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Abstract

When a metal experiences grain growth, the grains, volumes of atoms with the same crystal
lattice orientation, grow and absorb the smaller grains, resulting in a coarser structure with time.
Understanding this process is integral to the field of physical metallurgy as well as advanced
materials, as it can be observed to some degree in all high temperature material treatment.

Previous work describes methods for modelling grain growth with the phase field method, and
a set of kinetic energy equations based on a free energy model. The phase field method has
several advantages as compared to other, probabilistic models. The boundaries of grains are not
tracked, and the boundaries themselves are diffuse, not sharp. This is achieved by assigning an
order parameter η to all orientations available, and assigning a value representing the relative
amount or alignment to this order for each node. The modelling procedure applies the kinetic
energy equations by way of a spectral Fourier method, and all nodes in the grid are updated for
each time step.

The initial grain structure is a randomly generated field of grains of random size and position,
achievedwith a Voronoi tessellation. The field edges are adjusted for periodic border conditions,
matching the modelling procedure. This avoids pinning along the edges, which would greatly
have affected the relatively small model grid, necessitating a larger grid and much slower
modelling procedures. Grain size data are extracted at timed intervals.

The microstructural evolution is computed by the means of a spectral Fourier method, solving
a semi implicit differential equation by the means of a spatial Fourier transform of the field
variables. The data is compared to a similar Finite Difference scheme developed in an earlier
project, as well as relevant thery.



Sammendrag

Modellering av kornvekst med fasefelt-metoden

Kornvekst i et metall innebærer at kornene, volumer med atomer med samme orientering
av krystallstrukturen, vokser og absorberer mindre korn, hvilket resulterer i en mer grovkornet
struktur. Å forstå denne prosessen er essensielt innenfor fysikalsk metallurgi så vel som avansert
materialteknologi. Dette ettersom kornvekst kan observeres i alle former for varmebahndling
av materialer.

Tidligere arbeider beskriver metoder for å modellere kornevekst med fasefelt-metoden, og et sett
med kinetiske energiligninger basert på en fri-energi-modell. Fasefelt-metoden har flere fordeler
sammenlignet med andre, probabilistiske metoder. Korngrensene blir ikke i seg selv etterfulgt,
og grensene er diffuse, ikke skarpe. Dette er oppnådd ved å tilordne en ordensvariabel η til
alle orienteringer i systemet. Variabelen blir gitt en verdi tilsvarende kornets relative tilhørighet
til hvert enkelt korn, i alle korn. Modelleringsprosedyren bruker kinetiske ligninger med en
spektral-Fourier-metode, og alle nodene oppdateres hvert tidssteg.

Kornstrukturen er i utganspunktet et tilfeldig generert område med korn med tilfeldig størrelse
og posisjon. Dette gjøres ved hjelp av en Voronoi-tesselering. Kantene på området blir justert
med hensyn til periodiske grensebetingelser, som er tilpasset modellerinsprosedyren. Med dette
unngår man såkalt "pinning", at kornene fester seg langs kanten på området som modelleres,
som kunne nødvendiggjort et større modellert område og tregere kjøretider. Informasjon om
kornstørrelse blir hentet ut ved gitte tidsintervaller.

Microstrukturens utvikling beregnes ved hjelp av en spektral-Fourier-metode, som løser en
semi-implisitt differensialligning ved hjelp av en romlig Fourier-transformasjon of fasefelt-
variablene. Informasjonen sammenlignes med en lignende Endelig Differansemetode utviklet
i et tidligere prosjekt, så vel som relevant teori.
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1 Introduction

When considering any material, microstructure is a factor affecting all properties, either struc-
tural or functional. The development of this with time potentially causing improvement,
complications or failure. Computational modelling of microstructure development has proven
to be a valuable tool, both saving hours of lab work, but also giving an insight into phenomena
otherwise impossible to directly observe.

Grain growth occurs when recrystallization of the material is finished, and grain boundaries
remain as the largest contribution to free energy in the system. The boundariesmove, eliminating
smaller grains, as the mean grain size increases. Phase field modelling is a relatively new
development in computational physical metallurgy. Grain boundaries are described not with
sharp borders, but with a set of field variables across the grain structure. The field variables
represent the grain orientations of each point in the structure. Evolution of the grain structure is
simulated with regards to free energy density, boundary migration kinetics, relaxation kinetics
as well as the total free energy in an inhomogeneous system.

Significant developments in phase-fieldmodelling where undertaken by Chen[1, 2] and Suwa[3]
provide a useful basis and comparison data for the project. These in turn build on the work of
Ginzburg and Landau[4], Cahn and Hillard [5], among many more.

This project aims to develop a phase field simulation of grain growth. The model should provide
a realistic starting structure, with periodic borders to increase accuracy. The simulation will
employ a spectral Fourier method for changes in the field variables. Data will be collected for
grain sizes, and graphical representations of the grain structure at different instances will be
generated.

This Master’s thesis builds on previous project work the author conducted as part of a special-
ization project the Fall of 2018. That project developed a phase field model using the finite
difference of modelling, and this will be used for comparison with this thesis.
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2 Theory

In order to model the evolution of the grain structure it is apt to review basic grain-growth
theory, as well as the principles of phase-field modelling. This theory is applied with kinetic
and thermodynamic expressions for the behaviour of thematerial to obtain an evolution equation.
Furthermore, for the Fourier Spectral method, a semi-implicit differential time discretization is
applied and solved with the Fourier Transform.

2.1 Grain growth

The hard sphere model of physical metallurgy gives us an understanding of the metal atoms
in volumes with uniform orientation. Between these grains lie grain boundaries. In the two-
dimensional plane, low angle grain boundaries are characterized as lines of dislocations through
the field of atoms with relatively low boundary energy, while high angle boundaries are either
random fields of atoms with low density and high energies or special ordered boundaries with
lower energy[6].

Figure 2.1: The effect of boundary curvature and triple point
angles on grain growth direction[6].

.

The driving force of grain growth can be derived from the grain boundary being a defect in the
crystal matrix, and the thermodynamic force towards reducing the area of the defect. The grains
do not combine, the only mechanism of grain growth is the movement of grain boundaries.
Characteristic features of grain growth can be observed geometrically. For a curved grain
boundary, the driving force, and direction of grain migration, will be towards the centre of
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curvature. Another rule applies to points where three grain boundaries meet, as shown in figure
2.1. Here the grain with the most acute angle will be diminished to the benefit of the other two.
With this in mind, one can deduce that a hypothetical stable structure would consist of a field
of identical even hexagons, where all angles between grain boundaries are 120 degrees[6]. Or
put in terms of equilibrium between the boundary energies γ:

γ23

sinθ1
=

γ13

sinθ2
=

γ12

sinθ3
(2.1)

The θ’s are the angles in a three way junction. The atoms on the inside curve of a boundary
experience a higher pressure, and will jump to the other side of the boundary to a position with
less pressure. This has the effect that a curved boundary equates a difference in free energy that
pushes atoms across the boundary. The change in free energy due to the boundary energy is

∆G =
2γVm

r
= ∆µ (2.2)

Self-similarity

Figure 2.2 shows grain distribution plots for a couple of ideal hypothetical grain structures with
time. The relative frequency distribution of grain sizes, from smaller to larger grains, has been
shown to have a self-similar nature[7]. This means that the normalized (for mean size) grain
distribution will have the same shape as time progresses. This will be an important effect for
control of the accuracy of the model[8].

Figure 2.2: Self-similarity. Grain distribution plot for a) normal
growth and b) abnormal growth[7].

.
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2.2 Phase Field Modelling

Earlier regimes for modelling coarsening dynamics in materials have been largely based on
defining the boundaries themselves as sharp[3]. Statistical models were developed for the
movement of these borders through the material. This has the advantage of being simple to
model without excessive use of computer resources. This however is not ideal for accurately
modelling real systems.

Amore recent development is the phase field model, taking a diffuse interface approach. Instead
of defining hard borders, thematrix is discretized into points, eachwith defined grain orientation,
and therefore grain affiliation. This way, the borders are implicitly defined by the values in each
point,

Figure 2.3: Illustration of phase field variables and their values
through a cross-section of a grain structure.

In the phase field model, the grain affiliation of each point is defined by the field variables.
These have a value for each position node in the system, and there can be any number of
them, depending on necessity and resources. Figure 2.3 illustrates a grain structure with a field
variable assigned to each grain. Along the x-axis from the left, the value of η1 is one at first,
then decreases close to a boundary, where η2 increases to one and supplants η1. The sum of the
field variables in a single point is never higher than one, but can be lower than one in the grain
boundary areas. Computation is applied to all variables in all nodes.

Phase field modelling has proven useful in biology, medicine, earth sciences as well as physical
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modelling on a level above the atomistic.

2.3 Grain Boundary Migration Kinetics

The aforementioned difference in pressure and free energy on a grain boundary is also known
as the Gibbs-Thomson effect, and can be written as

∆G =
2γVm

r
(2.3)

Here the γ is the grain boundary energy, Vm is the molar volume, and r is the mean radius
of curvature. We assume that the mean radius of curvature is proportional to the mean grain
diameter of the system[6]. From this and the equation above we extrapolate that the mean grain
growth driving force is proportional to 2γ/D:

dD
dt
= αM

2γ
D

(2.4)

α is a constant for the order of unity, M is boundary mobility and D is the mean grain radius in
the system. We say that D = D0 when t = 0, and integrate Equation 2.4 to get

D
2
= D

2
0 + Kt (2.5)

where

K = 4αMγ (2.6)

Equation 2.5 can be rearranged to

R
2
− R

2
0 = kt (2.7)

where R is the mean grain radius of the system, and R0 is the initial mean grain radius.
Furthermore, as this project mainly operates in grain areas, the following relation is useful,

A − A0 = kt (2.8)
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The field variables in the phase-field model are non-conserved, and consequently their evolution
is linearly proportional to the derivative of free energy with respect to each variable. This means
that a continuum Ginzburg-Landau equation describes

dηi (r, t)
dt

= −Li
δF

δηi (r, t)
(2.9)

2.4 Total Free Energy

The work of Cahn-Hillard[5] in diffuse interface theory provides the total free energy of an
inhomogeneous system as

F =
∫ [

f (η1(r), η2(r), ..., ηp(r)) +
p∑

i=1
η j
κi

2
(
∇ηi(r)

)2
)

]
d3r (2.10)

Here f is the local free energy density as a function of each local field variable. f should
describe a density with equal minima at nodes with one η = 1 and the rest zero. That is, the
minima describe the centre of a grain, where only one grain orientation is present. The second
part of the expression is the gradient energy term for the boundaries, which equals zero at the
minima, grain centres.

2.5 Free Energy Density

Figure 2.4: A plot of equation 2.12, with a double well shape.

The free energy function described above, simply needs to have minima where the field variable
in question is 1. A function that fulfils this is as follows
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f (η1(r), η2(r), ..., ηp(r)) =
p∑

i=1

(
−
α

2
η2

i +
β

4
η4

i

)
+ γ

p∑
i=1

p∑
j,1

η2
i η

2
j (2.11)

The expression enclosed by the first summation, namely:

f =
α

2
η2

i +
β

4
η4

i (2.12)

describes the curve plotted in Figure 2.4. This function however, provides 2p minima. To
compensate, the latter summation is added. If γ is greater than β/2, then the total amount of
minima is 2p. This can be more clearly seen by re-writing equation 2.11:

f (η1(r), η2(r), ..., ηp(r)) = −
α

2

p∑
i=1

η2
i +

β

2

( p∑
i=1

η2
i

)2

+

(
γ −

β

2

) p∑
i=1

p∑
j,1

η2
i η

2
j (2.13)

2.6 Microstructure Evolution Equation

By substituting the total free energy F from equation 2.10 into the Ginzburg-Landau equation
for the changes in field order parameters, equation 2.9, the following is obtained:

dηi (r, t)
dt

= −Li

(
δ f (η)
δηi (r, t)

− κ∇2η

)
(2.14)

After the discussion in 2.5, function 2.11 can be substituted for f in this expression. In the end,
after differentiating f , the following equation is obtained[9]:

dηi

dt
= −Li

(
−αηi + βη

3
i + 2γηi

p∑
j,i

η2
j − κi∇

2ηi

)
(2.15)

This is a microstructure evolution equation for the field variables in this phase-field model for
grain growth. In the end, there are a number of variables in the expression,

• Li: Kinetic coefficients, follows from the continuum equation 2.9. Standard value set to 1

• α, β and γ: Phenomenological parameters, these modifies the double well function 2.12
in equation 2.11 and controls the free energy aspect of the model. γ has been shown to
have similar effect on grain growth as κi[3]. Standard values for all three set to 1.

• κ: Gradient energy coefficients, standard value set to 2.
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The summation in this equation has a very logical, physical purpose. It sums the square of all
field variables in the node except for the one in question for the change. This equates to zero in
a node with only one field variable, and any other field variable will affect the change positively.

The Laplace operator ∇2 in the last section governs the gradient energy, adding to the evolution
of the field variable if the neighbouring nodes contain the field variable in question. This
negatively affects the growth rate, which is appropriate; when a node is surrounded by identical
nodes, it is located in the middle of a grain, and should not feel the energy gradient.

2.7 Semi-implicit Numerical Solution

In this project, the goal is to utilize the spectral Fourier method to solve a partial differential
equation derived from the microstructure evolution equation. The spectral method is very
robust compared to finite element methods, and tolerates coarser time discretization. This in
turn allows for fewer time steps in the numerical solution scheme.

Equation 2.15 is fit for the finite difference method, but modification is necessary for the
spectral method to be applicable. First of, the κ-expression is changed to apply semi-implicit
time discretization:

ηi,n+1 = ηi,n − ∆tLi

(
−αηi,n + βη

3
i,n + 2γηi,n

p∑
j,i

η2
j,n − κi∇

2ηi,n+1

)
(2.16)

ηi,n signifies the field variable for time tn, what would normally be written as ηi(tn) and ηi,n+1

signifies ηi(tn+1), a time-step forward. Then the spatial Fourier transform is applied:

F[ηi,n+1] = F[ηi] − ∆tLi

(
F

[
−αηi + βη

3
i + 2γηi

p∑
j,i

η2
j

]
− κi k2

Fηi,n+1

)
(2.17)

Here the ∇2ηi, the laplacian in real space, is transformed to the equivalent k2, laplacian in
Fourier space. The equation can be rearranged, sorting the time discretization:

F[ηi,n+1] + ∆tLiκi k2
F[ηi,n+1] = F[ηi] − Li

(
F

[
−αηi + βη

3
i + 2γηi

p∑
j,i

η2
j

])
(2.18)

And finally, the equation used in the Spectral method is finished:
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F[ηi,n+1] =
F[ηi,n] − ∆LiF[−αηi + βη

3
i + γηi

∑p
j,i η

2
j ]

1 + ∆tLiκi k2 (2.19)

After the above is computed, a backwards Fourier transform is applied to the Fourier image:

ηi,n+1 = F
−1[F[ηi,n+1]] (2.20)

The result is a solution to the evolution equation that can be used in the spectral Fourier method.
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3 Method

The project took the form of a program in the language C++, generating a randomized field of
grains with random size and positions. The mathematical modelling itself is executed with a
spectral Fourier method, with a finite difference method for comparisons. The result is graphics
illustrating the grains themselves, as well as numerical data on the grain growth of the system
modelled.

3.1 Grid structure

The Mesoscale Microstructure Simulation Project (MMSP) is an online repository containing
tailored classes and class functions in the C++ programming language[10]. This resource
simplifies a lot of the operations in this project, as they need special functions for accessing the
data structure containing the phase field variables.

The main class in use is the GRID class. This data class consists of an array of predetermined
size, in this application 256 by 256 nodes. Each node contains a vector with the number of
field variables needed for the application. In this programme each field variable in the vector
represents a possible orientation of the crystal grid. They can have a value between zero and
one, representing the nodes affinity towards each possible orientation. In the middle of a grain,
a single field has the value one, while the others have the value zero. In the diffuse grain
boundaries, two or more fields have a value smaller than zero, but with a sum lower than one.
This corresponds with the theory illustrated in Figure 2.3 on page 4.

double **etas;

etas = (double**)calloc(Netas, sizeof(double*));

for (int i = 0; i < Netas; ++i) {

etas[i] = (double *)calloc(Nodes, sizeof(double));

}

The Fourier library used for the spectral variant of the simulation, however, was not compatible
with this class. To run a Fast Fourier Transform, the data had to be put in separate arrays for
each field variable. Each of these arrays would represent a full grid of nodes for one single field
variable. For storing data between data collection sequences, these arrays were combined into
a nested array for storage in a cache file. For 36 field variables in a grid of 256 by 256 nodes,
this nested array would contain over 2.3 million doubles. An array of this size is to large for
the stack in the memory hardware for many machines, so the class is allocated to the heap by
using the calloc-command in C++. This necessitates handling of pointers, as well as manually
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handling and freeing memory. The code for the allocation of this nested array can be seen above
this paragraph.

TheMMSPGRID-class was however used for visualization and comparisons between the Finite
Difference and Fourier Spectral methods. This is discussed further in section 3.4.

3.2 Initial grain structure

A notable difference between the procedure developed in this project and the techniques of
Chen[1, 2] and Suwa[3] is how the initial grain structure is generated. The aforementioned re-
ports initializes the programme by assigning the given number of field order variables randomly
to every single node. This gives a somewhat liquid-like and certainly random initial structure,
but this model has no way to account for liquid kinetics. There is also the problem of grains
with the same orientation field variable "finding" each other and merging as the grains grow.
In this project, it was deemed appropriate to generate a field of grains somewhat similar to an
actual solidified metal.

Voronoi tessellation

A Voronoi Tessellation is a method for dividing an area into randomly placed smaller areas of
random size and shape. It is named after Georgy Voronoi. The tessellation implemented in
this project initially distributes a set of seed points randomly across the area. Each node in the
system then measures the distance to all seed points, and finds the closest one. The orientation
field variable for the node corresponding to the chosen seed point is set to one, while all other
are set to zero. The result is structure closely resembling a natural grain structure in a pure
unalloyed metal. Each orientation field variable is assigned to exactly one grain in the structure.
The grain boundaries are sharp before the simulation starts, but immediately become diffuse as
the programme commences.

Periodic border conditions

An issue that arises when the basic tessellation is finished, is the matter of the borders of the
modelling field, illustrated in Figure 3.1a. At these edges the grains stretch, as there are no
grains outside the field for the Voronoi procedure to consider. In effect there is a pinning around
the edge, an unwanted factor when modelling pure grain growth. This limits the accuracy of the
model closer to the edge, an effect that becomes more prevalent as the grains grow and become
more affected by the border grains.

11



(a) Voronoi Tessellation without periodic bor-
der conditions.

(b) Voronoi Tessellation with periodic border
conditions.

Figure 3.1: Comparison of Voronoi Tessellation with and without periodic border conditions. Other
parameters are identical, but the placement of the grain seeds are random. Notice the shape
of the grains close to the edges.

The solution in this project was to initially generate a much larger modelling area. The initial
grid is a three-by-three repetition of the intended field, an area nine times as large. Each of the
eight identical copied fields have the same seed points as the original, relative to the copied field
itself, see Figure 3.2. When the tessellation is finished, the program separates the field in the
centre from these nine, and continues with the procedure. This means that a node at the edge
of the intended modelling area will detect a seed point outside of the field, placed as if the field
repeats periodically and the closest point is on the other side of the field. Fields at the edges
will not expand towards the edges that pin them, but enclose an area defined by a seed point
outside the frame.

For this implementation to work, another issue has to be addressed; the program has to know
that two grains on opposite edges of the field has the same crystal orientation. In the model,
this means that the same η on both sides need to have the value 1 for a pure grain. This is done
by comparing all nodes along the top edge of the field with the bottom, and the right with the
left. The programme then checks all nodes in the field if they belong to these grains, and sets
their field variables correspondingly. This is a time consuming process, but is only done once
for each grain structure.
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Figure 3.2: A three-by-three grid, repeating the initial Voronoi
Tessellation.

3.3 Numerical Implementation

With the initial grain structure generated, the next step is the numerical procedure itself. This
project utilizes both a finite difference method as well as a spectral Fourier method for modelling
the grain growth. This builds on earlier work, and allows for useful comparisons[11].

Finite Difference Method

The programme employs equation 3.1, see page 7 in Theory for details, in a finite difference
scheme. For each node in the MMSP-grid class, the vector of field variables is evaluated, and
change calculated for each variable. The iterator i indicates the current field variable, and j
indicates all other field variables in the node.

dηi

dt
= −Li

(
−αηi + βη

3
i + 2γηi

p∑
j,i

η2
j − κi∇

2ηi

)
(3.1)

The laplacian in the rightmost part of the expression governs the gradient energy, adding to the
evolution of the field variable if the neighbouring nodes contain the field variable in question.
This laplacian is calculated with the code seen below, for a single node and a single eta.
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for (int i=0; i<dim; i++) {

s[i] += 1;

const T& yh = GRID(s);

s[i] -= 2;

const T& yl = GRID(s);

s[i] += 1;

laplacian += (yh - 2.0 * y + yl);

}

return laplacian;

Semi-implicit Fourier Spectral Method

The improved scheme for simulating the microstructure evolution utilizes a fast Fourier trans-
form to solve a semi-implicit differential version of the microstructural evolution equation.
Since this method computes on a Fourier Transform Spectre of the field, it is called the Spectral
Method.

The Spectral Method for modelling the grain evolution required Fourier transforms of each
phase field grid, which there was 36 of for most of the procedures. This was achieved by
employing the free FFTW library, developed at MIT[12]. As can be seen in equation 3.2 and
3.3, the procedure necessitates running three separate transforms, one for each of the Fourier
transforms in the denominator of equation 3.2, and one backwards transform for equation 3.3,
to resolve the full solution.

F[ηi,n+1] =
F[ηi,n] − ∆LiF[−αηi + βη

3
i + γηi

∑p
j,i η

2
j ]

1 + ∆tLiκi k2 (3.2)

ηi,n+1 = F
−1[F[ηi,n+1]] (3.3)

In equation 3.2, the k2 in the numerator, similarly to the ∇2 for the finite difference method, is
the laplacian of the field variables. The important difference in this case, is the fact that this
computation is done in Fourier space, and thus the laplacian values need to be in the same space.
Since this field of laplacians only is dependent on the field dimensions in Fourier space, and not
the values in the nodes themselves, they could be calculated separately. To save computation
time, this was done only once per program call. The code for generating this laplacian can be
seen below.
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for (int k = 0; k < Nx21; k++) {

fk1 = (k)*delkx;

kx[k] = fk1;

kx[Nx2 - k + 1] = -fk1;

}

for (int k = 0; k < xdim; k++) {

for (int l = 0; l < xdim; l++) {

k2[k + l*xdim] = (pow(kx[k], 2) + pow(kx[l], 2));

}

}

Note that, unless otherwise specified, the standard values for the parameters were set to 1 for all
except κ which was set to 2.

3.4 Data collection

The procedure does not save grid structures for the whole system at every time-step, as this
would quickly fill computer memory. The initial program call, rather, has the user provide
the total number of time steps as well as the intermediate data collection interval. Large grain
structure grid files can reach several megabytes in size, and for long simulations, this could lead
to gigabytes of data. Generally 20 time intervals where employed in the analysis below.

The most important data value for comparison with other projects is the grain fraction of the
grains in the system, and the mean grain fraction of the whole system. This is collected in a
pure text file, which can be read by any suitable analytical tool. Matlab was used in this project.

FFT-array

In order to use the FFT functions in the FFTW3 library, the data was put in a nested array
structure, as described in section 3.1. To save computation time, this structure was saved
outside the program between time steps, instead of the GRID-class. For every data collection
step, however, the data is also saved as a GRID-class, for comparison to previous data. The
result of this is a minuscule increase in processing time, but the benefit of advanced visualization
outweighs this.

15



Self-similarity and other comparisons

In order to make a ascertain the self-similarity of the grain distributions, it is necessary to
construct a grain size distribution plot. A single run of the programme, however, starts with
36 grains, and this number is reduced. This is not a sufficient number of grains to retrieve a
statistically significant data set. The solution to this was to run several parallels with identical
parameters, but random starting structures. Identical starting structures would result in duplicate
data.

For the comparison between the spectral method and finite difference method, as well as the
expected nature of the grains size distribution, a script for bulk processing was utilized. Ten
parallels were run for each method, a number balancing the need for data, processing power and
available time. It should be noted that since the spectral method used more time per operation,
but with a high tolerance for time discretization, the latter was set to dt = 1, as compared with
dt = 0.1 for the finite difference program. A dt of 0.1 is quite close to the breaking point for
this method, while the spectral method managed dt = 1 easily. Thus slower processing time is
accounted for in the final result.
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4 Results

Figure 4.1 shows the evolution of the grain structure from a recently Tessellated structure in
the beginning, to larger grains eating the smaller ones in the fourth and fifth picture. The white
areas represent pure grains with a single grain orientation, while the grey lines are the diffuse
borders, where the field variables have a value below one. The time between the images is
not linear, rather, the images have been picked to best show the relative growth and shrinking
of the grains. Picture 3, 4 and 5 shows a relatively stable and even hexagon in the top right,
demonstrating the effect discussed on page 2 and shown in figure 2.1.

Figure 4.1: Visualization of the grain evolution in the model.

It is important to note that the grain growth curve from a single run is neither linear nor smooth,
but has rather stepped form, as can be seen below in Figure 4.3. This is due to the mean grain
size being dependent on the total number of grains, an integer that changes abruptly whenever
a single grain size reaches zero, see equation 4.1. To account for this in collecting data, several
parallels or consecutive runs have to be performed. In this project, most data was collected from
means over 10 runs. Figure 4.5 shows the mean grain size over 10 different runs, along with the
mean of these runs. With more parallels the mean value of these means becomes smoother and
more linear.

A =
∑

Aη,i
N

(4.1)
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(a) 36 grains (b) 72 grains (c) 130 grains

Figure 4.2: Starting structure with different grain numbers/ field
variables.

Figure 4.3: Evolution of grain sizes for a single structure. Dotted lines are individual grains/field
variables, and the solid line is the mean grain size.
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Figure 4.4: 18 Grains. Mean grain size evolutions of 10 different grain structures. All parameters are
identical, but the initial structure is randomized. The dotted lines are individual mean grain
sizes and the solid line is the mean.

Figure 4.5: 36 Grains. Mean grain size evolutions of 10 different grain structures. All parameters are
identical, but the initial structure is randomized. The dotted lines are individual mean grain
sizes and the solid line is the mean.
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(a) Structure at 500 steps (b) 1000 steps

(c) 1500 steps (d) 2000 steps

Figure 4.6: Evolution of a single grain, as well as the initial surrounding grain structure. Spectral
method, dt = 1. This also shows how the structure is analysed using software, separating the
data for each grain.

Figure 4.6 shows evolution of a single grain, chosen from an initial field of grains.
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4.1 Effect of Parameters

The Microstructure Evolution Equation for the Spectral Method, Equation 3.2, has a number
of parameters, as discussed in Section 2.6. This section presents the result of varying three of
them, γ, κ and the kinetic coefficient, L.

F[ηi,n+1] =
F[ηi,n] − ∆LiF[−αηi + βη

3
i + γηi

∑p
j,i η

2
j ]

1 + ∆tLiκi k2 (4.2)

Equation 4.2 above, is provided for reference.
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L - Kinetic coefficient

Figures 4.7 and 4.8 show the result of varying the parameter L between 0.5 and 3.

Figure 4.7: Average grain size plotted for five different -values.
.

Figure 4.8: Grain growth plotted for increasing L-value.
.
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κ - kappa

Figures 4.9 and 4.10 show the result of varying the parameter κ between 0.5 and 2.5.

Figure 4.9: Average grain size plotted for five different κ-values.
.

Figure 4.10: Grain growth plotted for increasing κ-value.
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γ - gamma

Figures 4.11 and 4.12 show the result of varying the parameter γ between 0.5 and 3.

Figure 4.11: Average grain size plotted for five different γ-values.

Figure 4.12: Grain growth plotted for increasing γ-values.
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5 Discussion

(a) Structure at 500 steps (b) 1000 steps (c) 1500 steps (d) 2000 steps

Figure 5.1: Evolution of a single grain, as well as the initial surrounding grain structure. Spectral
method, dt = 1. This also shows how the structure is analysed using software, separating the
data for each grain.

Figures 5.1 shows the development of one grain, separated from the rest of it’s system. Between
Subfigures 5.1b and 5.1c the grain seems to grow. This appears to be due to neighbouring,
smaller grains diminishing, and this grain gaining size to their detriment. After this, however,
the grain is no longer a large grain compared to it’s neighbours, and it starts shrinking. The fifth
picture in this sequence was not included, as it was simply a field of blue, the grain not existing
any more.

This is in accordance with the grain growth theory in section 2.1. If we consider the curvature
of the sides of the grain instead, we see that the expansion happens on the three sides that
are clearly curving towards the grain itself. Here the driving force of grain growth pulls the
boundary towards the grains with higher free energy.

Below, Figure 5.2 shows a full set of grain size plots, one dotted line for each single grain in
the system. As anticipated, a number of grains are reduced immediately, letting others grow.
Some grow in size before shrinking, like the grain in Figure 5.1. The mean, as explained in the
Results section, is not linear, and Figure 5.3 shows the mean curve of 4 parallels.

25



Figure 5.2: 1000 steps of evolution for a structure with 36 initial grains.
.

Figure 5.3: 1000 steps of evolution for a structure with 36 initial grains.
.
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5.1 Parameters

L - Kinetic coefficient

Figure 5.4: Comparison of L-values. Plotted are the size of each grain with dotted lines, and the average
grain size with a solid line.

.

Below is a comparison of the growth curves for all grains for two different values of the kinetic
coefficient, L. The plots are quite similar, the main difference being many grains diminishing
fast with the higher of the two values. Figures 4.7 and 4.8 show that the change in growth rate
follows a curve that might be exponential or cubic. From the highest value for L, 3, seems to
also tend towards being exponential, but this might be coincidental.
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κ - kappa

Figure 5.5: Comparison of κ-values. Plotted are the size of each grain with dotted lines, and the average
grain size with a solid line.

.

Overall, κ seems to have a very similar effect on the growth rate as L. For lower values, the
growth curves in 4.9 are some of the most even produced in this project. κ is an energy gradient
coefficient and in Equation 4.2, κ is a factor in front of the k4 laplacian of the field. Higher
values significantly increases growth rate, which also means that grains shrink faster. The plot
comparing growth rates 4.10 has a shape that looks even more exponential than that of L.
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Parameters\Values 0.5 1 1.5 2
L 3.6 ∗ 10−3 6.6 ∗ 10−3 7.1 ∗ 10−3 11.4 ∗ 10−3
γ 3 ∗ 10−3 6.6 ∗ 10−3 7.8 ∗ 10−3 5 ∗ 10−3
κ 1.7 ∗ 10−3 2.1 ∗ 10−3 5.4 ∗ 10−3 6.6 ∗ 10−3

Table 5.1: Comparison table of parameters and their resulting rates of mean grain growth.

γ-gamma

Figure 5.6: Comparison of γ-values. Plotted are the size of each grain with dotted lines, and the average
grain size with a solid line. The left shows a value of 2, with even growth, while the right
shows uneven erratic growth for a value of 0.5.

Both from Figures 4.12 and 4.11, it is evident that γ has very different effect on the evolution
than γ and L. γ = 0.5 results in both the growth curves being erratic, as well as a significant
drop in mean growth rate. Interestingly, γ = 2 also sticks out, as can be seen in Figure 4.12,
dropping significantly relative to both the previous and subsequent values of the parameter.

In the evolution equation, Equation 4.2, γ is a factor for the only summation, which can
illuminate the dramatic effect it has on the grain growth. For low values, the term withγ in front
might be less positive than the α-term is positive, which might explain the erratic behavior.

In order to compare these parameters and growth rates directly,they have been put into Table
5.1.
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5.2 Comparison with Finite Difference

As stated, the programme in this thesis utilizes a Spectral Method for modelling the evolution.
The project prior to this used the Finite Difference Method, and it is interesting to compare
the results of these two projects. Figure 5.7 directly compares the mean growth curves of the
three different grain orientation numbers. While the curves obviously have different starting
conditions, there is no obvious difference in inclination visible.

Figure 5.7: Spectral Fourier method. Plot of three different grain orientation variants, grain size with
timesteps.

As mentioned in the method section, the spectral modelling uses a coarser time discretization,
dt = 1, than the finite difference scheme, which uses dt = 0.1. This results in Figure 5.8, where
the finite difference plot goes to 10000 steps, while the spectral plot goes to 1000. Even so, the
spectral method seems to be about twice as fast, even while divided by ten. Aside from that,
the plots are quite similar.
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(a) Finite Difference Method (b) Spectral Fourier Method

Figure 5.8: Plot of three different grain orientation variants, grain size with timesteps.

.

Figure 5.9 plot the same data as 5.7, but the initial grain size has been subtracted from the data,
in accordance with equation 2.8. What can bee seen here is how a smaller amount of grain
orientations affect the inclination of the grain growth curve, and the accuracy of the model.
The curve for 18 grain orientations clearly has a lower growth than the others. The 72 grain
orientation curve also shows some drop off as the grains grow and therefore also the total amount
of grains orientations in the system declines.

Figure 5.9: Spectral Fourier method. Plot of three different grain orientation variants, grain size with
timesteps. The initial mean grain size has bean subtracted from the whole of each curve.

From Figure 5.10, it seems quite evident that the 18 grain curve is less inclined than the rest.
An explaination for this, as has been touched upon before, might be that in a finite system, the
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effect of the grain boundaries themselves. With fewer grains, the system approaches a stable
state, and in a way, a system with fewer grains lies in the future relative to a sytem with more.

(a) Finite Difference Method (b) Spectral Fourier Method

Figure 5.10: Evolution of grain sizes for a single structure. Dotted lines are individual grains/field
variables, and the solid line is the mean grain size.

.

Self-similarity

Considering the phenomena of self-similarity discussed on page 3 and illustrated in figure 2.2,
grain distribution plots were created. The first, figure 5.12, shows the grain size distribution
plot for a structure with 36 grains evolved with the spectral method. This shows a quite even
lowering and displacement of the distributions with time. It can be argued that the earliest
instance has a sharper peak, and that the distribution evens out as the structure develops. This
is likely due to the initial structure being a bit too evenly distributed, resulting in an unnatural
number of grains with a size close to the mean.
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Figure 5.11: Grain size distribution plot, comparing three different points in the simulation. Illustrates
the self similar nature of the grain structure over time, compare with figure 2.2.

Figure 5.12 shows the same grain distribution plot for 130 grains modelled with the finite
difference method. While the principle of self-similarity itself is apparent in both plots, it
is evident that the distributions them self are of different natures. One reason for this could
be the number of grains. As the number of grains diminishes, the statistical accuracy of the
distribution is undermined.

Figure 5.12: Grain size distribution plot, comparing three different points in the simulation. Illustrates
the self similar nature of the grain structure over time, compare with figure 2.2.

.
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6 Conclusion

The implementation of a phase-field based grain growth model has been achieved, and the
results show promise. The smooth boundaries are closer to reality than sharp edges, and there
is no tracking of the boundaries. Voronoi Tesselation provides a sensible starting structure
for the simulations, with realistically dispersed grains. Periodic border conditions removes
inaccuracies stemming from edge effects, and

The resulting grain size evolution shows linearity. Self-similarity can also be shown, and the
graphical depiction of the structure itself seems to be quite realistic. The data showed some
irregularity, especially with few grain orientations. This can be remedied with more grains or
more parallels.

Finally a Spectral Fourier method for computing the change of the field variables and the
evolution of the grain structure. This allows a much coarser time discretization, and modelling
larger time intervals faster. This, in turn, helps saving computer resources and increasing
computation speed.

Further work on the model should be focused on effectivizing and limiting processing time,
possibly utilizing parallel processing to a more effective degree. Aside from that, more data, like
free energy levels, and specific grain boundary profiles should be extracted from the structure
during the process. With the phase field model, adding another phenomenon like Zener pinning
should be explored.

34



References
[1] L. Q. Chen and W. Yang. “Computer simulation of the domain dynamics of a quenched

system with a large number of nonconserved order parameters: The grain-growth kinet-
ics”. In: Physical Review B (Dec. 1994).

[2] L.Q. Chen. “A novel computer simulation for modeling grain growth”. English. In:
Scripta Metallurgica et Materialia 32.1 (1995). issn: 0956-716X.

[3] Yoshihiro Suwa and Yoshiyuki Saito. “Computer simulation of grain growth by the
phase field model. Effect of interfacial energy on kinetics of grain growth”. In: Materials
Transactions 44.11 (2003), pp. 2245–2251.

[4] VL Ginzburg. “VL Ginzburg and LD Landau, J. Exptl. Theoret. Phys.(USSR) 20, 1064
(1950)”. In: J. Exptl. Theoret. Phys.(USSR) 20 (1950), p. 1064.

[5] John W Cahn and John E Hilliard. “Free energy of a nonuniform system. I. Interfacial
free energy”. In: The Journal of chemical physics 28.2 (1958), pp. 258–267.

[6] DavidA. Porter,KennethE. Easterling, andMohammedY. Sherif.Phase Transformations
in Metals and Alloys. CRC Press, Taylor and Francis Group, 2008.

[7] Frederick John Humphreys and Max Hatherly. Recrystallization and related annealing
phenomena. Elsevier, 2012. Chap. 11, pp. 333–378.

[8] S. D. Coughlan and M. A. Fortes. “Self similar size distributions in particle coarsening”.
In: Scripta metallurgica et materialia 28.12 (1993), pp. 1471–1476.

[9] L. Q. Chen, D. N. Fan, and V. Tikare. “A Phase-Field Model for Grain Growth”. In:
Metallurgical and Materials Transactions A (July 1998).

[10] T. Keller and J. Gruber. The Mesoscale Microstructure Simulation Project. url: https:
//github.com/mesoscale/mmsp.

[11] M Odegaard. “Modelling grain growth with the phase field method”. Specialization
Project.

[12] Matteo Frigo and Steven G Johnson. The fastest fourier transform in the west. Tech. rep.
MASSACHUSETTS INST OF TECH CAMBRIDGE, 1997.

[13] S. Bulent Biner. Programming Phase-Field Modeling. Springer, 2017.
[14] Toshiyuki Koyama. “Phase field”. In: Springer Handbook of Materials Measurement

Methods. Springer, 2006, pp. 1031–1055.
[15] Samuel Miller Allen and JohnW Cahn. “Ground state structures in ordered binary alloys

with second neighbor interactions”. In: Acta Metallurgica 20.3 (1972), pp. 423–433.
[16] JE Burke and D Turnbull. “Recrystallization and grain growth”. In: Progress in metal

physics 3 (1952), pp. 220–292.

35

https://github.com/mesoscale/mmsp
https://github.com/mesoscale/mmsp


[17] M Hillert. “On the theory of normal and abnormal grain growth”. In: Acta metallurgica
13.3 (1965), pp. 227–238.

36



Figures

This appendix contains figures generated as part of the thesis. They are generated large, so as
to be easier to read and analyse.

(a) Voronoi Tessellation without periodic border con-
ditions.

(b) Voronoi Tessellation with periodic border condi-
tions.

Figure .1: Comparison of Voronoi Tessellation with and without
periodic border conditions. Other parameters are identical, but
the placement of the grain seeds are random. Notice the shape of
the grains close to the edges.
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Figure .2: A three-by-three grid, repeating the initial Voronoi
Tessellation.
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Figure .3: Visualization of the grain evolution in the model.
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(a) 36 grains

(b) 72 grains

(c) 130 grains

Figure .4: Starting structure with different grain numbers/ field
variables.
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Figure .5: Evolution of grain sizes for a single structure. Dotted lines are individual grains/field variables,
and the solid line is the mean grain size.

.
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Figure .6: 18 Grains. Mean grain size evolutions of 10 different grain structures. All parameters are
identical, but the initial structure is randomized. The dotted lines are individual mean grain
sizes and the solid line is the mean.

Figure .7: 36 Grains. Mean grain size evolutions of 10 different grain structures. All parameters are
identical, but the initial structure is randomized. The dotted lines are individual mean grain
sizes and the solid line is the mean.
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(a) Structure at 500 steps (b) 1000 steps

(c) 1500 steps (d) 2000 steps

Figure .8: Evolution of a single grain, as well as the initial surrounding grain structure. Spectral method,
dt = 1. This also shows how the structure is analysed using software, separating the data for
each grain.
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Figure .9: Average grain size plotted for five different -values.
.

Figure .10: Grain growth plotted for increasing L-value
.
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Figure .11: Average grain size plotted for five different κ-values.
.

Figure .12: Grain growth plotted for increasing κ-value
.
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Figure .13: Average grain size plotted for five different γ-values.

Figure .14: Grain growth plotted for increasing γ-values
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Figure .15: Comparison of L-values. Plotted are the size of each
grain with dotted lines, and the average grain size with a solid
line.

.

Figure .16: Comparison of κ-values. Plotted are the size of each grain with dotted lines, and the average
grain size with a solid line.

.
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Figure .17: Comparison of γ-values. Plotted are the size of each grain with dotted lines, and the average
grain size with a solid line. The left shows a value of 2, with even growth, while the right
shows uneven erratic growth for a value of 0.5.

Figure .18: Plot of three different grain orientation variants, grain size with timesteps.
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(a) Finite Difference Method

(b) Spectral Fourier Method

Figure .19: Plot of three different grain orientation variants, grain size with timesteps.

.
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Figure .20: Plot of three different grain orientation variants, grain size with timesteps. The initial mean
grain size has bean subtracted from the whole of each curve.
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(a) Finite Difference Method

(b) Spectral Fourier Method

Figure .21: Plot of three different grain orientation variants, grain size with timesteps. The initial mean
grain size has been subtracted.

.
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Figure .22: Grain size distribution plot, comparing three different
points in the simulation. Illustrates the self similar nature of the
grain structure over time, compare with figure 2.2

Figure .23: Grain size distribution plot, comparing three different points in the simulation. Illustrates
the self similar nature of the grain structure over time, compare with figure 2.2

.
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