined by Java Card
Runtime Environment (JCRE) and is not similar to java applet that run in a
web browser. Applets can be stored and updated in a java card even after
manufacturing process of the card which is not the case in other embed-
ded systems where applications are burned in ROM during manufacturing
process. Applet class javacard.framework.Applet is the super class of all
applets placed in java card and it is necessary that all applet classes in java
card extend this super class. JCRE supports multi-applications on the same
java card which implies that many applets can reside inside the card. As
shown in the Figure 3.2 there are loyalty applet, wallet applet and authen-
tication applet. Each applet application can be initialized as a different
object. For example authentication applet can be used as an instance user
authentication for banking payment and as an instance of user authentica-
tion for transit payment.

A typical structure of an applet is defined in figure 3.3 which exhibits im-
portant elements of java card applet class (MyApplet). Each applet class
must extends from javacard.framework.Applet which contains methods used
by JCRE when action from an applet is required. There are five important
elements of java card applet class which are discussed below:

install() This method is called by JCRE during applet installation. It creates
an instance of Applet subclass.

register() This method is called by JCRE after an applet is installed on java
card. It registers the installed applet with JCRE. This method can be called
either from install method or from Applet subclass constructor.

select() This method is called by JCRE when a specific applet is need to be
selected. This method can also be used for initialization.

43

3.2. Architecture of Java Card Chapter 3. Java Cards Technology

Figure 3.2: Java Card Architecture [23]

deselect() This method is called by JCRE to inform the already selected
method that another applet is selected. This method can be used to clean
up transient memory occupied by old applet.

process() This method is called by JCRE when functionality implemented
inside an applet is called after selecting an applet. This method deals with
the transferred command APDU from the reader.

Java applications, other than java card applets, are uniquely identified by
Unicode strings based on internet domain naming scheme. Java card ap-
plets are uniquely identified and selected by an Application Identifier (AID)
on the java card platform. ISO 7816-5 defines standards for AID in order
to uniquely identify an applet on java cards. The format is explained in
figure 3.4 where Registered Application Provider Identifier (RID) contains
5 bytes which uniquely identify each application provider and other part of
AID is Proprietary Application Identifier Extension (PIX). The length of
PIX is not fixed but it can be in the range of 0 to 11 bytes. The length of
AID can be from 5 to 16 bytes long. In our case the applet AID plus pack-
age AID are combined together to form RID. The first four bytes of Applet
AID and package AID are similar due to requirement of java card project.

44

3.2. Architecture of Java Card Chapter 3. Java Cards Technology

Figure 3.2: Java Card Architecture [23]

deselect() This method is called by JCRE to inform the already selected
method that another applet is selected. This method can be used to clean
up transient memory occupied by old applet.

process() This method is called by JCRE when functionality implemented
inside an applet is called after selecting an applet. This method deals with
the transferred command APDU from the reader.

Java applications, other than java card applets, are uniquely identified by
Unicode strings based on internet domain naming scheme. Java card ap-
plets are uniquely identified and selected by an Application Identifier (AID)
on the java card platform. ISO 7816-5 defines standards for AID in order
to uniquely identify an applet on java cards. The format is explained in
figure 3.4 where Registered Application Provider Identifier (RID) contains
5 bytes which uniquely identify each application provider and other part of
AID is Proprietary Application Identifier Extension (PIX). The length of
PIX is not fixed but it can be in the range of 0 to 11 bytes. The length of
AID can be from 5 to 16 bytes long. In our case the applet AID plus pack-
age AID are combined together to form RID. The first four bytes of Applet
AID and package AID are similar due to requirement of java card project.

44

3.2. Architecture of Java Card Chapter 3. Java Cards Technology

Figure 3.2: Java Card Architecture [23]

deselect() This method is called by JCRE to inform the already selected
method that another applet is selected. This method can be used to clean
up transient memory occupied by old applet.

process() This method is called by JCRE when functionality implemented
inside an applet is called after selecting an applet. This method deals with
the transferred command APDU from the reader.

Java applications, other than java card applets, are uniquely identified by
Unicode strings based on internet domain naming scheme. Java card ap-
plets are uniquely identified and selected by an Application Identifier (AID)
on the java card platform. ISO 7816-5 defines standards for AID in order
to uniquely identify an applet on java cards. The format is explained in
figure 3.4 where Registered Application Provider Identifier (RID) contains
5 bytes which uniquely identify each application provider and other part of
AID is Proprietary Application Identifier Extension (PIX). The length of
PIX is not fixed but it can be in the range of 0 to 11 bytes. The length of
AID can be from 5 to 16 bytes long. In our case the applet AID plus pack-
age AID are combined together to form RID. The first four bytes of Applet
AID and package AID are similar due to requirement of java card project.

44

3.2. Architecture of Java Card Chapter 3. Java Cards Technology

Figure 3.2: Java Card Architecture [23]

deselect() This method is called by JCRE to inform the already selected
method that another applet is selected. This method can be used to clean
up transient memory occupied by old applet.

process() This method is called by JCRE when functionality implemented
inside an applet is called after selecting an applet. This method deals with
the transferred command APDU from the reader.

Java applications, other than java card applets, are uniquely identified by
Unicode strings based on internet domain naming scheme. Java card ap-
plets are uniquely identified and selected by an Application Identifier (AID)
on the java card platform. ISO 7816-5 defines standards for AID in order
to uniquely identify an applet on java cards. The format is explained in
figure 3.4 where Registered Application Provider Identifier (RID) contains
5 bytes which uniquely identify each application provider and other part of
AID is Proprietary Application Identifier Extension (PIX). The length of
PIX is not fixed but it can be in the range of 0 to 11 bytes. The length of
AID can be from 5 to 16 bytes long. In our case the applet AID plus pack-
age AID are combined together to form RID. The first four bytes of Applet
AID and package AID are similar due to requirement of java card project.

44

Chapter 3. Java Cards Technology 3.2. Architecture of Java Card

Figure 3.3: Java Card Applet Structure

Figure 3.4: Application Identifier (AID) Format

3.2.2 Java Card Runtime Environment (JCRE)

JCRE manages different functions of java card and is placed in between
java applets and hardware of java card as described in figure 3.2. It acts
as an operating system and is responsible for applet installation and exe-
cution, assigning java card resources to applet, dealing with transactions
and network communication between card and reader, and on-card system
and applet security. It also provide isolation between underlying technol-
ogy of smart card and application applets which results portable and easy
development of applets for different architectures of smart cards. Industry-
specific extensions provide additional services such as Visa open platform

45

Chapter 3. Java Cards Technology 3.2. Architecture of Java Card

Figure 3.3: Java Card Applet Structure

Figure 3.4: Application Identifier (AID) Format

3.2.2 Java Card Runtime Environment (JCRE)

JCRE manages different functions of java card and is placed in between
java applets and hardware of java card as described in figure 3.2. It acts
as an operating system and is responsible for applet installation and exe-
cution, assigning java card resources to applet, dealing with transactions
and network communication between card and reader, and on-card system
and applet security. It also provide isolation between underlying technol-
ogy of smart card and application applets which results portable and easy
development of applets for different architectures of smart cards. Industry-
specific extensions provide additional services such as Visa open platform

45

Chapter 3. Java Cards Technology 3.2. Architecture of Java Card

Figure 3.3: Java Card Applet Structure

Figure 3.4: Application Identifier (AID) Format

3.2.2 Java Card Runtime Environment (JCRE)

JCRE manages different functions of java card and is placed in between
java applets and hardware of java card as described in figure 3.2. It acts
as an operating system and is responsible for applet installation and exe-
cution, assigning java card resources to applet, dealing with transactions
and network communication between card and reader, and on-card system
and applet security. It also provide isolation between underlying technol-
ogy of smart card and application applets which results portable and easy
development of applets for different architectures of smart cards. Industry-
specific extensions provide additional services such as Visa open platform

45

Chapter 3. Java Cards Technology 3.2. Architecture of Java Card

Figure 3.3: Java Card Applet Structure

Figure 3.4: Application Identifier (AID) Format

3.2.2 Java Card Runtime Environment (JCRE)

JCRE manages different functions of java card and is placed in between
java applets and hardware of java card as described in figure 3.2. It acts
as an operating system and is responsible for applet installation and exe-
cution, assigning java card resources to applet, dealing with transactions
and network communication between card and reader, and on-card system
and applet security. It also provide isolation between underlying technol-
ogy of smart card and application applets which results portable and easy
development of applets for different architectures of smart cards. Industry-
specific extensions provide additional services such as Visa open platform

45

3.2. Architecture of Java Card Chapter 3. Java Cards Technology

for secure financial services. Framework classes (API) of JCRE provide
application programming interface and it consists of API packages for ap-
plet development and cryptographic functions. These API packages are
compact and customized for smart card application development.

Java Card virtual machine JCVM executes byte code by interpreting them
regarding to native programming codes. Native methods provide support to
JCVM for low level communication to smart card hardware. The function-
alities provided by native methods to JCVM are low level communication
protocols, memory management and access to cryptographic units.

3.2.3 Java Card Virtual Machine (JCVM)

Figure 3.5 exhibits Java Card Virtual Machine (JCVM) architecture which
separates JCVM into two parts: Off-card VM and On-card VM. If we look
into normal java application execution process starting from source code
where source code is first converted into byte code and then byte codes are
executed by JCVM. In java card, applet source code is written and compiled
by the off-card VM which can reside in a desktop PC or workstation and
then it is installed and executed by the on-card VM which reside inside java
card. Following are steps that describe in detail process of java card applet
from creation to execution.

Figure 3.5: Java Card Virtual Machine Architecture

46

3.2. Architecture of Java Card Chapter 3. Java Cards Technology

for secure financial services. Framework classes (API) of JCRE provide
application programming interface and it consists of API packages for ap-
plet development and cryptographic functions. These API packages are
compact and customized for smart card application development.

Java Card virtual machine JCVM executes byte code by interpreting them
regarding to native programming codes. Native methods provide support to
JCVM for low level communication to smart card hardware. The function-
alities provided by native methods to JCVM are low level communication
protocols, memory management and access to cryptographic units.

3.2.3 Java Card Virtual Machine (JCVM)

Figure 3.5 exhibits Java Card Virtual Machine (JCVM) architecture which
separates JCVM into two parts: Off-card VM and On-card VM. If we look
into normal java application execution process starting from source code
where source code is first converted into byte code and then byte codes are
executed by JCVM. In java card, applet source code is written and compiled
by the off-card VM which can reside in a desktop PC or workstation and
then it is installed and executed by the on-card VM which reside inside java
card. Following are steps that describe in detail process of java card applet
from creation to execution.

Figure 3.5: Java Card Virtual Machine Architecture

46

3.2. Architecture of Java Card Chapter 3. Java Cards Technology

for secure financial services. Framework classes (API) of JCRE provide
application programming interface and it consists of API packages for ap-
plet development and cryptographic functions. These API packages are
compact and customized for smart card application development.

Java Card virtual machine JCVM executes byte code by interpreting them
regarding to native programming codes. Native methods provide support to
JCVM for low level communication to smart card hardware. The function-
alities provided by native methods to JCVM are low level communication
protocols, memory management and access to cryptographic units.

3.2.3 Java Card Virtual Machine (JCVM)

Figure 3.5 exhibits Java Card Virtual Machine (JCVM) architecture which
separates JCVM into two parts: Off-card VM and On-card VM. If we look
into normal java application execution process starting from source code
where source code is first converted into byte code and then byte codes are
executed by JCVM. In java card, applet source code is written and compiled
by the off-card VM which can reside in a desktop PC or workstation and
then it is installed and executed by the on-card VM which reside inside java
card. Following are steps that describe in detail process of java card applet
from creation to execution.

Figure 3.5: Java Card Virtual Machine Architecture

46

3.2. Architecture of Java Card Chapter 3. Java Cards Technology

for secure financial services. Framework classes (API) of JCRE provide
application programming interface and it consists of API packages for ap-
plet development and cryptographic functions. These API packages are
compact and customized for smart card application development.

Java Card virtual machine JCVM executes byte code by interpreting them
regarding to native programming codes. Native methods provide support to
JCVM for low level communication to smart card hardware. The function-
alities provided by native methods to JCVM are low level communication
protocols, memory management and access to cryptographic units.

3.2.3 Java Card Virtual Machine (JCVM)

Figure 3.5 exhibits Java Card Virtual Machine (JCVM) architecture which
separates JCVM into two parts: Off-card VM and On-card VM. If we look
into normal java application execution process starting from source code
where source code is first converted into byte code and then byte codes are
executed by JCVM. In java card, applet source code is written and compiled
by the off-card VM which can reside in a desktop PC or workstation and
then it is installed and executed by the on-card VM which reside inside java
card. Following are steps that describe in detail process of java card applet
from creation to execution.

Figure 3.5: Java Card Virtual Machine Architecture

46

Chapter 3. Java Cards Technology 3.3. APDU

• Developer of java card applet should be careful about limitations of
java card API and can write source program in any standard Java IDE.

• Java card applet is compiled in a standard Java compiler that takes
source file as input and return an Class file (Java Byte code) along
with an Export file (additional information like Header file in C).

• The converter, a component of Off-card VM, takes Class file and
Export file as input and return a Converted Applet (CAP) file and
Export file. The converter makes sure that input file comply with
java card APIs and Java card framework security requirements.

• Finally the off-card installer takes CAP file and Export file as input
and together with on-card installer perform all the required steps de-
fined in java card framework to install the applet in java card.

• On-card VM interprets the applet file and executes it.

As JCVM is a subset of JVM therefore it has some limitations described
below:

• It does not support data types: char, int, float, double, long.

• It does not support multi-dimensional arrays.

• It does not support garbage collection.

• It does not support threads.

• It does not support arrays having more than 32767 elements.

• It does not support local variables in a method more than 255.

3.3 APDU

In order to perform communication between java card and reader, message-
passing is done through the protocol Application Protocol Data Unit (APDU).
This is a logical packet that transfers command and response. Information
sent from reader to java card is called Command-APDU (C-APDU) and
information sent back from java card to reader is called Response-APDU

47

Chapter 3. Java Cards Technology 3.3. APDU

• Developer of java card applet should be careful about limitations of
java card API and can write source program in any standard Java IDE.

• Java card applet is compiled in a standard Java compiler that takes
source file as input and return an Class file (Java Byte code) along
with an Export file (additional information like Header file in C).

• The converter, a component of Off-card VM, takes Class file and
Export file as input and return a Converted Applet (CAP) file and
Export file. The converter makes sure that input file comply with
java card APIs and Java card framework security requirements.

• Finally the off-card installer takes CAP file and Export file as input
and together with on-card installer perform all the required steps de-
fined in java card framework to install the applet in java card.

• On-card VM interprets the applet file and executes it.

As JCVM is a subset of JVM therefore it has some limitations described
below:

• It does not support data types: char, int, float, double, long.

• It does not support multi-dimensional arrays.

• It does not support garbage collection.

• It does not support threads.

• It does not support arrays having more than 32767 elements.

• It does not support local variables in a method more than 255.

3.3 APDU

In order to perform communication between java card and reader, message-
passing is done through the protocol Application Protocol Data Unit (APDU).
This is a logical packet that transfers command and response. Information
sent from reader to java card is called Command-APDU (C-APDU) and
information sent back from java card to reader is called Response-APDU

47

Chapter 3. Java Cards Technology 3.3. APDU

• Developer of java card applet should be careful about limitations of
java card API and can write source program in any standard Java IDE.

• Java card applet is compiled in a standard Java compiler that takes
source file as input and return an Class file (Java Byte code) along
with an Export file (additional information like Header file in C).

• The converter, a component of Off-card VM, takes Class file and
Export file as input and return a Converted Applet (CAP) file and
Export file. The converter makes sure that input file comply with
java card APIs and Java card framework security requirements.

• Finally the off-card installer takes CAP file and Export file as input
and together with on-card installer perform all the required steps de-
fined in java card framework to install the applet in java card.

• On-card VM interprets the applet file and executes it.

As JCVM is a subset of JVM therefore it has some limitations described
below:

• It does not support data types: char, int, float, double, long.

• It does not support multi-dimensional arrays.

• It does not support garbage collection.

• It does not support threads.

• It does not support arrays having more than 32767 elements.

• It does not support local variables in a method more than 255.

3.3 APDU

In order to perform communication between java card and reader, message-
passing is done through the protocol Application Protocol Data Unit (APDU).
This is a logical packet that transfers command and response. Information
sent from reader to java card is called Command-APDU (C-APDU) and
information sent back from java card to reader is called Response-APDU

47

Chapter 3. Java Cards Technology 3.3. APDU

• Developer of java card applet should be careful about limitations of
java card API and can write source program in any standard Java IDE.

• Java card applet is compiled in a standard Java compiler that takes
source file as input and return an Class file (Java Byte code) along
with an Export file (additional information like Header file in C).

• The converter, a component of Off-card VM, takes Class file and
Export file as input and return a Converted Applet (CAP) file and
Export file. The converter makes sure that input file comply with
java card APIs and Java card framework security requirements.

• Finally the off-card installer takes CAP file and Export file as input
and together with on-card installer perform all the required steps de-
fined in java card framework to install the applet in java card.

• On-card VM interprets the applet file and executes it.

As JCVM is a subset of JVM therefore it has some limitations described
below:

• It does not support data types: char, int, float, double, long.

• It does not support multi-dimensional arrays.

• It does not support garbage collection.

• It does not support threads.

• It does not support arrays having more than 32767 elements.

• It does not support local variables in a method more than 255.

3.3 APDU

In order to perform communication between java card and reader, message-
passing is done through the protocol Application Protocol Data Unit (APDU).
This is a logical packet that transfers command and response. Information
sent from reader to java card is called Command-APDU (C-APDU) and
information sent back from java card to reader is called Response-APDU

47

3.3. APDU Chapter 3. Java Cards Technology

(R-APDU). The java card acts as a passive entity which responds to the
instructions sent by reader which is active entity.

Command APDU

The format of C-APDU is given in figure 3.6. It has two parts one manda-
tory and one optional. Fields of C-APDU are discussed below:

Figure 3.6: Command APDU

CLA It is called class of Instructions and the length of this field is 1 byte.
This field is used to define an application specific class of instructions.
Standards for valid CLA values have been defined in ISO 7816-4. Appli-
cation developers of java card should take into account these values which
are mentioned below in table 3.1.

CLA Values Interpretation
0x0n, 0x1n ISO 7816-4 card instructions.
20 to 0x7F Reserved

0x8n or 0x9n Customized application-specific instructions.
0xAn Application- or vendor-specific instructions.

B0 to CF Customized application-specific instructions.
D0 to FE Application- or vendor-specific instructions.

FF Reserved for protocol type selection.

Table 3.1: CLA field Values by ISO 7816-4

INS It is called Instruction Code and the length of this field is 1 byte. This
field is used to define instruction against a specific class of instruction set
or against a specific value of CLA field. Table 3.2 shows instruction codes

48

3.3. APDU Chapter 3. Java Cards Technology

(R-APDU). The java card acts as a passive entity which responds to the
instructions sent by reader which is active entity.

Command APDU

The format of C-APDU is given in figure 3.6. It has two parts one manda-
tory and one optional. Fields of C-APDU are discussed below:

Figure 3.6: Command APDU

CLA It is called class of Instructions and the length of this field is 1 byte.
This field is used to define an application specific class of instructions.
Standards for valid CLA values have been defined in ISO 7816-4. Appli-
cation developers of java card should take into account these values which
are mentioned below in table 3.1.

CLA Values Interpretation
0x0n, 0x1n ISO 7816-4 card instructions.
20 to 0x7F Reserved

0x8n or 0x9n Customized application-specific instructions.
0xAn Application- or vendor-specific instructions.

B0 to CF Customized application-specific instructions.
D0 to FE Application- or vendor-specific instructions.

FF Reserved for protocol type selection.

Table 3.1: CLA field Values by ISO 7816-4

INS It is called Instruction Code and the length of this field is 1 byte. This
field is used to define instruction against a specific class of instruction set
or against a specific value of CLA field. Table 3.2 shows instruction codes

48

3.3. APDU Chapter 3. Java Cards Technology

(R-APDU). The java card acts as a passive entity which responds to the
instructions sent by reader which is active entity.

Command APDU

The format of C-APDU is given in figure 3.6. It has two parts one manda-
tory and one optional. Fields of C-APDU are discussed below:

Figure 3.6: Command APDU

CLA It is called class of Instructions and the length of this field is 1 byte.
This field is used to define an application specific class of instructions.
Standards for valid CLA values have been defined in ISO 7816-4. Appli-
cation developers of java card should take into account these values which
are mentioned below in table 3.1.

CLA Values Interpretation
0x0n, 0x1n ISO 7816-4 card instructions.
20 to 0x7F Reserved

0x8n or 0x9n Customized application-specific instructions.
0xAn Application- or vendor-specific instructions.

B0 to CF Customized application-specific instructions.
D0 to FE Application- or vendor-specific instructions.

FF Reserved for protocol type selection.

Table 3.1: CLA field Values by ISO 7816-4

INS It is called Instruction Code and the length of this field is 1 byte. This
field is used to define instruction against a specific class of instruction set
or against a specific value of CLA field. Table 3.2 shows instruction codes

48

3.3. APDU Chapter 3. Java Cards Technology

(R-APDU). The java card acts as a passive entity which responds to the
instructions sent by reader which is active entity.

Command APDU

The format of C-APDU is given in figure 3.6. It has two parts one manda-
tory and one optional. Fields of C-APDU are discussed below:

Figure 3.6: Command APDU

CLA It is called class of Instructions and the length of this field is 1 byte.
This field is used to define an application specific class of instructions.
Standards for valid CLA values have been defined in ISO 7816-4. Appli-
cation developers of java card should take into account these values which
are mentioned below in table 3.1.

CLA Values Interpretation
0x0n, 0x1n ISO 7816-4 card instructions.
20 to 0x7F Reserved

0x8n or 0x9n Customized application-specific instructions.
0xAn Application- or vendor-specific instructions.

B0 to CF Customized application-specific instructions.
D0 to FE Application- or vendor-specific instructions.

FF Reserved for protocol type selection.

Table 3.1: CLA field Values by ISO 7816-4

INS It is called Instruction Code and the length of this field is 1 byte. This
field is used to define instruction against a specific class of instruction set
or against a specific value of CLA field. Table 3.2 shows instruction codes

48

Chapter 3. Java Cards Technology 3.3. APDU

INS Value Interpretation
0E Erase Binary
20 Verify
70 Manage Channel
82 External Authenticate
84 Get Challenge
88 Internal Authenticate
A4 Select File
B0 Read Binary
B2 Read Record(s)
C0 Get Response
C2 Envelope
CA Get Data
D0 Write Binary
D2 Write Record
D6 Update Binary
DA Put Data
DC Update Record
E2 Append Record

Table 3.2: INS field Values by ISO 7816-4

for INS field when used against values of CLA field (0x0n, 0x1n) defined
as ISO-7816-4 card instructions.

P1, P2 These are called Instruction Parameters and the length of each field
is 1 byte. These fields are used to define parameters of a specific instruction.

LC It is called Length of Data field in C-APDU and the length of this field
is 1 byte. This field is used to define the length of data sent in Data field in
bytes.

Data It is called Data field and the length of this field is not fixed like other
fields. The length of Data field can be varying from 0 to 255 bytes. When
there is no data to transfer; both LC field and Data field can be empty.

LE It is called Length of Data field in R-APDU and the length of this field
is 1 byte. The length of data filed in R-APDU can be controlled using this
field.

49

Chapter 3. Java Cards Technology 3.3. APDU

INS Value Interpretation
0E Erase Binary
20 Verify
70 Manage Channel
82 External Authenticate
84 Get Challenge
88 Internal Authenticate
A4 Select File
B0 Read Binary
B2 Read Record(s)
C0 Get Response
C2 Envelope
CA Get Data
D0 Write Binary
D2 Write Record
D6 Update Binary
DA Put Data
DC Update Record
E2 Append Record

Table 3.2: INS field Values by ISO 7816-4

for INS field when used against values of CLA field (0x0n, 0x1n) defined
as ISO-7816-4 card instructions.

P1, P2 These are called Instruction Parameters and the length of each field
is 1 byte. These fields are used to define parameters of a specific instruction.

LC It is called Length of Data field in C-APDU and the length of this field
is 1 byte. This field is used to define the length of data sent in Data field in
bytes.

Data It is called Data field and the length of this field is not fixed like other
fields. The length of Data field can be varying from 0 to 255 bytes. When
there is no data to transfer; both LC field and Data field can be empty.

LE It is called Length of Data field in R-APDU and the length of this field
is 1 byte. The length of data filed in R-APDU can be controlled using this
field.

49

Chapter 3. Java Cards Technology 3.3. APDU

INS Value Interpretation
0E Erase Binary
20 Verify
70 Manage Channel
82 External Authenticate
84 Get Challenge
88 Internal Authenticate
A4 Select File
B0 Read Binary
B2 Read Record(s)
C0 Get Response
C2 Envelope
CA Get Data
D0 Write Binary
D2 Write Record
D6 Update Binary
DA Put Data
DC Update Record
E2 Append Record

Table 3.2: INS field Values by ISO 7816-4

for INS field when used against values of CLA field (0x0n, 0x1n) defined
as ISO-7816-4 card instructions.

P1, P2 These are called Instruction Parameters and the length of each field
is 1 byte. These fields are used to define parameters of a specific instruction.

LC It is called Length of Data field in C-APDU and the length of this field
is 1 byte. This field is used to define the length of data sent in Data field in
bytes.

Data It is called Data field and the length of this field is not fixed like other
fields. The length of Data field can be varying from 0 to 255 bytes. When
there is no data to transfer; both LC field and Data field can be empty.

LE It is called Length of Data field in R-APDU and the length of this field
is 1 byte. The length of data filed in R-APDU can be controlled using this
field.

49

Chapter 3. Java Cards Technology 3.3. APDU

INS Value Interpretation
0E Erase Binary
20 Verify
70 Manage Channel
82 External Authenticate
84 Get Challenge
88 Internal Authenticate
A4 Select File
B0 Read Binary
B2 Read Record(s)
C0 Get Response
C2 Envelope
CA Get Data
D0 Write Binary
D2 Write Record
D6 Update Binary
DA Put Data
DC Update Record
E2 Append Record

Table 3.2: INS field Values by ISO 7816-4

for INS field when used against values of CLA field (0x0n, 0x1n) defined
as ISO-7816-4 card instructions.

P1, P2 These are called Instruction Parameters and the length of each field
is 1 byte. These fields are used to define parameters of a specific instruction.

LC It is called Length of Data field in C-APDU and the length of this field
is 1 byte. This field is used to define the length of data sent in Data field in
bytes.

Data It is called Data field and the length of this field is not fixed like other
fields. The length of Data field can be varying from 0 to 255 bytes. When
there is no data to transfer; both LC field and Data field can be empty.

LE It is called Length of Data field in R-APDU and the length of this field
is 1 byte. The length of data filed in R-APDU can be controlled using this
field.

49

3.3. APDU Chapter 3. Java Cards Technology

Response APDU

The format of R-APDU is depicted in figure 3.7 which has one optional and
one mandatory part. Fields of each part has been discussed below:

Figure 3.7: Response APDU

Data This field contains Data returned in response of java card applet
against a query from reader. Normally nature of this field is described in
applet codes. It can be empty or it should return some data if LE field in
C-APADU contains some value.

SW1, SW2 These fields contain status of processed applet against any C-
APDU from reader. Each field has length of 1 byte.

Status codes SW1 and SW2 has been standardized by ISO-7816-4 on generic
level and some of which are further explained in detail in table 3.3 where
Status column uses following abbreviations.

NP: process completed, normal processing

EE: process aborted, execution error

WP: process completed, warning processing

CE: process aborted, checking error

50

3.3. APDU Chapter 3. Java Cards Technology

Response APDU

The format of R-APDU is depicted in figure 3.7 which has one optional and
one mandatory part. Fields of each part has been discussed below:

Figure 3.7: Response APDU

Data This field contains Data returned in response of java card applet
against a query from reader. Normally nature of this field is described in
applet codes. It can be empty or it should return some data if LE field in
C-APADU contains some value.

SW1, SW2 These fields contain status of processed applet against any C-
APDU from reader. Each field has length of 1 byte.

Status codes SW1 and SW2 has been standardized by ISO-7816-4 on generic
level and some of which are further explained in detail in table 3.3 where
Status column uses following abbreviations.

NP: process completed, normal processing

EE: process aborted, execution error

WP: process completed, warning processing

CE: process aborted, checking error

50

3.3. APDU Chapter 3. Java Cards Technology

Response APDU

The format of R-APDU is depicted in figure 3.7 which has one optional and
one mandatory part. Fields of each part has been discussed below:

Figure 3.7: Response APDU

Data This field contains Data returned in response of java card applet
against a query from reader. Normally nature of this field is described in
applet codes. It can be empty or it should return some data if LE field in
C-APADU contains some value.

SW1, SW2 These fields contain status of processed applet against any C-
APDU from reader. Each field has length of 1 byte.

Status codes SW1 and SW2 has been standardized by ISO-7816-4 on generic
level and some of which are further explained in detail in table 3.3 where
Status column uses following abbreviations.

NP: process completed, normal processing

EE: process aborted, execution error

WP: process completed, warning processing

CE: process aborted, checking error

50

3.3. APDU Chapter 3. Java Cards Technology

Response APDU

The format of R-APDU is depicted in figure 3.7 which has one optional and
one mandatory part. Fields of each part has been discussed below:

Figure 3.7: Response APDU

Data This field contains Data returned in response of java card applet
against a query from reader. Normally nature of this field is described in
applet codes. It can be empty or it should return some data if LE field in
C-APADU contains some value.

SW1, SW2 These fields contain status of processed applet against any C-
APDU from reader. Each field has length of 1 byte.

Status codes SW1 and SW2 has been standardized by ISO-7816-4 on generic
level and some of which are further explained in detail in table 3.3 where
Status column uses following abbreviations.

NP: process completed, normal processing

EE: process aborted, execution error

WP: process completed, warning processing

CE: process aborted, checking error

50

Chapter 3. Java Cards Technology 3.3. APDU

SW1, SW2 Status Interpretation
6281 WP The returned data may be erroneous.
6282 WP Fewer bytes than specified by the Le.
6283 WP The selected file is blocked (invalidated).
6581 EE Memory error (e.g. during a write operation).
6881 CE Logical channels not supported.
6882 CE Secure messaging not supported.
6982 CE Security state not satisfied.
6983 CE Authentication method blocked.
6987 CE Expected secure messaging data objects missing.
6988 CE Secure messaging data objects incorrect.
6A80 CE Parameters in the data portion are incorrect.
6A81 CE Function not supported.
6A82 CE File not found.
6A83 CE Record not found.
6A84 CE Insufficient memory.
6A86 CE Incorrect P1or P2 parameter.
6A87 CE Lc inconsistent with P1 or P2.
6A88 CE Referenced data not found.
6F00 CE Command aborted with unidentified error.
9000 NP Command successfully executed.

Table 3.3: Field Values of Processing Status (SW1, SW2)

51

Chapter 3. Java Cards Technology 3.3. APDU

SW1, SW2 Status Interpretation
6281 WP The returned data may be erroneous.
6282 WP Fewer bytes than specified by the Le.
6283 WP The selected file is blocked (invalidated).
6581 EE Memory error (e.g. during a write operation).
6881 CE Logical channels not supported.
6882 CE Secure messaging not supported.
6982 CE Security state not satisfied.
6983 CE Authentication method blocked.
6987 CE Expected secure messaging data objects missing.
6988 CE Secure messaging data objects incorrect.
6A80 CE Parameters in the data portion are incorrect.
6A81 CE Function not supported.
6A82 CE File not found.
6A83 CE Record not found.
6A84 CE Insufficient memory.
6A86 CE Incorrect P1or P2 parameter.
6A87 CE Lc inconsistent with P1 or P2.
6A88 CE Referenced data not found.
6F00 CE Command aborted with unidentified error.
9000 NP Command successfully executed.

Table 3.3: Field Values of Processing Status (SW1, SW2)

51

Chapter 3. Java Cards Technology 3.3. APDU

SW1, SW2 Status Interpretation
6281 WP The returned data may be erroneous.
6282 WP Fewer bytes than specified by the Le.
6283 WP The selected file is blocked (invalidated).
6581 EE Memory error (e.g. during a write operation).
6881 CE Logical channels not supported.
6882 CE Secure messaging not supported.
6982 CE Security state not satisfied.
6983 CE Authentication method blocked.
6987 CE Expected secure messaging data objects missing.
6988 CE Secure messaging data objects incorrect.
6A80 CE Parameters in the data portion are incorrect.
6A81 CE Function not supported.
6A82 CE File not found.
6A83 CE Record not found.
6A84 CE Insufficient memory.
6A86 CE Incorrect P1or P2 parameter.
6A87 CE Lc inconsistent with P1 or P2.
6A88 CE Referenced data not found.
6F00 CE Command aborted with unidentified error.
9000 NP Command successfully executed.

Table 3.3: Field Values of Processing Status (SW1, SW2)

51

Chapter 3. Java Cards Technology 3.3. APDU

SW1, SW2 Status Interpretation
6281 WP The returned data may be erroneous.
6282 WP Fewer bytes than specified by the Le.
6283 WP The selected file is blocked (invalidated).
6581 EE Memory error (e.g. during a write operation).
6881 CE Logical channels not supported.
6882 CE Secure messaging not supported.
6982 CE Security state not satisfied.
6983 CE Authentication method blocked.
6987 CE Expected secure messaging data objects missing.
6988 CE Secure messaging data objects incorrect.
6A80 CE Parameters in the data portion are incorrect.
6A81 CE Function not supported.
6A82 CE File not found.
6A83 CE Record not found.
6A84 CE Insufficient memory.
6A86 CE Incorrect P1or P2 parameter.
6A87 CE Lc inconsistent with P1 or P2.
6A88 CE Referenced data not found.
6F00 CE Command aborted with unidentified error.
9000 NP Command successfully executed.

Table 3.3: Field Values of Processing Status (SW1, SW2)

51

3.3. APDU Chapter 3. Java Cards Technology

52

3.3. APDU Chapter 3. Java Cards Technology

52

3.3. APDU Chapter 3. Java Cards Technology

52

3.3. APDU Chapter 3. Java Cards Technology

52

Chapter 4

Implmentation

Our implementation of MQQ-SIG digital signature is based on NXP JCOP
41 V2.2.1 72K java card and OMNIKEY RFID reader and we have used
Eclipse SDK 3.2 as an applet development tool for java card. There are two
interfaces in this card; one is contact interface and another is contactless
interface. We have used contactless interface for accessing this card from
RFID reader.

4.1 NXP JCOP 41 V2.2.1 72K Java Card

The smart card used in our implementation is multi-application (support
many applets) and dual interface (contact, contactless) java card. And
the name of this smart card is NXP JCOP 41 V2.2.1 72 K. NXP is the
manufacturer name of java card. It is a semiconductor company which is
founded by Philips in 2006. JCOP is an IBM implementation of Java card
2.2.1 and Global Platform 2.1.1 basic specifications including refinements
from VISA international set in the VISA open-platform card implementa-
tion guides. All necessary clarification from ISO7816 and EMV 2000 are
also incorporated in to the implementation.

The hardware related features of JCOP 41 V.2.2.1 72K has been explained
in Philips Semiconductor SmartMX P5CT072 family. The SmartMX fam-
ily implements the IC architecture of smart card using advanced CMOS

53

Chapter 4

Implmentation

Our implementation of MQQ-SIG digital signature is based on NXP JCOP
41 V2.2.1 72K java card and OMNIKEY RFID reader and we have used
Eclipse SDK 3.2 as an applet development tool for java card. There are two
interfaces in this card; one is contact interface and another is contactless
interface. We have used contactless interface for accessing this card from
RFID reader.

4.1 NXP JCOP 41 V2.2.1 72K Java Card

The smart card used in our implementation is multi-application (support
many applets) and dual interface (contact, contactless) java card. And
the name of this smart card is NXP JCOP 41 V2.2.1 72 K. NXP is the
manufacturer name of java card. It is a semiconductor company which is
founded by Philips in 2006. JCOP is an IBM implementation of Java card
2.2.1 and Global Platform 2.1.1 basic specifications including refinements
from VISA international set in the VISA open-platform card implementa-
tion guides. All necessary clarification from ISO7816 and EMV 2000 are
also incorporated in to the implementation.

The hardware related features of JCOP 41 V.2.2.1 72K has been explained
in Philips Semiconductor SmartMX P5CT072 family. The SmartMX fam-
ily implements the IC architecture of smart card using advanced CMOS

53

Chapter 4

Implmentation

Our implementation of MQQ-SIG digital signature is based on NXP JCOP
41 V2.2.1 72K java card and OMNIKEY RFID reader and we have used
Eclipse SDK 3.2 as an applet development tool for java card. There are two
interfaces in this card; one is contact interface and another is contactless
interface. We have used contactless interface for accessing this card from
RFID reader.

4.1 NXP JCOP 41 V2.2.1 72K Java Card

The smart card used in our implementation is multi-application (support
many applets) and dual interface (contact, contactless) java card. And
the name of this smart card is NXP JCOP 41 V2.2.1 72 K. NXP is the
manufacturer name of java card. It is a semiconductor company which is
founded by Philips in 2006. JCOP is an IBM implementation of Java card
2.2.1 and Global Platform 2.1.1 basic specifications including refinements
from VISA international set in the VISA open-platform card implementa-
tion guides. All necessary clarification from ISO7816 and EMV 2000 are
also incorporated in to the implementation.

The hardware related features of JCOP 41 V.2.2.1 72K has been explained
in Philips Semiconductor SmartMX P5CT072 family. The SmartMX fam-
ily implements the IC architecture of smart card using advanced CMOS

53

Chapter 4

Implmentation

Our implementation of MQQ-SIG digital signature is based on NXP JCOP
41 V2.2.1 72K java card and OMNIKEY RFID reader and we have used
Eclipse SDK 3.2 as an applet development tool for java card. There are two
interfaces in this card; one is contact interface and another is contactless
interface. We have used contactless interface for accessing this card from
RFID reader.

4.1 NXP JCOP 41 V2.2.1 72K Java Card

The smart card used in our implementation is multi-application (support
many applets) and dual interface (contact, contactless) java card. And
the name of this smart card is NXP JCOP 41 V2.2.1 72 K. NXP is the
manufacturer name of java card. It is a semiconductor company which is
founded by Philips in 2006. JCOP is an IBM implementation of Java card
2.2.1 and Global Platform 2.1.1 basic specifications including refinements
from VISA international set in the VISA open-platform card implementa-
tion guides. All necessary clarification from ISO7816 and EMV 2000 are
also incorporated in to the implementation.

The hardware related features of JCOP 41 V.2.2.1 72K has been explained
in Philips Semiconductor SmartMX P5CT072 family. The SmartMX fam-
ily implements the IC architecture of smart card using advanced CMOS

53

4.1. NXP JCOP 41 V2.2.1 72K Java Card Chapter 4. Implmentation

technology having feature size of 0.18 ţm with 5 metal layers. The in-
struction set is having advanced op-codes and is also compatible with clas-
sic 80C51 instruction set. These cards have also included cryptographic
co-processors for public and shared secret based encryption such as RSA,
ECC, DSA and AES with greater security and low power consumption. All
these benefits make these cards ideal choice for applications like e-passport,
e-banking, public transportation, payTV and access control.

P5CT072 is a secure PKI smart card controller with temper resistant fea-
tures. Some features of P5CT072 device are discussed below and also de-
picted in figure 4.1.

Figure 4.1: Architecture of device P5CT072 [24]

• Three types of memory used. RAM 4608 bytes for volatile storage of
data. ROM, 160 Kbytes, burned at manufacturing time and contains
OS. EEPROM is non-volatile, 72 Kbytes, for storing applets and data
and its data retention time is minimum 20 years.

54

4.1. NXP JCOP 41 V2.2.1 72K Java Card Chapter 4. Implmentation

technology having feature size of 0.18 ţm with 5 metal layers. The in-
struction set is having advanced op-codes and is also compatible with clas-
sic 80C51 instruction set. These cards have also included cryptographic
co-processors for public and shared secret based encryption such as RSA,
ECC, DSA and AES with greater security and low power consumption. All
these benefits make these cards ideal choice for applications like e-passport,
e-banking, public transportation, payTV and access control.

P5CT072 is a secure PKI smart card controller with temper resistant fea-
tures. Some features of P5CT072 device are discussed below and also de-
picted in figure 4.1.

Figure 4.1: Architecture of device P5CT072 [24]

• Three types of memory used. RAM 4608 bytes for volatile storage of
data. ROM, 160 Kbytes, burned at manufacturing time and contains
OS. EEPROM is non-volatile, 72 Kbytes, for storing applets and data
and its data retention time is minimum 20 years.

54

4.1. NXP JCOP 41 V2.2.1 72K Java Card Chapter 4. Implmentation

technology having feature size of 0.18 ţm with 5 metal layers. The in-
struction set is having advanced op-codes and is also compatible with clas-
sic 80C51 instruction set. These cards have also included cryptographic
co-processors for public and shared secret based encryption such as RSA,
ECC, DSA and AES with greater security and low power consumption. All
these benefits make these cards ideal choice for applications like e-passport,
e-banking, public transportation, payTV and access control.

P5CT072 is a secure PKI smart card controller with temper resistant fea-
tures. Some features of P5CT072 device are discussed below and also de-
picted in figure 4.1.

Figure 4.1: Architecture of device P5CT072 [24]

• Three types of memory used. RAM 4608 bytes for volatile storage of
data. ROM, 160 Kbytes, burned at manufacturing time and contains
OS. EEPROM is non-volatile, 72 Kbytes, for storing applets and data
and its data retention time is minimum 20 years.

54

4.1. NXP JCOP 41 V2.2.1 72K Java Card Chapter 4. Implmentation

technology having feature size of 0.18 ţm with 5 metal layers. The in-
struction set is having advanced op-codes and is also compatible with clas-
sic 80C51 instruction set. These cards have also included cryptographic
co-processors for public and shared secret based encryption such as RSA,
ECC, DSA and AES with greater security and low power consumption. All
these benefits make these cards ideal choice for applications like e-passport,
e-banking, public transportation, payTV and access control.

P5CT072 is a secure PKI smart card controller with temper resistant fea-
tures. Some features of P5CT072 device are discussed below and also de-
picted in figure 4.1.

Figure 4.1: Architecture of device P5CT072 [24]

• Three types of memory used. RAM 4608 bytes for volatile storage of
data. ROM, 160 Kbytes, burned at manufacturing time and contains
OS. EEPROM is non-volatile, 72 Kbytes, for storing applets and data
and its data retention time is minimum 20 years.

54

Chapter 4. Implmentation 4.2. Reader OMNIKEY 5321

• Co-processor FameXe for PKI (Public Key Infrastructure) contains
RSA and ECC.

• Two Co-processors: one for DES, 3DES and one for AES.

• Dual Interface: Contact interface as defined in ISO/IEC 7816 and
Contactless interface as defined in ISO/IEC 14443A, fully supports
protocol T=CL as defined in ISO/IEC 14443-4, Data transfer rates:
(106, 212, 424) Kbits/sec.

• Power supply required (1.8, 3, 5) volts with maximum external clock
frequency of 10MHZ supplied by contact pads or RD-reader in case
of contactless access.

• Internal clock frequency is up to 30 MHZ which is independent of
external operating frequency of 13.56 MHZ.

• Security features provided are: Low/High clock frequency and tem-
perature sensor. Single Fault Injection (SFI) attack detection. Light
Sensors. Memory security (RAM, ROM, and EEPROM) is provided
by means of encryption and physical measures.

• Depending on application requirements, three configurations have
been provided for P5CT072 device: A, B and B4, Details of these
configurations are depicted in figure 4.2. Configuration B and B4
provide compatibility with old MIFARE based infrastructure with 1
Kbytes and 4 Kbytes of memory. In our implementation we have
used configuration B.

• Low power Random Number Generator (RNG) implementation in
hardware as defined in FIPS 140-2.

4.2 Reader OMNIKEY 5321

We have used OMNIKEY 5321 reader in our implementation which pro-
vides support for dual interface: contact and contactless interface for smart
card and is connected with PC with USB interface. It operates at 13.56
MHZ frequency for contactless interface. Some features of this reader are
discussed below [25]:

55

Chapter 4. Implmentation 4.2. Reader OMNIKEY 5321

• Co-processor FameXe for PKI (Public Key Infrastructure) contains
RSA and ECC.

• Two Co-processors: one for DES, 3DES and one for AES.

• Dual Interface: Contact interface as defined in ISO/IEC 7816 and
Contactless interface as defined in ISO/IEC 14443A, fully supports
protocol T=CL as defined in ISO/IEC 14443-4, Data transfer rates:
(106, 212, 424) Kbits/sec.

• Power supply required (1.8, 3, 5) volts with maximum external clock
frequency of 10MHZ supplied by contact pads or RD-reader in case
of contactless access.

• Internal clock frequency is up to 30 MHZ which is independent of
external operating frequency of 13.56 MHZ.

• Security features provided are: Low/High clock frequency and tem-
perature sensor. Single Fault Injection (SFI) attack detection. Light
Sensors. Memory security (RAM, ROM, and EEPROM) is provided
by means of encryption and physical measures.

• Depending on application requirements, three configurations have
been provided for P5CT072 device: A, B and B4, Details of these
configurations are depicted in figure 4.2. Configuration B and B4
provide compatibility with old MIFARE based infrastructure with 1
Kbytes and 4 Kbytes of memory. In our implementation we have
used configuration B.

• Low power Random Number Generator (RNG) implementation in
hardware as defined in FIPS 140-2.

4.2 Reader OMNIKEY 5321

We have used OMNIKEY 5321 reader in our implementation which pro-
vides support for dual interface: contact and contactless interface for smart
card and is connected with PC with USB interface. It operates at 13.56
MHZ frequency for contactless interface. Some features of this reader are
discussed below [25]:

55

Chapter 4. Implmentation 4.2. Reader OMNIKEY 5321

• Co-processor FameXe for PKI (Public Key Infrastructure) contains
RSA and ECC.

• Two Co-processors: one for DES, 3DES and one for AES.

• Dual Interface: Contact interface as defined in ISO/IEC 7816 and
Contactless interface as defined in ISO/IEC 14443A, fully supports
protocol T=CL as defined in ISO/IEC 14443-4, Data transfer rates:
(106, 212, 424) Kbits/sec.

• Power supply required (1.8, 3, 5) volts with maximum external clock
frequency of 10MHZ supplied by contact pads or RD-reader in case
of contactless access.

• Internal clock frequency is up to 30 MHZ which is independent of
external operating frequency of 13.56 MHZ.

• Security features provided are: Low/High clock frequency and tem-
perature sensor. Single Fault Injection (SFI) attack detection. Light
Sensors. Memory security (RAM, ROM, and EEPROM) is provided
by means of encryption and physical measures.

• Depending on application requirements, three configurations have
been provided for P5CT072 device: A, B and B4, Details of these
configurations are depicted in figure 4.2. Configuration B and B4
provide compatibility with old MIFARE based infrastructure with 1
Kbytes and 4 Kbytes of memory. In our implementation we have
used configuration B.

• Low power Random Number Generator (RNG) implementation in
hardware as defined in FIPS 140-2.

4.2 Reader OMNIKEY 5321

We have used OMNIKEY 5321 reader in our implementation which pro-
vides support for dual interface: contact and contactless interface for smart
card and is connected with PC with USB interface. It operates at 13.56
MHZ frequency for contactless interface. Some features of this reader are
discussed below [25]:

55

Chapter 4. Implmentation 4.2. Reader OMNIKEY 5321

• Co-processor FameXe for PKI (Public Key Infrastructure) contains
RSA and ECC.

• Two Co-processors: one for DES, 3DES and one for AES.

• Dual Interface: Contact interface as defined in ISO/IEC 7816 and
Contactless interface as defined in ISO/IEC 14443A, fully supports
protocol T=CL as defined in ISO/IEC 14443-4, Data transfer rates:
(106, 212, 424) Kbits/sec.

• Power supply required (1.8, 3, 5) volts with maximum external clock
frequency of 10MHZ supplied by contact pads or RD-reader in case
of contactless access.

• Internal clock frequency is up to 30 MHZ which is independent of
external operating frequency of 13.56 MHZ.

• Security features provided are: Low/High clock frequency and tem-
perature sensor. Single Fault Injection (SFI) attack detection. Light
Sensors. Memory security (RAM, ROM, and EEPROM) is provided
by means of encryption and physical measures.

• Depending on application requirements, three configurations have
been provided for P5CT072 device: A, B and B4, Details of these
configurations are depicted in figure 4.2. Configuration B and B4
provide compatibility with old MIFARE based infrastructure with 1
Kbytes and 4 Kbytes of memory. In our implementation we have
used configuration B.

• Low power Random Number Generator (RNG) implementation in
hardware as defined in FIPS 140-2.

4.2 Reader OMNIKEY 5321

We have used OMNIKEY 5321 reader in our implementation which pro-
vides support for dual interface: contact and contactless interface for smart
card and is connected with PC with USB interface. It operates at 13.56
MHZ frequency for contactless interface. Some features of this reader are
discussed below [25]:

55

4.2. Reader OMNIKEY 5321 Chapter 4. Implmentation

Figure 4.2: Three Memory Configurations of P5CT072 device [24]

• Contactless interface perform read/write operations on 13.56 MHZ.
Support for ISO/IEC 14443A and ISO/IEC 14443B standards along
with transmission rate up to 848 Kbps.

• Support USB 2.0 with data transmission rate of 12 Mbps.

• Support many OS: Windows, Linux and Mac OS.

• Support API for PC/SC, OCF over PC/SC, CT-API, over PC/SC and
Synchronous API.

• Dimensions of reader (L x W x H) = (115 x 96.5 x 25.5) mm and
weight of reader is 160 grams.

• Durability is 100,000 insertions and Meantime between Failure (MTBF)
is 500,000 hours.

• Support contactless cards from many manufacturers. NXP (MIFARE,
DESFire and SMART-MX), ST Micro (x-indent, SR 176, SR 1x 4K),
Atmel(AT088RF020).

In our implementation of contactless interface ISO/IEC 14443A standard
has been used. As we have used java card that need OpenCard Frame-
work (OCF) and windows 7 operating system which include support for
PC/SC driver. Therefore, in our case, Supported API is OCF over PC/SC.

56

4.2. Reader OMNIKEY 5321 Chapter 4. Implmentation

Figure 4.2: Three Memory Configurations of P5CT072 device [24]

• Contactless interface perform read/write operations on 13.56 MHZ.
Support for ISO/IEC 14443A and ISO/IEC 14443B standards along
with transmission rate up to 848 Kbps.

• Support USB 2.0 with data transmission rate of 12 Mbps.

• Support many OS: Windows, Linux and Mac OS.

• Support API for PC/SC, OCF over PC/SC, CT-API, over PC/SC and
Synchronous API.

• Dimensions of reader (L x W x H) = (115 x 96.5 x 25.5) mm and
weight of reader is 160 grams.

• Durability is 100,000 insertions and Meantime between Failure (MTBF)
is 500,000 hours.

• Support contactless cards from many manufacturers. NXP (MIFARE,
DESFire and SMART-MX), ST Micro (x-indent, SR 176, SR 1x 4K),
Atmel(AT088RF020).

In our implementation of contactless interface ISO/IEC 14443A standard
has been used. As we have used java card that need OpenCard Frame-
work (OCF) and windows 7 operating system which include support for
PC/SC driver. Therefore, in our case, Supported API is OCF over PC/SC.

56

4.2. Reader OMNIKEY 5321 Chapter 4. Implmentation

Figure 4.2: Three Memory Configurations of P5CT072 device [24]

• Contactless interface perform read/write operations on 13.56 MHZ.
Support for ISO/IEC 14443A and ISO/IEC 14443B standards along
with transmission rate up to 848 Kbps.

• Support USB 2.0 with data transmission rate of 12 Mbps.

• Support many OS: Windows, Linux and Mac OS.

• Support API for PC/SC, OCF over PC/SC, CT-API, over PC/SC and
Synchronous API.

• Dimensions of reader (L x W x H) = (115 x 96.5 x 25.5) mm and
weight of reader is 160 grams.

• Durability is 100,000 insertions and Meantime between Failure (MTBF)
is 500,000 hours.

• Support contactless cards from many manufacturers. NXP (MIFARE,
DESFire and SMART-MX), ST Micro (x-indent, SR 176, SR 1x 4K),
Atmel(AT088RF020).

In our implementation of contactless interface ISO/IEC 14443A standard
has been used. As we have used java card that need OpenCard Frame-
work (OCF) and windows 7 operating system which include support for
PC/SC driver. Therefore, in our case, Supported API is OCF over PC/SC.

56

4.2. Reader OMNIKEY 5321 Chapter 4. Implmentation

Figure 4.2: Three Memory Configurations of P5CT072 device [24]

• Contactless interface perform read/write operations on 13.56 MHZ.
Support for ISO/IEC 14443A and ISO/IEC 14443B standards along
with transmission rate up to 848 Kbps.

• Support USB 2.0 with data transmission rate of 12 Mbps.

• Support many OS: Windows, Linux and Mac OS.

• Support API for PC/SC, OCF over PC/SC, CT-API, over PC/SC and
Synchronous API.

• Dimensions of reader (L x W x H) = (115 x 96.5 x 25.5) mm and
weight of reader is 160 grams.

• Durability is 100,000 insertions and Meantime between Failure (MTBF)
is 500,000 hours.

• Support contactless cards from many manufacturers. NXP (MIFARE,
DESFire and SMART-MX), ST Micro (x-indent, SR 176, SR 1x 4K),
Atmel(AT088RF020).

In our implementation of contactless interface ISO/IEC 14443A standard
has been used. As we have used java card that need OpenCard Frame-
work (OCF) and windows 7 operating system which include support for
PC/SC driver. Therefore, in our case, Supported API is OCF over PC/SC.

56

Chapter 4. Implmentation 4.3. Development Tool IDE (Eclipse SDK 3.2)

The function of these supported APIs is to provide compatibility between
different vendors of smart cards and readers.

4.3 Development Tool IDE (Eclipse SDK 3.2)

We have used Eclipse SDK 3.2 with JCOP tool for writing java program
codes for the sake of digital signature implementation on java card because
it has been included in the shipment of java card. It supports JRE 1.4.3 or
JRE 1.5.x, an old version of Java Runtime Environment (JRE). We have
used jre1.5.0_08 which is 5th version with update 8 of JRE. This tool has
been installed over Windows 7 operating system and it contains:

• Editor and Debugger for java program.

• Byte code compiler.

• Cap file converter.

• JCOP shell for sending commands from reader to card.

Now, the process of applet installation using JCOP shell will be discussed
below:

1. /card command connects the reader OMNIKEY 5321 to the JCOP
shell.

> /card -a a000000003000000 -c com.ibm.jc.CardManager
resetCard with timeout: 0 (ms)
--Waiting for card...
ATR=3B 8A 80 01 4A 43 4F 50 34 31 56 32 32 31 7F
ATR: T=0, T=1, Hist="JCOP41V221"
=> 00 A4 04 00 08 A0 00 00 00 03 00 00 00 00
(11910 usec)
<= 6F 10 84 08 A0 00 00 00 03 00 00 00 A5 04 9F 65

01 FF 90 00
Status: No Error

2. set-key command registers the 3DES secret key to the Card Manager
which will be used for secure message during authentication. Here
default keys have been used.

cm> set-key 255/1/DES-ECB/404142434445464748494a4b4c4d4e4f

255/2/DES-ECB/404142434445464748494a4b4c4d4e4f

255/3/DES-ECB/404142434445464748494a4b4c4d4e4f

57

Chapter 4. Implmentation 4.3. Development Tool IDE (Eclipse SDK 3.2)

The function of these supported APIs is to provide compatibility between
different vendors of smart cards and readers.

4.3 Development Tool IDE (Eclipse SDK 3.2)

We have used Eclipse SDK 3.2 with JCOP tool for writing java program
codes for the sake of digital signature implementation on java card because
it has been included in the shipment of java card. It supports JRE 1.4.3 or
JRE 1.5.x, an old version of Java Runtime Environment (JRE). We have
used jre1.5.0_08 which is 5th version with update 8 of JRE. This tool has
been installed over Windows 7 operating system and it contains:

• Editor and Debugger for java program.

• Byte code compiler.

• Cap file converter.

• JCOP shell for sending commands from reader to card.

Now, the process of applet installation using JCOP shell will be discussed
below:

1. /card command connects the reader OMNIKEY 5321 to the JCOP
shell.

> /card -a a000000003000000 -c com.ibm.jc.CardManager
resetCard with timeout: 0 (ms)
--Waiting for card...
ATR=3B 8A 80 01 4A 43 4F 50 34 31 56 32 32 31 7F
ATR: T=0, T=1, Hist="JCOP41V221"
=> 00 A4 04 00 08 A0 00 00 00 03 00 00 00 00
(11910 usec)
<= 6F 10 84 08 A0 00 00 00 03 00 00 00 A5 04 9F 65

01 FF 90 00
Status: No Error

2. set-key command registers the 3DES secret key to the Card Manager
which will be used for secure message during authentication. Here
default keys have been used.

cm> set-key 255/1/DES-ECB/404142434445464748494a4b4c4d4e4f

255/2/DES-ECB/404142434445464748494a4b4c4d4e4f

255/3/DES-ECB/404142434445464748494a4b4c4d4e4f

57

Chapter 4. Implmentation 4.3. Development Tool IDE (Eclipse SDK 3.2)

The function of these supported APIs is to provide compatibility between
different vendors of smart cards and readers.

4.3 Development Tool IDE (Eclipse SDK 3.2)

We have used Eclipse SDK 3.2 with JCOP tool for writing java program
codes for the sake of digital signature implementation on java card because
it has been included in the shipment of java card. It supports JRE 1.4.3 or
JRE 1.5.x, an old version of Java Runtime Environment (JRE). We have
used jre1.5.0_08 which is 5th version with update 8 of JRE. This tool has
been installed over Windows 7 operating system and it contains:

• Editor and Debugger for java program.

• Byte code compiler.

• Cap file converter.

• JCOP shell for sending commands from reader to card.

Now, the process of applet installation using JCOP shell will be discussed
below:

1. /card command connects the reader OMNIKEY 5321 to the JCOP
shell.

> /card -a a000000003000000 -c com.ibm.jc.CardManager
resetCard with timeout: 0 (ms)
--Waiting for card...
ATR=3B 8A 80 01 4A 43 4F 50 34 31 56 32 32 31 7F
ATR: T=0, T=1, Hist="JCOP41V221"
=> 00 A4 04 00 08 A0 00 00 00 03 00 00 00 00
(11910 usec)
<= 6F 10 84 08 A0 00 00 00 03 00 00 00 A5 04 9F 65

01 FF 90 00
Status: No Error

2. set-key command registers the 3DES secret key to the Card Manager
which will be used for secure message during authentication. Here
default keys have been used.

cm> set-key 255/1/DES-ECB/404142434445464748494a4b4c4d4e4f

255/2/DES-ECB/404142434445464748494a4b4c4d4e4f

255/3/DES-ECB/404142434445464748494a4b4c4d4e4f

57

Chapter 4. Implmentation 4.3. Development Tool IDE (Eclipse SDK 3.2)

The function of these supported APIs is to provide compatibility between
different vendors of smart cards and readers.

4.3 Development Tool IDE (Eclipse SDK 3.2)

We have used Eclipse SDK 3.2 with JCOP tool for writing java program
codes for the sake of digital signature implementation on java card because
it has been included in the shipment of java card. It supports JRE 1.4.3 or
JRE 1.5.x, an old version of Java Runtime Environment (JRE). We have
used jre1.5.0_08 which is 5th version with update 8 of JRE. This tool has
been installed over Windows 7 operating system and it contains:

• Editor and Debugger for java program.

• Byte code compiler.

• Cap file converter.

• JCOP shell for sending commands from reader to card.

Now, the process of applet installation using JCOP shell will be discussed
below:

1. /card command connects the reader OMNIKEY 5321 to the JCOP
shell.

> /card -a a000000003000000 -c com.ibm.jc.CardManager
resetCard with timeout: 0 (ms)
--Waiting for card...
ATR=3B 8A 80 01 4A 43 4F 50 34 31 56 32 32 31 7F
ATR: T=0, T=1, Hist="JCOP41V221"
=> 00 A4 04 00 08 A0 00 00 00 03 00 00 00 00
(11910 usec)
<= 6F 10 84 08 A0 00 00 00 03 00 00 00 A5 04 9F 65

01 FF 90 00
Status: No Error

2. set-key command registers the 3DES secret key to the Card Manager
which will be used for secure message during authentication. Here
default keys have been used.

cm> set-key 255/1/DES-ECB/404142434445464748494a4b4c4d4e4f

255/2/DES-ECB/404142434445464748494a4b4c4d4e4f

255/3/DES-ECB/404142434445464748494a4b4c4d4e4f

57

4.3. Development Tool IDE (Eclipse SDK 3.2) Chapter 4. Implmentation

3. init-update command initiate authentication to the Card Manager us-
ing Secure Channel Protocol (SCP). In response four fields have been
sent back including card challenge for reader and card cryptogram for
card authentication.
cm> init-update 255
=> 80 50 00 00 08 09 04 51 35 78 A7 AE 21 00
(38472 usec)
<= 00 00 81 29 00 22 37 91 36 54 FF 02 02 12 DC 95

4D 53 D5 AA 5C E6 00 EF E2 44 4E 8D 90 00
Status: No Error

4. ext-auth command is used to authenticate reader. Here Plain means
no secure messaging is used.
cm> ext-auth plain
=> 84 82 00 00 10 C6 89 04 2D 8A 00 AB 43 59 4D D1

0C EE 7F D2 97
(42609 usec)
<= 90 00
Status: No Error

5. After mutual authentication of card and reader installation of applet
will be started. First old applet already residing in card is deleted and
then package contains applet will be deleted. Here 636172644d is an
AID of applet and 6361726441 is an AID of package.
cm> delete 636172644d
=> 80 E4 00 00 07 4F 05 63 61 72 64 4D 00
(3848464 usec)
<= 00 90 00
Status: No Error
cm> delete 6361726441
=> 80 E4 00 00 07 4F 05 63 61 72 64 41 00
(3734051 usec)
<= 00 90 00
Status: No Error

6. Now, new cap file containing applet and its package will be uploaded
into card. The Cap file is uploaded in blocks using data field of C-
APDU. Here 523278 µsec is the time taken to upload whole Cap file
into card and 2284 bytes is the size of applet in EEPROM of used
java card.
cm> upload -d "C:\Eclipse2\DigSigMQQ\bin\packMQQ\javacard\packMQQ.cap"
=> 80 E6 02 00 12 05 63 61 72 64 41 08 A0 00 00 00

03 00 00 00 00 00 00 00
(17887 usec)
<= 00 90 00
Status: No Error
<= 00 90 00
Status: No Error
Load report:

5743 bytes loaded in 2.2 seconds
effective code size on card:

+ package AID 5

58

4.3. Development Tool IDE (Eclipse SDK 3.2) Chapter 4. Implmentation

3. init-update command initiate authentication to the Card Manager us-
ing Secure Channel Protocol (SCP). In response four fields have been
sent back including card challenge for reader and card cryptogram for
card authentication.
cm> init-update 255
=> 80 50 00 00 08 09 04 51 35 78 A7 AE 21 00
(38472 usec)
<= 00 00 81 29 00 22 37 91 36 54 FF 02 02 12 DC 95

4D 53 D5 AA 5C E6 00 EF E2 44 4E 8D 90 00
Status: No Error

4. ext-auth command is used to authenticate reader. Here Plain means
no secure messaging is used.
cm> ext-auth plain
=> 84 82 00 00 10 C6 89 04 2D 8A 00 AB 43 59 4D D1

0C EE 7F D2 97
(42609 usec)
<= 90 00
Status: No Error

5. After mutual authentication of card and reader installation of applet
will be started. First old applet already residing in card is deleted and
then package contains applet will be deleted. Here 636172644d is an
AID of applet and 6361726441 is an AID of package.
cm> delete 636172644d
=> 80 E4 00 00 07 4F 05 63 61 72 64 4D 00
(3848464 usec)
<= 00 90 00
Status: No Error
cm> delete 6361726441
=> 80 E4 00 00 07 4F 05 63 61 72 64 41 00
(3734051 usec)
<= 00 90 00
Status: No Error

6. Now, new cap file containing applet and its package will be uploaded
into card. The Cap file is uploaded in blocks using data field of C-
APDU. Here 523278 µsec is the time taken to upload whole Cap file
into card and 2284 bytes is the size of applet in EEPROM of used
java card.
cm> upload -d "C:\Eclipse2\DigSigMQQ\bin\packMQQ\javacard\packMQQ.cap"
=> 80 E6 02 00 12 05 63 61 72 64 41 08 A0 00 00 00

03 00 00 00 00 00 00 00
(17887 usec)
<= 00 90 00
Status: No Error
<= 00 90 00
Status: No Error
Load report:

5743 bytes loaded in 2.2 seconds
effective code size on card:

+ package AID 5

58

4.3. Development Tool IDE (Eclipse SDK 3.2) Chapter 4. Implmentation

3. init-update command initiate authentication to the Card Manager us-
ing Secure Channel Protocol (SCP). In response four fields have been
sent back including card challenge for reader and card cryptogram for
card authentication.
cm> init-update 255
=> 80 50 00 00 08 09 04 51 35 78 A7 AE 21 00
(38472 usec)
<= 00 00 81 29 00 22 37 91 36 54 FF 02 02 12 DC 95

4D 53 D5 AA 5C E6 00 EF E2 44 4E 8D 90 00
Status: No Error

4. ext-auth command is used to authenticate reader. Here Plain means
no secure messaging is used.
cm> ext-auth plain
=> 84 82 00 00 10 C6 89 04 2D 8A 00 AB 43 59 4D D1

0C EE 7F D2 97
(42609 usec)
<= 90 00
Status: No Error

5. After mutual authentication of card and reader installation of applet
will be started. First old applet already residing in card is deleted and
then package contains applet will be deleted. Here 636172644d is an
AID of applet and 6361726441 is an AID of package.
cm> delete 636172644d
=> 80 E4 00 00 07 4F 05 63 61 72 64 4D 00
(3848464 usec)
<= 00 90 00
Status: No Error
cm> delete 6361726441
=> 80 E4 00 00 07 4F 05 63 61 72 64 41 00
(3734051 usec)
<= 00 90 00
Status: No Error

6. Now, new cap file containing applet and its package will be uploaded
into card. The Cap file is uploaded in blocks using data field of C-
APDU. Here 523278 µsec is the time taken to upload whole Cap file
into card and 2284 bytes is the size of applet in EEPROM of used
java card.
cm> upload -d "C:\Eclipse2\DigSigMQQ\bin\packMQQ\javacard\packMQQ.cap"
=> 80 E6 02 00 12 05 63 61 72 64 41 08 A0 00 00 00

03 00 00 00 00 00 00 00
(17887 usec)
<= 00 90 00
Status: No Error
<= 00 90 00
Status: No Error
Load report:

5743 bytes loaded in 2.2 seconds
effective code size on card:

+ package AID 5

58

4.3. Development Tool IDE (Eclipse SDK 3.2) Chapter 4. Implmentation

3. init-update command initiate authentication to the Card Manager us-
ing Secure Channel Protocol (SCP). In response four fields have been
sent back including card challenge for reader and card cryptogram for
card authentication.
cm> init-update 255
=> 80 50 00 00 08 09 04 51 35 78 A7 AE 21 00
(38472 usec)
<= 00 00 81 29 00 22 37 91 36 54 FF 02 02 12 DC 95

4D 53 D5 AA 5C E6 00 EF E2 44 4E 8D 90 00
Status: No Error

4. ext-auth command is used to authenticate reader. Here Plain means
no secure messaging is used.
cm> ext-auth plain
=> 84 82 00 00 10 C6 89 04 2D 8A 00 AB 43 59 4D D1

0C EE 7F D2 97
(42609 usec)
<= 90 00
Status: No Error

5. After mutual authentication of card and reader installation of applet
will be started. First old applet already residing in card is deleted and
then package contains applet will be deleted. Here 636172644d is an
AID of applet and 6361726441 is an AID of package.
cm> delete 636172644d
=> 80 E4 00 00 07 4F 05 63 61 72 64 4D 00
(3848464 usec)
<= 00 90 00
Status: No Error
cm> delete 6361726441
=> 80 E4 00 00 07 4F 05 63 61 72 64 41 00
(3734051 usec)
<= 00 90 00
Status: No Error

6. Now, new cap file containing applet and its package will be uploaded
into card. The Cap file is uploaded in blocks using data field of C-
APDU. Here 523278 µsec is the time taken to upload whole Cap file
into card and 2284 bytes is the size of applet in EEPROM of used
java card.
cm> upload -d "C:\Eclipse2\DigSigMQQ\bin\packMQQ\javacard\packMQQ.cap"
=> 80 E6 02 00 12 05 63 61 72 64 41 08 A0 00 00 00

03 00 00 00 00 00 00 00
(17887 usec)
<= 00 90 00
Status: No Error
<= 00 90 00
Status: No Error
Load report:

5743 bytes loaded in 2.2 seconds
effective code size on card:

+ package AID 5

58

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

+ applet AIDs 12
+ classes 17
+ methods 1511
+ statics 739
+ exports 0

overall 2284 bytes

7. After successful loading, applet need to be installed which in turn
registers applet with Card Manager.
cm> install -i 636172644d -q C9#() 6361726441 636172644d
=> 80 E6 0C 00 18 05 63 61 72 64 41 05 63 61 72 64

4D 05 63 61 72 64 4D 01 00 02 C9 00 00 00
(269405 usec)
<= 90 00
Status: No Error

8. Once applet is installed then it can be selected for execution using its
AID.
cm> /select 636172644d
=> 00 A4 04 00 05 63 61 72 64 4D 00
(9534 usec)
<= 90 00
Status: No Error

9. Finally, the applet can be executed using the appropriate C-APDU,
defined inside applet. In our case 80100000 is the C-APDU for ex-
ecuting the digital signature generation process. 20 byte digital sig-
nature has been returned along with 2 byte response status word 90
00 which shows successful completion of applet execution. The exe-
cution time for the generation of our MQQ based digital signature is
shown here (1748615 µs) which is 1.74 seconds approximately.
cm> /send 80100000
=> 80 10 00 00
(1748615 usec)
<= E1 8A E7 6C 1C 9E DD 22 82 08 2A BB DA 40 38 C8

53 F1 BE AC 90 00
Status: No Error

4.4 Implementation of MQQ-SIG

We have implemented small MQQ based digital signature (MQQ-SIG) for
NXP JCOP 41 V2.2 contactless smart card (java based) using n=160 bits
(signature size). Our implementation contains only message signing part of
MQQ-SIG inside java card while key pair generation and verification parts
of MQQ-SIG are performed on desktop computers. We have been provided

59

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

+ applet AIDs 12
+ classes 17
+ methods 1511
+ statics 739
+ exports 0

overall 2284 bytes

7. After successful loading, applet need to be installed which in turn
registers applet with Card Manager.
cm> install -i 636172644d -q C9#() 6361726441 636172644d
=> 80 E6 0C 00 18 05 63 61 72 64 41 05 63 61 72 64

4D 05 63 61 72 64 4D 01 00 02 C9 00 00 00
(269405 usec)
<= 90 00
Status: No Error

8. Once applet is installed then it can be selected for execution using its
AID.
cm> /select 636172644d
=> 00 A4 04 00 05 63 61 72 64 4D 00
(9534 usec)
<= 90 00
Status: No Error

9. Finally, the applet can be executed using the appropriate C-APDU,
defined inside applet. In our case 80100000 is the C-APDU for ex-
ecuting the digital signature generation process. 20 byte digital sig-
nature has been returned along with 2 byte response status word 90
00 which shows successful completion of applet execution. The exe-
cution time for the generation of our MQQ based digital signature is
shown here (1748615 µs) which is 1.74 seconds approximately.
cm> /send 80100000
=> 80 10 00 00
(1748615 usec)
<= E1 8A E7 6C 1C 9E DD 22 82 08 2A BB DA 40 38 C8

53 F1 BE AC 90 00
Status: No Error

4.4 Implementation of MQQ-SIG

We have implemented small MQQ based digital signature (MQQ-SIG) for
NXP JCOP 41 V2.2 contactless smart card (java based) using n=160 bits
(signature size). Our implementation contains only message signing part of
MQQ-SIG inside java card while key pair generation and verification parts
of MQQ-SIG are performed on desktop computers. We have been provided

59

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

+ applet AIDs 12
+ classes 17
+ methods 1511
+ statics 739
+ exports 0

overall 2284 bytes

7. After successful loading, applet need to be installed which in turn
registers applet with Card Manager.
cm> install -i 636172644d -q C9#() 6361726441 636172644d
=> 80 E6 0C 00 18 05 63 61 72 64 41 05 63 61 72 64

4D 05 63 61 72 64 4D 01 00 02 C9 00 00 00
(269405 usec)
<= 90 00
Status: No Error

8. Once applet is installed then it can be selected for execution using its
AID.
cm> /select 636172644d
=> 00 A4 04 00 05 63 61 72 64 4D 00
(9534 usec)
<= 90 00
Status: No Error

9. Finally, the applet can be executed using the appropriate C-APDU,
defined inside applet. In our case 80100000 is the C-APDU for ex-
ecuting the digital signature generation process. 20 byte digital sig-
nature has been returned along with 2 byte response status word 90
00 which shows successful completion of applet execution. The exe-
cution time for the generation of our MQQ based digital signature is
shown here (1748615 µs) which is 1.74 seconds approximately.
cm> /send 80100000
=> 80 10 00 00
(1748615 usec)
<= E1 8A E7 6C 1C 9E DD 22 82 08 2A BB DA 40 38 C8

53 F1 BE AC 90 00
Status: No Error

4.4 Implementation of MQQ-SIG

We have implemented small MQQ based digital signature (MQQ-SIG) for
NXP JCOP 41 V2.2 contactless smart card (java based) using n=160 bits
(signature size). Our implementation contains only message signing part of
MQQ-SIG inside java card while key pair generation and verification parts
of MQQ-SIG are performed on desktop computers. We have been provided

59

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

+ applet AIDs 12
+ classes 17
+ methods 1511
+ statics 739
+ exports 0

overall 2284 bytes

7. After successful loading, applet need to be installed which in turn
registers applet with Card Manager.
cm> install -i 636172644d -q C9#() 6361726441 636172644d
=> 80 E6 0C 00 18 05 63 61 72 64 41 05 63 61 72 64

4D 05 63 61 72 64 4D 01 00 02 C9 00 00 00
(269405 usec)
<= 90 00
Status: No Error

8. Once applet is installed then it can be selected for execution using its
AID.
cm> /select 636172644d
=> 00 A4 04 00 05 63 61 72 64 4D 00
(9534 usec)
<= 90 00
Status: No Error

9. Finally, the applet can be executed using the appropriate C-APDU,
defined inside applet. In our case 80100000 is the C-APDU for ex-
ecuting the digital signature generation process. 20 byte digital sig-
nature has been returned along with 2 byte response status word 90
00 which shows successful completion of applet execution. The exe-
cution time for the generation of our MQQ based digital signature is
shown here (1748615 µs) which is 1.74 seconds approximately.
cm> /send 80100000
=> 80 10 00 00
(1748615 usec)
<= E1 8A E7 6C 1C 9E DD 22 82 08 2A BB DA 40 38 C8

53 F1 BE AC 90 00
Status: No Error

4.4 Implementation of MQQ-SIG

We have implemented small MQQ based digital signature (MQQ-SIG) for
NXP JCOP 41 V2.2 contactless smart card (java based) using n=160 bits
(signature size). Our implementation contains only message signing part of
MQQ-SIG inside java card while key pair generation and verification parts
of MQQ-SIG are performed on desktop computers. We have been provided

59

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

the generated private key and we have stored the private key (σ1, σ5, ∗) on
EEPROM of java card. The length of private key is (160+160+81 = 401)
bytes. It should be noted that it is not possible to implement the verification
part on java card due to long size of corresponding public key which is 189
Kbytes and we have 72 Kbytes of EEPROM available on used java card.
Figure 4.3 shows the MQQ-SIG algorithm for signing message, M .

Figure 4.3: MQQ-SIG signing algorithm [28]

As we have implemented 160 bits digital signature therefore, in our im-
plementation n=160. For this reason we have selected SHA1 because it
generates 160 bit hash of the message, M and this is also the standard
hash function used in other digital signature algorithms in java card (RSA,
ECDSA). Flow chart 4.4 shows the implementation of the MQQ-SIG algo-
rithm shown in figure 4.3. Implementation details of Steps of figure 4.4 are
discussed below:

Step 1

In our case, y = SHA1(M) which is 160 bits hash of the input message,
M .

Step 2

Set y′ = S−1(y).

60

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

the generated private key and we have stored the private key (σ1, σ5, ∗) on
EEPROM of java card. The length of private key is (160+160+81 = 401)
bytes. It should be noted that it is not possible to implement the verification
part on java card due to long size of corresponding public key which is 189
Kbytes and we have 72 Kbytes of EEPROM available on used java card.
Figure 4.3 shows the MQQ-SIG algorithm for signing message, M .

Figure 4.3: MQQ-SIG signing algorithm [28]

As we have implemented 160 bits digital signature therefore, in our im-
plementation n=160. For this reason we have selected SHA1 because it
generates 160 bit hash of the message, M and this is also the standard
hash function used in other digital signature algorithms in java card (RSA,
ECDSA). Flow chart 4.4 shows the implementation of the MQQ-SIG algo-
rithm shown in figure 4.3. Implementation details of Steps of figure 4.4 are
discussed below:

Step 1

In our case, y = SHA1(M) which is 160 bits hash of the input message,
M .

Step 2

Set y′ = S−1(y).

60

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

the generated private key and we have stored the private key (σ1, σ5, ∗) on
EEPROM of java card. The length of private key is (160+160+81 = 401)
bytes. It should be noted that it is not possible to implement the verification
part on java card due to long size of corresponding public key which is 189
Kbytes and we have 72 Kbytes of EEPROM available on used java card.
Figure 4.3 shows the MQQ-SIG algorithm for signing message, M .

Figure 4.3: MQQ-SIG signing algorithm [28]

As we have implemented 160 bits digital signature therefore, in our im-
plementation n=160. For this reason we have selected SHA1 because it
generates 160 bit hash of the message, M and this is also the standard
hash function used in other digital signature algorithms in java card (RSA,
ECDSA). Flow chart 4.4 shows the implementation of the MQQ-SIG algo-
rithm shown in figure 4.3. Implementation details of Steps of figure 4.4 are
discussed below:

Step 1

In our case, y = SHA1(M) which is 160 bits hash of the input message,
M .

Step 2

Set y′ = S−1(y).

60

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

the generated private key and we have stored the private key (σ1, σ5, ∗) on
EEPROM of java card. The length of private key is (160+160+81 = 401)
bytes. It should be noted that it is not possible to implement the verification
part on java card due to long size of corresponding public key which is 189
Kbytes and we have 72 Kbytes of EEPROM available on used java card.
Figure 4.3 shows the MQQ-SIG algorithm for signing message, M .

Figure 4.3: MQQ-SIG signing algorithm [28]

As we have implemented 160 bits digital signature therefore, in our im-
plementation n=160. For this reason we have selected SHA1 because it
generates 160 bit hash of the message, M and this is also the standard
hash function used in other digital signature algorithms in java card (RSA,
ECDSA). Flow chart 4.4 shows the implementation of the MQQ-SIG algo-
rithm shown in figure 4.3. Implementation details of Steps of figure 4.4 are
discussed below:

Step 1

In our case, y = SHA1(M) which is 160 bits hash of the input message,
M .

Step 2

Set y′ = S−1(y).

60

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.4: Flow Chart of MQQ-SIG signing algorithm Implementation

Here, S−1 is non-singular Boolean matrix which is defined by

S−1 =
k∑
i=1

Iσi

and is discussed in section 2.2.1. In our case k=5 and (σ1, σ5) are part of
private key. Each one is vector of 160 elements. In our implementation σ1
(Random Permutation 1) is represented by RP1 and σ5 (Random Permuta-
tion 5) is represented by RP5. We can describe the operations performed
in step 2 in words. Each bit of the output in step 1, y (hash of message), is
first permutated according to the values of RP1 and stored in array H1 as
shown in figure

For i = 1 to 20 :

H2[i] = H2[i] ∧ (H1[i] ∧H1[(i + 4)%20] ∧H1[(i + 12)%20] ∧H1[(i +

61

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.4: Flow Chart of MQQ-SIG signing algorithm Implementation

Here, S−1 is non-singular Boolean matrix which is defined by

S−1 =
k∑
i=1

Iσi

and is discussed in section 2.2.1. In our case k=5 and (σ1, σ5) are part of
private key. Each one is vector of 160 elements. In our implementation σ1
(Random Permutation 1) is represented by RP1 and σ5 (Random Permuta-
tion 5) is represented by RP5. We can describe the operations performed
in step 2 in words. Each bit of the output in step 1, y (hash of message), is
first permutated according to the values of RP1 and stored in array H1 as
shown in figure

For i = 1 to 20 :

H2[i] = H2[i] ∧ (H1[i] ∧H1[(i + 4)%20] ∧H1[(i + 12)%20] ∧H1[(i +

61

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.4: Flow Chart of MQQ-SIG signing algorithm Implementation

Here, S−1 is non-singular Boolean matrix which is defined by

S−1 =
k∑
i=1

Iσi

and is discussed in section 2.2.1. In our case k=5 and (σ1, σ5) are part of
private key. Each one is vector of 160 elements. In our implementation σ1
(Random Permutation 1) is represented by RP1 and σ5 (Random Permuta-
tion 5) is represented by RP5. We can describe the operations performed
in step 2 in words. Each bit of the output in step 1, y (hash of message), is
first permutated according to the values of RP1 and stored in array H1 as
shown in figure

For i = 1 to 20 :

H2[i] = H2[i] ∧ (H1[i] ∧H1[(i + 4)%20] ∧H1[(i + 12)%20] ∧H1[(i +

61

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.4: Flow Chart of MQQ-SIG signing algorithm Implementation

Here, S−1 is non-singular Boolean matrix which is defined by

S−1 =
k∑
i=1

Iσi

and is discussed in section 2.2.1. In our case k=5 and (σ1, σ5) are part of
private key. Each one is vector of 160 elements. In our implementation σ1
(Random Permutation 1) is represented by RP1 and σ5 (Random Permuta-
tion 5) is represented by RP5. We can describe the operations performed
in step 2 in words. Each bit of the output in step 1, y (hash of message), is
first permutated according to the values of RP1 and stored in array H1 as
shown in figure

For i = 1 to 20 :

H2[i] = H2[i] ∧ (H1[i] ∧H1[(i + 4)%20] ∧H1[(i + 12)%20] ∧H1[(i +

61

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.5: Manipulation of the hash using RP1

16)%20])

Where ∧ is exclusive-OR logical operation, and % is modulus operation.

Figure 4.6: Manipulation of the hash using RP5

Step 3

Output of step 2, y′, is arranged in array (Y1 to Y20) where each dimension
of array represents a byte.

62

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.5: Manipulation of the hash using RP1

16)%20])

Where ∧ is exclusive-OR logical operation, and % is modulus operation.

Figure 4.6: Manipulation of the hash using RP5

Step 3

Output of step 2, y′, is arranged in array (Y1 to Y20) where each dimension
of array represents a byte.

62

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.5: Manipulation of the hash using RP1

16)%20])

Where ∧ is exclusive-OR logical operation, and % is modulus operation.

Figure 4.6: Manipulation of the hash using RP5

Step 3

Output of step 2, y′, is arranged in array (Y1 to Y20) where each dimension
of array represents a byte.

62

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.5: Manipulation of the hash using RP1

16)%20])

Where ∧ is exclusive-OR logical operation, and % is modulus operation.

Figure 4.6: Manipulation of the hash using RP5

Step 3

Output of step 2, y′, is arranged in array (Y1 to Y20) where each dimension
of array represents a byte.

62

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Step 4

Here, we perform quasigroup operations on the output of step 3 and com-
pute x′ = (X1 to X20), where (X1 = Y1), and other values of (X2 to X20)
are computed using left and right parastrophes of quasigroup as shown be-
low:

Xj = Xj−1\Yj , for even j = 2, 4, 6, . . . , 20

Xj = Yj/Xj−1, for odd j = 3, 5, 7, . . . , 19

Now, we will discuss how we have implemented left and right parastrophes
(conjugate operations) \ and / of the quasigroup (Q, ∗). The implemen-
tation for left and right Parastrophes of the quasigroup is similar, the only
difference is the used quasigroup key component of private key (∗). The
selected 81 bytes constants of quasigroup are used with odd iterations of
j while the transpose of selected quasigroup constants are used in even it-
erations of j. The structure of the 81 bytes quasigroup (∗) component of
private key is given below:

The quasigroup (∗) is divided into eleven elements, ten elements are vectors
and these are used for odd iterations of j.

(A1odd, A2odd, A3odd, . . . , A8odd, Bodd, Codd).

Each one is byte vector of 8 dimensions (10 ∗ 8 = 80) and the remaining
11th element Dodd is scalar byte. All eleven elements together needs (80 +
1 = 81) bytes. Structure of A1odd is given in figure 4.7.

Even iterations of j utilize manipulated form of quasigroup (∗) component
of private key. The procedure of manipulation is mentioned below:

A1even = A1odd[0] + A2odd[0] + A3odd[0] + · · ·+ A8odd[0]

A2even = A1odd[1] + A2odd[1] + A3odd[1] + · · ·+ A8odd[1]

A3even = A1odd[2] + A2odd[2] + A3odd[2] + · · ·+ A8odd[2]
...

A8even = A1odd[7] + A2odd[7] + A3odd[7] + · · ·+ A8odd[7]

Ceven = Bodd,

Beven = Codd,

63

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Step 4

Here, we perform quasigroup operations on the output of step 3 and com-
pute x′ = (X1 to X20), where (X1 = Y1), and other values of (X2 to X20)
are computed using left and right parastrophes of quasigroup as shown be-
low:

Xj = Xj−1\Yj , for even j = 2, 4, 6, . . . , 20

Xj = Yj/Xj−1, for odd j = 3, 5, 7, . . . , 19

Now, we will discuss how we have implemented left and right parastrophes
(conjugate operations) \ and / of the quasigroup (Q, ∗). The implemen-
tation for left and right Parastrophes of the quasigroup is similar, the only
difference is the used quasigroup key component of private key (∗). The
selected 81 bytes constants of quasigroup are used with odd iterations of
j while the transpose of selected quasigroup constants are used in even it-
erations of j. The structure of the 81 bytes quasigroup (∗) component of
private key is given below:

The quasigroup (∗) is divided into eleven elements, ten elements are vectors
and these are used for odd iterations of j.

(A1odd, A2odd, A3odd, . . . , A8odd, Bodd, Codd).

Each one is byte vector of 8 dimensions (10 ∗ 8 = 80) and the remaining
11th element Dodd is scalar byte. All eleven elements together needs (80 +
1 = 81) bytes. Structure of A1odd is given in figure 4.7.

Even iterations of j utilize manipulated form of quasigroup (∗) component
of private key. The procedure of manipulation is mentioned below:

A1even = A1odd[0] + A2odd[0] + A3odd[0] + · · ·+ A8odd[0]

A2even = A1odd[1] + A2odd[1] + A3odd[1] + · · ·+ A8odd[1]

A3even = A1odd[2] + A2odd[2] + A3odd[2] + · · ·+ A8odd[2]
...

A8even = A1odd[7] + A2odd[7] + A3odd[7] + · · ·+ A8odd[7]

Ceven = Bodd,

Beven = Codd,

63

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Step 4

Here, we perform quasigroup operations on the output of step 3 and com-
pute x′ = (X1 to X20), where (X1 = Y1), and other values of (X2 to X20)
are computed using left and right parastrophes of quasigroup as shown be-
low:

Xj = Xj−1\Yj , for even j = 2, 4, 6, . . . , 20

Xj = Yj/Xj−1, for odd j = 3, 5, 7, . . . , 19

Now, we will discuss how we have implemented left and right parastrophes
(conjugate operations) \ and / of the quasigroup (Q, ∗). The implemen-
tation for left and right Parastrophes of the quasigroup is similar, the only
difference is the used quasigroup key component of private key (∗). The
selected 81 bytes constants of quasigroup are used with odd iterations of
j while the transpose of selected quasigroup constants are used in even it-
erations of j. The structure of the 81 bytes quasigroup (∗) component of
private key is given below:

The quasigroup (∗) is divided into eleven elements, ten elements are vectors
and these are used for odd iterations of j.

(A1odd, A2odd, A3odd, . . . , A8odd, Bodd, Codd).

Each one is byte vector of 8 dimensions (10 ∗ 8 = 80) and the remaining
11th element Dodd is scalar byte. All eleven elements together needs (80 +
1 = 81) bytes. Structure of A1odd is given in figure 4.7.

Even iterations of j utilize manipulated form of quasigroup (∗) component
of private key. The procedure of manipulation is mentioned below:

A1even = A1odd[0] + A2odd[0] + A3odd[0] + · · ·+ A8odd[0]

A2even = A1odd[1] + A2odd[1] + A3odd[1] + · · ·+ A8odd[1]

A3even = A1odd[2] + A2odd[2] + A3odd[2] + · · ·+ A8odd[2]
...

A8even = A1odd[7] + A2odd[7] + A3odd[7] + · · ·+ A8odd[7]

Ceven = Bodd,

Beven = Codd,

63

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Step 4

Here, we perform quasigroup operations on the output of step 3 and com-
pute x′ = (X1 to X20), where (X1 = Y1), and other values of (X2 to X20)
are computed using left and right parastrophes of quasigroup as shown be-
low:

Xj = Xj−1\Yj , for even j = 2, 4, 6, . . . , 20

Xj = Yj/Xj−1, for odd j = 3, 5, 7, . . . , 19

Now, we will discuss how we have implemented left and right parastrophes
(conjugate operations) \ and / of the quasigroup (Q, ∗). The implemen-
tation for left and right Parastrophes of the quasigroup is similar, the only
difference is the used quasigroup key component of private key (∗). The
selected 81 bytes constants of quasigroup are used with odd iterations of
j while the transpose of selected quasigroup constants are used in even it-
erations of j. The structure of the 81 bytes quasigroup (∗) component of
private key is given below:

The quasigroup (∗) is divided into eleven elements, ten elements are vectors
and these are used for odd iterations of j.

(A1odd, A2odd, A3odd, . . . , A8odd, Bodd, Codd).

Each one is byte vector of 8 dimensions (10 ∗ 8 = 80) and the remaining
11th element Dodd is scalar byte. All eleven elements together needs (80 +
1 = 81) bytes. Structure of A1odd is given in figure 4.7.

Even iterations of j utilize manipulated form of quasigroup (∗) component
of private key. The procedure of manipulation is mentioned below:

A1even = A1odd[0] + A2odd[0] + A3odd[0] + · · ·+ A8odd[0]

A2even = A1odd[1] + A2odd[1] + A3odd[1] + · · ·+ A8odd[1]

A3even = A1odd[2] + A2odd[2] + A3odd[2] + · · ·+ A8odd[2]
...

A8even = A1odd[7] + A2odd[7] + A3odd[7] + · · ·+ A8odd[7]

Ceven = Bodd,

Beven = Codd,

63

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.7: Structure of Quasigroup (∗) vector A1

Deven = Dodd

Here (+) sign means concatenation. A1even is formed by combining first
byte of A1odd, . . . , A8odd and similarly other A2even to A8even are formed
by combining corresponding byte of A1odd to A8odd.

There are total 19 iterations in left and right parastrophes and among them
10 are even and nine are odd. Single iteration is explained as follows:

It takes three inputs: previous result of parastrophe Xj−1, current iteration,
j, and Yj .

Value of j is examined for even and odd then corresponding quasigroup (∗)
constants (A1 to A8, B, C,D) are considered.

Multiplication and addition binary operations are performed among Xj−1
and nine elements of quasigroup (A1 to A8, C) in GF(2).

R[0] = A1.Xj−1 + C[0]

R[1] = A2.Xj−1 + C[1]

R[2] = A3.Xj−1 + C[2]
...

R[7] = A8.Xj−1 + C[7]

Where C[0] is first byte of vector C and C[7] is 8th byte of vector C. In

64

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.7: Structure of Quasigroup (∗) vector A1

Deven = Dodd

Here (+) sign means concatenation. A1even is formed by combining first
byte of A1odd, . . . , A8odd and similarly other A2even to A8even are formed
by combining corresponding byte of A1odd to A8odd.

There are total 19 iterations in left and right parastrophes and among them
10 are even and nine are odd. Single iteration is explained as follows:

It takes three inputs: previous result of parastrophe Xj−1, current iteration,
j, and Yj .

Value of j is examined for even and odd then corresponding quasigroup (∗)
constants (A1 to A8, B, C,D) are considered.

Multiplication and addition binary operations are performed among Xj−1
and nine elements of quasigroup (A1 to A8, C) in GF(2).

R[0] = A1.Xj−1 + C[0]

R[1] = A2.Xj−1 + C[1]

R[2] = A3.Xj−1 + C[2]
...

R[7] = A8.Xj−1 + C[7]

Where C[0] is first byte of vector C and C[7] is 8th byte of vector C. In

64

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.7: Structure of Quasigroup (∗) vector A1

Deven = Dodd

Here (+) sign means concatenation. A1even is formed by combining first
byte of A1odd, . . . , A8odd and similarly other A2even to A8even are formed
by combining corresponding byte of A1odd to A8odd.

There are total 19 iterations in left and right parastrophes and among them
10 are even and nine are odd. Single iteration is explained as follows:

It takes three inputs: previous result of parastrophe Xj−1, current iteration,
j, and Yj .

Value of j is examined for even and odd then corresponding quasigroup (∗)
constants (A1 to A8, B, C,D) are considered.

Multiplication and addition binary operations are performed among Xj−1
and nine elements of quasigroup (A1 to A8, C) in GF(2).

R[0] = A1.Xj−1 + C[0]

R[1] = A2.Xj−1 + C[1]

R[2] = A3.Xj−1 + C[2]
...

R[7] = A8.Xj−1 + C[7]

Where C[0] is first byte of vector C and C[7] is 8th byte of vector C. In

64

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.7: Structure of Quasigroup (∗) vector A1

Deven = Dodd

Here (+) sign means concatenation. A1even is formed by combining first
byte of A1odd, . . . , A8odd and similarly other A2even to A8even are formed
by combining corresponding byte of A1odd to A8odd.

There are total 19 iterations in left and right parastrophes and among them
10 are even and nine are odd. Single iteration is explained as follows:

It takes three inputs: previous result of parastrophe Xj−1, current iteration,
j, and Yj .

Value of j is examined for even and odd then corresponding quasigroup (∗)
constants (A1 to A8, B, C,D) are considered.

Multiplication and addition binary operations are performed among Xj−1
and nine elements of quasigroup (A1 to A8, C) in GF(2).

R[0] = A1.Xj−1 + C[0]

R[1] = A2.Xj−1 + C[1]

R[2] = A3.Xj−1 + C[2]
...

R[7] = A8.Xj−1 + C[7]

Where C[0] is first byte of vector C and C[7] is 8th byte of vector C. In

64

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.8: Multiplication and Addition among A1, Xj−1 and C

multiplication mentioned above each byte is considered as column of 8 bits
as shown in figure 4.8 where bytes of A1, Xj−1, and C[0] are interpreted in
bits as colomn format. The multiplication is performed using XOR opera-
tions. This will result a Boolean matrix with 8 rows and 8 columns where
8 columns shows result of binary opertaions (multiplication and addition)
performed among Xj−1, A1 to A8 and C. Therefore, the result, R, is a byte
vector of 8 dimensions as shown in figure 4.9.

Xj−1 is multiplied with other remaining elements of quasigroup B, D and
second input Yj as shown in figure 4.10.

F = Xj−1.B + Yj +D

The result of above expression, F , is single column with 8 rows which
means a byte as shown in figure 4.11. We have interpreted a byte in bits as
a column of 8 rows in our implementation.

After having both results R and F , we have combined them together in a
vector T which has 8 dimensions (T [0] . . . T [7]) of type Short (16 bits).

T [0] = 0th bit of R[0] to R[7] + seven zeros (0000000) + 0th bit of F

T [1] = 1st bit of R[0] to R[7] + seven zeros (0000000) + 1st bit of F

T [2] = 2nd bit of R[0] to R[7] + seven zeros (0000000) + 2nd bit of F
...

65

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.8: Multiplication and Addition among A1, Xj−1 and C

multiplication mentioned above each byte is considered as column of 8 bits
as shown in figure 4.8 where bytes of A1, Xj−1, and C[0] are interpreted in
bits as colomn format. The multiplication is performed using XOR opera-
tions. This will result a Boolean matrix with 8 rows and 8 columns where
8 columns shows result of binary opertaions (multiplication and addition)
performed among Xj−1, A1 to A8 and C. Therefore, the result, R, is a byte
vector of 8 dimensions as shown in figure 4.9.

Xj−1 is multiplied with other remaining elements of quasigroup B, D and
second input Yj as shown in figure 4.10.

F = Xj−1.B + Yj +D

The result of above expression, F , is single column with 8 rows which
means a byte as shown in figure 4.11. We have interpreted a byte in bits as
a column of 8 rows in our implementation.

After having both results R and F , we have combined them together in a
vector T which has 8 dimensions (T [0] . . . T [7]) of type Short (16 bits).

T [0] = 0th bit of R[0] to R[7] + seven zeros (0000000) + 0th bit of F

T [1] = 1st bit of R[0] to R[7] + seven zeros (0000000) + 1st bit of F

T [2] = 2nd bit of R[0] to R[7] + seven zeros (0000000) + 2nd bit of F
...

65

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.8: Multiplication and Addition among A1, Xj−1 and C

multiplication mentioned above each byte is considered as column of 8 bits
as shown in figure 4.8 where bytes of A1, Xj−1, and C[0] are interpreted in
bits as colomn format. The multiplication is performed using XOR opera-
tions. This will result a Boolean matrix with 8 rows and 8 columns where
8 columns shows result of binary opertaions (multiplication and addition)
performed among Xj−1, A1 to A8 and C. Therefore, the result, R, is a byte
vector of 8 dimensions as shown in figure 4.9.

Xj−1 is multiplied with other remaining elements of quasigroup B, D and
second input Yj as shown in figure 4.10.

F = Xj−1.B + Yj +D

The result of above expression, F , is single column with 8 rows which
means a byte as shown in figure 4.11. We have interpreted a byte in bits as
a column of 8 rows in our implementation.

After having both results R and F , we have combined them together in a
vector T which has 8 dimensions (T [0] . . . T [7]) of type Short (16 bits).

T [0] = 0th bit of R[0] to R[7] + seven zeros (0000000) + 0th bit of F

T [1] = 1st bit of R[0] to R[7] + seven zeros (0000000) + 1st bit of F

T [2] = 2nd bit of R[0] to R[7] + seven zeros (0000000) + 2nd bit of F
...

65

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.8: Multiplication and Addition among A1, Xj−1 and C

multiplication mentioned above each byte is considered as column of 8 bits
as shown in figure 4.8 where bytes of A1, Xj−1, and C[0] are interpreted in
bits as colomn format. The multiplication is performed using XOR opera-
tions. This will result a Boolean matrix with 8 rows and 8 columns where
8 columns shows result of binary opertaions (multiplication and addition)
performed among Xj−1, A1 to A8 and C. Therefore, the result, R, is a byte
vector of 8 dimensions as shown in figure 4.9.

Xj−1 is multiplied with other remaining elements of quasigroup B, D and
second input Yj as shown in figure 4.10.

F = Xj−1.B + Yj +D

The result of above expression, F , is single column with 8 rows which
means a byte as shown in figure 4.11. We have interpreted a byte in bits as
a column of 8 rows in our implementation.

After having both results R and F , we have combined them together in a
vector T which has 8 dimensions (T [0] . . . T [7]) of type Short (16 bits).

T [0] = 0th bit of R[0] to R[7] + seven zeros (0000000) + 0th bit of F

T [1] = 1st bit of R[0] to R[7] + seven zeros (0000000) + 1st bit of F

T [2] = 2nd bit of R[0] to R[7] + seven zeros (0000000) + 2nd bit of F
...

65

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.9: Structure of Result Byte vector in columns of bits

T [7] = 7th bit of R[0] to R[7] + seven zeros (0000000) + 7th bit of F

The procedure of building vector T of type Short is also shown in figure
4.12. The idea behing combining both vector R and scalor F into one vec-
tor T of type Short is to perform less operations in Guassion elimination
Method.

Now vector T represents 8 linear equations that will be solved using Guas-
sion Elimination method.

The LSB of each row of matrix T contains the result after applying Guas-
sion Elimination method. A byte G is constructed by extracting LSB of
each row of T matrix as shown in figure 4.13. The MSB of byte G contains
value from 1st row and LSB of byte G contains value from last row. This
result, G, is the final result of a single iteration, j, and the value of G is
then sent to next iteration j. This step is repeated 19 times, 10 times for
odd values of iteration j and 9 times for even values of iteration j using
corresponding values of Quasigroup (∗) part of private key.

66

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.9: Structure of Result Byte vector in columns of bits

T [7] = 7th bit of R[0] to R[7] + seven zeros (0000000) + 7th bit of F

The procedure of building vector T of type Short is also shown in figure
4.12. The idea behing combining both vector R and scalor F into one vec-
tor T of type Short is to perform less operations in Guassion elimination
Method.

Now vector T represents 8 linear equations that will be solved using Guas-
sion Elimination method.

The LSB of each row of matrix T contains the result after applying Guas-
sion Elimination method. A byte G is constructed by extracting LSB of
each row of T matrix as shown in figure 4.13. The MSB of byte G contains
value from 1st row and LSB of byte G contains value from last row. This
result, G, is the final result of a single iteration, j, and the value of G is
then sent to next iteration j. This step is repeated 19 times, 10 times for
odd values of iteration j and 9 times for even values of iteration j using
corresponding values of Quasigroup (∗) part of private key.

66

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.9: Structure of Result Byte vector in columns of bits

T [7] = 7th bit of R[0] to R[7] + seven zeros (0000000) + 7th bit of F

The procedure of building vector T of type Short is also shown in figure
4.12. The idea behing combining both vector R and scalor F into one vec-
tor T of type Short is to perform less operations in Guassion elimination
Method.

Now vector T represents 8 linear equations that will be solved using Guas-
sion Elimination method.

The LSB of each row of matrix T contains the result after applying Guas-
sion Elimination method. A byte G is constructed by extracting LSB of
each row of T matrix as shown in figure 4.13. The MSB of byte G contains
value from 1st row and LSB of byte G contains value from last row. This
result, G, is the final result of a single iteration, j, and the value of G is
then sent to next iteration j. This step is repeated 19 times, 10 times for
odd values of iteration j and 9 times for even values of iteration j using
corresponding values of Quasigroup (∗) part of private key.

66

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.9: Structure of Result Byte vector in columns of bits

T [7] = 7th bit of R[0] to R[7] + seven zeros (0000000) + 7th bit of F

The procedure of building vector T of type Short is also shown in figure
4.12. The idea behing combining both vector R and scalor F into one vec-
tor T of type Short is to perform less operations in Guassion elimination
Method.

Now vector T represents 8 linear equations that will be solved using Guas-
sion Elimination method.

The LSB of each row of matrix T contains the result after applying Guas-
sion Elimination method. A byte G is constructed by extracting LSB of
each row of T matrix as shown in figure 4.13. The MSB of byte G contains
value from 1st row and LSB of byte G contains value from last row. This
result, G, is the final result of a single iteration, j, and the value of G is
then sent to next iteration j. This step is repeated 19 times, 10 times for
odd values of iteration j and 9 times for even values of iteration j using
corresponding values of Quasigroup (∗) part of private key.

66

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.10: Multiplication and Addition among B, Xj−1, Yj and D

Step 5

This step takes input from 20 byte output of previous step x′. The operation
is identical as performed in step 2 only a vector v is added to input values.
Vector v is formed by extracting 4 LSB from first 40 bytes of RP5 (σ5).
These bits are then combined to form 20 bytes which are then added with
input values using XOR operation.

Step 6

The 160 bits (20 byte) output of step 5 is digital signature.

67

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.10: Multiplication and Addition among B, Xj−1, Yj and D

Step 5

This step takes input from 20 byte output of previous step x′. The operation
is identical as performed in step 2 only a vector v is added to input values.
Vector v is formed by extracting 4 LSB from first 40 bytes of RP5 (σ5).
These bits are then combined to form 20 bytes which are then added with
input values using XOR operation.

Step 6

The 160 bits (20 byte) output of step 5 is digital signature.

67

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.10: Multiplication and Addition among B, Xj−1, Yj and D

Step 5

This step takes input from 20 byte output of previous step x′. The operation
is identical as performed in step 2 only a vector v is added to input values.
Vector v is formed by extracting 4 LSB from first 40 bytes of RP5 (σ5).
These bits are then combined to form 20 bytes which are then added with
input values using XOR operation.

Step 6

The 160 bits (20 byte) output of step 5 is digital signature.

67

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.10: Multiplication and Addition among B, Xj−1, Yj and D

Step 5

This step takes input from 20 byte output of previous step x′. The operation
is identical as performed in step 2 only a vector v is added to input values.
Vector v is formed by extracting 4 LSB from first 40 bytes of RP5 (σ5).
These bits are then combined to form 20 bytes which are then added with
input values using XOR operation.

Step 6

The 160 bits (20 byte) output of step 5 is digital signature.

67

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.11: Structure of byte F in bits as a colomn

Figure 4.12: Structure of T matrix by combining R and F

68

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.11: Structure of byte F in bits as a colomn

Figure 4.12: Structure of T matrix by combining R and F

68

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.11: Structure of byte F in bits as a colomn

Figure 4.12: Structure of T matrix by combining R and F

68

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

Figure 4.11: Structure of byte F in bits as a colomn

Figure 4.12: Structure of T matrix by combining R and F

68

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.13: T matrix after applying Guassion Elimination

69

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.13: T matrix after applying Guassion Elimination

69

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.13: T matrix after applying Guassion Elimination

69

Chapter 4. Implmentation 4.4. Implementation of MQQ-SIG

Figure 4.13: T matrix after applying Guassion Elimination

69

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

70

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

70

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

70

4.4. Implementation of MQQ-SIG Chapter 4. Implmentation

70

Chapter 5

Evaluation and Discussion of
Results

We have implemented MQQ-SIG insdie java card and here we show our
results showing required memory space inside java card and the exeution
speed of the algorithm. we have used randomly generated messages of 256
bytes inside java card for signing purpose.

5.1 Results

As we have discussed earlier there are three types of memory used in java
card architecture. ROM is used while card is manufactured so we do not
use this memory in our implementation. We used EEPROM to store our
implementation program code and keys used for signing a message. EEP-
ROM is around 30 times slower than RAM in write operations [30]. RAM
is used to store temporarily the results of cryptographic operations.

We can divide the MQQ-SIG signing algorithm into three parts:

1. Permutation of of hash y = SHA1(M) by taking into account key
components σ1 and σ5. This step is referenced as Part1 (y′ = S−1(y))
.

2. Left and right parastrophes of the quasigroup \ and / (Even and Odd

71

Chapter 5

Evaluation and Discussion of
Results

We have implemented MQQ-SIG insdie java card and here we show our
results showing required memory space inside java card and the exeution
speed of the algorithm. we have used randomly generated messages of 256
bytes inside java card for signing purpose.

5.1 Results

As we have discussed earlier there are three types of memory used in java
card architecture. ROM is used while card is manufactured so we do not
use this memory in our implementation. We used EEPROM to store our
implementation program code and keys used for signing a message. EEP-
ROM is around 30 times slower than RAM in write operations [30]. RAM
is used to store temporarily the results of cryptographic operations.

We can divide the MQQ-SIG signing algorithm into three parts:

1. Permutation of of hash y = SHA1(M) by taking into account key
components σ1 and σ5. This step is referenced as Part1 (y′ = S−1(y))
.

2. Left and right parastrophes of the quasigroup \ and / (Even and Odd

71

Chapter 5

Evaluation and Discussion of
Results

We have implemented MQQ-SIG insdie java card and here we show our
results showing required memory space inside java card and the exeution
speed of the algorithm. we have used randomly generated messages of 256
bytes inside java card for signing purpose.

5.1 Results

As we have discussed earlier there are three types of memory used in java
card architecture. ROM is used while card is manufactured so we do not
use this memory in our implementation. We used EEPROM to store our
implementation program code and keys used for signing a message. EEP-
ROM is around 30 times slower than RAM in write operations [30]. RAM
is used to store temporarily the results of cryptographic operations.

We can divide the MQQ-SIG signing algorithm into three parts:

1. Permutation of of hash y = SHA1(M) by taking into account key
components σ1 and σ5. This step is referenced as Part1 (y′ = S−1(y))
.

2. Left and right parastrophes of the quasigroup \ and / (Even and Odd

71

Chapter 5

Evaluation and Discussion of
Results

We have implemented MQQ-SIG insdie java card and here we show our
results showing required memory space inside java card and the exeution
speed of the algorithm. we have used randomly generated messages of 256
bytes inside java card for signing purpose.

5.1 Results

As we have discussed earlier there are three types of memory used in java
card architecture. ROM is used while card is manufactured so we do not
use this memory in our implementation. We used EEPROM to store our
implementation program code and keys used for signing a message. EEP-
ROM is around 30 times slower than RAM in write operations [30]. RAM
is used to store temporarily the results of cryptographic operations.

We can divide the MQQ-SIG signing algorithm into three parts:

1. Permutation of of hash y = SHA1(M) by taking into account key
components σ1 and σ5. This step is referenced as Part1 (y′ = S−1(y))
.

2. Left and right parastrophes of the quasigroup \ and / (Even and Odd

71

5.1. Results Chapter 5. Evaluation and Discussion of Results

operations of quasigroup component of key). This step is referenced
as Part2 (x′ = \and/operations).

3. Permutation of input along with affine transformation. This step is
referenced as Part3 (x = S−1(x′) + v).

In the following table 5.1, we have mention average number of operations
performed in Java program for each part and also average execution time
taken by each part of MQQ-SIG signing algorithm. Here number of opera-
tions means addition, multiplication, comparison, modulus and assignment.

Parameters Part1 Part2 Part3
Avg. No. of Operations 5260 22610 5840

Avg. Time (ms) 158 900 170

Table 5.1: Number of operations and Time of Three Parts of MQQ-SIG

In the following table 5.2, we have mentioned the amount of RAM and
EEPROM consumed in bytes for our implementation of MQQ-SIG signing
algorithm. The amount of consumed RAM is excluding the 256 bytes of
randomly generated message.

EEPROM in Bytes RAM in Bytes
3060 2722

Table 5.2: Memory used in the Signing of MQQ-SIG

We have also tested two already existing signing algorithms RSA and ES-
DSA which are implemented inside special co-processors in java card using
randomly generated messages of 256 bytes. RSA-CRT with 1024 bit pri-
vate key and ECDSA with K-163 curve recommended by NIST have been
used for comparison purpose against MQQ-SIG. The signing speed of these
both algorithms are mentioned in milliseconds (ms) on average and digital
signature size is mentioned in bits in table 5.3.

The total execution time of MQQ-SIG signing algorithm including hash
function SHA1 (implemented inside javacard co-processor) , Input/Output
(C-APDU/R-APDU) between javacard and reader, and randomly generated
message is on average 1330 ms.

Execution time of applet inside java card and amount of EEPROM con-
sumed by applet is provided by java card JCRE and is shown in section 4.3.

72

5.1. Results Chapter 5. Evaluation and Discussion of Results

operations of quasigroup component of key). This step is referenced
as Part2 (x′ = \and/operations).

3. Permutation of input along with affine transformation. This step is
referenced as Part3 (x = S−1(x′) + v).

In the following table 5.1, we have mention average number of operations
performed in Java program for each part and also average execution time
taken by each part of MQQ-SIG signing algorithm. Here number of opera-
tions means addition, multiplication, comparison, modulus and assignment.

Parameters Part1 Part2 Part3
Avg. No. of Operations 5260 22610 5840

Avg. Time (ms) 158 900 170

Table 5.1: Number of operations and Time of Three Parts of MQQ-SIG

In the following table 5.2, we have mentioned the amount of RAM and
EEPROM consumed in bytes for our implementation of MQQ-SIG signing
algorithm. The amount of consumed RAM is excluding the 256 bytes of
randomly generated message.

EEPROM in Bytes RAM in Bytes
3060 2722

Table 5.2: Memory used in the Signing of MQQ-SIG

We have also tested two already existing signing algorithms RSA and ES-
DSA which are implemented inside special co-processors in java card using
randomly generated messages of 256 bytes. RSA-CRT with 1024 bit pri-
vate key and ECDSA with K-163 curve recommended by NIST have been
used for comparison purpose against MQQ-SIG. The signing speed of these
both algorithms are mentioned in milliseconds (ms) on average and digital
signature size is mentioned in bits in table 5.3.

The total execution time of MQQ-SIG signing algorithm including hash
function SHA1 (implemented inside javacard co-processor) , Input/Output
(C-APDU/R-APDU) between javacard and reader, and randomly generated
message is on average 1330 ms.

Execution time of applet inside java card and amount of EEPROM con-
sumed by applet is provided by java card JCRE and is shown in section 4.3.

72

5.1. Results Chapter 5. Evaluation and Discussion of Results

operations of quasigroup component of key). This step is referenced
as Part2 (x′ = \and/operations).

3. Permutation of input along with affine transformation. This step is
referenced as Part3 (x = S−1(x′) + v).

In the following table 5.1, we have mention average number of operations
performed in Java program for each part and also average execution time
taken by each part of MQQ-SIG signing algorithm. Here number of opera-
tions means addition, multiplication, comparison, modulus and assignment.

Parameters Part1 Part2 Part3
Avg. No. of Operations 5260 22610 5840

Avg. Time (ms) 158 900 170

Table 5.1: Number of operations and Time of Three Parts of MQQ-SIG

In the following table 5.2, we have mentioned the amount of RAM and
EEPROM consumed in bytes for our implementation of MQQ-SIG signing
algorithm. The amount of consumed RAM is excluding the 256 bytes of
randomly generated message.

EEPROM in Bytes RAM in Bytes
3060 2722

Table 5.2: Memory used in the Signing of MQQ-SIG

We have also tested two already existing signing algorithms RSA and ES-
DSA which are implemented inside special co-processors in java card using
randomly generated messages of 256 bytes. RSA-CRT with 1024 bit pri-
vate key and ECDSA with K-163 curve recommended by NIST have been
used for comparison purpose against MQQ-SIG. The signing speed of these
both algorithms are mentioned in milliseconds (ms) on average and digital
signature size is mentioned in bits in table 5.3.

The total execution time of MQQ-SIG signing algorithm including hash
function SHA1 (implemented inside javacard co-processor) , Input/Output
(C-APDU/R-APDU) between javacard and reader, and randomly generated
message is on average 1330 ms.

Execution time of applet inside java card and amount of EEPROM con-
sumed by applet is provided by java card JCRE and is shown in section 4.3.

72

5.1. Results Chapter 5. Evaluation and Discussion of Results

operations of quasigroup component of key). This step is referenced
as Part2 (x′ = \and/operations).

3. Permutation of input along with affine transformation. This step is
referenced as Part3 (x = S−1(x′) + v).

In the following table 5.1, we have mention average number of operations
performed in Java program for each part and also average execution time
taken by each part of MQQ-SIG signing algorithm. Here number of opera-
tions means addition, multiplication, comparison, modulus and assignment.

Parameters Part1 Part2 Part3
Avg. No. of Operations 5260 22610 5840

Avg. Time (ms) 158 900 170

Table 5.1: Number of operations and Time of Three Parts of MQQ-SIG

In the following table 5.2, we have mentioned the amount of RAM and
EEPROM consumed in bytes for our implementation of MQQ-SIG signing
algorithm. The amount of consumed RAM is excluding the 256 bytes of
randomly generated message.

EEPROM in Bytes RAM in Bytes
3060 2722

Table 5.2: Memory used in the Signing of MQQ-SIG

We have also tested two already existing signing algorithms RSA and ES-
DSA which are implemented inside special co-processors in java card using
randomly generated messages of 256 bytes. RSA-CRT with 1024 bit pri-
vate key and ECDSA with K-163 curve recommended by NIST have been
used for comparison purpose against MQQ-SIG. The signing speed of these
both algorithms are mentioned in milliseconds (ms) on average and digital
signature size is mentioned in bits in table 5.3.

The total execution time of MQQ-SIG signing algorithm including hash
function SHA1 (implemented inside javacard co-processor) , Input/Output
(C-APDU/R-APDU) between javacard and reader, and randomly generated
message is on average 1330 ms.

Execution time of applet inside java card and amount of EEPROM con-
sumed by applet is provided by java card JCRE and is shown in section 4.3.

72

Chapter 5. Evaluation and Discussion of Results 5.1. Results

Algorithm Avg. Signing Time (ms) Signature Size (bits)
ECDSA K-163 96 384

RSA1024 185 1024
MQQ-SIG160 1228 160

Table 5.3: Comparisons of three algorithm in NXP JCOP 41 V2.2.

In order to find out consumed amount of RAM inside java card we have
inserted following codes inside our applet as shown in figure 5.1.

This part of code in applet can be executed using C-APDU (80000000) and
it returns R-APDU which contains the free space of RAM and EEPROM
as shown below:

cm> /send 80000000
=> 80 00 00 00
(13247 usec)
<= 7F FF 06 DE 06 DE 90 00

Status: No Error

R-APDU return six bytes in Hex along with (90 00) which shows correct
execution response status. These 6 bytes can be divided into three parts and
are discussed as follows:

1. 7F FF (32767 in Decimal): These two bytes shows the free space
of EEPROM inside java card. Unfortunately these values return 7F
FF if the free space in EEPROM is greater than 32767. In our case
EEPROM is 72 KBytes and therefore it returns 7FFF in hex which
is equivalent to 32767 in decimal. On the other hands we have used
consumed amount of EEPROM returned by JCRE at the time of load-
ing applet as shown in section 4.3.

2. 06 DE (1758 in Decimal): This shows the amount of free RAM mem-
ory available as clear on reset in bytes. In our used java card, B mem-
ory configuration is utilized which has 4480 bytes of available RAM.
This information is mentioned in section 4.1. We can calculate con-
sumed amount of RAM by subtracting the free RAM space from total
RAM space such as (4480 - 1758 = 2722) bytes.

3. 06 DE (1758 in Decimal): This shows the amount of free RAM as

73

Chapter 5. Evaluation and Discussion of Results 5.1. Results

Algorithm Avg. Signing Time (ms) Signature Size (bits)
ECDSA K-163 96 384

RSA1024 185 1024
MQQ-SIG160 1228 160

Table 5.3: Comparisons of three algorithm in NXP JCOP 41 V2.2.

In order to find out consumed amount of RAM inside java card we have
inserted following codes inside our applet as shown in figure 5.1.

This part of code in applet can be executed using C-APDU (80000000) and
it returns R-APDU which contains the free space of RAM and EEPROM
as shown below:

cm> /send 80000000
=> 80 00 00 00
(13247 usec)
<= 7F FF 06 DE 06 DE 90 00
Status: No Error

R-APDU return six bytes in Hex along with (90 00) which shows correct
execution response status. These 6 bytes can be divided into three parts and
are discussed as follows:

1. 7F FF (32767 in Decimal): These two bytes shows the free space
of EEPROM inside java card. Unfortunately these values return 7F
FF if the free space in EEPROM is greater than 32767. In our case
EEPROM is 72 KBytes and therefore it returns 7FFF in hex which
is equivalent to 32767 in decimal. On the other hands we have used
consumed amount of EEPROM returned by JCRE at the time of load-
ing applet as shown in section 4.3.

2. 06 DE (1758 in Decimal): This shows the amount of free RAM mem-
ory available as clear on reset in bytes. In our used java card, B mem-
ory configuration is utilized which has 4480 bytes of available RAM.
This information is mentioned in section 4.1. We can calculate con-
sumed amount of RAM by subtracting the free RAM space from total
RAM space such as (4480 - 1758 = 2722) bytes.

3. 06 DE (1758 in Decimal): This shows the amount of free RAM as

73

Chapter 5. Evaluation and Discussion of Results 5.1. Results

Algorithm Avg. Signing Time (ms) Signature Size (bits)
ECDSA K-163 96 384

RSA1024 185 1024
MQQ-SIG160 1228 160

Table 5.3: Comparisons of three algorithm in NXP JCOP 41 V2.2.

In order to find out consumed amount of RAM inside java card we have
inserted following codes inside our applet as shown in figure 5.1.

This part of code in applet can be executed using C-APDU (80000000) and
it returns R-APDU which contains the free space of RAM and EEPROM
as shown below:

cm> /send 80000000
=> 80 00 00 00
(13247 usec)
<= 7F FF 06 DE 06 DE 90 00

Status: No Error

R-APDU return six bytes in Hex along with (90 00) which shows correct
execution response status. These 6 bytes can be divided into three parts and
are discussed as follows:

1. 7F FF (32767 in Decimal): These two bytes shows the free space
of EEPROM inside java card. Unfortunately these values return 7F
FF if the free space in EEPROM is greater than 32767. In our case
EEPROM is 72 KBytes and therefore it returns 7FFF in hex which
is equivalent to 32767 in decimal. On the other hands we have used
consumed amount of EEPROM returned by JCRE at the time of load-
ing applet as shown in section 4.3.

2. 06 DE (1758 in Decimal): This shows the amount of free RAM mem-
ory available as clear on reset in bytes. In our used java card, B mem-
ory configuration is utilized which has 4480 bytes of available RAM.
This information is mentioned in section 4.1. We can calculate con-
sumed amount of RAM by subtracting the free RAM space from total
RAM space such as (4480 - 1758 = 2722) bytes.

3. 06 DE (1758 in Decimal): This shows the amount of free RAM as

73

Chapter 5. Evaluation and Discussion of Results 5.1. Results

Algorithm Avg. Signing Time (ms) Signature Size (bits)
ECDSA K-163 96 384

RSA1024 185 1024
MQQ-SIG160 1228 160

Table 5.3: Comparisons of three algorithm in NXP JCOP 41 V2.2.

In order to find out consumed amount of RAM inside java card we have
inserted following codes inside our applet as shown in figure 5.1.

This part of code in applet can be executed using C-APDU (80000000) and
it returns R-APDU which contains the free space of RAM and EEPROM
as shown below:

cm> /send 80000000
=> 80 00 00 00
(13247 usec)
<= 7F FF 06 DE 06 DE 90 00
Status: No Error

R-APDU return six bytes in Hex along with (90 00) which shows correct
execution response status. These 6 bytes can be divided into three parts and
are discussed as follows:

1. 7F FF (32767 in Decimal): These two bytes shows the free space
of EEPROM inside java card. Unfortunately these values return 7F
FF if the free space in EEPROM is greater than 32767. In our case
EEPROM is 72 KBytes and therefore it returns 7FFF in hex which
is equivalent to 32767 in decimal. On the other hands we have used
consumed amount of EEPROM returned by JCRE at the time of load-
ing applet as shown in section 4.3.

2. 06 DE (1758 in Decimal): This shows the amount of free RAM mem-
ory available as clear on reset in bytes. In our used java card, B mem-
ory configuration is utilized which has 4480 bytes of available RAM.
This information is mentioned in section 4.1. We can calculate con-
sumed amount of RAM by subtracting the free RAM space from total
RAM space such as (4480 - 1758 = 2722) bytes.

3. 06 DE (1758 in Decimal): This shows the amount of free RAM as

73

5.1. Results Chapter 5. Evaluation and Discussion of Results

Figure 5.1: Program Code for Revealing Consumed RAM

clear on Deselect in bytes. both values are same that shows the re-
maining avaliable memory space (1758 bytes) that can be used either
as clear on reset or as clear on deselect type.

Objects and Arrays that are declared as Clear on Reset means their used
memory space will be clear when the java card session is complete. Java
card session remains live until there is communication between card and
reader.

Objects and Arrays that are declared as Clear on Deselect means their used
memory will be clear when another applet is selected. In that case the
previous selected applet will be deselected and its amount of used RAM

74

5.1. Results Chapter 5. Evaluation and Discussion of Results

Figure 5.1: Program Code for Revealing Consumed RAM

clear on Deselect in bytes. both values are same that shows the re-
maining avaliable memory space (1758 bytes) that can be used either
as clear on reset or as clear on deselect type.

Objects and Arrays that are declared as Clear on Reset means their used
memory space will be clear when the java card session is complete. Java
card session remains live until there is communication between card and
reader.

Objects and Arrays that are declared as Clear on Deselect means their used
memory will be clear when another applet is selected. In that case the
previous selected applet will be deselected and its amount of used RAM

74

5.1. Results Chapter 5. Evaluation and Discussion of Results

Figure 5.1: Program Code for Revealing Consumed RAM

clear on Deselect in bytes. both values are same that shows the re-
maining avaliable memory space (1758 bytes) that can be used either
as clear on reset or as clear on deselect type.

Objects and Arrays that are declared as Clear on Reset means their used
memory space will be clear when the java card session is complete. Java
card session remains live until there is communication between card and
reader.

Objects and Arrays that are declared as Clear on Deselect means their used
memory will be clear when another applet is selected. In that case the
previous selected applet will be deselected and its amount of used RAM

74

5.1. Results Chapter 5. Evaluation and Discussion of Results

Figure 5.1: Program Code for Revealing Consumed RAM

clear on Deselect in bytes. both values are same that shows the re-
maining avaliable memory space (1758 bytes) that can be used either
as clear on reset or as clear on deselect type.

Objects and Arrays that are declared as Clear on Reset means their used
memory space will be clear when the java card session is complete. Java
card session remains live until there is communication between card and
reader.

Objects and Arrays that are declared as Clear on Deselect means their used
memory will be clear when another applet is selected. In that case the
previous selected applet will be deselected and its amount of used RAM

74

Chapter 5. Evaluation and Discussion of Results 5.2. Evaluation

will be clear. Our used arrays are declared as Clear on Deselect because we
donot want to accomodate RAM space when another applet is selected.

5.2 Evaluation

Java programming language for java card provides architecture independent
platform at the cost of slow execution speed. It also lacks some features of
typical Java programming due to constrained resources of java card. Lack
of garbage collection makes programming difficult and the use of RAM
should be done carefully. It is recommended that objects should be initial-
ized once during applet installation phase such as inside install() method or
inside constructor. As java card does not support multidimensional arrays,
single dimensional arrays should be reused as much as possible in order to
reduce memory usage. Comments does not take any memory space in java
card and should be used as much as possible for understanding of source
code. Java card does not support integer data type and most of the time byte
and short data types are being used. This needs careful type casting because
constants are by default integers in java. It should be noted that byte data
type is by default signed so care must be given while manipulating them as
unsigned Byte or using them as a loop driving variable. Another important
consideration is usage of if conditions and for loops. These language blocks
helps to reduce the code size but here in java card they makes execution of
code slower and hence longer execution time. Therefore unnecessary usage
of if conditions should be avoided.

We have tried to observe the possiblity of software implementation of MQQ-
SIG signing algorithm inside 8-bit NXP JCOP 41 v2.2 contactless smart
card with clock frequency upto 30MHZ. It seems that due to slow exe-
cution nature of java card the results achieved are not so attractive but if
implemented as native code inside ROM of java card then hopefully this
causes the increase of 5 to 10 times in execution speed and bring it within
few 100 ms. Memory required to store program code and private key is
only 3060 bytes for MQQ-SIG making it attractive choice for software im-
plementation over java cards.

75

Chapter 5. Evaluation and Discussion of Results 5.2. Evaluation

will be clear. Our used arrays are declared as Clear on Deselect because we
donot want to accomodate RAM space when another applet is selected.

5.2 Evaluation

Java programming language for java card provides architecture independent
platform at the cost of slow execution speed. It also lacks some features of
typical Java programming due to constrained resources of java card. Lack
of garbage collection makes programming difficult and the use of RAM
should be done carefully. It is recommended that objects should be initial-
ized once during applet installation phase such as inside install() method or
inside constructor. As java card does not support multidimensional arrays,
single dimensional arrays should be reused as much as possible in order to
reduce memory usage. Comments does not take any memory space in java
card and should be used as much as possible for understanding of source
code. Java card does not support integer data type and most of the time byte
and short data types are being used. This needs careful type casting because
constants are by default integers in java. It should be noted that byte data
type is by default signed so care must be given while manipulating them as
unsigned Byte or using them as a loop driving variable. Another important
consideration is usage of if conditions and for loops. These language blocks
helps to reduce the code size but here in java card they makes execution of
code slower and hence longer execution time. Therefore unnecessary usage
of if conditions should be avoided.

We have tried to observe the possiblity of software implementation of MQQ-
SIG signing algorithm inside 8-bit NXP JCOP 41 v2.2 contactless smart
card with clock frequency upto 30MHZ. It seems that due to slow exe-
cution nature of java card the results achieved are not so attractive but if
implemented as native code inside ROM of java card then hopefully this
causes the increase of 5 to 10 times in execution speed and bring it within
few 100 ms. Memory required to store program code and private key is
only 3060 bytes for MQQ-SIG making it attractive choice for software im-
plementation over java cards.

75

Chapter 5. Evaluation and Discussion of Results 5.2. Evaluation

will be clear. Our used arrays are declared as Clear on Deselect because we
donot want to accomodate RAM space when another applet is selected.

5.2 Evaluation

Java programming language for java card provides architecture independent
platform at the cost of slow execution speed. It also lacks some features of
typical Java programming due to constrained resources of java card. Lack
of garbage collection makes programming difficult and the use of RAM
should be done carefully. It is recommended that objects should be initial-
ized once during applet installation phase such as inside install() method or
inside constructor. As java card does not support multidimensional arrays,
single dimensional arrays should be reused as much as possible in order to
reduce memory usage. Comments does not take any memory space in java
card and should be used as much as possible for understanding of source
code. Java card does not support integer data type and most of the time byte
and short data types are being used. This needs careful type casting because
constants are by default integers in java. It should be noted that byte data
type is by default signed so care must be given while manipulating them as
unsigned Byte or using them as a loop driving variable. Another important
consideration is usage of if conditions and for loops. These language blocks
helps to reduce the code size but here in java card they makes execution of
code slower and hence longer execution time. Therefore unnecessary usage
of if conditions should be avoided.

We have tried to observe the possiblity of software implementation of MQQ-
SIG signing algorithm inside 8-bit NXP JCOP 41 v2.2 contactless smart
card with clock frequency upto 30MHZ. It seems that due to slow exe-
cution nature of java card the results achieved are not so attractive but if
implemented as native code inside ROM of java card then hopefully this
causes the increase of 5 to 10 times in execution speed and bring it within
few 100 ms. Memory required to store program code and private key is
only 3060 bytes for MQQ-SIG making it attractive choice for software im-
plementation over java cards.

75

Chapter 5. Evaluation and Discussion of Results 5.2. Evaluation

will be clear. Our used arrays are declared as Clear on Deselect because we
donot want to accomodate RAM space when another applet is selected.

5.2 Evaluation

Java programming language for java card provides architecture independent
platform at the cost of slow execution speed. It also lacks some features of
typical Java programming due to constrained resources of java card. Lack
of garbage collection makes programming difficult and the use of RAM
should be done carefully. It is recommended that objects should be initial-
ized once during applet installation phase such as inside install() method or
inside constructor. As java card does not support multidimensional arrays,
single dimensional arrays should be reused as much as possible in order to
reduce memory usage. Comments does not take any memory space in java
card and should be used as much as possible for understanding of source
code. Java card does not support integer data type and most of the time byte
and short data types are being used. This needs careful type casting because
constants are by default integers in java. It should be noted that byte data
type is by default signed so care must be given while manipulating them as
unsigned Byte or using them as a loop driving variable. Another important
consideration is usage of if conditions and for loops. These language blocks
helps to reduce the code size but here in java card they makes execution of
code slower and hence longer execution time. Therefore unnecessary usage
of if conditions should be avoided.

We have tried to observe the possiblity of software implementation of MQQ-
SIG signing algorithm inside 8-bit NXP JCOP 41 v2.2 contactless smart
card with clock frequency upto 30MHZ. It seems that due to slow exe-
cution nature of java card the results achieved are not so attractive but if
implemented as native code inside ROM of java card then hopefully this
causes the increase of 5 to 10 times in execution speed and bring it within
few 100 ms. Memory required to store program code and private key is
only 3060 bytes for MQQ-SIG making it attractive choice for software im-
plementation over java cards.

75

5.2. Evaluation Chapter 5. Evaluation and Discussion of Results

76

5.2. Evaluation Chapter 5. Evaluation and Discussion of Results

76

5.2. Evaluation Chapter 5. Evaluation and Discussion of Results

76

5.2. Evaluation Chapter 5. Evaluation and Discussion of Results

76

Chapter 6

Conclusion and Future Work

We have observered the possiblity of software implementation of a signing
part of MQQ-SIG digital signature which is based on recently proposed ul-
trafast asymmetric algorithm MQQ. We have chosen NXP JCOP 42 java
card. We have also made an effort to implement the left and right parastro-
phes of quasigroup in signing alogorithm which is more crucial and time
consuming part of signing algorithm. We have tried to reduce the execu-
tion time of this part by efficiently implementing the usage of RAM and
EEPROM. Program codes and private key for signing a message has been
stored in EEPROM. It has been also observed that usage of if conditions
and loop structures can reduce the code size on java card but increases the
applet execution time. In our early implementation of left and right paras-
trophes, The signing algorithm takes around 2571 bytes of EEPROM in
java card and its execution time was around 1748 milliseconds. After care-
ful analysis of our code and reducing some possible if conditions and for
loops we have achieved 1228 milliseconds execution speed of MQQ-SIG
signing algorithm with the increase of EEPROM to 3060 bytes. It should
be noted that execution time mentioned here, excludes hash funstion SHA1,
message transfering C-APDU and R-APDU between java card and reader,
and random message generation inside java card.

In our implementation we have used SHA1 hash function which has been
implemented inside java card. We can say that the results shown in our
implementation makes it suitable choice for cheap java cards without im-
plementation of co-processors for performing complex cryptographic oper-

77

Chapter 6

Conclusion and Future Work

We have observered the possiblity of software implementation of a signing
part of MQQ-SIG digital signature which is based on recently proposed ul-
trafast asymmetric algorithm MQQ. We have chosen NXP JCOP 42 java
card. We have also made an effort to implement the left and right parastro-
phes of quasigroup in signing alogorithm which is more crucial and time
consuming part of signing algorithm. We have tried to reduce the execu-
tion time of this part by efficiently implementing the usage of RAM and
EEPROM. Program codes and private key for signing a message has been
stored in EEPROM. It has been also observed that usage of if conditions
and loop structures can reduce the code size on java card but increases the
applet execution time. In our early implementation of left and right paras-
trophes, The signing algorithm takes around 2571 bytes of EEPROM in
java card and its execution time was around 1748 milliseconds. After care-
ful analysis of our code and reducing some possible if conditions and for
loops we have achieved 1228 milliseconds execution speed of MQQ-SIG
signing algorithm with the increase of EEPROM to 3060 bytes. It should
be noted that execution time mentioned here, excludes hash funstion SHA1,
message transfering C-APDU and R-APDU between java card and reader,
and random message generation inside java card.

In our implementation we have used SHA1 hash function which has been
implemented inside java card. We can say that the results shown in our
implementation makes it suitable choice for cheap java cards without im-
plementation of co-processors for performing complex cryptographic oper-

77

Chapter 6

Conclusion and Future Work

We have observered the possiblity of software implementation of a signing
part of MQQ-SIG digital signature which is based on recently proposed ul-
trafast asymmetric algorithm MQQ. We have chosen NXP JCOP 42 java
card. We have also made an effort to implement the left and right parastro-
phes of quasigroup in signing alogorithm which is more crucial and time
consuming part of signing algorithm. We have tried to reduce the execu-
tion time of this part by efficiently implementing the usage of RAM and
EEPROM. Program codes and private key for signing a message has been
stored in EEPROM. It has been also observed that usage of if conditions
and loop structures can reduce the code size on java card but increases the
applet execution time. In our early implementation of left and right paras-
trophes, The signing algorithm takes around 2571 bytes of EEPROM in
java card and its execution time was around 1748 milliseconds. After care-
ful analysis of our code and reducing some possible if conditions and for
loops we have achieved 1228 milliseconds execution speed of MQQ-SIG
signing algorithm with the increase of EEPROM to 3060 bytes. It should
be noted that execution time mentioned here, excludes hash funstion SHA1,
message transfering C-APDU and R-APDU between java card and reader,
and random message generation inside java card.

In our implementation we have used SHA1 hash function which has been
implemented inside java card. We can say that the results shown in our
implementation makes it suitable choice for cheap java cards without im-
plementation of co-processors for performing complex cryptographic oper-

77

Chapter 6

Conclusion and Future Work

We have observered the possiblity of software implementation of a signing
part of MQQ-SIG digital signature which is based on recently proposed ul-
trafast asymmetric algorithm MQQ. We have chosen NXP JCOP 42 java
card. We have also made an effort to implement the left and right parastro-
phes of quasigroup in signing alogorithm which is more crucial and time
consuming part of signing algorithm. We have tried to reduce the execu-
tion time of this part by efficiently implementing the usage of RAM and
EEPROM. Program codes and private key for signing a message has been
stored in EEPROM. It has been also observed that usage of if conditions
and loop structures can reduce the code size on java card but increases the
applet execution time. In our early implementation of left and right paras-
trophes, The signing algorithm takes around 2571 bytes of EEPROM in
java card and its execution time was around 1748 milliseconds. After care-
ful analysis of our code and reducing some possible if conditions and for
loops we have achieved 1228 milliseconds execution speed of MQQ-SIG
signing algorithm with the increase of EEPROM to 3060 bytes. It should
be noted that execution time mentioned here, excludes hash funstion SHA1,
message transfering C-APDU and R-APDU between java card and reader,
and random message generation inside java card.

In our implementation we have used SHA1 hash function which has been
implemented inside java card. We can say that the results shown in our
implementation makes it suitable choice for cheap java cards without im-
plementation of co-processors for performing complex cryptographic oper-

77

Chapter 6. Conclusion and Future Work

ations. We can also conclude that MQQ-SIG signing algorithm including
our implementation of left and right parastrophes of quasigroup in sign-
ing algorithm if implemented as native code inside smart card can possibly
significantly decreases the execution time to few 100 milliseconds.

In our future work we will try to implement MQQ-SIG signing algorithm
inside other types of smart cards and we will also try to improve further the
execution speed .

78

Chapter 6. Conclusion and Future Work

ations. We can also conclude that MQQ-SIG signing algorithm including
our implementation of left and right parastrophes of quasigroup in sign-
ing algorithm if implemented as native code inside smart card can possibly
significantly decreases the execution time to few 100 milliseconds.

In our future work we will try to implement MQQ-SIG signing algorithm
inside other types of smart cards and we will also try to improve further the
execution speed .

78

Chapter 6. Conclusion and Future Work

ations. We can also conclude that MQQ-SIG signing algorithm including
our implementation of left and right parastrophes of quasigroup in sign-
ing algorithm if implemented as native code inside smart card can possibly
significantly decreases the execution time to few 100 milliseconds.

In our future work we will try to implement MQQ-SIG signing algorithm
inside other types of smart cards and we will also try to improve further the
execution speed .

78

Chapter 6. Conclusion and Future Work

ations. We can also conclude that MQQ-SIG signing algorithm including
our implementation of left and right parastrophes of quasigroup in sign-
ing algorithm if implemented as native code inside smart card can possibly
significantly decreases the execution time to few 100 milliseconds.

In our future work we will try to implement MQQ-SIG signing algorithm
inside other types of smart cards and we will also try to improve further the
execution speed .

78

Glossary

AID Application Identifier.
ANSI American National Standards Institute.
APDU Application Protocol Data Unit.

BAC Basic Access control.

C-APDU Command Application Protocol Data Unit.
CA Certification Authority.
CAC-C Common Access Card with Contactless.
CAD Card Acceptance Device.
CAP Converted Applet.
CRT Chinese Remainder Theorem.

DER Distinguished Encoding Rules.
DOD Department of Defense.
DPA Differential Power Analysis.
DSS Digital Signature Standards.

EAC Extended Access Control.
ECDLP Elliptic Curve Discrete Logarithm Problem.
ECDSA Elliptic Curve Digital Signature Algorithm.
EEPROM Electrical Erasable Programmable ROM.
EMV Europay MasterCard and Visa.
EU European Union.

FIPS Federal Information Processing Standards.
FRAC First Responder Authentication Card.

79

Glossary

AID Application Identifier.
ANSI American National Standards Institute.
APDU Application Protocol Data Unit.

BAC Basic Access control.

C-APDU Command Application Protocol Data Unit.
CA Certification Authority.
CAC-C Common Access Card with Contactless.
CAD Card Acceptance Device.
CAP Converted Applet.
CRT Chinese Remainder Theorem.

DER Distinguished Encoding Rules.
DOD Department of Defense.
DPA Differential Power Analysis.
DSS Digital Signature Standards.

EAC Extended Access Control.
ECDLP Elliptic Curve Discrete Logarithm Problem.
ECDSA Elliptic Curve Digital Signature Algorithm.
EEPROM Electrical Erasable Programmable ROM.
EMV Europay MasterCard and Visa.
EU European Union.

FIPS Federal Information Processing Standards.
FRAC First Responder Authentication Card.

79

Glossary

AID Application Identifier.
ANSI American National Standards Institute.
APDU Application Protocol Data Unit.

BAC Basic Access control.

C-APDU Command Application Protocol Data Unit.
CA Certification Authority.
CAC-C Common Access Card with Contactless.
CAD Card Acceptance Device.
CAP Converted Applet.
CRT Chinese Remainder Theorem.

DER Distinguished Encoding Rules.
DOD Department of Defense.
DPA Differential Power Analysis.
DSS Digital Signature Standards.

EAC Extended Access Control.
ECDLP Elliptic Curve Discrete Logarithm Problem.
ECDSA Elliptic Curve Digital Signature Algorithm.
EEPROM Electrical Erasable Programmable ROM.
EMV Europay MasterCard and Visa.
EU European Union.

FIPS Federal Information Processing Standards.
FRAC First Responder Authentication Card.

79

Glossary

AID Application Identifier.
ANSI American National Standards Institute.
APDU Application Protocol Data Unit.

BAC Basic Access control.

C-APDU Command Application Protocol Data Unit.
CA Certification Authority.
CAC-C Common Access Card with Contactless.
CAD Card Acceptance Device.
CAP Converted Applet.
CRT Chinese Remainder Theorem.

DER Distinguished Encoding Rules.
DOD Department of Defense.
DPA Differential Power Analysis.
DSS Digital Signature Standards.

EAC Extended Access Control.
ECDLP Elliptic Curve Discrete Logarithm Problem.
ECDSA Elliptic Curve Digital Signature Algorithm.
EEPROM Electrical Erasable Programmable ROM.
EMV Europay MasterCard and Visa.
EU European Union.

FIPS Federal Information Processing Standards.
FRAC First Responder Authentication Card.

79

Glossary Glossary

HF High Frequency.
HODFA High Order Differential Power Analysis.
HSPD Homeland Security Presidential Directive.

ICAO International Civil Aviation Organization.
IEC International Electronic Committee.
IEEE Institute of Electrical and Electronic Engi-

neering.
IFF Identification of Friend or Foe.
ISO International Standards Organization.

JCOP Java Card OpenPlatform.
JCRE Java Card Runtime Environment.
JCVM Java Card Virtual Machine.
JRE Java Runtime Environment.
JVM Java Virtual Machine.

LSB Least Significant Bit.

MQQ Multivariate Quadratic Quasigroup.
MQQ-SIG Multivariate Quadratic Quasigroup Signa-

ture.
MSB Most Significant Bit.
MTBF Meantime between Failure.

NIST NationalInstitute for Standards and Technol-
ogy.

OCF OpenCard Framework.
OCR Optical Character Recognition.

PC Personal Computer.
PIV Personal Identity Verification.
PIX Proprietary Application Identifier Extension.
PKI Public Key Infrastructure.

80

Glossary Glossary

HF High Frequency.
HODFA High Order Differential Power Analysis.
HSPD Homeland Security Presidential Directive.

ICAO International Civil Aviation Organization.
IEC International Electronic Committee.
IEEE Institute of Electrical and Electronic Engi-

neering.
IFF Identification of Friend or Foe.
ISO International Standards Organization.

JCOP Java Card OpenPlatform.
JCRE Java Card Runtime Environment.
JCVM Java Card Virtual Machine.
JRE Java Runtime Environment.
JVM Java Virtual Machine.

LSB Least Significant Bit.

MQQ Multivariate Quadratic Quasigroup.
MQQ-SIG Multivariate Quadratic Quasigroup Signa-

ture.
MSB Most Significant Bit.
MTBF Meantime between Failure.

NIST NationalInstitute for Standards and Technol-
ogy.

OCF OpenCard Framework.
OCR Optical Character Recognition.

PC Personal Computer.
PIV Personal Identity Verification.
PIX Proprietary Application Identifier Extension.
PKI Public Key Infrastructure.

80

Glossary Glossary

HF High Frequency.
HODFA High Order Differential Power Analysis.
HSPD Homeland Security Presidential Directive.

ICAO International Civil Aviation Organization.
IEC International Electronic Committee.
IEEE Institute of Electrical and Electronic Engi-

neering.
IFF Identification of Friend or Foe.
ISO International Standards Organization.

JCOP Java Card OpenPlatform.
JCRE Java Card Runtime Environment.
JCVM Java Card Virtual Machine.
JRE Java Runtime Environment.
JVM Java Virtual Machine.

LSB Least Significant Bit.

MQQ Multivariate Quadratic Quasigroup.
MQQ-SIG Multivariate Quadratic Quasigroup Signa-

ture.
MSB Most Significant Bit.
MTBF Meantime between Failure.

NIST NationalInstitute for Standards and Technol-
ogy.

OCF OpenCard Framework.
OCR Optical Character Recognition.

PC Personal Computer.
PIV Personal Identity Verification.
PIX Proprietary Application Identifier Extension.
PKI Public Key Infrastructure.

80

Glossary Glossary

HF High Frequency.
HODFA High Order Differential Power Analysis.
HSPD Homeland Security Presidential Directive.

ICAO International Civil Aviation Organization.
IEC International Electronic Committee.
IEEE Institute of Electrical and Electronic Engi-

neering.
IFF Identification of Friend or Foe.
ISO International Standards Organization.

JCOP Java Card OpenPlatform.
JCRE Java Card Runtime Environment.
JCVM Java Card Virtual Machine.
JRE Java Runtime Environment.
JVM Java Virtual Machine.

LSB Least Significant Bit.

MQQ Multivariate Quadratic Quasigroup.
MQQ-SIG Multivariate Quadratic Quasigroup Signa-

ture.
MSB Most Significant Bit.
MTBF Meantime between Failure.

NIST NationalInstitute for Standards and Technol-
ogy.

OCF OpenCard Framework.
OCR Optical Character Recognition.

PC Personal Computer.
PIV Personal Identity Verification.
PIX Proprietary Application Identifier Extension.
PKI Public Key Infrastructure.

80

Glossary Glossary

R-APDU Response Application Protocol Data Unit.
RAM Random Access Memory.
RFID Radio Frequency Identification.
RID Registered Application Provider Identifier.
RNG Random Number Generator.
ROM Read Only Memory.
RP1 Random Permutation 1.
RP5 Random Permutation 5.
RSA Ron Rivest - Adi Shamir - Len Adleman.

SCP Secure Channel Protocol.
SHA1 Secure Hash Algorithm 1.
SPA Simple Power Analysis.

TWIC TransportationWorker Identification Creden-
tial.

UHF Ultra-High Frequency.

XOR Exclusive-OR.

81

Glossary Glossary

R-APDU Response Application Protocol Data Unit.
RAM Random Access Memory.
RFID Radio Frequency Identification.
RID Registered Application Provider Identifier.
RNG Random Number Generator.
ROM Read Only Memory.
RP1 Random Permutation 1.
RP5 Random Permutation 5.
RSA Ron Rivest - Adi Shamir - Len Adleman.

SCP Secure Channel Protocol.
SHA1 Secure Hash Algorithm 1.
SPA Simple Power Analysis.

TWIC TransportationWorker Identification Creden-
tial.

UHF Ultra-High Frequency.

XOR Exclusive-OR.

81

Glossary Glossary

R-APDU Response Application Protocol Data Unit.
RAM Random Access Memory.
RFID Radio Frequency Identification.
RID Registered Application Provider Identifier.
RNG Random Number Generator.
ROM Read Only Memory.
RP1 Random Permutation 1.
RP5 Random Permutation 5.
RSA Ron Rivest - Adi Shamir - Len Adleman.

SCP Secure Channel Protocol.
SHA1 Secure Hash Algorithm 1.
SPA Simple Power Analysis.

TWIC TransportationWorker Identification Creden-
tial.

UHF Ultra-High Frequency.

XOR Exclusive-OR.

81

Glossary Glossary

R-APDU Response Application Protocol Data Unit.
RAM Random Access Memory.
RFID Radio Frequency Identification.
RID Registered Application Provider Identifier.
RNG Random Number Generator.
ROM Read Only Memory.
RP1 Random Permutation 1.
RP5 Random Permutation 5.
RSA Ron Rivest - Adi Shamir - Len Adleman.

SCP Secure Channel Protocol.
SHA1 Secure Hash Algorithm 1.
SPA Simple Power Analysis.

TWIC TransportationWorker Identification Creden-
tial.

UHF Ultra-High Frequency.

XOR Exclusive-OR.

81

Glossary Glossary

82

Glossary Glossary

82

Glossary Glossary

82

Glossary Glossary

82

Bibliography

[1] Danilo Gligoroski, Svein J. Knapskog, Smile Markovski,
MQQ Digital Signature Scheme. NTNU, Trondheim, Norway.
https://www.ntnu.no/wiki/download/attachments/
12815949/Public+Key.pdf, Cited 27 April 2010

[2] International Card Manufacturers Association, Skimming Fraud.
http://www.icma.com/info/hypercom7801.htm, Cited
27 April 2010.

[3] Federal Information Processing Standards, Publication 201-1: Per-
sonal Identity Verification (PIV) of Federal Employees and Contrac-
tors, March, 2006.

[4] Common Access Card with Contactless. http://www.cac.
mil/, Cited 27 April 2010.

[5] NFCTimes, Contactless Shipment to Break 1 Billion by 2014,
January, 2010. http://www.nfctimes.com/news/
contactless-shipments-break-1-billion-2014,
Cited 27 April 2010.

[6] International Civil Aviation Organization (ICAO). Document 9303
Machine Readable Travel Documents (MRTD). Part I: Machine Read-
able Passports, 2005.

[7] Bundesamt fĺur Sicherheit in der Informationstechnik. Advanced
Security Mechanisms for Machine Readable Travel Documents
Extended Access Control (EAC), Technical Guideline TR-03110,
September, 2007.

83

Bibliography

[1] Danilo Gligoroski, Svein J. Knapskog, Smile Markovski,
MQQ Digital Signature Scheme. NTNU, Trondheim, Norway.
https://www.ntnu.no/wiki/download/attachments/
12815949/Public+Key.pdf, Cited 27 April 2010

[2] International Card Manufacturers Association, Skimming Fraud.
http://www.icma.com/info/hypercom7801.htm, Cited
27 April 2010.

[3] Federal Information Processing Standards, Publication 201-1: Per-
sonal Identity Verification (PIV) of Federal Employees and Contrac-
tors, March, 2006.

[4] Common Access Card with Contactless. http://www.cac.
mil/, Cited 27 April 2010.

[5] NFCTimes, Contactless Shipment to Break 1 Billion by 2014,
January, 2010. http://www.nfctimes.com/news/
contactless-shipments-break-1-billion-2014,
Cited 27 April 2010.

[6] International Civil Aviation Organization (ICAO). Document 9303
Machine Readable Travel Documents (MRTD). Part I: Machine Read-
able Passports, 2005.

[7] Bundesamt fĺur Sicherheit in der Informationstechnik. Advanced
Security Mechanisms for Machine Readable Travel Documents
Extended Access Control (EAC), Technical Guideline TR-03110,
September, 2007.

83

Bibliography

[1] Danilo Gligoroski, Svein J. Knapskog, Smile Markovski,
MQQ Digital Signature Scheme. NTNU, Trondheim, Norway.
https://www.ntnu.no/wiki/download/attachments/
12815949/Public+Key.pdf, Cited 27 April 2010

[2] International Card Manufacturers Association, Skimming Fraud.
http://www.icma.com/info/hypercom7801.htm, Cited
27 April 2010.

[3] Federal Information Processing Standards, Publication 201-1: Per-
sonal Identity Verification (PIV) of Federal Employees and Contrac-
tors, March, 2006.

[4] Common Access Card with Contactless. http://www.cac.
mil/, Cited 27 April 2010.

[5] NFCTimes, Contactless Shipment to Break 1 Billion by 2014,
January, 2010. http://www.nfctimes.com/news/
contactless-shipments-break-1-billion-2014,
Cited 27 April 2010.

[6] International Civil Aviation Organization (ICAO). Document 9303
Machine Readable Travel Documents (MRTD). Part I: Machine Read-
able Passports, 2005.

[7] Bundesamt fĺur Sicherheit in der Informationstechnik. Advanced
Security Mechanisms for Machine Readable Travel Documents
Extended Access Control (EAC), Technical Guideline TR-03110,
September, 2007.

83

Bibliography

[1] Danilo Gligoroski, Svein J. Knapskog, Smile Markovski,
MQQ Digital Signature Scheme. NTNU, Trondheim, Norway.
https://www.ntnu.no/wiki/download/attachments/
12815949/Public+Key.pdf, Cited 27 April 2010

[2] International Card Manufacturers Association, Skimming Fraud.
http://www.icma.com/info/hypercom7801.htm, Cited
27 April 2010.

[3] Federal Information Processing Standards, Publication 201-1: Per-
sonal Identity Verification (PIV) of Federal Employees and Contrac-
tors, March, 2006.

[4] Common Access Card with Contactless. http://www.cac.
mil/, Cited 27 April 2010.

[5] NFCTimes, Contactless Shipment to Break 1 Billion by 2014,
January, 2010. http://www.nfctimes.com/news/
contactless-shipments-break-1-billion-2014,
Cited 27 April 2010.

[6] International Civil Aviation Organization (ICAO). Document 9303
Machine Readable Travel Documents (MRTD). Part I: Machine Read-
able Passports, 2005.

[7] Bundesamt fĺur Sicherheit in der Informationstechnik. Advanced
Security Mechanisms for Machine Readable Travel Documents
Extended Access Control (EAC), Technical Guideline TR-03110,
September, 2007.

83

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Smart Card Alliance. Hong Kong Octopus Card, http:
//www.smartcardalliance.org/resources/lib/
Hong_Kong_Octopus_Card.pdf, Cited 27 April 2010.

[9] RFID Journal. The History of RFID Technology, http:
//www.rfidjournal.com/article/articleview/
1338/1/129/, Cited 26 April 2010.

[10] Wolfgang Rankl, Wolfgang Effing, Smart Card Handbook. Wiley, 3rd
edition, 2003.

[11] "Digital Signature Standard (DSS)". Federal Information Standards
Processing Publication 186-3, National Institute of Standards and
Technology, June 2009.

[12] Wang, X.; Yin, Y.; and Yu, H. Finding Collisions in the Full SHA-1.
Proceedings, Crypto ’05, 2005; published by Springer-Verlag

[13] Yu Ming-yan, Zhou Tong, Wang An-xiang, Ye Yi-zheng. AN EFFI-
CIENT ASIC IMPLEMENTATION OF SHA-1 ENGINE FOR TPM.
The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, De-
cember 6-9.2004

[14] Rivest, R., Shamir, A., and Adleman, L. M., Method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2):120-126, 1978.

[15] RFC 3447. Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1, February 2003.

[16] D. Gligoroski, S. Markovski, and S. J. Knapskog. Multivariate
Quadratic Trap-door Functions Based on Multivariate Quadratic
Quasigroups. In Proceedings of The American Conference on Ap-
plied Mathematics, (MATH08), Cambridge, Mas- sachusetts, USA,
March 2008.

[17] D. Gligoroski, S. Markovski, and S. J. Knapskog. Public Key Block
Cipher Based on Multivariate Quadratic Quasigroups. Report 320,
Cryptology ePrint Archive, 2008.

[18] M. Kuhn, O. Kömmerling, Design Principles for Tamper-Resistant
Smartcard Processors, Proceedings of the USENIX Workshop on
Smartcard Technology (Smartcard 99), Chicago, Illinois, 1999.

84

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Smart Card Alliance. Hong Kong Octopus Card, http:
//www.smartcardalliance.org/resources/lib/
Hong_Kong_Octopus_Card.pdf, Cited 27 April 2010.

[9] RFID Journal. The History of RFID Technology, http:
//www.rfidjournal.com/article/articleview/
1338/1/129/, Cited 26 April 2010.

[10] Wolfgang Rankl, Wolfgang Effing, Smart Card Handbook. Wiley, 3rd
edition, 2003.

[11] "Digital Signature Standard (DSS)". Federal Information Standards
Processing Publication 186-3, National Institute of Standards and
Technology, June 2009.

[12] Wang, X.; Yin, Y.; and Yu, H. Finding Collisions in the Full SHA-1.
Proceedings, Crypto ’05, 2005; published by Springer-Verlag

[13] Yu Ming-yan, Zhou Tong, Wang An-xiang, Ye Yi-zheng. AN EFFI-
CIENT ASIC IMPLEMENTATION OF SHA-1 ENGINE FOR TPM.
The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, De-
cember 6-9.2004

[14] Rivest, R., Shamir, A., and Adleman, L. M., Method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2):120-126, 1978.

[15] RFC 3447. Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1, February 2003.

[16] D. Gligoroski, S. Markovski, and S. J. Knapskog. Multivariate
Quadratic Trap-door Functions Based on Multivariate Quadratic
Quasigroups. In Proceedings of The American Conference on Ap-
plied Mathematics, (MATH08), Cambridge, Mas- sachusetts, USA,
March 2008.

[17] D. Gligoroski, S. Markovski, and S. J. Knapskog. Public Key Block
Cipher Based on Multivariate Quadratic Quasigroups. Report 320,
Cryptology ePrint Archive, 2008.

[18] M. Kuhn, O. Kömmerling, Design Principles for Tamper-Resistant
Smartcard Processors, Proceedings of the USENIX Workshop on
Smartcard Technology (Smartcard 99), Chicago, Illinois, 1999.

84

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Smart Card Alliance. Hong Kong Octopus Card, http:
//www.smartcardalliance.org/resources/lib/
Hong_Kong_Octopus_Card.pdf, Cited 27 April 2010.

[9] RFID Journal. The History of RFID Technology, http:
//www.rfidjournal.com/article/articleview/
1338/1/129/, Cited 26 April 2010.

[10] Wolfgang Rankl, Wolfgang Effing, Smart Card Handbook. Wiley, 3rd
edition, 2003.

[11] "Digital Signature Standard (DSS)". Federal Information Standards
Processing Publication 186-3, National Institute of Standards and
Technology, June 2009.

[12] Wang, X.; Yin, Y.; and Yu, H. Finding Collisions in the Full SHA-1.
Proceedings, Crypto ’05, 2005; published by Springer-Verlag

[13] Yu Ming-yan, Zhou Tong, Wang An-xiang, Ye Yi-zheng. AN EFFI-
CIENT ASIC IMPLEMENTATION OF SHA-1 ENGINE FOR TPM.
The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, De-
cember 6-9.2004

[14] Rivest, R., Shamir, A., and Adleman, L. M., Method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2):120-126, 1978.

[15] RFC 3447. Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1, February 2003.

[16] D. Gligoroski, S. Markovski, and S. J. Knapskog. Multivariate
Quadratic Trap-door Functions Based on Multivariate Quadratic
Quasigroups. In Proceedings of The American Conference on Ap-
plied Mathematics, (MATH08), Cambridge, Mas- sachusetts, USA,
March 2008.

[17] D. Gligoroski, S. Markovski, and S. J. Knapskog. Public Key Block
Cipher Based on Multivariate Quadratic Quasigroups. Report 320,
Cryptology ePrint Archive, 2008.

[18] M. Kuhn, O. Kömmerling, Design Principles for Tamper-Resistant
Smartcard Processors, Proceedings of the USENIX Workshop on
Smartcard Technology (Smartcard 99), Chicago, Illinois, 1999.

84

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Smart Card Alliance. Hong Kong Octopus Card, http:
//www.smartcardalliance.org/resources/lib/
Hong_Kong_Octopus_Card.pdf, Cited 27 April 2010.

[9] RFID Journal. The History of RFID Technology, http:
//www.rfidjournal.com/article/articleview/
1338/1/129/, Cited 26 April 2010.

[10] Wolfgang Rankl, Wolfgang Effing, Smart Card Handbook. Wiley, 3rd
edition, 2003.

[11] "Digital Signature Standard (DSS)". Federal Information Standards
Processing Publication 186-3, National Institute of Standards and
Technology, June 2009.

[12] Wang, X.; Yin, Y.; and Yu, H. Finding Collisions in the Full SHA-1.
Proceedings, Crypto ’05, 2005; published by Springer-Verlag

[13] Yu Ming-yan, Zhou Tong, Wang An-xiang, Ye Yi-zheng. AN EFFI-
CIENT ASIC IMPLEMENTATION OF SHA-1 ENGINE FOR TPM.
The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, De-
cember 6-9.2004

[14] Rivest, R., Shamir, A., and Adleman, L. M., Method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2):120-126, 1978.

[15] RFC 3447. Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1, February 2003.

[16] D. Gligoroski, S. Markovski, and S. J. Knapskog. Multivariate
Quadratic Trap-door Functions Based on Multivariate Quadratic
Quasigroups. In Proceedings of The American Conference on Ap-
plied Mathematics, (MATH08), Cambridge, Mas- sachusetts, USA,
March 2008.

[17] D. Gligoroski, S. Markovski, and S. J. Knapskog. Public Key Block
Cipher Based on Multivariate Quadratic Quasigroups. Report 320,
Cryptology ePrint Archive, 2008.

[18] M. Kuhn, O. Kömmerling, Design Principles for Tamper-Resistant
Smartcard Processors, Proceedings of the USENIX Workshop on
Smartcard Technology (Smartcard 99), Chicago, Illinois, 1999.

84

BIBLIOGRAPHY BIBLIOGRAPHY

[19] Kocher, P. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Koblitz, N., editor, Advances in Cryptol-
ogy CRYPTO 96, volume 1109 of Lecture Notes in Computer Sci-
ence, pages 104-113. Springer-Verlag. 1996.

[20] Kocher, P., Jaffe, J., and Jun, B. Differential power analysis. In
Wiener, M. J., editor, Advances in Cryptology CRYPTO 99, volume
1666 of Lecture Notes in Computer Science, pages 388-397. Springer-
Verlag. 1999.

[21] Book: Keith E. Mayes, Konstantinos Markantonakis, Smart Cards,
Tokens, Security and Applications. Boston, MA : Springer Sci-
ence+Business Media, LLC, 2008.

[22] Article. An Introduction to Java Card Technology. URL:http:
//java.sun.com/javacard/reference/techart/
javacard1/, Cited 20 May 2010.

[23] Book: Zhiqun Chen. Java Card Technology for Smart Cards: Archi-
tecture and Programmer’s Guide. September, 2000

[24] DataSheet. Philips SmartMx P5CT072. Secure Dual Interface PKI
Smart Card Controller. Rev. 1.3, October 2004.

[25] Datasheet. OMNIKEY 5321 Reader, 2007

[26] J. D. H. Smith, An introduction to quasigroups and their representa-
tions, Chapman & Hall/CRC, ISBN 1-58488-537-8, 2007.

[27] J. Dénes, A. D. Keedwell, Latin Squares and their Applications, En-
glish Univer. Press Ltd., 1974.

[28] Danilo Gligoroski, Rune Steinsmo, Ludovic Perret, Jean Charles,
Rune Erland, MQQ-SIG, A Digital Signature Scheme Based on MQQ,
2010, Reprint.

[29] Yanling Chen, Svein Johan Knapskog, and Danilo Gligoroski, A Study
on Multivariate Quadratic Quasigroups (MQQs), Paper submitted in
YACC 2010.

[30] Marcus Oestreicher, Ksheerabdhi Krishna, Object Lifetimes in Java
Card, USENIX Workshop on Smartcard Technology, Chicago, Illi-
nois, USA, May, 1999.

85

BIBLIOGRAPHY BIBLIOGRAPHY

[19] Kocher, P. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Koblitz, N., editor, Advances in Cryptol-
ogy CRYPTO 96, volume 1109 of Lecture Notes in Computer Sci-
ence, pages 104-113. Springer-Verlag. 1996.

[20] Kocher, P., Jaffe, J., and Jun, B. Differential power analysis. In
Wiener, M. J., editor, Advances in Cryptology CRYPTO 99, volume
1666 of Lecture Notes in Computer Science, pages 388-397. Springer-
Verlag. 1999.

[21] Book: Keith E. Mayes, Konstantinos Markantonakis, Smart Cards,
Tokens, Security and Applications. Boston, MA : Springer Sci-
ence+Business Media, LLC, 2008.

[22] Article. An Introduction to Java Card Technology. URL:http:
//java.sun.com/javacard/reference/techart/
javacard1/, Cited 20 May 2010.

[23] Book: Zhiqun Chen. Java Card Technology for Smart Cards: Archi-
tecture and Programmer’s Guide. September, 2000

[24] DataSheet. Philips SmartMx P5CT072. Secure Dual Interface PKI
Smart Card Controller. Rev. 1.3, October 2004.

[25] Datasheet. OMNIKEY 5321 Reader, 2007

[26] J. D. H. Smith, An introduction to quasigroups and their representa-
tions, Chapman & Hall/CRC, ISBN 1-58488-537-8, 2007.

[27] J. Dénes, A. D. Keedwell, Latin Squares and their Applications, En-
glish Univer. Press Ltd., 1974.

[28] Danilo Gligoroski, Rune Steinsmo, Ludovic Perret, Jean Charles,
Rune Erland, MQQ-SIG, A Digital Signature Scheme Based on MQQ,
2010, Reprint.

[29] Yanling Chen, Svein Johan Knapskog, and Danilo Gligoroski, A Study
on Multivariate Quadratic Quasigroups (MQQs), Paper submitted in
YACC 2010.

[30] Marcus Oestreicher, Ksheerabdhi Krishna, Object Lifetimes in Java
Card, USENIX Workshop on Smartcard Technology, Chicago, Illi-
nois, USA, May, 1999.

85

BIBLIOGRAPHY BIBLIOGRAPHY

[19] Kocher, P. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Koblitz, N., editor, Advances in Cryptol-
ogy CRYPTO 96, volume 1109 of Lecture Notes in Computer Sci-
ence, pages 104-113. Springer-Verlag. 1996.

[20] Kocher, P., Jaffe, J., and Jun, B. Differential power analysis. In
Wiener, M. J., editor, Advances in Cryptology CRYPTO 99, volume
1666 of Lecture Notes in Computer Science, pages 388-397. Springer-
Verlag. 1999.

[21] Book: Keith E. Mayes, Konstantinos Markantonakis, Smart Cards,
Tokens, Security and Applications. Boston, MA : Springer Sci-
ence+Business Media, LLC, 2008.

[22] Article. An Introduction to Java Card Technology. URL:http:
//java.sun.com/javacard/reference/techart/
javacard1/, Cited 20 May 2010.

[23] Book: Zhiqun Chen. Java Card Technology for Smart Cards: Archi-
tecture and Programmer’s Guide. September, 2000

[24] DataSheet. Philips SmartMx P5CT072. Secure Dual Interface PKI
Smart Card Controller. Rev. 1.3, October 2004.

[25] Datasheet. OMNIKEY 5321 Reader, 2007

[26] J. D. H. Smith, An introduction to quasigroups and their representa-
tions, Chapman & Hall/CRC, ISBN 1-58488-537-8, 2007.

[27] J. Dénes, A. D. Keedwell, Latin Squares and their Applications, En-
glish Univer. Press Ltd., 1974.

[28] Danilo Gligoroski, Rune Steinsmo, Ludovic Perret, Jean Charles,
Rune Erland, MQQ-SIG, A Digital Signature Scheme Based on MQQ,
2010, Reprint.

[29] Yanling Chen, Svein Johan Knapskog, and Danilo Gligoroski, A Study
on Multivariate Quadratic Quasigroups (MQQs), Paper submitted in
YACC 2010.

[30] Marcus Oestreicher, Ksheerabdhi Krishna, Object Lifetimes in Java
Card, USENIX Workshop on Smartcard Technology, Chicago, Illi-
nois, USA, May, 1999.

85

BIBLIOGRAPHY BIBLIOGRAPHY

[19] Kocher, P. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Koblitz, N., editor, Advances in Cryptol-
ogy CRYPTO 96, volume 1109 of Lecture Notes in Computer Sci-
ence, pages 104-113. Springer-Verlag. 1996.

[20] Kocher, P., Jaffe, J., and Jun, B. Differential power analysis. In
Wiener, M. J., editor, Advances in Cryptology CRYPTO 99, volume
1666 of Lecture Notes in Computer Science, pages 388-397. Springer-
Verlag. 1999.

[21] Book: Keith E. Mayes, Konstantinos Markantonakis, Smart Cards,
Tokens, Security and Applications. Boston, MA : Springer Sci-
ence+Business Media, LLC, 2008.

[22] Article. An Introduction to Java Card Technology. URL:http:
//java.sun.com/javacard/reference/techart/
javacard1/, Cited 20 May 2010.

[23] Book: Zhiqun Chen. Java Card Technology for Smart Cards: Archi-
tecture and Programmer’s Guide. September, 2000

[24] DataSheet. Philips SmartMx P5CT072. Secure Dual Interface PKI
Smart Card Controller. Rev. 1.3, October 2004.

[25] Datasheet. OMNIKEY 5321 Reader, 2007

[26] J. D. H. Smith, An introduction to quasigroups and their representa-
tions, Chapman & Hall/CRC, ISBN 1-58488-537-8, 2007.

[27] J. Dénes, A. D. Keedwell, Latin Squares and their Applications, En-
glish Univer. Press Ltd., 1974.

[28] Danilo Gligoroski, Rune Steinsmo, Ludovic Perret, Jean Charles,
Rune Erland, MQQ-SIG, A Digital Signature Scheme Based on MQQ,
2010, Reprint.

[29] Yanling Chen, Svein Johan Knapskog, and Danilo Gligoroski, A Study
on Multivariate Quadratic Quasigroups (MQQs), Paper submitted in
YACC 2010.

[30] Marcus Oestreicher, Ksheerabdhi Krishna, Object Lifetimes in Java
Card, USENIX Workshop on Smartcard Technology, Chicago, Illi-
nois, USA, May, 1999.

85

BIBLIOGRAPHY BIBLIOGRAPHY

86

BIBLIOGRAPHY BIBLIOGRAPHY

86

BIBLIOGRAPHY BIBLIOGRAPHY

86

BIBLIOGRAPHY BIBLIOGRAPHY

86

Appendix A

Program Code for MQQ-SIG
Digital Signature

1 /∗ ∗
2 ∗
3 ∗ /
4 package packMQQ ;
5 / / s e l e c t cardM 636172644D
6 i m p o r t javacard .framework .Applet ;
7 i m p o r t javacard .framework .ISO7816 ;
8 i m p o r t javacard .framework .ISOException ;
9 i m p o r t javacard .framework .APDU ;

10 i m p o r t javacard .framework .JCSystem ;
11 i m p o r t javacard .framework .Util ;
12 i m p o r t javacard .security .RandomData ;
13 i m p o r t javacard .security .MessageDigest ;
14
15
16 /∗ ∗
17 ∗ @author kamran
18 ∗
19 ∗ /
20 p u b l i c c l a s s AppMQQ e x t e n d s Applet {
21 p r i v a t e s h o r t dataSize=(s h o r t) 256 ;
22 p r i v a t e s h o r t hashSize=(s h o r t) 2 0 ;
23 p r i v a t e s h o r t qMatrixSize = (s h o r t) 8 ;
24
25 f i n a l s t a t i c s h o r t REG_FAILURE=0x0001 ;
26
27
28 / /−−>> TRANSIENT
29 b y t e [] result_Q=JCSystem .makeTransientByteArray (hashSize ,
30 JCSystem .CLEAR_ON_DESELECT) ;
31 b y t e [] data=JCSystem .makeTransientByteArray (dataSize ,

87

Appendix A

Program Code for MQQ-SIG
Digital Signature

1 /∗ ∗
2 ∗
3 ∗ /
4 package packMQQ ;
5 / / s e l e c t cardM 636172644D
6 i m p o r t javacard .framework .Applet ;
7 i m p o r t javacard .framework .ISO7816 ;
8 i m p o r t javacard .framework .ISOException ;
9 i m p o r t javacard .framework .APDU ;

10 i m p o r t javacard .framework .JCSystem ;
11 i m p o r t javacard .framework .Util ;
12 i m p o r t javacard .security .RandomData ;
13 i m p o r t javacard .security .MessageDigest ;
14
15
16 /∗ ∗
17 ∗ @author kamran
18 ∗
19 ∗ /
20 p u b l i c c l a s s AppMQQ e x t e n d s Applet {
21 p r i v a t e s h o r t dataSize=(s h o r t) 256 ;
22 p r i v a t e s h o r t hashSize=(s h o r t) 2 0 ;
23 p r i v a t e s h o r t qMatrixSize = (s h o r t) 8 ;
24
25 f i n a l s t a t i c s h o r t REG_FAILURE=0x0001 ;
26
27
28 / /−−>> TRANSIENT
29 b y t e [] result_Q=JCSystem .makeTransientByteArray (hashSize ,
30 JCSystem .CLEAR_ON_DESELECT) ;
31 b y t e [] data=JCSystem .makeTransientByteArray (dataSize ,

87

Appendix A

Program Code for MQQ-SIG
Digital Signature

1 /∗ ∗
2 ∗
3 ∗ /
4 package packMQQ ;
5 / / s e l e c t cardM 636172644D
6 i m p o r t javacard .framework .Applet ;
7 i m p o r t javacard .framework .ISO7816 ;
8 i m p o r t javacard .framework .ISOException ;
9 i m p o r t javacard .framework .APDU ;

10 i m p o r t javacard .framework .JCSystem ;
11 i m p o r t javacard .framework .Util ;
12 i m p o r t javacard .security .RandomData ;
13 i m p o r t javacard .security .MessageDigest ;
14
15
16 /∗ ∗
17 ∗ @author kamran
18 ∗
19 ∗ /
20 p u b l i c c l a s s AppMQQ e x t e n d s Applet {
21 p r i v a t e s h o r t dataSize=(s h o r t) 256 ;
22 p r i v a t e s h o r t hashSize=(s h o r t) 2 0 ;
23 p r i v a t e s h o r t qMatrixSize = (s h o r t) 8 ;
24
25 f i n a l s t a t i c s h o r t REG_FAILURE=0x0001 ;
26
27
28 / /−−>> TRANSIENT
29 b y t e [] result_Q=JCSystem .makeTransientByteArray (hashSize ,
30 JCSystem .CLEAR_ON_DESELECT) ;
31 b y t e [] data=JCSystem .makeTransientByteArray (dataSize ,

87

Appendix A

Program Code for MQQ-SIG
Digital Signature

1 /∗ ∗
2 ∗
3 ∗ /
4 package packMQQ ;
5 / / s e l e c t cardM 636172644D
6 i m p o r t javacard .framework .Applet ;
7 i m p o r t javacard .framework .ISO7816 ;
8 i m p o r t javacard .framework .ISOException ;
9 i m p o r t javacard .framework .APDU ;

10 i m p o r t javacard .framework .JCSystem ;
11 i m p o r t javacard .framework .Util ;
12 i m p o r t javacard .security .RandomData ;
13 i m p o r t javacard .security .MessageDigest ;
14
15
16 /∗ ∗
17 ∗ @author kamran
18 ∗
19 ∗ /
20 p u b l i c c l a s s AppMQQ e x t e n d s Applet {
21 p r i v a t e s h o r t dataSize=(s h o r t) 256 ;
22 p r i v a t e s h o r t hashSize=(s h o r t) 2 0 ;
23 p r i v a t e s h o r t qMatrixSize = (s h o r t) 8 ;
24
25 f i n a l s t a t i c s h o r t REG_FAILURE=0x0001 ;
26
27
28 / /−−>> TRANSIENT
29 b y t e [] result_Q=JCSystem .makeTransientByteArray (hashSize ,
30 JCSystem .CLEAR_ON_DESELECT) ;
31 b y t e [] data=JCSystem .makeTransientByteArray (dataSize ,

87

Chapter A. Program Code for MQQ-SIG Digital Signature

32 JCSystem .CLEAR_ON_DESELECT) ;
33
34 b y t e [] HSMul=JCSystem .makeTransientByteArray (hashSize ,
35 JCSystem .CLEAR_ON_DESELECT) ;
36 b y t e [] e=JCSystem .makeTransientByteArray (qMatrixSize ,
37 JCSystem .CLEAR_ON_DESELECT) ;
38 / / Array a i n s h o r t
39 s h o r t [] a=JCSystem .makeTransientShortArray (qMatrixSize ,
40 JCSystem .CLEAR_ON_DESELECT) ;
41 b y t e [] H1=JCSystem .makeTransientByteArray (hashSize ,
42 JCSystem .CLEAR_ON_DESELECT) ;
43 b y t e [] hashValue=JCSystem .makeTransientByteArray (hashSize ,
44 JCSystem .CLEAR_ON_DESELECT) ;
45 b y t e [] filter8=JCSystem .makeTransientByteArray (qMatrixSize ,
46 JCSystem .CLEAR_ON_DESELECT) ;
47 s h o r t [] filter16=JCSystem .makeTransientShortArray (qMatrixSize ,
48 JCSystem .CLEAR_ON_DESELECT) ;
49 b y t e [] fByte=JCSystem .makeTransientByteArray (qMatrixSize ,
50 JCSystem .CLEAR_ON_DESELECT) ;
51
52
53
54 p r i v a t e MessageDigest sha1Hash ;
55 p r i v a t e RandomData random ;
56
57 / / M a t r i c e s f o r c a l c u l i n g Q f u n c t i o n f o r Odd b y t e s
58 / / Hex v a l u e s ab ab a5 38 79 88 4 f 6 c
59 s t a t i c f i n a l b y t e [] A11 = {
60 (b y t e) 0xAB , (b y t e) 0xAB , (b y t e) 0xA5 , (b y t e) 0x38 ,
61 (b y t e) 0x79 , (b y t e) 0x88 , (b y t e) 0x4F , (b y t e) 0x6C
62 } ;
63 / / f f f f a5 6 c 2d dc 4 f 6 c
64 s t a t i c f i n a l b y t e [] A12 = {
65 (b y t e) 0xFF , (b y t e) 0xFF , (b y t e) 0xA5 , (b y t e) 0x6C ,
66 (b y t e) 0x2D , (b y t e) 0xDC , (b y t e) 0x4F , (b y t e) 0x6C
67 } ;
68 / / 36 6 c 67 15 4 a 77 8d cc
69 s t a t i c f i n a l b y t e [] A13 = {
70 (b y t e) 0x36 , (b y t e) 0x6C , (b y t e) 0x67 , (b y t e) 0x15 ,
71 (b y t e) 0x4a , (b y t e) 0x77 , (b y t e) 0x8D , (b y t e) 0xCC
72 } ;
73 / / d2 dc 1 e c9 d7 c7 4 a 5 f
74 s t a t i c f i n a l b y t e [] A14 = {
75 (b y t e) 0xD2 , (b y t e) 0xDC , (b y t e) 0x1E , (b y t e) 0xC9 ,
76 (b y t e) 0xD7 , (b y t e) 0xC7 , (b y t e) 0x4A , (b y t e) 0x5F
77 } ;
78 / / a5 f1 a0 be 26 86 44 67
79 s t a t i c f i n a l b y t e [] A15 = {
80 (b y t e) 0xA5 , (b y t e) 0xF1 , (b y t e) 0xA0 , (b y t e) 0xBE ,
81 (b y t e) 0x26 , (b y t e) 0x86 , (b y t e) 0x44 , (b y t e) 0x67
82 } ;
83 / / 54 54 44 9d 51 41 1 e 0b
84 s t a t i c f i n a l b y t e [] A16 = {
85 (b y t e) 0x54 , (b y t e) 0x54 , (b y t e) 0x44 , (b y t e) 0x9D ,
86 (b y t e) 0x51 , (b y t e) 0x41 , (b y t e) 0x1E , (b y t e) 0x0B
87 } ;
88 / / 88 88 4 f 15 88 c7 4 f 00

88

Chapter A. Program Code for MQQ-SIG Digital Signature

32 JCSystem .CLEAR_ON_DESELECT) ;
33
34 b y t e [] HSMul=JCSystem .makeTransientByteArray (hashSize ,
35 JCSystem .CLEAR_ON_DESELECT) ;
36 b y t e [] e=JCSystem .makeTransientByteArray (qMatrixSize ,
37 JCSystem .CLEAR_ON_DESELECT) ;
38 / / Array a i n s h o r t
39 s h o r t [] a=JCSystem .makeTransientShortArray (qMatrixSize ,
40 JCSystem .CLEAR_ON_DESELECT) ;
41 b y t e [] H1=JCSystem .makeTransientByteArray (hashSize ,
42 JCSystem .CLEAR_ON_DESELECT) ;
43 b y t e [] hashValue=JCSystem .makeTransientByteArray (hashSize ,
44 JCSystem .CLEAR_ON_DESELECT) ;
45 b y t e [] filter8=JCSystem .makeTransientByteArray (qMatrixSize ,
46 JCSystem .CLEAR_ON_DESELECT) ;
47 s h o r t [] filter16=JCSystem .makeTransientShortArray (qMatrixSize ,
48 JCSystem .CLEAR_ON_DESELECT) ;
49 b y t e [] fByte=JCSystem .makeTransientByteArray (qMatrixSize ,
50 JCSystem .CLEAR_ON_DESELECT) ;
51
52
53
54 p r i v a t e MessageDigest sha1Hash ;
55 p r i v a t e RandomData random ;
56
57 / / M a t r i c e s f o r c a l c u l i n g Q f u n c t i o n f o r Odd b y t e s
58 / / Hex v a l u e s ab ab a5 38 79 88 4 f 6 c
59 s t a t i c f i n a l b y t e [] A11 = {
60 (b y t e) 0xAB , (b y t e) 0xAB , (b y t e) 0xA5 , (b y t e) 0x38 ,
61 (b y t e) 0x79 , (b y t e) 0x88 , (b y t e) 0x4F , (b y t e) 0x6C
62 } ;
63 / / f f f f a5 6 c 2d dc 4 f 6 c
64 s t a t i c f i n a l b y t e [] A12 = {
65 (b y t e) 0xFF , (b y t e) 0xFF , (b y t e) 0xA5 , (b y t e) 0x6C ,
66 (b y t e) 0x2D , (b y t e) 0xDC , (b y t e) 0x4F , (b y t e) 0x6C
67 } ;
68 / / 36 6 c 67 15 4 a 77 8d cc
69 s t a t i c f i n a l b y t e [] A13 = {
70 (b y t e) 0x36 , (b y t e) 0x6C , (b y t e) 0x67 , (b y t e) 0x15 ,
71 (b y t e) 0x4a , (b y t e) 0x77 , (b y t e) 0x8D , (b y t e) 0xCC
72 } ;
73 / / d2 dc 1 e c9 d7 c7 4 a 5 f
74 s t a t i c f i n a l b y t e [] A14 = {
75 (b y t e) 0xD2 , (b y t e) 0xDC , (b y t e) 0x1E , (b y t e) 0xC9 ,
76 (b y t e) 0xD7 , (b y t e) 0xC7 , (b y t e) 0x4A , (b y t e) 0x5F
77 } ;
78 / / a5 f1 a0 be 26 86 44 67
79 s t a t i c f i n a l b y t e [] A15 = {
80 (b y t e) 0xA5 , (b y t e) 0xF1 , (b y t e) 0xA0 , (b y t e) 0xBE ,
81 (b y t e) 0x26 , (b y t e) 0x86 , (b y t e) 0x44 , (b y t e) 0x67
82 } ;
83 / / 54 54 44 9d 51 41 1 e 0b
84 s t a t i c f i n a l b y t e [] A16 = {
85 (b y t e) 0x54 , (b y t e) 0x54 , (b y t e) 0x44 , (b y t e) 0x9D ,
86 (b y t e) 0x51 , (b y t e) 0x41 , (b y t e) 0x1E , (b y t e) 0x0B
87 } ;
88 / / 88 88 4 f 15 88 c7 4 f 00

88

Chapter A. Program Code for MQQ-SIG Digital Signature

32 JCSystem .CLEAR_ON_DESELECT) ;
33
34 b y t e [] HSMul=JCSystem .makeTransientByteArray (hashSize ,
35 JCSystem .CLEAR_ON_DESELECT) ;
36 b y t e [] e=JCSystem .makeTransientByteArray (qMatrixSize ,
37 JCSystem .CLEAR_ON_DESELECT) ;
38 / / Array a i n s h o r t
39 s h o r t [] a=JCSystem .makeTransientShortArray (qMatrixSize ,
40 JCSystem .CLEAR_ON_DESELECT) ;
41 b y t e [] H1=JCSystem .makeTransientByteArray (hashSize ,
42 JCSystem .CLEAR_ON_DESELECT) ;
43 b y t e [] hashValue=JCSystem .makeTransientByteArray (hashSize ,
44 JCSystem .CLEAR_ON_DESELECT) ;
45 b y t e [] filter8=JCSystem .makeTransientByteArray (qMatrixSize ,
46 JCSystem .CLEAR_ON_DESELECT) ;
47 s h o r t [] filter16=JCSystem .makeTransientShortArray (qMatrixSize ,
48 JCSystem .CLEAR_ON_DESELECT) ;
49 b y t e [] fByte=JCSystem .makeTransientByteArray (qMatrixSize ,
50 JCSystem .CLEAR_ON_DESELECT) ;
51
52
53
54 p r i v a t e MessageDigest sha1Hash ;
55 p r i v a t e RandomData random ;
56
57 / / M a t r i c e s f o r c a l c u l i n g Q f u n c t i o n f o r Odd b y t e s
58 / / Hex v a l u e s ab ab a5 38 79 88 4 f 6 c
59 s t a t i c f i n a l b y t e [] A11 = {
60 (b y t e) 0xAB , (b y t e) 0xAB , (b y t e) 0xA5 , (b y t e) 0x38 ,
61 (b y t e) 0x79 , (b y t e) 0x88 , (b y t e) 0x4F , (b y t e) 0x6C
62 } ;
63 / / f f f f a5 6 c 2d dc 4 f 6 c
64 s t a t i c f i n a l b y t e [] A12 = {
65 (b y t e) 0xFF , (b y t e) 0xFF , (b y t e) 0xA5 , (b y t e) 0x6C ,
66 (b y t e) 0x2D , (b y t e) 0xDC , (b y t e) 0x4F , (b y t e) 0x6C
67 } ;
68 / / 36 6 c 67 15 4 a 77 8d cc
69 s t a t i c f i n a l b y t e [] A13 = {
70 (b y t e) 0x36 , (b y t e) 0x6C , (b y t e) 0x67 , (b y t e) 0x15 ,
71 (b y t e) 0x4a , (b y t e) 0x77 , (b y t e) 0x8D , (b y t e) 0xCC
72 } ;
73 / / d2 dc 1 e c9 d7 c7 4 a 5 f
74 s t a t i c f i n a l b y t e [] A14 = {
75 (b y t e) 0xD2 , (b y t e) 0xDC , (b y t e) 0x1E , (b y t e) 0xC9 ,
76 (b y t e) 0xD7 , (b y t e) 0xC7 , (b y t e) 0x4A , (b y t e) 0x5F
77 } ;
78 / / a5 f1 a0 be 26 86 44 67
79 s t a t i c f i n a l b y t e [] A15 = {
80 (b y t e) 0xA5 , (b y t e) 0xF1 , (b y t e) 0xA0 , (b y t e) 0xBE ,
81 (b y t e) 0x26 , (b y t e) 0x86 , (b y t e) 0x44 , (b y t e) 0x67
82 } ;
83 / / 54 54 44 9d 51 41 1 e 0b
84 s t a t i c f i n a l b y t e [] A16 = {
85 (b y t e) 0x54 , (b y t e) 0x54 , (b y t e) 0x44 , (b y t e) 0x9D ,
86 (b y t e) 0x51 , (b y t e) 0x41 , (b y t e) 0x1E , (b y t e) 0x0B
87 } ;
88 / / 88 88 4 f 15 88 c7 4 f 00

88

Chapter A. Program Code for MQQ-SIG Digital Signature

32 JCSystem .CLEAR_ON_DESELECT) ;
33
34 b y t e [] HSMul=JCSystem .makeTransientByteArray (hashSize ,
35 JCSystem .CLEAR_ON_DESELECT) ;
36 b y t e [] e=JCSystem .makeTransientByteArray (qMatrixSize ,
37 JCSystem .CLEAR_ON_DESELECT) ;
38 / / Array a i n s h o r t
39 s h o r t [] a=JCSystem .makeTransientShortArray (qMatrixSize ,
40 JCSystem .CLEAR_ON_DESELECT) ;
41 b y t e [] H1=JCSystem .makeTransientByteArray (hashSize ,
42 JCSystem .CLEAR_ON_DESELECT) ;
43 b y t e [] hashValue=JCSystem .makeTransientByteArray (hashSize ,
44 JCSystem .CLEAR_ON_DESELECT) ;
45 b y t e [] filter8=JCSystem .makeTransientByteArray (qMatrixSize ,
46 JCSystem .CLEAR_ON_DESELECT) ;
47 s h o r t [] filter16=JCSystem .makeTransientShortArray (qMatrixSize ,
48 JCSystem .CLEAR_ON_DESELECT) ;
49 b y t e [] fByte=JCSystem .makeTransientByteArray (qMatrixSize ,
50 JCSystem .CLEAR_ON_DESELECT) ;
51
52
53
54 p r i v a t e MessageDigest sha1Hash ;
55 p r i v a t e RandomData random ;
56
57 / / M a t r i c e s f o r c a l c u l i n g Q f u n c t i o n f o r Odd b y t e s
58 / / Hex v a l u e s ab ab a5 38 79 88 4 f 6 c
59 s t a t i c f i n a l b y t e [] A11 = {
60 (b y t e) 0xAB , (b y t e) 0xAB , (b y t e) 0xA5 , (b y t e) 0x38 ,
61 (b y t e) 0x79 , (b y t e) 0x88 , (b y t e) 0x4F , (b y t e) 0x6C
62 } ;
63 / / f f f f a5 6 c 2d dc 4 f 6 c
64 s t a t i c f i n a l b y t e [] A12 = {
65 (b y t e) 0xFF , (b y t e) 0xFF , (b y t e) 0xA5 , (b y t e) 0x6C ,
66 (b y t e) 0x2D , (b y t e) 0xDC , (b y t e) 0x4F , (b y t e) 0x6C
67 } ;
68 / / 36 6 c 67 15 4 a 77 8d cc
69 s t a t i c f i n a l b y t e [] A13 = {
70 (b y t e) 0x36 , (b y t e) 0x6C , (b y t e) 0x67 , (b y t e) 0x15 ,
71 (b y t e) 0x4a , (b y t e) 0x77 , (b y t e) 0x8D , (b y t e) 0xCC
72 } ;
73 / / d2 dc 1 e c9 d7 c7 4 a 5 f
74 s t a t i c f i n a l b y t e [] A14 = {
75 (b y t e) 0xD2 , (b y t e) 0xDC , (b y t e) 0x1E , (b y t e) 0xC9 ,
76 (b y t e) 0xD7 , (b y t e) 0xC7 , (b y t e) 0x4A , (b y t e) 0x5F
77 } ;
78 / / a5 f1 a0 be 26 86 44 67
79 s t a t i c f i n a l b y t e [] A15 = {
80 (b y t e) 0xA5 , (b y t e) 0xF1 , (b y t e) 0xA0 , (b y t e) 0xBE ,
81 (b y t e) 0x26 , (b y t e) 0x86 , (b y t e) 0x44 , (b y t e) 0x67
82 } ;
83 / / 54 54 44 9d 51 41 1 e 0b
84 s t a t i c f i n a l b y t e [] A16 = {
85 (b y t e) 0x54 , (b y t e) 0x54 , (b y t e) 0x44 , (b y t e) 0x9D ,
86 (b y t e) 0x51 , (b y t e) 0x41 , (b y t e) 0x1E , (b y t e) 0x0B
87 } ;
88 / / 88 88 4 f 15 88 c7 4 f 00

88

Chapter A. Program Code for MQQ-SIG Digital Signature

89 s t a t i c f i n a l b y t e [] A17 = {
90 (b y t e) 0x88 , (b y t e) 0x88 , (b y t e) 0x4F , (b y t e) 0x15 ,
91 (b y t e) 0x88 , (b y t e) 0xC7 , (b y t e) 0x4F , (b y t e) 0x00
92 } ;
93 / / 88 d2 1b 1b dc 9d 41 54
94 s t a t i c f i n a l b y t e [] A18 = {
95 (b y t e) 0x88 , (b y t e) 0xD2 , (b y t e) 0x1B , (b y t e) 0x1B ,
96 (b y t e) 0xDC , (b y t e) 0x9D , (b y t e) 0x41 , (b y t e) 0x54
97 } ;
98
99 / / C11 t o C18 f o r Odd Bytes

100 / / 02 58 DD AD 8C 30 AB 2D
101 s t a t i c f i n a l b y t e [] C1 = {
102 (b y t e) 0x02 , (b y t e) 0x58 , (b y t e) 0xDD , (b y t e) 0xAD ,
103 (b y t e) 0x8C , (b y t e) 0x30 , (b y t e) 0xAB , (b y t e) 0x2D
104 } ;
105
106
107 / / B1 f o r Odd Bytes I t i s e q u a l t o C2
108 / / E1 3D 08 E8 EB 31 16 92
109 s t a t i c f i n a l b y t e [] B1 = {
110 (b y t e) 0xE1 , (b y t e) 0x3D , (b y t e) 0x08 , (b y t e) 0xE8 ,
111 (b y t e) 0xEB , (b y t e) 0x31 , (b y t e) 0x16 , (b y t e) 0x92
112 } ;
113
114 / / D1 f o r Odd Bytes
115 s t a t i c f i n a l b y t e D1 = (b y t e) 0xFC ;
116
117 / / M a t r i c e s f o r c a l c u l i n g Q f u n c t i o n f o r Even b y t e s
118 / / Hex Value ab f f 36 d2 a5 54 88 88
119 s t a t i c f i n a l b y t e [] A21 = {
120 (b y t e) 0xAB , (b y t e) 0xFF , (b y t e) 0x36 , (b y t e) 0xD2 ,
121 (b y t e) 0xA5 , (b y t e) 0x54 , (b y t e) 0x88 , (b y t e) 0x88
122 } ;
123 / / Hex Value ab f f 6 c dc f1 54 88 d2
124 s t a t i c f i n a l b y t e [] A22 = {
125 (b y t e) 0xAB , (b y t e) 0xFF , (b y t e) 0x6C , (b y t e) 0xDC ,
126 (b y t e) 0xF1 , (b y t e) 0x54 , (b y t e) 0x88 , (b y t e) 0xD2
127 } ;
128 / / Hex Value a5 a5 67 1 e a0 44 4 f 1b
129 s t a t i c f i n a l b y t e [] A23 = {
130 (b y t e) 0xA5 , (b y t e) 0xA5 , (b y t e) 0x67 , (b y t e) 0x1E ,
131 (b y t e) 0xA0 , (b y t e) 0x44 , (b y t e) 0x4F , (b y t e) 0x1B
132 } ;
133 / / Hex Value 38 6 c 15 c9 be 9d 15 1b
134 s t a t i c f i n a l b y t e [] A24 = {
135 (b y t e) 0x38 , (b y t e) 0x6C , (b y t e) 0x15 , (b y t e) 0xC9 ,
136 (b y t e) 0xBE , (b y t e) 0x9D , (b y t e) 0x15 , (b y t e) 0x1B
137 } ;
138 / / Hex Value 79 2d 4 a d7 26 51 88 dc
139 s t a t i c f i n a l b y t e [] A25 = {
140 (b y t e) 0x79 , (b y t e) 0x2D , (b y t e) 0x4A , (b y t e) 0xD7 ,
141 (b y t e) 0x26 , (b y t e) 0x51 , (b y t e) 0x88 , (b y t e) 0xDC
142 } ;
143 / / Hex Value 88 dc 77 c7 86 41 c7 9d
144 s t a t i c f i n a l b y t e [] A26 = {
145 (b y t e) 0x88 , (b y t e) 0xDC , (b y t e) 0x77 , (b y t e) 0xC7 ,

89

Chapter A. Program Code for MQQ-SIG Digital Signature

89 s t a t i c f i n a l b y t e [] A17 = {
90 (b y t e) 0x88 , (b y t e) 0x88 , (b y t e) 0x4F , (b y t e) 0x15 ,
91 (b y t e) 0x88 , (b y t e) 0xC7 , (b y t e) 0x4F , (b y t e) 0x00
92 } ;
93 / / 88 d2 1b 1b dc 9d 41 54
94 s t a t i c f i n a l b y t e [] A18 = {
95 (b y t e) 0x88 , (b y t e) 0xD2 , (b y t e) 0x1B , (b y t e) 0x1B ,
96 (b y t e) 0xDC , (b y t e) 0x9D , (b y t e) 0x41 , (b y t e) 0x54
97 } ;
98
99 / / C11 t o C18 f o r Odd Bytes

100 / / 02 58 DD AD 8C 30 AB 2D
101 s t a t i c f i n a l b y t e [] C1 = {
102 (b y t e) 0x02 , (b y t e) 0x58 , (b y t e) 0xDD , (b y t e) 0xAD ,
103 (b y t e) 0x8C , (b y t e) 0x30 , (b y t e) 0xAB , (b y t e) 0x2D
104 } ;
105
106
107 / / B1 f o r Odd Bytes I t i s e q u a l t o C2
108 / / E1 3D 08 E8 EB 31 16 92
109 s t a t i c f i n a l b y t e [] B1 = {
110 (b y t e) 0xE1 , (b y t e) 0x3D , (b y t e) 0x08 , (b y t e) 0xE8 ,
111 (b y t e) 0xEB , (b y t e) 0x31 , (b y t e) 0x16 , (b y t e) 0x92
112 } ;
113
114 / / D1 f o r Odd Bytes
115 s t a t i c f i n a l b y t e D1 = (b y t e) 0xFC ;
116
117 / / M a t r i c e s f o r c a l c u l i n g Q f u n c t i o n f o r Even b y t e s
118 / / Hex Value ab f f 36 d2 a5 54 88 88
119 s t a t i c f i n a l b y t e [] A21 = {
120 (b y t e) 0xAB , (b y t e) 0xFF , (b y t e) 0x36 , (b y t e) 0xD2 ,
121 (b y t e) 0xA5 , (b y t e) 0x54 , (b y t e) 0x88 , (b y t e) 0x88
122 } ;
123 / / Hex Value ab f f 6 c dc f1 54 88 d2
124 s t a t i c f i n a l b y t e [] A22 = {
125 (b y t e) 0xAB , (b y t e) 0xFF , (b y t e) 0x6C , (b y t e) 0xDC ,
126 (b y t e) 0xF1 , (b y t e) 0x54 , (b y t e) 0x88 , (b y t e) 0xD2
127 } ;
128 / / Hex Value a5 a5 67 1 e a0 44 4 f 1b
129 s t a t i c f i n a l b y t e [] A23 = {
130 (b y t e) 0xA5 , (b y t e) 0xA5 , (b y t e) 0x67 , (b y t e) 0x1E ,
131 (b y t e) 0xA0 , (b y t e) 0x44 , (b y t e) 0x4F , (b y t e) 0x1B
132 } ;
133 / / Hex Value 38 6 c 15 c9 be 9d 15 1b
134 s t a t i c f i n a l b y t e [] A24 = {
135 (b y t e) 0x38 , (b y t e) 0x6C , (b y t e) 0x15 , (b y t e) 0xC9 ,
136 (b y t e) 0xBE , (b y t e) 0x9D , (b y t e) 0x15 , (b y t e) 0x1B
137 } ;
138 / / Hex Value 79 2d 4 a d7 26 51 88 dc
139 s t a t i c f i n a l b y t e [] A25 = {
140 (b y t e) 0x79 , (b y t e) 0x2D , (b y t e) 0x4A , (b y t e) 0xD7 ,
141 (b y t e) 0x26 , (b y t e) 0x51 , (b y t e) 0x88 , (b y t e) 0xDC
142 } ;
143 / / Hex Value 88 dc 77 c7 86 41 c7 9d
144 s t a t i c f i n a l b y t e [] A26 = {
145 (b y t e) 0x88 , (b y t e) 0xDC , (b y t e) 0x77 , (b y t e) 0xC7 ,

89

Chapter A. Program Code for MQQ-SIG Digital Signature

89 s t a t i c f i n a l b y t e [] A17 = {
90 (b y t e) 0x88 , (b y t e) 0x88 , (b y t e) 0x4F , (b y t e) 0x15 ,
91 (b y t e) 0x88 , (b y t e) 0xC7 , (b y t e) 0x4F , (b y t e) 0x00
92 } ;
93 / / 88 d2 1b 1b dc 9d 41 54
94 s t a t i c f i n a l b y t e [] A18 = {
95 (b y t e) 0x88 , (b y t e) 0xD2 , (b y t e) 0x1B , (b y t e) 0x1B ,
96 (b y t e) 0xDC , (b y t e) 0x9D , (b y t e) 0x41 , (b y t e) 0x54
97 } ;
98
99 / / C11 t o C18 f o r Odd Bytes

100 / / 02 58 DD AD 8C 30 AB 2D
101 s t a t i c f i n a l b y t e [] C1 = {
102 (b y t e) 0x02 , (b y t e) 0x58 , (b y t e) 0xDD , (b y t e) 0xAD ,
103 (b y t e) 0x8C , (b y t e) 0x30 , (b y t e) 0xAB , (b y t e) 0x2D
104 } ;
105
106
107 / / B1 f o r Odd Bytes I t i s e q u a l t o C2
108 / / E1 3D 08 E8 EB 31 16 92
109 s t a t i c f i n a l b y t e [] B1 = {
110 (b y t e) 0xE1 , (b y t e) 0x3D , (b y t e) 0x08 , (b y t e) 0xE8 ,
111 (b y t e) 0xEB , (b y t e) 0x31 , (b y t e) 0x16 , (b y t e) 0x92
112 } ;
113
114 / / D1 f o r Odd Bytes
115 s t a t i c f i n a l b y t e D1 = (b y t e) 0xFC ;
116
117 / / M a t r i c e s f o r c a l c u l i n g Q f u n c t i o n f o r Even b y t e s
118 / / Hex Value ab f f 36 d2 a5 54 88 88
119 s t a t i c f i n a l b y t e [] A21 = {
120 (b y t e) 0xAB , (b y t e) 0xFF , (b y t e) 0x36 , (b y t e) 0xD2 ,
121 (b y t e) 0xA5 , (b y t e) 0x54 , (b y t e) 0x88 , (b y t e) 0x88
122 } ;
123 / / Hex Value ab f f 6 c dc f1 54 88 d2
124 s t a t i c f i n a l b y t e [] A22 = {
125 (b y t e) 0xAB , (b y t e) 0xFF , (b y t e) 0x6C , (b y t e) 0xDC ,
126 (b y t e) 0xF1 , (b y t e) 0x54 , (b y t e) 0x88 , (b y t e) 0xD2
127 } ;
128 / / Hex Value a5 a5 67 1 e a0 44 4 f 1b
129 s t a t i c f i n a l b y t e [] A23 = {
130 (b y t e) 0xA5 , (b y t e) 0xA5 , (b y t e) 0x67 , (b y t e) 0x1E ,
131 (b y t e) 0xA0 , (b y t e) 0x44 , (b y t e) 0x4F , (b y t e) 0x1B
132 } ;
133 / / Hex Value 38 6 c 15 c9 be 9d 15 1b
134 s t a t i c f i n a l b y t e [] A24 = {
135 (b y t e) 0x38 , (b y t e) 0x6C , (b y t e) 0x15 , (b y t e) 0xC9 ,
136 (b y t e) 0xBE , (b y t e) 0x9D , (b y t e) 0x15 , (b y t e) 0x1B
137 } ;
138 / / Hex Value 79 2d 4 a d7 26 51 88 dc
139 s t a t i c f i n a l b y t e [] A25 = {
140 (b y t e) 0x79 , (b y t e) 0x2D , (b y t e) 0x4A , (b y t e) 0xD7 ,
141 (b y t e) 0x26 , (b y t e) 0x51 , (b y t e) 0x88 , (b y t e) 0xDC
142 } ;
143 / / Hex Value 88 dc 77 c7 86 41 c7 9d
144 s t a t i c f i n a l b y t e [] A26 = {
145 (b y t e) 0x88 , (b y t e) 0xDC , (b y t e) 0x77 , (b y t e) 0xC7 ,

89

Chapter A. Program Code for MQQ-SIG Digital Signature

89 s t a t i c f i n a l b y t e [] A17 = {
90 (b y t e) 0x88 , (b y t e) 0x88 , (b y t e) 0x4F , (b y t e) 0x15 ,
91 (b y t e) 0x88 , (b y t e) 0xC7 , (b y t e) 0x4F , (b y t e) 0x00
92 } ;
93 / / 88 d2 1b 1b dc 9d 41 54
94 s t a t i c f i n a l b y t e [] A18 = {
95 (b y t e) 0x88 , (b y t e) 0xD2 , (b y t e) 0x1B , (b y t e) 0x1B ,
96 (b y t e) 0xDC , (b y t e) 0x9D , (b y t e) 0x41 , (b y t e) 0x54
97 } ;
98
99 / / C11 t o C18 f o r Odd Bytes

100 / / 02 58 DD AD 8C 30 AB 2D
101 s t a t i c f i n a l b y t e [] C1 = {
102 (b y t e) 0x02 , (b y t e) 0x58 , (b y t e) 0xDD , (b y t e) 0xAD ,
103 (b y t e) 0x8C , (b y t e) 0x30 , (b y t e) 0xAB , (b y t e) 0x2D
104 } ;
105
106
107 / / B1 f o r Odd Bytes I t i s e q u a l t o C2
108 / / E1 3D 08 E8 EB 31 16 92
109 s t a t i c f i n a l b y t e [] B1 = {
110 (b y t e) 0xE1 , (b y t e) 0x3D , (b y t e) 0x08 , (b y t e) 0xE8 ,
111 (b y t e) 0xEB , (b y t e) 0x31 , (b y t e) 0x16 , (b y t e) 0x92
112 } ;
113
114 / / D1 f o r Odd Bytes
115 s t a t i c f i n a l b y t e D1 = (b y t e) 0xFC ;
116
117 / / M a t r i c e s f o r c a l c u l i n g Q f u n c t i o n f o r Even b y t e s
118 / / Hex Value ab f f 36 d2 a5 54 88 88
119 s t a t i c f i n a l b y t e [] A21 = {
120 (b y t e) 0xAB , (b y t e) 0xFF , (b y t e) 0x36 , (b y t e) 0xD2 ,
121 (b y t e) 0xA5 , (b y t e) 0x54 , (b y t e) 0x88 , (b y t e) 0x88
122 } ;
123 / / Hex Value ab f f 6 c dc f1 54 88 d2
124 s t a t i c f i n a l b y t e [] A22 = {
125 (b y t e) 0xAB , (b y t e) 0xFF , (b y t e) 0x6C , (b y t e) 0xDC ,
126 (b y t e) 0xF1 , (b y t e) 0x54 , (b y t e) 0x88 , (b y t e) 0xD2
127 } ;
128 / / Hex Value a5 a5 67 1 e a0 44 4 f 1b
129 s t a t i c f i n a l b y t e [] A23 = {
130 (b y t e) 0xA5 , (b y t e) 0xA5 , (b y t e) 0x67 , (b y t e) 0x1E ,
131 (b y t e) 0xA0 , (b y t e) 0x44 , (b y t e) 0x4F , (b y t e) 0x1B
132 } ;
133 / / Hex Value 38 6 c 15 c9 be 9d 15 1b
134 s t a t i c f i n a l b y t e [] A24 = {
135 (b y t e) 0x38 , (b y t e) 0x6C , (b y t e) 0x15 , (b y t e) 0xC9 ,
136 (b y t e) 0xBE , (b y t e) 0x9D , (b y t e) 0x15 , (b y t e) 0x1B
137 } ;
138 / / Hex Value 79 2d 4 a d7 26 51 88 dc
139 s t a t i c f i n a l b y t e [] A25 = {
140 (b y t e) 0x79 , (b y t e) 0x2D , (b y t e) 0x4A , (b y t e) 0xD7 ,
141 (b y t e) 0x26 , (b y t e) 0x51 , (b y t e) 0x88 , (b y t e) 0xDC
142 } ;
143 / / Hex Value 88 dc 77 c7 86 41 c7 9d
144 s t a t i c f i n a l b y t e [] A26 = {
145 (b y t e) 0x88 , (b y t e) 0xDC , (b y t e) 0x77 , (b y t e) 0xC7 ,

89

Chapter A. Program Code for MQQ-SIG Digital Signature

146 (b y t e) 0x86 , (b y t e) 0x41 , (b y t e) 0xC7 , (b y t e) 0x9D
147 } ;
148 / / Hex Value 4 f 4 f 8d 4 a 44 1 e 4 f 41
149 s t a t i c f i n a l b y t e [] A27 = {
150 (b y t e) 0x4F , (b y t e) 0x4F , (b y t e) 0x8D , (b y t e) 0x4A ,
151 (b y t e) 0x44 , (b y t e) 0x1E , (b y t e) 0x4F , (b y t e) 0x41
152 } ;
153 / / Hex Value 6 c 6 c cc 5 f 67 0b 00 54
154 s t a t i c f i n a l b y t e [] A28 = {
155 (b y t e) 0x6C , (b y t e) 0x6C , (b y t e) 0xCC , (b y t e) 0x5F ,
156 (b y t e) 0x67 , (b y t e) 0x0B , (b y t e) 0x00 , (b y t e) 0x54
157 } ;
158
159 / / C21 t o C28 f o r Even Bytes
160 / / E1 3D 08 E8 EB 31 16 92
161 s t a t i c f i n a l b y t e [] C2 = {
162 (b y t e) 0xE1 , (b y t e) 0x3D , (b y t e) 0x08 , (b y t e) 0xE8 ,
163 (b y t e) 0xEB , (b y t e) 0x31 , (b y t e) 0x16 , (b y t e) 0x92
164 } ;
165
166 / / B2 f o r Odd Bytes I t i s e q u a l t o C1
167 s t a t i c f i n a l b y t e [] B2 = {
168 (b y t e) 0x02 , (b y t e) 0x58 , (b y t e) 0xDD , (b y t e) 0xAD ,
169 (b y t e) 0x8C , (b y t e) 0x30 , (b y t e) 0xAB , (b y t e) 0x2D
170 } ;
171
172 / / D2 = D1
173 s t a t i c f i n a l b y t e D2 = (b y t e) 0xFC ;
174
175
176
177
178 /∗ The m a t r i x SInv i s s t o r e d i n ROM as two o n e d i m e n s i o n a l
179 a r r a y s RP1 [] and RP5 [] o f 160 b y t e s ∗ /
180 s t a t i c f i n a l b y t e [] RP1 =
181 {
182 (b y t e) 111 , (b y t e) 137 , (b y t e) 49 , (b y t e) 134 , (b y t e) 9 , (b y t e) 116 ,
183 (b y t e) 11 , (b y t e) 52 , (b y t e) 43 , (b y t e) 55 , (b y t e) 74 , (b y t e) 130 ,
184 (b y t e) 119 , (b y t e) 144 , (b y t e) 31 , (b y t e) 7 , (b y t e) 72 , (b y t e) 79 ,
185 (b y t e) 105 , (b y t e) 59 , (b y t e) 57 , (b y t e) 120 , (b y t e) 50 , (b y t e) 94 ,
186 (b y t e) 141 , (b y t e) 135 , (b y t e) 149 , (b y t e) 44 , (b y t e) 109 , (b y t e) 100 ,
187 (b y t e) 113 , (b y t e) 1 , (b y t e) 143 , (b y t e) 126 , (b y t e) 117 , (b y t e) 37 ,
188 (b y t e) 65 , (b y t e) 67 , (b y t e) 152 , (b y t e) 107 , (b y t e) 10 , (b y t e) 98 ,
189 (b y t e) 15 , (b y t e) 23 , (b y t e) 138 , (b y t e) 19 , (b y t e) 121 , (b y t e) 18 ,
190 (b y t e) 28 , (b y t e) 156 , (b y t e) 123 , (b y t e) 106 , (b y t e) 48 , (b y t e) 29 ,
191 (b y t e) 97 , (b y t e) 34 , (b y t e) 85 , (b y t e) 157 , (b y t e) 64 , (b y t e) 3 ,
192 (b y t e) 60 , (b y t e) 35 , (b y t e) 24 , (b y t e) 32 , (b y t e) 108 , (b y t e) 147 ,
193 (b y t e) 158 , (b y t e) 21 , (b y t e) 129 , (b y t e) 84 , (b y t e) 5 , (b y t e) 70 ,
194 (b y t e) 118 , (b y t e) 112 , (b y t e) 30 , (b y t e) 68 , (b y t e) 47 , (b y t e) 40 ,
195 (b y t e) 150 , (b y t e) 13 , (b y t e) 61 , (b y t e) 73 , (b y t e) 132 , (b y t e) 22 ,
196 (b y t e) 95 , (b y t e) 153 , (b y t e) 4 , (b y t e) 76 , (b y t e) 87 , (b y t e) 114 ,
197 (b y t e) 127 , (b y t e) 62 , (b y t e) 27 , (b y t e) 36 , (b y t e) 125 , (b y t e) 45 ,
198 (b y t e) 142 , (b y t e) 39 , (b y t e) 101 , (b y t e) 63 , (b y t e) 88 , (b y t e) 96 ,
199 (b y t e) 12 , (b y t e) 115 , (b y t e) 82 , (b y t e) 91 , (b y t e) 159 , (b y t e) 93 ,
200 (b y t e) 155 , (b y t e) 154 , (b y t e) 148 , (b y t e) 110 , (b y t e) 25 , (b y t e) 0 ,
201 (b y t e) 41 , (b y t e) 20 , (b y t e) 54 , (b y t e) 26 , (b y t e) 14 , (b y t e) 83 ,
202 (b y t e) 81 , (b y t e) 80 , (b y t e) 131 , (b y t e) 33 , (b y t e) 78 , (b y t e) 77 ,

90

Chapter A. Program Code for MQQ-SIG Digital Signature

146 (b y t e) 0x86 , (b y t e) 0x41 , (b y t e) 0xC7 , (b y t e) 0x9D
147 } ;
148 / / Hex Value 4 f 4 f 8d 4 a 44 1 e 4 f 41
149 s t a t i c f i n a l b y t e [] A27 = {
150 (b y t e) 0x4F , (b y t e) 0x4F , (b y t e) 0x8D , (b y t e) 0x4A ,
151 (b y t e) 0x44 , (b y t e) 0x1E , (b y t e) 0x4F , (b y t e) 0x41
152 } ;
153 / / Hex Value 6 c 6 c cc 5 f 67 0b 00 54
154 s t a t i c f i n a l b y t e [] A28 = {
155 (b y t e) 0x6C , (b y t e) 0x6C , (b y t e) 0xCC , (b y t e) 0x5F ,
156 (b y t e) 0x67 , (b y t e) 0x0B , (b y t e) 0x00 , (b y t e) 0x54
157 } ;
158
159 / / C21 t o C28 f o r Even Bytes
160 / / E1 3D 08 E8 EB 31 16 92
161 s t a t i c f i n a l b y t e [] C2 = {
162 (b y t e) 0xE1 , (b y t e) 0x3D , (b y t e) 0x08 , (b y t e) 0xE8 ,
163 (b y t e) 0xEB , (b y t e) 0x31 , (b y t e) 0x16 , (b y t e) 0x92
164 } ;
165
166 / / B2 f o r Odd Bytes I t i s e q u a l t o C1
167 s t a t i c f i n a l b y t e [] B2 = {
168 (b y t e) 0x02 , (b y t e) 0x58 , (b y t e) 0xDD , (b y t e) 0xAD ,
169 (b y t e) 0x8C , (b y t e) 0x30 , (b y t e) 0xAB , (b y t e) 0x2D
170 } ;
171
172 / / D2 = D1
173 s t a t i c f i n a l b y t e D2 = (b y t e) 0xFC ;
174
175
176
177
178 /∗ The m a t r i x SInv i s s t o r e d i n ROM as two o n e d i m e n s i o n a l
179 a r r a y s RP1 [] and RP5 [] o f 160 b y t e s ∗ /
180 s t a t i c f i n a l b y t e [] RP1 =
181 {
182 (b y t e) 111 , (b y t e) 137 , (b y t e) 49 , (b y t e) 134 , (b y t e) 9 , (b y t e) 116 ,
183 (b y t e) 11 , (b y t e) 52 , (b y t e) 43 , (b y t e) 55 , (b y t e) 74 , (b y t e) 130 ,
184 (b y t e) 119 , (b y t e) 144 , (b y t e) 31 , (b y t e) 7 , (b y t e) 72 , (b y t e) 79 ,
185 (b y t e) 105 , (b y t e) 59 , (b y t e) 57 , (b y t e) 120 , (b y t e) 50 , (b y t e) 94 ,
186 (b y t e) 141 , (b y t e) 135 , (b y t e) 149 , (b y t e) 44 , (b y t e) 109 , (b y t e) 100 ,
187 (b y t e) 113 , (b y t e) 1 , (b y t e) 143 , (b y t e) 126 , (b y t e) 117 , (b y t e) 37 ,
188 (b y t e) 65 , (b y t e) 67 , (b y t e) 152 , (b y t e) 107 , (b y t e) 10 , (b y t e) 98 ,
189 (b y t e) 15 , (b y t e) 23 , (b y t e) 138 , (b y t e) 19 , (b y t e) 121 , (b y t e) 18 ,
190 (b y t e) 28 , (b y t e) 156 , (b y t e) 123 , (b y t e) 106 , (b y t e) 48 , (b y t e) 29 ,
191 (b y t e) 97 , (b y t e) 34 , (b y t e) 85 , (b y t e) 157 , (b y t e) 64 , (b y t e) 3 ,
192 (b y t e) 60 , (b y t e) 35 , (b y t e) 24 , (b y t e) 32 , (b y t e) 108 , (b y t e) 147 ,
193 (b y t e) 158 , (b y t e) 21 , (b y t e) 129 , (b y t e) 84 , (b y t e) 5 , (b y t e) 70 ,
194 (b y t e) 118 , (b y t e) 112 , (b y t e) 30 , (b y t e) 68 , (b y t e) 47 , (b y t e) 40 ,
195 (b y t e) 150 , (b y t e) 13 , (b y t e) 61 , (b y t e) 73 , (b y t e) 132 , (b y t e) 22 ,
196 (b y t e) 95 , (b y t e) 153 , (b y t e) 4 , (b y t e) 76 , (b y t e) 87 , (b y t e) 114 ,
197 (b y t e) 127 , (b y t e) 62 , (b y t e) 27 , (b y t e) 36 , (b y t e) 125 , (b y t e) 45 ,
198 (b y t e) 142 , (b y t e) 39 , (b y t e) 101 , (b y t e) 63 , (b y t e) 88 , (b y t e) 96 ,
199 (b y t e) 12 , (b y t e) 115 , (b y t e) 82 , (b y t e) 91 , (b y t e) 159 , (b y t e) 93 ,
200 (b y t e) 155 , (b y t e) 154 , (b y t e) 148 , (b y t e) 110 , (b y t e) 25 , (b y t e) 0 ,
201 (b y t e) 41 , (b y t e) 20 , (b y t e) 54 , (b y t e) 26 , (b y t e) 14 , (b y t e) 83 ,
202 (b y t e) 81 , (b y t e) 80 , (b y t e) 131 , (b y t e) 33 , (b y t e) 78 , (b y t e) 77 ,

90

Chapter A. Program Code for MQQ-SIG Digital Signature

146 (b y t e) 0x86 , (b y t e) 0x41 , (b y t e) 0xC7 , (b y t e) 0x9D
147 } ;
148 / / Hex Value 4 f 4 f 8d 4 a 44 1 e 4 f 41
149 s t a t i c f i n a l b y t e [] A27 = {
150 (b y t e) 0x4F , (b y t e) 0x4F , (b y t e) 0x8D , (b y t e) 0x4A ,
151 (b y t e) 0x44 , (b y t e) 0x1E , (b y t e) 0x4F , (b y t e) 0x41
152 } ;
153 / / Hex Value 6 c 6 c cc 5 f 67 0b 00 54
154 s t a t i c f i n a l b y t e [] A28 = {
155 (b y t e) 0x6C , (b y t e) 0x6C , (b y t e) 0xCC , (b y t e) 0x5F ,
156 (b y t e) 0x67 , (b y t e) 0x0B , (b y t e) 0x00 , (b y t e) 0x54
157 } ;
158
159 / / C21 t o C28 f o r Even Bytes
160 / / E1 3D 08 E8 EB 31 16 92
161 s t a t i c f i n a l b y t e [] C2 = {
162 (b y t e) 0xE1 , (b y t e) 0x3D , (b y t e) 0x08 , (b y t e) 0xE8 ,
163 (b y t e) 0xEB , (b y t e) 0x31 , (b y t e) 0x16 , (b y t e) 0x92
164 } ;
165
166 / / B2 f o r Odd Bytes I t i s e q u a l t o C1
167 s t a t i c f i n a l b y t e [] B2 = {
168 (b y t e) 0x02 , (b y t e) 0x58 , (b y t e) 0xDD , (b y t e) 0xAD ,
169 (b y t e) 0x8C , (b y t e) 0x30 , (b y t e) 0xAB , (b y t e) 0x2D
170 } ;
171
172 / / D2 = D1
173 s t a t i c f i n a l b y t e D2 = (b y t e) 0xFC ;
174
175
176
177
178 /∗ The m a t r i x SInv i s s t o r e d i n ROM as two o n e d i m e n s i o n a l
179 a r r a y s RP1 [] and RP5 [] o f 160 b y t e s ∗ /
180 s t a t i c f i n a l b y t e [] RP1 =
181 {
182 (b y t e) 111 , (b y t e) 137 , (b y t e) 49 , (b y t e) 134 , (b y t e) 9 , (b y t e) 116 ,
183 (b y t e) 11 , (b y t e) 52 , (b y t e) 43 , (b y t e) 55 , (b y t e) 74 , (b y t e) 130 ,
184 (b y t e) 119 , (b y t e) 144 , (b y t e) 31 , (b y t e) 7 , (b y t e) 72 , (b y t e) 79 ,
185 (b y t e) 105 , (b y t e) 59 , (b y t e) 57 , (b y t e) 120 , (b y t e) 50 , (b y t e) 94 ,
186 (b y t e) 141 , (b y t e) 135 , (b y t e) 149 , (b y t e) 44 , (b y t e) 109 , (b y t e) 100 ,
187 (b y t e) 113 , (b y t e) 1 , (b y t e) 143 , (b y t e) 126 , (b y t e) 117 , (b y t e) 37 ,
188 (b y t e) 65 , (b y t e) 67 , (b y t e) 152 , (b y t e) 107 , (b y t e) 10 , (b y t e) 98 ,
189 (b y t e) 15 , (b y t e) 23 , (b y t e) 138 , (b y t e) 19 , (b y t e) 121 , (b y t e) 18 ,
190 (b y t e) 28 , (b y t e) 156 , (b y t e) 123 , (b y t e) 106 , (b y t e) 48 , (b y t e) 29 ,
191 (b y t e) 97 , (b y t e) 34 , (b y t e) 85 , (b y t e) 157 , (b y t e) 64 , (b y t e) 3 ,
192 (b y t e) 60 , (b y t e) 35 , (b y t e) 24 , (b y t e) 32 , (b y t e) 108 , (b y t e) 147 ,
193 (b y t e) 158 , (b y t e) 21 , (b y t e) 129 , (b y t e) 84 , (b y t e) 5 , (b y t e) 70 ,
194 (b y t e) 118 , (b y t e) 112 , (b y t e) 30 , (b y t e) 68 , (b y t e) 47 , (b y t e) 40 ,
195 (b y t e) 150 , (b y t e) 13 , (b y t e) 61 , (b y t e) 73 , (b y t e) 132 , (b y t e) 22 ,
196 (b y t e) 95 , (b y t e) 153 , (b y t e) 4 , (b y t e) 76 , (b y t e) 87 , (b y t e) 114 ,
197 (b y t e) 127 , (b y t e) 62 , (b y t e) 27 , (b y t e) 36 , (b y t e) 125 , (b y t e) 45 ,
198 (b y t e) 142 , (b y t e) 39 , (b y t e) 101 , (b y t e) 63 , (b y t e) 88 , (b y t e) 96 ,
199 (b y t e) 12 , (b y t e) 115 , (b y t e) 82 , (b y t e) 91 , (b y t e) 159 , (b y t e) 93 ,
200 (b y t e) 155 , (b y t e) 154 , (b y t e) 148 , (b y t e) 110 , (b y t e) 25 , (b y t e) 0 ,
201 (b y t e) 41 , (b y t e) 20 , (b y t e) 54 , (b y t e) 26 , (b y t e) 14 , (b y t e) 83 ,
202 (b y t e) 81 , (b y t e) 80 , (b y t e) 131 , (b y t e) 33 , (b y t e) 78 , (b y t e) 77 ,

90

Chapter A. Program Code for MQQ-SIG Digital Signature

146 (b y t e) 0x86 , (b y t e) 0x41 , (b y t e) 0xC7 , (b y t e) 0x9D
147 } ;
148 / / Hex Value 4 f 4 f 8d 4 a 44 1 e 4 f 41
149 s t a t i c f i n a l b y t e [] A27 = {
150 (b y t e) 0x4F , (b y t e) 0x4F , (b y t e) 0x8D , (b y t e) 0x4A ,
151 (b y t e) 0x44 , (b y t e) 0x1E , (b y t e) 0x4F , (b y t e) 0x41
152 } ;
153 / / Hex Value 6 c 6 c cc 5 f 67 0b 00 54
154 s t a t i c f i n a l b y t e [] A28 = {
155 (b y t e) 0x6C , (b y t e) 0x6C , (b y t e) 0xCC , (b y t e) 0x5F ,
156 (b y t e) 0x67 , (b y t e) 0x0B , (b y t e) 0x00 , (b y t e) 0x54
157 } ;
158
159 / / C21 t o C28 f o r Even Bytes
160 / / E1 3D 08 E8 EB 31 16 92
161 s t a t i c f i n a l b y t e [] C2 = {
162 (b y t e) 0xE1 , (b y t e) 0x3D , (b y t e) 0x08 , (b y t e) 0xE8 ,
163 (b y t e) 0xEB , (b y t e) 0x31 , (b y t e) 0x16 , (b y t e) 0x92
164 } ;
165
166 / / B2 f o r Odd Bytes I t i s e q u a l t o C1
167 s t a t i c f i n a l b y t e [] B2 = {
168 (b y t e) 0x02 , (b y t e) 0x58 , (b y t e) 0xDD , (b y t e) 0xAD ,
169 (b y t e) 0x8C , (b y t e) 0x30 , (b y t e) 0xAB , (b y t e) 0x2D
170 } ;
171
172 / / D2 = D1
173 s t a t i c f i n a l b y t e D2 = (b y t e) 0xFC ;
174
175
176
177
178 /∗ The m a t r i x SInv i s s t o r e d i n ROM as two o n e d i m e n s i o n a l
179 a r r a y s RP1 [] and RP5 [] o f 160 b y t e s ∗ /
180 s t a t i c f i n a l b y t e [] RP1 =
181 {
182 (b y t e) 111 , (b y t e) 137 , (b y t e) 49 , (b y t e) 134 , (b y t e) 9 , (b y t e) 116 ,
183 (b y t e) 11 , (b y t e) 52 , (b y t e) 43 , (b y t e) 55 , (b y t e) 74 , (b y t e) 130 ,
184 (b y t e) 119 , (b y t e) 144 , (b y t e) 31 , (b y t e) 7 , (b y t e) 72 , (b y t e) 79 ,
185 (b y t e) 105 , (b y t e) 59 , (b y t e) 57 , (b y t e) 120 , (b y t e) 50 , (b y t e) 94 ,
186 (b y t e) 141 , (b y t e) 135 , (b y t e) 149 , (b y t e) 44 , (b y t e) 109 , (b y t e) 100 ,
187 (b y t e) 113 , (b y t e) 1 , (b y t e) 143 , (b y t e) 126 , (b y t e) 117 , (b y t e) 37 ,
188 (b y t e) 65 , (b y t e) 67 , (b y t e) 152 , (b y t e) 107 , (b y t e) 10 , (b y t e) 98 ,
189 (b y t e) 15 , (b y t e) 23 , (b y t e) 138 , (b y t e) 19 , (b y t e) 121 , (b y t e) 18 ,
190 (b y t e) 28 , (b y t e) 156 , (b y t e) 123 , (b y t e) 106 , (b y t e) 48 , (b y t e) 29 ,
191 (b y t e) 97 , (b y t e) 34 , (b y t e) 85 , (b y t e) 157 , (b y t e) 64 , (b y t e) 3 ,
192 (b y t e) 60 , (b y t e) 35 , (b y t e) 24 , (b y t e) 32 , (b y t e) 108 , (b y t e) 147 ,
193 (b y t e) 158 , (b y t e) 21 , (b y t e) 129 , (b y t e) 84 , (b y t e) 5 , (b y t e) 70 ,
194 (b y t e) 118 , (b y t e) 112 , (b y t e) 30 , (b y t e) 68 , (b y t e) 47 , (b y t e) 40 ,
195 (b y t e) 150 , (b y t e) 13 , (b y t e) 61 , (b y t e) 73 , (b y t e) 132 , (b y t e) 22 ,
196 (b y t e) 95 , (b y t e) 153 , (b y t e) 4 , (b y t e) 76 , (b y t e) 87 , (b y t e) 114 ,
197 (b y t e) 127 , (b y t e) 62 , (b y t e) 27 , (b y t e) 36 , (b y t e) 125 , (b y t e) 45 ,
198 (b y t e) 142 , (b y t e) 39 , (b y t e) 101 , (b y t e) 63 , (b y t e) 88 , (b y t e) 96 ,
199 (b y t e) 12 , (b y t e) 115 , (b y t e) 82 , (b y t e) 91 , (b y t e) 159 , (b y t e) 93 ,
200 (b y t e) 155 , (b y t e) 154 , (b y t e) 148 , (b y t e) 110 , (b y t e) 25 , (b y t e) 0 ,
201 (b y t e) 41 , (b y t e) 20 , (b y t e) 54 , (b y t e) 26 , (b y t e) 14 , (b y t e) 83 ,
202 (b y t e) 81 , (b y t e) 80 , (b y t e) 131 , (b y t e) 33 , (b y t e) 78 , (b y t e) 77 ,

90

Chapter A. Program Code for MQQ-SIG Digital Signature

203 (b y t e) 124 , (b y t e) 104 , (b y t e) 133 , (b y t e) 17 , (b y t e) 145 , (b y t e) 139 ,
204 (b y t e) 122 , (b y t e) 102 , (b y t e) 42 , (b y t e) 56 , (b y t e) 75 , (b y t e) 66 ,
205 (b y t e) 2 , (b y t e) 16 , (b y t e) 86 , (b y t e) 140 , (b y t e) 71 , (b y t e) 136 ,
206 (b y t e) 69 , (b y t e) 99 , (b y t e) 58 , (b y t e) 6 , (b y t e) 92 , (b y t e) 90 ,
207 (b y t e) 8 , (b y t e) 103 , (b y t e) 128 , (b y t e) 38 , (b y t e) 46 , (b y t e) 146 ,
208 (b y t e) 89 , (b y t e) 151 , (b y t e) 51 , (b y t e) 5 3 } ;
209
210 s t a t i c f i n a l b y t e [] RP5 =
211 {
212 (b y t e) 90 , (b y t e) 113 , (b y t e) 130 , (b y t e) 115 , (b y t e) 132 , (b y t e) 27 ,
213 (b y t e) 46 , (b y t e) 72 , (b y t e) 33 , (b y t e) 50 , (b y t e) 35 , (b y t e) 136 ,
214 (b y t e) 42 , (b y t e) 148 , (b y t e) 146 , (b y t e) 143 , (b y t e) 116 , (b y t e) 158 ,
215 (b y t e) 98 , (b y t e) 41 , (b y t e) 39 , (b y t e) 5 , (b y t e) 54 , (b y t e) 86 ,
216 (b y t e) 106 , (b y t e) 56 , (b y t e) 30 , (b y t e) 138 , (b y t e) 80 , (b y t e) 44 ,
217 (b y t e) 91 , (b y t e) 49 , (b y t e) 1 , (b y t e) 149 , (b y t e) 159 , (b y t e) 101 ,
218 (b y t e) 74 , (b y t e) 9 , (b y t e) 110 , (b y t e) 131 , (b y t e) 25 , (b y t e) 51 ,
219 (b y t e) 123 , (b y t e) 76 , (b y t e) 104 , (b y t e) 28 , (b y t e) 82 , (b y t e) 140 ,
220 (b y t e) 2 , (b y t e) 108 , (b y t e) 120 , (b y t e) 144 , (b y t e) 10 , (b y t e) 145 ,
221 (b y t e) 124 , (b y t e) 119 , (b y t e) 62 , (b y t e) 57 , (b y t e) 117 , (b y t e) 121 ,
222 (b y t e) 17 , (b y t e) 73 , (b y t e) 105 , (b y t e) 69 , (b y t e) 155 , (b y t e) 7 ,
223 (b y t e) 154 , (b y t e) 75 , (b y t e) 100 , (b y t e) 141 , (b y t e) 157 , (b y t e) 38 ,
224 (b y t e) 14 , (b y t e) 60 , (b y t e) 47 , (b y t e) 112 , (b y t e) 95 , (b y t e) 85 ,
225 (b y t e) 43 , (b y t e) 93 , (b y t e) 24 , (b y t e) 12 , (b y t e) 4 , (b y t e) 71 ,
226 (b y t e) 81 , (b y t e) 13 , (b y t e) 94 , (b y t e) 68 , (b y t e) 107 , (b y t e) 67 ,
227 (b y t e) 142 , (b y t e) 150 , (b y t e) 61 , (b y t e) 6 , (b y t e) 122 , (b y t e) 26 ,
228 (b y t e) 139 , (b y t e) 59 , (b y t e) 102 , (b y t e) 153 , (b y t e) 109 , (b y t e) 48 ,
229 (b y t e) 103 , (b y t e) 65 , (b y t e) 23 , (b y t e) 92 , (b y t e) 87 , (b y t e) 40 ,
230 (b y t e) 135 , (b y t e) 133 , (b y t e) 129 , (b y t e) 134 , (b y t e) 8 , (b y t e) 55 ,
231 (b y t e) 83 , (b y t e) 125 , (b y t e) 31 , (b y t e) 96 , (b y t e) 147 , (b y t e) 36 ,
232 (b y t e) 0 , (b y t e) 126 , (b y t e) 70 , (b y t e) 64 , (b y t e) 20 , (b y t e) 11 ,
233 (b y t e) 137 , (b y t e) 78 , (b y t e) 89 , (b y t e) 58 , (b y t e) 21 , (b y t e) 114 ,
234 (b y t e) 127 , (b y t e) 111 , (b y t e) 99 , (b y t e) 34 , (b y t e) 152 , (b y t e) 79 ,
235 (b y t e) 66 , (b y t e) 97 , (b y t e) 22 , (b y t e) 15 , (b y t e) 151 , (b y t e) 32 ,
236 (b y t e) 84 , (b y t e) 37 , (b y t e) 77 , (b y t e) 88 , (b y t e) 16 , (b y t e) 29 ,
237 (b y t e) 3 , (b y t e) 128 , (b y t e) 118 , (b y t e) 18 , (b y t e) 156 , (b y t e) 19 ,
238 (b y t e) 52 , (b y t e) 45 , (b y t e) 53 , (b y t e) 6 3 } ;
239
240
241 / / ∗∗∗∗∗∗∗∗∗∗∗∗START CONSTRUCTOR←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
242 p r i v a t e AppMQQ (b y t e [] bArray , s h o r t bOffset , b y t e bLength) {
243
244
245 / / R e g i s t e r a p p l e t
246 t r y {
247 register () ;
248 } c a t c h (Exception e) {
249 ISOException .throwIt (REG_FAILURE) ;
250 }
251
252
253 sha1Hash = MessageDigest .getInstance (MessageDigest .ALG_SHA , f a l s e←↩

) ;
254 random = RandomData .getInstance (RandomData .ALG_PSEUDO_RANDOM) ;
255
256
257 }

91

Chapter A. Program Code for MQQ-SIG Digital Signature

203 (b y t e) 124 , (b y t e) 104 , (b y t e) 133 , (b y t e) 17 , (b y t e) 145 , (b y t e) 139 ,
204 (b y t e) 122 , (b y t e) 102 , (b y t e) 42 , (b y t e) 56 , (b y t e) 75 , (b y t e) 66 ,
205 (b y t e) 2 , (b y t e) 16 , (b y t e) 86 , (b y t e) 140 , (b y t e) 71 , (b y t e) 136 ,
206 (b y t e) 69 , (b y t e) 99 , (b y t e) 58 , (b y t e) 6 , (b y t e) 92 , (b y t e) 90 ,
207 (b y t e) 8 , (b y t e) 103 , (b y t e) 128 , (b y t e) 38 , (b y t e) 46 , (b y t e) 146 ,
208 (b y t e) 89 , (b y t e) 151 , (b y t e) 51 , (b y t e) 5 3 } ;
209
210 s t a t i c f i n a l b y t e [] RP5 =
211 {
212 (b y t e) 90 , (b y t e) 113 , (b y t e) 130 , (b y t e) 115 , (b y t e) 132 , (b y t e) 27 ,
213 (b y t e) 46 , (b y t e) 72 , (b y t e) 33 , (b y t e) 50 , (b y t e) 35 , (b y t e) 136 ,
214 (b y t e) 42 , (b y t e) 148 , (b y t e) 146 , (b y t e) 143 , (b y t e) 116 , (b y t e) 158 ,
215 (b y t e) 98 , (b y t e) 41 , (b y t e) 39 , (b y t e) 5 , (b y t e) 54 , (b y t e) 86 ,
216 (b y t e) 106 , (b y t e) 56 , (b y t e) 30 , (b y t e) 138 , (b y t e) 80 , (b y t e) 44 ,
217 (b y t e) 91 , (b y t e) 49 , (b y t e) 1 , (b y t e) 149 , (b y t e) 159 , (b y t e) 101 ,
218 (b y t e) 74 , (b y t e) 9 , (b y t e) 110 , (b y t e) 131 , (b y t e) 25 , (b y t e) 51 ,
219 (b y t e) 123 , (b y t e) 76 , (b y t e) 104 , (b y t e) 28 , (b y t e) 82 , (b y t e) 140 ,
220 (b y t e) 2 , (b y t e) 108 , (b y t e) 120 , (b y t e) 144 , (b y t e) 10 , (b y t e) 145 ,
221 (b y t e) 124 , (b y t e) 119 , (b y t e) 62 , (b y t e) 57 , (b y t e) 117 , (b y t e) 121 ,
222 (b y t e) 17 , (b y t e) 73 , (b y t e) 105 , (b y t e) 69 , (b y t e) 155 , (b y t e) 7 ,
223 (b y t e) 154 , (b y t e) 75 , (b y t e) 100 , (b y t e) 141 , (b y t e) 157 , (b y t e) 38 ,
224 (b y t e) 14 , (b y t e) 60 , (b y t e) 47 , (b y t e) 112 , (b y t e) 95 , (b y t e) 85 ,
225 (b y t e) 43 , (b y t e) 93 , (b y t e) 24 , (b y t e) 12 , (b y t e) 4 , (b y t e) 71 ,
226 (b y t e) 81 , (b y t e) 13 , (b y t e) 94 , (b y t e) 68 , (b y t e) 107 , (b y t e) 67 ,
227 (b y t e) 142 , (b y t e) 150 , (b y t e) 61 , (b y t e) 6 , (b y t e) 122 , (b y t e) 26 ,
228 (b y t e) 139 , (b y t e) 59 , (b y t e) 102 , (b y t e) 153 , (b y t e) 109 , (b y t e) 48 ,
229 (b y t e) 103 , (b y t e) 65 , (b y t e) 23 , (b y t e) 92 , (b y t e) 87 , (b y t e) 40 ,
230 (b y t e) 135 , (b y t e) 133 , (b y t e) 129 , (b y t e) 134 , (b y t e) 8 , (b y t e) 55 ,
231 (b y t e) 83 , (b y t e) 125 , (b y t e) 31 , (b y t e) 96 , (b y t e) 147 , (b y t e) 36 ,
232 (b y t e) 0 , (b y t e) 126 , (b y t e) 70 , (b y t e) 64 , (b y t e) 20 , (b y t e) 11 ,
233 (b y t e) 137 , (b y t e) 78 , (b y t e) 89 , (b y t e) 58 , (b y t e) 21 , (b y t e) 114 ,
234 (b y t e) 127 , (b y t e) 111 , (b y t e) 99 , (b y t e) 34 , (b y t e) 152 , (b y t e) 79 ,
235 (b y t e) 66 , (b y t e) 97 , (b y t e) 22 , (b y t e) 15 , (b y t e) 151 , (b y t e) 32 ,
236 (b y t e) 84 , (b y t e) 37 , (b y t e) 77 , (b y t e) 88 , (b y t e) 16 , (b y t e) 29 ,
237 (b y t e) 3 , (b y t e) 128 , (b y t e) 118 , (b y t e) 18 , (b y t e) 156 , (b y t e) 19 ,
238 (b y t e) 52 , (b y t e) 45 , (b y t e) 53 , (b y t e) 6 3 } ;
239
240
241 / / ∗∗∗∗∗∗∗∗∗∗∗∗START CONSTRUCTOR←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
242 p r i v a t e AppMQQ (b y t e [] bArray , s h o r t bOffset , b y t e bLength) {
243
244
245 / / R e g i s t e r a p p l e t
246 t r y {
247 register () ;
248 } c a t c h (Exception e) {
249 ISOException .throwIt (REG_FAILURE) ;
250 }
251
252
253 sha1Hash = MessageDigest .getInstance (MessageDigest .ALG_SHA , f a l s e←↩

) ;
254 random = RandomData .getInstance (RandomData .ALG_PSEUDO_RANDOM) ;
255
256
257 }

91

Chapter A. Program Code for MQQ-SIG Digital Signature

203 (b y t e) 124 , (b y t e) 104 , (b y t e) 133 , (b y t e) 17 , (b y t e) 145 , (b y t e) 139 ,
204 (b y t e) 122 , (b y t e) 102 , (b y t e) 42 , (b y t e) 56 , (b y t e) 75 , (b y t e) 66 ,
205 (b y t e) 2 , (b y t e) 16 , (b y t e) 86 , (b y t e) 140 , (b y t e) 71 , (b y t e) 136 ,
206 (b y t e) 69 , (b y t e) 99 , (b y t e) 58 , (b y t e) 6 , (b y t e) 92 , (b y t e) 90 ,
207 (b y t e) 8 , (b y t e) 103 , (b y t e) 128 , (b y t e) 38 , (b y t e) 46 , (b y t e) 146 ,
208 (b y t e) 89 , (b y t e) 151 , (b y t e) 51 , (b y t e) 5 3 } ;
209
210 s t a t i c f i n a l b y t e [] RP5 =
211 {
212 (b y t e) 90 , (b y t e) 113 , (b y t e) 130 , (b y t e) 115 , (b y t e) 132 , (b y t e) 27 ,
213 (b y t e) 46 , (b y t e) 72 , (b y t e) 33 , (b y t e) 50 , (b y t e) 35 , (b y t e) 136 ,
214 (b y t e) 42 , (b y t e) 148 , (b y t e) 146 , (b y t e) 143 , (b y t e) 116 , (b y t e) 158 ,
215 (b y t e) 98 , (b y t e) 41 , (b y t e) 39 , (b y t e) 5 , (b y t e) 54 , (b y t e) 86 ,
216 (b y t e) 106 , (b y t e) 56 , (b y t e) 30 , (b y t e) 138 , (b y t e) 80 , (b y t e) 44 ,
217 (b y t e) 91 , (b y t e) 49 , (b y t e) 1 , (b y t e) 149 , (b y t e) 159 , (b y t e) 101 ,
218 (b y t e) 74 , (b y t e) 9 , (b y t e) 110 , (b y t e) 131 , (b y t e) 25 , (b y t e) 51 ,
219 (b y t e) 123 , (b y t e) 76 , (b y t e) 104 , (b y t e) 28 , (b y t e) 82 , (b y t e) 140 ,
220 (b y t e) 2 , (b y t e) 108 , (b y t e) 120 , (b y t e) 144 , (b y t e) 10 , (b y t e) 145 ,
221 (b y t e) 124 , (b y t e) 119 , (b y t e) 62 , (b y t e) 57 , (b y t e) 117 , (b y t e) 121 ,
222 (b y t e) 17 , (b y t e) 73 , (b y t e) 105 , (b y t e) 69 , (b y t e) 155 , (b y t e) 7 ,
223 (b y t e) 154 , (b y t e) 75 , (b y t e) 100 , (b y t e) 141 , (b y t e) 157 , (b y t e) 38 ,
224 (b y t e) 14 , (b y t e) 60 , (b y t e) 47 , (b y t e) 112 , (b y t e) 95 , (b y t e) 85 ,
225 (b y t e) 43 , (b y t e) 93 , (b y t e) 24 , (b y t e) 12 , (b y t e) 4 , (b y t e) 71 ,
226 (b y t e) 81 , (b y t e) 13 , (b y t e) 94 , (b y t e) 68 , (b y t e) 107 , (b y t e) 67 ,
227 (b y t e) 142 , (b y t e) 150 , (b y t e) 61 , (b y t e) 6 , (b y t e) 122 , (b y t e) 26 ,
228 (b y t e) 139 , (b y t e) 59 , (b y t e) 102 , (b y t e) 153 , (b y t e) 109 , (b y t e) 48 ,
229 (b y t e) 103 , (b y t e) 65 , (b y t e) 23 , (b y t e) 92 , (b y t e) 87 , (b y t e) 40 ,
230 (b y t e) 135 , (b y t e) 133 , (b y t e) 129 , (b y t e) 134 , (b y t e) 8 , (b y t e) 55 ,
231 (b y t e) 83 , (b y t e) 125 , (b y t e) 31 , (b y t e) 96 , (b y t e) 147 , (b y t e) 36 ,
232 (b y t e) 0 , (b y t e) 126 , (b y t e) 70 , (b y t e) 64 , (b y t e) 20 , (b y t e) 11 ,
233 (b y t e) 137 , (b y t e) 78 , (b y t e) 89 , (b y t e) 58 , (b y t e) 21 , (b y t e) 114 ,
234 (b y t e) 127 , (b y t e) 111 , (b y t e) 99 , (b y t e) 34 , (b y t e) 152 , (b y t e) 79 ,
235 (b y t e) 66 , (b y t e) 97 , (b y t e) 22 , (b y t e) 15 , (b y t e) 151 , (b y t e) 32 ,
236 (b y t e) 84 , (b y t e) 37 , (b y t e) 77 , (b y t e) 88 , (b y t e) 16 , (b y t e) 29 ,
237 (b y t e) 3 , (b y t e) 128 , (b y t e) 118 , (b y t e) 18 , (b y t e) 156 , (b y t e) 19 ,
238 (b y t e) 52 , (b y t e) 45 , (b y t e) 53 , (b y t e) 6 3 } ;
239
240
241 / / ∗∗∗∗∗∗∗∗∗∗∗∗START CONSTRUCTOR←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
242 p r i v a t e AppMQQ (b y t e [] bArray , s h o r t bOffset , b y t e bLength) {
243
244
245 / / R e g i s t e r a p p l e t
246 t r y {
247 register () ;
248 } c a t c h (Exception e) {
249 ISOException .throwIt (REG_FAILURE) ;
250 }
251
252
253 sha1Hash = MessageDigest .getInstance (MessageDigest .ALG_SHA , f a l s e←↩

) ;
254 random = RandomData .getInstance (RandomData .ALG_PSEUDO_RANDOM) ;
255
256
257 }

91

Chapter A. Program Code for MQQ-SIG Digital Signature

203 (b y t e) 124 , (b y t e) 104 , (b y t e) 133 , (b y t e) 17 , (b y t e) 145 , (b y t e) 139 ,
204 (b y t e) 122 , (b y t e) 102 , (b y t e) 42 , (b y t e) 56 , (b y t e) 75 , (b y t e) 66 ,
205 (b y t e) 2 , (b y t e) 16 , (b y t e) 86 , (b y t e) 140 , (b y t e) 71 , (b y t e) 136 ,
206 (b y t e) 69 , (b y t e) 99 , (b y t e) 58 , (b y t e) 6 , (b y t e) 92 , (b y t e) 90 ,
207 (b y t e) 8 , (b y t e) 103 , (b y t e) 128 , (b y t e) 38 , (b y t e) 46 , (b y t e) 146 ,
208 (b y t e) 89 , (b y t e) 151 , (b y t e) 51 , (b y t e) 5 3 } ;
209
210 s t a t i c f i n a l b y t e [] RP5 =
211 {
212 (b y t e) 90 , (b y t e) 113 , (b y t e) 130 , (b y t e) 115 , (b y t e) 132 , (b y t e) 27 ,
213 (b y t e) 46 , (b y t e) 72 , (b y t e) 33 , (b y t e) 50 , (b y t e) 35 , (b y t e) 136 ,
214 (b y t e) 42 , (b y t e) 148 , (b y t e) 146 , (b y t e) 143 , (b y t e) 116 , (b y t e) 158 ,
215 (b y t e) 98 , (b y t e) 41 , (b y t e) 39 , (b y t e) 5 , (b y t e) 54 , (b y t e) 86 ,
216 (b y t e) 106 , (b y t e) 56 , (b y t e) 30 , (b y t e) 138 , (b y t e) 80 , (b y t e) 44 ,
217 (b y t e) 91 , (b y t e) 49 , (b y t e) 1 , (b y t e) 149 , (b y t e) 159 , (b y t e) 101 ,
218 (b y t e) 74 , (b y t e) 9 , (b y t e) 110 , (b y t e) 131 , (b y t e) 25 , (b y t e) 51 ,
219 (b y t e) 123 , (b y t e) 76 , (b y t e) 104 , (b y t e) 28 , (b y t e) 82 , (b y t e) 140 ,
220 (b y t e) 2 , (b y t e) 108 , (b y t e) 120 , (b y t e) 144 , (b y t e) 10 , (b y t e) 145 ,
221 (b y t e) 124 , (b y t e) 119 , (b y t e) 62 , (b y t e) 57 , (b y t e) 117 , (b y t e) 121 ,
222 (b y t e) 17 , (b y t e) 73 , (b y t e) 105 , (b y t e) 69 , (b y t e) 155 , (b y t e) 7 ,
223 (b y t e) 154 , (b y t e) 75 , (b y t e) 100 , (b y t e) 141 , (b y t e) 157 , (b y t e) 38 ,
224 (b y t e) 14 , (b y t e) 60 , (b y t e) 47 , (b y t e) 112 , (b y t e) 95 , (b y t e) 85 ,
225 (b y t e) 43 , (b y t e) 93 , (b y t e) 24 , (b y t e) 12 , (b y t e) 4 , (b y t e) 71 ,
226 (b y t e) 81 , (b y t e) 13 , (b y t e) 94 , (b y t e) 68 , (b y t e) 107 , (b y t e) 67 ,
227 (b y t e) 142 , (b y t e) 150 , (b y t e) 61 , (b y t e) 6 , (b y t e) 122 , (b y t e) 26 ,
228 (b y t e) 139 , (b y t e) 59 , (b y t e) 102 , (b y t e) 153 , (b y t e) 109 , (b y t e) 48 ,
229 (b y t e) 103 , (b y t e) 65 , (b y t e) 23 , (b y t e) 92 , (b y t e) 87 , (b y t e) 40 ,
230 (b y t e) 135 , (b y t e) 133 , (b y t e) 129 , (b y t e) 134 , (b y t e) 8 , (b y t e) 55 ,
231 (b y t e) 83 , (b y t e) 125 , (b y t e) 31 , (b y t e) 96 , (b y t e) 147 , (b y t e) 36 ,
232 (b y t e) 0 , (b y t e) 126 , (b y t e) 70 , (b y t e) 64 , (b y t e) 20 , (b y t e) 11 ,
233 (b y t e) 137 , (b y t e) 78 , (b y t e) 89 , (b y t e) 58 , (b y t e) 21 , (b y t e) 114 ,
234 (b y t e) 127 , (b y t e) 111 , (b y t e) 99 , (b y t e) 34 , (b y t e) 152 , (b y t e) 79 ,
235 (b y t e) 66 , (b y t e) 97 , (b y t e) 22 , (b y t e) 15 , (b y t e) 151 , (b y t e) 32 ,
236 (b y t e) 84 , (b y t e) 37 , (b y t e) 77 , (b y t e) 88 , (b y t e) 16 , (b y t e) 29 ,
237 (b y t e) 3 , (b y t e) 128 , (b y t e) 118 , (b y t e) 18 , (b y t e) 156 , (b y t e) 19 ,
238 (b y t e) 52 , (b y t e) 45 , (b y t e) 53 , (b y t e) 6 3 } ;
239
240
241 / / ∗∗∗∗∗∗∗∗∗∗∗∗START CONSTRUCTOR←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
242 p r i v a t e AppMQQ (b y t e [] bArray , s h o r t bOffset , b y t e bLength) {
243
244
245 / / R e g i s t e r a p p l e t
246 t r y {
247 register () ;
248 } c a t c h (Exception e) {
249 ISOException .throwIt (REG_FAILURE) ;
250 }
251
252
253 sha1Hash = MessageDigest .getInstance (MessageDigest .ALG_SHA , f a l s e←↩

) ;
254 random = RandomData .getInstance (RandomData .ALG_PSEUDO_RANDOM) ;
255
256
257 }

91

Chapter A. Program Code for MQQ-SIG Digital Signature

258 / / ∗∗∗∗∗∗∗∗∗∗∗∗END CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
259
260 p u b l i c s t a t i c vo id install (b y t e [] bArray , s h o r t bOffset , b y t e ←↩

bLength) {
261 / / GP−c o m p l i a n t JavaCard a p p l e t r e g i s t r a t i o n
262 new AppMQQ (bArray , bOffset , bLength) ;
263 }
264
265 p u b l i c vo id process (APDU apdu) {
266 / / Good p r a c t i c e : Re tu r n 9000 on SELECT
267 i f (selectingApplet ()) {
268 r e t u r n ;
269 }
270
271 b y t e [] buf = apdu .getBuffer () ;
272 / / Check CLA f i e l d a g a i n s t p e r t i c u l a r v a l u e 80 i n Hex
273 i f (buf [ISO7816 .OFFSET_CLA] ! = (b y t e) 0x80)
274 ISOException .throwIt (ISO7816 .SW_CLA_NOT_SUPPORTED) ;
275
276 / / Check INS f i e l d a g a i n s t p e r t i c u l a r v a l u e 10 i n Hex f o r ←↩

f o l l o w i n g i n s t r u c t i o n
277 i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x10)
278 {
279 filter8 [0] = (b y t e) 0x80 ; filter8 [1] = (b y t e) 0x40 ;
280 filter8 [2] = (b y t e) 0x20 ; filter8 [3] = (b y t e) 0x10 ;
281 filter8 [4] = (b y t e) 0x08 ; filter8 [5] = (b y t e) 0x04 ;
282 filter8 [6] = (b y t e) 0x02 ; filter8 [7] = (b y t e) 0x01 ;
283
284 filter16 [0] = (s h o r t) 0x8000 ; filter16 [1] = (s h o r t) 0x4000 ;
285 filter16 [2] = (s h o r t) 0x2000 ; filter16 [3] = (s h o r t) 0x1000 ;
286 filter16 [4] = (s h o r t) 0x0800 ; filter16 [5] = (s h o r t) 0x0400 ;
287 filter16 [6] = (s h o r t) 0x0200 ; filter16 [7] = (s h o r t) 0x0100 ;
288
289
290 /∗ ∗∗∗ G e n e r a t e 256 b y t e random d a t a ∗∗∗∗ ∗ /
291 random .generateData (data , (s h o r t) 0 ,dataSize) ;
292 sha1Hash .doFinal (data , (s h o r t) 0 ,dataSize , HSMul , (s h o r t) 0) ;
293
294 / / c a l c u l a t e sha−1 hash o f i n p u t d a t a and s t o r e r e s u l t i n ←↩

hashValue
295 sha1Hash .doFinal (data , (s h o r t) 0 ,dataSize , hashValue , (s h o r t)←↩

0) ;
296
297 /∗ ∗∗∗∗∗∗ A f f i n e t r a n s f o r m a t i o n i s j u s t f o r
298 ∗∗∗∗∗∗∗ t h e second c a l l . The c o n s t a n t i s e x t r a c t e d
299 ∗∗∗∗∗∗∗ from t h e 4 LSBs of t h e f i r s t 40 b y t e s o f
300 ∗∗∗∗∗∗∗ RP5 [] and xor−ed t o i n p u t _ b y t e s [] . ∗∗∗∗∗∗∗ ∗ /
301
302 inverseAffineTransformation (hashValue , (b y t e) 0) ;
303
304 b y t e i ;
305 / / F o l l o w i n g f u n c t i o n pe r fo rm Q o p e r a t i o n 19 t i m e s
306 result_Q [0] = HSMul [0] ;
307 f o r (i=1; i<20; i++) {
308 result_Q [i] = perform_Q_Operation (i ,result_Q [i−1] ,HSMul [←↩

i]) ;
309 }

92

Chapter A. Program Code for MQQ-SIG Digital Signature

258 / / ∗∗∗∗∗∗∗∗∗∗∗∗END CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
259
260 p u b l i c s t a t i c vo id install (b y t e [] bArray , s h o r t bOffset , b y t e ←↩

bLength) {
261 / / GP−c o m p l i a n t JavaCard a p p l e t r e g i s t r a t i o n
262 new AppMQQ (bArray , bOffset , bLength) ;
263 }
264
265 p u b l i c vo id process (APDU apdu) {
266 / / Good p r a c t i c e : Re tu r n 9000 on SELECT
267 i f (selectingApplet ()) {
268 r e t u r n ;
269 }
270
271 b y t e [] buf = apdu .getBuffer () ;
272 / / Check CLA f i e l d a g a i n s t p e r t i c u l a r v a l u e 80 i n Hex
273 i f (buf [ISO7816 .OFFSET_CLA] ! = (b y t e) 0x80)
274 ISOException .throwIt (ISO7816 .SW_CLA_NOT_SUPPORTED) ;
275
276 / / Check INS f i e l d a g a i n s t p e r t i c u l a r v a l u e 10 i n Hex f o r ←↩

f o l l o w i n g i n s t r u c t i o n
277 i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x10)
278 {
279 filter8 [0] = (b y t e) 0x80 ; filter8 [1] = (b y t e) 0x40 ;
280 filter8 [2] = (b y t e) 0x20 ; filter8 [3] = (b y t e) 0x10 ;
281 filter8 [4] = (b y t e) 0x08 ; filter8 [5] = (b y t e) 0x04 ;
282 filter8 [6] = (b y t e) 0x02 ; filter8 [7] = (b y t e) 0x01 ;
283
284 filter16 [0] = (s h o r t) 0x8000 ; filter16 [1] = (s h o r t) 0x4000 ;
285 filter16 [2] = (s h o r t) 0x2000 ; filter16 [3] = (s h o r t) 0x1000 ;
286 filter16 [4] = (s h o r t) 0x0800 ; filter16 [5] = (s h o r t) 0x0400 ;
287 filter16 [6] = (s h o r t) 0x0200 ; filter16 [7] = (s h o r t) 0x0100 ;
288
289
290 /∗ ∗∗∗ G e n e r a t e 256 b y t e random d a t a ∗∗∗∗ ∗ /
291 random .generateData (data , (s h o r t) 0 ,dataSize) ;
292 sha1Hash .doFinal (data , (s h o r t) 0 ,dataSize , HSMul , (s h o r t) 0) ;
293
294 / / c a l c u l a t e sha−1 hash o f i n p u t d a t a and s t o r e r e s u l t i n ←↩

hashValue
295 sha1Hash .doFinal (data , (s h o r t) 0 ,dataSize , hashValue , (s h o r t)←↩

0) ;
296
297 /∗ ∗∗∗∗∗∗ A f f i n e t r a n s f o r m a t i o n i s j u s t f o r
298 ∗∗∗∗∗∗∗ t h e second c a l l . The c o n s t a n t i s e x t r a c t e d
299 ∗∗∗∗∗∗∗ from t h e 4 LSBs of t h e f i r s t 40 b y t e s o f
300 ∗∗∗∗∗∗∗ RP5 [] and xor−ed t o i n p u t _ b y t e s [] . ∗∗∗∗∗∗∗ ∗ /
301
302 inverseAffineTransformation (hashValue , (b y t e) 0) ;
303
304 b y t e i ;
305 / / F o l l o w i n g f u n c t i o n pe r fo rm Q o p e r a t i o n 19 t i m e s
306 result_Q [0] = HSMul [0] ;
307 f o r (i=1; i<20; i++) {
308 result_Q [i] = perform_Q_Operation (i ,result_Q [i−1] ,HSMul [←↩

i]) ;
309 }

92

Chapter A. Program Code for MQQ-SIG Digital Signature

258 / / ∗∗∗∗∗∗∗∗∗∗∗∗END CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
259
260 p u b l i c s t a t i c vo id install (b y t e [] bArray , s h o r t bOffset , b y t e ←↩

bLength) {
261 / / GP−c o m p l i a n t JavaCard a p p l e t r e g i s t r a t i o n
262 new AppMQQ (bArray , bOffset , bLength) ;
263 }
264
265 p u b l i c vo id process (APDU apdu) {
266 / / Good p r a c t i c e : Re tu r n 9000 on SELECT
267 i f (selectingApplet ()) {
268 r e t u r n ;
269 }
270
271 b y t e [] buf = apdu .getBuffer () ;
272 / / Check CLA f i e l d a g a i n s t p e r t i c u l a r v a l u e 80 i n Hex
273 i f (buf [ISO7816 .OFFSET_CLA] ! = (b y t e) 0x80)
274 ISOException .throwIt (ISO7816 .SW_CLA_NOT_SUPPORTED) ;
275
276 / / Check INS f i e l d a g a i n s t p e r t i c u l a r v a l u e 10 i n Hex f o r ←↩

f o l l o w i n g i n s t r u c t i o n
277 i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x10)
278 {
279 filter8 [0] = (b y t e) 0x80 ; filter8 [1] = (b y t e) 0x40 ;
280 filter8 [2] = (b y t e) 0x20 ; filter8 [3] = (b y t e) 0x10 ;
281 filter8 [4] = (b y t e) 0x08 ; filter8 [5] = (b y t e) 0x04 ;
282 filter8 [6] = (b y t e) 0x02 ; filter8 [7] = (b y t e) 0x01 ;
283
284 filter16 [0] = (s h o r t) 0x8000 ; filter16 [1] = (s h o r t) 0x4000 ;
285 filter16 [2] = (s h o r t) 0x2000 ; filter16 [3] = (s h o r t) 0x1000 ;
286 filter16 [4] = (s h o r t) 0x0800 ; filter16 [5] = (s h o r t) 0x0400 ;
287 filter16 [6] = (s h o r t) 0x0200 ; filter16 [7] = (s h o r t) 0x0100 ;
288
289
290 /∗ ∗∗∗ G e n e r a t e 256 b y t e random d a t a ∗∗∗∗ ∗ /
291 random .generateData (data , (s h o r t) 0 ,dataSize) ;
292 sha1Hash .doFinal (data , (s h o r t) 0 ,dataSize , HSMul , (s h o r t) 0) ;
293
294 / / c a l c u l a t e sha−1 hash o f i n p u t d a t a and s t o r e r e s u l t i n ←↩

hashValue
295 sha1Hash .doFinal (data , (s h o r t) 0 ,dataSize , hashValue , (s h o r t)←↩

0) ;
296
297 /∗ ∗∗∗∗∗∗ A f f i n e t r a n s f o r m a t i o n i s j u s t f o r
298 ∗∗∗∗∗∗∗ t h e second c a l l . The c o n s t a n t i s e x t r a c t e d
299 ∗∗∗∗∗∗∗ from t h e 4 LSBs of t h e f i r s t 40 b y t e s o f
300 ∗∗∗∗∗∗∗ RP5 [] and xor−ed t o i n p u t _ b y t e s [] . ∗∗∗∗∗∗∗ ∗ /
301
302 inverseAffineTransformation (hashValue , (b y t e) 0) ;
303
304 b y t e i ;
305 / / F o l l o w i n g f u n c t i o n pe r fo rm Q o p e r a t i o n 19 t i m e s
306 result_Q [0] = HSMul [0] ;
307 f o r (i=1; i<20; i++) {
308 result_Q [i] = perform_Q_Operation (i ,result_Q [i−1] ,HSMul [←↩

i]) ;
309 }

92

Chapter A. Program Code for MQQ-SIG Digital Signature

258 / / ∗∗∗∗∗∗∗∗∗∗∗∗END CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
259
260 p u b l i c s t a t i c vo id install (b y t e [] bArray , s h o r t bOffset , b y t e ←↩

bLength) {
261 / / GP−c o m p l i a n t JavaCard a p p l e t r e g i s t r a t i o n
262 new AppMQQ (bArray , bOffset , bLength) ;
263 }
264
265 p u b l i c vo id process (APDU apdu) {
266 / / Good p r a c t i c e : Re tu r n 9000 on SELECT
267 i f (selectingApplet ()) {
268 r e t u r n ;
269 }
270
271 b y t e [] buf = apdu .getBuffer () ;
272 / / Check CLA f i e l d a g a i n s t p e r t i c u l a r v a l u e 80 i n Hex
273 i f (buf [ISO7816 .OFFSET_CLA] ! = (b y t e) 0x80)
274 ISOException .throwIt (ISO7816 .SW_CLA_NOT_SUPPORTED) ;
275
276 / / Check INS f i e l d a g a i n s t p e r t i c u l a r v a l u e 10 i n Hex f o r ←↩

f o l l o w i n g i n s t r u c t i o n
277 i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x10)
278 {
279 filter8 [0] = (b y t e) 0x80 ; filter8 [1] = (b y t e) 0x40 ;
280 filter8 [2] = (b y t e) 0x20 ; filter8 [3] = (b y t e) 0x10 ;
281 filter8 [4] = (b y t e) 0x08 ; filter8 [5] = (b y t e) 0x04 ;
282 filter8 [6] = (b y t e) 0x02 ; filter8 [7] = (b y t e) 0x01 ;
283
284 filter16 [0] = (s h o r t) 0x8000 ; filter16 [1] = (s h o r t) 0x4000 ;
285 filter16 [2] = (s h o r t) 0x2000 ; filter16 [3] = (s h o r t) 0x1000 ;
286 filter16 [4] = (s h o r t) 0x0800 ; filter16 [5] = (s h o r t) 0x0400 ;
287 filter16 [6] = (s h o r t) 0x0200 ; filter16 [7] = (s h o r t) 0x0100 ;
288
289
290 /∗ ∗∗∗ G e n e r a t e 256 b y t e random d a t a ∗∗∗∗ ∗ /
291 random .generateData (data , (s h o r t) 0 ,dataSize) ;
292 sha1Hash .doFinal (data , (s h o r t) 0 ,dataSize , HSMul , (s h o r t) 0) ;
293
294 / / c a l c u l a t e sha−1 hash o f i n p u t d a t a and s t o r e r e s u l t i n ←↩

hashValue
295 sha1Hash .doFinal (data , (s h o r t) 0 ,dataSize , hashValue , (s h o r t)←↩

0) ;
296
297 /∗ ∗∗∗∗∗∗ A f f i n e t r a n s f o r m a t i o n i s j u s t f o r
298 ∗∗∗∗∗∗∗ t h e second c a l l . The c o n s t a n t i s e x t r a c t e d
299 ∗∗∗∗∗∗∗ from t h e 4 LSBs of t h e f i r s t 40 b y t e s o f
300 ∗∗∗∗∗∗∗ RP5 [] and xor−ed t o i n p u t _ b y t e s [] . ∗∗∗∗∗∗∗ ∗ /
301
302 inverseAffineTransformation (hashValue , (b y t e) 0) ;
303
304 b y t e i ;
305 / / F o l l o w i n g f u n c t i o n pe r fo rm Q o p e r a t i o n 19 t i m e s
306 result_Q [0] = HSMul [0] ;
307 f o r (i=1; i<20; i++) {
308 result_Q [i] = perform_Q_Operation (i ,result_Q [i−1] ,HSMul [←↩

i]) ;
309 }

92

Chapter A. Program Code for MQQ-SIG Digital Signature

310
311
312
313 /∗ ∗∗ Now R e s u l t o f Q o p e r a t i o n w i l l be m u l t i p l i e d wi th S ←↩

m a t r i x
314 ∗∗∗∗ i n a d d i t i o n t o a f f i n e t r a n s f o r m a t i o n
315 ∗∗∗∗ i n o r d e r t o g e n e r a t e d i g i t a l s i g n a t u r e i n HSMul [] o f 20←↩

i n d e x ∗∗ ∗ /
316 inverseAffineTransformation (result_Q , (b y t e) 1) ;
317
318 Util .arrayCopy (HSMul , (s h o r t) 0 ,buf , (s h o r t) 0 ,hashSize) ;
319 apdu .setOutgoingAndSend ((s h o r t) 0 ,hashSize) ;
320
321
322 /∗ ∗∗∗∗∗∗∗∗∗∗∗ Thi s w i l l f i n d o u t used memories i n j a v a c a r d ←↩

∗∗∗∗∗∗∗ ∗ /
323 } e l s e i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x00)
324 / / f o r o b s e r v i n g a l l o c a t e d memory t y p e / / send 80000000
325 {
326 f i n a l s h o r t varNull =0;
327 s h o r t varLocation = 0 ;
328 / / Get P e r s i s t a n t memory (EEPROM)
329 Util .setShort (buf ,varLocation ,varNull) ;
330 Util .setShort (buf ,varLocation ,JCSystem .getAvailableMemory (←↩

JCSystem .MEMORY_TYPE_PERSISTENT)) ;
331 varLocation += 2 ;
332
333 / / T r a n s i e n t memory (RAM) c l e a r on r e s e t
334 Util .setShort (buf ,varLocation ,varNull) ;
335 Util .setShort (buf ,varLocation ,JCSystem .getAvailableMemory (←↩

JCSystem .MEMORY_TYPE_TRANSIENT_RESET)) ;
336 varLocation += 2 ;
337
338 / / T r a n s i e n t memory (RAM) c l e a r on d e s e l e c t
339 Util .setShort (buf ,varLocation ,varNull) ;
340 Util .setShort (buf ,varLocation ,JCSystem .getAvailableMemory (←↩

JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT)) ;
341 varLocation += 2 ;
342 apdu .setOutgoingAndSend (varNull ,varLocation) ;
343
344 } e l s e
345 ISOException .throwIt (ISO7816 .SW_INS_NOT_SUPPORTED) ;
346
347 }
348 /∗ ∗∗∗∗∗∗∗∗∗∗ end of main P r o c e s s method ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
349
350
351 /∗ ∗∗∗∗∗ F o l l o w i n g method pe r fo rm MQQ Quas i o p e r a t i o n 20 t i m e s based ←↩

on
352 ∗∗∗∗∗∗ Odd and Even c a l l I t u s e s d i f f e r e n t m a t r i c e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗←↩

∗ /
353
354 p r i v a t e b y t e perform_Q_Operation (b y t e num , b y t e b1 , b y t e b2) {
355 / / Per fo rm Q o p e r a t i o n
356 b y t e i ,j ,f ,totRows ,totCols ;
357 totRows=8;
358 totCols=8;

93

Chapter A. Program Code for MQQ-SIG Digital Signature

310
311
312
313 /∗ ∗∗ Now R e s u l t o f Q o p e r a t i o n w i l l be m u l t i p l i e d wi th S ←↩

m a t r i x
314 ∗∗∗∗ i n a d d i t i o n t o a f f i n e t r a n s f o r m a t i o n
315 ∗∗∗∗ i n o r d e r t o g e n e r a t e d i g i t a l s i g n a t u r e i n HSMul [] o f 20←↩

i n d e x ∗∗ ∗ /
316 inverseAffineTransformation (result_Q , (b y t e) 1) ;
317
318 Util .arrayCopy (HSMul , (s h o r t) 0 ,buf , (s h o r t) 0 ,hashSize) ;
319 apdu .setOutgoingAndSend ((s h o r t) 0 ,hashSize) ;
320
321
322 /∗ ∗∗∗∗∗∗∗∗∗∗∗ Thi s w i l l f i n d o u t used memories i n j a v a c a r d ←↩

∗∗∗∗∗∗∗ ∗ /
323 } e l s e i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x00)
324 / / f o r o b s e r v i n g a l l o c a t e d memory t y p e / / send 80000000
325 {
326 f i n a l s h o r t varNull =0;
327 s h o r t varLocation = 0 ;
328 / / Get P e r s i s t a n t memory (EEPROM)
329 Util .setShort (buf ,varLocation ,varNull) ;
330 Util .setShort (buf ,varLocation ,JCSystem .getAvailableMemory (←↩

JCSystem .MEMORY_TYPE_PERSISTENT)) ;
331 varLocation += 2 ;
332
333 / / T r a n s i e n t memory (RAM) c l e a r on r e s e t
334 Util .setShort (buf ,varLocation ,varNull) ;
335 Util .setShort (buf ,varLocation ,JCSystem .getAvailableMemory (←↩

JCSystem .MEMORY_TYPE_TRANSIENT_RESET)) ;
336 varLocation += 2 ;
337
338 / / T r a n s i e n t memory (RAM) c l e a r on d e s e l e c t
339 Util .setShort (buf ,varLocation ,varNull) ;
340 Util .setShort (buf ,varLocation ,JCSystem .getAvailableMemory (←↩

JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT)) ;
341 varLocation += 2 ;
342 apdu .setOutgoingAndSend (varNull ,varLocation) ;
343
344 } e l s e
345 ISOException .throwIt (ISO7816 .SW_INS_NOT_SUPPORTED) ;
346
347 }
348 /∗ ∗∗∗∗∗∗∗∗∗∗ end of main P r o c e s s method ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
349
350
351 /∗ ∗∗∗∗∗ F o l l o w i n g method pe r fo rm MQQ Quas i o p e r a t i o n 20 t i m e s based ←↩

on
352 ∗∗∗∗∗∗ Odd and Even c a l l I t u s e s d i f f e r e n t m a t r i c e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗←↩

∗ /
353
354 p r i v a t e b y t e perform_Q_Operation (b y t e num , b y t e b1 , b y t e b2) {
355 / / Per fo rm Q o p e r a t i o n
356 b y t e i ,j ,f ,totRows ,totCols ;
357 totRows=8;
358 totCols=8;

93

Chapter A. Program Code for MQQ-SIG Digital Signature

310
311
312
313 /∗ ∗∗ Now R e s u l t o f Q o p e r a t i o n w i l l be m u l t i p l i e d wi th S ←↩

m a t r i x
314 ∗∗∗∗ i n a d d i t i o n t o a f f i n e t r a n s f o r m a t i o n
315 ∗∗∗∗ i n o r d e r t o g e n e r a t e d i g i t a l s i g n a t u r e i n HSMul [] o f 20←↩

i n d e x ∗∗ ∗ /
316 inverseAffineTransformation (result_Q , (b y t e) 1) ;
317
318 Util .arrayCopy (HSMul , (s h o r t) 0 ,buf , (s h o r t) 0 ,hashSize) ;
319 apdu .setOutgoingAndSend ((s h o r t) 0 ,hashSize) ;
320
321
322 /∗ ∗∗∗∗∗∗∗∗∗∗∗ Thi s w i l l f i n d o u t used memories i n j a v a c a r d ←↩

∗∗∗∗∗∗∗ ∗ /
323 } e l s e i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x00)
324 / / f o r o b s e r v i n g a l l o c a t e d memory t y p e / / send 80000000
325 {
326 f i n a l s h o r t varNull =0;
327 s h o r t varLocation = 0 ;
328 / / Get P e r s i s t a n t memory (EEPROM)
329 Util .setShort (buf ,varLocation ,varNull) ;
330 Util .setShort (buf ,varLocation ,JCSystem .getAvailableMemory (←↩

JCSystem .MEMORY_TYPE_PERSISTENT)) ;
331 varLocation += 2 ;
332
333 / / T r a n s i e n t memory (RAM) c l e a r on r e s e t
334 Util .setShort (buf ,varLocation ,varNull) ;
335 Util .setShort (buf ,varLocation ,JCSystem .getAvailableMemory (←↩

JCSystem .MEMORY_TYPE_TRANSIENT_RESET)) ;
336 varLocation += 2 ;
337
338 / / T r a n s i e n t memory (RAM) c l e a r on d e s e l e c t
339 Util .setShort (buf ,varLocation ,varNull) ;
340 Util .setShort (buf ,varLocation ,JCSystem .getAvailableMemory (←↩

JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT)) ;
341 varLocation += 2 ;
342 apdu .setOutgoingAndSend (varNull ,varLocation) ;
343
344 } e l s e
345 ISOException .throwIt (ISO7816 .SW_INS_NOT_SUPPORTED) ;
346
347 }
348 /∗ ∗∗∗∗∗∗∗∗∗∗ end of main P r o c e s s method ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
349
350
351 /∗ ∗∗∗∗∗ F o l l o w i n g method pe r fo rm MQQ Quas i o p e r a t i o n 20 t i m e s based ←↩

on
352 ∗∗∗∗∗∗ Odd and Even c a l l I t u s e s d i f f e r e n t m a t r i c e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗←↩

∗ /
353
354 p r i v a t e b y t e perform_Q_Operation (b y t e num , b y t e b1 , b y t e b2) {
355 / / Per fo rm Q o p e r a t i o n
356 b y t e i ,j ,f ,totRows ,totCols ;
357 totRows=8;
358 totCols=8;

93

Chapter A. Program Code for MQQ-SIG Digital Signature

310
311
312
313 /∗ ∗∗ Now R e s u l t o f Q o p e r a t i o n w i l l be m u l t i p l i e d wi th S ←↩

m a t r i x
314 ∗∗∗∗ i n a d d i t i o n t o a f f i n e t r a n s f o r m a t i o n
315 ∗∗∗∗ i n o r d e r t o g e n e r a t e d i g i t a l s i g n a t u r e i n HSMul [] o f 20←↩

i n d e x ∗∗ ∗ /
316 inverseAffineTransformation (result_Q , (b y t e) 1) ;
317
318 Util .arrayCopy (HSMul , (s h o r t) 0 ,buf , (s h o r t) 0 ,hashSize) ;
319 apdu .setOutgoingAndSend ((s h o r t) 0 ,hashSize) ;
320
321
322 /∗ ∗∗∗∗∗∗∗∗∗∗∗ Thi s w i l l f i n d o u t used memories i n j a v a c a r d ←↩

∗∗∗∗∗∗∗ ∗ /
323 } e l s e i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x00)
324 / / f o r o b s e r v i n g a l l o c a t e d memory t y p e / / send 80000000
325 {
326 f i n a l s h o r t varNull =0;
327 s h o r t varLocation = 0 ;
328 / / Get P e r s i s t a n t memory (EEPROM)
329 Util .setShort (buf ,varLocation ,varNull) ;
330 Util .setShort (buf ,varLocation ,JCSystem .getAvailableMemory (←↩

JCSystem .MEMORY_TYPE_PERSISTENT)) ;
331 varLocation += 2 ;
332
333 / / T r a n s i e n t memory (RAM) c l e a r on r e s e t
334 Util .setShort (buf ,varLocation ,varNull) ;
335 Util .setShort (buf ,varLocation ,JCSystem .getAvailableMemory (←↩

JCSystem .MEMORY_TYPE_TRANSIENT_RESET)) ;
336 varLocation += 2 ;
337
338 / / T r a n s i e n t memory (RAM) c l e a r on d e s e l e c t
339 Util .setShort (buf ,varLocation ,varNull) ;
340 Util .setShort (buf ,varLocation ,JCSystem .getAvailableMemory (←↩

JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT)) ;
341 varLocation += 2 ;
342 apdu .setOutgoingAndSend (varNull ,varLocation) ;
343
344 } e l s e
345 ISOException .throwIt (ISO7816 .SW_INS_NOT_SUPPORTED) ;
346
347 }
348 /∗ ∗∗∗∗∗∗∗∗∗∗ end of main P r o c e s s method ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
349
350
351 /∗ ∗∗∗∗∗ F o l l o w i n g method pe r fo rm MQQ Quas i o p e r a t i o n 20 t i m e s based ←↩

on
352 ∗∗∗∗∗∗ Odd and Even c a l l I t u s e s d i f f e r e n t m a t r i c e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗←↩

∗ /
353
354 p r i v a t e b y t e perform_Q_Operation (b y t e num , b y t e b1 , b y t e b2) {
355 / / Per fo rm Q o p e r a t i o n
356 b y t e i ,j ,f ,totRows ,totCols ;
357 totRows=8;
358 totCols=8;

93

Chapter A. Program Code for MQQ-SIG Digital Signature

359 f=(b y t e) 0 ;
360
361
362 i f ((num%2) != 0) {
363 /∗ ∗∗ Thi s pe r fo rm m a t r i x m u l t i p l i c a t i o n f o r Odd c a l l v a l u e s ∗∗ ∗ /
364
365 f o r (i=0;i<totCols ;i++)
366 {
367 e [i] = C1 [i] ;
368 a [i] = 0 ;
369 }
370
371 f o r (i=0;i<totCols ;i++) {
372 i f ((b1 & filter8 [i]) != 0) {
373 f = (b y t e) (f ^ B1 [i]) ;
374 e [0] = (b y t e) (e [0] ^ A11 [i]) ;
375 e [1] = (b y t e) (e [1] ^ A12 [i]) ;
376 e [2] = (b y t e) (e [2] ^ A13 [i]) ;
377 e [3] = (b y t e) (e [3] ^ A14 [i]) ;
378 e [4] = (b y t e) (e [4] ^ A15 [i]) ;
379 e [5] = (b y t e) (e [5] ^ A16 [i]) ;
380 e [6] = (b y t e) (e [6] ^ A17 [i]) ;
381 e [7] = (b y t e) (e [7] ^ A18 [i]) ;
382 }
383 }
384
385 f= (b y t e) (f ^ D1) ;
386 f= (b y t e) (f ^ b2) ;
387
388
389 }
390 /∗ ∗∗ end of i f f o r c h e c k i n g odd v a l u e and Odd m a t r i c e s ←↩

O p e r a t i o n s ∗∗ ∗ /
391
392 e l s e
393 {
394 /∗ ∗∗ Thi s pe r fo rm m a t r i x m u l t i p l i c a t i o n f o r Even c a l l v a l u e s ∗∗←↩

∗ /
395
396 f o r (i=0;i<totCols ;i++)
397 {
398 e [i] = C2 [i] ;
399 a [i] = 0 ;
400 }
401
402 f o r (i=0;i<totCols ;i++) {
403 i f ((b1 & filter8 [i]) != 0) {
404 f = (b y t e) (f ^ B2 [i]) ;
405 e [0] = (b y t e) (e [0] ^ A21 [i]) ;
406 e [1] = (b y t e) (e [1] ^ A22 [i]) ;
407 e [2] = (b y t e) (e [2] ^ A23 [i]) ;
408 e [3] = (b y t e) (e [3] ^ A24 [i]) ;
409 e [4] = (b y t e) (e [4] ^ A25 [i]) ;
410 e [5] = (b y t e) (e [5] ^ A26 [i]) ;
411 e [6] = (b y t e) (e [6] ^ A27 [i]) ;
412 e [7] = (b y t e) (e [7] ^ A28 [i]) ;
413 }

94

Chapter A. Program Code for MQQ-SIG Digital Signature

359 f=(b y t e) 0 ;
360
361
362 i f ((num%2) != 0) {
363 /∗ ∗∗ Thi s pe r fo rm m a t r i x m u l t i p l i c a t i o n f o r Odd c a l l v a l u e s ∗∗ ∗ /
364
365 f o r (i=0;i<totCols ;i++)
366 {
367 e [i] = C1 [i] ;
368 a [i] = 0 ;
369 }
370
371 f o r (i=0;i<totCols ;i++) {
372 i f ((b1 & filter8 [i]) != 0) {
373 f = (b y t e) (f ^ B1 [i]) ;
374 e [0] = (b y t e) (e [0] ^ A11 [i]) ;
375 e [1] = (b y t e) (e [1] ^ A12 [i]) ;
376 e [2] = (b y t e) (e [2] ^ A13 [i]) ;
377 e [3] = (b y t e) (e [3] ^ A14 [i]) ;
378 e [4] = (b y t e) (e [4] ^ A15 [i]) ;
379 e [5] = (b y t e) (e [5] ^ A16 [i]) ;
380 e [6] = (b y t e) (e [6] ^ A17 [i]) ;
381 e [7] = (b y t e) (e [7] ^ A18 [i]) ;
382 }
383 }
384
385 f= (b y t e) (f ^ D1) ;
386 f= (b y t e) (f ^ b2) ;
387
388
389 }
390 /∗ ∗∗ end of i f f o r c h e c k i n g odd v a l u e and Odd m a t r i c e s ←↩

O p e r a t i o n s ∗∗ ∗ /
391
392 e l s e
393 {
394 /∗ ∗∗ Thi s pe r fo rm m a t r i x m u l t i p l i c a t i o n f o r Even c a l l v a l u e s ∗∗←↩

∗ /
395
396 f o r (i=0;i<totCols ;i++)
397 {
398 e [i] = C2 [i] ;
399 a [i] = 0 ;
400 }
401
402 f o r (i=0;i<totCols ;i++) {
403 i f ((b1 & filter8 [i]) != 0) {
404 f = (b y t e) (f ^ B2 [i]) ;
405 e [0] = (b y t e) (e [0] ^ A21 [i]) ;
406 e [1] = (b y t e) (e [1] ^ A22 [i]) ;
407 e [2] = (b y t e) (e [2] ^ A23 [i]) ;
408 e [3] = (b y t e) (e [3] ^ A24 [i]) ;
409 e [4] = (b y t e) (e [4] ^ A25 [i]) ;
410 e [5] = (b y t e) (e [5] ^ A26 [i]) ;
411 e [6] = (b y t e) (e [6] ^ A27 [i]) ;
412 e [7] = (b y t e) (e [7] ^ A28 [i]) ;
413 }

94

Chapter A. Program Code for MQQ-SIG Digital Signature

359 f=(b y t e) 0 ;
360
361
362 i f ((num%2) != 0) {
363 /∗ ∗∗ Thi s pe r fo rm m a t r i x m u l t i p l i c a t i o n f o r Odd c a l l v a l u e s ∗∗ ∗ /
364
365 f o r (i=0;i<totCols ;i++)
366 {
367 e [i] = C1 [i] ;
368 a [i] = 0 ;
369 }
370
371 f o r (i=0;i<totCols ;i++) {
372 i f ((b1 & filter8 [i]) != 0) {
373 f = (b y t e) (f ^ B1 [i]) ;
374 e [0] = (b y t e) (e [0] ^ A11 [i]) ;
375 e [1] = (b y t e) (e [1] ^ A12 [i]) ;
376 e [2] = (b y t e) (e [2] ^ A13 [i]) ;
377 e [3] = (b y t e) (e [3] ^ A14 [i]) ;
378 e [4] = (b y t e) (e [4] ^ A15 [i]) ;
379 e [5] = (b y t e) (e [5] ^ A16 [i]) ;
380 e [6] = (b y t e) (e [6] ^ A17 [i]) ;
381 e [7] = (b y t e) (e [7] ^ A18 [i]) ;
382 }
383 }
384
385 f= (b y t e) (f ^ D1) ;
386 f= (b y t e) (f ^ b2) ;
387
388
389 }
390 /∗ ∗∗ end of i f f o r c h e c k i n g odd v a l u e and Odd m a t r i c e s ←↩

O p e r a t i o n s ∗∗ ∗ /
391
392 e l s e
393 {
394 /∗ ∗∗ Thi s pe r fo rm m a t r i x m u l t i p l i c a t i o n f o r Even c a l l v a l u e s ∗∗←↩

∗ /
395
396 f o r (i=0;i<totCols ;i++)
397 {
398 e [i] = C2 [i] ;
399 a [i] = 0 ;
400 }
401
402 f o r (i=0;i<totCols ;i++) {
403 i f ((b1 & filter8 [i]) != 0) {
404 f = (b y t e) (f ^ B2 [i]) ;
405 e [0] = (b y t e) (e [0] ^ A21 [i]) ;
406 e [1] = (b y t e) (e [1] ^ A22 [i]) ;
407 e [2] = (b y t e) (e [2] ^ A23 [i]) ;
408 e [3] = (b y t e) (e [3] ^ A24 [i]) ;
409 e [4] = (b y t e) (e [4] ^ A25 [i]) ;
410 e [5] = (b y t e) (e [5] ^ A26 [i]) ;
411 e [6] = (b y t e) (e [6] ^ A27 [i]) ;
412 e [7] = (b y t e) (e [7] ^ A28 [i]) ;
413 }

94

Chapter A. Program Code for MQQ-SIG Digital Signature

359 f=(b y t e) 0 ;
360
361
362 i f ((num%2) != 0) {
363 /∗ ∗∗ Thi s pe r fo rm m a t r i x m u l t i p l i c a t i o n f o r Odd c a l l v a l u e s ∗∗ ∗ /
364
365 f o r (i=0;i<totCols ;i++)
366 {
367 e [i] = C1 [i] ;
368 a [i] = 0 ;
369 }
370
371 f o r (i=0;i<totCols ;i++) {
372 i f ((b1 & filter8 [i]) != 0) {
373 f = (b y t e) (f ^ B1 [i]) ;
374 e [0] = (b y t e) (e [0] ^ A11 [i]) ;
375 e [1] = (b y t e) (e [1] ^ A12 [i]) ;
376 e [2] = (b y t e) (e [2] ^ A13 [i]) ;
377 e [3] = (b y t e) (e [3] ^ A14 [i]) ;
378 e [4] = (b y t e) (e [4] ^ A15 [i]) ;
379 e [5] = (b y t e) (e [5] ^ A16 [i]) ;
380 e [6] = (b y t e) (e [6] ^ A17 [i]) ;
381 e [7] = (b y t e) (e [7] ^ A18 [i]) ;
382 }
383 }
384
385 f= (b y t e) (f ^ D1) ;
386 f= (b y t e) (f ^ b2) ;
387
388
389 }
390 /∗ ∗∗ end of i f f o r c h e c k i n g odd v a l u e and Odd m a t r i c e s ←↩

O p e r a t i o n s ∗∗ ∗ /
391
392 e l s e
393 {
394 /∗ ∗∗ Thi s pe r fo rm m a t r i x m u l t i p l i c a t i o n f o r Even c a l l v a l u e s ∗∗←↩

∗ /
395
396 f o r (i=0;i<totCols ;i++)
397 {
398 e [i] = C2 [i] ;
399 a [i] = 0 ;
400 }
401
402 f o r (i=0;i<totCols ;i++) {
403 i f ((b1 & filter8 [i]) != 0) {
404 f = (b y t e) (f ^ B2 [i]) ;
405 e [0] = (b y t e) (e [0] ^ A21 [i]) ;
406 e [1] = (b y t e) (e [1] ^ A22 [i]) ;
407 e [2] = (b y t e) (e [2] ^ A23 [i]) ;
408 e [3] = (b y t e) (e [3] ^ A24 [i]) ;
409 e [4] = (b y t e) (e [4] ^ A25 [i]) ;
410 e [5] = (b y t e) (e [5] ^ A26 [i]) ;
411 e [6] = (b y t e) (e [6] ^ A27 [i]) ;
412 e [7] = (b y t e) (e [7] ^ A28 [i]) ;
413 }

94

Chapter A. Program Code for MQQ-SIG Digital Signature

414 }
415
416
417 f= (b y t e) (f ^ b2) ;
418 f= (b y t e) (f ^ D2) ;
419
420
421 } / / end o f e l s e f o r even v a l u e
422
423
424 /∗ ∗∗∗∗∗∗∗∗∗ 16 b i t i m p l e m e n t a t i o n o f Guass ion E l i m i n a t i o n method ←↩

∗∗∗∗∗∗ ∗ /
425 / / C o n v e r t i n g columns a r r a y (e) i n t o row a r r a y (a)
426 s h o r t makeshort ;
427
428
429 makeshort = (s h o r t) ((e[0]&0x80) | (((e[1]&0x80) >>1)&0x7F)
430 | (((e[2]&0x80) >>2)&0x3F) | (((e[3]&0x80) >>3)&0x1F)
431 | (((e[4]&0x80) >>4)&0x0F) | (((e[5]&0x80) >>5)&0x07)
432 | (((e[6]&0x80) >>6)&0x03) | (((e[7]&0x80) >>7)&0x01)) ;
433 a [0] = (s h o r t) ((makeshort< <8) | (s h o r t) (((f & 0x80) >>7)&0x01)) ;
434
435 makeshort = (s h o r t) (((e[0]&0x40) <<1) | (e[1]&0x40)
436 | (((e[2]&0x40) >>1)&0x7F) | (((e[3]&0x40) >>2)&0x3F)
437 | (((e[4]&0x40) >>3)&0x1F) | (((e[5]&0x40) >>4)&0x0F)
438 | (((e[6]&0x40) >>5)&0x07) | (((e[7]&0x40) >>6)&0x03)) ;
439 a [1] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x40) >>6)) ;
440
441 makeshort = (s h o r t) (((e[0]&0x20) <<2) | ((e[1]&0x20) <<1)
442 | (e[2]&0x20) | (((e[3]&0x20) >>1)&0x7F)
443 | (((e[4]&0x20) >>2)&0x3F) | (((e[5]&0x20) >>3)&0x1F)
444 | (((e[6]&0x20) >>4)&0x0F) | (((e[7]&0x20) >>5)&0x07)) ;
445 a [2] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x20) >>5)) ;
446
447 makeshort = (s h o r t) (((e[0]&0x10) <<3) | ((e[1]&0x10) <<2)
448 | ((e[2]&0x10) <<1) | (e[3]&0x10)
449 | (((e[4]&0x10) >>1)&0x7F) | (((e[5]&0x10) >>2)&0x3F)
450 | (((e[6]&0x10) >>3)&0x1F) | (((e[7]&0x10) >>4)&0x0F)) ;
451 a [3] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x10) >>4)) ;
452
453 makeshort = (s h o r t) (((e[0]&0x08) <<4) | ((e[1]&0x08) <<3)
454 | ((e[2]&0x08) <<2) | ((e[3]&0x08) <<1)
455 | (e[4]&0x08) | (((e[5]&0x08) >>1)&0x7F)
456 | (((e[6]&0x08) >>2)&0x3F) | (((e[7]&0x08) >>3)&0x01F)) ;
457 a [4] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x08) >>3)) ;
458
459 makeshort = (s h o r t) (((e[0]&0x04) <<5) | ((e[1]&0x04) <<4)
460 | ((e[2]&0x04) <<3) | ((e[3]&0x04) <<2)
461 | ((e[4]&0x04) <<1) | (e[5]&0x04)
462 | (((e[6]&0x04) >>1)&0x7F) | (((e[7]&0x04) >>2)&0x3F)) ;
463 a [5] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x04) >>2)) ;
464
465 makeshort = (s h o r t) (((e[0]&0x02) <<6) | ((e[1]&0x02) <<5)
466 | ((e[2]&0x02) <<4) | ((e[3]&0x02) <<3)
467 | ((e[4]&0x02) <<2) | ((e[5]&0x02) <<1)
468 | (e[6]&0x02) | (((e[7]&0x02) >>1)&0x7F)) ;
469 a [6] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x02) >>1)) ;

95

Chapter A. Program Code for MQQ-SIG Digital Signature

414 }
415
416
417 f= (b y t e) (f ^ b2) ;
418 f= (b y t e) (f ^ D2) ;
419
420
421 } / / end o f e l s e f o r even v a l u e
422
423
424 /∗ ∗∗∗∗∗∗∗∗∗ 16 b i t i m p l e m e n t a t i o n o f Guass ion E l i m i n a t i o n method ←↩

∗∗∗∗∗∗ ∗ /
425 / / C o n v e r t i n g columns a r r a y (e) i n t o row a r r a y (a)
426 s h o r t makeshort ;
427
428
429 makeshort = (s h o r t) ((e[0]&0x80) | (((e[1]&0x80) > >1)&0x7F)
430 | (((e[2]&0x80) >>2)&0x3F) | (((e[3]&0x80) > >3)&0x1F)
431 | (((e[4]&0x80) >>4)&0x0F) | (((e[5]&0x80) > >5)&0x07)
432 | (((e[6]&0x80) >>6)&0x03) | (((e[7]&0x80) > >7)&0x01)) ;
433 a [0] = (s h o r t) ((makeshort< <8) | (s h o r t) (((f & 0x80) > >7)&0x01)) ;
434
435 makeshort = (s h o r t) (((e[0]&0x40) <<1) | (e[1]&0x40)
436 | (((e[2]&0x40) >>1)&0x7F) | (((e[3]&0x40) > >2)&0x3F)
437 | (((e[4]&0x40) >>3)&0x1F) | (((e[5]&0x40) > >4)&0x0F)
438 | (((e[6]&0x40) >>5)&0x07) | (((e[7]&0x40) > >6)&0x03)) ;
439 a [1] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x40) > >6)) ;
440
441 makeshort = (s h o r t) (((e[0]&0x20) <<2) | ((e[1]&0x20) <<1)
442 | (e[2]&0x20) | (((e[3]&0x20) >>1)&0x7F)
443 | (((e[4]&0x20) >>2)&0x3F) | (((e[5]&0x20) > >3)&0x1F)
444 | (((e[6]&0x20) >>4)&0x0F) | (((e[7]&0x20) > >5)&0x07)) ;
445 a [2] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x20) > >5)) ;
446
447 makeshort = (s h o r t) (((e[0]&0x10) <<3) | ((e[1]&0x10) <<2)
448 | ((e[2]&0x10) <<1) | (e[3]&0x10)
449 | (((e[4]&0x10) >>1)&0x7F) | (((e[5]&0x10) > >2)&0x3F)
450 | (((e[6]&0x10) >>3)&0x1F) | (((e[7]&0x10) > >4)&0x0F)) ;
451 a [3] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x10) > >4)) ;
452
453 makeshort = (s h o r t) (((e[0]&0x08) <<4) | ((e[1]&0x08) <<3)
454 | ((e[2]&0x08) <<2) | ((e[3]&0x08) < <1)
455 | (e[4]&0x08) | (((e[5]&0x08) >>1)&0x7F)
456 | (((e[6]&0x08) >>2)&0x3F) | (((e[7]&0x08) > >3)&0x01F)) ;
457 a [4] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x08) > >3)) ;
458
459 makeshort = (s h o r t) (((e[0]&0x04) <<5) | ((e[1]&0x04) <<4)
460 | ((e[2]&0x04) <<3) | ((e[3]&0x04) < <2)
461 | ((e[4]&0x04) <<1) | (e[5]&0x04)
462 | (((e[6]&0x04) >>1)&0x7F) | (((e[7]&0x04) > >2)&0x3F)) ;
463 a [5] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x04) > >2)) ;
464
465 makeshort = (s h o r t) (((e[0]&0x02) <<6) | ((e[1]&0x02) <<5)
466 | ((e[2]&0x02) <<4) | ((e[3]&0x02) < <3)
467 | ((e[4]&0x02) <<2) | ((e[5]&0x02) < <1)
468 | (e[6]&0x02) | (((e[7]&0x02) >>1)&0x7F)) ;
469 a [6] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x02) > >1)) ;

95

Chapter A. Program Code for MQQ-SIG Digital Signature

414 }
415
416
417 f= (b y t e) (f ^ b2) ;
418 f= (b y t e) (f ^ D2) ;
419
420
421 } / / end o f e l s e f o r even v a l u e
422
423
424 /∗ ∗∗∗∗∗∗∗∗∗ 16 b i t i m p l e m e n t a t i o n o f Guass ion E l i m i n a t i o n method ←↩

∗∗∗∗∗∗ ∗ /
425 / / C o n v e r t i n g columns a r r a y (e) i n t o row a r r a y (a)
426 s h o r t makeshort ;
427
428
429 makeshort = (s h o r t) ((e[0]&0x80) | (((e[1]&0x80) >>1)&0x7F)
430 | (((e[2]&0x80) >>2)&0x3F) | (((e[3]&0x80) >>3)&0x1F)
431 | (((e[4]&0x80) >>4)&0x0F) | (((e[5]&0x80) >>5)&0x07)
432 | (((e[6]&0x80) >>6)&0x03) | (((e[7]&0x80) >>7)&0x01)) ;
433 a [0] = (s h o r t) ((makeshort< <8) | (s h o r t) (((f & 0x80) >>7)&0x01)) ;
434
435 makeshort = (s h o r t) (((e[0]&0x40) <<1) | (e[1]&0x40)
436 | (((e[2]&0x40) >>1)&0x7F) | (((e[3]&0x40) >>2)&0x3F)
437 | (((e[4]&0x40) >>3)&0x1F) | (((e[5]&0x40) >>4)&0x0F)
438 | (((e[6]&0x40) >>5)&0x07) | (((e[7]&0x40) >>6)&0x03)) ;
439 a [1] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x40) >>6)) ;
440
441 makeshort = (s h o r t) (((e[0]&0x20) <<2) | ((e[1]&0x20) <<1)
442 | (e[2]&0x20) | (((e[3]&0x20) >>1)&0x7F)
443 | (((e[4]&0x20) >>2)&0x3F) | (((e[5]&0x20) >>3)&0x1F)
444 | (((e[6]&0x20) >>4)&0x0F) | (((e[7]&0x20) >>5)&0x07)) ;
445 a [2] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x20) >>5)) ;
446
447 makeshort = (s h o r t) (((e[0]&0x10) <<3) | ((e[1]&0x10) <<2)
448 | ((e[2]&0x10) <<1) | (e[3]&0x10)
449 | (((e[4]&0x10) >>1)&0x7F) | (((e[5]&0x10) >>2)&0x3F)
450 | (((e[6]&0x10) >>3)&0x1F) | (((e[7]&0x10) >>4)&0x0F)) ;
451 a [3] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x10) >>4)) ;
452
453 makeshort = (s h o r t) (((e[0]&0x08) <<4) | ((e[1]&0x08) <<3)
454 | ((e[2]&0x08) <<2) | ((e[3]&0x08) <<1)
455 | (e[4]&0x08) | (((e[5]&0x08) >>1)&0x7F)
456 | (((e[6]&0x08) >>2)&0x3F) | (((e[7]&0x08) >>3)&0x01F)) ;
457 a [4] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x08) >>3)) ;
458
459 makeshort = (s h o r t) (((e[0]&0x04) <<5) | ((e[1]&0x04) <<4)
460 | ((e[2]&0x04) <<3) | ((e[3]&0x04) <<2)
461 | ((e[4]&0x04) <<1) | (e[5]&0x04)
462 | (((e[6]&0x04) >>1)&0x7F) | (((e[7]&0x04) >>2)&0x3F)) ;
463 a [5] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x04) >>2)) ;
464
465 makeshort = (s h o r t) (((e[0]&0x02) <<6) | ((e[1]&0x02) <<5)
466 | ((e[2]&0x02) <<4) | ((e[3]&0x02) <<3)
467 | ((e[4]&0x02) <<2) | ((e[5]&0x02) <<1)
468 | (e[6]&0x02) | (((e[7]&0x02) >>1)&0x7F)) ;
469 a [6] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x02) >>1)) ;

95

Chapter A. Program Code for MQQ-SIG Digital Signature

414 }
415
416
417 f= (b y t e) (f ^ b2) ;
418 f= (b y t e) (f ^ D2) ;
419
420
421 } / / end o f e l s e f o r even v a l u e
422
423
424 /∗ ∗∗∗∗∗∗∗∗∗ 16 b i t i m p l e m e n t a t i o n o f Guass ion E l i m i n a t i o n method ←↩

∗∗∗∗∗∗ ∗ /
425 / / C o n v e r t i n g columns a r r a y (e) i n t o row a r r a y (a)
426 s h o r t makeshort ;
427
428
429 makeshort = (s h o r t) ((e[0]&0x80) | (((e[1]&0x80) > >1)&0x7F)
430 | (((e[2]&0x80) >>2)&0x3F) | (((e[3]&0x80) > >3)&0x1F)
431 | (((e[4]&0x80) >>4)&0x0F) | (((e[5]&0x80) > >5)&0x07)
432 | (((e[6]&0x80) >>6)&0x03) | (((e[7]&0x80) > >7)&0x01)) ;
433 a [0] = (s h o r t) ((makeshort< <8) | (s h o r t) (((f & 0x80) > >7)&0x01)) ;
434
435 makeshort = (s h o r t) (((e[0]&0x40) <<1) | (e[1]&0x40)
436 | (((e[2]&0x40) >>1)&0x7F) | (((e[3]&0x40) > >2)&0x3F)
437 | (((e[4]&0x40) >>3)&0x1F) | (((e[5]&0x40) > >4)&0x0F)
438 | (((e[6]&0x40) >>5)&0x07) | (((e[7]&0x40) > >6)&0x03)) ;
439 a [1] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x40) > >6)) ;
440
441 makeshort = (s h o r t) (((e[0]&0x20) <<2) | ((e[1]&0x20) <<1)
442 | (e[2]&0x20) | (((e[3]&0x20) >>1)&0x7F)
443 | (((e[4]&0x20) >>2)&0x3F) | (((e[5]&0x20) > >3)&0x1F)
444 | (((e[6]&0x20) >>4)&0x0F) | (((e[7]&0x20) > >5)&0x07)) ;
445 a [2] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x20) > >5)) ;
446
447 makeshort = (s h o r t) (((e[0]&0x10) <<3) | ((e[1]&0x10) <<2)
448 | ((e[2]&0x10) <<1) | (e[3]&0x10)
449 | (((e[4]&0x10) >>1)&0x7F) | (((e[5]&0x10) > >2)&0x3F)
450 | (((e[6]&0x10) >>3)&0x1F) | (((e[7]&0x10) > >4)&0x0F)) ;
451 a [3] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x10) > >4)) ;
452
453 makeshort = (s h o r t) (((e[0]&0x08) <<4) | ((e[1]&0x08) <<3)
454 | ((e[2]&0x08) <<2) | ((e[3]&0x08) < <1)
455 | (e[4]&0x08) | (((e[5]&0x08) >>1)&0x7F)
456 | (((e[6]&0x08) >>2)&0x3F) | (((e[7]&0x08) > >3)&0x01F)) ;
457 a [4] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x08) > >3)) ;
458
459 makeshort = (s h o r t) (((e[0]&0x04) <<5) | ((e[1]&0x04) <<4)
460 | ((e[2]&0x04) <<3) | ((e[3]&0x04) < <2)
461 | ((e[4]&0x04) <<1) | (e[5]&0x04)
462 | (((e[6]&0x04) >>1)&0x7F) | (((e[7]&0x04) > >2)&0x3F)) ;
463 a [5] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x04) > >2)) ;
464
465 makeshort = (s h o r t) (((e[0]&0x02) <<6) | ((e[1]&0x02) <<5)
466 | ((e[2]&0x02) <<4) | ((e[3]&0x02) < <3)
467 | ((e[4]&0x02) <<2) | ((e[5]&0x02) < <1)
468 | (e[6]&0x02) | (((e[7]&0x02) >>1)&0x7F)) ;
469 a [6] = (s h o r t) ((makeshort< <8) | (s h o r t) ((f & 0x02) > >1)) ;

95

Chapter A. Program Code for MQQ-SIG Digital Signature

470
471 makeshort = (s h o r t) (((e[0]&0x01) <<7) | ((e[1]&0x01) <<6)
472 | ((e[2]&0x01) <<5) | ((e[3]&0x01) <<4)
473 | ((e[4]&0x01) <<3) | ((e[5]&0x01) <<2)
474 | ((e[6]&0x01) <<1) | (e[7]&0x01)) ;
475 a [7] = (s h o r t) ((makeshort< <8) | (s h o r t) (f & 0x01)) ;
476
477
478 / / Apply ing Guass ion E l i m i n a t i o n Method f o r uppe r T r i a n g l e
479 s h o r t fBit = 0x0001 ;
480 b y t e row ,col ,check ;
481 s h o r t temp ;
482 f o r (col=0;col<totCols−1;col++) {
483 check=0;
484 f o r (row=col ;row<totRows ;row++) {
485 i f ((a [row] & filter16 [col]) != 0) / / && check == 0) {
486 { i f (check == 0) {
487 check=1;
488 temp = a [row] ;
489 a [row] = a [col] ;
490 a [col] = temp ;
491 c o n t i n u e ;
492 } e l s e
493 a [row] = (s h o r t) (a [row] ^ a [col]) ;
494 }
495 }
496 }
497
498 / / Conve r t uppe r t r i a n g l e t o a l l z e r o s
499 f o r (col=7; col > 0 ; col−−)
500 f o r (row=(b y t e) (col−1) ;row>=0;row−−)
501 i f ((a [row] & filter16 [col]) != 0)
502 a [row] = (s h o r t) (a [row] ^ a [col]) ;
503
504
505 / / C o n v e r t i n g l e a s t s i g n i f i c a n t b i t o f a [] i n t o b y t e r e s u l t
506 b y t e result ;
507 result=0;
508 f o r (i=0;i<totRows ;i++) {
509 i f ((a [i] & fBit) != 0)
510 result = (b y t e) (result | filter8 [i]) ;
511 }
512
513 r e t u r n result ;
514 }
515
516 /∗ ∗∗∗∗ End of 16 b i t i m p l e m e n t a t i o n o f Guass ion e l i m i n a t i o n method ←↩

∗∗∗∗ ∗ /
517
518 /∗ ∗∗∗∗∗∗∗∗∗∗ End of pe r fo rm_Q_Opera t i on f u n c t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
519
520 /∗ ∗∗∗∗∗∗∗ F o l l o w i n g f u n c t i o n a c c e p t hash o f d a t a and
521 ∗∗∗∗∗∗∗∗ pe r fo rm m u l t i p l y wi th SInv (two p e r m u t a t i o n s o f 160 ←↩

e l e m e n t s)
522 ∗∗∗∗∗∗∗∗ m a t r i x and s t o r e s r e s u l t
523 ∗∗∗∗∗∗∗∗ i n HSMul [] o f i n d e x 20 ∗∗∗∗∗∗∗∗ ∗ /
524

96

Chapter A. Program Code for MQQ-SIG Digital Signature

470
471 makeshort = (s h o r t) (((e[0]&0x01) <<7) | ((e[1]&0x01) <<6)
472 | ((e[2]&0x01) <<5) | ((e[3]&0x01) < <4)
473 | ((e[4]&0x01) <<3) | ((e[5]&0x01) < <2)
474 | ((e[6]&0x01) <<1) | (e[7]&0x01)) ;
475 a [7] = (s h o r t) ((makeshort< <8) | (s h o r t) (f & 0x01)) ;
476
477
478 / / Apply ing Guass ion E l i m i n a t i o n Method f o r uppe r T r i a n g l e
479 s h o r t fBit = 0x0001 ;
480 b y t e row ,col ,check ;
481 s h o r t temp ;
482 f o r (col=0;col<totCols−1;col++) {
483 check=0;
484 f o r (row=col ;row<totRows ;row++) {
485 i f ((a [row] & filter16 [col]) != 0) / / && check == 0) {
486 { i f (check == 0) {
487 check=1;
488 temp = a [row] ;
489 a [row] = a [col] ;
490 a [col] = temp ;
491 c o n t i n u e ;
492 } e l s e
493 a [row] = (s h o r t) (a [row] ^ a [col]) ;
494 }
495 }
496 }
497
498 / / Conve r t uppe r t r i a n g l e t o a l l z e r o s
499 f o r (col=7; col > 0 ; col−−)
500 f o r (row=(b y t e) (col−1) ;row>=0;row−−)
501 i f ((a [row] & filter16 [col]) != 0)
502 a [row] = (s h o r t) (a [row] ^ a [col]) ;
503
504
505 / / C o n v e r t i n g l e a s t s i g n i f i c a n t b i t o f a [] i n t o b y t e r e s u l t
506 b y t e result ;
507 result=0;
508 f o r (i=0;i<totRows ;i++) {
509 i f ((a [i] & fBit) != 0)
510 result = (b y t e) (result | filter8 [i]) ;
511 }
512
513 r e t u r n result ;
514 }
515
516 /∗ ∗∗∗∗ End of 16 b i t i m p l e m e n t a t i o n o f Guass ion e l i m i n a t i o n method ←↩

∗∗∗∗ ∗ /
517
518 /∗ ∗∗∗∗∗∗∗∗∗∗ End of pe r fo rm_Q_Opera t i on f u n c t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
519
520 /∗ ∗∗∗∗∗∗∗ F o l l o w i n g f u n c t i o n a c c e p t hash o f d a t a and
521 ∗∗∗∗∗∗∗∗ pe r fo rm m u l t i p l y wi th SInv (two p e r m u t a t i o n s o f 160 ←↩

e l e m e n t s)
522 ∗∗∗∗∗∗∗∗ m a t r i x and s t o r e s r e s u l t
523 ∗∗∗∗∗∗∗∗ i n HSMul [] o f i n d e x 20 ∗∗∗∗∗∗∗∗ ∗ /
524

96

Chapter A. Program Code for MQQ-SIG Digital Signature

470
471 makeshort = (s h o r t) (((e[0]&0x01) <<7) | ((e[1]&0x01) <<6)
472 | ((e[2]&0x01) <<5) | ((e[3]&0x01) <<4)
473 | ((e[4]&0x01) <<3) | ((e[5]&0x01) <<2)
474 | ((e[6]&0x01) <<1) | (e[7]&0x01)) ;
475 a [7] = (s h o r t) ((makeshort< <8) | (s h o r t) (f & 0x01)) ;
476
477
478 / / Apply ing Guass ion E l i m i n a t i o n Method f o r uppe r T r i a n g l e
479 s h o r t fBit = 0x0001 ;
480 b y t e row ,col ,check ;
481 s h o r t temp ;
482 f o r (col=0;col<totCols−1;col++) {
483 check=0;
484 f o r (row=col ;row<totRows ;row++) {
485 i f ((a [row] & filter16 [col]) != 0) / / && check == 0) {
486 { i f (check == 0) {
487 check=1;
488 temp = a [row] ;
489 a [row] = a [col] ;
490 a [col] = temp ;
491 c o n t i n u e ;
492 } e l s e
493 a [row] = (s h o r t) (a [row] ^ a [col]) ;
494 }
495 }
496 }
497
498 / / Conve r t uppe r t r i a n g l e t o a l l z e r o s
499 f o r (col=7; col > 0 ; col−−)
500 f o r (row=(b y t e) (col−1) ;row>=0;row−−)
501 i f ((a [row] & filter16 [col]) != 0)
502 a [row] = (s h o r t) (a [row] ^ a [col]) ;
503
504
505 / / C o n v e r t i n g l e a s t s i g n i f i c a n t b i t o f a [] i n t o b y t e r e s u l t
506 b y t e result ;
507 result=0;
508 f o r (i=0;i<totRows ;i++) {
509 i f ((a [i] & fBit) != 0)
510 result = (b y t e) (result | filter8 [i]) ;
511 }
512
513 r e t u r n result ;
514 }
515
516 /∗ ∗∗∗∗ End of 16 b i t i m p l e m e n t a t i o n o f Guass ion e l i m i n a t i o n method ←↩

∗∗∗∗ ∗ /
517
518 /∗ ∗∗∗∗∗∗∗∗∗∗ End of pe r fo rm_Q_Opera t i on f u n c t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
519
520 /∗ ∗∗∗∗∗∗∗ F o l l o w i n g f u n c t i o n a c c e p t hash o f d a t a and
521 ∗∗∗∗∗∗∗∗ pe r fo rm m u l t i p l y wi th SInv (two p e r m u t a t i o n s o f 160 ←↩

e l e m e n t s)
522 ∗∗∗∗∗∗∗∗ m a t r i x and s t o r e s r e s u l t
523 ∗∗∗∗∗∗∗∗ i n HSMul [] o f i n d e x 20 ∗∗∗∗∗∗∗∗ ∗ /
524

96

Chapter A. Program Code for MQQ-SIG Digital Signature

470
471 makeshort = (s h o r t) (((e[0]&0x01) <<7) | ((e[1]&0x01) <<6)
472 | ((e[2]&0x01) <<5) | ((e[3]&0x01) < <4)
473 | ((e[4]&0x01) <<3) | ((e[5]&0x01) < <2)
474 | ((e[6]&0x01) <<1) | (e[7]&0x01)) ;
475 a [7] = (s h o r t) ((makeshort< <8) | (s h o r t) (f & 0x01)) ;
476
477
478 / / Apply ing Guass ion E l i m i n a t i o n Method f o r uppe r T r i a n g l e
479 s h o r t fBit = 0x0001 ;
480 b y t e row ,col ,check ;
481 s h o r t temp ;
482 f o r (col=0;col<totCols−1;col++) {
483 check=0;
484 f o r (row=col ;row<totRows ;row++) {
485 i f ((a [row] & filter16 [col]) != 0) / / && check == 0) {
486 { i f (check == 0) {
487 check=1;
488 temp = a [row] ;
489 a [row] = a [col] ;
490 a [col] = temp ;
491 c o n t i n u e ;
492 } e l s e
493 a [row] = (s h o r t) (a [row] ^ a [col]) ;
494 }
495 }
496 }
497
498 / / Conve r t uppe r t r i a n g l e t o a l l z e r o s
499 f o r (col=7; col > 0 ; col−−)
500 f o r (row=(b y t e) (col−1) ;row>=0;row−−)
501 i f ((a [row] & filter16 [col]) != 0)
502 a [row] = (s h o r t) (a [row] ^ a [col]) ;
503
504
505 / / C o n v e r t i n g l e a s t s i g n i f i c a n t b i t o f a [] i n t o b y t e r e s u l t
506 b y t e result ;
507 result=0;
508 f o r (i=0;i<totRows ;i++) {
509 i f ((a [i] & fBit) != 0)
510 result = (b y t e) (result | filter8 [i]) ;
511 }
512
513 r e t u r n result ;
514 }
515
516 /∗ ∗∗∗∗ End of 16 b i t i m p l e m e n t a t i o n o f Guass ion e l i m i n a t i o n method ←↩

∗∗∗∗ ∗ /
517
518 /∗ ∗∗∗∗∗∗∗∗∗∗ End of pe r fo rm_Q_Opera t i on f u n c t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
519
520 /∗ ∗∗∗∗∗∗∗ F o l l o w i n g f u n c t i o n a c c e p t hash o f d a t a and
521 ∗∗∗∗∗∗∗∗ pe r fo rm m u l t i p l y wi th SInv (two p e r m u t a t i o n s o f 160 ←↩

e l e m e n t s)
522 ∗∗∗∗∗∗∗∗ m a t r i x and s t o r e s r e s u l t
523 ∗∗∗∗∗∗∗∗ i n HSMul [] o f i n d e x 20 ∗∗∗∗∗∗∗∗ ∗ /
524

96

Chapter A. Program Code for MQQ-SIG Digital Signature

525 p r i v a t e vo id inverseAffineTransformation (b y t e [] InputBytes , b y t e ←↩
second_call) {

526 /∗ The m a t r i x SInv i s g i v e n as two p e r m u t a t i o n s o f 160 e l e m e n t s .←↩
∗ /

527 b y t e j , byteindex ,byteIndexD , bitindex ,bitIndexD ;
528 s h o r t index ;
529
530 /∗ I n i t i a l i z e H1 and HSMUL = 0 ∗ /
531 f o r (j=0; j<20; j++) {
532 H1 [j] = 0 ;
533 HSMul [j] = 0 ;
534 }
535
536 byteindex=0;
537 /∗ ∗∗∗∗∗∗∗∗∗ A f f i n e t r a n s f o r m a t i o n i s j u s t f o r t h e second c a l l .
538 ∗∗∗∗∗ The c o n s t a n t i s e x t r a c t e d from t h e 4 LSBs of t h e f i r s t
539 ∗∗∗∗∗ 40 b y t e s o f RP5 [] and xor−ed t o i n p u t _ b y t e s [] ∗∗∗∗∗∗∗∗∗ ∗ /
540 i f (second_call == 1)
541 f o r (j=0; j<20; j++)
542 {
543 InputBytes [j] ^= ((RP5 [byteindex] < <4) | (RP5 [byteindex←↩

+1]&0x0F)) ;
544 byteindex += 2 ;
545 }
546
547
548 /∗
549 F i l l H1 [] wi th b i t s o f I n p u t B y t e s (hash o f message)
550 a c c o r d i n g l y t o RP1 p e r m u t a t i o n v a l u e s and f i l l a g a i n
551 H1 wi th b i t s o f I n p u t B y t e s a c c o r d i n g l y t o RP5 p e r m u t a t i o n
552 ∗ /
553 f o r (index=0; index<160; index++)
554 {
555 byteindex = (b y t e) ((RP1 [index] > >3)&0x1F) ;
556 bitindex = (b y t e) (0x80 >> (RP1 [index]&0x07)) ;
557 i f ((InputBytes [byteindex] & bitindex) != 0) {
558 byteIndexD = (b y t e) (index> >3) ;
559 bitIndexD = (b y t e) (0x80 >> (b y t e) (index&0x0007)) ;
560 H1 [byteIndexD] = (b y t e) (H1 [byteIndexD] | bitIndexD) ;
561 }
562
563
564 byteindex = (b y t e) ((RP5 [index] > >3)&0x1F) ;
565 bitindex = (b y t e) (0x80 >> (RP5 [index]&0x07)) ;
566 i f ((InputBytes [byteindex] & bitindex) ! = 0) {
567 byteIndexD = (b y t e) ((index> >3)&0x1FFF) ;
568 bitIndexD = (b y t e) (0x80 >> (b y t e) (index&0x0007)) ;
569 HSMul [byteIndexD] ^= bitIndexD ;
570 }
571
572 }
573
574 f o r (j=0; j<20; j++)
575 HSMul [j] ^= (b y t e) (H1 [j] ^ H1 [(j+4) %20] ^ H1 [(j+12) %20] ^ H1←↩

[(j+16) %20]) ;
576
577 }

97

Chapter A. Program Code for MQQ-SIG Digital Signature

525 p r i v a t e vo id inverseAffineTransformation (b y t e [] InputBytes , b y t e ←↩
second_call) {

526 /∗ The m a t r i x SInv i s g i v e n as two p e r m u t a t i o n s o f 160 e l e m e n t s .←↩
∗ /

527 b y t e j , byteindex ,byteIndexD , bitindex ,bitIndexD ;
528 s h o r t index ;
529
530 /∗ I n i t i a l i z e H1 and HSMUL = 0 ∗ /
531 f o r (j=0; j<20; j++) {
532 H1 [j] = 0 ;
533 HSMul [j] = 0 ;
534 }
535
536 byteindex=0;
537 /∗ ∗∗∗∗∗∗∗∗∗ A f f i n e t r a n s f o r m a t i o n i s j u s t f o r t h e second c a l l .
538 ∗∗∗∗∗ The c o n s t a n t i s e x t r a c t e d from t h e 4 LSBs of t h e f i r s t
539 ∗∗∗∗∗ 40 b y t e s o f RP5 [] and xor−ed t o i n p u t _ b y t e s [] ∗∗∗∗∗∗∗∗∗ ∗ /
540 i f (second_call == 1)
541 f o r (j=0; j<20; j++)
542 {
543 InputBytes [j] ^= ((RP5 [byteindex] < <4) | (RP5 [byteindex←↩

+1]&0x0F)) ;
544 byteindex += 2 ;
545 }
546
547
548 /∗
549 F i l l H1 [] wi th b i t s o f I n p u t B y t e s (hash o f message)
550 a c c o r d i n g l y t o RP1 p e r m u t a t i o n v a l u e s and f i l l a g a i n
551 H1 wi th b i t s o f I n p u t B y t e s a c c o r d i n g l y t o RP5 p e r m u t a t i o n
552 ∗ /
553 f o r (index=0; index<160; index++)
554 {
555 byteindex = (b y t e) ((RP1 [index] > >3)&0x1F) ;
556 bitindex = (b y t e) (0x80 >> (RP1 [index]&0x07)) ;
557 i f ((InputBytes [byteindex] & bitindex) != 0) {
558 byteIndexD = (b y t e) (index> >3) ;
559 bitIndexD = (b y t e) (0x80 >> (b y t e) (index&0x0007)) ;
560 H1 [byteIndexD] = (b y t e) (H1 [byteIndexD] | bitIndexD) ;
561 }
562
563
564 byteindex = (b y t e) ((RP5 [index] > >3)&0x1F) ;
565 bitindex = (b y t e) (0x80 >> (RP5 [index]&0x07)) ;
566 i f ((InputBytes [byteindex] & bitindex) ! = 0) {
567 byteIndexD = (b y t e) ((index> >3)&0x1FFF) ;
568 bitIndexD = (b y t e) (0x80 >> (b y t e) (index&0x0007)) ;
569 HSMul [byteIndexD] ^= bitIndexD ;
570 }
571
572 }
573
574 f o r (j=0; j<20; j++)
575 HSMul [j] ^= (b y t e) (H1 [j] ^ H1 [(j+4) %20] ^ H1 [(j+12) %20] ^ H1←↩

[(j+16) %20]) ;
576
577 }

97

Chapter A. Program Code for MQQ-SIG Digital Signature

525 p r i v a t e vo id inverseAffineTransformation (b y t e [] InputBytes , b y t e ←↩
second_call) {

526 /∗ The m a t r i x SInv i s g i v e n as two p e r m u t a t i o n s o f 160 e l e m e n t s .←↩
∗ /

527 b y t e j , byteindex ,byteIndexD , bitindex ,bitIndexD ;
528 s h o r t index ;
529
530 /∗ I n i t i a l i z e H1 and HSMUL = 0 ∗ /
531 f o r (j=0; j<20; j++) {
532 H1 [j] = 0 ;
533 HSMul [j] = 0 ;
534 }
535
536 byteindex=0;
537 /∗ ∗∗∗∗∗∗∗∗∗ A f f i n e t r a n s f o r m a t i o n i s j u s t f o r t h e second c a l l .
538 ∗∗∗∗∗ The c o n s t a n t i s e x t r a c t e d from t h e 4 LSBs of t h e f i r s t
539 ∗∗∗∗∗ 40 b y t e s o f RP5 [] and xor−ed t o i n p u t _ b y t e s [] ∗∗∗∗∗∗∗∗∗ ∗ /
540 i f (second_call == 1)
541 f o r (j=0; j<20; j++)
542 {
543 InputBytes [j] ^= ((RP5 [byteindex] < <4) | (RP5 [byteindex←↩

+1]&0x0F)) ;
544 byteindex += 2 ;
545 }
546
547
548 /∗
549 F i l l H1 [] wi th b i t s o f I n p u t B y t e s (hash o f message)
550 a c c o r d i n g l y t o RP1 p e r m u t a t i o n v a l u e s and f i l l a g a i n
551 H1 wi th b i t s o f I n p u t B y t e s a c c o r d i n g l y t o RP5 p e r m u t a t i o n
552 ∗ /
553 f o r (index=0; index<160; index++)
554 {
555 byteindex = (b y t e) ((RP1 [index] > >3)&0x1F) ;
556 bitindex = (b y t e) (0x80 >> (RP1 [index]&0x07)) ;
557 i f ((InputBytes [byteindex] & bitindex) != 0) {
558 byteIndexD = (b y t e) (index> >3) ;
559 bitIndexD = (b y t e) (0x80 >> (b y t e) (index&0x0007)) ;
560 H1 [byteIndexD] = (b y t e) (H1 [byteIndexD] | bitIndexD) ;
561 }
562
563
564 byteindex = (b y t e) ((RP5 [index] > >3)&0x1F) ;
565 bitindex = (b y t e) (0x80 >> (RP5 [index]&0x07)) ;
566 i f ((InputBytes [byteindex] & bitindex) ! = 0) {
567 byteIndexD = (b y t e) ((index> >3)&0x1FFF) ;
568 bitIndexD = (b y t e) (0x80 >> (b y t e) (index&0x0007)) ;
569 HSMul [byteIndexD] ^= bitIndexD ;
570 }
571
572 }
573
574 f o r (j=0; j<20; j++)
575 HSMul [j] ^= (b y t e) (H1 [j] ^ H1 [(j+4) %20] ^ H1 [(j+12) %20] ^ H1←↩

[(j+16) %20]) ;
576
577 }

97

Chapter A. Program Code for MQQ-SIG Digital Signature

525 p r i v a t e vo id inverseAffineTransformation (b y t e [] InputBytes , b y t e ←↩
second_call) {

526 /∗ The m a t r i x SInv i s g i v e n as two p e r m u t a t i o n s o f 160 e l e m e n t s .←↩
∗ /

527 b y t e j , byteindex ,byteIndexD , bitindex ,bitIndexD ;
528 s h o r t index ;
529
530 /∗ I n i t i a l i z e H1 and HSMUL = 0 ∗ /
531 f o r (j=0; j<20; j++) {
532 H1 [j] = 0 ;
533 HSMul [j] = 0 ;
534 }
535
536 byteindex=0;
537 /∗ ∗∗∗∗∗∗∗∗∗ A f f i n e t r a n s f o r m a t i o n i s j u s t f o r t h e second c a l l .
538 ∗∗∗∗∗ The c o n s t a n t i s e x t r a c t e d from t h e 4 LSBs of t h e f i r s t
539 ∗∗∗∗∗ 40 b y t e s o f RP5 [] and xor−ed t o i n p u t _ b y t e s [] ∗∗∗∗∗∗∗∗∗ ∗ /
540 i f (second_call == 1)
541 f o r (j=0; j<20; j++)
542 {
543 InputBytes [j] ^= ((RP5 [byteindex] < <4) | (RP5 [byteindex←↩

+1]&0x0F)) ;
544 byteindex += 2 ;
545 }
546
547
548 /∗
549 F i l l H1 [] wi th b i t s o f I n p u t B y t e s (hash o f message)
550 a c c o r d i n g l y t o RP1 p e r m u t a t i o n v a l u e s and f i l l a g a i n
551 H1 wi th b i t s o f I n p u t B y t e s a c c o r d i n g l y t o RP5 p e r m u t a t i o n
552 ∗ /
553 f o r (index=0; index<160; index++)
554 {
555 byteindex = (b y t e) ((RP1 [index] > >3)&0x1F) ;
556 bitindex = (b y t e) (0x80 >> (RP1 [index]&0x07)) ;
557 i f ((InputBytes [byteindex] & bitindex) != 0) {
558 byteIndexD = (b y t e) (index> >3) ;
559 bitIndexD = (b y t e) (0x80 >> (b y t e) (index&0x0007)) ;
560 H1 [byteIndexD] = (b y t e) (H1 [byteIndexD] | bitIndexD) ;
561 }
562
563
564 byteindex = (b y t e) ((RP5 [index] > >3)&0x1F) ;
565 bitindex = (b y t e) (0x80 >> (RP5 [index]&0x07)) ;
566 i f ((InputBytes [byteindex] & bitindex) ! = 0) {
567 byteIndexD = (b y t e) ((index> >3)&0x1FFF) ;
568 bitIndexD = (b y t e) (0x80 >> (b y t e) (index&0x0007)) ;
569 HSMul [byteIndexD] ^= bitIndexD ;
570 }
571
572 }
573
574 f o r (j=0; j<20; j++)
575 HSMul [j] ^= (b y t e) (H1 [j] ^ H1 [(j+4) %20] ^ H1 [(j+12) %20] ^ H1←↩

[(j+16) %20]) ;
576
577 }

97

Chapter A. Program Code for MQQ-SIG Digital Signature

578 /∗ ∗∗∗∗∗∗∗ end of i n v e r s e A f f i n e T r a n s f o r m a t i o n method ∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
579
580 }
581 /∗ ∗∗∗∗∗∗∗∗∗∗∗ end of A pp le t AppMQQ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

98

Chapter A. Program Code for MQQ-SIG Digital Signature

578 /∗ ∗∗∗∗∗∗∗ end of i n v e r s e A f f i n e T r a n s f o r m a t i o n method ∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
579
580 }
581 /∗ ∗∗∗∗∗∗∗∗∗∗∗ end of A pp le t AppMQQ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

98

Chapter A. Program Code for MQQ-SIG Digital Signature

578 /∗ ∗∗∗∗∗∗∗ end of i n v e r s e A f f i n e T r a n s f o r m a t i o n method ∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
579
580 }
581 /∗ ∗∗∗∗∗∗∗∗∗∗∗ end of A pp le t AppMQQ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

98

Chapter A. Program Code for MQQ-SIG Digital Signature

578 /∗ ∗∗∗∗∗∗∗ end of i n v e r s e A f f i n e T r a n s f o r m a t i o n method ∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
579
580 }
581 /∗ ∗∗∗∗∗∗∗∗∗∗∗ end of A pp le t AppMQQ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

98

Appendix B

(Program Code for RSA Digital
Signature

1 /∗ ∗
2 ∗
3 ∗ /
4 package packRSA ;
5 / / s e l e c t cardR 6361726452
6 i m p o r t javacard .framework .Applet ;
7 i m p o r t javacard .framework .ISO7816 ;
8 i m p o r t javacard .framework .ISOException ;
9 i m p o r t javacard .framework .APDU ;

10 i m p o r t javacard .framework .JCSystem ;
11 i m p o r t javacard .framework .Util ;
12 i m p o r t javacard .security .RSAPrivateCrtKey ;
13 i m p o r t javacard .security .RSAPublicKey ;
14 i m p o r t javacard .security .RSAPrivateKey ;
15 i m p o r t javacard .security .KeyBuilder ;
16 i m p o r t javacard .security .KeyPair ;
17 i m p o r t javacard .security .RandomData ;
18 i m p o r t javacard .security .Signature ;
19
20
21 /∗ ∗
22 ∗ @author kamran
23 ∗
24 ∗ /
25 p u b l i c c l a s s AppRSA e x t e n d s Applet {
26
27 p r i v a t e s h o r t dataSize=(s h o r t) 256 ;
28 p r i v a t e s h o r t signSizeRSA=(s h o r t) 128 ;
29 p r i v a t e s h o r t signParSize=(s h o r t) 256 ;
30
31 b y t e [] signRSA=JCSystem .makeTransientByteArray ((s h o r t)signSizeRSA ,

99

Appendix B

(Program Code for RSA Digital
Signature

1 /∗ ∗
2 ∗
3 ∗ /
4 package packRSA ;
5 / / s e l e c t cardR 6361726452
6 i m p o r t javacard .framework .Applet ;
7 i m p o r t javacard .framework .ISO7816 ;
8 i m p o r t javacard .framework .ISOException ;
9 i m p o r t javacard .framework .APDU ;

10 i m p o r t javacard .framework .JCSystem ;
11 i m p o r t javacard .framework .Util ;
12 i m p o r t javacard .security .RSAPrivateCrtKey ;
13 i m p o r t javacard .security .RSAPublicKey ;
14 i m p o r t javacard .security .RSAPrivateKey ;
15 i m p o r t javacard .security .KeyBuilder ;
16 i m p o r t javacard .security .KeyPair ;
17 i m p o r t javacard .security .RandomData ;
18 i m p o r t javacard .security .Signature ;
19
20
21 /∗ ∗
22 ∗ @author kamran
23 ∗
24 ∗ /
25 p u b l i c c l a s s AppRSA e x t e n d s Applet {
26
27 p r i v a t e s h o r t dataSize=(s h o r t) 256 ;
28 p r i v a t e s h o r t signSizeRSA=(s h o r t) 128 ;
29 p r i v a t e s h o r t signParSize=(s h o r t) 256 ;
30
31 b y t e [] signRSA=JCSystem .makeTransientByteArray ((s h o r t)signSizeRSA ,

99

Appendix B

(Program Code for RSA Digital
Signature

1 /∗ ∗
2 ∗
3 ∗ /
4 package packRSA ;
5 / / s e l e c t cardR 6361726452
6 i m p o r t javacard .framework .Applet ;
7 i m p o r t javacard .framework .ISO7816 ;
8 i m p o r t javacard .framework .ISOException ;
9 i m p o r t javacard .framework .APDU ;

10 i m p o r t javacard .framework .JCSystem ;
11 i m p o r t javacard .framework .Util ;
12 i m p o r t javacard .security .RSAPrivateCrtKey ;
13 i m p o r t javacard .security .RSAPublicKey ;
14 i m p o r t javacard .security .RSAPrivateKey ;
15 i m p o r t javacard .security .KeyBuilder ;
16 i m p o r t javacard .security .KeyPair ;
17 i m p o r t javacard .security .RandomData ;
18 i m p o r t javacard .security .Signature ;
19
20
21 /∗ ∗
22 ∗ @author kamran
23 ∗
24 ∗ /
25 p u b l i c c l a s s AppRSA e x t e n d s Applet {
26
27 p r i v a t e s h o r t dataSize=(s h o r t) 256 ;
28 p r i v a t e s h o r t signSizeRSA=(s h o r t) 128 ;
29 p r i v a t e s h o r t signParSize=(s h o r t) 256 ;
30
31 b y t e [] signRSA=JCSystem .makeTransientByteArray ((s h o r t)signSizeRSA ,

99

Appendix B

(Program Code for RSA Digital
Signature

1 /∗ ∗
2 ∗
3 ∗ /
4 package packRSA ;
5 / / s e l e c t cardR 6361726452
6 i m p o r t javacard .framework .Applet ;
7 i m p o r t javacard .framework .ISO7816 ;
8 i m p o r t javacard .framework .ISOException ;
9 i m p o r t javacard .framework .APDU ;

10 i m p o r t javacard .framework .JCSystem ;
11 i m p o r t javacard .framework .Util ;
12 i m p o r t javacard .security .RSAPrivateCrtKey ;
13 i m p o r t javacard .security .RSAPublicKey ;
14 i m p o r t javacard .security .RSAPrivateKey ;
15 i m p o r t javacard .security .KeyBuilder ;
16 i m p o r t javacard .security .KeyPair ;
17 i m p o r t javacard .security .RandomData ;
18 i m p o r t javacard .security .Signature ;
19
20
21 /∗ ∗
22 ∗ @author kamran
23 ∗
24 ∗ /
25 p u b l i c c l a s s AppRSA e x t e n d s Applet {
26
27 p r i v a t e s h o r t dataSize=(s h o r t) 256 ;
28 p r i v a t e s h o r t signSizeRSA=(s h o r t) 128 ;
29 p r i v a t e s h o r t signParSize=(s h o r t) 256 ;
30
31 b y t e [] signRSA=JCSystem .makeTransientByteArray ((s h o r t)signSizeRSA ,

99

Chapter B. (Program Code for RSA Digital Signature

32 JCSystem .CLEAR_ON_DESELECT) ;
33 b y t e [] signParRSA=JCSystem .makeTransientByteArray ((s h o r t)signParSize←↩

,
34 JCSystem .CLEAR_ON_DESELECT) ;
35 b y t e [] signParRSA2=JCSystem .makeTransientByteArray ((s h o r t)←↩

signParSize ,
36 JCSystem .CLEAR_ON_DESELECT) ;
37 b y t e [] data=JCSystem .makeTransientByteArray (dataSize ,
38 JCSystem .CLEAR_ON_DESELECT) ;
39
40 f i n a l s t a t i c s h o r t REG_FAILURE=0x0001 ;
41
42 p r i v a t e KeyPair keyPairRSA ;
43 p r i v a t e RSAPrivateCrtKey RSAPrivateCrt ;
44 p r i v a t e RSAPrivateKey RSAPrivate ;
45 p r i v a t e RSAPublicKey RSAPublic ;
46 p r i v a t e RandomData random ;
47
48
49 p r i v a t e Signature signatureRSA ;
50
51 /∗ ∗∗∗∗∗∗∗∗∗∗ P a r a m e t e r s o f RSA_CRT P r i v a t e key ∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
52
53 / / P and Q pr ime co−f a c t o r s o f N
54 s t a t i c f i n a l b y t e [] P = {
55 (b y t e) 0xF9 , (b y t e) 0x7C , (b y t e) 0xEB , (b y t e) 0x9D , (b y t e) 0xA1 , (←↩

b y t e) 0x86 ,
56 (b y t e) 0x92 , (b y t e) 0x6C , (b y t e) 0x70 , (b y t e) 0x9F , (b y t e) 0x18 , (←↩

b y t e) 0xA3 ,
57 (b y t e) 0xA8 , (b y t e) 0xD8 , (b y t e) 0x25 , (b y t e) 0xB6 , (b y t e) 0x4B , (←↩

b y t e) 0xBC ,
58 (b y t e) 0xBF , (b y t e) 0x9F , (b y t e) 0x87 , (b y t e) 0xF1 , (b y t e) 0x5C , (←↩

b y t e) 0xA0 ,
59 (b y t e) 0x20 , (b y t e) 0xEF , (b y t e) 0x3E , (b y t e) 0x5A , (b y t e) 0x6E , (←↩

b y t e) 0xF6 ,
60 (b y t e) 0x64 , (b y t e) 0x14 , (b y t e) 0xEC , (b y t e) 0xB7 , (b y t e) 0xF8 , (←↩

b y t e) 0x08 ,
61 (b y t e) 0x42 , (b y t e) 0xAE , (b y t e) 0x05 , (b y t e) 0xE4 , (b y t e) 0x3C , (←↩

b y t e) 0x50 ,
62 (b y t e) 0x7A , (b y t e) 0x2B , (b y t e) 0x8F , (b y t e) 0x2A , (b y t e) 0xC6 , (←↩

b y t e) 0xD8 ,
63 (b y t e) 0x88 , (b y t e) 0xF9 , (b y t e) 0x3A , (b y t e) 0x76 , (b y t e) 0x77 , (←↩

b y t e) 0x27 ,
64 (b y t e) 0x86 , (b y t e) 0x10 , (b y t e) 0x6C , (b y t e) 0x05 , (b y t e) 0x92 , (←↩

b y t e) 0xA3 ,
65 (b y t e) 0xE2 , (b y t e) 0x42 , (b y t e) 0xA2 , (b y t e) 0x33 ,
66 } ;
67
68 s t a t i c f i n a l b y t e [] Q = {
69 (b y t e) 0xB9 , (b y t e) 0x72 , (b y t e) 0xE5 , (b y t e) 0x09 , (b y t e) 0xA5 , (←↩

b y t e) 0x72 ,
70 (b y t e) 0xB5 , (b y t e) 0x9B , (b y t e) 0x79 , (b y t e) 0x09 , (b y t e) 0x02 , (←↩

b y t e) 0xBE ,
71 (b y t e) 0xAB , (b y t e) 0xE3 , (b y t e) 0xA6 , (b y t e) 0xA6 , (b y t e) 0x9D , (←↩

b y t e) 0x6F ,
72 (b y t e) 0x73 , (b y t e) 0x05 , (b y t e) 0x25 , (b y t e) 0x54 , (b y t e) 0xC5 , (←↩

b y t e) 0x17 ,

100

Chapter B. (Program Code for RSA Digital Signature

32 JCSystem .CLEAR_ON_DESELECT) ;
33 b y t e [] signParRSA=JCSystem .makeTransientByteArray ((s h o r t)signParSize←↩

,
34 JCSystem .CLEAR_ON_DESELECT) ;
35 b y t e [] signParRSA2=JCSystem .makeTransientByteArray ((s h o r t)←↩

signParSize ,
36 JCSystem .CLEAR_ON_DESELECT) ;
37 b y t e [] data=JCSystem .makeTransientByteArray (dataSize ,
38 JCSystem .CLEAR_ON_DESELECT) ;
39
40 f i n a l s t a t i c s h o r t REG_FAILURE=0x0001 ;
41
42 p r i v a t e KeyPair keyPairRSA ;
43 p r i v a t e RSAPrivateCrtKey RSAPrivateCrt ;
44 p r i v a t e RSAPrivateKey RSAPrivate ;
45 p r i v a t e RSAPublicKey RSAPublic ;
46 p r i v a t e RandomData random ;
47
48
49 p r i v a t e Signature signatureRSA ;
50
51 /∗ ∗∗∗∗∗∗∗∗∗∗ P a r a m e t e r s o f RSA_CRT P r i v a t e key ∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
52
53 / / P and Q pr ime co−f a c t o r s o f N
54 s t a t i c f i n a l b y t e [] P = {
55 (b y t e) 0xF9 , (b y t e) 0x7C , (b y t e) 0xEB , (b y t e) 0x9D , (b y t e) 0xA1 , (←↩

b y t e) 0x86 ,
56 (b y t e) 0x92 , (b y t e) 0x6C , (b y t e) 0x70 , (b y t e) 0x9F , (b y t e) 0x18 , (←↩

b y t e) 0xA3 ,
57 (b y t e) 0xA8 , (b y t e) 0xD8 , (b y t e) 0x25 , (b y t e) 0xB6 , (b y t e) 0x4B , (←↩

b y t e) 0xBC ,
58 (b y t e) 0xBF , (b y t e) 0x9F , (b y t e) 0x87 , (b y t e) 0xF1 , (b y t e) 0x5C , (←↩

b y t e) 0xA0 ,
59 (b y t e) 0x20 , (b y t e) 0xEF , (b y t e) 0x3E , (b y t e) 0x5A , (b y t e) 0x6E , (←↩

b y t e) 0xF6 ,
60 (b y t e) 0x64 , (b y t e) 0x14 , (b y t e) 0xEC , (b y t e) 0xB7 , (b y t e) 0xF8 , (←↩

b y t e) 0x08 ,
61 (b y t e) 0x42 , (b y t e) 0xAE , (b y t e) 0x05 , (b y t e) 0xE4 , (b y t e) 0x3C , (←↩

b y t e) 0x50 ,
62 (b y t e) 0x7A , (b y t e) 0x2B , (b y t e) 0x8F , (b y t e) 0x2A , (b y t e) 0xC6 , (←↩

b y t e) 0xD8 ,
63 (b y t e) 0x88 , (b y t e) 0xF9 , (b y t e) 0x3A , (b y t e) 0x76 , (b y t e) 0x77 , (←↩

b y t e) 0x27 ,
64 (b y t e) 0x86 , (b y t e) 0x10 , (b y t e) 0x6C , (b y t e) 0x05 , (b y t e) 0x92 , (←↩

b y t e) 0xA3 ,
65 (b y t e) 0xE2 , (b y t e) 0x42 , (b y t e) 0xA2 , (b y t e) 0x33 ,
66 } ;
67
68 s t a t i c f i n a l b y t e [] Q = {
69 (b y t e) 0xB9 , (b y t e) 0x72 , (b y t e) 0xE5 , (b y t e) 0x09 , (b y t e) 0xA5 , (←↩

b y t e) 0x72 ,
70 (b y t e) 0xB5 , (b y t e) 0x9B , (b y t e) 0x79 , (b y t e) 0x09 , (b y t e) 0x02 , (←↩

b y t e) 0xBE ,
71 (b y t e) 0xAB , (b y t e) 0xE3 , (b y t e) 0xA6 , (b y t e) 0xA6 , (b y t e) 0x9D , (←↩

b y t e) 0x6F ,
72 (b y t e) 0x73 , (b y t e) 0x05 , (b y t e) 0x25 , (b y t e) 0x54 , (b y t e) 0xC5 , (←↩

b y t e) 0x17 ,

100

Chapter B. (Program Code for RSA Digital Signature

32 JCSystem .CLEAR_ON_DESELECT) ;
33 b y t e [] signParRSA=JCSystem .makeTransientByteArray ((s h o r t)signParSize←↩

,
34 JCSystem .CLEAR_ON_DESELECT) ;
35 b y t e [] signParRSA2=JCSystem .makeTransientByteArray ((s h o r t)←↩

signParSize ,
36 JCSystem .CLEAR_ON_DESELECT) ;
37 b y t e [] data=JCSystem .makeTransientByteArray (dataSize ,
38 JCSystem .CLEAR_ON_DESELECT) ;
39
40 f i n a l s t a t i c s h o r t REG_FAILURE=0x0001 ;
41
42 p r i v a t e KeyPair keyPairRSA ;
43 p r i v a t e RSAPrivateCrtKey RSAPrivateCrt ;
44 p r i v a t e RSAPrivateKey RSAPrivate ;
45 p r i v a t e RSAPublicKey RSAPublic ;
46 p r i v a t e RandomData random ;
47
48
49 p r i v a t e Signature signatureRSA ;
50
51 /∗ ∗∗∗∗∗∗∗∗∗∗ P a r a m e t e r s o f RSA_CRT P r i v a t e key ∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
52
53 / / P and Q pr ime co−f a c t o r s o f N
54 s t a t i c f i n a l b y t e [] P = {
55 (b y t e) 0xF9 , (b y t e) 0x7C , (b y t e) 0xEB , (b y t e) 0x9D , (b y t e) 0xA1 , (←↩

b y t e) 0x86 ,
56 (b y t e) 0x92 , (b y t e) 0x6C , (b y t e) 0x70 , (b y t e) 0x9F , (b y t e) 0x18 , (←↩

b y t e) 0xA3 ,
57 (b y t e) 0xA8 , (b y t e) 0xD8 , (b y t e) 0x25 , (b y t e) 0xB6 , (b y t e) 0x4B , (←↩

b y t e) 0xBC ,
58 (b y t e) 0xBF , (b y t e) 0x9F , (b y t e) 0x87 , (b y t e) 0xF1 , (b y t e) 0x5C , (←↩

b y t e) 0xA0 ,
59 (b y t e) 0x20 , (b y t e) 0xEF , (b y t e) 0x3E , (b y t e) 0x5A , (b y t e) 0x6E , (←↩

b y t e) 0xF6 ,
60 (b y t e) 0x64 , (b y t e) 0x14 , (b y t e) 0xEC , (b y t e) 0xB7 , (b y t e) 0xF8 , (←↩

b y t e) 0x08 ,
61 (b y t e) 0x42 , (b y t e) 0xAE , (b y t e) 0x05 , (b y t e) 0xE4 , (b y t e) 0x3C , (←↩

b y t e) 0x50 ,
62 (b y t e) 0x7A , (b y t e) 0x2B , (b y t e) 0x8F , (b y t e) 0x2A , (b y t e) 0xC6 , (←↩

b y t e) 0xD8 ,
63 (b y t e) 0x88 , (b y t e) 0xF9 , (b y t e) 0x3A , (b y t e) 0x76 , (b y t e) 0x77 , (←↩

b y t e) 0x27 ,
64 (b y t e) 0x86 , (b y t e) 0x10 , (b y t e) 0x6C , (b y t e) 0x05 , (b y t e) 0x92 , (←↩

b y t e) 0xA3 ,
65 (b y t e) 0xE2 , (b y t e) 0x42 , (b y t e) 0xA2 , (b y t e) 0x33 ,
66 } ;
67
68 s t a t i c f i n a l b y t e [] Q = {
69 (b y t e) 0xB9 , (b y t e) 0x72 , (b y t e) 0xE5 , (b y t e) 0x09 , (b y t e) 0xA5 , (←↩

b y t e) 0x72 ,
70 (b y t e) 0xB5 , (b y t e) 0x9B , (b y t e) 0x79 , (b y t e) 0x09 , (b y t e) 0x02 , (←↩

b y t e) 0xBE ,
71 (b y t e) 0xAB , (b y t e) 0xE3 , (b y t e) 0xA6 , (b y t e) 0xA6 , (b y t e) 0x9D , (←↩

b y t e) 0x6F ,
72 (b y t e) 0x73 , (b y t e) 0x05 , (b y t e) 0x25 , (b y t e) 0x54 , (b y t e) 0xC5 , (←↩

b y t e) 0x17 ,

100

Chapter B. (Program Code for RSA Digital Signature

32 JCSystem .CLEAR_ON_DESELECT) ;
33 b y t e [] signParRSA=JCSystem .makeTransientByteArray ((s h o r t)signParSize←↩

,
34 JCSystem .CLEAR_ON_DESELECT) ;
35 b y t e [] signParRSA2=JCSystem .makeTransientByteArray ((s h o r t)←↩

signParSize ,
36 JCSystem .CLEAR_ON_DESELECT) ;
37 b y t e [] data=JCSystem .makeTransientByteArray (dataSize ,
38 JCSystem .CLEAR_ON_DESELECT) ;
39
40 f i n a l s t a t i c s h o r t REG_FAILURE=0x0001 ;
41
42 p r i v a t e KeyPair keyPairRSA ;
43 p r i v a t e RSAPrivateCrtKey RSAPrivateCrt ;
44 p r i v a t e RSAPrivateKey RSAPrivate ;
45 p r i v a t e RSAPublicKey RSAPublic ;
46 p r i v a t e RandomData random ;
47
48
49 p r i v a t e Signature signatureRSA ;
50
51 /∗ ∗∗∗∗∗∗∗∗∗∗ P a r a m e t e r s o f RSA_CRT P r i v a t e key ∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
52
53 / / P and Q pr ime co−f a c t o r s o f N
54 s t a t i c f i n a l b y t e [] P = {
55 (b y t e) 0xF9 , (b y t e) 0x7C , (b y t e) 0xEB , (b y t e) 0x9D , (b y t e) 0xA1 , (←↩

b y t e) 0x86 ,
56 (b y t e) 0x92 , (b y t e) 0x6C , (b y t e) 0x70 , (b y t e) 0x9F , (b y t e) 0x18 , (←↩

b y t e) 0xA3 ,
57 (b y t e) 0xA8 , (b y t e) 0xD8 , (b y t e) 0x25 , (b y t e) 0xB6 , (b y t e) 0x4B , (←↩

b y t e) 0xBC ,
58 (b y t e) 0xBF , (b y t e) 0x9F , (b y t e) 0x87 , (b y t e) 0xF1 , (b y t e) 0x5C , (←↩

b y t e) 0xA0 ,
59 (b y t e) 0x20 , (b y t e) 0xEF , (b y t e) 0x3E , (b y t e) 0x5A , (b y t e) 0x6E , (←↩

b y t e) 0xF6 ,
60 (b y t e) 0x64 , (b y t e) 0x14 , (b y t e) 0xEC , (b y t e) 0xB7 , (b y t e) 0xF8 , (←↩

b y t e) 0x08 ,
61 (b y t e) 0x42 , (b y t e) 0xAE , (b y t e) 0x05 , (b y t e) 0xE4 , (b y t e) 0x3C , (←↩

b y t e) 0x50 ,
62 (b y t e) 0x7A , (b y t e) 0x2B , (b y t e) 0x8F , (b y t e) 0x2A , (b y t e) 0xC6 , (←↩

b y t e) 0xD8 ,
63 (b y t e) 0x88 , (b y t e) 0xF9 , (b y t e) 0x3A , (b y t e) 0x76 , (b y t e) 0x77 , (←↩

b y t e) 0x27 ,
64 (b y t e) 0x86 , (b y t e) 0x10 , (b y t e) 0x6C , (b y t e) 0x05 , (b y t e) 0x92 , (←↩

b y t e) 0xA3 ,
65 (b y t e) 0xE2 , (b y t e) 0x42 , (b y t e) 0xA2 , (b y t e) 0x33 ,
66 } ;
67
68 s t a t i c f i n a l b y t e [] Q = {
69 (b y t e) 0xB9 , (b y t e) 0x72 , (b y t e) 0xE5 , (b y t e) 0x09 , (b y t e) 0xA5 , (←↩

b y t e) 0x72 ,
70 (b y t e) 0xB5 , (b y t e) 0x9B , (b y t e) 0x79 , (b y t e) 0x09 , (b y t e) 0x02 , (←↩

b y t e) 0xBE ,
71 (b y t e) 0xAB , (b y t e) 0xE3 , (b y t e) 0xA6 , (b y t e) 0xA6 , (b y t e) 0x9D , (←↩

b y t e) 0x6F ,
72 (b y t e) 0x73 , (b y t e) 0x05 , (b y t e) 0x25 , (b y t e) 0x54 , (b y t e) 0xC5 , (←↩

b y t e) 0x17 ,

100

Chapter B. (Program Code for RSA Digital Signature

73 (b y t e) 0x50 , (b y t e) 0x53 , (b y t e) 0x71 , (b y t e) 0x03 , (b y t e) 0x1F , (←↩
b y t e) 0xBE ,

74 (b y t e) 0x27 , (b y t e) 0xFF , (b y t e) 0x20 , (b y t e) 0xAF , (b y t e) 0x2D , (←↩
b y t e) 0x27 ,

75 (b y t e) 0x6C , (b y t e) 0x71 , (b y t e) 0x09 , (b y t e) 0xCF , (b y t e) 0x0F , (←↩
b y t e) 0x3E ,

76 (b y t e) 0x00 , (b y t e) 0xFD , (b y t e) 0xBD , (b y t e) 0xA5 , (b y t e) 0xA0 , (←↩
b y t e) 0xC0 ,

77 (b y t e) 0x65 , (b y t e) 0x01 , (b y t e) 0xC2 , (b y t e) 0x9C , (b y t e) 0xC0 , (←↩
b y t e) 0x77 ,

78 (b y t e) 0xDF , (b y t e) 0x25 , (b y t e) 0x27 , (b y t e) 0xDE , (b y t e) 0xD9 , (←↩
b y t e) 0x1B ,

79 (b y t e) 0x8F , (b y t e) 0xC6 , (b y t e) 0x82 , (b y t e) 0x9F ,
80
81 } ;
82
83 / / RSA_CRT co−e f f i c i e n t PQ (PQ=1/ q mod p)
84 s t a t i c f i n a l b y t e [] PQ = {
85 (b y t e) 0xB6 , (b y t e) 0xB1 , (b y t e) 0x23 , (b y t e) 0x99 , (b y t e) 0xD5 , (←↩

b y t e) 0x12 ,
86 (b y t e) 0xDA , (b y t e) 0x50 , (b y t e) 0x38 , (b y t e) 0x2E , (b y t e) 0x44 , (←↩

b y t e) 0xA4 ,
87 (b y t e) 0x21 , (b y t e) 0x94 , (b y t e) 0x3B , (b y t e) 0x50 , (b y t e) 0x49 , (←↩

b y t e) 0x59 ,
88 (b y t e) 0x61 , (b y t e) 0xF7 , (b y t e) 0xF9 , (b y t e) 0x29 , (b y t e) 0xAA , (←↩

b y t e) 0xD2 ,
89 (b y t e) 0x5E , (b y t e) 0x6D , (b y t e) 0x02 , (b y t e) 0x55 , (b y t e) 0xB4 , (←↩

b y t e) 0x1E ,
90 (b y t e) 0x4C , (b y t e) 0xDE , (b y t e) 0x20 , (b y t e) 0x2F , (b y t e) 0x59 , (←↩

b y t e) 0xC4 ,
91 (b y t e) 0x95 , (b y t e) 0xD9 , (b y t e) 0x42 , (b y t e) 0x6B , (b y t e) 0x40 , (←↩

b y t e) 0x21 ,
92 (b y t e) 0x97 , (b y t e) 0x0B , (b y t e) 0xA6 , (b y t e) 0xF4 , (b y t e) 0x32 , (←↩

b y t e) 0x96 ,
93 (b y t e) 0x8B , (b y t e) 0x6B , (b y t e) 0xC3 , (b y t e) 0xEB , (b y t e) 0x2E , (←↩

b y t e) 0x26 ,
94 (b y t e) 0x32 , (b y t e) 0x86 , (b y t e) 0xBB , (b y t e) 0x91 , (b y t e) 0x0F , (←↩

b y t e) 0x30 ,
95 (b y t e) 0xA3 , (b y t e) 0x69 , (b y t e) 0xC6 , (b y t e) 0xB1 ,
96
97 } ;
98
99 / / RSA_CRT e x p o n e n t s DP1 and DQ1 (DP1=d mod (p−1)) (DQ1=d mod (q←↩

−1))
100 s t a t i c f i n a l b y t e [] DP1 = {
101 (b y t e) 0x1E , (b y t e) 0x7C , (b y t e) 0x2D , (b y t e) 0x2E , (b y t e) 0x2D , (←↩

b y t e) 0xB6 ,
102 (b y t e) 0x8B , (b y t e) 0xDD , (b y t e) 0xC4 , (b y t e) 0x45 , (b y t e) 0x2C , (←↩

b y t e) 0x75 ,
103 (b y t e) 0x93 , (b y t e) 0x04 , (b y t e) 0x16 , (b y t e) 0x57 , (b y t e) 0x98 , (←↩

b y t e) 0x19 ,
104 (b y t e) 0x90 , (b y t e) 0x30 , (b y t e) 0xA6 , (b y t e) 0x23 , (b y t e) 0xCF , (←↩

b y t e) 0xF5 ,
105 (b y t e) 0xA1 , (b y t e) 0x10 , (b y t e) 0x9A , (b y t e) 0xC5 , (b y t e) 0xE2 , (←↩

b y t e) 0x19 ,
106 (b y t e) 0x29 , (b y t e) 0x51 , (b y t e) 0x85 , (b y t e) 0x3B , (b y t e) 0x55 , (←↩

b y t e) 0x8B ,

101

Chapter B. (Program Code for RSA Digital Signature

73 (b y t e) 0x50 , (b y t e) 0x53 , (b y t e) 0x71 , (b y t e) 0x03 , (b y t e) 0x1F , (←↩
b y t e) 0xBE ,

74 (b y t e) 0x27 , (b y t e) 0xFF , (b y t e) 0x20 , (b y t e) 0xAF , (b y t e) 0x2D , (←↩
b y t e) 0x27 ,

75 (b y t e) 0x6C , (b y t e) 0x71 , (b y t e) 0x09 , (b y t e) 0xCF , (b y t e) 0x0F , (←↩
b y t e) 0x3E ,

76 (b y t e) 0x00 , (b y t e) 0xFD , (b y t e) 0xBD , (b y t e) 0xA5 , (b y t e) 0xA0 , (←↩
b y t e) 0xC0 ,

77 (b y t e) 0x65 , (b y t e) 0x01 , (b y t e) 0xC2 , (b y t e) 0x9C , (b y t e) 0xC0 , (←↩
b y t e) 0x77 ,

78 (b y t e) 0xDF , (b y t e) 0x25 , (b y t e) 0x27 , (b y t e) 0xDE , (b y t e) 0xD9 , (←↩
b y t e) 0x1B ,

79 (b y t e) 0x8F , (b y t e) 0xC6 , (b y t e) 0x82 , (b y t e) 0x9F ,
80
81 } ;
82
83 / / RSA_CRT co−e f f i c i e n t PQ (PQ=1/ q mod p)
84 s t a t i c f i n a l b y t e [] PQ = {
85 (b y t e) 0xB6 , (b y t e) 0xB1 , (b y t e) 0x23 , (b y t e) 0x99 , (b y t e) 0xD5 , (←↩

b y t e) 0x12 ,
86 (b y t e) 0xDA , (b y t e) 0x50 , (b y t e) 0x38 , (b y t e) 0x2E , (b y t e) 0x44 , (←↩

b y t e) 0xA4 ,
87 (b y t e) 0x21 , (b y t e) 0x94 , (b y t e) 0x3B , (b y t e) 0x50 , (b y t e) 0x49 , (←↩

b y t e) 0x59 ,
88 (b y t e) 0x61 , (b y t e) 0xF7 , (b y t e) 0xF9 , (b y t e) 0x29 , (b y t e) 0xAA , (←↩

b y t e) 0xD2 ,
89 (b y t e) 0x5E , (b y t e) 0x6D , (b y t e) 0x02 , (b y t e) 0x55 , (b y t e) 0xB4 , (←↩

b y t e) 0x1E ,
90 (b y t e) 0x4C , (b y t e) 0xDE , (b y t e) 0x20 , (b y t e) 0x2F , (b y t e) 0x59 , (←↩

b y t e) 0xC4 ,
91 (b y t e) 0x95 , (b y t e) 0xD9 , (b y t e) 0x42 , (b y t e) 0x6B , (b y t e) 0x40 , (←↩

b y t e) 0x21 ,
92 (b y t e) 0x97 , (b y t e) 0x0B , (b y t e) 0xA6 , (b y t e) 0xF4 , (b y t e) 0x32 , (←↩

b y t e) 0x96 ,
93 (b y t e) 0x8B , (b y t e) 0x6B , (b y t e) 0xC3 , (b y t e) 0xEB , (b y t e) 0x2E , (←↩

b y t e) 0x26 ,
94 (b y t e) 0x32 , (b y t e) 0x86 , (b y t e) 0xBB , (b y t e) 0x91 , (b y t e) 0x0F , (←↩

b y t e) 0x30 ,
95 (b y t e) 0xA3 , (b y t e) 0x69 , (b y t e) 0xC6 , (b y t e) 0xB1 ,
96
97 } ;
98
99 / / RSA_CRT e x p o n e n t s DP1 and DQ1 (DP1=d mod (p−1)) (DQ1=d mod (q←↩

−1))
100 s t a t i c f i n a l b y t e [] DP1 = {
101 (b y t e) 0x1E , (b y t e) 0x7C , (b y t e) 0x2D , (b y t e) 0x2E , (b y t e) 0x2D , (←↩

b y t e) 0xB6 ,
102 (b y t e) 0x8B , (b y t e) 0xDD , (b y t e) 0xC4 , (b y t e) 0x45 , (b y t e) 0x2C , (←↩

b y t e) 0x75 ,
103 (b y t e) 0x93 , (b y t e) 0x04 , (b y t e) 0x16 , (b y t e) 0x57 , (b y t e) 0x98 , (←↩

b y t e) 0x19 ,
104 (b y t e) 0x90 , (b y t e) 0x30 , (b y t e) 0xA6 , (b y t e) 0x23 , (b y t e) 0xCF , (←↩

b y t e) 0xF5 ,
105 (b y t e) 0xA1 , (b y t e) 0x10 , (b y t e) 0x9A , (b y t e) 0xC5 , (b y t e) 0xE2 , (←↩

b y t e) 0x19 ,
106 (b y t e) 0x29 , (b y t e) 0x51 , (b y t e) 0x85 , (b y t e) 0x3B , (b y t e) 0x55 , (←↩

b y t e) 0x8B ,

101

Chapter B. (Program Code for RSA Digital Signature

73 (b y t e) 0x50 , (b y t e) 0x53 , (b y t e) 0x71 , (b y t e) 0x03 , (b y t e) 0x1F , (←↩
b y t e) 0xBE ,

74 (b y t e) 0x27 , (b y t e) 0xFF , (b y t e) 0x20 , (b y t e) 0xAF , (b y t e) 0x2D , (←↩
b y t e) 0x27 ,

75 (b y t e) 0x6C , (b y t e) 0x71 , (b y t e) 0x09 , (b y t e) 0xCF , (b y t e) 0x0F , (←↩
b y t e) 0x3E ,

76 (b y t e) 0x00 , (b y t e) 0xFD , (b y t e) 0xBD , (b y t e) 0xA5 , (b y t e) 0xA0 , (←↩
b y t e) 0xC0 ,

77 (b y t e) 0x65 , (b y t e) 0x01 , (b y t e) 0xC2 , (b y t e) 0x9C , (b y t e) 0xC0 , (←↩
b y t e) 0x77 ,

78 (b y t e) 0xDF , (b y t e) 0x25 , (b y t e) 0x27 , (b y t e) 0xDE , (b y t e) 0xD9 , (←↩
b y t e) 0x1B ,

79 (b y t e) 0x8F , (b y t e) 0xC6 , (b y t e) 0x82 , (b y t e) 0x9F ,
80
81 } ;
82
83 / / RSA_CRT co−e f f i c i e n t PQ (PQ=1/ q mod p)
84 s t a t i c f i n a l b y t e [] PQ = {
85 (b y t e) 0xB6 , (b y t e) 0xB1 , (b y t e) 0x23 , (b y t e) 0x99 , (b y t e) 0xD5 , (←↩

b y t e) 0x12 ,
86 (b y t e) 0xDA , (b y t e) 0x50 , (b y t e) 0x38 , (b y t e) 0x2E , (b y t e) 0x44 , (←↩

b y t e) 0xA4 ,
87 (b y t e) 0x21 , (b y t e) 0x94 , (b y t e) 0x3B , (b y t e) 0x50 , (b y t e) 0x49 , (←↩

b y t e) 0x59 ,
88 (b y t e) 0x61 , (b y t e) 0xF7 , (b y t e) 0xF9 , (b y t e) 0x29 , (b y t e) 0xAA , (←↩

b y t e) 0xD2 ,
89 (b y t e) 0x5E , (b y t e) 0x6D , (b y t e) 0x02 , (b y t e) 0x55 , (b y t e) 0xB4 , (←↩

b y t e) 0x1E ,
90 (b y t e) 0x4C , (b y t e) 0xDE , (b y t e) 0x20 , (b y t e) 0x2F , (b y t e) 0x59 , (←↩

b y t e) 0xC4 ,
91 (b y t e) 0x95 , (b y t e) 0xD9 , (b y t e) 0x42 , (b y t e) 0x6B , (b y t e) 0x40 , (←↩

b y t e) 0x21 ,
92 (b y t e) 0x97 , (b y t e) 0x0B , (b y t e) 0xA6 , (b y t e) 0xF4 , (b y t e) 0x32 , (←↩

b y t e) 0x96 ,
93 (b y t e) 0x8B , (b y t e) 0x6B , (b y t e) 0xC3 , (b y t e) 0xEB , (b y t e) 0x2E , (←↩

b y t e) 0x26 ,
94 (b y t e) 0x32 , (b y t e) 0x86 , (b y t e) 0xBB , (b y t e) 0x91 , (b y t e) 0x0F , (←↩

b y t e) 0x30 ,
95 (b y t e) 0xA3 , (b y t e) 0x69 , (b y t e) 0xC6 , (b y t e) 0xB1 ,
96
97 } ;
98
99 / / RSA_CRT e x p o n e n t s DP1 and DQ1 (DP1=d mod (p−1)) (DQ1=d mod (q←↩

−1))
100 s t a t i c f i n a l b y t e [] DP1 = {
101 (b y t e) 0x1E , (b y t e) 0x7C , (b y t e) 0x2D , (b y t e) 0x2E , (b y t e) 0x2D , (←↩

b y t e) 0xB6 ,
102 (b y t e) 0x8B , (b y t e) 0xDD , (b y t e) 0xC4 , (b y t e) 0x45 , (b y t e) 0x2C , (←↩

b y t e) 0x75 ,
103 (b y t e) 0x93 , (b y t e) 0x04 , (b y t e) 0x16 , (b y t e) 0x57 , (b y t e) 0x98 , (←↩

b y t e) 0x19 ,
104 (b y t e) 0x90 , (b y t e) 0x30 , (b y t e) 0xA6 , (b y t e) 0x23 , (b y t e) 0xCF , (←↩

b y t e) 0xF5 ,
105 (b y t e) 0xA1 , (b y t e) 0x10 , (b y t e) 0x9A , (b y t e) 0xC5 , (b y t e) 0xE2 , (←↩

b y t e) 0x19 ,
106 (b y t e) 0x29 , (b y t e) 0x51 , (b y t e) 0x85 , (b y t e) 0x3B , (b y t e) 0x55 , (←↩

b y t e) 0x8B ,

101

Chapter B. (Program Code for RSA Digital Signature

73 (b y t e) 0x50 , (b y t e) 0x53 , (b y t e) 0x71 , (b y t e) 0x03 , (b y t e) 0x1F , (←↩
b y t e) 0xBE ,

74 (b y t e) 0x27 , (b y t e) 0xFF , (b y t e) 0x20 , (b y t e) 0xAF , (b y t e) 0x2D , (←↩
b y t e) 0x27 ,

75 (b y t e) 0x6C , (b y t e) 0x71 , (b y t e) 0x09 , (b y t e) 0xCF , (b y t e) 0x0F , (←↩
b y t e) 0x3E ,

76 (b y t e) 0x00 , (b y t e) 0xFD , (b y t e) 0xBD , (b y t e) 0xA5 , (b y t e) 0xA0 , (←↩
b y t e) 0xC0 ,

77 (b y t e) 0x65 , (b y t e) 0x01 , (b y t e) 0xC2 , (b y t e) 0x9C , (b y t e) 0xC0 , (←↩
b y t e) 0x77 ,

78 (b y t e) 0xDF , (b y t e) 0x25 , (b y t e) 0x27 , (b y t e) 0xDE , (b y t e) 0xD9 , (←↩
b y t e) 0x1B ,

79 (b y t e) 0x8F , (b y t e) 0xC6 , (b y t e) 0x82 , (b y t e) 0x9F ,
80
81 } ;
82
83 / / RSA_CRT co−e f f i c i e n t PQ (PQ=1/ q mod p)
84 s t a t i c f i n a l b y t e [] PQ = {
85 (b y t e) 0xB6 , (b y t e) 0xB1 , (b y t e) 0x23 , (b y t e) 0x99 , (b y t e) 0xD5 , (←↩

b y t e) 0x12 ,
86 (b y t e) 0xDA , (b y t e) 0x50 , (b y t e) 0x38 , (b y t e) 0x2E , (b y t e) 0x44 , (←↩

b y t e) 0xA4 ,
87 (b y t e) 0x21 , (b y t e) 0x94 , (b y t e) 0x3B , (b y t e) 0x50 , (b y t e) 0x49 , (←↩

b y t e) 0x59 ,
88 (b y t e) 0x61 , (b y t e) 0xF7 , (b y t e) 0xF9 , (b y t e) 0x29 , (b y t e) 0xAA , (←↩

b y t e) 0xD2 ,
89 (b y t e) 0x5E , (b y t e) 0x6D , (b y t e) 0x02 , (b y t e) 0x55 , (b y t e) 0xB4 , (←↩

b y t e) 0x1E ,
90 (b y t e) 0x4C , (b y t e) 0xDE , (b y t e) 0x20 , (b y t e) 0x2F , (b y t e) 0x59 , (←↩

b y t e) 0xC4 ,
91 (b y t e) 0x95 , (b y t e) 0xD9 , (b y t e) 0x42 , (b y t e) 0x6B , (b y t e) 0x40 , (←↩

b y t e) 0x21 ,
92 (b y t e) 0x97 , (b y t e) 0x0B , (b y t e) 0xA6 , (b y t e) 0xF4 , (b y t e) 0x32 , (←↩

b y t e) 0x96 ,
93 (b y t e) 0x8B , (b y t e) 0x6B , (b y t e) 0xC3 , (b y t e) 0xEB , (b y t e) 0x2E , (←↩

b y t e) 0x26 ,
94 (b y t e) 0x32 , (b y t e) 0x86 , (b y t e) 0xBB , (b y t e) 0x91 , (b y t e) 0x0F , (←↩

b y t e) 0x30 ,
95 (b y t e) 0xA3 , (b y t e) 0x69 , (b y t e) 0xC6 , (b y t e) 0xB1 ,
96
97 } ;
98
99 / / RSA_CRT e x p o n e n t s DP1 and DQ1 (DP1=d mod (p−1)) (DQ1=d mod (q←↩

−1))
100 s t a t i c f i n a l b y t e [] DP1 = {
101 (b y t e) 0x1E , (b y t e) 0x7C , (b y t e) 0x2D , (b y t e) 0x2E , (b y t e) 0x2D , (←↩

b y t e) 0xB6 ,
102 (b y t e) 0x8B , (b y t e) 0xDD , (b y t e) 0xC4 , (b y t e) 0x45 , (b y t e) 0x2C , (←↩

b y t e) 0x75 ,
103 (b y t e) 0x93 , (b y t e) 0x04 , (b y t e) 0x16 , (b y t e) 0x57 , (b y t e) 0x98 , (←↩

b y t e) 0x19 ,
104 (b y t e) 0x90 , (b y t e) 0x30 , (b y t e) 0xA6 , (b y t e) 0x23 , (b y t e) 0xCF , (←↩

b y t e) 0xF5 ,
105 (b y t e) 0xA1 , (b y t e) 0x10 , (b y t e) 0x9A , (b y t e) 0xC5 , (b y t e) 0xE2 , (←↩

b y t e) 0x19 ,
106 (b y t e) 0x29 , (b y t e) 0x51 , (b y t e) 0x85 , (b y t e) 0x3B , (b y t e) 0x55 , (←↩

b y t e) 0x8B ,

101

Chapter B. (Program Code for RSA Digital Signature

107 (b y t e) 0x6C , (b y t e) 0xDA , (b y t e) 0x66 , (b y t e) 0xCD , (b y t e) 0xE4 , (←↩
b y t e) 0xB0 ,

108 (b y t e) 0xD0 , (b y t e) 0xBC , (b y t e) 0xD1 , (b y t e) 0xD9 , (b y t e) 0xA0 , (←↩
b y t e) 0x42 ,

109 (b y t e) 0x85 , (b y t e) 0x3A , (b y t e) 0x2E , (b y t e) 0xF2 , (b y t e) 0x9A , (←↩
b y t e) 0xCC ,

110 (b y t e) 0xB1 , (b y t e) 0x8D , (b y t e) 0x00 , (b y t e) 0x26 , (b y t e) 0x0E , (←↩
b y t e) 0x2D ,

111 (b y t e) 0x08 , (b y t e) 0x50 , (b y t e) 0xAC , (b y t e) 0x11 ,
112
113 } ;
114
115 s t a t i c f i n a l b y t e [] DQ1 = {
116 (b y t e) 0x52 , (b y t e) 0x30 , (b y t e) 0xDF , (b y t e) 0xDD , (b y t e) 0xF4 , (←↩

b y t e) 0x9B ,
117 (b y t e) 0xF0 , (b y t e) 0x6D , (b y t e) 0x65 , (b y t e) 0xA9 , (b y t e) 0x5E , (←↩

b y t e) 0xB4 ,
118 (b y t e) 0x0F , (b y t e) 0x0E , (b y t e) 0xA8 , (b y t e) 0x6F , (b y t e) 0xB3 , (←↩

b y t e) 0xDB ,
119 (b y t e) 0x0F , (b y t e) 0x49 , (b y t e) 0x3A , (b y t e) 0x90 , (b y t e) 0x65 , (←↩

b y t e) 0x81 ,
120 (b y t e) 0xBD , (b y t e) 0xB2 , (b y t e) 0x1D , (b y t e) 0xA6 , (b y t e) 0x5A , (←↩

b y t e) 0xCD ,
121 (b y t e) 0x36 , (b y t e) 0x80 , (b y t e) 0xD6 , (b y t e) 0x85 , (b y t e) 0x8D , (←↩

b y t e) 0x27 ,
122 (b y t e) 0xA9 , (b y t e) 0xE2 , (b y t e) 0x37 , (b y t e) 0x8C , (b y t e) 0xB3 , (←↩

b y t e) 0x9E ,
123 (b y t e) 0xB1 , (b y t e) 0x65 , (b y t e) 0xC4 , (b y t e) 0x45 , (b y t e) 0xC2 , (←↩

b y t e) 0x07 ,
124 (b y t e) 0x43 , (b y t e) 0x3D , (b y t e) 0x12 , (b y t e) 0x79 , (b y t e) 0xD2 , (←↩

b y t e) 0xBB ,
125 (b y t e) 0xCE , (b y t e) 0x04 , (b y t e) 0x73 , (b y t e) 0xB5 , (b y t e) 0x4A , (←↩

b y t e) 0xD7 ,
126 (b y t e) 0xF2 , (b y t e) 0x52 , (b y t e) 0xF2 , (b y t e) 0xD5 ,
127
128 } ;
129
130
131
132 / / E x p o n e n t i a t i o n o f P u b l i c Key
133 s t a t i c f i n a l b y t e [] expE = {
134 (b y t e) 0x10 , (b y t e) 0x00 , (b y t e) 0x01
135 } ;
136
137 s t a t i c f i n a l b y t e [] modN = {
138 (b y t e) 0xB4 , (b y t e) 0xBB , (b y t e) 0x3F , (b y t e) 0x1B , (b y t e) 0xFB , (←↩

b y t e) 0x51 ,
139 (b y t e) 0xC6 , (b y t e) 0x3F , (b y t e) 0xFC , (b y t e) 0xDE , (b y t e) 0xDF , (←↩

b y t e) 0x96 ,
140 (b y t e) 0x25 , (b y t e) 0x5F , (b y t e) 0x5D , (b y t e) 0x10 , (b y t e) 0xE1 , (←↩

b y t e) 0xA5 ,
141 (b y t e) 0xAC , (b y t e) 0x29 , (b y t e) 0xC0 , (b y t e) 0x5A , (b y t e) 0x37 , (←↩

b y t e) 0x1B ,
142 (b y t e) 0x82 , (b y t e) 0x38 , (b y t e) 0xB5 , (b y t e) 0xFC , (b y t e) 0xB9 , (←↩

b y t e) 0x66 ,
143 (b y t e) 0x79 , (b y t e) 0xAF , (b y t e) 0xF5 , (b y t e) 0x93 , (b y t e) 0x43 , (←↩

b y t e) 0xDC ,

102

Chapter B. (Program Code for RSA Digital Signature

107 (b y t e) 0x6C , (b y t e) 0xDA , (b y t e) 0x66 , (b y t e) 0xCD , (b y t e) 0xE4 , (←↩
b y t e) 0xB0 ,

108 (b y t e) 0xD0 , (b y t e) 0xBC , (b y t e) 0xD1 , (b y t e) 0xD9 , (b y t e) 0xA0 , (←↩
b y t e) 0x42 ,

109 (b y t e) 0x85 , (b y t e) 0x3A , (b y t e) 0x2E , (b y t e) 0xF2 , (b y t e) 0x9A , (←↩
b y t e) 0xCC ,

110 (b y t e) 0xB1 , (b y t e) 0x8D , (b y t e) 0x00 , (b y t e) 0x26 , (b y t e) 0x0E , (←↩
b y t e) 0x2D ,

111 (b y t e) 0x08 , (b y t e) 0x50 , (b y t e) 0xAC , (b y t e) 0x11 ,
112
113 } ;
114
115 s t a t i c f i n a l b y t e [] DQ1 = {
116 (b y t e) 0x52 , (b y t e) 0x30 , (b y t e) 0xDF , (b y t e) 0xDD , (b y t e) 0xF4 , (←↩

b y t e) 0x9B ,
117 (b y t e) 0xF0 , (b y t e) 0x6D , (b y t e) 0x65 , (b y t e) 0xA9 , (b y t e) 0x5E , (←↩

b y t e) 0xB4 ,
118 (b y t e) 0x0F , (b y t e) 0x0E , (b y t e) 0xA8 , (b y t e) 0x6F , (b y t e) 0xB3 , (←↩

b y t e) 0xDB ,
119 (b y t e) 0x0F , (b y t e) 0x49 , (b y t e) 0x3A , (b y t e) 0x90 , (b y t e) 0x65 , (←↩

b y t e) 0x81 ,
120 (b y t e) 0xBD , (b y t e) 0xB2 , (b y t e) 0x1D , (b y t e) 0xA6 , (b y t e) 0x5A , (←↩

b y t e) 0xCD ,
121 (b y t e) 0x36 , (b y t e) 0x80 , (b y t e) 0xD6 , (b y t e) 0x85 , (b y t e) 0x8D , (←↩

b y t e) 0x27 ,
122 (b y t e) 0xA9 , (b y t e) 0xE2 , (b y t e) 0x37 , (b y t e) 0x8C , (b y t e) 0xB3 , (←↩

b y t e) 0x9E ,
123 (b y t e) 0xB1 , (b y t e) 0x65 , (b y t e) 0xC4 , (b y t e) 0x45 , (b y t e) 0xC2 , (←↩

b y t e) 0x07 ,
124 (b y t e) 0x43 , (b y t e) 0x3D , (b y t e) 0x12 , (b y t e) 0x79 , (b y t e) 0xD2 , (←↩

b y t e) 0xBB ,
125 (b y t e) 0xCE , (b y t e) 0x04 , (b y t e) 0x73 , (b y t e) 0xB5 , (b y t e) 0x4A , (←↩

b y t e) 0xD7 ,
126 (b y t e) 0xF2 , (b y t e) 0x52 , (b y t e) 0xF2 , (b y t e) 0xD5 ,
127
128 } ;
129
130
131
132 / / E x p o n e n t i a t i o n o f P u b l i c Key
133 s t a t i c f i n a l b y t e [] expE = {
134 (b y t e) 0x10 , (b y t e) 0x00 , (b y t e) 0x01
135 } ;
136
137 s t a t i c f i n a l b y t e [] modN = {
138 (b y t e) 0xB4 , (b y t e) 0xBB , (b y t e) 0x3F , (b y t e) 0x1B , (b y t e) 0xFB , (←↩

b y t e) 0x51 ,
139 (b y t e) 0xC6 , (b y t e) 0x3F , (b y t e) 0xFC , (b y t e) 0xDE , (b y t e) 0xDF , (←↩

b y t e) 0x96 ,
140 (b y t e) 0x25 , (b y t e) 0x5F , (b y t e) 0x5D , (b y t e) 0x10 , (b y t e) 0xE1 , (←↩

b y t e) 0xA5 ,
141 (b y t e) 0xAC , (b y t e) 0x29 , (b y t e) 0xC0 , (b y t e) 0x5A , (b y t e) 0x37 , (←↩

b y t e) 0x1B ,
142 (b y t e) 0x82 , (b y t e) 0x38 , (b y t e) 0xB5 , (b y t e) 0xFC , (b y t e) 0xB9 , (←↩

b y t e) 0x66 ,
143 (b y t e) 0x79 , (b y t e) 0xAF , (b y t e) 0xF5 , (b y t e) 0x93 , (b y t e) 0x43 , (←↩

b y t e) 0xDC ,

102

Chapter B. (Program Code for RSA Digital Signature

107 (b y t e) 0x6C , (b y t e) 0xDA , (b y t e) 0x66 , (b y t e) 0xCD , (b y t e) 0xE4 , (←↩
b y t e) 0xB0 ,

108 (b y t e) 0xD0 , (b y t e) 0xBC , (b y t e) 0xD1 , (b y t e) 0xD9 , (b y t e) 0xA0 , (←↩
b y t e) 0x42 ,

109 (b y t e) 0x85 , (b y t e) 0x3A , (b y t e) 0x2E , (b y t e) 0xF2 , (b y t e) 0x9A , (←↩
b y t e) 0xCC ,

110 (b y t e) 0xB1 , (b y t e) 0x8D , (b y t e) 0x00 , (b y t e) 0x26 , (b y t e) 0x0E , (←↩
b y t e) 0x2D ,

111 (b y t e) 0x08 , (b y t e) 0x50 , (b y t e) 0xAC , (b y t e) 0x11 ,
112
113 } ;
114
115 s t a t i c f i n a l b y t e [] DQ1 = {
116 (b y t e) 0x52 , (b y t e) 0x30 , (b y t e) 0xDF , (b y t e) 0xDD , (b y t e) 0xF4 , (←↩

b y t e) 0x9B ,
117 (b y t e) 0xF0 , (b y t e) 0x6D , (b y t e) 0x65 , (b y t e) 0xA9 , (b y t e) 0x5E , (←↩

b y t e) 0xB4 ,
118 (b y t e) 0x0F , (b y t e) 0x0E , (b y t e) 0xA8 , (b y t e) 0x6F , (b y t e) 0xB3 , (←↩

b y t e) 0xDB ,
119 (b y t e) 0x0F , (b y t e) 0x49 , (b y t e) 0x3A , (b y t e) 0x90 , (b y t e) 0x65 , (←↩

b y t e) 0x81 ,
120 (b y t e) 0xBD , (b y t e) 0xB2 , (b y t e) 0x1D , (b y t e) 0xA6 , (b y t e) 0x5A , (←↩

b y t e) 0xCD ,
121 (b y t e) 0x36 , (b y t e) 0x80 , (b y t e) 0xD6 , (b y t e) 0x85 , (b y t e) 0x8D , (←↩

b y t e) 0x27 ,
122 (b y t e) 0xA9 , (b y t e) 0xE2 , (b y t e) 0x37 , (b y t e) 0x8C , (b y t e) 0xB3 , (←↩

b y t e) 0x9E ,
123 (b y t e) 0xB1 , (b y t e) 0x65 , (b y t e) 0xC4 , (b y t e) 0x45 , (b y t e) 0xC2 , (←↩

b y t e) 0x07 ,
124 (b y t e) 0x43 , (b y t e) 0x3D , (b y t e) 0x12 , (b y t e) 0x79 , (b y t e) 0xD2 , (←↩

b y t e) 0xBB ,
125 (b y t e) 0xCE , (b y t e) 0x04 , (b y t e) 0x73 , (b y t e) 0xB5 , (b y t e) 0x4A , (←↩

b y t e) 0xD7 ,
126 (b y t e) 0xF2 , (b y t e) 0x52 , (b y t e) 0xF2 , (b y t e) 0xD5 ,
127
128 } ;
129
130
131
132 / / E x p o n e n t i a t i o n o f P u b l i c Key
133 s t a t i c f i n a l b y t e [] expE = {
134 (b y t e) 0x10 , (b y t e) 0x00 , (b y t e) 0x01
135 } ;
136
137 s t a t i c f i n a l b y t e [] modN = {
138 (b y t e) 0xB4 , (b y t e) 0xBB , (b y t e) 0x3F , (b y t e) 0x1B , (b y t e) 0xFB , (←↩

b y t e) 0x51 ,
139 (b y t e) 0xC6 , (b y t e) 0x3F , (b y t e) 0xFC , (b y t e) 0xDE , (b y t e) 0xDF , (←↩

b y t e) 0x96 ,
140 (b y t e) 0x25 , (b y t e) 0x5F , (b y t e) 0x5D , (b y t e) 0x10 , (b y t e) 0xE1 , (←↩

b y t e) 0xA5 ,
141 (b y t e) 0xAC , (b y t e) 0x29 , (b y t e) 0xC0 , (b y t e) 0x5A , (b y t e) 0x37 , (←↩

b y t e) 0x1B ,
142 (b y t e) 0x82 , (b y t e) 0x38 , (b y t e) 0xB5 , (b y t e) 0xFC , (b y t e) 0xB9 , (←↩

b y t e) 0x66 ,
143 (b y t e) 0x79 , (b y t e) 0xAF , (b y t e) 0xF5 , (b y t e) 0x93 , (b y t e) 0x43 , (←↩

b y t e) 0xDC ,

102

Chapter B. (Program Code for RSA Digital Signature

107 (b y t e) 0x6C , (b y t e) 0xDA , (b y t e) 0x66 , (b y t e) 0xCD , (b y t e) 0xE4 , (←↩
b y t e) 0xB0 ,

108 (b y t e) 0xD0 , (b y t e) 0xBC , (b y t e) 0xD1 , (b y t e) 0xD9 , (b y t e) 0xA0 , (←↩
b y t e) 0x42 ,

109 (b y t e) 0x85 , (b y t e) 0x3A , (b y t e) 0x2E , (b y t e) 0xF2 , (b y t e) 0x9A , (←↩
b y t e) 0xCC ,

110 (b y t e) 0xB1 , (b y t e) 0x8D , (b y t e) 0x00 , (b y t e) 0x26 , (b y t e) 0x0E , (←↩
b y t e) 0x2D ,

111 (b y t e) 0x08 , (b y t e) 0x50 , (b y t e) 0xAC , (b y t e) 0x11 ,
112
113 } ;
114
115 s t a t i c f i n a l b y t e [] DQ1 = {
116 (b y t e) 0x52 , (b y t e) 0x30 , (b y t e) 0xDF , (b y t e) 0xDD , (b y t e) 0xF4 , (←↩

b y t e) 0x9B ,
117 (b y t e) 0xF0 , (b y t e) 0x6D , (b y t e) 0x65 , (b y t e) 0xA9 , (b y t e) 0x5E , (←↩

b y t e) 0xB4 ,
118 (b y t e) 0x0F , (b y t e) 0x0E , (b y t e) 0xA8 , (b y t e) 0x6F , (b y t e) 0xB3 , (←↩

b y t e) 0xDB ,
119 (b y t e) 0x0F , (b y t e) 0x49 , (b y t e) 0x3A , (b y t e) 0x90 , (b y t e) 0x65 , (←↩

b y t e) 0x81 ,
120 (b y t e) 0xBD , (b y t e) 0xB2 , (b y t e) 0x1D , (b y t e) 0xA6 , (b y t e) 0x5A , (←↩

b y t e) 0xCD ,
121 (b y t e) 0x36 , (b y t e) 0x80 , (b y t e) 0xD6 , (b y t e) 0x85 , (b y t e) 0x8D , (←↩

b y t e) 0x27 ,
122 (b y t e) 0xA9 , (b y t e) 0xE2 , (b y t e) 0x37 , (b y t e) 0x8C , (b y t e) 0xB3 , (←↩

b y t e) 0x9E ,
123 (b y t e) 0xB1 , (b y t e) 0x65 , (b y t e) 0xC4 , (b y t e) 0x45 , (b y t e) 0xC2 , (←↩

b y t e) 0x07 ,
124 (b y t e) 0x43 , (b y t e) 0x3D , (b y t e) 0x12 , (b y t e) 0x79 , (b y t e) 0xD2 , (←↩

b y t e) 0xBB ,
125 (b y t e) 0xCE , (b y t e) 0x04 , (b y t e) 0x73 , (b y t e) 0xB5 , (b y t e) 0x4A , (←↩

b y t e) 0xD7 ,
126 (b y t e) 0xF2 , (b y t e) 0x52 , (b y t e) 0xF2 , (b y t e) 0xD5 ,
127
128 } ;
129
130
131
132 / / E x p o n e n t i a t i o n o f P u b l i c Key
133 s t a t i c f i n a l b y t e [] expE = {
134 (b y t e) 0x10 , (b y t e) 0x00 , (b y t e) 0x01
135 } ;
136
137 s t a t i c f i n a l b y t e [] modN = {
138 (b y t e) 0xB4 , (b y t e) 0xBB , (b y t e) 0x3F , (b y t e) 0x1B , (b y t e) 0xFB , (←↩

b y t e) 0x51 ,
139 (b y t e) 0xC6 , (b y t e) 0x3F , (b y t e) 0xFC , (b y t e) 0xDE , (b y t e) 0xDF , (←↩

b y t e) 0x96 ,
140 (b y t e) 0x25 , (b y t e) 0x5F , (b y t e) 0x5D , (b y t e) 0x10 , (b y t e) 0xE1 , (←↩

b y t e) 0xA5 ,
141 (b y t e) 0xAC , (b y t e) 0x29 , (b y t e) 0xC0 , (b y t e) 0x5A , (b y t e) 0x37 , (←↩

b y t e) 0x1B ,
142 (b y t e) 0x82 , (b y t e) 0x38 , (b y t e) 0xB5 , (b y t e) 0xFC , (b y t e) 0xB9 , (←↩

b y t e) 0x66 ,
143 (b y t e) 0x79 , (b y t e) 0xAF , (b y t e) 0xF5 , (b y t e) 0x93 , (b y t e) 0x43 , (←↩

b y t e) 0xDC ,

102

Chapter B. (Program Code for RSA Digital Signature

144 (b y t e) 0x32 , (b y t e) 0xE7 , (b y t e) 0x1C , (b y t e) 0xBA , (b y t e) 0xC1 , (←↩
b y t e) 0xF0 ,

145 (b y t e) 0xC5 , (b y t e) 0xD6 , (b y t e) 0x84 , (b y t e) 0x2D , (b y t e) 0xA8 , (←↩
b y t e) 0x2C ,

146 (b y t e) 0x22 , (b y t e) 0x34 , (b y t e) 0xD8 , (b y t e) 0x44 , (b y t e) 0xFD , (←↩
b y t e) 0x95 ,

147 (b y t e) 0x72 , (b y t e) 0xE2 , (b y t e) 0x4E , (b y t e) 0xEF , (b y t e) 0xC0 , (←↩
b y t e) 0xC4 ,

148 (b y t e) 0xC1 , (b y t e) 0xEF , (b y t e) 0x48 , (b y t e) 0x5A , (b y t e) 0x51 , (←↩
b y t e) 0x48 ,

149 (b y t e) 0x60 , (b y t e) 0x80 , (b y t e) 0x84 , (b y t e) 0xD7 , (b y t e) 0x00 , (←↩
b y t e) 0xEF ,

150 (b y t e) 0xA0 , (b y t e) 0x75 , (b y t e) 0x50 , (b y t e) 0x00 , (b y t e) 0xD5 , (←↩
b y t e) 0x80 ,

151 (b y t e) 0x3A , (b y t e) 0x76 , (b y t e) 0x8F , (b y t e) 0x9C , (b y t e) 0xD5 , (←↩
b y t e) 0x14 ,

152 (b y t e) 0x85 , (b y t e) 0xAD , (b y t e) 0x53 , (b y t e) 0x9E , (b y t e) 0x59 , (←↩
b y t e) 0x6D ,

153 (b y t e) 0xCC , (b y t e) 0x64 , (b y t e) 0xA2 , (b y t e) 0x86 , (b y t e) 0x49 , (←↩
b y t e) 0x8A ,

154 (b y t e) 0x23 , (b y t e) 0xC2 , (b y t e) 0xE1 , (b y t e) 0x50 , (b y t e) 0xF6 , (←↩
b y t e) 0xAC ,

155 (b y t e) 0x2C , (b y t e) 0x95 , (b y t e) 0x4E , (b y t e) 0xD8 , (b y t e) 0x0F , (←↩
b y t e) 0xE5 ,

156 (b y t e) 0xF2 , (b y t e) 0x0D , (b y t e) 0xE0 , (b y t e) 0x88 , (b y t e) 0x87 , (←↩
b y t e) 0x4F ,

157 (b y t e) 0xE1 , (b y t e) 0x7E , (b y t e) 0x94 , (b y t e) 0xC5 , (b y t e) 0xE1 , (←↩
b y t e) 0x37 ,

158 (b y t e) 0xA7 , (b y t e) 0xCF , (b y t e) 0xDB , (b y t e) 0x34 , (b y t e) 0x4E , (←↩
b y t e) 0x32 ,

159 (b y t e) 0xA3 , (b y t e) 0xAD ,
160 } ;
161
162
163
164 / / ∗∗∗∗∗∗∗∗∗∗∗∗START CONSTRUCTOR←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
165 p r i v a t e AppRSA (b y t e [] bArray , s h o r t bOffset , b y t e bLength) {
166
167
168 / / R e g i s t e r a p p l e t
169 t r y {
170 register () ;
171 } c a t c h (Exception e) {
172 ISOException .throwIt (REG_FAILURE) ;
173 }
174
175
176
177 random = RandomData .getInstance (RandomData .←↩

ALG_PSEUDO_RANDOM) ;
178 signatureRSA = Signature .getInstance (Signature .←↩

ALG_RSA_SHA_PKCS1 , f a l s e) ;
179 }
180 / / ∗∗∗∗∗∗∗∗∗∗∗∗END CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
181
182

103

Chapter B. (Program Code for RSA Digital Signature

144 (b y t e) 0x32 , (b y t e) 0xE7 , (b y t e) 0x1C , (b y t e) 0xBA , (b y t e) 0xC1 , (←↩
b y t e) 0xF0 ,

145 (b y t e) 0xC5 , (b y t e) 0xD6 , (b y t e) 0x84 , (b y t e) 0x2D , (b y t e) 0xA8 , (←↩
b y t e) 0x2C ,

146 (b y t e) 0x22 , (b y t e) 0x34 , (b y t e) 0xD8 , (b y t e) 0x44 , (b y t e) 0xFD , (←↩
b y t e) 0x95 ,

147 (b y t e) 0x72 , (b y t e) 0xE2 , (b y t e) 0x4E , (b y t e) 0xEF , (b y t e) 0xC0 , (←↩
b y t e) 0xC4 ,

148 (b y t e) 0xC1 , (b y t e) 0xEF , (b y t e) 0x48 , (b y t e) 0x5A , (b y t e) 0x51 , (←↩
b y t e) 0x48 ,

149 (b y t e) 0x60 , (b y t e) 0x80 , (b y t e) 0x84 , (b y t e) 0xD7 , (b y t e) 0x00 , (←↩
b y t e) 0xEF ,

150 (b y t e) 0xA0 , (b y t e) 0x75 , (b y t e) 0x50 , (b y t e) 0x00 , (b y t e) 0xD5 , (←↩
b y t e) 0x80 ,

151 (b y t e) 0x3A , (b y t e) 0x76 , (b y t e) 0x8F , (b y t e) 0x9C , (b y t e) 0xD5 , (←↩
b y t e) 0x14 ,

152 (b y t e) 0x85 , (b y t e) 0xAD , (b y t e) 0x53 , (b y t e) 0x9E , (b y t e) 0x59 , (←↩
b y t e) 0x6D ,

153 (b y t e) 0xCC , (b y t e) 0x64 , (b y t e) 0xA2 , (b y t e) 0x86 , (b y t e) 0x49 , (←↩
b y t e) 0x8A ,

154 (b y t e) 0x23 , (b y t e) 0xC2 , (b y t e) 0xE1 , (b y t e) 0x50 , (b y t e) 0xF6 , (←↩
b y t e) 0xAC ,

155 (b y t e) 0x2C , (b y t e) 0x95 , (b y t e) 0x4E , (b y t e) 0xD8 , (b y t e) 0x0F , (←↩
b y t e) 0xE5 ,

156 (b y t e) 0xF2 , (b y t e) 0x0D , (b y t e) 0xE0 , (b y t e) 0x88 , (b y t e) 0x87 , (←↩
b y t e) 0x4F ,

157 (b y t e) 0xE1 , (b y t e) 0x7E , (b y t e) 0x94 , (b y t e) 0xC5 , (b y t e) 0xE1 , (←↩
b y t e) 0x37 ,

158 (b y t e) 0xA7 , (b y t e) 0xCF , (b y t e) 0xDB , (b y t e) 0x34 , (b y t e) 0x4E , (←↩
b y t e) 0x32 ,

159 (b y t e) 0xA3 , (b y t e) 0xAD ,
160 } ;
161
162
163
164 / / ∗∗∗∗∗∗∗∗∗∗∗∗START CONSTRUCTOR←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
165 p r i v a t e AppRSA (b y t e [] bArray , s h o r t bOffset , b y t e bLength) {
166
167
168 / / R e g i s t e r a p p l e t
169 t r y {
170 register () ;
171 } c a t c h (Exception e) {
172 ISOException .throwIt (REG_FAILURE) ;
173 }
174
175
176
177 random = RandomData .getInstance (RandomData .←↩

ALG_PSEUDO_RANDOM) ;
178 signatureRSA = Signature .getInstance (Signature .←↩

ALG_RSA_SHA_PKCS1 , f a l s e) ;
179 }
180 / / ∗∗∗∗∗∗∗∗∗∗∗∗END CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
181
182

103

Chapter B. (Program Code for RSA Digital Signature

144 (b y t e) 0x32 , (b y t e) 0xE7 , (b y t e) 0x1C , (b y t e) 0xBA , (b y t e) 0xC1 , (←↩
b y t e) 0xF0 ,

145 (b y t e) 0xC5 , (b y t e) 0xD6 , (b y t e) 0x84 , (b y t e) 0x2D , (b y t e) 0xA8 , (←↩
b y t e) 0x2C ,

146 (b y t e) 0x22 , (b y t e) 0x34 , (b y t e) 0xD8 , (b y t e) 0x44 , (b y t e) 0xFD , (←↩
b y t e) 0x95 ,

147 (b y t e) 0x72 , (b y t e) 0xE2 , (b y t e) 0x4E , (b y t e) 0xEF , (b y t e) 0xC0 , (←↩
b y t e) 0xC4 ,

148 (b y t e) 0xC1 , (b y t e) 0xEF , (b y t e) 0x48 , (b y t e) 0x5A , (b y t e) 0x51 , (←↩
b y t e) 0x48 ,

149 (b y t e) 0x60 , (b y t e) 0x80 , (b y t e) 0x84 , (b y t e) 0xD7 , (b y t e) 0x00 , (←↩
b y t e) 0xEF ,

150 (b y t e) 0xA0 , (b y t e) 0x75 , (b y t e) 0x50 , (b y t e) 0x00 , (b y t e) 0xD5 , (←↩
b y t e) 0x80 ,

151 (b y t e) 0x3A , (b y t e) 0x76 , (b y t e) 0x8F , (b y t e) 0x9C , (b y t e) 0xD5 , (←↩
b y t e) 0x14 ,

152 (b y t e) 0x85 , (b y t e) 0xAD , (b y t e) 0x53 , (b y t e) 0x9E , (b y t e) 0x59 , (←↩
b y t e) 0x6D ,

153 (b y t e) 0xCC , (b y t e) 0x64 , (b y t e) 0xA2 , (b y t e) 0x86 , (b y t e) 0x49 , (←↩
b y t e) 0x8A ,

154 (b y t e) 0x23 , (b y t e) 0xC2 , (b y t e) 0xE1 , (b y t e) 0x50 , (b y t e) 0xF6 , (←↩
b y t e) 0xAC ,

155 (b y t e) 0x2C , (b y t e) 0x95 , (b y t e) 0x4E , (b y t e) 0xD8 , (b y t e) 0x0F , (←↩
b y t e) 0xE5 ,

156 (b y t e) 0xF2 , (b y t e) 0x0D , (b y t e) 0xE0 , (b y t e) 0x88 , (b y t e) 0x87 , (←↩
b y t e) 0x4F ,

157 (b y t e) 0xE1 , (b y t e) 0x7E , (b y t e) 0x94 , (b y t e) 0xC5 , (b y t e) 0xE1 , (←↩
b y t e) 0x37 ,

158 (b y t e) 0xA7 , (b y t e) 0xCF , (b y t e) 0xDB , (b y t e) 0x34 , (b y t e) 0x4E , (←↩
b y t e) 0x32 ,

159 (b y t e) 0xA3 , (b y t e) 0xAD ,
160 } ;
161
162
163
164 / / ∗∗∗∗∗∗∗∗∗∗∗∗START CONSTRUCTOR←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
165 p r i v a t e AppRSA (b y t e [] bArray , s h o r t bOffset , b y t e bLength) {
166
167
168 / / R e g i s t e r a p p l e t
169 t r y {
170 register () ;
171 } c a t c h (Exception e) {
172 ISOException .throwIt (REG_FAILURE) ;
173 }
174
175
176
177 random = RandomData .getInstance (RandomData .←↩

ALG_PSEUDO_RANDOM) ;
178 signatureRSA = Signature .getInstance (Signature .←↩

ALG_RSA_SHA_PKCS1 , f a l s e) ;
179 }
180 / / ∗∗∗∗∗∗∗∗∗∗∗∗END CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
181
182

103

Chapter B. (Program Code for RSA Digital Signature

144 (b y t e) 0x32 , (b y t e) 0xE7 , (b y t e) 0x1C , (b y t e) 0xBA , (b y t e) 0xC1 , (←↩
b y t e) 0xF0 ,

145 (b y t e) 0xC5 , (b y t e) 0xD6 , (b y t e) 0x84 , (b y t e) 0x2D , (b y t e) 0xA8 , (←↩
b y t e) 0x2C ,

146 (b y t e) 0x22 , (b y t e) 0x34 , (b y t e) 0xD8 , (b y t e) 0x44 , (b y t e) 0xFD , (←↩
b y t e) 0x95 ,

147 (b y t e) 0x72 , (b y t e) 0xE2 , (b y t e) 0x4E , (b y t e) 0xEF , (b y t e) 0xC0 , (←↩
b y t e) 0xC4 ,

148 (b y t e) 0xC1 , (b y t e) 0xEF , (b y t e) 0x48 , (b y t e) 0x5A , (b y t e) 0x51 , (←↩
b y t e) 0x48 ,

149 (b y t e) 0x60 , (b y t e) 0x80 , (b y t e) 0x84 , (b y t e) 0xD7 , (b y t e) 0x00 , (←↩
b y t e) 0xEF ,

150 (b y t e) 0xA0 , (b y t e) 0x75 , (b y t e) 0x50 , (b y t e) 0x00 , (b y t e) 0xD5 , (←↩
b y t e) 0x80 ,

151 (b y t e) 0x3A , (b y t e) 0x76 , (b y t e) 0x8F , (b y t e) 0x9C , (b y t e) 0xD5 , (←↩
b y t e) 0x14 ,

152 (b y t e) 0x85 , (b y t e) 0xAD , (b y t e) 0x53 , (b y t e) 0x9E , (b y t e) 0x59 , (←↩
b y t e) 0x6D ,

153 (b y t e) 0xCC , (b y t e) 0x64 , (b y t e) 0xA2 , (b y t e) 0x86 , (b y t e) 0x49 , (←↩
b y t e) 0x8A ,

154 (b y t e) 0x23 , (b y t e) 0xC2 , (b y t e) 0xE1 , (b y t e) 0x50 , (b y t e) 0xF6 , (←↩
b y t e) 0xAC ,

155 (b y t e) 0x2C , (b y t e) 0x95 , (b y t e) 0x4E , (b y t e) 0xD8 , (b y t e) 0x0F , (←↩
b y t e) 0xE5 ,

156 (b y t e) 0xF2 , (b y t e) 0x0D , (b y t e) 0xE0 , (b y t e) 0x88 , (b y t e) 0x87 , (←↩
b y t e) 0x4F ,

157 (b y t e) 0xE1 , (b y t e) 0x7E , (b y t e) 0x94 , (b y t e) 0xC5 , (b y t e) 0xE1 , (←↩
b y t e) 0x37 ,

158 (b y t e) 0xA7 , (b y t e) 0xCF , (b y t e) 0xDB , (b y t e) 0x34 , (b y t e) 0x4E , (←↩
b y t e) 0x32 ,

159 (b y t e) 0xA3 , (b y t e) 0xAD ,
160 } ;
161
162
163
164 / / ∗∗∗∗∗∗∗∗∗∗∗∗START CONSTRUCTOR←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
165 p r i v a t e AppRSA (b y t e [] bArray , s h o r t bOffset , b y t e bLength) {
166
167
168 / / R e g i s t e r a p p l e t
169 t r y {
170 register () ;
171 } c a t c h (Exception e) {
172 ISOException .throwIt (REG_FAILURE) ;
173 }
174
175
176
177 random = RandomData .getInstance (RandomData .←↩

ALG_PSEUDO_RANDOM) ;
178 signatureRSA = Signature .getInstance (Signature .←↩

ALG_RSA_SHA_PKCS1 , f a l s e) ;
179 }
180 / / ∗∗∗∗∗∗∗∗∗∗∗∗END CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
181
182

103

Chapter B. (Program Code for RSA Digital Signature

183 p u b l i c s t a t i c vo id install (b y t e [] bArray , s h o r t bOffset , b y t e ←↩
bLength) {

184 / / GP−c o m p l i a n t JavaCard a p p l e t r e g i s t r a t i o n
185 new AppRSA (bArray , bOffset , bLength) ;
186
187 }
188
189 p u b l i c vo id process (APDU apdu) {
190 / / Good p r a c t i c e : Re tu r n 9000 on SELECT
191 i f (selectingApplet ()) {
192 r e t u r n ;
193 }
194
195 b y t e [] buf = apdu .getBuffer () ;
196 / / Check CLA f i e l d a g a i n s t p e r t i c u l a r v a l u e 80 i n Hex
197 i f (buf [ISO7816 .OFFSET_CLA] ! = (b y t e) 0x80)
198 ISOException .throwIt (ISO7816 .SW_CLA_NOT_SUPPORTED) ;
199
200 / / Check INS f i e l d a g a i n s t p e r t i c u l a r v a l u e 10 i n Hex f o r ←↩

f o l l o w i n g i n s t r u c t i o n
201 i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x10)
202 {
203 /∗ C a l c u l a t i n g D i g i t a l s i g n a t u r e
204 ∗ u s i n g RSA_CRT wi th SHA1
205 ∗ /
206 random .generateData (data , (s h o r t) 0 ,dataSize) ;
207 generate_KeyPair () ;
208
209 } e l s e i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x20)
210 {
211
212 generate_signature () ;
213
214 Util .arrayCopy (signRSA , (s h o r t) 0 ,buf , (s h o r t) 0 , (s h o r t)←↩

signSizeRSA) ;
215 apdu .setOutgoingAndSend ((s h o r t) 0 ,signSizeRSA) ;
216
217
218
219 } e l s e
220 ISOException .throwIt (ISO7816 .SW_INS_NOT_SUPPORTED) ;
221 }
222
223 p r i v a t e vo id generate_KeyPair () {
224 keyPairRSA = new KeyPair (KeyPair .ALG_RSA_CRT , KeyBuilder .←↩

LENGTH_RSA_1024) ;
225
226 RSAPrivateCrt = (RSAPrivateCrtKey) keyPairRSA .getPrivate () ;
227 RSAPublic = (RSAPublicKey) keyPairRSA .getPublic () ;
228
229 RSAPrivateCrt .setP (P , (s h o r t) 0 , (s h o r t)P .length) ;
230 RSAPrivateCrt .setQ (Q , (s h o r t) 0 , (s h o r t)Q .length) ;
231 RSAPrivateCrt .setPQ (PQ , (s h o r t) 0 , (s h o r t)PQ .length) ;
232 RSAPrivateCrt .setDP1 (DP1 , (s h o r t) 0 , (s h o r t)DP1 .length) ;
233 RSAPrivateCrt .setDQ1 (DQ1 , (s h o r t) 0 , (s h o r t)DQ1 .length) ;
234
235

104

Chapter B. (Program Code for RSA Digital Signature

183 p u b l i c s t a t i c vo id install (b y t e [] bArray , s h o r t bOffset , b y t e ←↩
bLength) {

184 / / GP−c o m p l i a n t JavaCard a p p l e t r e g i s t r a t i o n
185 new AppRSA (bArray , bOffset , bLength) ;
186
187 }
188
189 p u b l i c vo id process (APDU apdu) {
190 / / Good p r a c t i c e : Re tu r n 9000 on SELECT
191 i f (selectingApplet ()) {
192 r e t u r n ;
193 }
194
195 b y t e [] buf = apdu .getBuffer () ;
196 / / Check CLA f i e l d a g a i n s t p e r t i c u l a r v a l u e 80 i n Hex
197 i f (buf [ISO7816 .OFFSET_CLA] ! = (b y t e) 0x80)
198 ISOException .throwIt (ISO7816 .SW_CLA_NOT_SUPPORTED) ;
199
200 / / Check INS f i e l d a g a i n s t p e r t i c u l a r v a l u e 10 i n Hex f o r ←↩

f o l l o w i n g i n s t r u c t i o n
201 i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x10)
202 {
203 /∗ C a l c u l a t i n g D i g i t a l s i g n a t u r e
204 ∗ u s i n g RSA_CRT wi th SHA1
205 ∗ /
206 random .generateData (data , (s h o r t) 0 ,dataSize) ;
207 generate_KeyPair () ;
208
209 } e l s e i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x20)
210 {
211
212 generate_signature () ;
213
214 Util .arrayCopy (signRSA , (s h o r t) 0 ,buf , (s h o r t) 0 , (s h o r t)←↩

signSizeRSA) ;
215 apdu .setOutgoingAndSend ((s h o r t) 0 ,signSizeRSA) ;
216
217
218
219 } e l s e
220 ISOException .throwIt (ISO7816 .SW_INS_NOT_SUPPORTED) ;
221 }
222
223 p r i v a t e vo id generate_KeyPair () {
224 keyPairRSA = new KeyPair (KeyPair .ALG_RSA_CRT , KeyBuilder .←↩

LENGTH_RSA_1024) ;
225
226 RSAPrivateCrt = (RSAPrivateCrtKey) keyPairRSA .getPrivate () ;
227 RSAPublic = (RSAPublicKey) keyPairRSA .getPublic () ;
228
229 RSAPrivateCrt .setP (P , (s h o r t) 0 , (s h o r t)P .length) ;
230 RSAPrivateCrt .setQ (Q , (s h o r t) 0 , (s h o r t)Q .length) ;
231 RSAPrivateCrt .setPQ (PQ , (s h o r t) 0 , (s h o r t)PQ .length) ;
232 RSAPrivateCrt .setDP1 (DP1 , (s h o r t) 0 , (s h o r t)DP1 .length) ;
233 RSAPrivateCrt .setDQ1 (DQ1 , (s h o r t) 0 , (s h o r t)DQ1 .length) ;
234
235

104

Chapter B. (Program Code for RSA Digital Signature

183 p u b l i c s t a t i c vo id install (b y t e [] bArray , s h o r t bOffset , b y t e ←↩
bLength) {

184 / / GP−c o m p l i a n t JavaCard a p p l e t r e g i s t r a t i o n
185 new AppRSA (bArray , bOffset , bLength) ;
186
187 }
188
189 p u b l i c vo id process (APDU apdu) {
190 / / Good p r a c t i c e : Re tu r n 9000 on SELECT
191 i f (selectingApplet ()) {
192 r e t u r n ;
193 }
194
195 b y t e [] buf = apdu .getBuffer () ;
196 / / Check CLA f i e l d a g a i n s t p e r t i c u l a r v a l u e 80 i n Hex
197 i f (buf [ISO7816 .OFFSET_CLA] ! = (b y t e) 0x80)
198 ISOException .throwIt (ISO7816 .SW_CLA_NOT_SUPPORTED) ;
199
200 / / Check INS f i e l d a g a i n s t p e r t i c u l a r v a l u e 10 i n Hex f o r ←↩

f o l l o w i n g i n s t r u c t i o n
201 i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x10)
202 {
203 /∗ C a l c u l a t i n g D i g i t a l s i g n a t u r e
204 ∗ u s i n g RSA_CRT wi th SHA1
205 ∗ /
206 random .generateData (data , (s h o r t) 0 ,dataSize) ;
207 generate_KeyPair () ;
208
209 } e l s e i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x20)
210 {
211
212 generate_signature () ;
213
214 Util .arrayCopy (signRSA , (s h o r t) 0 ,buf , (s h o r t) 0 , (s h o r t)←↩

signSizeRSA) ;
215 apdu .setOutgoingAndSend ((s h o r t) 0 ,signSizeRSA) ;
216
217
218
219 } e l s e
220 ISOException .throwIt (ISO7816 .SW_INS_NOT_SUPPORTED) ;
221 }
222
223 p r i v a t e vo id generate_KeyPair () {
224 keyPairRSA = new KeyPair (KeyPair .ALG_RSA_CRT , KeyBuilder .←↩

LENGTH_RSA_1024) ;
225
226 RSAPrivateCrt = (RSAPrivateCrtKey) keyPairRSA .getPrivate () ;
227 RSAPublic = (RSAPublicKey) keyPairRSA .getPublic () ;
228
229 RSAPrivateCrt .setP (P , (s h o r t) 0 , (s h o r t)P .length) ;
230 RSAPrivateCrt .setQ (Q , (s h o r t) 0 , (s h o r t)Q .length) ;
231 RSAPrivateCrt .setPQ (PQ , (s h o r t) 0 , (s h o r t)PQ .length) ;
232 RSAPrivateCrt .setDP1 (DP1 , (s h o r t) 0 , (s h o r t)DP1 .length) ;
233 RSAPrivateCrt .setDQ1 (DQ1 , (s h o r t) 0 , (s h o r t)DQ1 .length) ;
234
235

104

Chapter B. (Program Code for RSA Digital Signature

183 p u b l i c s t a t i c vo id install (b y t e [] bArray , s h o r t bOffset , b y t e ←↩
bLength) {

184 / / GP−c o m p l i a n t JavaCard a p p l e t r e g i s t r a t i o n
185 new AppRSA (bArray , bOffset , bLength) ;
186
187 }
188
189 p u b l i c vo id process (APDU apdu) {
190 / / Good p r a c t i c e : Re tu r n 9000 on SELECT
191 i f (selectingApplet ()) {
192 r e t u r n ;
193 }
194
195 b y t e [] buf = apdu .getBuffer () ;
196 / / Check CLA f i e l d a g a i n s t p e r t i c u l a r v a l u e 80 i n Hex
197 i f (buf [ISO7816 .OFFSET_CLA] ! = (b y t e) 0x80)
198 ISOException .throwIt (ISO7816 .SW_CLA_NOT_SUPPORTED) ;
199
200 / / Check INS f i e l d a g a i n s t p e r t i c u l a r v a l u e 10 i n Hex f o r ←↩

f o l l o w i n g i n s t r u c t i o n
201 i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x10)
202 {
203 /∗ C a l c u l a t i n g D i g i t a l s i g n a t u r e
204 ∗ u s i n g RSA_CRT wi th SHA1
205 ∗ /
206 random .generateData (data , (s h o r t) 0 ,dataSize) ;
207 generate_KeyPair () ;
208
209 } e l s e i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x20)
210 {
211
212 generate_signature () ;
213
214 Util .arrayCopy (signRSA , (s h o r t) 0 ,buf , (s h o r t) 0 , (s h o r t)←↩

signSizeRSA) ;
215 apdu .setOutgoingAndSend ((s h o r t) 0 ,signSizeRSA) ;
216
217
218
219 } e l s e
220 ISOException .throwIt (ISO7816 .SW_INS_NOT_SUPPORTED) ;
221 }
222
223 p r i v a t e vo id generate_KeyPair () {
224 keyPairRSA = new KeyPair (KeyPair .ALG_RSA_CRT , KeyBuilder .←↩

LENGTH_RSA_1024) ;
225
226 RSAPrivateCrt = (RSAPrivateCrtKey) keyPairRSA .getPrivate () ;
227 RSAPublic = (RSAPublicKey) keyPairRSA .getPublic () ;
228
229 RSAPrivateCrt .setP (P , (s h o r t) 0 , (s h o r t)P .length) ;
230 RSAPrivateCrt .setQ (Q , (s h o r t) 0 , (s h o r t)Q .length) ;
231 RSAPrivateCrt .setPQ (PQ , (s h o r t) 0 , (s h o r t)PQ .length) ;
232 RSAPrivateCrt .setDP1 (DP1 , (s h o r t) 0 , (s h o r t)DP1 .length) ;
233 RSAPrivateCrt .setDQ1 (DQ1 , (s h o r t) 0 , (s h o r t)DQ1 .length) ;
234
235

104

Chapter B. (Program Code for RSA Digital Signature

236 keyPairRSA .genKeyPair () ;
237
238 }
239
240 p r i v a t e vo id generate_signature () {
241
242 signatureRSA .init (RSAPrivateCrt ,Signature .MODE_SIGN) ;
243 signatureRSA .sign (data , (s h o r t) 0 ,dataSize ,signRSA , (s h o r t) 0) ;
244
245 }
246
247 }

105

Chapter B. (Program Code for RSA Digital Signature

236 keyPairRSA .genKeyPair () ;
237
238 }
239
240 p r i v a t e vo id generate_signature () {
241
242 signatureRSA .init (RSAPrivateCrt ,Signature .MODE_SIGN) ;
243 signatureRSA .sign (data , (s h o r t) 0 ,dataSize ,signRSA , (s h o r t) 0) ;
244
245 }
246
247 }

105

Chapter B. (Program Code for RSA Digital Signature

236 keyPairRSA .genKeyPair () ;
237
238 }
239
240 p r i v a t e vo id generate_signature () {
241
242 signatureRSA .init (RSAPrivateCrt ,Signature .MODE_SIGN) ;
243 signatureRSA .sign (data , (s h o r t) 0 ,dataSize ,signRSA , (s h o r t) 0) ;
244
245 }
246
247 }

105

Chapter B. (Program Code for RSA Digital Signature

236 keyPairRSA .genKeyPair () ;
237
238 }
239
240 p r i v a t e vo id generate_signature () {
241
242 signatureRSA .init (RSAPrivateCrt ,Signature .MODE_SIGN) ;
243 signatureRSA .sign (data , (s h o r t) 0 ,dataSize ,signRSA , (s h o r t) 0) ;
244
245 }
246
247 }

105

Chapter B. (Program Code for RSA Digital Signature

106

Chapter B. (Program Code for RSA Digital Signature

106

Chapter B. (Program Code for RSA Digital Signature

106

Chapter B. (Program Code for RSA Digital Signature

106

Appendix C

Program Code for ECDSA
Digital Signature

1 /∗ ∗
2 ∗
3 ∗ /
4 package packEC ;
5 / / s e l e c t cardE 6361726445
6 i m p o r t javacard .framework .Applet ;
7 i m p o r t javacard .framework .ISO7816 ;
8 i m p o r t javacard .framework .ISOException ;
9 i m p o r t javacard .framework .APDU ;

10 i m p o r t javacard .framework .JCSystem ;
11 i m p o r t javacard .framework .OwnerPIN ;
12 i m p o r t javacard .framework .PINException ;
13 i m p o r t javacard .framework .Util ;
14 i m p o r t javacard .security .DESKey ;
15 i m p o r t javacard .security .ECPrivateKey ;
16 i m p o r t javacard .security .ECPublicKey ;
17 i m p o r t javacard .security .KeyBuilder ;
18 i m p o r t javacard .security .KeyPair ;
19 i m p o r t javacard .security .RandomData ;
20 i m p o r t javacard .security .Signature ;
21 i m p o r t javacardx .crypto .Cipher ;
22
23
24 /∗ ∗
25 ∗ @author kamran
26 ∗
27 ∗ /
28 p u b l i c c l a s s AppEC e x t e n d s Applet {
29
30 p r i v a t e s h o r t dataSize=(s h o r t) 256 ;
31 p r i v a t e s h o r t signSizeEC=(s h o r t) 4 8 ;

107

Appendix C

Program Code for ECDSA
Digital Signature

1 /∗ ∗
2 ∗
3 ∗ /
4 package packEC ;
5 / / s e l e c t cardE 6361726445
6 i m p o r t javacard .framework .Applet ;
7 i m p o r t javacard .framework .ISO7816 ;
8 i m p o r t javacard .framework .ISOException ;
9 i m p o r t javacard .framework .APDU ;

10 i m p o r t javacard .framework .JCSystem ;
11 i m p o r t javacard .framework .OwnerPIN ;
12 i m p o r t javacard .framework .PINException ;
13 i m p o r t javacard .framework .Util ;
14 i m p o r t javacard .security .DESKey ;
15 i m p o r t javacard .security .ECPrivateKey ;
16 i m p o r t javacard .security .ECPublicKey ;
17 i m p o r t javacard .security .KeyBuilder ;
18 i m p o r t javacard .security .KeyPair ;
19 i m p o r t javacard .security .RandomData ;
20 i m p o r t javacard .security .Signature ;
21 i m p o r t javacardx .crypto .Cipher ;
22
23
24 /∗ ∗
25 ∗ @author kamran
26 ∗
27 ∗ /
28 p u b l i c c l a s s AppEC e x t e n d s Applet {
29
30 p r i v a t e s h o r t dataSize=(s h o r t) 256 ;
31 p r i v a t e s h o r t signSizeEC=(s h o r t) 4 8 ;

107

Appendix C

Program Code for ECDSA
Digital Signature

1 /∗ ∗
2 ∗
3 ∗ /
4 package packEC ;
5 / / s e l e c t cardE 6361726445
6 i m p o r t javacard .framework .Applet ;
7 i m p o r t javacard .framework .ISO7816 ;
8 i m p o r t javacard .framework .ISOException ;
9 i m p o r t javacard .framework .APDU ;

10 i m p o r t javacard .framework .JCSystem ;
11 i m p o r t javacard .framework .OwnerPIN ;
12 i m p o r t javacard .framework .PINException ;
13 i m p o r t javacard .framework .Util ;
14 i m p o r t javacard .security .DESKey ;
15 i m p o r t javacard .security .ECPrivateKey ;
16 i m p o r t javacard .security .ECPublicKey ;
17 i m p o r t javacard .security .KeyBuilder ;
18 i m p o r t javacard .security .KeyPair ;
19 i m p o r t javacard .security .RandomData ;
20 i m p o r t javacard .security .Signature ;
21 i m p o r t javacardx .crypto .Cipher ;
22
23
24 /∗ ∗
25 ∗ @author kamran
26 ∗
27 ∗ /
28 p u b l i c c l a s s AppEC e x t e n d s Applet {
29
30 p r i v a t e s h o r t dataSize=(s h o r t) 256 ;
31 p r i v a t e s h o r t signSizeEC=(s h o r t) 4 8 ;

107

Appendix C

Program Code for ECDSA
Digital Signature

1 /∗ ∗
2 ∗
3 ∗ /
4 package packEC ;
5 / / s e l e c t cardE 6361726445
6 i m p o r t javacard .framework .Applet ;
7 i m p o r t javacard .framework .ISO7816 ;
8 i m p o r t javacard .framework .ISOException ;
9 i m p o r t javacard .framework .APDU ;

10 i m p o r t javacard .framework .JCSystem ;
11 i m p o r t javacard .framework .OwnerPIN ;
12 i m p o r t javacard .framework .PINException ;
13 i m p o r t javacard .framework .Util ;
14 i m p o r t javacard .security .DESKey ;
15 i m p o r t javacard .security .ECPrivateKey ;
16 i m p o r t javacard .security .ECPublicKey ;
17 i m p o r t javacard .security .KeyBuilder ;
18 i m p o r t javacard .security .KeyPair ;
19 i m p o r t javacard .security .RandomData ;
20 i m p o r t javacard .security .Signature ;
21 i m p o r t javacardx .crypto .Cipher ;
22
23
24 /∗ ∗
25 ∗ @author kamran
26 ∗
27 ∗ /
28 p u b l i c c l a s s AppEC e x t e n d s Applet {
29
30 p r i v a t e s h o r t dataSize=(s h o r t) 256 ;
31 p r i v a t e s h o r t signSizeEC=(s h o r t) 4 8 ;

107

Chapter C. Program Code for ECDSA Digital Signature

32
33 b y t e [] data=JCSystem .makeTransientByteArray (dataSize ,
34 JCSystem .CLEAR_ON_DESELECT) ;
35 b y t e [] signEC=JCSystem .makeTransientByteArray ((s h o r t)signSizeEC ,
36 JCSystem .CLEAR_ON_DESELECT) ;
37
38 f i n a l s t a t i c s h o r t REG_FAILURE=0x0001 ;
39
40
41
42
43 p r i v a t e KeyPair keyPairEC ;
44 p r i v a t e ECPrivateKey ECPrivate ;
45 p r i v a t e ECPublicKey ECPublic ;
46 p r i v a t e Signature signatureEC ;
47 p r i v a t e RandomData random ;
48
49 /∗ ∗∗∗∗∗∗∗∗∗ P a r a m e t e r s t o s i g n ECDSA S i g n a t u r e ∗∗∗∗∗∗∗∗∗∗ ∗ /
50 / / NSA K−163 wi th P o l y n o m i a l b a s i s f (x) = x ^163 + x ^7 + x ^6 + x ^3 + ←↩

1
51 s t a t i c f i n a l s h o r t e1 = 0x0007 ;
52 s t a t i c f i n a l s h o r t e2 = 0x0006 ;
53 s t a t i c f i n a l s h o r t e3 = 0x0003 ;
54
55 / / c o f a c t o r
56 s t a t i c f i n a l s h o r t k = 0x0002 ;
57
58
59
60
61 / / Two f i e l d e l e m e n t s a and b = 1 d e f i n e EC e q u a t i o n y^2+ xy = x^3+ ax←↩

^2+b
62 s t a t i c f i n a l b y t e [] a = {
63 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
64 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
65 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
66 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
67 (b y t e) 0x01 } ;
68
69 s t a t i c f i n a l b y t e [] b = {
70 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
71 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
72 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
73 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
74 (b y t e) 0x01 } ;
75
76 / / ba se p o i n t G = (Xg , Yg) i n E l l i p t i c Curve
77 s t a t i c f i n a l b y t e [] pointG = {
78 (b y t e) 0x04 , (b y t e) 0x02 , (b y t e) 0xFE , (b y t e) 0x13 , (b y t e) 0xC0 ,
79 (b y t e) 0x53 , (b y t e) 0x7B , (b y t e) 0xBC , (b y t e) 0x11 , (b y t e) 0xAC ,
80 (b y t e) 0xAA , (b y t e) 0x07 , (b y t e) 0xD7 , (b y t e) 0x93 , (b y t e) 0xDE ,
81 (b y t e) 0x4E , (b y t e) 0x6D , (b y t e) 0x5E , (b y t e) 0x5C , (b y t e) 0x94 ,
82 (b y t e) 0xEE , (b y t e) 0xE8 , (b y t e) 0x02 , (b y t e) 0x89 , (b y t e) 0x07 ,
83 (b y t e) 0x0F , (b y t e) 0xB0 , (b y t e) 0x5D , (b y t e) 0x38 , (b y t e) 0xFF ,
84 (b y t e) 0x58 , (b y t e) 0x32 , (b y t e) 0x1F , (b y t e) 0x2E , (b y t e) 0x80 ,
85 (b y t e) 0x05 , (b y t e) 0x36 , (b y t e) 0xD5 , (b y t e) 0x38 , (b y t e) 0xCC ,
86 (b y t e) 0xDA , (b y t e) 0xA3 , (b y t e) 0xD9 } ;

108

Chapter C. Program Code for ECDSA Digital Signature

32
33 b y t e [] data=JCSystem .makeTransientByteArray (dataSize ,
34 JCSystem .CLEAR_ON_DESELECT) ;
35 b y t e [] signEC=JCSystem .makeTransientByteArray ((s h o r t)signSizeEC ,
36 JCSystem .CLEAR_ON_DESELECT) ;
37
38 f i n a l s t a t i c s h o r t REG_FAILURE=0x0001 ;
39
40
41
42
43 p r i v a t e KeyPair keyPairEC ;
44 p r i v a t e ECPrivateKey ECPrivate ;
45 p r i v a t e ECPublicKey ECPublic ;
46 p r i v a t e Signature signatureEC ;
47 p r i v a t e RandomData random ;
48
49 /∗ ∗∗∗∗∗∗∗∗∗ P a r a m e t e r s t o s i g n ECDSA S i g n a t u r e ∗∗∗∗∗∗∗∗∗∗ ∗ /
50 / / NSA K−163 wi th P o l y n o m i a l b a s i s f (x) = x ^163 + x ^7 + x ^6 + x ^3 + ←↩

1
51 s t a t i c f i n a l s h o r t e1 = 0x0007 ;
52 s t a t i c f i n a l s h o r t e2 = 0x0006 ;
53 s t a t i c f i n a l s h o r t e3 = 0x0003 ;
54
55 / / c o f a c t o r
56 s t a t i c f i n a l s h o r t k = 0x0002 ;
57
58
59
60
61 / / Two f i e l d e l e m e n t s a and b = 1 d e f i n e EC e q u a t i o n y^2+ xy = x^3+ ax←↩

^2+b
62 s t a t i c f i n a l b y t e [] a = {
63 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
64 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
65 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
66 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
67 (b y t e) 0x01 } ;
68
69 s t a t i c f i n a l b y t e [] b = {
70 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
71 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
72 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
73 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
74 (b y t e) 0x01 } ;
75
76 / / ba se p o i n t G = (Xg , Yg) i n E l l i p t i c Curve
77 s t a t i c f i n a l b y t e [] pointG = {
78 (b y t e) 0x04 , (b y t e) 0x02 , (b y t e) 0xFE , (b y t e) 0x13 , (b y t e) 0xC0 ,
79 (b y t e) 0x53 , (b y t e) 0x7B , (b y t e) 0xBC , (b y t e) 0x11 , (b y t e) 0xAC ,
80 (b y t e) 0xAA , (b y t e) 0x07 , (b y t e) 0xD7 , (b y t e) 0x93 , (b y t e) 0xDE ,
81 (b y t e) 0x4E , (b y t e) 0x6D , (b y t e) 0x5E , (b y t e) 0x5C , (b y t e) 0x94 ,
82 (b y t e) 0xEE , (b y t e) 0xE8 , (b y t e) 0x02 , (b y t e) 0x89 , (b y t e) 0x07 ,
83 (b y t e) 0x0F , (b y t e) 0xB0 , (b y t e) 0x5D , (b y t e) 0x38 , (b y t e) 0xFF ,
84 (b y t e) 0x58 , (b y t e) 0x32 , (b y t e) 0x1F , (b y t e) 0x2E , (b y t e) 0x80 ,
85 (b y t e) 0x05 , (b y t e) 0x36 , (b y t e) 0xD5 , (b y t e) 0x38 , (b y t e) 0xCC ,
86 (b y t e) 0xDA , (b y t e) 0xA3 , (b y t e) 0xD9 } ;

108

Chapter C. Program Code for ECDSA Digital Signature

32
33 b y t e [] data=JCSystem .makeTransientByteArray (dataSize ,
34 JCSystem .CLEAR_ON_DESELECT) ;
35 b y t e [] signEC=JCSystem .makeTransientByteArray ((s h o r t)signSizeEC ,
36 JCSystem .CLEAR_ON_DESELECT) ;
37
38 f i n a l s t a t i c s h o r t REG_FAILURE=0x0001 ;
39
40
41
42
43 p r i v a t e KeyPair keyPairEC ;
44 p r i v a t e ECPrivateKey ECPrivate ;
45 p r i v a t e ECPublicKey ECPublic ;
46 p r i v a t e Signature signatureEC ;
47 p r i v a t e RandomData random ;
48
49 /∗ ∗∗∗∗∗∗∗∗∗ P a r a m e t e r s t o s i g n ECDSA S i g n a t u r e ∗∗∗∗∗∗∗∗∗∗ ∗ /
50 / / NSA K−163 wi th P o l y n o m i a l b a s i s f (x) = x ^163 + x ^7 + x ^6 + x ^3 + ←↩

1
51 s t a t i c f i n a l s h o r t e1 = 0x0007 ;
52 s t a t i c f i n a l s h o r t e2 = 0x0006 ;
53 s t a t i c f i n a l s h o r t e3 = 0x0003 ;
54
55 / / c o f a c t o r
56 s t a t i c f i n a l s h o r t k = 0x0002 ;
57
58
59
60
61 / / Two f i e l d e l e m e n t s a and b = 1 d e f i n e EC e q u a t i o n y^2+ xy = x^3+ ax←↩

^2+b
62 s t a t i c f i n a l b y t e [] a = {
63 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
64 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
65 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
66 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
67 (b y t e) 0x01 } ;
68
69 s t a t i c f i n a l b y t e [] b = {
70 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
71 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
72 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
73 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
74 (b y t e) 0x01 } ;
75
76 / / ba se p o i n t G = (Xg , Yg) i n E l l i p t i c Curve
77 s t a t i c f i n a l b y t e [] pointG = {
78 (b y t e) 0x04 , (b y t e) 0x02 , (b y t e) 0xFE , (b y t e) 0x13 , (b y t e) 0xC0 ,
79 (b y t e) 0x53 , (b y t e) 0x7B , (b y t e) 0xBC , (b y t e) 0x11 , (b y t e) 0xAC ,
80 (b y t e) 0xAA , (b y t e) 0x07 , (b y t e) 0xD7 , (b y t e) 0x93 , (b y t e) 0xDE ,
81 (b y t e) 0x4E , (b y t e) 0x6D , (b y t e) 0x5E , (b y t e) 0x5C , (b y t e) 0x94 ,
82 (b y t e) 0xEE , (b y t e) 0xE8 , (b y t e) 0x02 , (b y t e) 0x89 , (b y t e) 0x07 ,
83 (b y t e) 0x0F , (b y t e) 0xB0 , (b y t e) 0x5D , (b y t e) 0x38 , (b y t e) 0xFF ,
84 (b y t e) 0x58 , (b y t e) 0x32 , (b y t e) 0x1F , (b y t e) 0x2E , (b y t e) 0x80 ,
85 (b y t e) 0x05 , (b y t e) 0x36 , (b y t e) 0xD5 , (b y t e) 0x38 , (b y t e) 0xCC ,
86 (b y t e) 0xDA , (b y t e) 0xA3 , (b y t e) 0xD9 } ;

108

Chapter C. Program Code for ECDSA Digital Signature

32
33 b y t e [] data=JCSystem .makeTransientByteArray (dataSize ,
34 JCSystem .CLEAR_ON_DESELECT) ;
35 b y t e [] signEC=JCSystem .makeTransientByteArray ((s h o r t)signSizeEC ,
36 JCSystem .CLEAR_ON_DESELECT) ;
37
38 f i n a l s t a t i c s h o r t REG_FAILURE=0x0001 ;
39
40
41
42
43 p r i v a t e KeyPair keyPairEC ;
44 p r i v a t e ECPrivateKey ECPrivate ;
45 p r i v a t e ECPublicKey ECPublic ;
46 p r i v a t e Signature signatureEC ;
47 p r i v a t e RandomData random ;
48
49 /∗ ∗∗∗∗∗∗∗∗∗ P a r a m e t e r s t o s i g n ECDSA S i g n a t u r e ∗∗∗∗∗∗∗∗∗∗ ∗ /
50 / / NSA K−163 wi th P o l y n o m i a l b a s i s f (x) = x ^163 + x ^7 + x ^6 + x ^3 + ←↩

1
51 s t a t i c f i n a l s h o r t e1 = 0x0007 ;
52 s t a t i c f i n a l s h o r t e2 = 0x0006 ;
53 s t a t i c f i n a l s h o r t e3 = 0x0003 ;
54
55 / / c o f a c t o r
56 s t a t i c f i n a l s h o r t k = 0x0002 ;
57
58
59
60
61 / / Two f i e l d e l e m e n t s a and b = 1 d e f i n e EC e q u a t i o n y^2+ xy = x^3+ ax←↩

^2+b
62 s t a t i c f i n a l b y t e [] a = {
63 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
64 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
65 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
66 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
67 (b y t e) 0x01 } ;
68
69 s t a t i c f i n a l b y t e [] b = {
70 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
71 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
72 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
73 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
74 (b y t e) 0x01 } ;
75
76 / / ba se p o i n t G = (Xg , Yg) i n E l l i p t i c Curve
77 s t a t i c f i n a l b y t e [] pointG = {
78 (b y t e) 0x04 , (b y t e) 0x02 , (b y t e) 0xFE , (b y t e) 0x13 , (b y t e) 0xC0 ,
79 (b y t e) 0x53 , (b y t e) 0x7B , (b y t e) 0xBC , (b y t e) 0x11 , (b y t e) 0xAC ,
80 (b y t e) 0xAA , (b y t e) 0x07 , (b y t e) 0xD7 , (b y t e) 0x93 , (b y t e) 0xDE ,
81 (b y t e) 0x4E , (b y t e) 0x6D , (b y t e) 0x5E , (b y t e) 0x5C , (b y t e) 0x94 ,
82 (b y t e) 0xEE , (b y t e) 0xE8 , (b y t e) 0x02 , (b y t e) 0x89 , (b y t e) 0x07 ,
83 (b y t e) 0x0F , (b y t e) 0xB0 , (b y t e) 0x5D , (b y t e) 0x38 , (b y t e) 0xFF ,
84 (b y t e) 0x58 , (b y t e) 0x32 , (b y t e) 0x1F , (b y t e) 0x2E , (b y t e) 0x80 ,
85 (b y t e) 0x05 , (b y t e) 0x36 , (b y t e) 0xD5 , (b y t e) 0x38 , (b y t e) 0xCC ,
86 (b y t e) 0xDA , (b y t e) 0xA3 , (b y t e) 0xD9 } ;

108

Chapter C. Program Code for ECDSA Digital Signature

87
88 / / Pr ime o r d e r o f base p o i n t G
89 s t a t i c f i n a l b y t e [] r = {
90 (b y t e) 0x04 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
91 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
92 (b y t e) 0x02 , (b y t e) 0x01 , (b y t e) 0x08 , (b y t e) 0xA2 , (b y t e) 0xE0 ,
93 (b y t e) 0xCC , (b y t e) 0x0D , (b y t e) 0x99 , (b y t e) 0xF8 , (b y t e) 0xA5 ,
94 (b y t e) 0xEF } ;
95
96 p r i v a t e f i n a l s t a t i c b y t e [] s = { (b y t e) 0x04 , (b y t e) 0x0C ,
97 (b y t e) 0x66 , (b y t e) 0xA6 , (b y t e) 0x44 , (b y t e) 0x59 , (b y t e) 0x48 ,
98 (b y t e) 0x4B , (b y t e) 0x85 , (b y t e) 0x65 , (b y t e) 0x7C , (b y t e) 0x5D ,
99 (b y t e) 0x64 , (b y t e) 0x0A , (b y t e) 0x24 , (b y t e) 0xED , (b y t e) 0x3C ,

100 (b y t e) 0x75 , (b y t e) 0x49 , (b y t e) 0x83 , (b y t e) 0x5F } ;
101
102 p r i v a t e f i n a l s t a t i c b y t e [] w = { (b y t e) 0x04 , (b y t e) 0x0C ,
103 (b y t e) 0x66 , (b y t e) 0xA6 , (b y t e) 0x44 , (b y t e) 0x59 , (b y t e) 0x48 ,
104 (b y t e) 0x4B , (b y t e) 0x85 , (b y t e) 0x65 , (b y t e) 0x7C , (b y t e) 0x5D ,
105 (b y t e) 0x64 , (b y t e) 0x0A , (b y t e) 0x24 , (b y t e) 0xED , (b y t e) 0x3C ,
106 (b y t e) 0x75 , (b y t e) 0x49 , (b y t e) 0x83 , (b y t e) 0x5F , (b y t e) 0x6E ,
107 (b y t e) 0xFB , (b y t e) 0x5B , (b y t e) 0x71 , (b y t e) 0x9E , (b y t e) 0xF7 ,
108 (b y t e) 0x6A , (b y t e) 0x42 , (b y t e) 0xF7 , (b y t e) 0x88 , (b y t e) 0x68 ,
109 (b y t e) 0xFF , (b y t e) 0xA9 , (b y t e) 0x91 , (b y t e) 0x6D , (b y t e) 0x50 ,
110 (b y t e) 0x85 , (b y t e) 0x29 , (b y t e) 0xB9 , (b y t e) 0xE6 , (b y t e) 0xA6 ,
111 (b y t e) 0x55 } ;
112
113
114 / / ∗∗∗∗∗∗∗∗∗∗∗∗START CONSTRUCTOR←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
115 p r i v a t e AppEC (b y t e [] bArray , s h o r t bOffset , b y t e bLength) {
116
117
118 / / R e g i s t e r a p p l e t
119 t r y {
120 register () ;
121 } c a t c h (Exception e) {
122 ISOException .throwIt (REG_FAILURE) ;
123 }
124
125
126
127 signatureEC = Signature .getInstance (Signature .ALG_ECDSA_SHA ,←↩

f a l s e) ;
128 random = RandomData .getInstance (RandomData .ALG_PSEUDO_RANDOM←↩

) ;
129
130 }
131 / / ∗∗∗∗∗∗∗∗∗∗∗∗END CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
132
133
134
135
136 p u b l i c s t a t i c vo id install (b y t e [] bArray , s h o r t bOffset , b y t e ←↩

bLength) {
137 / / GP−c o m p l i a n t JavaCard a p p l e t r e g i s t r a t i o n
138 new AppEC (bArray , bOffset , bLength) ;
139 }

109

Chapter C. Program Code for ECDSA Digital Signature

87
88 / / Pr ime o r d e r o f base p o i n t G
89 s t a t i c f i n a l b y t e [] r = {
90 (b y t e) 0x04 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
91 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
92 (b y t e) 0x02 , (b y t e) 0x01 , (b y t e) 0x08 , (b y t e) 0xA2 , (b y t e) 0xE0 ,
93 (b y t e) 0xCC , (b y t e) 0x0D , (b y t e) 0x99 , (b y t e) 0xF8 , (b y t e) 0xA5 ,
94 (b y t e) 0xEF } ;
95
96 p r i v a t e f i n a l s t a t i c b y t e [] s = { (b y t e) 0x04 , (b y t e) 0x0C ,
97 (b y t e) 0x66 , (b y t e) 0xA6 , (b y t e) 0x44 , (b y t e) 0x59 , (b y t e) 0x48 ,
98 (b y t e) 0x4B , (b y t e) 0x85 , (b y t e) 0x65 , (b y t e) 0x7C , (b y t e) 0x5D ,
99 (b y t e) 0x64 , (b y t e) 0x0A , (b y t e) 0x24 , (b y t e) 0xED , (b y t e) 0x3C ,

100 (b y t e) 0x75 , (b y t e) 0x49 , (b y t e) 0x83 , (b y t e) 0x5F } ;
101
102 p r i v a t e f i n a l s t a t i c b y t e [] w = { (b y t e) 0x04 , (b y t e) 0x0C ,
103 (b y t e) 0x66 , (b y t e) 0xA6 , (b y t e) 0x44 , (b y t e) 0x59 , (b y t e) 0x48 ,
104 (b y t e) 0x4B , (b y t e) 0x85 , (b y t e) 0x65 , (b y t e) 0x7C , (b y t e) 0x5D ,
105 (b y t e) 0x64 , (b y t e) 0x0A , (b y t e) 0x24 , (b y t e) 0xED , (b y t e) 0x3C ,
106 (b y t e) 0x75 , (b y t e) 0x49 , (b y t e) 0x83 , (b y t e) 0x5F , (b y t e) 0x6E ,
107 (b y t e) 0xFB , (b y t e) 0x5B , (b y t e) 0x71 , (b y t e) 0x9E , (b y t e) 0xF7 ,
108 (b y t e) 0x6A , (b y t e) 0x42 , (b y t e) 0xF7 , (b y t e) 0x88 , (b y t e) 0x68 ,
109 (b y t e) 0xFF , (b y t e) 0xA9 , (b y t e) 0x91 , (b y t e) 0x6D , (b y t e) 0x50 ,
110 (b y t e) 0x85 , (b y t e) 0x29 , (b y t e) 0xB9 , (b y t e) 0xE6 , (b y t e) 0xA6 ,
111 (b y t e) 0x55 } ;
112
113
114 / / ∗∗∗∗∗∗∗∗∗∗∗∗START CONSTRUCTOR←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
115 p r i v a t e AppEC (b y t e [] bArray , s h o r t bOffset , b y t e bLength) {
116
117
118 / / R e g i s t e r a p p l e t
119 t r y {
120 register () ;
121 } c a t c h (Exception e) {
122 ISOException .throwIt (REG_FAILURE) ;
123 }
124
125
126
127 signatureEC = Signature .getInstance (Signature .ALG_ECDSA_SHA ,←↩

f a l s e) ;
128 random = RandomData .getInstance (RandomData .ALG_PSEUDO_RANDOM←↩

) ;
129
130 }
131 / / ∗∗∗∗∗∗∗∗∗∗∗∗END CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
132
133
134
135
136 p u b l i c s t a t i c vo id install (b y t e [] bArray , s h o r t bOffset , b y t e ←↩

bLength) {
137 / / GP−c o m p l i a n t JavaCard a p p l e t r e g i s t r a t i o n
138 new AppEC (bArray , bOffset , bLength) ;
139 }

109

Chapter C. Program Code for ECDSA Digital Signature

87
88 / / Pr ime o r d e r o f base p o i n t G
89 s t a t i c f i n a l b y t e [] r = {
90 (b y t e) 0x04 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
91 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
92 (b y t e) 0x02 , (b y t e) 0x01 , (b y t e) 0x08 , (b y t e) 0xA2 , (b y t e) 0xE0 ,
93 (b y t e) 0xCC , (b y t e) 0x0D , (b y t e) 0x99 , (b y t e) 0xF8 , (b y t e) 0xA5 ,
94 (b y t e) 0xEF } ;
95
96 p r i v a t e f i n a l s t a t i c b y t e [] s = { (b y t e) 0x04 , (b y t e) 0x0C ,
97 (b y t e) 0x66 , (b y t e) 0xA6 , (b y t e) 0x44 , (b y t e) 0x59 , (b y t e) 0x48 ,
98 (b y t e) 0x4B , (b y t e) 0x85 , (b y t e) 0x65 , (b y t e) 0x7C , (b y t e) 0x5D ,
99 (b y t e) 0x64 , (b y t e) 0x0A , (b y t e) 0x24 , (b y t e) 0xED , (b y t e) 0x3C ,

100 (b y t e) 0x75 , (b y t e) 0x49 , (b y t e) 0x83 , (b y t e) 0x5F } ;
101
102 p r i v a t e f i n a l s t a t i c b y t e [] w = { (b y t e) 0x04 , (b y t e) 0x0C ,
103 (b y t e) 0x66 , (b y t e) 0xA6 , (b y t e) 0x44 , (b y t e) 0x59 , (b y t e) 0x48 ,
104 (b y t e) 0x4B , (b y t e) 0x85 , (b y t e) 0x65 , (b y t e) 0x7C , (b y t e) 0x5D ,
105 (b y t e) 0x64 , (b y t e) 0x0A , (b y t e) 0x24 , (b y t e) 0xED , (b y t e) 0x3C ,
106 (b y t e) 0x75 , (b y t e) 0x49 , (b y t e) 0x83 , (b y t e) 0x5F , (b y t e) 0x6E ,
107 (b y t e) 0xFB , (b y t e) 0x5B , (b y t e) 0x71 , (b y t e) 0x9E , (b y t e) 0xF7 ,
108 (b y t e) 0x6A , (b y t e) 0x42 , (b y t e) 0xF7 , (b y t e) 0x88 , (b y t e) 0x68 ,
109 (b y t e) 0xFF , (b y t e) 0xA9 , (b y t e) 0x91 , (b y t e) 0x6D , (b y t e) 0x50 ,
110 (b y t e) 0x85 , (b y t e) 0x29 , (b y t e) 0xB9 , (b y t e) 0xE6 , (b y t e) 0xA6 ,
111 (b y t e) 0x55 } ;
112
113
114 / / ∗∗∗∗∗∗∗∗∗∗∗∗START CONSTRUCTOR←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
115 p r i v a t e AppEC (b y t e [] bArray , s h o r t bOffset , b y t e bLength) {
116
117
118 / / R e g i s t e r a p p l e t
119 t r y {
120 register () ;
121 } c a t c h (Exception e) {
122 ISOException .throwIt (REG_FAILURE) ;
123 }
124
125
126
127 signatureEC = Signature .getInstance (Signature .ALG_ECDSA_SHA ,←↩

f a l s e) ;
128 random = RandomData .getInstance (RandomData .ALG_PSEUDO_RANDOM←↩

) ;
129
130 }
131 / / ∗∗∗∗∗∗∗∗∗∗∗∗END CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
132
133
134
135
136 p u b l i c s t a t i c vo id install (b y t e [] bArray , s h o r t bOffset , b y t e ←↩

bLength) {
137 / / GP−c o m p l i a n t JavaCard a p p l e t r e g i s t r a t i o n
138 new AppEC (bArray , bOffset , bLength) ;
139 }

109

Chapter C. Program Code for ECDSA Digital Signature

87
88 / / Pr ime o r d e r o f base p o i n t G
89 s t a t i c f i n a l b y t e [] r = {
90 (b y t e) 0x04 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
91 (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 , (b y t e) 0x00 ,
92 (b y t e) 0x02 , (b y t e) 0x01 , (b y t e) 0x08 , (b y t e) 0xA2 , (b y t e) 0xE0 ,
93 (b y t e) 0xCC , (b y t e) 0x0D , (b y t e) 0x99 , (b y t e) 0xF8 , (b y t e) 0xA5 ,
94 (b y t e) 0xEF } ;
95
96 p r i v a t e f i n a l s t a t i c b y t e [] s = { (b y t e) 0x04 , (b y t e) 0x0C ,
97 (b y t e) 0x66 , (b y t e) 0xA6 , (b y t e) 0x44 , (b y t e) 0x59 , (b y t e) 0x48 ,
98 (b y t e) 0x4B , (b y t e) 0x85 , (b y t e) 0x65 , (b y t e) 0x7C , (b y t e) 0x5D ,
99 (b y t e) 0x64 , (b y t e) 0x0A , (b y t e) 0x24 , (b y t e) 0xED , (b y t e) 0x3C ,

100 (b y t e) 0x75 , (b y t e) 0x49 , (b y t e) 0x83 , (b y t e) 0x5F } ;
101
102 p r i v a t e f i n a l s t a t i c b y t e [] w = { (b y t e) 0x04 , (b y t e) 0x0C ,
103 (b y t e) 0x66 , (b y t e) 0xA6 , (b y t e) 0x44 , (b y t e) 0x59 , (b y t e) 0x48 ,
104 (b y t e) 0x4B , (b y t e) 0x85 , (b y t e) 0x65 , (b y t e) 0x7C , (b y t e) 0x5D ,
105 (b y t e) 0x64 , (b y t e) 0x0A , (b y t e) 0x24 , (b y t e) 0xED , (b y t e) 0x3C ,
106 (b y t e) 0x75 , (b y t e) 0x49 , (b y t e) 0x83 , (b y t e) 0x5F , (b y t e) 0x6E ,
107 (b y t e) 0xFB , (b y t e) 0x5B , (b y t e) 0x71 , (b y t e) 0x9E , (b y t e) 0xF7 ,
108 (b y t e) 0x6A , (b y t e) 0x42 , (b y t e) 0xF7 , (b y t e) 0x88 , (b y t e) 0x68 ,
109 (b y t e) 0xFF , (b y t e) 0xA9 , (b y t e) 0x91 , (b y t e) 0x6D , (b y t e) 0x50 ,
110 (b y t e) 0x85 , (b y t e) 0x29 , (b y t e) 0xB9 , (b y t e) 0xE6 , (b y t e) 0xA6 ,
111 (b y t e) 0x55 } ;
112
113
114 / / ∗∗∗∗∗∗∗∗∗∗∗∗START CONSTRUCTOR←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
115 p r i v a t e AppEC (b y t e [] bArray , s h o r t bOffset , b y t e bLength) {
116
117
118 / / R e g i s t e r a p p l e t
119 t r y {
120 register () ;
121 } c a t c h (Exception e) {
122 ISOException .throwIt (REG_FAILURE) ;
123 }
124
125
126
127 signatureEC = Signature .getInstance (Signature .ALG_ECDSA_SHA ,←↩

f a l s e) ;
128 random = RandomData .getInstance (RandomData .ALG_PSEUDO_RANDOM←↩

) ;
129
130 }
131 / / ∗∗∗∗∗∗∗∗∗∗∗∗END CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / / /
132
133
134
135
136 p u b l i c s t a t i c vo id install (b y t e [] bArray , s h o r t bOffset , b y t e ←↩

bLength) {
137 / / GP−c o m p l i a n t JavaCard a p p l e t r e g i s t r a t i o n
138 new AppEC (bArray , bOffset , bLength) ;
139 }

109

Chapter C. Program Code for ECDSA Digital Signature

140
141 p u b l i c vo id process (APDU apdu) {
142 / / Good p r a c t i c e : Re tu r n 9000 on SELECT
143 i f (selectingApplet ()) {
144 r e t u r n ;
145 }
146
147 b y t e [] buf = apdu .getBuffer () ;
148
149 / / Check CLA f i e l d a g a i n s t p e r t i c u l a r v a l u e 80 i n Hex
150 i f (buf [ISO7816 .OFFSET_CLA] ! = (b y t e) 0x80)
151 ISOException .throwIt (ISO7816 .SW_CLA_NOT_SUPPORTED) ;
152
153 / / Check INS f i e l d a g a i n s t p e r t i c u l a r v a l u e 10 i n Hex f o r ←↩

f o l l o w i n g i n s t r u c t i o n
154 i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x10)
155 {
156 /∗ ∗∗∗∗∗ D i g i t a l S i g n a t u r e I m p l e m e n t a t i o n u s i n g
157 ∗ E l l i p t i c Curve ECDSA and Hash f u n c t i o n SHA1
158 ∗∗∗∗∗∗∗ ∗ /
159
160 random .generateData (data , (s h o r t) 0 ,dataSize) ;
161
162 generate_KeyPair () ;
163
164
165
166 } e l s e i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x20)
167 {
168
169 generate_signature () ;
170
171 Util .arrayCopy (signEC , (s h o r t) 0 ,buf , (s h o r t) 0 , (s h o r t)←↩

signSizeEC) ;
172 apdu .setOutgoingAndSend ((s h o r t) 0 ,signSizeEC) ;
173
174
175
176 } e l s e
177 ISOException .throwIt (ISO7816 .SW_INS_NOT_SUPPORTED) ;
178
179 }
180
181 p r i v a t e vo id generate_KeyPair () {
182 keyPairEC = new KeyPair (KeyPair .ALG_EC_F2M , KeyBuilder .←↩

LENGTH_EC_F2M_163) ;
183
184 ECPublic = (ECPublicKey)keyPairEC .getPublic () ;
185 ECPrivate = (ECPrivateKey)keyPairEC .getPrivate () ;
186
187 ECPublic .setFieldF2M (e1 , e2 , e3) ;
188 ECPublic .setA (a , (s h o r t) 0 , (s h o r t) 21) ;
189 ECPublic .setB (b , (s h o r t) 0 , (s h o r t) 21) ;
190 ECPublic .setG (pointG , (s h o r t) 0 , (s h o r t) 43) ;
191 ECPublic .setK (k) ;
192 ECPublic .setR (r , (s h o r t) 0 , (s h o r t) 21) ;
193 ECPublic .setW (w , (s h o r t) 0 , (s h o r t)w .length) ;

110

Chapter C. Program Code for ECDSA Digital Signature

140
141 p u b l i c vo id process (APDU apdu) {
142 / / Good p r a c t i c e : Re tu r n 9000 on SELECT
143 i f (selectingApplet ()) {
144 r e t u r n ;
145 }
146
147 b y t e [] buf = apdu .getBuffer () ;
148
149 / / Check CLA f i e l d a g a i n s t p e r t i c u l a r v a l u e 80 i n Hex
150 i f (buf [ISO7816 .OFFSET_CLA] ! = (b y t e) 0x80)
151 ISOException .throwIt (ISO7816 .SW_CLA_NOT_SUPPORTED) ;
152
153 / / Check INS f i e l d a g a i n s t p e r t i c u l a r v a l u e 10 i n Hex f o r ←↩

f o l l o w i n g i n s t r u c t i o n
154 i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x10)
155 {
156 /∗ ∗∗∗∗∗ D i g i t a l S i g n a t u r e I m p l e m e n t a t i o n u s i n g
157 ∗ E l l i p t i c Curve ECDSA and Hash f u n c t i o n SHA1
158 ∗∗∗∗∗∗∗ ∗ /
159
160 random .generateData (data , (s h o r t) 0 ,dataSize) ;
161
162 generate_KeyPair () ;
163
164
165
166 } e l s e i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x20)
167 {
168
169 generate_signature () ;
170
171 Util .arrayCopy (signEC , (s h o r t) 0 ,buf , (s h o r t) 0 , (s h o r t)←↩

signSizeEC) ;
172 apdu .setOutgoingAndSend ((s h o r t) 0 ,signSizeEC) ;
173
174
175
176 } e l s e
177 ISOException .throwIt (ISO7816 .SW_INS_NOT_SUPPORTED) ;
178
179 }
180
181 p r i v a t e vo id generate_KeyPair () {
182 keyPairEC = new KeyPair (KeyPair .ALG_EC_F2M , KeyBuilder .←↩

LENGTH_EC_F2M_163) ;
183
184 ECPublic = (ECPublicKey)keyPairEC .getPublic () ;
185 ECPrivate = (ECPrivateKey)keyPairEC .getPrivate () ;
186
187 ECPublic .setFieldF2M (e1 , e2 , e3) ;
188 ECPublic .setA (a , (s h o r t) 0 , (s h o r t) 21) ;
189 ECPublic .setB (b , (s h o r t) 0 , (s h o r t) 21) ;
190 ECPublic .setG (pointG , (s h o r t) 0 , (s h o r t) 43) ;
191 ECPublic .setK (k) ;
192 ECPublic .setR (r , (s h o r t) 0 , (s h o r t) 21) ;
193 ECPublic .setW (w , (s h o r t) 0 , (s h o r t)w .length) ;

110

Chapter C. Program Code for ECDSA Digital Signature

140
141 p u b l i c vo id process (APDU apdu) {
142 / / Good p r a c t i c e : Re tu r n 9000 on SELECT
143 i f (selectingApplet ()) {
144 r e t u r n ;
145 }
146
147 b y t e [] buf = apdu .getBuffer () ;
148
149 / / Check CLA f i e l d a g a i n s t p e r t i c u l a r v a l u e 80 i n Hex
150 i f (buf [ISO7816 .OFFSET_CLA] ! = (b y t e) 0x80)
151 ISOException .throwIt (ISO7816 .SW_CLA_NOT_SUPPORTED) ;
152
153 / / Check INS f i e l d a g a i n s t p e r t i c u l a r v a l u e 10 i n Hex f o r ←↩

f o l l o w i n g i n s t r u c t i o n
154 i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x10)
155 {
156 /∗ ∗∗∗∗∗ D i g i t a l S i g n a t u r e I m p l e m e n t a t i o n u s i n g
157 ∗ E l l i p t i c Curve ECDSA and Hash f u n c t i o n SHA1
158 ∗∗∗∗∗∗∗ ∗ /
159
160 random .generateData (data , (s h o r t) 0 ,dataSize) ;
161
162 generate_KeyPair () ;
163
164
165
166 } e l s e i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x20)
167 {
168
169 generate_signature () ;
170
171 Util .arrayCopy (signEC , (s h o r t) 0 ,buf , (s h o r t) 0 , (s h o r t)←↩

signSizeEC) ;
172 apdu .setOutgoingAndSend ((s h o r t) 0 ,signSizeEC) ;
173
174
175
176 } e l s e
177 ISOException .throwIt (ISO7816 .SW_INS_NOT_SUPPORTED) ;
178
179 }
180
181 p r i v a t e vo id generate_KeyPair () {
182 keyPairEC = new KeyPair (KeyPair .ALG_EC_F2M , KeyBuilder .←↩

LENGTH_EC_F2M_163) ;
183
184 ECPublic = (ECPublicKey)keyPairEC .getPublic () ;
185 ECPrivate = (ECPrivateKey)keyPairEC .getPrivate () ;
186
187 ECPublic .setFieldF2M (e1 , e2 , e3) ;
188 ECPublic .setA (a , (s h o r t) 0 , (s h o r t) 21) ;
189 ECPublic .setB (b , (s h o r t) 0 , (s h o r t) 21) ;
190 ECPublic .setG (pointG , (s h o r t) 0 , (s h o r t) 43) ;
191 ECPublic .setK (k) ;
192 ECPublic .setR (r , (s h o r t) 0 , (s h o r t) 21) ;
193 ECPublic .setW (w , (s h o r t) 0 , (s h o r t)w .length) ;

110

Chapter C. Program Code for ECDSA Digital Signature

140
141 p u b l i c vo id process (APDU apdu) {
142 / / Good p r a c t i c e : Re tu r n 9000 on SELECT
143 i f (selectingApplet ()) {
144 r e t u r n ;
145 }
146
147 b y t e [] buf = apdu .getBuffer () ;
148
149 / / Check CLA f i e l d a g a i n s t p e r t i c u l a r v a l u e 80 i n Hex
150 i f (buf [ISO7816 .OFFSET_CLA] ! = (b y t e) 0x80)
151 ISOException .throwIt (ISO7816 .SW_CLA_NOT_SUPPORTED) ;
152
153 / / Check INS f i e l d a g a i n s t p e r t i c u l a r v a l u e 10 i n Hex f o r ←↩

f o l l o w i n g i n s t r u c t i o n
154 i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x10)
155 {
156 /∗ ∗∗∗∗∗ D i g i t a l S i g n a t u r e I m p l e m e n t a t i o n u s i n g
157 ∗ E l l i p t i c Curve ECDSA and Hash f u n c t i o n SHA1
158 ∗∗∗∗∗∗∗ ∗ /
159
160 random .generateData (data , (s h o r t) 0 ,dataSize) ;
161
162 generate_KeyPair () ;
163
164
165
166 } e l s e i f (buf [ISO7816 .OFFSET_INS]==(b y t e) 0x20)
167 {
168
169 generate_signature () ;
170
171 Util .arrayCopy (signEC , (s h o r t) 0 ,buf , (s h o r t) 0 , (s h o r t)←↩

signSizeEC) ;
172 apdu .setOutgoingAndSend ((s h o r t) 0 ,signSizeEC) ;
173
174
175
176 } e l s e
177 ISOException .throwIt (ISO7816 .SW_INS_NOT_SUPPORTED) ;
178
179 }
180
181 p r i v a t e vo id generate_KeyPair () {
182 keyPairEC = new KeyPair (KeyPair .ALG_EC_F2M , KeyBuilder .←↩

LENGTH_EC_F2M_163) ;
183
184 ECPublic = (ECPublicKey)keyPairEC .getPublic () ;
185 ECPrivate = (ECPrivateKey)keyPairEC .getPrivate () ;
186
187 ECPublic .setFieldF2M (e1 , e2 , e3) ;
188 ECPublic .setA (a , (s h o r t) 0 , (s h o r t) 21) ;
189 ECPublic .setB (b , (s h o r t) 0 , (s h o r t) 21) ;
190 ECPublic .setG (pointG , (s h o r t) 0 , (s h o r t) 43) ;
191 ECPublic .setK (k) ;
192 ECPublic .setR (r , (s h o r t) 0 , (s h o r t) 21) ;
193 ECPublic .setW (w , (s h o r t) 0 , (s h o r t)w .length) ;

110

Chapter C. Program Code for ECDSA Digital Signature

194
195 ECPrivate .setFieldF2M (e1 , e2 , e3) ;
196 ECPrivate .setA (a , (s h o r t) 0 , (s h o r t) 21) ;
197 ECPrivate .setB (b , (s h o r t) 0 , (s h o r t) 21) ;
198 ECPrivate .setG (pointG , (s h o r t) 0 , (s h o r t) 43) ;
199 ECPrivate .setK (k) ;
200 ECPrivate .setR (r , (s h o r t) 0 , (s h o r t) 21) ;
201 ECPrivate .setS (s , (s h o r t) 0 , (s h o r t)s .length) ;
202
203 keyPairEC .genKeyPair () ;
204
205 }
206
207 p r i v a t e vo id generate_signature () {
208
209 signatureEC .init (ECPrivate ,Signature .MODE_SIGN) ;
210 signatureEC .sign (data , (s h o r t) 0 ,dataSize ,signEC , (s h o r t) 0) ;
211 }
212
213
214 }

111

Chapter C. Program Code for ECDSA Digital Signature

194
195 ECPrivate .setFieldF2M (e1 , e2 , e3) ;
196 ECPrivate .setA (a , (s h o r t) 0 , (s h o r t) 21) ;
197 ECPrivate .setB (b , (s h o r t) 0 , (s h o r t) 21) ;
198 ECPrivate .setG (pointG , (s h o r t) 0 , (s h o r t) 43) ;
199 ECPrivate .setK (k) ;
200 ECPrivate .setR (r , (s h o r t) 0 , (s h o r t) 21) ;
201 ECPrivate .setS (s , (s h o r t) 0 , (s h o r t)s .length) ;
202
203 keyPairEC .genKeyPair () ;
204
205 }
206
207 p r i v a t e vo id generate_signature () {
208
209 signatureEC .init (ECPrivate ,Signature .MODE_SIGN) ;
210 signatureEC .sign (data , (s h o r t) 0 ,dataSize ,signEC , (s h o r t) 0) ;
211 }
212
213
214 }

111

Chapter C. Program Code for ECDSA Digital Signature

194
195 ECPrivate .setFieldF2M (e1 , e2 , e3) ;
196 ECPrivate .setA (a , (s h o r t) 0 , (s h o r t) 21) ;
197 ECPrivate .setB (b , (s h o r t) 0 , (s h o r t) 21) ;
198 ECPrivate .setG (pointG , (s h o r t) 0 , (s h o r t) 43) ;
199 ECPrivate .setK (k) ;
200 ECPrivate .setR (r , (s h o r t) 0 , (s h o r t) 21) ;
201 ECPrivate .setS (s , (s h o r t) 0 , (s h o r t)s .length) ;
202
203 keyPairEC .genKeyPair () ;
204
205 }
206
207 p r i v a t e vo id generate_signature () {
208
209 signatureEC .init (ECPrivate ,Signature .MODE_SIGN) ;
210 signatureEC .sign (data , (s h o r t) 0 ,dataSize ,signEC , (s h o r t) 0) ;
211 }
212
213
214 }

111

Chapter C. Program Code for ECDSA Digital Signature

194
195 ECPrivate .setFieldF2M (e1 , e2 , e3) ;
196 ECPrivate .setA (a , (s h o r t) 0 , (s h o r t) 21) ;
197 ECPrivate .setB (b , (s h o r t) 0 , (s h o r t) 21) ;
198 ECPrivate .setG (pointG , (s h o r t) 0 , (s h o r t) 43) ;
199 ECPrivate .setK (k) ;
200 ECPrivate .setR (r , (s h o r t) 0 , (s h o r t) 21) ;
201 ECPrivate .setS (s , (s h o r t) 0 , (s h o r t)s .length) ;
202
203 keyPairEC .genKeyPair () ;
204
205 }
206
207 p r i v a t e vo id generate_signature () {
208
209 signatureEC .init (ECPrivate ,Signature .MODE_SIGN) ;
210 signatureEC .sign (data , (s h o r t) 0 ,dataSize ,signEC , (s h o r t) 0) ;
211 }
212
213
214 }

111

