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Abstract

The conventional associated flow rule, used in continuum plasticity models, is

unsuited for precise prediction of necking in biaxially loaded sheets and plastic

buckling [28], through bifurcation analysis. It is believed that the introduction of

a corner on the subsequent yield surface of the material introduces the necessary

destabilizing effect for a model to predict instabilities at realistic limit strains [32].

Several flow rules incorporating a corner effect have been introduced, with the latest

being the one of Yoshida [36]. The proposed non-associated flow rule has been

implemented in order to test the proposed constitutive model. In parallel, the rate-

independent elastoplastic Taylor-Lin crystal plasticity model has been implemented,

which does also incorporate the corner effects [16]. The two models have been

compared by performing virtual strain path change experiments and comparing

stress paths and the direction of the plastic deformation rate both with respect

to the yield surface and the directions of the total deformation rate and the yield

surface normal. The results indicate that the model qualitatively incorporates the

corner effect, however, they also imply that calibration of the model to fit all types

of experiments in a quantitative manner is not possible. To measure the difference

between the two models an average angle between deviatoric stress points, has been

used as the quantitative measure. An attempt has been made to find the optimal

model parameters for the presented model, by minimizing the mentioned quantity.

The overall conclusion is that the model incorporates the corner effect, however, the

model might be unsuited if the speed at which it slides along the surface, is of great

importance. It should be noted that the Taylor-Lin model is also an approximation,

and how close its behavior is to reality, must be verified experimentally or by more

advanced models, like CPFEM.





Sammendrag

Den konvensjonelle assosierte flyteregelen, brukt i kontinuums plastisitetsmo-

deller, er uegnet til prediksjon av flytinstabiliteter i tynne plater under biaksiell

last og plastisk bukling [28] ved bifurkasjonsanalyse. Teorien tilsier at introduksjon

av et hjørne på materialets instantane flyteflate tilfører en destabiliserende effekt,

som er nødvendig for at en modell skal predikere instabiliteter, med bifurkasjons-

analyse ved realistiske tøyninger [32]. Flere flyteregler har blitt intodusert, som tar

hensyn til hjørneeffekter, hvor det siste bidraget er foreslått av Yoshida i 2018 [36].

Den konstitutive modellen foreslått av Yoshida har blitt implementert for videre

undersøkelser. Parallelt har en elastoplastisk rate-uavhengig krystallplastitisitets-

modell blitt implementert. Denne inkluderer også hjørneeffekten, og er derfor egnet

til sammenlikning. De to modellene har blitt sammenliknet ved å utføre virtuelle

tøyningsvei-endrings eksperimenter. Her har spenningsveien, retningen til den plas-

tiske deformasjonsraten, vinkelen mellom den plastiske deformasjonraten og den

totale deformasjonsraten og vinkelen mellom den plastiske deformasjonsraten og

flyteflatenormalen blitt undersøkt. Resultatene indikerer at begge modeller kvali-

tativt introduserer en hjørneeffekt, men at det kvantitativt kan være utfordrende å

finne modellparametere som gir overenstemmelse for alle typer eksperiment. For å

måle den kvantitative avstanden mellom modellene har det blitt brukt en gjennom-

snittlig vinkel mellom deviatoriske spenningspunkt. En optimeringsalgoritme har

blitt implementert for å minimere dette målet, med gode resultater. Resultatene

tyder likevel på at det trolig ikke er mulig å finne et sett med modellparameter

som matcher alle eksperimenter, ettersom det ser ut til at sammenhengen for den

krystallplastiske modellene er mer kompleks. Det er imidlertid ingen tvil om at den

foreslåtte modellen kvalitativt implementerer hjørneeffekten.
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1. INTRODUCTION

1 Introduction

Prediction of plastic instabilities and flow localization is important in all applications

where metals are formed. In the automotive industry, simulations may replace several

prototyping steps or be used to simulate car crashes, limiting the use of full-scale tests

[7], and possibly greatly reducing both costs and time needed for the development of new

products. The same argument may be made for a lot of other manufacturing processes

where metal forming is involved. In order to perform such material simulations, a model

of the material behavior is needed.

A continuum theory of plasticity aims to treat the material as a continuum with all the

properties of a real plastic material. In reality, a metal is built up by atoms arranged

in crystals and grains, which together make out the bulk material. Most materials are

however used in a scale where the average properties are the most interesting, and what

happens inside each grain at the atomic scale is of lesser interest. Hence a phenomenolog-

ical plasticity model tries to account for the macroscopic behavior of the plastic material

in a simple and computationally efficient manner.

The most common in a phenomenological plasticity model, is to use the associated flow

rule and a smooth yield surface. Meaning that the direction of the plastic deformation

rate is along the normal of a smooth yield surface. It has however been long known

that this approach yields a model which is unsuited for prediction of plastic instabilities,

like necking in biaxially loaded plates and buckling, as is pointed out by for instance

Needleman and Tvergaard [28]. Marciniak and Kuczynski [27] proposed a workaround

to the issues by introducing a finite imperfection in the material. This solution is widely

used, although unrealistically large imperfections must be prescribed for the method to

predict realistic limit strains, as is reported by Azrin and Backofen [3].

In 1949, Batdorf and Budiansky [6] introduced their slip theory of plasticity, using a

yield surface with a sharp vertex to make the model predict realistic buckling loads.

Since then it has been believed that the formation of a corner on the yield surface may

introduce the necessary destabilizing effect for a model to be able to predict plastic

1



1. INTRODUCTION

instabilities. Building on this idea, Stören and Rice [32] followed by Christoffersen and

Hutchinson [8] introduced what is known as the J2 deformation theory and J2 corner

theories, respectively. These deformation theories are known to be able to predict plastic

instabilities at realistic strains and loads, but have not been generally adapted. The main

criticism towards the J2 deformation and corner theories is that they are path dependent

and consequently computationally demanding if all loading modes should be considered,

see Simo [31] or Kuroda and Tvergaard [22].

In an attempt to come up with a modified version of the widely accepted flow theory,

which produce the same results as the J2 deformation theories. Simo [31] proposed to

modify the conventional flow rule, by allowing the direction of the plastic deformation

rate to change, as if there were an instantaneous yield surface with a vertex inside the

conventional yield surface. Otherwise, the model retains the conventional smooth yield

surface. It is assumed that the plastic deformation rate, Dp, is constrained to fall inside

the cone spanned by the normals of the vertex facets. The introduction of such a vertex

on the yield surface results in indeterminacy in the direction of Dp, and consequently

the model must present a method of determining this direction. Simo proposed that Dp

should fall in the plane spanned by the normal of the yield surface and the deviatoric

deformation rate, D′. He further assumed that given D′ is inside the vertex, Dp should

be coaxial with D′ and if D′ is pointing out of the vertex, Dp should tilt equal to the

half angle of the vertex, since it is constrained to lie inside the vertex. Since coaxiality

between Dp and D′ is assumed, an interesting feature of the model proposed by Simo,

is that when D′ is inside the vertex, the stress rate for a non-hardening material will be

zero. Hence the stress point will not slide along the yield surface, but be stationary.

Kuroda and Tvergaard [21] further developed the model proposed by Simo. They for-

mulated the model in a general form, introducing strain rate sensitivity, kinematic hard-

ening and opening up the possibility to use an arbitrary yield surface. They also made

an important modification to the flow rule, by relaxing the coaxiality between the plastic

deformation rate and the deviatoric strain rate, demanded in Simo’s model. The author

thinks this is important, as it makes the model suitable even for non-hardening materials.

2



1. INTRODUCTION

However the model proposed by Kuroda and Tvergaard was never implemented in three

dimensions, only a plane stress model was explicitly formulated. While Simo aimed to

mimic the behavior of the J2 deformation theories, Kuroda and Tvergaard used crystal

plasticity simulations to calibrate and test their model.

The latest non-associated flow rule is suggested by Yoshida [34] [36]. He has proposed

a non-associated flow rule using the same decomposition as Simo, but a slight alteration

of the way the model is presented. He also uses a different method of calibration, using

the elastoplastic tangent modulus, as it is known that the formation of a vertex at the

yield surface cause it to decrease. [35]. The model was first calibrated and tested using

crystal plasticity simulations [34]. Later the model was tested against experiments on

thin-walled tubes in tension and shear [36]. From the experiments, the model was slightly

modified to fit the acquired data.

Experimental verification of the existence of a yield surface vertex has proved to be

difficult. A review by Hecker [14] in 1976, reveals that up to that point the results had

been contradicting. Measurement of the instantaneous yield surface is difficult since it

is sensitive to the magnitude of the offset strain, which must be accurately decomposed

into elastic and plastic parts. Additionally, the corner is blunted by viscous effects,

as is shown by Pan and Rice [29], making the measurements even harder. Despite the

challenges, more recent experiments by Kuwabara et al [23] seem to indicate that a vertex

exists. Its existence has however been verified theoretically by Hill [16], for an elastoplastic

rate-independent material, and by simulations by for instance Lin and Ito [25]. Hence

it is known that the elastoplastic rate-independent Taylor-Lin crystal plasticity model

incorporates a corner effect.

A crystal plasticity model is a model of the behavior of an aggregate of crystal grains.

Each crystal grain may deform plastically by slip on the crystallographic slip planes and

the aim of the model is to determine the amount of slip on each slip system in each crystal,

and hence the plastic deformation, given a total deformation rate. The simplest of these

theories is the Taylor type models [33], assuming that all grains are subject to the same

aggregate strain, having the advantage that each grain may be treated independently. In

3



1. INTRODUCTION

this study, the Taylor-Lin model [24] has been implemented, which is a generalization of

Taylor’s original model taking into account elasticity.

This study aims to investigate the non-associated flow rule presented by Yoshida, by

comparison of virtual experiments calculated by an elastoplastic rate-independent crystal

plasticity model, implemented in the authors project thesis. Some effort will be put on

investigation of earlier work on the topic and the constitutive model proposed by Yoshida

will be implemented. A framework for performing virtual experiments using the two

models will be developed. A quantitative measurement of the deviation between the two

models will be sought in order to perform calibration of the continuum model. Either

way implementation of the novel constitutive model is nonetheless of interest as it, to the

authors knowledge, has not been tested by other than Yoshida.

The models and all other code used in this study is freely available online at github to

download following the link given in referecne [13]. It should be mentioned that the

continumm models are named the constitutive models or phenemenological plasticity

models througout the report. The crystal plasticity model might also be put in these

categories, however it is only named crystal plasticity model in this study

4



2. THEORY

2 Theory

2.1 Plastic instabilities

There are two generally applied approaches for the prediction of localization of plastic

flow. Namely the imperfection approach and through bifurcation analysis. In the imper-

fection approach, a finite imperfection is introduced to the material of either geometrical

or material character. The other, the bifurcation analysis is based on investigation of

discontinuities in the equations given by the constitutive relation, leading to strain local-

ization.

The simplest case of bifurcation analysis is for a circular tensile specimen. Where the

first approximation for the limit strain is given by Considere’s criterion, as the strain at

which the true stress hardening rate equals the true stress [10]. For plates a criterion for

localized necking is formulated by Hill [15], but its validity is constrained to strain ratios

of ε1/ε2 = ρ ≤ 0. Hence it is not valid for biaxially loaded plates where ρ > 0, as there, in

this case, are no lines of zero extension. A framework for strain localization able to predict

necking in the biaxial loading case, was introduced by Stören and Rice [32]. However,

it was discovered that this criterion was sensitive to the constitutive formulation used

and for instance, constitutive models using the associated flow rule and the conventional

smooth yield surface, produce unrealistically high limit strains for the onset of necking

in biaxially loaded plates [32].

To circumvent the bifurcation problem Marciniak and Kuczynski (M-K) [27] introduced

a finite imperfection of material or geometric character, making it possible to predict the

onset of necking using associated flow theory. An issue with the M-K theory is that an

unrealistically deep groove needs to be prescribed in order to predict realistic limit strains,

as is pointed out by for instance Azrin and Backofen [3]. Hence the groove thickness is

in practice a calibration parameter, reducing the generality of the model.

5



2. THEORY

2.2 Corner effects

The corner effects stem from the theory that the material develops a subsequent yield

surface with a sharp vertex at the loading point. It follows that the corner effects is the

physical implications of the formation of such a corner. The instantaneous yield surface

with a sharp corner at the loading point and the conventional yield surface is illustrated

in figure 2.1.

Figure 2.1: Illustration of the instantaneous subsequent yield surface together with the

conventional yield surface.

Beyond the academic interest to determine if a corner is actually a phenomenon found in

real metals, the implications of the corner effect for the prediction of plastic instabilities

6



2. THEORY

are of great interest. It has been evident from the late 1940’s that the classical flow

theory, using a smooth yield surface and demanding normality of the plastic deformation

rate, lead to unrealistically high limit strains for plastic instabilities [28] when bifurcation

analysis is used. Especially for some loading modes, like buckling and bi-axially loaded

plates, the predictions are unrealistic. The formation of a vertex on the yield surface

relaxes the normality condition since there is no longer a well defined normal. The

direction of the plastic strain rate consequently has increased freedom to accommodate

any prescribed deformation. During a sudden change in stress or strain path, the material

is hence able to more quickly, and at a lower energy barrier transition into the new loading

mode. An example is for an equibiaxially loaded plate to form a neck, the loading mode

must change from a biaxial state into plane strain. Due to the enhanced freedom of

the plastic strain increment, the material is able to accommodate the new loading mode

almost instantly. For a material following the associated flow rule the stress and strain

must traverse the yield surface in order to reach plane strain, to the cost of a larger plastic

work.

Incorporating the corner effects in a phenomenological plasticity model has shown to

produce models capable of predicting buckling and necking loads at realistic levels, ever

since it was proposed by Batdorf and Budiansky [6] in 1949. The same is valid for the J2

deformation theory presented by Stören and Rice [32] and the J2 corner theory introduced

by Christoffersen and Hutchinson [8], which is known to predict these phenomena well

[31]. These deformation theories have however not been generally adapted due to being

too computationally demanding in comparison with the conventional flow theory.

Plastic flow rules incorporating the corner effects are able to predict plastic instabilities

without the need for the introduction of finite imperfections. Predicting the onset of

necking in bi-axially loaded plates, using bifurcation analysis, at a realisitc level is not

possible using the conventional associated flow rule.

7



2. THEORY

2.3 Yield surfaces

The yield surface is a surface in the stress space separating the elastic region from the

plastic border. A stress point inside the yield locus corresponds to a material in an elastic

deformation state. For a stress point lying on the yield surface, the material is deformed

both plastically and elastically.

For a hardening material the yield surface expands with increasing plastic strains. It is

important to notice that the stress can never be outside the yield surface. If a stress

outside the current yield surface is to be reached the surface must expand, through

hardening, to the point when the desired stress state is on the yield surface. During

plastic deformation the stress point is always on the yield surface and moving with it.

This is called the consistency condition.

In reality a metal is made of a large set of grains, each grain is a crystal, and each

crystal has a set of slip systems. If a rate-independent material is assumed, the material

will deform plastically when a critical resolved shear stress is reached on one of the slip

systems, according to the Schmid hypothesis [10]. Each such slip system creates a set of

paralell lines indicating the activation of the given slip system. The global material yield

surface is hence the inner envelope off all such slip systems in the metal aggregate.

Most phenomenological models of plasticity are not concerned with calculating when a

slip system is activated inside one of the material grains. It is only concerned with the

global behaviour, and therefore a mathematical description of the yield surface is needed.

The most renowned is the von Mises and Tresca yield surfaces. Both representing limiting

cases of the class of isotropic yield surfaces described by the Hoshford/Hershey [17] yield

surfaces. The expression for the yield surface is given by equation 2.1 below. Where σ1,

σ2 and σ3 are the prinicipal stresses.

1
2 |σ1 − σ2|n + 1

2 |σ1 − σ3|n + 1
2 |σ2 − σ3|n = σ̄neq (2.1)

8



2. THEORY


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 = R


σ1

σ2

σ3

R−1 (2.2)

Due to the stress tensor being a real symmetric tensor, it is orthogonally diagonaizable

[20], which means that it is possible to decompose the stress into a diagonal matrix

and a rotational matrix, as in equation 2.2. Consequently there is always a change

in coordinates, a rotation, where the shear components of the stress disappears. The

resulting diagonal stress components are known as the principal stresses. For isotropic

materials only the principal stresses are needed to determine the yield surface [19], as is

evident from equation 2.1

The size of the yield surface is determined by an equivalent stress measure, σ̄eq, of the

surface, which is a scalar function of all the components of the stress tensor. At least

for most isotropic yield surfaces, the equivalent stress and strain correspond to the axial

stress and strain in a uniaxial tensile test, which is applied for a practical calibration

method, for the work hardening. The shape of the yield surface is determined by the

exponent n. A Tresca yield surface corresponds to a power of n = 1 or n = ∞ and the

von Mises yield surface to a power of n = 2 or n = 4. The reason each of the yield surfaces

has two corresponding powers is that all surfaces may be found both in the range [4,∞]

and [1, 2]. For fcc metals the power is found to be n ≈ 8.8 and for bcc metals n ≈ 6 by

for instance Barlat [4].

In the case of a phenemenological model of plasticity it is desirable to represent the

yield surface by all six stress components, as the gradient of the yield surface in the

six-dimensional stress space is needed. Barlat [5] have analytically solved the eigenvalue

problem of determining the principal stresses. This is used to formulate the Hoshford

yield surface in the six dimensional stress space, which will be used in the constitutive

model throughout this thesis. The gradient of the yield surface has also been calculated

analytically, but due to the a rather lengthy calculation, both the yield surface and the

gradient are given in appendix A.

9



2. THEORY

It is also possible to define a yield surface for an anisotropic material. One such for-

mulation is given in the same paper by Barlat [5]. In these cases more parameters are

needed to calibrate the yield surface to the material, as there are less symmetries than in

the isotropic case. Although the framework used throughout this project is able to cope

with such a yield surface formulation, it has not been investigated. Yoshida [34] does

however use an anisotropic yield surface for his constitutive model, like the one proposed

by Barlat, since he is comparing results with anisotropic metals, with crystallographic

textures.

2.4 Constitutive models for plasticity

In order to model the plastic behavior of metals, constitutive models mimicking what

is observed in reality is needed. The common approach is to treat the material as a

continuum. Which means the material is regarded as a continuous solid. Disregarding

that the material in reality is made up of atoms ordered in grains of metal crystals. This

makes sense since only the average macroscopic material behavior is of interest in most

applications.

A flow theory of plasticity, which is a rate formulation, consists of three main constituents,

a yield surface, a hardening rule, and a flow rule. The flow rule specifies how the plastic

deformation rate is updated, hence it specifies the direction of the rate of plastic flow.

The most common is the associated flow rule, stating that the plastic deformation rate is

parallel to the gradient of the yield surface, or in other words, normal to the yield surface.

Mathematically, this is given by equation 2.3, where Dp is the plastic deformation rate,

λ̇ a plastic consistency parameter and ∇f is the gradient of the yield surface.

Dp = λ̇∇f (2.3)

A hardening rule is a rule determining the expansion of the yield surface as a function of

the plastic strain. Usually, this is given by defining the equivalent stress as a function of

an equivalent strain measure. Since a scalar strain measure is usually applied.

10



2. THEORY

When a timestep is performed the flow rule determines the direction of plastic flow,

and the plastic consistency parameter must be adjusted such that the step taken does

not violate the consistency condition. The plastic deformation causes the yield surface

to expand and consequently there must be a balance between the elastic and plastic

deformation, such that the expansion of the yield surface is matched by the stress-rate

given by the elastic deformation. This ensures that the stresspoint, during elastoplastic

deformation is always on the yield surface.

The deformation theories mentioned in the introduction, are a type of phenomenological

plasticity models which differs from the flow theories by that they are not rate formu-

lated. They introduce a modulus, relating the total strain to the stress. This modulus

must naturally be updated for each step. However, due to the irreversibility and path

dependence of plastic deformation, caution is advised when using these models [19]. More

detail is given in the section on deformation theories in the book "Continuum Theory of

Plasticity" by Kahn [19].

2.5 Simo’s model

The first to introduce a non-associated flow rule incorporating the corner effect was Simo

[31]. He aimed to replicate the predictions of the J2 deformation theories in a more

computationally efficient manner. Simo proposed to use a conventional smooth yield

surface, and modifies the flow rule to incorporate the flexibility implied by the formation

of a vertex on the yield surface. In addition to the computational benefits, the formulation

is based on the following observations:

1. Physical implications of a vertex:

The formation of a vertex of semi-angle θcrit, as illustrated in figure 2.2, cause

an indeterminacy in the plastic flow rule since the plastic deformation rate must

lie within the hypercone formed by the vertex. Further the corner effect is not

inherently dependent on a particular hardening law.

2. Hypothesis:

11



2. THEORY

Loading paths tangential to a von Mises yield surface are purely elastic.

3. The mutually excluding nature of the two above points:

For a vertex of semi-angle θcrit, elastic paths departing from the vertex form an

angle π
2 + θcrit with the vertex axis, and not π

2 , which is the angle of the tangential

paths. This is illustrated in figure 2.2.

Figure 2.2: Illustration of the cone of semiangle θcrit of permissible directions of Dp

implied by the formation of a corner on the instantaneous yield surface. The outer yield

surface is given in blue and the instantaneous yield surface in red.

The idea is hence that the plastic deformation rate, Dp, lies in the plane spanned by

the yield surface normal and the deviatoric deformation rate, D′. It can therefore be

decomposed into one component normal to the yield surface and one component along the

projection of D′ onto the tangential plane of the yield surface. Dp is further constrained

to lie inside the cone of semi-angle θcrit.

The second assumption is necessary when the smooth conventional yield surface is to be

used, otherwise it is clear that a deformation rate deviating more than π
2 radians from

12



2. THEORY

the yield surface normal would yield release of plastic energy. Since plastic deformation

is an irreversible process, the plastic energy must dissipate.

The model is based on an additive decomposition of D into an elastic and a plastic part,

De and Dp, as given by equation 2.4.

D = De + Dp (2.4)

Further, the objective Jaumann rate of Cauchy stress is given by equation 2.5. Where

De is substituted using equation 2.4.

σ̊ = C [De] = C [D−Dp] (2.5)

The consistency condition is given according to equation 2.6, where σ̄ is the von Mises

equivalent stress and g is the yield resistance as a function of the equivalent von Mises

strain. The resistance to plastic flow may be determined from tensile test experiments

or crystal plasticity simulations in uniaxial tension and fitted to a suitable mathematical

expression, g (ε̄p).

f = σ̄ (σ)− g (ε̄p) (2.6)

The von Mises equivalent stress is given according to equation 2.7, where J2 is the second

invariant of the Cauchy stress tensor. The energy conjugate von Mises equivalent strain

is given by equation 2.8.

σ̄ =
√

3J2 (2.7)

13
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˙̄εp =
√

2
3Dp

n : Dp
n = λ̇

√
2
3 ||N||

ε̄p =
∫ t

0
˙̄εpdt

(2.8)

The equations presented above, are all equal to the ones used in the conventional J2

flow theory. The part distinguishing the model proposed by Simo from the conventional

flow theory is the flow rule. The flow rule proposed is given by the set of equations 2.9,

where n is the unit normal of the yield surface at the loading point, m is the normalized

tangential component of the deviatoric deformation rate. The projection operator, P, is

projecting a tensor onto the tangential plane of the yield surface. λ̇ is a plastic consistency

parameter and δ̂ is a coefficient determining how much Dp is tilted. The decomposition

of Dp is illustrated in figure 2.3.

Dp = Dp
n + Dp

t = λ̇
[
n + δ̂m

]
n = ∂σ̄

∂σ

/∣∣∣∣∣ ∂σ̄∂σ

∣∣∣∣∣
P = I− n⊗ n

m = P : D′

||P : D′||

(2.9)
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Figure 2.3: Illustration of how Dp is constructed from a component along the projection

of D′ onto the tangential plane of the yield surface, and a component in the normal

direction of the yield surface. θp is the angle between the yield surface normal and Dp

and θ is the angle between the normal and D′.

The final piece needed for the model to be complete is δ̂, which is a parameter determining

to what extent Dp is tilted.

Simo’s definition of δ̂

Simo [31] defined the angle between the yield surface normal and the deviatoric deforma-

tion rate as θ according to equation 2.10. According to the first of the observations on

which the model is based, the plastic deformation is restricted to lie within the hypercone

of semiangle θcrit. Hence δ̂ is chosen such that the plastic strain rate is coaxial with the

deformation rate deviator for cases when D′ is inside the hypercone of the vertex. Mean-

ing that θp = θ in figure 2.2. For deformation directions outside the vertex, the angle is

θcrit, as this is the maximum Dp is allowed to tilt.

cos (θ) = n : D′

||D′||
(2.10)
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δ̂ =


tan (θ) , θ ∈ [−θcrit, θcrit]

tan (θcrit) , |θ| ∈
[
θcrit,

π
2

] (2.11)

This definition of δ̂ demands coaxiality between the deviatoric deformation rate and the

plastic deformation rate. In the case of a non-hardening, perfect plastic material, when

the plastic deformation rate is coaxial with the deviatoric deformation rate, it implies

that there is no elastic deformation rate. When there is no elastic deformation rate, there

can be no change in the stress state of the material, as is evident from equation 2.4.

In the case of a hardening material, the plastic deformation expands the yield surface,

making it necessary to deform the material elastically to ensure consistency at the end

of the timestep, even if D′ and Dp are coaxial.

2.6 Kuroda and Tvergaard’s model

Simos model was modified by Kuroda and Tvergaard [21] to better fit the predictions of

crystal plasticity simulations. Their model is formulated in a more general framework,

taking into account strain rate sensitivity, kinematic hardening and permitting the use

of an arbitrary yield surface. Although, the only explicit formulation presented, in their

article [21], is for plane stress.

For the purpose of this study, kinematic hardening and strain rate sensitivity has been

left out, and it follows that it is the alteration to the flow rule which is of the greatest

interest. The formulation of the model is otherwise the same as the one by Simo, except

that the yield surface may be chosen freely. In the plane stress formulation, Kuroda

and Tvergaard have actually retained von Mises equivalent strain as the strain measure,

despite not using the von Mises yield surface. Hence the equivalent stress and strain

measure are not energy conjugated, in theri model.

The model [21] is then formulated according to equations 2.12 through 2.16 which are

essentially the same as in Simo’s model [31]. The only difference lies in the definition of

δ̂ which is given by equation 2.17 below.
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D = De + Dp (2.12)

σ̊ = C [De] = C [D−Dp] (2.13)

f = σ̄ (σ)− g (ε̄p) (2.14)

˙̄εp =
√

2
3Dp

n : Dp
n = λ̇

√
2
3 ||N||

ε̄p =
∫ t

0
˙̄εpdt

(2.15)

Dp = Dp
n + Dp

t = λ̇
[
n + δ̂m

]
n = ∂σ̄

∂σ

/∣∣∣∣∣ ∂σ̄∂σ

∣∣∣∣∣
P = I− n⊗ n

m = P : D′

||P : D′||

(2.16)

Kuroda and Tvergaard definition of δ̂

The modification of δ̂ is by the addition of a parameter α used to scale θ. This introduces

a new angle, θp, between the yield surface normal and Dp. Consequently it is relaxing

the coaxiality between the strain rate deviator and the plastic deformation rate. The

resulting definition of δ̂ is then as given in equation 2.17. By comparison with the model

proposed by Simo, in section 2.5, it is evident that the only difference is the addition of

the parameter α. The parameter α is slightly less than unity, which prevents Dp from

being fully coaxial with D′. Hence the model will not be stationary for a non-hardening

material, in contradiction to the model proposed by Simo [31].
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α = 1
c (g/G) + 1

θP =


αθ , αθ ∈

[
−θPcrit, θPcrit

]
θPcrit , |αθ| ∈

[
θPcrit,

π
2

]
δ̂ = tan

(
θP
)

(2.17)

2.7 The constitutive model proposed by Yoshida

The consistutive model proposed by Yoshida is largely based upon Simo’s original non-

associated flow rule, at least in concept, but the detailed formulation is slightly different.

The original model was presented in 2017 [34] with an update given in 2018 [36] with

respect to acquired experimental results. The latest formulation is the model implemented

in this study, hence a detailed elaboration of the models will be given.

The strain rate, D, is additively decomposed into an elastic part De and a plastic part

Dp. The Jaumann rate of cauchy stress is further given by Hooke’s law according to

equation 2.18, where C e is the elastic modulus given by Lame’s constants, λ and G,

according to equation 2.19. δij is the Kronecker delta.

σ̊ = C e [De] = C e [D−Dp] (2.18)

C e
ijkl = λδijδkl +G (δikδjl + δilδjk) (2.19)

The evolution of the critical equivalent stress, or yield strength, g, is given according to

equation 2.20. σ0 is the initial yield strength of the material, ε0 and n is used as fitting

parameters and ε̄p is the equivalent strain measure.

g (ε̄p) = σ0
(
1 + ε̄p

ε0

)n
(2.20)

18



2. THEORY

The yield surface used by Yoshida [34] is an anisotropic formulation adapted from Barlat

[5]. However, for simplicity only the special case of an isotropic Hoshford/Hershey yield

surface has been implemented, as described in section 2.3. Using the six component

formulation of the yield surface is beneficial, since an analytic expression for the equivalent

stress and the yield surface may be derived. If the formulation using principal stresses is

used, an eigenvalue problem must be solved, and the gradient calculated numerically.

The consistency condition is then constructed from the two expressions for the equivalent

stress, the yield stress as a function of equivalent strain and the equivalent stress from

the yield surface. Hence the consistency equation is given by equation 2.21.

σ̄ (σ)− g (ε̄p) = 0 (2.21)

The equivalent strain measure used is the von Mises strain, given in equation 2.22. This is

the same as for the models proposed by Simo and Kuroda and Tvergaard, but as pointed

out in the section on the Kuroda and Tvergaard model, the strain meassure is not energy

conjugated when a different yield surface than the von Mises surface is used.

˙̄εp =
√

2
3Dp

n : Dp
n = λ̇

√
2
3 ||N||

ε̄p =
∫ t

0
˙̄εpdt

(2.22)

Dp is given according to equation 2.23. The full tangential component of D′ is used

instead of the unit tangential direction, as is the case for Simo’s model. The projection of

the deviatoric strain rate, D′, onto the tangential plane of the yield surface is calculated

using the projection operator, T, given in equation 2.24. I4s is the fourth-order symmetric

unit tensor, I is the second order unit tensor and n is the normalized yield surface normal.

The tangential component of the deviatoric deformation rate is further found according

to equation 2.25.
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Dp = Dp
n + Dp

t = λ̇N + αD′t (2.23)

T = I4s − 1
3I⊗ I− n⊗ n

I4s = 1
2 (δikδjl + δilδjk)

(2.24)

D′t = T : D (2.25)

What determines how Dp tilts relative to D′, is the parameters α. In Yoshida’s 2017 [34]

formulation α is defined according to equation 2.26 below.

α =



1− c1
√

g
G
− c2

〈h〉
G

, θ ∈ [0, θcrit](
1− c1

√
g
G
− c2

〈h〉
G

) (
π/2−θ

π/2−θcrit

)
, θ ∈ [θcrit, π/2]

0 , θ ∈ [π/2, π]

(2.26)

In the latest paper by Yoshida [36], the original model was compared with experimental

results which resulted in a minor update of the model. The model was updated for

θ ∈ [θcrit, π/2] where the linear term is replaced. The updated model is given in equation

2.27.

α =



1− c1
√

g
G
− c2

〈h〉
G

, θ ∈ [0, θcrit](
1− c1

√
g
G
− c2

〈h〉
G

)
tan(c3(θ−θcrit)+θcrit)

tan(θ) , θ ∈ [θcrit, π/2]

0 , θ ∈ [π/2, π]

(2.27)

The unloading criterion for the model is given by equation 2.28, implying that λ̇ and α

should be set to zero in these cases. The criteria gives θ ≤ π/2 which in equations 2.26

and 2.27 yields α = 0.

N : D′ ≤ 0 (2.28)
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Yoshida proposes to use an explicit time integration scheme for the model, based upon

calculating an elastoplastic modulus. The plastic consistency parameter λ̇ is derived

through taking the derivative of the consistency condition, equation 2.21. The expression

is given in equation 2.29, where N is the yield surface gradient, C e is the elastic modulus

and h is hardening rate, h = dg
dε̄p

.

λ̇ = N : C e : D
N : C e : N +

√
2
3 ||N||h

(2.29)

Using the derived λ̇ together with equation 2.23, Dp in equation 2.18 may be substituted

and D factored out, arriving at the the elastoplastic modulus C ep as given in equation

2.30. For more details the reader is referred to the original paper by Yoshida [34].

C ep = C e − C e : N⊗N : C e

N : C e : N +
√

2
3 ||N||h

− αC e : T (2.30)

Finally the stress rate is given by equation 2.31:

σ̊ = C ep : D (2.31)

This stress update scheme is however not the one used for the simulations conducted in

this paper. To better ensure consistency throughout the experiment, an implicit algorithm

has been implemented instead.

2.8 Model calibration

Vertex angle θcrit

The only fitting parameter shared between the proposed non-normality models is the

critical angle of the yield surface vertex, determining to what extent Dp is allowed to tilt.

Simo provides no method of calibration of the critical angle, but do simulations for a

range of critical angles between θcrit = 0 and θcrit = π/2. However the focus seems to be

qualitative verification of the model, rather than quantitative calibration. It is however
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pointed out that the model degenerates to the conventional associated flow rule when

θcrit = 0.

Kuroda and Tvergaard calibrated their model using crystal plasticity simulations. The

specific procedure used to calibrate θcrit is not provided, but it is outlined that the angle

is determined by performing a large strain path change. The strain path change must

be large enough that D′ tilts outside the vertex for some part of the experiment. The

critical angle may then be read off as the threshold angle, which is the maximum observed

tilt angle. If it is assumed that Dp is constricted to lie inside the cone formed by the

vertex, Dp will take the critical angle relative to the gradient for some time following a

large abrupt strain path change. It was found that the value of θp did not vary greatly

during the early stages of the strain path change, this behavior was found to be close to

independent of the prestrain level. The simulations indicated an angle of approximately

θp = 20◦.

Yoshida, in the 2017 version of the model, does not have a quantitative way of determining

the appropriate θcrit. Simulations are performed for a range of angles, and the range

from 0 to 10◦ is determined as the range for which the best fits were found. The relation

between θ and θp is used for comparison, which is the angle between N and D′ and N

and Dp respectively, just after the strain path change. The crystal plasticity simulations

performed by Yoshida show a linear relationship between θ and θp, for the initial tilt, up

to about 30◦. In this region, the crystal plasticity model and the constitutive model are

found to be in good agreement. The θ - θp relation for the constitutive model is parabolic,

whereas the crystal plasticity model is closer to linear, hence it is difficult to determine

which θcrit gives the best results.

The alteration done in the 2018 version of Yoshida’s model is to make the model fit the

experimental θ - θp to a greater extent. Hence a more linear relationship, with a kink, is

proposed. It appears that the model is calibrated such that the θ - θp relations gives a

good fit, however, no information regarding the method is given.

Kuroda and Tvergaard are the only ones presenting a quantitative way of determining
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the critical angle of the vertex. It should be pointed out that for the models proposed by

Simo and Kuroda and Tvergaard, setting θcrit = 0 makes the models degenerate to the

associated flow rule. This is however not the case for the models proposed by Yoshida.

Kuroda and Tvergaards model

Other than θcrit there is only one parameter which must be calibrated in the flow rule,

eq. 2.16 , which is c. To fit c, the ratio between the θp and θ is used as an approximation

of α. Hence the parameter c may be determined by correlating the variation in α to the

variation in yield strength. It is found that even though the parameter is not in reality

a constant, it is treated as one, in order to maintain model simplicity.

The model by Kuroda and Tvergaard does also use the yield surface exponent as a

calibration parameter, for their plane stress specific formulation. The crystal plasticity

simulations permit the stress path to pass inside the outer conventional yield surface. This

behavior is naturally not compatible with a flow rule following the outer yield surface, as

it would lead to plastic unloading. Hence increasing the yield surface exponent, bringing

it closer to the Tresca surface, might give the model increased explanatory power when

deviations from equibiaxial load are performed. This is because the edges of the surface

are straightened. However, the higher exponent yield surface still passes through the

same points in equibiaxial and uniaxial load. A possible negative issue is that the model

would produce more error in conventional proportional load, as the shape of the yield

surface is altered.

Yoshida’s models In the initial model proposed by Yoshida, there are two fitting pa-

rameters, c1 and c2, besides the critical angle, which are calibrated the same way for both

models. The parameters are calibrated using the elastoplastic tangent modulus. It can

be shown that for an isotropic material in uniaxial tension the normalized shear modulus
C ep

G
equals 1−α. Since c1 is the coefficient of

√
g
G
and c2 the proportionality constants of

〈h〉
G
, c1 may be fitted by performing simulations of non-hardening materials with different

critical yield stresses, hence g is varied. The parameter c2 may subsequently be fitted by

crystal plasticity simulations of different linearly hardening materials. The parameter c1

is found to be 0.3 and the parameter c2 = 0.5 by Yoshida [34].
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It is worth noting that in order to calibrate the model, it is necessary to compute the

elastoplastic modulus from the crystal plasticity model. The elastoplastic modulus is, as

in the case for Yoshida’s constitutive model, a modulus which is multiplied by the total

deformation gradient to yield the stress rate. This is a rather complicated expression,

and an exercise in operations on fourth order tensors to derive, which would otherwise

not be needed. Hence it may be regarded as a slight drawback of the model, as it adds

complexity.

For Yoshida’s 2018 model [36] there is introduced another fitting parameter c3 which is

used to determine the slope of θp vs θ, and fits in the updated expression for θ in the range

from θcrit to π
2 . No information on how this parameter is fitted is given. It appears to be

fitted such that the θp - θ relation of the model matches that found from the experiments.

2.9 Crystal plasticity

A poly-crystal plasticity model tries to model how a material made out of an aggregate

of grains behaves under deformation. Throughout the 1920 and 1930s, much research on

single crystals was conducted. However, generalizing the knowledge of how single crystals

deformed to a poly-crystalline aggregate brought two challenges. First, it was evident

that no voids were formed in the material during deformation. Secondly, the stress should

be balanced between the grains.

Sachs [30] proposed a model assuming the same stress in all grains. Such a model would

ensure that the material was in a balanced stress state, however the differently oriented

grains would deform differently, and cause incompatibility at the grain boundaries, mean-

ing that voids would form.

The opposite assumption was made by Taylor [33]. He proposed that all grains are sub-

jected to the same deformation. Such a formulation would ensure compatibility between

the grains, at the sacrifice of internal stress balance. Taylor argued that no voids were

observed during tensile tests. He further assumed that each grain could be treated in-

dependently. As a result, the problem amounts to solving a deformation problem for a
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single crystal. The aggregate variables are consequently the average over all grains.

An fcc material has 12 slip systems. Taylor showed that for such a crystal to accommodate

any deformation, only five slip systems are needed. Hence the problem of determining

the correct set of 5, out of the 12 slip systems, arise. Taylor further assumed that the set

corresponding to the minimum virtual work should be used. This reduces the potential

set of slip systems drastically, however the problem is not solved, as it is possible to

show that there is more than one solution corresponding to minimum virtual work. As a

consequence, it is ambiguous which set of slip systems should be selected. This ambiguity

is known as the Taylor-ambiguity. A review of the Taylor ambiguity is given by for

instance Manik et al. [26].

The crystal plasticity model used in this study is an elastoplastic rate-independent Taylor-

type model. In the original model proposed by Taylor, the elastic strain was neglected,

as it may be seen as negligible compared to the plastic, hence it is a rigid-plastic model.

A crystal plasticity formulation taking into account elasticity was first formulated by Lin

[24]. The elastoplastic generalization of Taylor’s original model is therefore known as the

Taylor-Lin model. In this work, the Taylor-Lin model has been implemented following

the algorithm proposed by Anand and Kothari [1].

The main criticism towards the Taylor type crystal plasticity models is that it does not

satisfy stress equilibrium across the grain boundaries. On the contrary this is also the

benefit of the model, as each grain may be treated independently, easing the calculations.

In an attempt to solve this issue several self-consistent models have been proposed. The

basic idea is to treat each grain as an inclusion in a continuous media, having properties

similar to the average of the aggregate, and ensure that there is equilibrium between

the grain and the surrounding continuum. For further details, the reader is referred to

chapters 11 and 12 of the book "Continuum Theory of Plasticity" by Khan [19].
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2.10 Crystal plasticity model

The implementation of the Taylor Lin model used is in large parts adapted from Anand

and Kothari [1]. There are some elements of the derivation which are inspired by a paper

by Dumolin [11], who has derived a similar algorithm and displays more thoroughly some

of the steps of the derivation. The section below is largely copied from the authors project

thesis for completeness, as the project thesis is not publicly available.

Throughout the derivation all tensors are expressed in the initial lattice frame, unless

specified otherwise. The tensors are denoted according to the convention used in contin-

uum mechanics and the reader is referenced to the book "Continuum Theory of Plasticity"

by Khan [19] for further explanation.

For the time integration scheme values at current time are denoted t and after one time

step τ = t + ∆t. The initially given parameters are listed in the list below.

• Deformation gradient at both times, F (t) and F (τ).

• Orientation of the the slip systems

(mα
0 ,nα0)

Where mα
0 is the slip direction and nα0 is the slip plane normal. The subscript 0

indicate that the directions are in the initial lattice orientation. Worth noting is

that these directions are time independent, as will be shown in the derivation below.

• Initial Cauchy stress, T (t)

• Initial plastic deformation gradient, Fp (t)

• The Critical resolved shear stress, sα (t)

In order to advance one time step one must calculate, Fp (τ), T (τ) and sα (τ).

First it should be established that the deformation gradient is decomposed multiplica-

tively into an elastic and a plastic part, according to equation 2.32. The concept is also

illustrated in figure 2.4. The plastic deformation gradient describes deformation of the
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material by plastic slip. The lattice rotation and elastic deformation is incorporated into

the elastic deformation gradient, Fe.

F (τ) = Fe (τ) Fp (τ) (2.32)

Figure 2.4: Multiplicative decomposition of the deformation gradient into a plastic and

an elastic component. The lattice rotation is incorporated into the elastic deformation

gradient.

As is mentioned, the lattice rotation is included in Fe, and for infinitesimal elastic defor-

mations the stretch component can be neglected. Both the polar decomposition and the

approximation of Fe as a rotation matrix, shown in equation 2.33, will be used later in

the derivation.

Fe = RU ≈ R (2.33)

The stress in the initial configuration can be calculated according to Hooke’s law as

T∗ (τ) = C [Ee (τ)] (2.34)

Where Ee (τ) is an elastic strain measure given by the right Cauchy-Green tensor as

Ee (τ) = 1
2 (Ce (τ)− I) (2.35)
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The Right Cauchy-Green tensor is given by

Ce (τ) = (Fe (τ))T Fe (τ) (2.36)

The stress T∗ (τ) is the Second Piola-Kirchoff stress, and can be regarded as the engineer-

ing stress. It is an energy conjugate to the strain meassure Ee (τ). The Cauchy stress,

T (τ) is related to the second Piola-Kirchoff stress, T∗ (τ), through the following relation.

T∗ (τ) = Fe (τ)−1 {det (Fe (τ)) T (τ)}Fe (τ)−T (2.37)

The Kirchoff stress, Γ (τ), is then defined as

Γ (τ) = det (Fe (τ)) T (τ) = Fe (τ) T∗ (τ) Fe (τ)T (2.38)

Further the critical resolved shear stress on each slip system can be determined from the

following equation, equation 2.39. Where nα and mα are the slip plane and slip direction

vector in the current, deformed, configuration. These are related to the directions in the

initial crystal configuration through equation 2.40

τα (τ) = mα · Γ (τ) nα (2.39)

nα = nα0 Fe−1

mα = Femα
0

(2.40)

The term Γ (τ) nα in equation 2.39 is the traction on the slip plane, or the force per area.

The critical resolved shear stress is then given as the component of the traction in the

direction of the slip plane, hence τα (τ) is the projection of the traction onto the slip

direction. By substituting equation 2.38 into equation 2.39 equation 2.41 is formed.

28



2. THEORY

τα (τ) = {Ce (τ) T∗ (τ)} : Sα0 (2.41)

Sα0 = mα
0 ⊗ nα0 (2.42)

The dot product, or inner product of two matrices S and T is defined as:

S : T = trace
(
STT

)
(2.43)

And the tensor product of two vectors n and m is defined to be:

n⊗m =


n1m1 n1m2 n1m3

n2m1 n2m2 n2m3

n3m1 n3m2 n3m3

 (2.44)

For infinitesimal elastic strains the Right Cauchy-Green deformation tensor may be ne-

glected and the stress is given by equation 2.46. If Fe was purely a rotation matrix, the

Right Cauchy-Green deformation tensor would become the identity matrix, due to the

orthogonality of the rotation matrix, as shown in equation 2.45.

Ce = FeTFe ≈ RTR = I (2.45)

τα (τ) = T∗ (τ) : Sα0 (2.46)

Each slip system can either be active or inactive. If a slip system is inactive the critical

resolved shear stress must be less than critical. For an active slip system the criterion is

that the shear stress on the system is equal to the critical shear stress. If this criterion

is satisfied, it is said that consistency is maintained. Naturally if the shear stress on a

system is at the critical value, the slip system would slip until equilibrium is achieved.

Mathematically the consistency condition, for the active slip systems, is given by equation

2.47.
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|τα (τ)| = sα (τ) (2.47)

The integration algorithm is based on solving the above equation, at the end of the

time-step, by using an elastic predictor. This means to preliminary assume that the

deformation step is purely elastic. Unless the material is in the elastic region, this as-

sumption results in resolved shear stresses which exceed the critical shear stress on some

of the slip systems, which in turn are categorized as potentially active, PA . The goal of

the algorithm is then to do a reverse map of the resolved shear stress in order to achieve

consistency on the set of potentially active slip systems. In practice this means to express

the plastic deformation gradient by the slip increments, according to equation 2.48, and

then calculate the magnitude of the slip increments needed in order to ensure consistency

at the end of the timestep.

Fp (τ) =
{

I−
∑

α∈PA

sgn (τα (τ)) ∆γαSα0
}

Fp (t) (2.48)

Worth noting is that equation 2.48 is a forward euler integration of the plastic deformation

gradient using the plastic velocity gradient. According to the following set of equations,

2.49.

Ḟp (t) = Lp
0 (τ) Fp (t)

Fp (τ) = Fp (t) + Lp
0 (t) Fp (t)∆t

Fp (τ) =
{
I + Lp

0 (t)∆t
}
Fp (t)

Lp
0 (t)∆t =

∑
α∈A

sgn (τα (τ)) γ̇α∆tSα0

∆γα = γ̇α∆t

(2.49)

As mentioned the first step of the algorithm is to define the trial elastic stress, by assuming

the plastic deformation gradient does not change during the deformation step, according

to equation 2.50
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Fe (τ)tr = F (τ) F−p (t) (2.50)

By applying equations 2.36,2.35, 2.34 and 2.46 one can calculate a trial resolved shear

stress:

τα (τ)tr = T∗ (τ)tr · Sα0 (2.51)

The systems loaded above the critical yield stress is then denoted as potentially active,

and the ones below as inactive.

|τα (τ)tr| < sα (t)⇒/∈PA

|τα (τ)tr| ≥ sα (t)⇒∈PA
(2.52)

Not all systems in the set of potentially active is necessarily activated, and the set of

systems with slip activity when moving on from the time step are denoted A and is a

subset of PA

The primary use of the trial elastic shear stress is to determine the set PA , it can further

be shown that the actual resolved shear stress at time τ is given by the reverse map given

by equation 2.53, in which the plastic deformation gradient given in equation 2.48 is used

to calculate the elastic deformation gradient. The reverse map is however not inherently

linear in ∆γα, and in order to end up with a linear equation, higher order terms of ∆γα

are neglected. Worth noting is that this is all done under the assumption that the sign

of the final resolved shear stress of a slip system is equal to the sign of the trial resolved

shear stress.

|τα (τ)| = |τα (τ)tr| −
∑
β∈A

{
sgn

(
τα (τ)tr

)
sgn

(
τβ (τ)tr

)
Sα0 : C

[
sym

(
Ce (τ)tr Sβ0

)]}
∆γβ

(2.53)
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The last piece needed to build the linear set of equations for the consistency condition

is the hardening of the slip systems. The critical resolved shear stress is changing with

slip activity on the actual system, and on other systems. The hardening of a system due

to other systems is known as latent hardening. A model for the hardening of the slip

systems is taken from Anand and Kothari [1], and is given in equation 2.54.

sα (τ) = sα (t) +
∑
β∈A

hαβ (t) ∆γβ (2.54)

hαβ =
[
q + (1− q) δαβ

]
hβ

hβ = h0

{
1− sβ

s0

}a
h0 = 180MPa ss = 148MPa a = 2.25

(2.55)

The parameter q is set to 1 for coplanar slip systems and 1.4 for non-coplanar slip systems,

as given by Anand [1], in order to be able to compare the results. However most of the

simulations done in this study have been performed without hardening, by prescribing

hβ = 0.

In order to determine the slip activity for the timestep, equation 2.53 and equation 2.54

are combined into equation 2.47. This combination gives a set of equations which are

linear in ∆γ, one equation for each potentially active slip system.

∑
β∈A

Aαβxβ = bα (2.56)

Aαβ = hαβ (t) + sgn
(
τα (τ)tr

)
sgn

(
τβ (τ)tr

)
Sα0 : C

[
sym

(
Ce (τ) Sβ0

)]
(2.57)

bα = |τα (τ)tr| − sα (t) > 0 (2.58)

xβ ≡ ∆γβ > 0 (2.59)

It is shown by Anand [1] that solving the given set of equations using the Singular

Value Decomposition(SVD) will give the solution of ∆γβs with the smallest L2 norm.
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This corresponds closely to Taylors minimum virtual work criterion, as explained in the

review by Manik and Holmedal [26].

When the system of equations is solved for the set PA , the solution should be checked

to ensure that it is a valid solution. There are three main criteria that must be satisfied

in order to march forward in time:

1. ∆γβ < 0

This would be an non-physical solution. Systems for which this is the case are

removed from the set of equations 2.56 and the calculation is redone on the new

set. As proposed by Manik and Holmedal [26], in the case of multiple negative ∆γβ

the most negative is removed and the calculations are redone, until all ∆γβ are

positive.

2. Consistency on the active slip systems

|τα (τ)| = sα (τ) for α ∈ A

3. Non active systems have not been activated by slip activity.

|τα (τ)| < sα (τ) for α /∈ A

The two last points can only be verified after both the slip resistance and resolved shear

stress are updated using the plastic deformation gradient acquired from the calculated

∆γβ. If the two first criteria are violated, the respective system is removed from the

set PA and the calculation is redone. If the third criterion is violated, the respective

system is added to PA and, once again, the calculation is redone. When all checks are

satisfied, the solution is accepted and the algorithm advances to the next time-step.
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3 Implementation and validation of crystal plasticity

model

The algorithm implemented is a semi-implicit algorithm, using the singular value decom-

position(SVD) to find the appropriate set of slip systems. Holmedal and Manik [26] have

shown that using SVD to find a solution for the slip increments correspond to Taylor’s

minimum of virtual work. This is due to the fact that the singular value decomposition

returns the solution with the smallest L1 norm, which in turn correspond to the smallest

L2 norm. The algorithm is presented in a step-wise manner in subsection 3.1 below. The

material parameters used in the model is given in table 3.1 below.

Table 3.1: List of material parameters used for the crystal plasticity model

Elasticity

C11 = 170 [GPa] C12 = 124 [GPa] C44 = 75 [GPa]

Yield strength

τcrss = 16 [MPa]

Hardening

ho = 180 [MPa] ss = 148 [MPa] a = 2.25

3.1 Integration scheme

Initialization:

• Rotate the aggregate velocity gradient to the initial lattice frame:

Lc = Q0LaQT
0

Where Q0 is the rotation matrix from the aggregate to the initial lattice frame.

• If the algorithm is initialized for the first time, F (0) ,Fp (0) and sα (0) must

be initialized

F (0) = I

Fp (0) = I
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sα (0) = 16 [MPa]

Algorithm:

1. Calculate the new total deformation gradient F (τ)

F (τ) = [I + Lc∆t] F (t)

2. Calculate the trial elastic deformation gradient Fe (τ)tr

Fe (τ)tr = F (τ) F−p (t)

3. Calculate the trial elastic strain, Ee (τ)tr

Ce (τ)tr =
(
Fe (τ)tr

)T
Fe (τ)tr

Ee (τ)tr = 1
2

(
Ce (τ)tr − I

)
4. Detemine the trial second Piola-Kirchoff stress, T∗ (τ)tr

T∗ (τ)tr = C
[
Ee (τ)tr

]
5. Compute the trial resolved shear stress, τα (τ)tr

τα (τ)tr = T∗ (τ)tr : Sα0
for all α

6. Determine the set of potentially active slip systems, PA .

|τα (τ)tr| > sα (t)⇒∈PA

7. Calculate slip increments by solving the consistency equation.

For all α ∈PA :

Aαβ = hαβ (t) + sgn
(
τα (τ)tr

)
sgn

(
τβ (τ)tr

)
Sα0 : C

[
sym

(
Ce (τ)tr Sβ0

)]
bα = |τα (τ)tr| − sα (t)

A∆γ = b

Which is solved using the SVD method. If for any α the calculated ∆γα ≤ 0,

the slip system is removed from the set PA and the step is repeated. This is

done until all ∆γ’s are positive. If multiple ∆γ’s are negative, the most nega-
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tive is removed.

8. Calculate the new plastic deformation gradient using the acquired ∆γ

Fp (τ) =
{

I−
∑
α∈A

sgn (τα (τ)) ∆γαSα0
}

Fp (t)

Check that the determinant of Fp (τ) = 1. If not Fp (τ) should be normalized.

Fp (τ) = [det (Fp (τ))]−
1
3 Fp (τ)

9. Calculate updated elastic deformation gradient and Second Piola-Kirchoff stress.

Fe (τ) = F (τ) F−p (τ)

T∗ (τ) = T∗ (τ)tr −
∑
α∈A

sgn
(
τα (τ)tr

)
∆γα C

[
sym

(
Ce (τ)tr Sβ0

)]
10. Update Cauchy stress and critical resolved shear stress, T (τ) and sα (τ).

T (τ) = Fe (τ)
{
det (Fe (τ))−1 T∗ (τ)

}
Fe (τ)T

sα (τ) = sα (t) +
∑
β∈A

hαβ (t) ∆γβ

Naturally, sα (τ) is updated for all slip systems of the crystal. Due to latent

hardening even non slipping systems will harden.

11. Check that consistency is achieved. The first point of validating the solution is

taken care of in step 7, but the remaining two points still need verification:

• Consistency on the active slip systems

|τα (τ)| = sα (τ) for α ∈ A

• Non-active systems have not been activated by slip activity.

|τα (τ)| < sα (τ) for α /∈ A

12. Update the lattice orientation and rotate the Cauchy stress to the aggregate

frame.

The lattice rotation is incorporated in Fe (τ), which can be decomposed by

polar decomposition.
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Fe = Re (τ) Ue (τ)

Q (τ) = Re (τ)T Q0

The Cauchy stress is given in the initial lattice frame and can be transformed

into the aggregate frame by:

Ta = QT
0 T (τ) Q0

Here the stress state of the aggregate is determined as the average over all

grains.

3.2 Validation of the crystal plasticity model

This section is more or less copied directly from the authors project thesis, since the

report is not available to the public, the section is added for the sake of completenes. In

order to validate the crystal plasticity model several meassures have been made. First,

single crystal tensile tests have been calculated, which at least in part replicate the tests

performed by Anand and Kothari [1]. If the model implemented replicates the results

originally acquired, the model is considered to be validated. Texture development has

been calcuated to verify that the model produces the same texture as expected for an

fcc material. The last verification done, is calculating the power of the produced yield

surface for an isotropic fcc metal, which according to Barlat [4] should be n = 8.95.

3.2.1 Single crystal tensile tests

Single crystal tensile tests have been simulated for three different Euler angles, the same

angles which were used by Anand and Kothari [1]. The angles are listed in table 3.2. The

boundary conditions used by Anand and Kothari to simulate the tensile tests corresponds

to allow horizontal displacement of the connection between the tensile specimen and the

loading machine, while keeping the ends of the specimen perpendicular to the tensile

axis. However this is not a straight forward simulation to do, as the velocity gradient

is not apriori determined, and an iterative alogrithm is needed in order to perform the
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simulation. However, for stretching in [001] and [111] directions, the symmetry cancels out

all horizontal displacements. As a consequence, the results will align with the constrained

tensile test performed by using the velocity gradient given in equation 3.1. The simulation

done for a tensile test in the [236] direction will however not be the same. As the

simulation does not allow any sideways motion of the attachment points between the

specimen and the loading machine, more slip system must be activated earlier on.

La =


−0.0005 0 0

0 −0.0005 0

0 0 0.001

 (3.1)

Table 3.2: Single crystal orientations specified by Bunge Euler angles, presented in

radians. Conversion of Euler angles are taken from Kalidindi [18]

Orientation φ1 Φ φ2

[001] 0 0 0

[111] 0 0.9553164 π/4[
2̄36

]
0 −0.5410521 2.5534167
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(a) Stress-strain plot for volume con-

serving tension in the [001] direction,

to a tensile strain of ε = 0.25. Note

that the stress is given as von Mises

equivalent stress.

(b) Inverse pole figure to show that

the crystal is not rotating, when it is

stretched in the [001] direction. Strain

to ε = 0.25

Figure 3.1: Stress strain curve and inverse pole figure, for [001] single crystal strained

to ε = 0.25 in volume conserving tension.

(a) Stress-strain plot for volume con-

serving tension in the [111] direction,

to a tensile strain of ε = 0.25. Note

that the stress is given as von Mises

equivalent stress.

(b) Inverse pole figure to show that

the crystal is not rotating, when it is

stretched in the [111] direction. Strain

to ε = 0.25

Figure 3.2: Stress strain curve and inverse pole figure, for [111] single crystal strained

to ε = 0.25 in volume conserving tension.
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(a) Stress strain plot for volume con-

serving tension in [236] direction, to a

tensile strain of ε = 0.25. Note that the

stress is given as von Mises equivalent

stress.

(b) Inverse pole figure showing the

crystal rotation up to a strain of ε =

0.25

Figure 3.3: Stress strain curve and inverse pole figure, for a single crystal strained in

the [236] direction to ε = 0.25 in a volume conserving tensile test.

As can be seen from the plots in figures 3.1, 3.2 and 3.3, the [011] and [111] are stable

directions in tensile loading. However the [236] direction is not stable and rotates towards

the [111] corner of the triangle in the standard (100) prosjection. As explained, it is not

expected that the [236] direction would behave in the same way as in the results presented

by Anand and Kothari. However the grain rotation seems to be in agreement with the

rotation field presented in the paper by Mánik and Holmedal [26], for which the same

velocity gradient is used.

The von Mises equivalent strain is not necessarily a good stress measure for single crystals,

but since it seems to be the one used by Anand and Kothari it is used for these tensile tests,

in order to be able to compare. The jump in equivalent stress for the [236] direction, shown

in figure 3.3a, is due to a transition from one set of active slip systems to another. Any non

symmetrical set of active slip systems must eventually evolve into a symmetric set, with

respect to the tensile axis. Apparently in von Mises equivalent stress, the jump appears

non smooth. The same experiment have been performed using another, independent,
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rigid plastic polycrystal plasticity model, as described by Manik and Holmedal [26], with

the same result. This support the validity of the implemented model.

Based on the results above there is no reason to believe that the model is incorrect.

The results for the two symmetrical orientations are the same as those of Anand and

Kothari. The tests for the [236] direction have been compared to another rigid-plastic

crystal plasticity model which gives the same results.

3.2.2 Texture development

Another route to validation of the model is to do texture development simulations. It is

well known what are the typical texture components of fcc metals in for instance rolling.

These typical textures may be compared with the textures acquired by simulations. For

the rolling simulations a set of 936 uniformly distributed orientations is used.

(a) (111) pole figure of the uniformly dis-

tributed orientations. The vertical axis is

the rolling direction and the horizontal axis

is the transversal direction.

(b) (111) pole figure of crystal aggregate

rolled to ε = 1. The vertical axis is the

rolling direction and the horizontal axis is

the transversal direction.

Figure 3.4: [111] pole figure of crystal aggregate before and after rolling to a strain of

ε = 1. Both polefigures are plotted using the Mtex toolkit in Matlab.
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Figure 3.5: {111} Polefigure showing the common texture for pure copper. The Cu,

S and Brass texture components are also plotted. The figure is taken from figure 5.15

on page 148, of the book "Introduction to Texture Analysis" by Olaf Engler and Valerie

Randle [12].

The texture acquired is recognized as the texture typical for pure rolled copper, as can

be seen by comparing the calculated polefigure, with the one given in figure 3.5, taken

from the book "Introduction to Texture Analysis" by Olaf Engler and Valerie Randle [12].

This result further supports that the model is valid.

The set of grains used for the texture evolution simulations is the same set of uniformly

distributed grains as are used for the polycrystal experiments, hence the polefigure of the

uniformly distributed grains is taken as a validation that the orientations are close to

uniformly distributed. Some peaks with increased intensity are seen, but one should note

that the scale is different between the two polefigures. Hence these variations are small.

3.2.3 Yield surfaces

The model has been used to calculate yield surfaces for a uniformly distributed set of

grain orientations, which should give close to isotropic properties. As explained in the

preceding chapters, the yield surface is dependent on the plastic work performed. The
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saturated yield surface has been fitted to a Hosford yield surface [17] and the power

is determined to be, n = 8.9995. Which is consistent with the results of Barlat [4],

who have determined the yield surface power to be n = 8.95 for an fcc material using

crystal plasticity simulations from an FC-Taylor model [4]. The deviation shown is small,

and could be caused by a lot of different factors, for instance elasticity. It is therefore

reasonable to conclude that the result supports the validity of the model.

Figure 3.6: Calculated yield surfaces of ε̄vM = 0.02 have been fitted to a Hosford yield

surface of power n = 8.9995, both are plotted in the figure above. The yield strength is

determined to be 49.103MPa. The computed yield surface is plotted as a blue line and

the Hosford surface by red dots.

The tensile yield strength of the material is determined to be 49.103 MPa, at an offset

strain of ε̄vM = 0.02. Since the critical resolved shear stress, τCRSS = 16 MPa is used,
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the Taylor factor, M = σeq

τCRSS
, is calculated to be M = 3.07. Which is in line with the

established value of the Taylor factor for random textures of M = 3.07, which recently

have been verified in the works of Zhang et al. [37]. The fitted and the calculated surface

are plotted in figure 3.6 for comparison.
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4 Implementation of constitutive equation

4.1 Integration scheme

The phenemenological plasticity model implemented is adapted from Yoshida [36] [34].

Such a constitutive relation is based on three main consistuents, a flow rule, a hardening

law and a yield surface. In addition an unloading-loading criterion should be formulated.

These constituents are originally presented in section 2.7, but is briefely reviewed in this

section.

The flow rule used in the model is given by equation 4.1. It is decomposed into a

tangential and a normal component. The hardening relation proposed by Yoshida [34]

has been adapted and is given by equation 4.2.

Dp = Dp
n + Dp

t = λ̇N + αD′t (4.1)

g (ε̄pn) = σ0
(
1 + ε̄p

ε0

)n
(4.2)

The yield surface used in the model is a Hoshford/Hershey isotropic yield surface [17]. The

power have been determined to n = 8.9995 from the crsytal plasticity simulations. The

yield surface has two applications in the constitutive model, firstly it is used to determine

the equivalent stress at the given loading point, and secondly the yield surface is used to

calculate the normal of the yield surface. For an isotropic Hoshford surface, Barlat [5]

has derived an analytic formulation in all six stress components, listed in equation 4.3

through equation 4.7. This formulation has been used to calculate the equivalent stress

from the stress tensor. The derivative of the expression is calculated to find an analytic

expression for the yield surface normal. This derivation is quite lengthy and is given in

appendix A.
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A = σ22 − σ33 B = σ33 − σ11 C = σ11 − σ22 (4.3)

F = σ23 G = σ13 H = σ12

I2 = F 2 +G2 +H2

3 + (A− C)2 + (C −B)2 + (B − A)2

54 (4.4)

I3 = (C −B) (A− C) (B − A)
54 +FGH− (C −B)F 2 + (A− C)G2 + (C −B)H2

6 (4.5)

Θ = arccos
(
I3

I
3/2
2

)
(4.6)

2σ̄m = (3I2)m/2
{[

2 cos
(

2Θ + π

6

)]m
+
[
2 cos

(
2Θ− 3π

6

)]m
−
[
2 cos

(
2Θ + 5π

6

)]m}
(4.7)

The algorithm proposed by Yoshida, uses an elastoplastic moduli to calculate the objec-

tive stress rate at each timestep and integrate forward in time, as indicated in section

2.7. In addition to beeing an explicit integration scheme, this formulation is also rate

controlled. At the current position the stress rate direction needed to maintain consis-

tency is calculated, and the stress is updated in this direction. Consequently there is

no control of whether the solution have drifted from consistency or not. At least in the

implementation of the explicit formulation done in this study the solution drifted from

consistency quite rapidly, especially after a strain path change, which is the phenomenon

of interest. To ensure that consistency is maintained, an implicit algorithm using an

elastic predictor and a plastic corrector has been implemented. The implicit scheme does

not rely on rates, and ensures that the consistency equation is satisfied at the end of each

time-step. The elastic predictor is computed by assuming that the full deformation step

is elastic, hence D = De. The trial elastic stress is then defined according to equation

4.8
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σ̊trial
n+1 = C e [Dn]

σtrial
n+1 = σ + C e [Dn] ∆t

(4.8)

σ̄trial
(
σtrial
n+1

)
< g (ε̄pn)⇒ Elastic solution accepted

σ̄trial
(
σtrial
n+1

)
≥ g (ε̄pn)⇒ Calculate plastic corrector

(4.9)

If the deformation step is fully elastic, there is no change in the plastic strain and the crit-

ical yield strength, and consequently the consistency condition may be checked directly.

If the computed trial equivalent stress is less than the critical yield stress, the elastic

solution is accepted. However if the trial equivalent stress is larger, a plastic corrector

step must be performed. Such a step is calculated through solving the set of equations

4.10.

0 = σn+1 − σtrial
n − σ̊plastic

n+1 ∆t

0 = σ̄ (σn+1)− g (ε̄pn+1)
(4.10)

To fill inn the equations the set of relations given in 4.11 is used. Since the elastic

predictor step has already been calculated, the computed value is used throughout the

calculation. For a given σ̊n+1 and λ̇n+1 the differences in equations 4.10 is calculated. If

the deviation from zero in any of the seven equations is above the prescribed threshold,

a numerical algorithm is used to solve the set of equations.

σ̊plastic
n+1 = −C e [Dp

n+1]

Dp
n+1 = λ̇n+1Nn+1 + αD′t(n+1)

˙̄εpn+1 = λ̇n+1

√
2
3 ||Nn+1||

ε̄pn+1 = ε̄pn + ˙̄εpn+1∆t

Nn+1 = ∂σ̄

∂σ
(σn+1)

g (ε̄pn+1) = σ0(1 + ε̄pn+1
ε0

)n

(4.11)
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The set of equations 4.10 is regarded as seven equation in seven variables, six stress com-

ponents and the plastic consistency parameter. The system of equations is solved using

the Newton-Raphson method, according to equation 4.12, where JF is the jacobian, x is

the current value of the variables σ̊n+1 and λ̇n+1 and F (xn) is the calculated differences

for the current x. The Jaobian is calculated numerically by a forward difference.

JF∆x = −F (xn) (4.12)

If the differences given by equations 4.10 is below a given threshold, the solution is

accepted and the variables updated.

4.2 Calibration of the elastic modulus

The isotropic elastic modulus of the yield surface must be determined for the actual

crystal for which the simulations are to be done. This is achieved through performing an

elastic step using the crystal plasticity model. Since the number of grains is large and the

orientations close to uniformly distributed it is assumed that the behaviour is isotropic,

even though the modulus of elasticity for each of the crystals is orthotropic. Hence an

elastic step is performed, and the elastic parameters are determined using Voigt notation,

according to equation 4.13.

σ =



2G+ λ λ λ 0 0 0

λ 2G+ λ λ 0 0 0

λ λ 2G+ λ 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G





E11

E22

E32

2E23

2E13

2E12


(4.13)

Hence for a deformation in the elastic range the material should follow the given stress

strain relation, and since both the stress, σ, and the strain, E, are known, the elastic

parameters, G and λ may be determined.
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4.3 Calibration of the hardening curve

The hardening law given in equation 2.20 in section 2.7, has been fitted to data acquired

from an uniaxial tension experiment simulated using the crystal plasticity model. The

produced stress and strain have been imported into Microsoft Excel, and solver has been

used to fit the parameters ε0 and n. The yield stress is calculated by performing a

simulation to a strain equal to the offset strain for the yield surface in question. For

instance, following Yoshida [34], the strain path changes have been performed at a strain

of ε̄p = 0.02, and consequently this has been used as the offset strain.
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5 Framework for virtual experiments

In order to use the model to perform virtual experiments, an additional framework is

needed to ensure that the boundary conditions of the experiment are full-filled at all

times. For instance, for a uniaxial tensile test, all stresses should be zero, except the

stress in the tensile direction. Hence for each timestep, this condition must be verified,

if the deviation from this boundary condition is above a prescribed threshold, the input

to the model, usually the components of the velocity gradient, must be altered such that

the boundary condition is satisfied at the end of the timestep.

Two different sets of boundary conditions have been implemented. Both stress and strain

control have been implemented in the σ11 - σ22 plane. In strain control the deformation

rate in the 11 and 22 direction is prescribed, the remaining components of the velocity

gradient are adjusted such that all stress components, except σ11 and σ22, are zero. The set

of equations which must be solved to fulfill this boundary condition, is given in equation

5.1. The question-marks represent unknown variables, which have to be determined.

L =


L11 ? ?

? L22 ?

? ? ?

⇒Model ⇒ σ =


? 0 0

0 ? 0

0 0 0

 (5.1)

In order for the system of equations to be solved, it is assumed that the velocity gradient

is symmetric, which makes L = D. Without this assumption, due to the ineherent

symmetry of the cauchy stress tensor, there would be four equations and seven unknowns,

hence the system would be under-determined. To solve the equations each of the four

independent stress components, σ33, σ23, σ13 and σ12 is regarded as functions of the the

four free components of the deformation rate, according to equaion 5.2.

σ33 (D33, D23, D13, D12) =0

σ23 (D33, D23, D13, D12) =0

σ13 (D33, D23, D13, D12) =0

σ12 (D33, D23, D13, D12) =0

(5.2)
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The resulting set of equations is solved using Newton-Raphson iterations. The Jacobian

is determined numerically using a forward difference. A central difference scheme has

also been implemented, but the extra computations needed were deemed not to be worth

the improved precision.

When experiments are performed in stress control, the boundary value is slightly different.

In this case, all the stress components have a target relative to σ11 or σ22, the stress

direction is given by a six-component vector in the stress space. At least one stress

component must be kept free, and the other is proportional to the free stress variable. For

instance in biaxial loading, where σ11 = σ22 and all other stresses zero, the proportionality

constant for σ22 is 1 with respect to σ11. It is clear that if σ11 is kept free while performing

a tensile test in the σ22 direction, the proportionality constant would diverge to infinity.

It has been found that there are convergence issues when solving the boundary condition

when the proportionality constant is much larger than one. To circumvent this issue the

σ11 - σ22 stress space has been divided into two regions, indicated in figure 5.1. The

criterion is based on the absolute values of σ11 and σ22. If |σ11| is greater or equal to |σ22|

then σ11 is the free variable, and oppositely σ22 is kept free if |σ11| is less than |σ22|.
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Figure 5.1: The regions where the stress is related to σ11 is shaded in gray, and marked I.

The white regions, marked II is the regions where σ22 is the free stress variable. Separating

a stress direction is actually only dependent on one criterion, which is why there is only

two regions. The white regions are where |σ11| < |σ22| and the grey where |σ11| ≤ |σ22|.

As is apparent from equation 5.3, the system now consists of five equations and unknowns,

written out in equation 5.4. The equations are written in the form where σ11 is the free

variable.

L =


L11 ? ?

? ? ?

? ? ?

⇒Model ⇒ σ =


? k1σ11 k2σ11

k1σ11 k5σ11 k3σ11

k2σ11 k3σ11 k4σ11

 (5.3)
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σ33 (D33, D23, D13, D12, D22)− k4σ11 (D33, D23, D13, D12, D22) =0

σ23 (D33, D23, D13, D12, D22)− k3σ11 (D33, D23, D13, D12, D22) =0

σ13 (D33, D23, D13, D12, D22)− k2σ11 (D33, D23, D13, D12, D22) =0

σ12 (D33, D23, D13, D12, D22)− k1σ11 (D33, D23, D13, D12, D22) =0

σ22 (D33, D23, D13, D12, D22)− k5σ11 (D33, D23, D13, D12, D22) =0

(5.4)

The experiments then obey the boundary condition until a desired strain is reached.

To increase the precision of the desired strain at which the experiment is ended, an

algorithm adjusting the timestep has been developed. If the target strain is superseded,

interpolation is used to approximate a more appropriate timestep and the deformation

step is redone. This process is repeated until the calculated strain is within a given margin

of the target strain. The update formula is given in equation 5.5. In the original version

of the algorithm, the timestep was accepted if the strain was below the target strain,

making the distance to the target smaller and smaller, however these very small time

steps caused issues when trying to solve the boundary value problem, and the algorithm

did not converge. To circumvent this issue, the timestep is never accepted before the

desired strain is within the tolerances, to make sure that longer time steps are used,

while still achieving the desired precision.

∆t = εtarget − εcalc
εcalc − εcurrent

∆tcurrent (5.5)

The precision problems caused by small timesteps are related to the crystal plasticity

algorithm, as there is no possibility to iterate on the solution to increase the numerical

accuracy. Hence if a deformation field with zero deformation is passed to the algorithm

the solution will be slightly different. Implementing an iterative procedure to the crystal

plasticity algorithm would be a desired upgrade. It must however be emphasized that

this inaccuracy is only a problem at timesteps below ≈ 10−12 or smaller, and hence it is

in a range close to the machine precision of ordinary computers.
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In order to illustrate the overall flow of the virtual experiment framework, the algorithm

is presented in the flowchart in figure 5.2. The input-output parameters, F0, Fp0 and S0

are only relevant for the crystal plasticity model. For the constitutive model only εp and

σ are input and output.

Figure 5.2: Flowchart of the boundary condition algorithm, the code has options to

choose between the two types of boundary condition and the desired target strain. There

is also options to write out various data during the experiment.
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6 Fitting of model parameters

In order to fit the model parameters which best fit the data acquired from the crystal

plasticity simulations, an optimization algorithm has been implemented. First of all, a

suitable measure of the distance between the two models must be chosen, in order to

have a quantity to minimize. In this case, the angle between the deviatoric stress points,

at equal strains, has been used as the quantitative measure. Minimizing the distance

between the stress points will make the two models slide along the yield surface at a

similar speed.

Further, the set of stress-strain points to use in the optimization must be chosen. In this

case it is essential that the set of points is selected such that all parts of the model are

taken into account. It is important that some points right after the strain path change,

where θ is large, must be taken into account. If θ is always smaller than θcrit, a change in

θcrit will not make any difference on the deviation measure. Further, some points at larger

strains beyond the strain path change must be taken into account in order to optimize

the coefficients c1 and c2. The set of points used are five points with ∆ε̄p = 0.00005 and

ten points with ∆ε̄p = 0.0005 according to table 6.1.

Table 6.1: List of strain for the points used for fitting model parameters. The strain

path change is performed at ε̄p = 0.02 as in the simulations provided by Yoshida [34]. As

can be seen from the first column, five small steps are performed, then ten large, with

one intermediate step.

# ε̄p # ε̄p # ε̄p

1 0.02+0.00005 6 0.02+0.0005 11 0.02+0.0030

2 0.02+0.00010 7 0.02+0.0010 12 0.02+0.0035

3 0.02+0.00015 8 0.02+0.0015 13 0.02+0.0040

4 0.02+0.00020 9 0.02+0.0020 14 0.02+0.0045

5 0.02+0.00025 10 0.02+0.0025 15 0.025

The total deviation is then calculated according to equation 6.1, where sconi is the devi-
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atoric stress for point #1 of the constitutive model, scpi is the same quantity from the

crystal plasticity model and n is the number of stress points.

error (c1, c2, c3, θcrit) =
n∑
i=1

arccos
(

sconi : scpi
‖sconi ‖ ‖s

cp
i ‖

)
1
n

(6.1)

The reason the deviatoric stress is used to calculate the error is to avoid a hydrostatic

pressure effect. If the hydrostatic pressure is large, the angle between two stress points

will be very small, and in the limit of infinite pressure, zero. However, if the deviatoric

stress is used, there will be no such effect, and the error measure will be sound for all

hydrostatic pressures. Likely this is not a big issue, as the combination of elasticity and

the boundary conditions used for the experiments, prevent very large pressures. However,

since it is a straightforward correction to perform, there is no apparent reason not to use

the deviatoric stress.

For the optimization scheme, the error is treated as a function of the model parameters,

c1, c2, c3 and θcrit. The optimization algorithm used is a gradient descent method, using

a backtracking line-search algorithm. The Armijo-Goldstein condition is used to find

an acceptable step length, as given in chapter six of the book "Numerical Methods for

Unconstrained Optimization and Nonlinear Equations" by Dennis and Schnabel [9].

x =



c1

c2

c3

θcrit


(6.2) ∇f =



∂f
∂x1

∂f
∂x2

∂f
∂x3

∂f
∂x4


(6.3)

p = − ∇f

‖∇f‖
(6.4)

xn+1 = xn + αp (6.5)

f (xn+1) < f (xn) + αβpT∇f (6.6)
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The acceptance criterion for the line-search is given by equation 6.6. δ is the step length,

with initial value δ = 0.5. β is a parameter determining how strict the criterion is. If

β = 1, the algorithm demands that the decrease is greater than that predicted by the

linearization of the function. However, due to curvature, this criterion will cause the

algorithm to take too short steps, as the step size must be very small for the criteria

to be fulfilled. If for instance, f has positive curvature, it is even possible that such

a solution is never found. A common initial guess is β = 0.5, which was proposed by

Armijo [2] in the original paper presenting the method. If the criterion is not fulfilled,

the step-length, δ, is reduced by a factor 1
2 , and the criterion is checked again. This is

performed until a satisfactory step length is determined.

The parameters are not free to take any value, and consequently, restrictions must be

made to ensure that a step does not produce an invalid solution. If the solution is inside

the solution domain, and the step oversteps the boundary, the step length is reduced such

that the new solution lies at the boundary. However, if the original solution is already

a boundary solution and the component of p in this direction sends the solution out of

the domain, the component of p in this direction is set to zero, forcing the solution to

move along the boundary, rather than over it. Since the limitations on the parameters

are independent constants, at least in the non-hardening case, this simple scheme should

be appropriate to ensure that a valid solution is found. The constraints for the different

parameters are given in equations 6.7. The limitations for c1 and c2 are calculated from

the condition that α, in the constitutive model, must be positive.

0 < c1 <
1− 〈h〉

G√
g
G

0 < c2 <
G

〈h〉

(
1−

√
g

G

)
0 < c3 < 1

0 < θcrit <
π

2

(6.7)
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7 Results and Discussion

Since the model proposed by Yoshida in 2018 [36] is the most recent, it is the one which

will be investigated in this study. Both Yoshidas 2017 model and the one proposed by

Kuroda and Tvergaard appear to be viable options and the author believes the simple

and intuitive form of the Kuroda and Tvergaard model makes it unwise to rule it out.

As elaborated in detail in section 5, two types of boundary conditions have been imple-

mented. In stress control, the stress direction is specified, usually in the σ11 − σ22 plane.

In strain control D11 and D22 are prescribed, and all stress components, except σ11 and

σ22, are required to be zero. Since experiments in stress control result in the two models

reaching the yield surface at the same spot, strain path change experiments have been

performed by an initial deformation using stress control, followed by an abrupt change

of strain path, in strain control. Hence all strain path change experiments performed are

of this type.

The results presented in this study are for a non-hardening material, as hardening brings

further complexity to an already quite complex comparison. However the framework

for doing experiments on a hardening material is fully implemented both for the crystal

plasticity model and the constitutive model and if such simulations are of interest it is

relatively straight forward to perform using the code available online [13].

7.1 The Θ-Θp relation

In order to test how the model behaves just after a strain path change, Yoshida has

investigated the relation between θp and θ at the moment of the the strain path change.

This relation illustrates to what extent Dp is allowed to tilt at the instant of the strain

path change. The experiment is interesting both to investigate the behaviour of the

crystal plasticity simulations and to see if the implemented model produces the same

results as the ones provided by Yoshida [34] [36], which it should.

The angles are calculated according to equation 7.1 and 7.2. D̄p
L is Dp from the last
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time-step before the strain path change and D̄p
NL is the Dp from the first time-step after

the strain path change. In the implementation of the model used in this study the last

time-step before the strain path change has high precision due to the algorithm used to

find the correct strain. D̄p
NL is taken as Dp from the first time-step after the strain path

change, and if the time-step is reduced before making the strain path change, this gives

the instant value. It should be noted that since the model follow the associated flow rule

closely for linear loading paths, D̄p
L ≈ N, which makes Θ a good approximation of θ,

which is the angle determining the inclination of Dp in the constitutive model.

Θp = D̄p
L : D̄p

NL∥∥∥D̄p
L

∥∥∥ ∥∥∥D̄p
NL

∥∥∥ (7.1)

Θ = D̄p
L : D′∥∥∥D̄p
L

∥∥∥ ‖D′‖ (7.2)

The relation between Θp and Θ has been computed from both the crystal plasticity model

and the constitutive model. The results are given in figure 7.1. If the produced results

are compared with the figures presented by Yoshida in 2018 [36], it is evident that the

implemented constitutive model produces the same results. For the crystal plasticity

simulations the results seem to be roughly the same as the ones presented by Yoshida.

However, there is some variation depending on the initial stress direction and the specific

strain path change. The blue lines in figure 7.1 are for experiments performed with

initial deformation in the stress direction σ22 = −σ11 and the red lines are for an initial

deformation in the σ22 = σ11 direction. The author believes the correlation between the

results for the constitutive model indicates that the implemented model produces the

same results as the one implemented by Yoshida.
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Figure 7.1: Relation between Θp and Θ. The relation for the constitutive model is

given by the overlapping dashed lines. The Θp − Θ relation from the crystal plasticity

model is given by the full lines. Blue lines indicate that the strain path change is from

tensile-compression and the red lines from equibiaxial tension.

7.2 Strain path change experiments

To compare the constitutive model to the crystal plasticity model, several strain path

change experiments have been performed . Equibiaxial load has been pointed out as the

loading mode where the formation of a vertex on the yield surface is of importance [22].

Biaxial loads are also the loading modes for which the formation of a yield surface vertex

is essential for predicting realistic limit strains for onset of necking [32] [28]. Therefore

the virtual experiments in this study have been performed in this loading mode, followed

by an abrupt strain path change into plane strain defomration mode.

The first order comparison between the constiutive and crystal plasticity model has been

performed qualitatively for some abrupt change of strain paths by comparing stress paths,
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the direction of Dp and the angles between Dp and N and between Dp and D. To maintain

simplicity, the preliminary comparison have been performed on a non hardening material.

The model parameters initially provided by Yoshida have been used and are listed in table

7.1

Table 7.1: Model parameters proposed by Yoshida

Parameter c1 c2 c3 θcrit [◦]

Value 0.3 0.5 0.4 5◦

In the virtual experiments presented in this subsection, the material is first deformed in

equibiaxial stress control to an equivalent strain of ε̄p = 0.02. The boundary condition

is then abruptly changed to strain control with D11 = 1 and D22 = 0, corresponding to

plane strain tension. The new strain path is kept until a total plastic strain of ε̄p = 0.04

is reached.
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Figure 7.2: Arrows indicating Dp in its corresponding stress point. Hence the trace

of the arrow tails show the stress path. Points have been selected at specific equivalent

strains, the same for both models. Dp from the crystal plasticity model is given in green,

and Dp from the constitutive model in blue.

As is evident from the plot in figure 7.2 the constitutive model initially slides faster along

the yield surface than the crystal plasticity model. The constitutive model then comes

almost to a stop, and moves at a rate much slower than the crystal plasticity model. This

is also evident from the angle between Dp and N, as it decreases very slowly towards

zero when the model has passed into the region where θ is below θcrit. Since Dp is close

to parallel with D, the angle between Dp and N should be approximately equal to θ.

Consequently it can be seen that the model changes regime, when the angle between Dp

and N of the constitutive model falls below θcrit, which is 5◦.
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Figure 7.3: Plot of the angle between Dp and N and Dp and D for the two models.

The results presented above clearly indicate that the model, with the parameters provided

by Yoshida [36], does not greatly mimic the behaviour observed from the crystal plasticity

model. It does however incorporate the corner effect, and creates a transition from

one strain or stress path to another, so qualitatively it does what it is supposed to. If

however it is the case that the model fits the simulations and experiments performed by

Yoshida very accurately, it might indicate that there are large variations in the loading

modes investigated. Therefore simulations in other loading modes, like for instance shear-

tension, would be of interest. It may however seem reasonable to conclude that even

though the models both incorporate the corner effect the rate at which the models slide

along the yield surface is quite different.

A fundamental difference between the two models is that the crystal plasticity model is

able to slide inside the yield surface, something the constitutive model can not. Con-
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sequently if one assumes that the energy barrier between biaxial load and plane strain

is the quantity governing the onset of necking, it is possible that the constitutive model

needs to slide at a different pace than the crystal plasticity model in order to compensate

for the shortcut through the yield surface.

7.3 Erratic relation between Dp and N

There has been observed some noise in the computed angle between Dp and N from

the crystal plasticity model. The phenomenon is present in figure 7.3, and even more

pronounced in figure 7.6 in the next section. The cause of this erratic behavior is of

interest, as it is desirable to know if it is related to numerical noise or is intrinsic to the

model. Hence some investigation has been done.

The erratic behavior or noise of the angle between Dp and N is believed to be caused

by the shear components of Dp. In principle, there should be no shear components

of Dp, if the material was completely isotropic, but due to numerical inaccuracies and

possibly a not fully isotropic set of grains, some small shear components are introduced

in the iterative scheme to find a solution fulfilling the boundary conditions. To verify

this hypothesis, a simulation has been performed, where the angle between the normal

and only the diagonal part of Dp is used, instead of Dp with its shear components. The

result is a much smoother relation between Dp and N, as is shown in figure 7.4.
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Figure 7.4: The angle between the diagonal of Dp and N, for a strain path change from

σ22 = σ11 to D11 = 1 and D22 = 0.

Before the strain path change, the angle between Dp and N is still slightly erratic. This

is likely due to numerical noise and dependent on the specific stress path. The stress path

is σ11 = σ22, which is a direction where a perturbation in deformation or stress rate will

cause large variations in the normal, as it is the region of the yield surface with the most

curvature. Consequently, to test this hypothesis a strain path change in the opposite

direction has been performed, with initial stress direction σ22 = 1
2σ22 and a strain path

change into D11 = D22, corresponding to equibiaxial tension. As can be seen from the

plot in figure 7.5 the behavior, in this case, is very close to associated, however there are

still some variations. It makes sense that numerical inaccuracies have less impact when

the initial load is onto the straighter part of the yield surface, where a minor change in

for instance stress, will produce a very small perturbation of the yield surface normal.
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Figure 7.5: The angle between the diagonal of Dp and N, for a strain path change from

σ22 = 1
2σ11 to D11 = D22.

7.4 Associated flow

From the virtual strain path change experiments, it may seem like the crystal plasticity

model does not reach associated flow. Since the angle between Dp and N does not

saturate at zero, as is clear from the plot of the angle between the two tensors given in

figure 7.3. If the Dp and N had been coaxial the flow would have been associated, as

the plastic strain increment would be parallel to the normal of the yield surface, which

is the case for the associated flow rule. The explanation for this behavior has not been

completely determined, however, some suggestions are made.

It is not obvious to the author that the crystal plasticity model must be associated,
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and consequently, it might happen that a stationary solution is found before the model

reaches associated flow. This is supported by the fact that the angle between Dp and D

rapidly drops to zero. As is explained in section 2.5, coaxiality between D and Dp implies

that there is no De and hence the stress point is stationary. This argument is naturally

also valid for the crystal plasticity model. If D and Dp reach coaxiality before reaching

associated flow, the loading point will stop sliding along the surface and consequently

never reach the point corresponding to the associated flow.

In order to test this hypothesis a strain path change experiment was performed, as de-

scribed in the preceding section, the only difference being that at the end, an additional

strain path change was made, tilting D a degree upwards the σ11− σ22 plane. Hence the

initial stress direction is σ11 = σ22 to a von Mises plastic strain of ε̄p = 0.02, followed by

strain control with D11 = 1 and D22 = 0 up to ε̄p = 0.04, as in the experiment in figure

7.3. Further the strain path was changed to D11 = cos
(
π

180

)
and D22 = sin

(
π

180

)
, which

is a reverse change of one degree. If the stress point remains the same, there is likely

something to the hyopthesis that associated flow is never reached. The result is given in

figure 7.6.

Figure 7.6: The results from the simulation attempting to determine if the crystal

plasticity model does not reach associated flow, but stops at an earlier stage. A third

strain path change is performed tilting D one degree upwards.
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Several such strain path changes between 0.25◦ and 5◦ upward reversals have been per-

formed, all yielding similar results, with the angle saturating at roughly 1◦. Consequently,

this is not the hysteresis effect believed to be the reason for the non-associated behavior.

In the preceding section, the shear components of Dp was removed, and the resulting

angle with N removed most of the erratic variation of the angle otherwise observed. The

shear components may also be the actual explanation why the crystal plasticity model

does not seem to reach associated flow. To test this hypothesis, a simulation to higher

strains have been performed calculating the angle between Dp without shear components,

and N. As is apparent from the plot in figure 7.7, the angle between the diagonal of Dp

and N saturates at about 0.25◦ which is such a small value that there is little reason

to believe the model does not saturate to associated flow. The deviation might now be

explained by poor yield surface fitting, numerical noise or possibly texture development.

Oppositely, an alteration to the actual Dp is needed to acquire this result, and in order

to be entirely certain that the model saturates to associated flow, further investigations

should be made, for instance using an even larger set of grains than the 936 grains used

for the simulations in this study, to be completely certain that the aggregate used give

isotropic behavior.
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Figure 7.7: The angle between the diagonal of Dp versus N up to a strain of ε̄p = 0.1,

following a strain path change from equibiaxial tension to plane strain.

The constitutive model is inherently drawn towards associated flow, and at large strains

following a strain path change, associated flow will be reached. This might not be the

impression from the plots in section 7.2, as the model tends slowly towards associated

flow with the model parameters provided by Yoshida. However, the model moves closer

to the point where D′ and N are coaxial. When coaxiality is achieved there is no longer

a tangential component of D′ and consequently the model degenerates to the associated

flow rule. This behavior is more clear from the strain path changes performed using the

fitted model parameters, shown in subsection 7.6.
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7.5 The α− θ relation

In the flow rule proposed by Yoshdia [34], α determines the fraction of the tangential

component of D′ that goes into Dp. Hence it controls how much Dp is tilted. Due to the

additive decomposition of D into an elastic and a plastic part, this in turn determines the

magnitude of De, at least for a non-hardening material, for which the only permissible

direction of the stress rate is tangential to the yield surface, as the yield surface does not

expand. A similar argument is made by Simo [31], who points out that for a non hardening

material, De, and hence the stressrate, is zero if Dp is coaxial with D. Consequently,

α determines the speed at which the stress slides along the yield surface. The crystal

plasticity behaviour of α is therefore of great interest. Both to determine if the form of the

proposed model is well suited, and to find good initial guesses for the model parameters.

Dp = λ̇N + αD′t (7.3)

The flow rule used in the constitutive model is as given in equation 7.3. If it is assumed

that the crystal plasticity model follow the Hoshford yield surface, α may be computed

from the stresspoint, D, and Dp. As proposed in equation 36 by Yoshida [34], the tan-

gential component of the deviatoric deformation rate may be found according to equation

7.4.

D′t = T : D

T = I4s − 1
3I⊗ I− n⊗ n

I4s
ijkl = 1

2 (δikδjl + δilδjk)

(7.4)

By the same procedure, a projection operator, P, projecting onto D′t may be defined

according to equation 7.5.

P = D′t
‖D′t‖

⊗ D′t
‖D′t‖

(7.5)
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Dp
t = P : Dp (7.6)

Finally the component of Dp along the direction D′t is found according to equation 7.6.

α is then computed as the relative length of the tangential components of Dp and D′,

according to equation 7.7.

α = ‖D
p
t‖

‖D′t‖
(7.7)

The assumption that the crystal plasticity model follows the Hoshford yield surface is

at least qualitatively reasonable. The yield surface normal is solely dependent on the

stress direction, and hence, two stresspoints along the same radial direction will have the

same gradient. If the plot of the stress paths from strain path change experiments are

studied, it is clear that the crystal plasticity model shortcuts through the internal of the

yield surface. However the stress direction does not seem to change substantially, and

qualitatively it is reasonable to use the Hoshford yield surface. This is also the one used

in the constitutive model, which further supports the assumption.
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Figure 7.8: The development of α as a function of θ, the angle between D′ and N. The

blue line with a kink, is α from the constitutive model using the parameters found using

the optimization algorithm.

Figure 7.9: The development of α as a function of θ, the angle between D′ and N. The

blue line with a kink is α from the constitutive model using the parameters found using

the optimization algorithm.
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The behaviour of α is computed from a set of strain path change experiments. 16 strain

path changes with θ between 0◦ and 90◦ have been performed from equibiaxial tension,

meaning that the stress direction is σ11 = σ22 during the initial deformation. 16 ex-

periments have also been simulated in the opposite direction, from compression-tension

meaning that σ22 = −σ11 during the initial deformation. The observed behaviour of α

for the equibiaxial experiments are given in figures 7.8 and 7.9. Results from the strain

path changes from tensile-compression experiments is given in figures 7.10 and 7.11.

Figure 7.10: The development of α as a function of θ, the angle between D′ and N, from

strain path change experiments deviation from strain-compression initial deformation.

The blue plotted line is α from the constitutive model using the parameters found using

the optimization algorithm.
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Figure 7.11: The development of α as a function of θ, the angle between D′ and N, from

strain path change experiments deviation from strain-compression initial deformation.

The blue plotted line is α from the constitutive model using the parameters found using

the optimization algorithm.

From the plot of α in figures 7.8, 7.9, 7.10 and 7.11 , it is quite clear that the inherent

α − θ relation of the crystal plasticity is not static and only a function of θ as the one

implemented in the proposed flow rule. It seems like the relationship varies depending

on the initial tilt angle of the strain path change, hence using a definition of α only

dependent on the current θ may not be suitable. If the behavior should be described, it

seems like α seeks towards the straight line from 1 at zero degrees to 0 at 90◦, however

with some over-swing. Hence it is possible that some sort of differential equation may be

more suitable to determine α. At low angles, plotted in figure 7.9 and 7.11, the behaviour

is similar, and α takes a slight dip before rising fast towards 1 when θ falls below ≈ 7◦−8◦.

The behavior from the experiments in equibiaxial stress and the experiments in tensile-

compression show some of the similar behavior, but there are slight differences. The

experiments in tensile-compression, seem to better accommodate the larger strain path

changes as the calculated θ reach about the same value as what is prescribed in the

strain path change. This is not the case for the experiments from equibiaxial stress, as
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the computed angle from these experiments seems to be substantially lower than the

prescribed strain path change. A possible explanation for this behavior is the curvature

of the yield surface, which is much larger in the corner of equibiaxial load, than along the

almost straight line of the tensile-compression point. Hence when only a small timestep

has been made the yield surface normal will tilt faster in a region of high curvature, and

likewise, tilt very slowly in regions of less curvature. This trend is somewhat present

as the decrease, or change in α is larger for the equibiaxial case than in for the tensile-

compression experiment, which starts from a straight part of the yield surface.

The reason for the almost linear decrease and sharp change in α seen for the larger strain

path changes is not understood. It is unclear which mechanism is causing α to initially

decrease, before it rises towards unity. This behavior is observed in both cases, however

not as pronounced in the tensile-compression case as in the equibiaxial case, which is

believed to be related to the local curvature of the yield surface.
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Figure 7.12: Plot of development of instantaneous yield surfaces for increasing offset

strain. It appears that the instantaneous yield surface becomes increasingly narrow with

increasing strain after the strain path change. The offset strain for the yield surfaces is

ε̄ = 0.0000002.

One possible explanation is that Dp is able to tilt quite much in the beginning due to the

vertex on the instantaneous yield surface. To investigate if the behavior may be related

to the vertex angle, a set of instantaneous yield surfaces have been calculated for a strain

path change from equibiaxial tension to plane strain. These are presented in figure 7.12.

It appears that the angle remains quite sharp, despite the surfaces being calculated at

an offset strain of ε̄ = 0.0000002. The overall trend seems to be that the instantaneous

yield surfaces become narrower, and computing such narrow instantaneous yield surfaces

is difficult since the material must be unloaded without entering the plastic region. It
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seems like Dp stays inside the vertex throughout the experiment. Otherwise, there is no

apparent explanation between the behavior of α and the instantaneous yield surface. The

instantaneous yield surfaces are also of interest on its own, and the development of these

could be an interesting topic for further work.

7.6 Optimization of flow rule parameters

It has been attempted to fit the model parameters of the flow rule to the values giving the

smallest distance in deviatoric stress between points of equal strain. However as have been

revealed in the previous section, section 7.5, where the α− θ relation is studied, it might

be impossible to fit a model which is optimum in all cases. Since the behavior is largely

dependent on the magnitude of the initial strain path change. The ideal parameters

should likely be chosen by optimizing many different strain path change experiments

simultaneously, to find a set of parameters which fits most experiments in an acceptable

way. However due to the findings of the α − θ relation this has not been done, as the

optimization algorithm is quite slow, especially if many stress points must to be used.

The method may still be useful for calibration of the model, as the proposed method of

model calibration, proposed by Yoshida [34], is through the elastoplastic tangent modulus,

which is computationally complex to acquire.

Table 7.2: Table listing fitted model parameters

Parameter c1 c2 c3 θcrit [1]

Value 6.92795 0.5 0.5213 0.53007

The model parameters have been fitted for the experiment where the strain path is

changed from equibiaxial tension to plane strain, that is from σ11 = σ22 in stress control

over to strain control with D11 = 1 and D22 = 0. The reason this is the strain path change

that is investigated, is that for necking to take place, the deformation rates in the material

must locally reach a state of plane strain, hence the transition is of interest for instability

prediction [32]. However, as the optimization revealed, the strain path change might
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have been too small, as the critcal vertex angle θcrit, and consequently c3, is fully ruled

out. Meaning that the found optimum angle is larger than the maximum θ throughout

the experiment. The fitted parameters are listed in table 7.2. The experimental fit

between the constitutive model and the crystal plasticity model improved greatly, both

quantitatively, and qualitatively, as is shown in figure 7.13.

Figure 7.13: Illustration of the stress path and Dp for a strain path change from

equibiaxial load to plane strain, using the fitted model parameters.

It is evident from the illustration if the strain path change experiment using the fitted

parameters that a better fit is obtained. An interesting trend is that the constitutive

model slides faster in the beginning, then slower and in the end faster than the crystal

plasticity model. This behaviour is supported by the computed α − θ relation shown in

figure 7.14, where it is clear that α from the crystal plasticity model is higher than for
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the constitutive model for large θ. It is then lower from roughly 12◦ − 13◦ down to ≈ 4◦

before it rises rapidly towards 1. Since α controls the tilt of Dp, a lower value implies

greater sliding speed along the yield surface. Consequently the observed behaviour of the

stress path and Dp and the computed values of α is in accordance with each other.

Figure 7.14: The relation between α from the constitutive model, using fitted parame-

ters, and the crystal plasticity model.

7.7 Non energy conjugated strain meassure

The use of the von Mises equivalent plastic strain in all of the proposed non-associated

flow theories seems odd to the author, as it would be more natural to use a work con-

jugate strain measure. The von Mises equivalent strain is the work conjugate of von

Mises equivalent stress. Hence, if a different yield surface is used, and consequently a

different equivalent stress, the natural would be to select the corresponding conjugate
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strain measure.

The consequence of this choice of strain measure is that the yield surface will no longer

correspond to a given plastic work, but the plastic work will vary along the surface. To

investigate this behavior a yield surface has been calculated from the constitutive model

for a constant plastic work, to investigate if there are significant deviations between the

surface at a given offset strain and at a given plastic work. The plastic work is computed

according to equation 7.8 and the results of the simulations are given in figure 7.15.

Ẇ p = σ : Dp

W p =
∫ t

0
Ẇ pdt

(7.8)

Figure 7.15: Yield surface at offset strain of ε̄p = 0.02 and at constant plastic work. The

surface was calcultated to the plastic work found for a uniaxial tensile test to ε̄p = 0.02,

and cosequently the two meassures match at this location.

There can clearly be seen a slight deviation between the yield surface at constant work
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and the one at a constant equivalent strain. The difference is however not very large,

and the strain measure is likely acceptable to use. However, the notion that the yield

surface corresponds to a given plastic work is not correct in this case. It is the author’s

belief that using the von Mises strain is something that is left from the original model

proposed by Simo, who uses the von Mises yield surface. Since there is not presented

any argument why an energy-conjugate strain measure is not used, in any of the later

models. Consequently, introducing an energy-conjugate strain measure would make the

model more in line with conventions. Although, there might be reasons not to do so, the

only reason apparent to the author being that the von Mises strain is explicitly given,

easing calculations.

7.8 Dissipation of plastic energy

Plastic deformation is an irreversible process, and consequently for a phenomenological

plasticity model to be thermodynamically sound, production of plastic energy is not

permitted. It is relatively simple to prove for the von Mises yield surface that the plastic

energy dissipates. Since the yield surface normal is always radial in the π-plane, any Dp

at an angle less or equal to π/2 will have possitive dissipation of energy. However, it is

not equally apparent when different yield surfaces are used. Consequently, it remains to

be proven that the more general models, like the one from Yoshida [34], does not permits

dissipation of plastic energy. The workaround is to verify that the plastic work is positive

for each timestep.
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8 Conclusions

The constitutive model, incorporating a corner effect, proposed by Yoshida [36] has been

implemented. A new reverse map integration algorithm for the model havs been de-

veloped, which better ensures consistency throughout the experiments than the explicit

method originally proposed by Yoshida [34].

In parallel the elastoplastic rate-independent Taylor-Lin crystal plasticity model has been

implemented and verified to be used in comparison and to calibrate the phenomenological

plasticity model.

A framework for performing virtual experiments has been built for both the models,

which makes it possible to perform simulations of virtual experiments in both stress and

strain control, while staying within given boundary conditions.

The two models have been qualitatively compared by performing strain path change

experiments and comparing stress paths, direction of plastic deformation gradients and

the angles between the plastic deformation gradient, the yield surface normal and the

total deformation gradient. The results reveal that both models qualitatively incorporate

a corner effect, as the plastic deformation rate is allowed to tilt instantly, and the loading

point moves quite rapidly along the yield surface. On the contrary, the two models seem

to slide along the surface at relatively different speeds, at least when using the original

model parameters provided by Yoshida.

The parameter α as a function of tilt angle, θ, was computed from the crystal plasticity

model, revealing that the formulation for α from the constitutive model seems to be

inherently unsuited to generally fit all types of strain path changes, at least in the σ11−σ22

plane for which the investigations have been conducted.

Prior to the investigation of α, an optimization algortihm was implemeted in order to

fit the model parameters such as to minimize the average distance between stresspoints

in deviatoric stress space from the two models. This is done for a given experiment,

and is regarded as a quantitative meassure of the deviation between the models. The
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results gave much better agreement between the sliding speed along the yield surface

for the experiment which was fitted. As pointed out, it seems difficult to fit the model

parameters, so that they suit all kinds of strain path changes, but an adequate fit may

be found for some specific cases.

The overall conclusion is that the model qualitatively incorporates the corner effects, but

the fit between the crystal plasticity model and the constitutive model is not quite sat-

isfactory in a qualitative perspective, at least not for all experiments. The fact that the

earlier proposed way of calibrating the constitutive model involves computation of the

elastoplastic tangent modulus, which is an intricate calculation, and the fact that four

fitting parameters are needed, might speak in favour of the simpler model proposed by

Kuroda and Tvergaard [21]. It is clear that the Kuroda and Tvergaard model will also

incorporate the corner effect, but the model is simpler and uses only two model param-

eters, c and θcrit. Consequently, it might be hard to justify computing the elastoplastic

tangent modulus, otherwise surplus in an implicit formulation, and all four parameters for

a model that is not in a better agreement with the crystal plasticity model. Implementing

the Kuroda and Tvergaard model for comparison would therefore be of interest.

Further work on the subject of non-associated flow rules should in the authors opinion

maybe not focus on developing more new models, but on supporting the ones already

present, such that the models are adapted. The models all degenerate to the associated

flow rule for proportional loading paths, and hence is consequently an expansion of the

associated flow rule. The reasons why these models are not adapted should be investi-

gated, and the issues resolved, before novel models are developed. On the contrary, the

results reveal that new, more advanced models, might also be in line, if the behavior of

the crystal plasticity model is to be reproduced precisely.
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A. GRADIENT OF HOSHFORD YIELD SURFACE

A Gradient of Hoshford yield surface

The six-component hoshford yield surface is given by Barlat [5] according to the following

set of equations.

A = σ22 − σ33 B = σ33 − σ11 C = σ11 − σ22

F = σ23 G = σ13 H = σ12

I2 = F 2 +G2 +H2

3 + (A− C)2 + (C −B)2 + (B − A)2

54

I3 = (C −B) (A− C) (B − A)
54 + FGH − (C −B)F 2 + (A− C)G2 + (C −B)H2

6

Θ = arccos
(
I3

I
3/2
2

)

Φ = (3I2)m/2
{[

2 cos
(

2Θ + π

6

)]m
+
[
2 cos

(
2Θ− 3π

6

)]m
−
[
2 cos

(
2Θ + 5π

6

)]m}
= 2σ̄m

In order to find the gradient of the yield surface the partial derivatives of the equivalent

stress must be determined with respect to each of the stress components. However it is

not necessary to calculate the derivative six times. By application of the chain rule it is

possible to determine an expression for the gradient dependent of the partial derivatives

of A,B,C,F,G and H. These derivatives are stored in a matrix, where the partial derivative

of each with respect to the six stress components are stored. Hence the partial derivatives

of I3, I2, Θ and Φ can be largely reused, only changing out the partial derivatives of each

of the "letter" functions with respect to the relevant stress component. The matrix is

given below
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A B C F G H

σ11
∂A
∂σ11

∂B
∂σ11

∂C
∂σ11

∂F
∂σ11

∂G
∂σ11

∂H
∂σ11

σ22
∂A
∂σ22

∂B
∂σ22

∂C
∂σ22

∂F
∂σ22

∂G
∂σ22

∂H
∂σ22

σ33
∂A
∂σ33

∂B
∂σ33

∂C
∂σ33

∂F
∂σ33

∂G
∂σ33

∂H
∂σ33

σ23
∂A
∂σ23

∂B
∂σ23

∂C
∂σ23

∂F
∂σ23

∂G
∂σ23

∂H
∂σ23

σ13
∂A
∂σ13

∂B
∂σ13

∂C
∂σ13

∂F
∂σ13

∂G
∂σ13

∂H
∂σ13

σ12
∂A
∂σ12

∂B
∂σ12

∂C
∂σ12

∂F
∂σ12

∂G
∂σ12

∂H
∂σ12

=



0 −1 1 0 0 0

1 0 −1 0 0 0

−1 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(A.1)

It then remains to calculate the derivative of the equivalent stress with respect to each

of the six stress components.

∂σ̄eq
∂σij

= ∂

∂σij

([
Φ
2

]1/m)
= 1
m

[
Φ
2

]1/m−1 1
2
∂Φ
∂σij

∂Φ
∂σij

=

∂

∂σij

(
(3I2)m/2

)
∗
{[

2 cos
(

2Θ + π

6

)]m
+
[
2 cos

(
2Θ− 3π

6

)]m
−
[
2 cos

(
2Θ + 5π

6

)]m}

+ (3I2)m/2 ∗ ∂

∂σij

{[
2 cos

(
2Θ + π

6

)]m
+
[
2 cos

(
2Θ− 3π

6

)]m
−
[
2 cos

(
2Θ + 5π

6

)]m}

∂

∂σij

(
(3I2)m/2

)
= 2
m

(3I2)m/2−1 ∗ 3 ∂I2

∂σij

∂I2

∂σij
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2
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∂σij
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∂σij

+H ∂H
∂σij

)
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(
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)
(A− C) (B − A) +

(C −B)
((

∂A

∂σij
− ∂C

∂σij

)
(B − A) + (A− C)

(
∂B

∂σij
− ∂A

∂σij

)))
+

∂F

∂σij
GH + F

(
∂G

∂σij
H +G

∂H

∂σij

)

−
(

2F
6
∂F

∂σij
(C −B) + F 2

6

(
∂C

∂σij
− ∂B

∂σij

))

−
(

2G
6
∂G

∂σij
(A− C) + G2

6

(
∂A

∂σij
− ∂C

∂σij

))

−
(

2H
6
∂H

∂σij
(B − A) + H2

6

(
∂B

∂σij
− ∂A

∂σij

))

The gradient is then calculated by substituting the values of A, B, C, F , G and H and

their respective partial derivatives with respect to each of the stress components and the

gradient of the yield surface may be acquired.

iii


