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Abstract 
The Norwegian Ministry of Transport and Communications has commissioned the 

Norwegian Public Roads Administration (NPRA) to explore a project on the Coastal Highway 

E39 along the Norwegian west coast. 

This master thesis project analyse the case of the Hardanger Bridge which is a suspension 

bridge built in 2013: this case study is part of this vast and ambitious project which is not 

only a chance to turn Norway into a more developed nation, but it is also a technological 

challenge, in particular for what concern the fjords crossings.  

In this thesis the top tower part of the Hardanger Bridge was analysed: starting from the 

design drawings provided by the “Staten Vegvesen”, the geometry of the top tower was 

built in CAD environment (Autocad and Rhino software) and, then, implemented within a 

finite element software Abaqus/CAE. The first part of the project consists of the definition 

of the material properties and the loads acting on the top tower, in particular on the steel 

saddle. The properties of each material were evaluated according to the actual Eurocode 2 

– EN 1992 -1-1(2004) (1). The loads, given by Staten Vegvesen’s engineer, are calculated 

according to the standard’s guideline: ultimate and serviceability limit state loads were 

provided in the form of force in the two main cables. 

The second part of the thesis is based on the finite element modelling of the top tower: 

each choice of modelling is explained and shown, according to the software’s manual. 

The behaviour of the structure was examined, performing a linear or non-linear static 

analysis. A considerable research investigation was carried out in order to find the most 

suitable non-linear model capable of describing the non-linear behaviour of the structure 

in relations to the presence of cracking.  

The non-linear analysis was performed using the “concrete damaged plasticity model”: this 

model showed the presence and the distribution of the cracked regions.  

Finally, a serviceability limit state verification was performed: in particular, considering the 

results from the non-linear analysis, the verification of the crack width limit was carried 

out using different standards (Eurocode 2 2004/ draft 2018 and Model Code draft – 2010). 

The concrete damaged plasticity model revealed the presence of a crack pattern made of 

two main cracks: the verification of cracks width (SLS) proved that the width of both cracks 

is lower than the nominal limit value suggested by the standards. 
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The project developed for this master thesis is linked to the “Ferry-free E39 – Coastal 

Highway Route”: E39 is a coastal road which is going to connect the cities along the west 

coast of Norway. In particular, the route runs from Kristiansand in the south to Trondheim 

in the north, through six counties, and the cities of Bergen, Stavanger Ålesund and Molde. 

The route is approximately 1100 km long.  

This national project aims to create an improved highway without ferries, which will reduce 

travel time by half and increase the possibilities for the local economy through value 

creation. In order to achieve a continuous highway route without ferries, it is necessary to 

build several significant fiord crossings with different innovative technologies (sub-merged 

tunnels, offshore technologies-TLP, multi-span suspension bridge with floating towers). 

With this background, many teams of engineers are working on the advanced knowledge 

of the existing suspension bridge in order to improve the design of the new ones (for 

example, Bjørnafjorden and Sulafjord bridges). Thus, this master thesis’s project is part of 

an extensive analysis campaign which the Norwegian National Public Road Administration 

is performing. Also, this project aims to become a useful groundwork for the future topics 

that both the Department of structural engineering at NTNU and external work teams are 

going to be involved. 

The primary purpose of this thesis is to analyse the top pylon part of the Hardanger Bridge 

which is part of the E39 project: in particular, the attention was focused on the behaviour 

of the system made of the steel saddle which supports the suspension cables and the 

reinforced concrete part below the saddle. 

In particular, this project aimed to provide information about the non-linear behaviour of 

this particular structure: this topic involved the adoption of a non-linear material model in 

order to identify the most likely crack pattern and how it influences the response of the 

structure. 

Furthermore, during recent years, interest in nonlinear analysis of concrete structures has 

increased steadily, because of the extensive use of reinforced and prestressed concrete as 

a structural material, and because of the development of finite element procedures.   

First, an important consideration is that the constitutive properties of concrete have not as 

yet been identified completely, and there is still no generally accepted material law 

available to model concrete behaviour in the non-linear stage. A second important factor 

is that non-linear finite element analysis of concrete structures can be very time consuming 

and may require considerable user expertise. The considerable cost of nonlinear analysis 

of concrete structures is primarily due to the difficulties experienced in the accuracy and 

stability of the solutions. 

In the following chapters, in order to fulfil the task of this project, a non-linear analysis 

was performed taking into account all the problematics that comes both from the finite 

element modelling and the presence of cracking. 

All these aspects were carefully analysed, in order to be able to provide, at the end of the 

project, a complete overview of all the factors that improve or worsen the response of the 

structure. 

 

 

1 Introduction  



 

 

1.1 The Hardanger Bridge 

Figure 1.1 - Hardanger bridge top view (2) 

The Hardanger Bridge is a 1380 m long suspension bridge connecting Vallavik and Bu and 

crossing the Hardanger Fjord in Hordaland. The construction started in autumn 2009 with 

the erection of the towers, and it was completed in 2013. 

The bridge consists of one girder span between two pylons and hangers connected in 

between. The pylons are made of reinforced concrete, rising over 200 m above the sea 

level, standing on solid ground on each side of the Eidfjord.  

 

Figure 1.2 - Hardanger Bridge - Overview map (3) 
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Figure 1.3 - Geometry - Horizontal section cut 

The pylon construction was carried out adopting climbing formwork for a total of 44 

sections, each of them representing 4 m of pouring.  This particular type of vertical 

formwork was also used for the pouring of 6 shorter sections at the top of the pylons. The 

bridge pylon consists of two reinforced concrete columns connected by three cross beams: 

each pylon stands on two concrete foundations (10 x 12 m basal area and 6 m height). 

The pylons columns have a rectangular shape, which is hollowed inside, and the corner are 

rounded. On the top of the column, in the saddle housing, there are two steel saddles 

which support the suspension cables. Furthermore, inside one of the pylon columns, there 

is a lift, and inside the other one, there are stairs(3). 

The two main cables consist of 19 strands, each containing 528 steel wires, each wire with 

a diameter of 5.3mm. Each main cable weigh 6.400 tonnes and has a diameter of 60 cm. 

Hangers are placed at a distance of 20 m along the girder: they have different lengths, 

varying from 3 m up to 127 m, with spiral-laid wires except for the five shortest hangers, 

which were made of one cast steel. 

The girder is made of 23 steel sections each weighing 400 tonnes: the assembly of the 

sections was made lifting them from the deck of the ship using two cranes fastened on top 

of the cables. Then the girders were bolted and welded in site after connected to the 

hanger(4).  

Figure 1.4 - Geometry – Main and side-span view 



 

 

This project focused the attention on the top part of the towers and, in particular, the part 

between 183,1 m and 202,5 m of height was examined.  

The examined part is characterised by two rectangular shaped towers linked together by a 

prestressed beam which was not considered.  

The geometry of the structure in this range of height is not symmetric. The dimensions 

can be approximately estimated as 4,5 m x 4,5 at 183,1 m and 2,625 m x 2,625 m at 

202,5 m (figure 1.2-1.3): in particular, the cross-section changes from a rectangular to a 

triangular shape on the top. Further details about are given in Appendices K440-K441. 
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The project involves the use of the following existing materials: 

 concrete class - C45/55; 

 concrete class - C55/67; 

 Steel saddle “GX3CrNi13-4”; 

 reinforcement “B500NC”; 

 friction plate made of steel “S355”; 

These materials adopted in the top tower part are described in the following chapters. 

  

2.1 Concrete 

The top tower bridge part is realized with two different concrete strength classes, B45-

SV40 and B55-SV 40: in particular, the B45-SV40 is used for the entire top tower, from 

the height of 179 m to the top (202,5m). Instead, the B55 is used only for the concrete 

regions below the steel saddle, between 185 m and 186,5 m, as mentioned in the 

Appendices K440. 

Fasthetsklass

e NS 
B10 B20 B25 B30 B35 B45 B55 B65 B75 

CEN 

betegnelse 
- 

C20/

25 

C25/

30 

C30/

37 

C35/

45 

C45/

55 

C55/

67 
- - 

Karakteristik 

sylinder 

fashet fcck 

10 20 25 30 35 45 55 65 75 

Karakteristik 

terning-

fasthet fck 

12 25 30 37 45 55 67 80 90 

Tidligere 

betegnelse 
C12 C25 C30 - C45 C55 - C80 C90 

Table 2.1 - Comparison of Norwegian and European standards (5) 

Since the adopted concrete follows the Norwegian national codes, literature research was 

made to understand better the classification of the concrete classes. The old “C” 

designations for firmness classes has been replaced in the European standard with double 

notations with “C” and following numbers for both cylinder and cubic strength. For 

example, concrete with previous designation C45 (compressive strength measured on cube 

45 N/mm2) has been replaced by the designation C35/45. 

In Norway, it has been chosen to use single notation with the designation B and a number. 

The number after the “B” designation indicates the cylinder strength value for that 

particular concrete class. For example, concrete with a previous designation C45 

(compressive strength 45 N/mm2) replaced by designation B35 (5). 

2 Material Properties 



 

 

 

fck 45 MPa 

fck,c 55 MPa 

fcm 53 MPa 

Ecm 33643 MPa 

fctm 3.8 MPa 

ν 0,2 

ρ 2500 kg/m3 

Table 2.2 – Mechanical properties concrete C45/55 

            

   

fck 55 MPa 

fck,c 67 MPa 

fcm 63 MPa 

Ecm 39708 MPa 

fctm 4.2 MPa 

ν 0,2 

ρ 2500 kg/m3 

Table 2.3 - Mechanical properties for concrete C55/67 

 

The SV40 classification describes the Norwegian Public Roads Administration's 

requirements for concrete properties, and that was introduced to make it easier for 

customers and contractors to decide concrete quality in the Norwegian Public Roads 

Administration's projects. Concrete class with SV40 classification are supposed to have a 

mass ratio ρ ≤0,4.  

The mechanical properties of concrete are calculated according to Eurocode 2: EN 1992-

1-1 (1). 
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2.2 Steel Saddle 

The pylon saddles are made of cast steel grade “GX3CrNi13-4”. The mechanical properties 

are identified according to the European standards (“Steel castings for pressure 

purposes”(6);” Steel castings for general engineering uses”(7)), as shown in Table 2.3. 

 

fyk 570 MPa 

ftk 900 MPa 

Es 190000 MPa 

ν 0,28 

ρ  7700 kg/m3 

Table 2.4 - Mechanical properties of steel saddle 
 

 

 

2.3 Steel Saddle Plates 

The saddle plates, whether vertical and horizontal, are made of structural steel S355N and 

have a nominal thickness of 20mm. The mechanical properties are according to the 

standards (7), as shown in the following table: 

 

Minimum yield strength Nominal thickness 

fy [MPa] thk [mm] 

355 ≤16 

345 16 <thk  ≤40 

335 40 <thk  ≤ 63 

Table 2.5 - Extract from Table 7 of EN 10025-2/ structural steel 

 

The elastic modulus Es and the density ρ correspond to 190000 MPa and 7580 kg/m3 

respectively.  

 

 

 

 



 

 

2.4 Reinforcement 

The reinforcement steel adopted in the top tower bridge is B500-NC type. In this case of 

study, prestressed reinforcements, relatives to the prestressed cross-beam, were not 

taken into account. Products used as reinforcing steel may be bars, wires or welded fabric. 

The reinforcing steel is characterised by: 

 geometrical properties; 

 mechanical properties; 

 technological properties. 

The most common properties are geometrical and mechanical, as depicted in the following 

tables. 

 

fyk 500 MPa 

ftk 550 MPa 

Es 200000 MPa 

εuk 2,50e-03 

ρ 7850 kg/m3 

Table 2.6 - Mechanical properties for steel reinforcement B500NC 
 

 

Rebar size 
Nominal 

diameter (mm) 
Cross sectional area 

- [mm] [mm2] [m2] 

Φ12 12 113,04 1,13e-04 

Φ16 16 200,96 2,01e-04 

Φ20 20 314 3,14e-04 

Φ32 32 803,84 8,04e-04 

Table 2.7 - Geometrical properties for steel reinforcement B500NC 
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According to the European standards, actions are classified by their variation in time as it 

follows: 

 permanent actions (G), self-weight of structures, fixed equipment and road 

surfacing; 

 variable actions (Q), imposed loads on building floors, beams and roofs, wind 

actions or snow loads; 

 accidental actions (A), explosion or impact from vehicles. 

The structure shall then be checked in the following limit states, using the right load 

combinations for each limit state: 

 Ultimate limit state (ULS) 

 Serviceability limit state (SLS) 

 Accident limit state (ALS) 

 Fatigue limit state (FLS)  

In this project, all the bridge loads are given by the Norwegian Public Roads Administration 

and, in particular, since the attention was focused on the top tower bridge, only the loads 

on the saddle were relevant due to reach the thesis goal. For this reason, the Norwegian 

public roads administration provided only the loads (forces) acting on the main cable (MN, 

per cable) towards side span (T1) and towards main span (T2). 

The loads acting in the cable are defined, as follows: 

 

 
T1  T2 T1  T2 

[MN] [MN] [N] [N] 

Permanent Load 119 125 1,19E+08 1,25E+08 

Traffic Load 21 22 2,10E+07 2,20E+07 

Wind Load 9 9 9,00E+06 9,00E+06 

Temperature Load 1 1 1,00E+06 1,00E+06 

Table 3.1 - Cable loads 

 

 

 

 

3 Loads 



 

 

Then, the ultimate and serviceability limit state were defined as follows: 

 

  
T1  T2 T1  T2 

[MN] [MN] [N] [N] 

Ultimate Limit State 170 179 1,7E+08 1,79E+08 

Serviceability Limit State 133 140 1,33E+08 1,4E+08 

Table 3.2 – Limit state combination 

 

These calculations of the loads are necessary for reaching the next step: the total load, 

expressed as a force in the suspended cables, was then converted into distributed pressure 

on saddle through bottom and sides. The suspended cable force whether at ultimate and 

serviceability limit state correspond to a tensile force in each of the 19 strands of: 

 Ps (ULS) = 
179

(19∗1000000)
 =  9,4𝐸 + 06 𝑁         

 Ps (SLS) = 
140

(19∗1000000)
  = 7,34𝐸 + 06 𝑁       

Then, the forces per linear metre and the radial pressure on each curved bottom plate are 

calculated using the following equations: 

 

P [MN/m] = 
𝑛𝑠∗𝑃𝑠

𝑅
 

pv  [MPa] = 
𝑃𝑠

𝑤
 

where: 

 ns is the number of the stacks of the strands, as previously described in 1.1; 

 Ps is the force calculated in previous equations; 

 R = 4500mm is the saddle radius; 

 w = 121mm is the width of the friction plate. 

 

These calculations carried out values of the radial pressure for each plate, as described in 

the next table: 
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Load ULS Load ULS Load SLS Load SLS 

[MPa] [Pa] [MPa] [Pa] 

L1_5 51,8 5,18E+08 40,5 4,05E+07 

L2_4  69,1 6,91E+07 53,9 5,39E+07 

L3 86,3 8,63E+07 67,4 6,74E+07 

Table 3.3 - Loads on plates 

 

In the following image, it is possible to understand the load distribution: the red part 

represent the vertical pressure (radial) on the saddle characterised by a linear distribution. 

However, uniform distribution for each plate is assumed.  

In regards to the green part, which is the horizontal pressure ph to the trough sides, the 

average stack height of 3 strands were used. The lateral pressure is taken as 1/3 as the 

corresponding vertical pressure at the same level: starting from a maximum pressure of 

13,4 MPa value and linearly varying to 0 at the top of the 3 strands. 

 

 

 

 

 

 

 

 

Figure 3.1 - Saddle load detail 

 

The last type of load used is related to the solid local model, as described in 5.2.3. The 

local model is realised to minimise computational issues when adopting a non-linear model 

for the behaviour of the concrete. These loads represent the top tower part ad depicted in 

the following image. 

The top tower part above the saddle was cut by a horizontal plane made at the height of 

4.5m from the bottom. Then, the removed part was divided by two vertical planes into four 

parts (two parts for each tower). 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 - First cut plane 

 

 

Figure 3.3 - Second cut plane 

 

In figure 3.4 is shown the final version after the cut. In particular, the yellow parts 

represent the area on which the loads are calculated. Starting from the left side, the 

highlighted areas are classified as follows: 

 L_Sx1; 

 L_Dx2; 

 L_Sx2; 

 L_Dx2. 

 

 



 

 

27 

 

Figure 3.4 - Loaded area local model 

 

The values of the loads acting on each area are: 

Area 
Volume Density Force Area Pressure 

[m3] [kN/m3] [kN] [N] [mm2] [MPa] 

L_Sx1 19,25 25 481,25 481250 1,59E+06 0,3 

L_Dx1 36,4 25 910 910000 1,85E+06 0,49 

L_Sx2 40,38 25 1009,25 1009500 2,12E+06 0,47 

L_Dx2 18,57 25 464,25 464250 1,59E+06 0,29 

Table 3.4 - Loads local model 

 

Finally, the reactions on the saddle, as depicted in figure 3.5, were calculated: however, 

they were not considered in this thesis project since the suspended cables were not 

modelled in the FEM software and the friction was not taken into account. (8). 

Figure 3.5 - Guide pulley support 



 

 

4.1 Software 

Structural modelling consists of a synthesis procedure through which the structure and the 

static actions acting on it are reduced to a simplified scheme, in order to realistically 

simulate the behaviour in terms of stress and strain parameters. 

It is advisable to identify the key variables that influence the physical system to be 

analysed and to reconcile the correctness of the result with operational practicality and, 

therefore, with the economy of the procedure. The definition of a structural scheme that is 

at the same time quite simple and sufficiently complex to take into account the effect of 

the most important variables is fundamental since the reliability of the results depends on 

this definition. 

The model of the structure was created in a CAD environment through Rhinoceros 3D 

(version 5.12), commercial software for technical drawing developed by the company 

Robert McNeel & Associates. The geometries of the software are based on the mathematical 

model NURBS (Non-Uniform Rational Basis Spline) which allows an accurate definition of 

curves and surfaces. The software is also compatible with other applications, supporting 

different formats for the interchange of design files.  

A “.dxf” file, containing the drawings of the structure under examination, was imported 

into Rhinoceros: in particular, the top tower section cut, the drawings of the steel saddle 

and all the reinforcement details concerning the top tower (Appendices K440-441-445-

652-680-681). 

In particular, various models were obtained in this CAD environment: 

 a solid element model; 

 a shell element model 

These were exported as IGES format, for 2D elements, and ASCI format, for 3D elements, 

to preserve their properties and then imported into Abaqus CAE, software suite for finite 

element analysis. 

The different ABAQUS commands and techniques, which were utilized in creating a finite 

element model of reinforced concrete, are discussed in this chapter. This chapter includes 

both the mechanics behind each command and the variables which are input into ABAQUS 

to quantify the behaviour; also, the different modelling techniques available within ABAQUS 

which were used within this research for the purposes of modelling the non-linear 

behaviour of reinforced concrete are discussed.  

 

 

 

4 Finite Element Modelling 

https://en.wikipedia.org/wiki/Finite_element_analysis
https://en.wikipedia.org/wiki/Finite_element_analysis
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4.2 Models 

The entire geometry of the structure was rebuilt mainly starting from the three horizontal 

and vertical section cut. Since the geometry is quite complex, two different approaches 

were performed: a 3D model, as in figure 4.1-4.2, and a 2D model. 

Figure 4.1 - Solid Model - Front view 

 

Figure 4.2 - Solid Model - Back view 

 

The 3D model was created using the exact geometry provided by the design drawings and 

keeping the thickness of the real structure unchanged. The 2D model, on the other hand, 

was created by referring to the middle plane of the structure, which is a common and 

useful strategy when modelling shell element. 

However, the top tower has many corners and relatively close to each other, so this way 

of modelling requires to pay proper attention when connecting the different shell element 

each other. Furthermore, this kind of model showed many problematic aspects in modelling 

the concrete support part for the steel saddle: although the corners and the walls might 



 

 

also be discretized as shell elements, these cannot be used to describe the behaviour of a 

part mostly solid. 

Figure 4.3 - Local model #2.1-#2.2 

Therefore, for this particular study, it is more convenient to use solid elements in order to 

get a more accurate representation of the stress and strains concentrations whether at the 

corner and mostly through the concrete support part. 

This solid model denominated “global model”, was meant to be used for the linear static 

analysis, but it was mostly used whether to perform a mesh sensitivity analysis and to 

validate the smaller models. In fact, for the application of the linear and non-linear 

analysis, the two simpler models, called “local model #1 and #2” were adopted (fig.4.3a-

4.3b). 

This adoption was done to decrease the computational time and to focus the attention on 

more details and variables of the structure.  

In particular, performing a non-linear analysis on a complex model such as the “global 

model” would not allow to entirely understand all the variables that affect the problem 

since the computational time estimated would be about more than a day. 

 

 

4.3 Modelling Approach 

In structural mechanic, advanced static and dynamic problems can be solved using the 

finite element method. The general procedure of modelling any structure within ABAQUS 

consists of assembling meshed parts of finite elements into one global assembly, and then 

evaluate its overall response under loading.  

ABAQUS provides an extensive library of elements that can be effectively used to model a 

variety of materials. The geometry and the type of element are characterized by several 

parameters, including family, degree of freedom, number of nodes, formulation, and 

integration. Each element integrated into ABAQUS has a unique name such as “T2D2”, 

“S4R”, “C3D8I”, or “C3D8R”, which are derived from the five aspects mentioned previously. 

Letters of an element's name or the first letter state to which family the element belongs. 

For example, “S4R” is a shell element and “C3D8I” is a continuum element. 

The following figure 4.4 illustrates briefly some of the most commonly used elements. 

The degrees of freedom are the primary variables calculated during the analysis. For a 

stress-displacement simulation, the degrees of freedom are whether the translations and 

the rotations in correspondence of each node. 
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Displacements or other degrees of freedom are calculated at the nodes of the element. At 

any other point in the element, the displacements are obtained by interpolating from the 

nodal displacements. Usually, the number of nodes used in the element determines the 

interpolation order. 

In theory, second-order elements provide more accurate results than first-order elements. 

However, the use of higher-order elements has some of the drawbacks associated with 

convergence issues, mainly when used in highly nonlinear analyses. 

 

Figure 4.4 - Commonly used element families 

Before starting to define a model in Abaqus/CAE, a system of units must be chosen. 

Abaqus/CAE has no built-in system of units, and hence, all input data must be specified in 

consistent units. SI unit system was chosen, and the units used are the following: 

 

Quantity SI (mm) 

Length mm 

Mass tonne (103 kg) 

Force N 

Density tonne/mm3 

Stress MPa (N/mm2) 

Table 4.1 – Units 

 

4.3.1 Concrete 

A material definition in Abaqus (9): 

 specifies the behaviour of a material and supplies all the relevant property data; 

 can contain multiple material behaviours; 

 is assigned a name, which is used to refer to those parts of the model that are made 

of that material; 

 can have temperature and field variable dependence; 

 can have solution variable dependence in Abaqus/Standard;  



 

 

For this project, variable dependence and material coordinate system were not specified. 

As stated previously in Section 2.1, both of the concrete type, C45/55 and C55/67, utilise 

the same linear-elastic behaviour. For this behaviour, the modulus of elasticity for concrete 

EC, as well as Poisson’s ratio ν.  

These material properties are defined using the “elastic” command within Abaqus. For the 

purpose of these analyses, it was assumed that the material was isotropic, and this 

parameter was included in the “elastic” command. In addition to the “elastic” command, 

the density was also defined for the concrete. The exact values, which were used for these 

commands, can be found in Section 2.1. These commands do not directly take into 

consideration fcd or fct. For what concerns the non-linear behaviour of the concrete, the 

modelling techniques are widely described in Section 5.2. 

The concrete is modelled using “Continuum” elements (Figure 4.4) as they are more 

suitable for three-dimensional materials. Also, this type of elements is typically used when 

plasticity and large deformations are expected, such as in the case of the concrete 

structure.  

The linear reduced-integration option was not used throughout the analysis of concrete 

parts: this option is capable of withstanding severe distortions, but at the same time, it 

might affect the analysis results.  

Lastly, “C3D4” elements were employed to model all concrete region. These elements are 

continuum elements (C) three dimensional (3D), 4-noded linear brick (8) 

 

4.3.2 Rebar 

As for the concrete modelling, also for the modelling of the rebar, the “elastic “command 

was performed using the same elastic parameters; furthermore, plastic properties were 

defined in the appropriate command. 

In particular, metal behaviour is defined as a stress/plastic-strain relationship idealized 

using bi-linear segments, as shown in Figure 4.5.  

The slope of the first linear segment represents the elastic modulus, ES, associated with a 

yield strength of 500MPa, as previously described in Section 2.4. Beyond the yield strain, 

the slope of the stress-strain curve was assumed to be equal to zero (straight line).  

Figure 4.5 - Idealized stress-strain relationship for steel (Eurocode 2-part 1.1) 

The steel reinforcements were modelled using “Truss” elements. Truss elements are 

slender structural elements that can only transmit axial force and do not transmit moments 

or transverse loads. These elements are available in either 2-noded form or 3-noded form 

in ABAQUS. The former implements linear interpolation of the nodal displacement values 

and carry constant strains. The T3D2 elements were chosen to model the truss sections, 
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as (T) refers to truss elements, (3D) refers to three-dimensional, and (2) corresponds to 

2-nodes per linear element.  

Each reinforcing steel bar is then embedded into the concrete body through the “embedded 

region” constraint that is available in ABAQUS tools. This type of constraint defines the 

truss elements as the “embedded region” and the solid continuum concrete as the “host 

region”. The nodes of the embedded region become tied to the nodes of the host region, 

and thus the translational degrees of freedom of the rebars are constrained to that of the 

concrete.  

The advantage of this model is that it allows an independent choice of the concrete mesh. 

The embedded approach is used to create a bond between the two instances of steel 

reinforcement and the concrete instance and overcome the mesh dependency. The 

embedded constraint available in Abaqus couples the nodal degree of freedom 

automatically assuming a full bond action between the reinforcement and concrete 

elements with no relative slip. The transverse steel reinforcement (stirrups) were modelled 

using truss elements as in the main rebars of the proposed model. They were embedded 

individually into the concrete region through the embedded region tool, as mentioned 

earlier. Therefore, in the proposed models, the influence of the interaction between the 

concrete and steel bars was not considered. The model of the reinforcement was first 

developed in the CAD environment, following the design drawing, and, then, completed 

with all the mechanical and geometrical properties within Abaqus (figure 4.6).  

 

 

 

Figure 4.6 - Reinforcement model 

 



 

 

4.3.3 Steel saddle and friction plate 

The steel saddle and the friction plate are modelled using the “plasticity” tool in the Abaqus 

command, and their elastic and plastic parameters are described in Section 2.2 and 2.3.  

Figure 4.7 - Steel saddle-Friction Plate FEM model 

Finally, they are modelled the same way as the concrete parts (Figure4.6): continuum 

elements, in particular, C3D4 elements were employed to model this region. 

 

4.3.4 Boundary conditions 

Boundary conditions are constraints necessary for the reach of the solution of a problem. 

These have a significant impact on the result of analysis and a simple mistake in the 

definition of the boundary conditions might bring a high error percentage of the results. 

In Abaqus when creating a boundary condition, it is necessary to specify the name of the 

boundary condition, the step in which to activate them, the type of boundary condition, 

and the region of the assembly to constraint. As described in the previous section, the 

models adopted in the FEM environment are the solid top tower, which presents the entire 

geometry, and the local solid models defined using a horizontal and vertical cutting plane. 

The first model was constrained at the bottom, as displayed in figure 4.8: in particular, the 

displacements U1, U2, U3 and the rotations UR1, UR2, UR3 of the bottom surfaces of the 

tower were fixed. Thus, this boundary condition was used to fully constrain the movement 

of the points and set their degrees of freedom to zero. 

Figure 4.8 - Boundary conditions global model 
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This boundary condition, called “BC1” persists in each of the model used in the analysis. 

In particular, the local models are realized with the following boundary conditions: 

 “BC1” (U1, U2, U3, UR1, UR2, UR3 = 0); 

 “BC2” (UR1, UR2, UR3 = 0); 

 “BC3” (U1, U2, U3, UR1, UR2, UR3 = 0). 

 

The boundary condition number two (“BC2”) is applied to the specific surfaces created 

using the horizontal cutting plane (figure 4.6). Instead, the boundary condition number 

three (“BC3”) is applied only for the local model (figure 4.7-4.8) to constrain the parts 

where the cross concrete beam is suppressed.  

Figure 4.9 - BC1-BC2 local model #1 

 

These two boundary conditions were created to simulate the real behaviour of the entire 

structure when some of his parts are removed. In particular, “BC2” was firstly created to 

fix all the displacements and rotations, in the same way as “BC1”, but this situation 

produced a high-stress concentration along the edge of the surfaces where they were 

applied on and above all the results were not accurate due to excessive distortion of the 

elements. 

Figure 4.10 - BC3 local model #2.1 

 



 

 

Figure 4.11 - BC3 local model #2.2 

The last boundary condition was defined for the steel saddle: U1 displacement and UR3 

rotation were fixed. Without these boundary conditions, there were many stability and 

convergence problem during the analysis because the saddle was not whether constraint 

too much or not at all. 

 

4.3.5 Interaction 

Abaqus contains an extensive set of tools for modelling contact and interface problems for 

stress analysis, heat transfer analysis, coupled stress-heat transfer cases, coupled pore 

fluid-stress analysis, and coupled acoustic pressure-structural response analysis. 

Contact is typically modelled by identifying surfaces, which may interact, and pairing them 

by name. Interactions between deforming bodies or between a deforming body and a rigid 

body are allowed. Both small and finite sliding may be modelled in either two or three 

dimensions. A Coulomb friction model may be used for shear interaction or, for a more 

sophisticated response, a user subroutine may be used to define the frictional behaviour 

(10). 

In this project a surface-to-surface contact definition is used as an alternative to general 

contact to model contact interactions between specific surfaces in a model: in particular, 

it was chosen to assign this property to the surfaces of the steel saddle and the concrete 

part, which are in contact each other. 

 

4.3.6 Mesh sensitivity analysis  

A mesh is a network which is formed of cells and points. It can have different shapes in 

any size and is used to solve Partial Differential Equations. Each cell of the mesh represents 

a solution of the equation which, when combined for the whole network, results in a 

solution for the entire mesh(11). 

The exact size of these elements was varied in order to determine the most computationally 

efficient and accurate size. A mesh sensitivity analysis for the part of the tower below the 

saddle was performed, and the mesh size which were tested are 250 mm, 200 mm, 150 

mm, 100 mm, 75 mm and 50 mm. For the reinforcement and steel saddle meshes, values 

of 200 mm and 150 mm were used. Furthermore, the remaining parts of the top tower 

were meshed with size elements of 150 mm and 75 mm, only for the rounded corner. 
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Mesh Size [mm] Number of elements 

250 424.809 

200 499.631 

150 751.865 

100 1.357.932 

75 2.337.014 

50 5.527.248 

Table 4.2 - Number of elements for each mesh size 

Table 4.2 shows the number of elements created for each model: in particular, the model 

with 250 mm2mesh size did not converge, due to the excessive distortion of the elements 

mainly located in the corner and below the steel saddle. For a complex geometry like this, 

it was reasonable thinking not to solve the analysis with such a significant value of mesh 

elements. 

For this mesh sensitivity analysis, some particular points were considered, and for each of 

them, the variable taken into account is the Von Mises stress, defined as the equivalent or 

effective stress at which yielding is predicted to occur in ductile materials.  

Thus, defined as: 

 

𝜎 =  
1

√2
 [(𝜎𝑥 − 𝜎𝑦 )

2
+  (𝜎𝑦 −  𝜎𝑧 )

2
+ (𝜎𝑧 − 𝜎𝑥 )2 + 6(𝜏𝑥𝑦

2 +  𝜏𝑦𝑧
2 +  𝜏𝑧𝑥

2 )]1/2 

 

The controlling points, defined in Abaqus as “Reference Point”, are shown in the following 

figure: 

Figure 4.12 - Reference Point -1st view 

 



 

 

 

Figure 4.13 - Reference Point -2nd view 

 

 

In particular: 

 reference points 1-2-3-4 are located on the contact surface between the saddle and 

the concrete, in particular, in positions where the saddle ends; 

 reference points 5-6-7 and 8-9-10 both belong to two vertical axes passing through 

the middle point of the concrete support part of the steel saddle but at different 

heights (z). 

About the reference points and their results, it is necessary to understand how Abaqus 

works in the post-processing phase. Abaqus allows the user to select one or more field 

output variables to include in the tabular report(12). 

The available variables consist of those saved to the output database for the current step 

and frame. 

The programme can calculate and report values for a given variable at a variety of 

positions. In particular, the possible report positions are:  

 integration point;  

 centroid;  

 element nodal;  

 unique nodal. 

Element nodal and unique nodal positions both involve reporting results at the nodes of 

the model; however, reporting of unique nodal values produces only a single value at each 

node, whereas reporting of element nodal values produces one value for each mesh 

element that has a contribution at that node. In particular, nodal stress solutions are given 

to the user in the averaged form at each global node. The stress value at a global node is 

the average of all the local node stress values of all the elements sharing that global node. 

It means that there is a unique nodal value associated with a particular node of 

each element.  
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In this case, it was illogical considering element nodal or integration point for the following 

reasons: 

 there are too many elements, so it was almost impossible to choose and identify 

the right elements with which describe the reference point behaviour; 

 the elements are tetrahedral: for this reason, their distribution along the reference 

points was always unsymmetrical and chaotic. 

So “unique nodal” option was chosen to get stress results of the reference point: this found 

out to be the easiest and fastest way to extrapolate data since only the position or the 

name of the control point required to be established. In this way, instead of picking up 

every single tetrahedral element surrounding the reference point, Abaqus calculate the 

stress values for each node of the element that share our reference point. For example, if 

two elements share the node of the reference point, selecting the “unique nodal” option, 

two values are given: the average of this two value is the final value of the reference point 

in terms of output variable chosen (stress, strain, displacement, ecc..). 

So, ideally, using these reference points as control points and the Von Mises stress, as 

output variable, as the mesh size decrease, the results from the analysis should converge 

to a constant value. 

A linear static analysis, with loads, material and geometrical properties described in the 

previous chapters, was performed on same models with different mesh sizes, in order to 

get the results for the reference points, as described in the following tables. 

In the following pages are shown the stress results for each reference point corresponding 

to different mesh size; the results are also plotted for a better understanding. 

 

 

 Reference point 1 

 

Mesh 200mm Mesh 150mm Mesh 100mm Mesh 75mm Mesh 50mm 
 

 2,45E+01 2,18E+01 2,66E+01 3,34E+01 3,34E+01 

 2,04E+01 2,15E+01 4,88E+01 1,59E+01 1,59E+01 

 2,25E+01 2,11E+01 3,87E+01 3,36E+01 3,36E+01 

 2,22E+01 2,73E+01 5,38E+01 4,34E+01 4,34E+01 

 2,37E+01 2,67E+01 6,22E+01 3,50E+01 3,51E+01 

 1,51E+01 1,55E+01 1,73E+01 3,45E+01 3,46E+01 

 1,43E+01 2,05E+01 1,88E+01 3,76E+01 3,77E+01 

 1,45E+01 2,04E+01 6,05E+01 3,93E+01 3,93E+01 

 2,35E+01 2,10E+01 1,59E+01 3,57E+01 3,58E+01 

 2,17E+01 2,12E+01 1,35E+01 2,55E+01 2,56E+01 

 2,36E+01 1,65E+01 2,88E+01 6,58E+01 6,58E+01 

 2,59E+01 2,37E+01 5,54E+01 5,40E+01 5,40E+01 

 2,29E+01 1,98E+01 5,77E+01 1,84E+01 1,85E+01 

 2,42E+01 2,26E+01 2,08E+01 1,39E+01 1,40E+01 

 2,34E+01 1,52E+01 2,72E+01 1,97E+01 1,98E+01 

 2,19E+01 1,93E+01 1,43E+01 5,19E+01 5,20E+01 

 - 2,44E+01 1,17E+01 3,41E+01 3,41E+01 

 - 2,36E+01 3,75E+01 4,38E+01 2,48E+01 



 

 

 - 2,40E+01 2,01E+01 1,57E+01 - 

 - 2,64E+01 1,44E+01 3,56E+01 - 

 - 2,46E+01 - 1,28E+01 - 

 - 1,90E+01 - 2,50E+01 - 

 - 2,54E+01 - 4,84E+01 - 

 - - - 2,81E+01 - 

Average 2,14E+01 2,18E+01 3,22E+01 3,34E+01 3,43E+01 

Δ [%] -38% -36% -6% -3% - 

Table 4.3 - Von Mises stress RP1 

 
Reference point 2 

 

 Mesh 200mm Mesh 150mm Mesh 100mm Mesh 75mm Mesh 50mm 

 

 6,67E+01 2,27E+01 3,85E+01 5,33E+01 5,33E+01 

 9,28E+01 2,13E+01 5,20E+01 5,59E+01 5,59E+01 

 7,03E+01 2,45E+01 1,95E+01 2,66E+01 2,67E+01 

 7,24E+01 1,25E+01 2,78E+01 2,46E+01 2,46E+01 

 1,92E+02 1,35E+01 3,23E+01 2,49E+01 2,50E+01 

 7,05E+01 1,25E+01 2,94E+01 3,15E+01 3,15E+01 

 1,28E+02 2,16E+01 4,43E+01 2,86E+01 2,86E+01 

 1,21E+02 1,99E+01 1,65E+01 2,71E+01 2,72E+01 

 1,44E+02 1,93E+01 3,53E+01 2,81E+01 3,11E+01 

 1,05E+02 1,77E+01 3,38E+01 3,16E+01 3,24E+01 

 9,62E+01 1,55E+01 3,67E+01 5,88E+01 5,89E+01 

 1,17E+02 2,46E+01 2,89E+01 3,10E+01 3,10E+01 

 1,16E+02 2,48E+01 2,43E+01 2,82E+01 2,82E+01 

 1,04E+02 2,34E+01 3,92E+01 3,24E+01 3,24E+01 

 1,18E+02 2,16E+01 2,82E+01 - 2,89E+01 

 8,91E+01 2,55E+01 7,38E+01 - 2,92E+01 

 7,86E+01 2,69E+01 3,92E+01 - 3,92E+01 

 6,74E+01 2,41E+01 3,36E+01 - 4,58E+01 

 1,09E+02 2,33E+01 3,79E+01 - - 

 7,20E+01 2,49E+01 3,75E+01 - - 

 - 2,28E+01 4,16E+01 - - 

 - - 3,25E+01 - - 

 - - 4,36E+01 - - 

 - - 2,58E+01 - - 

 - - 4,49E+01 - - 

 - - 3,26E+01 - - 

 - - 3,96E+01 - - 

 - - 3,10E+01 - - 

Average 6,71E+01 2,11E+01 3,57E+01 3,45E+01 3,35E+01 

Δ [%] 100% -37% 7% 3% - 

Table 4.4 - Von Mises stress RP2 
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 Reference point 3 

 

 Mesh 200mm Mesh 150mm Mesh 100mm Mesh 75mm Mesh 50mm 

 

 2,20E+01 2,84E+01 4,16E+01 4,91E+01 4,88E+01 

 2,10E+01 2,10E+01 5,44E+01 5,38E+01 5,30E+01 

 2,02E+01 2,18E+01 4,38E+01 6,02E+01 5,94E+01 

 2,08E+01 2,24E+01 4,26E+01 6,63E+01 6,58E+01 

 2,62E+01 2,48E+01 4,34E+01 4,29E+01 4,24E+01 

 2,39E+01 2,47E+01 4,42E+01 4,70E+01 4,65E+01 

 2,48E+01 2,61E+01 6,77E+01 6,63E+01 6,58E+01 

 2,44E+01 2,39E+01 2,84E+01 1,50E+01 1,45E+01 

 2,84E+01 2,66E+01 4,35E+01 4,82E+01 4,82E+01 

 2,39E+01 2,53E+01 2,36E+01 4,79E+01 4,59E+01 

 2,20E+01 2,63E+01 4,61E+01 2,07E+01 2,07E+01 

 2,42E+01 2,41E+01 2,40E+01 1,77E+01 - 

 2,29E+01 - 3,00E+01 - - 

 2,42E+01 - 2,03E+01 - - 

 2,34E+01 - 4,21E+01 - - 

 2,19E+01 - 2,17E+01 - - 

Average 2,24E+01 2,46E+01 3,86E+01 4,46E+01 4,65E+01 

Δ [%] -52% -47% -17% -4% - 

Table 4.5 - Von Mises stress RP3 

 Reference point 4 

 

 Mesh 200mm Mesh 150mm Mesh 100mm Mesh 75mm Mesh 50mm 

 

 2,12E+01 2,55E+01 3,31E+01 6,68E+01 6,65E+01 

 2,38E+01 2,21E+01 6,77E+01 3,06E+01 2,98E+01 

 2,52E+01 2,29E+01 5,79E+01 3,79E+01 3,71E+01 

 2,72E+01 2,69E+01 5,67E+01 2,88E+01 2,93E+01 

 2,52E+01 2,41E+01 5,08E+01 2,34E+01 2,39E+01 

 2,19E+01 2,66E+01 4,98E+01 7,01E+01 6,96E+01 

 2,40E+01 2,51E+01 3,26E+01 4,09E+01 4,59E+01 

 2,82E+01 2,68E+01 5,04E+01 3,22E+01 3,19E+01 

 2,46E+01 2,56E+01 3,76E+01 2,92E+01 2,84E+01 

 2,32E+01 2,80E+01 4,30E+01 2,74E+01 3,34E+01 

 2,15E+01 2,58E+01 3,52E+01 2,67E+01 2,62E+01 

 2,10E+01 2,53E+01 6,09E+01 7,63E+01 7,58E+01 

 2,45E+01 2,46E+01 4,32E+01 - 8,40E+01 

 2,43E+01 2,22E+01 2,78E+01 - 2,78E+01 

 2,34E+01 - 2,79E+01 - - 

 2,19E+01 - 3,29E+01 - - 

Average 2,26E+01 2,51E+01 4,42E+01 4,08E+01 4,16E+01 

Δ [%] -46% -40% 6% -2% - 

Table 4.6 - Von Mises stress RP4 



 

 

 Reference point 5 

 

 Mesh 200mm Mesh 150mm Mesh 100mm Mesh 75mm Mesh 50mm 

 

 8,44E+00 5,99E+00 6,24E+00 6,19E+00 5,89E+00 

 9,57E+00 6,12E+00 6,00E+00 6,26E+00 5,46E+00 

 8,62E+00 5,87E+00 6,06E+00 6,21E+00 5,41E+00 

 9,32E+00 5,72E+00 6,28E+00 6,36E+00 6,86E+00 

 9,44E+00 6,18E+00 6,00E+00 6,33E+00 4,33E+00 

 9,50E+00 6,21E+00 6,06E+00 6,25E+00 2,25E+00 

 8,15E+00 6,16E+00 6,16E+00 6,30E+00 1,13E+01 

 8,20E+00 5,71E+00 6,05E+00 6,25E+00 6,25E+00 

 8,17E+00 6,19E+00 6,28E+00 6,25E+00 5,45E+00 

 8,93E+00 5,85E+00 6,18E+00 6,28E+00 7,28E+00 

 8,82E+00 6,10E+00 6,13E+00 6,31E+00 5,81E+00 

 9,36E+00 6,11E+00 6,17E+00 6,18E+00 5,68E+00 

 8,68E+00 6,31E+00 6,27E+00 6,17E+00 7,17E+00 

 8,57E+00 6,04E+00 6,03E+00 6,15E+00 2,78E+01 

 8,98E+00 7,21E+00 5,89E+00 6,18E+00 5,18E+00 

 8,30E+00 7,01E+00 6,13E+00 6,27E+00 1,27E+00 

 1,07E+01 6,71E+00 6,06E+00 6,22E+00 5,42E+00 

 8,99E+00 7,00E+00 5,98E+00 6,11E+00 5,61E+00 

 9,75E+00 6,57E+00 5,99E+00 6,97E+00 7,47E+00 

 9,78E+00 6,70E+00 6,21E+00 6,91E+00 6,41E+00 

 1,02E+01 6,78E+00 6,14E+00 6,77E+00 6,77E+00 

 9,91E+00 6,98E+00 6,07E+00 6,76E+00 6,46E+00 

 1,08E+01 6,71E+00 5,99E+00 6,94E+00 6,14E+00 

 1,01E+01 6,75E+00 5,95E+00 6,98E+00 1,30E+01 

 - - 7,06E+00 6,74E+00 6,24E+00 

 - - 6,89E+00 6,92E+00 6,42E+00 

 - - 7,01E+00 6,85E+00 6,98E+00 

 - - 6,69E+00 6,98E+00 1,02E+01 

 - - 6,68E+00 6,98E+00 6,68E+00 

 - - 6,65E+00 6,90E+00 6,10E+00 

 - - 6,99E+00 6,71E+00 - 

 - - 6,81E+00 6,91E+00 - 

 - - 6,79E+00 7,03E+00 - 

 - - 7,15E+00 6,99E+00 - 

 - - 6,91E+00 6,99E+00 - 

 - - 7,13E+00 6,90E+00 - 

 - - 6,80E+00 - - 

 - - 7,07E+00 - - 

 - - 6,80E+00 - - 

 - - 6,98E+00 - - 

 - - 6,99E+00 - - 

 - - 7,13E+00 - - 

 - - 6,77E+00 - - 
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 - - 7,05E+00 - - 

 - - 7,11E+00 - - 

 - - 7,00E+00 - - 

 - - 7,05E+00 - - 

 - - 6,99E+00 - - 

Average 1,39E+01 6,37E+00 6,52E+00 6,57E+00 7,11E+00 

Δ [%] 95% -10% -8% -8% - 

Table 4.7 - Von Mises stress RP5 

 

 
Reference point 6  

 
Mesh 200mm Mesh 150mm Mesh 100mm Mesh 75mm Mesh 50mm  

 5,92E+00 5,76E+00 6,13E+00 6,17E+00 5,87E+00 

 5,80E+00 5,89E+00 6,02E+00 6,17E+00 5,87E+00 

 5,74E+00 5,71E+00 5,95E+00 6,19E+00 5,89E+00 

 5,50E+00 5,66E+00 6,27E+00 6,37E+00 6,07E+00 

 5,47E+00 5,73E+00 6,26E+00 6,37E+00 6,07E+00 

 5,89E+00 5,69E+00 5,92E+00 6,23E+00 5,93E+00 

 5,83E+00 5,67E+00 6,21E+00 6,32E+00 6,02E+00 

 6,22E+00 5,77E+00 6,05E+00 6,05E+00 5,75E+00 

 5,78E+00 5,68E+00 5,91E+00 6,08E+00 5,78E+00 

 5,53E+00 5,81E+00 6,13E+00 6,14E+00 5,84E+00 

 5,77E+00 5,76E+00 5,91E+00 6,19E+00 5,89E+00 

 5,75E+00 5,88E+00 5,83E+00 6,23E+00 5,93E+00 

 5,53E+00 5,90E+00 6,03E+00 6,36E+00 1,04E+01 

 6,93E+00 5,75E+00 6,00E+00 6,18E+00 5,88E+00 

 6,66E+00 6,81E+00 5,90E+00 6,03E+00 6,33E+00 

 6,61E+00 6,80E+00 5,92E+00 6,12E+00 6,42E+00 

 7,22E+00 6,47E+00 5,87E+00 6,11E+00 6,41E+00 

 6,75E+00 6,80E+00 6,07E+00 6,07E+00 6,37E+00 

 6,75E+00 6,64E+00 6,03E+00 6,66E+00 6,96E+00 

 6,99E+00 6,88E+00 5,91E+00 6,78E+00 7,08E+00 

 7,02E+00 6,85E+00 6,25E+00 6,85E+00 6,55E+00 

 7,17E+00 6,63E+00 6,13E+00 6,76E+00 6,46E+00 

 6,89E+00 6,57E+00 6,00E+00 6,95E+00 6,65E+00 

 6,62E+00 6,76E+00 5,92E+00 6,93E+00 6,63E+00 

 6,94E+00 6,75E+00 6,72E+00 6,90E+00 6,60E+00 

 6,99E+00 6,70E+00 6,82E+00 6,92E+00 6,62E+00 

 7,11E+00 - 6,62E+00 6,84E+00 6,54E+00 

 6,55E+00 - 6,72E+00 6,98E+00 6,68E+00 

 6,94E+00 - 6,72E+00 6,85E+00 6,55E+00 

 6,94E+00 - 6,93E+00 6,85E+00 6,55E+00 

 6,89E+00 - 6,61E+00 6,85E+00 6,55E+00 

 6,91E+00 - 6,85E+00 6,83E+00 6,53E+00 

 - - 6,94E+00 6,95E+00 1,19E+01 



 

 

 - - 6,84E+00 6,83E+00 - 

 - - 7,11E+00 6,66E+00 - 

 - - 6,77E+00 6,84E+00 - 

 - - 6,81E+00 - - 

 - - 6,81E+00 - - 

 - - 6,99E+00 - - 

 - - 6,96E+00 - - 

 - - 7,03E+00 - - 

 - - 7,08E+00 - - 

 - - 6,94E+00 - - 

 - - 6,93E+00 - - 

 - - 7,06E+00 - - 

 - - 6,77E+00 - - 

 - - 6,74E+00 - - 

 - - 6,70E+00 - - 

Average 1,12E+01 6,20E+00 6,44E+00 6,52E+00 6,59E+00 

Δ [%] 70% -6% -2% -1% - 

Table 4.8 - Von Mises stress RP6 

 

 
Reference point 7 

 

 Mesh 200mm Mesh 150mm Mesh 100mm Mesh 75mm Mesh 50mm 

 

 1,85E+01 1,62E+01 2,37E+01 1,96E+01 1,99E+01 

 1,96E+01 1,64E+01 1,80E+01 2,11E+01 2,14E+01 

 1,95E+01 1,67E+01 1,43E+01 2,08E+01 2,11E+01 

 1,86E+01 1,71E+01 4,28E+01 2,19E+01 2,22E+01 

 1,86E+01 1,87E+01 3,41E+01 2,11E+01 2,14E+01 

 2,04E+01 1,70E+01 1,97E+01 2,67E+01 2,70E+01 

 2,22E+01 1,45E+01 2,00E+00 2,05E+01 2,08E+01 

 1,99E+01 1,44E+01 5,35E+01 2,37E+01 2,40E+01 

 2,00E+01 1,87E+01 1,70E+01 2,43E+01 2,46E+01 

 1,92E+01 1,81E+01 - 2,19E+01 2,22E+01 

 1,97E+01 1,91E+01 - 2,44E+01 2,47E+01 

 2,08E+01 1,79E+01 - 2,44E+01 2,47E+01 

 2,00E+01 1,79E+01 - 1,79E+01 1,82E+01 

 2,08E+01 1,77E+01 - - - 

 1,98E+01 - - - - 

 2,04E+01 - - - - 

Average 2,06E+01 1,72E+01 2,50E+01 2,25E+01 2,28E+01 

Δ [%] -10% -25% 9% -1% - 

Table 4.9 - Von Mises stress RP7 
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Reference point 8 

 

 Mesh 200mm Mesh 150mm Mesh 100mm Mesh 75mm Mesh 50mm 

 

 1,62E+01 1,68E+01 2,36E+01 1,46E+01 1,49E+01 

 1,63E+01 1,62E+01 1,34E+01 2,24E+01 2,27E+01 

 1,71E+01 1,71E+01 1,13E+01 1,70E+01 1,73E+01 

 1,60E+01 1,76E+01 1,79E+01 2,12E+01 2,15E+01 

 1,57E+01 1,73E+01 1,76E+01 2,32E+01 2,35E+01 

 1,65E+01 1,78E+01 1,81E+01 2,17E+01 2,20E+01 

 1,74E+01 1,87E+01 1,90E+01 2,27E+01 2,22E+01 

 1,69E+01 1,98E+01 2,01E+01 1,45E+01 1,40E+01 

 1,78E+01 1,87E+01 1,90E+01 1,72E+01 1,67E+01 

 1,65E+01 1,79E+01 1,82E+01 1,63E+01 1,66E+01 

 1,77E+01 1,98E+01 1,16E+01 1,61E+01 2,11E+01 

 1,99E+01 1,62E+01 1,62E+01 2,13E+01 - 

 1,69E+01 1,79E+01 2,69E+01 1,61E+01 - 

 1,79E+01 1,79E+01 1,99E+01 1,77E+01 - 

 1,82E+01 - 1,74E+01 - - 

 1,80E+01 - - - - 

 1,79E+01 - - - - 

 1,78E+01 - - - - 

Average 1,91E+01 1,79E+01 1,85E+01 1,87E+01 1,93E+01 

Δ [%] -1% -8% -4% -3% - 

Table 4.10 - Von Mises stress RP8 

 

 
Reference point 9 

 

 Mesh 200mm Mesh 150mm Mesh 100mm Mesh 75mm Mesh 50mm 

 

 4,29E+00 5,64E+00 6,63E+00 6,74E+00 7,04E+00 

 4,75E+00 5,65E+00 6,58E+00 6,74E+00 7,04E+00 

 5,32E+00 6,43E+00 6,67E+00 6,70E+00 7,00E+00 

 4,95E+00 6,54E+00 6,63E+00 6,82E+00 7,12E+00 

 4,42E+00 6,54E+00 6,71E+00 6,84E+00 7,14E+00 

 5,69E+00 6,28E+00 6,72E+00 6,78E+00 7,08E+00 

 5,56E+00 5,46E+00 6,16E+00 6,41E+00 6,71E+00 

 5,24E+00 5,89E+00 6,15E+00 6,67E+00 6,97E+00 

 5,47E+00 6,59E+00 - 6,35E+00 6,65E+00 

 5,47E+00 6,42E+00 - 6,47E+00 6,77E+00 

 5,02E+00 6,81E+00 - 6,61E+00 6,91E+00 

 4,87E+00 6,51E+00 - 6,24E+00 6,54E+00 

 1,25E+01 - - 6,34E+00 6,64E+00 



 

 

 - - - 6,66E+00 6,96E+00 

 - - - 6,17E+00 - 

 - - - 6,36E+00 - 

 - - - 6,63E+00 - 

 - - - 6,20E+00 - 

Average 1,25E+01 6,23E+00 6,53E+00 6,54E+00 6,90E+00 

Δ [%] 82% -10% -5% -5% - 

Table 4.11 - Von Mises stress RP9 

 

 

 
Reference point 10 

 

 Mesh 200mm Mesh 150mm Mesh 100mm Mesh 75mm Mesh 50mm 

 

 6,29E+00 6,02E+00 6,75E+00 6,55E+00 6,85E+00 

 5,40E+00 6,38E+00 6,00E+00 6,75E+00 7,05E+00 

 6,73E+00 5,86E+00 6,60E+00 6,28E+00 6,58E+00 

 5,66E+00 5,69E+00 6,54E+00 6,89E+00 7,19E+00 

 5,21E+00 5,44E+00 6,68E+00 6,83E+00 7,13E+00 

 5,96E+00 5,43E+00 6,73E+00 6,89E+00 7,19E+00 

 6,36E+00 6,48E+00 6,83E+00 6,84E+00 7,14E+00 

 6,51E+00 6,61E+00 6,77E+00 6,93E+00 7,23E+00 

 5,18E+00 6,84E+00 6,10E+00 6,86E+00 7,16E+00 

 6,23E+00 5,63E+00 6,30E+00 6,72E+00 7,02E+00 

 6,70E+00 5,40E+00 6,39E+00 6,45E+00 6,75E+00 

 5,78E+00 5,75E+00 6,62E+00 6,44E+00 6,74E+00 

 6,61E+00 6,64E+00 6,35E+00 6,71E+00 4,71E+00 

 6,59E+00 6,65E+00 6,20E+00 6,25E+00 - 

 - 6,67E+00 - 6,28E+00 - 

 - 6,59E+00 - 6,73E+00 - 

Average 1,33E+01 6,13E+00 6,49E+00 6,65E+00 6,83E+00 

Δ [%] 95% -10% -5% -3% - 

Table 4.12 - Von Mises stress RP10 
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Table 4.13 - Von Mises stress-Mesh size RP1 

 

 

 

Table 4.14 - Von Mises stress-Mesh size RP2 
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Table 4.15 - Von Mises stress-Mesh size RP3 

 

 

Table 4.16 - Von Mises stress-Mesh size RP4 
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Table 4.17 - Von Mises stress-Mesh size RP5 

 

 

 

Table 4.18 - Von Mises stress-Mesh size RP6 
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Table 4.19 - Von Mises stress-Mesh size RP7 

 

 

 

Table 4.20 - Von Mises stress-Mesh size RP8 
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Table 4.21 - Von Mises stress-Mesh size RP9 

 

 

Table 4.22 - Von Mises stress-Mesh size RP10 
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These results indicate that, except the 250 mm mesh, which did not converged, the values 

begin to become relatively constant as the mesh size decrease: in particular, as can be 

seen from the tables and the figures, using a mesh size between 100 and 50 mm produces 

almost similar results. 

In order to validate these two “local models”, a check on the Von Mises stresses was 

performed, using the same mesh size (50 mm2); as described in the following tables.  

Definitely, as it can be seen in the following tables, it is evident that the two local models 

behave not too much different from the global model: in fact, the average difference 

percentage between them is of -9%, which is acceptable. This check about the Von Mises 

stresses was both necessary to justify their adoption in the linear and non-linear analysis. 

 

 

 

Reference Point 1 

Tower 1 model Tower 2 model Complete model 

- 2,42E+01 3,34E+01 

- 2,02E+01 1,59E+01 

- 2,36E+01 3,36E+01 

- 3,38E+01 4,34E+01 

- 2,84E+01 3,51E+01 

- 2,86E+01 3,46E+01 

- 5,21E+01 3,77E+01 

- 2,60E+01 3,93E+01 

- 2,70E+01 3,58E+01 

- 2,97E+01 2,56E+01 

- 2,28E+01 6,58E+01 

- 2,24E+01 5,40E+01 

- 2,90E+01 1,85E+01 

- 3,12E+01 1,40E+01 

- 2,88E+01 1,98E+01 

- 2,52E+01 5,20E+01 

- 3,03E+01 3,41E+01 

- 2,34E+01 2,48E+01 

- 2,82E+01 - 

- 6,55E+01 - 

- 2,95E+01 - 

- 2,75E+01 - 

Average - 2,99E+01 3,43E+01 

Δ [%] - -13% - 

Table 4.23 - Check local - complete model (RP1) 
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Reference Point 2 

Tower 1 model Tower 2 model Complete model 

2,42E+01 - 5,33E+01 

5,63E+01 - 5,59E+01 

3,40E+01 - 2,67E+01 

2,73E+01 - 2,46E+01 

2,72E+01 - 2,50E+01 

2,49E+01 - 3,15E+01 

2,22E+01 - 2,86E+01 

3,86E+01 - 2,72E+01 

4,53E+01 - 3,11E+01 

2,65E+01 - 3,24E+01 

2,64E+01 - 5,89E+01 

3,36E+01 - 3,10E+01 

2,43E+01 - 2,82E+01 

3,19E+01 - 3,24E+01 

- - 2,89E+01 

- - 2,92E+01 

- - 3,92E+01 

- - 4,58E+01 

Average 2,99E+01 - 3,35E+01 

Δ [%] -11% - - 

Table 4.24 - Check local - complete model (RP2) 

 

 Reference Point 3 

 

 Tower 1 model Tower 2 model Complete model 

 

 - 5,14E+01 4,88E+01 

 - 3,44E+01 5,30E+01 

 - 4,68E+01 5,94E+01 

 - 3,31E+01 6,58E+01 

 - 2,21E+01 4,24E+01 

 - 4,45E+01 4,65E+01 

 - 3,06E+01 6,58E+01 

 - 2,98E+01 1,45E+01 

 - 6,03E+01 4,82E+01 

 - 4,39E+01 4,59E+01 

 - 3,40E+01 2,07E+01 

 - 6,49E+01 - 

 - 4,93E+01 - 



 

 

 - 3,60E+01 - 

 - 5,38E+01 - 

 - 4,35E+01 - 

Average - 4,24E+01 4,65E+01 

Δ [%] - -9% - 

Table 4.25 - Check local - complete model (RP3) 

 

 

 Reference Point 4 

 

 Tower 1 model Tower 2 model Complete model 

 

 4,35E+01 - 6,65E+01 

 3,71E+01 - 2,98E+01 

 3,13E+01 - 3,71E+01 

 3,47E+01 - 2,93E+01 

 2,86E+01 - 2,39E+01 

 2,59E+01 - 6,96E+01 

 6,80E+01 - 4,59E+01 

 2,78E+01 - 3,19E+01 

 4,50E+01 - 2,84E+01 

 2,48E+01 - 3,34E+01 

 7,47E+01 - 2,62E+01 

 4,51E+01 - 7,58E+01 

 2,33E+01 - 2,78E+01 

 4,31E+01 - 8,40E+01 

 3,14E+01 - - 

 8,34E+01 - - 

 - - - 

Average 3,52E+01 - 4,16E+01 

Δ [%] -15% - - 

Table 4.26 - Check local - complete model (RP4) 
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 Reference Point 5 

 

 Tower 1 model Tower 2 model Complete model 

 

 7,11E+00 - 5,89E+00 

 7,00E+00 - 5,46E+00 

 7,25E+00 - 5,41E+00 

 7,00E+00 - 6,86E+00 

 7,22E+00 - 4,33E+00 

 7,07E+00 - 2,25E+00 

 7,03E+00 - 1,13E+01 

 7,16E+00 - 6,25E+00 

 7,10E+00 - 5,45E+00 

 7,00E+00 - 7,28E+00 

 6,99E+00 - 5,81E+00 

 7,00E+00 - 5,68E+00 

 7,08E+00 - 7,17E+00 

 7,25E+00 - 2,78E+01 

 6,81E+00 - 5,18E+00 

 6,72E+00 - 1,27E+00 

 6,68E+00 - 5,42E+00 

 6,56E+00 - 5,61E+00 

 6,80E+00 - 7,47E+00 

 6,63E+00 - 6,41E+00 

 6,81E+00 - 6,77E+00 

 6,85E+00 - 6,46E+00 

 6,70E+00 - 6,14E+00 

 6,75E+00 - 1,30E+01 

 6,75E+00 - 6,24E+00 

 6,66E+00 - 6,42E+00 

 6,56E+00 - 6,98E+00 

 6,66E+00 - 1,02E+01 

 - - 6,68E+00 

 - - 6,10E+00 

Average 6,90E+00 - 7,11E+00 

Δ [%] -3% - - 

Table 4.27 - Check local - complete model (RP5) 

 

 

 

 

 



 

 

 Reference Point 6 

 

 Tower 1 model Tower 2 model Complete model 

 

 - 6,57E+00 5,87E+00 

 - 6,66E+00 5,87E+00 

 - 6,92E+00 5,89E+00 

 - 6,88E+00 6,07E+00 

 - 6,68E+00 6,07E+00 

 - 6,60E+00 5,93E+00 

 - 6,63E+00 6,02E+00 

 - 6,89E+00 5,75E+00 

 - 6,62E+00 5,78E+00 

 - 6,63E+00 5,84E+00 

 - 6,78E+00 5,89E+00 

 - 6,59E+00 5,93E+00 

 - 6,58E+00 1,04E+01 

 - 6,82E+00 5,88E+00 

 - 6,76E+00 6,33E+00 

 - 6,78E+00 6,42E+00 

 - 6,80E+00 6,41E+00 

 - 6,93E+00 6,37E+00 

 - 7,36E+00 6,96E+00 

 - 7,31E+00 7,08E+00 

 - 7,09E+00 6,55E+00 

 - 7,08E+00 6,46E+00 

 - 7,25E+00 6,65E+00 

 - 7,02E+00 6,63E+00 

 - 7,26E+00 6,60E+00 

 - 7,03E+00 6,62E+00 

 - 7,07E+00 6,54E+00 

 - 7,28E+00 6,68E+00 

 - 7,14E+00 6,55E+00 

 - 7,16E+00 6,55E+00 

 - 7,35E+00 6,55E+00 

 - 7,36E+00 6,53E+00 

 - 7,33E+00 1,19E+01 

 - 6,29E+00 - 

 - 7,14E+00 - 

 - 7,14E+00 - 

Average - 6,94E+00 6,59E+00 

Δ [%] - 5% - 

Table 4.28 - Check local - complete model (RP6) 
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 Reference Point 7 

 

 Tower 1 model Tower 2 model Complete model 

 

 2,59E+01 - 1,99E+01 

 2,57E+01 - 2,14E+01 

 2,68E+01 - 2,11E+01 

 1,64E+01 - 2,22E+01 

 1,63E+01 - 2,14E+01 

 2,64E+01 - 2,70E+01 

 1,62E+01 - 2,08E+01 

 2,70E+01 - 2,40E+01 

 1,64E+01 - 2,46E+01 

 1,68E+01 - 2,22E+01 

 2,64E+01 - 2,47E+01 

 3,70E+01 - 2,47E+01 

 - - 1,82E+01 

Average 1,98E+01 - 2,25E+01 

Δ [%] -12% - - 

Table 4.29 - Check local - complete model (RP7) 

 

 Reference Point 8 

 

 Tower 1 model Tower 2 model Complete model 

 

 - 1,58E+01 1,49E+01 

 - 1,67E+01 2,27E+01 

 - 1,71E+01 1,73E+01 

 - 1,66E+01 2,15E+01 

 - 1,56E+01 2,35E+01 

 - 1,59E+01 2,20E+01 

 - 1,61E+01 2,22E+01 

 - 1,66E+01 1,40E+01 

 - 1,67E+01 1,67E+01 

 - 1,68E+01 1,66E+01 

 - 1,67E+01 1,51E+01 

 - 1,70E+01 - 

 - 1,61E+01 - 

 - 1,66E+01 - 

Average - 1,64E+01 1,88E+01 

Δ [%] - -12% - 

Table 4.30 - Check local - complete model (RP8) 

 



 

 

 Reference Point 9 

 

 Tower 1 model Tower 2 model Complete model 

 

 7,69E+00 - 7,04E+00 

 6,72E+00 - 7,04E+00 

 7,73E+00 - 7,00E+00 

 5,70E+00 - 7,12E+00 

 5,67E+00 - 7,14E+00 

 7,67E+00 - 7,08E+00 

 5,37E+00 - 6,71E+00 

 7,36E+00 - 6,97E+00 

 5,44E+00 - 6,65E+00 

 6,41E+00 - 6,77E+00 

 6,39E+00 - 6,91E+00 

 5,63E+00 - 6,54E+00 

 7,62E+00 - 6,64E+00 

 6,41E+00 - 6,96E+00 

Average 6,06E+00 - 6,90E+00 

Δ [%] -12% - - 

Table 4.31 - Check local - complete model (RP9) 

 

 Reference Point 10 

 

 Tower 1 model Tower 2 model Complete model 
 

 - 6,49E+00 6,85E+00 

 - 5,85E+00 7,05E+00 

 - 5,80E+00 6,58E+00 

 - 7,84E+00 7,19E+00 

 - 5,82E+00 7,13E+00 

 - 5,82E+00 7,19E+00 

 - 5,82E+00 7,14E+00 

 - 5,50E+00 7,23E+00 

 - 7,53E+00 7,16E+00 

 - 5,50E+00 7,02E+00 

 - 5,52E+00 6,75E+00 

 - 5,52E+00 6,74E+00 

 - 6,78E+00 4,71E+00 

 - 5,76E+00 - 

Average - 6,11E+00 6,83E+00 

Δ [%] - -11% - 

Table 4.32 - Check local - complete model (RP10) 
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5.1 Linear Static Analysis 

In the last chapter, a linear static analysis was initially performed to get information about 

the mesh size to use and to validate the local models (figure 4.3), which were then 

employed to perform whether the linear and the non-linear analysis. 

In particular, for what concerns the linear analysis, both models were analysed using: 

 a mesh size of 50 mm; 

 loads and boundary conditions (section 3 - 4.3.4);  

 linear behaviour for concrete  (section 2.1 – 4.3.1); 

 elastic behaviour for reinforcement (section 2.4 – 4.3.2). 

As a result of the linear static analysis, it was chosen to pay particular attention about how 

the stresses evolve with height. The distribution was evaluated referring to a vertical axis, 

passing through the two reference points, which are located exactly in the middle of the 

concrete support surface (the surface where the steel saddle lays on) and in the middle of 

the concrete bottom part. Furthermore, Abaqus allows the user to create a path on which 

the data are calculated and plotted with the distance from the starting point to the ending 

point: this path, depicted in figure 5.1a-5.1b, was created locating the exact position of 

the points for both the local models.  

Figure 5.1 - Path - local model #1 

Figure 5.2 - Tensor stress 

 

5 Analysis 



 

 

Finally, stress distribution in X (axis 1) and Y (axis 2) direction were plotted along the 

distance, in particular (figure 5.2-5.12): 

 normal stresses (σ11 – σ22); 

 shear stress (σ12 – σ13 – σ23); 

Figure 5.3 - Normal stress σ11 – z (local model #1) 

 

 

Figure 5.4 - Normal stress σ22 – z (local model #1) 
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Figure 5.5 - Shear stress σ12 – z (local model #1) 

 

Figure 5.6 - Shear stress σ13 – z (local model #1) 

 

Figure 5.7 - Shear stress σ23 – z (local model #1) 
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Figure 5.8 - Normal stress σ11 – z (local model #2) 

 

Figure 5.9 - Normal stress σ22 – z (local model #2) 

 

Figure 5.10 - Shear stress σ12 – z (local model #2) 
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Figure 5.11 - Shear stress σ13 - z (local model#2) 

 

 

 

 

Figure 5.12 - Shear stress σ23 - z (local model #2) 
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5.2 Non-Linear Static Analysis 

Concrete exhibits a complex structural response with various significant nonlinearities: in 

particular, a non-linear stress-strain behaviour, tensile cracking and compression crushing 

material failures and creep cracking(13). Also, since reinforced concrete shows a complex 

behaviour, both elastic and plastic behaviour of concrete in compression and tension need 

to be accurately simulated and improved within a finite element analysis.  

Simulation of concrete under tension requires to pay particular attention to how the 

behaviour changes and evolves once the tensile characteristic stress is reached: in 

particular, tension stiffening should be included in the material model.  

There are many different ways to model the behaviour of concrete in the post-elastic 

phase: some of the most adopted models are based on classic plasticity model, fracture 

mechanics and continuum damage mechanics” (CDM)”(14). The plasticity model is capable 

in representing hardening and softening characteristics: the main characteristic of these 

model is the yield surface, which includes a hardening-softening function. Regardless, 

these models do not explicitly incorporate damage process due to microcracks such as 

stiffness degradation and unilateral effects(15).  

Conversely, continuum damage mechanics model are based on the concept of a decrease 

of the elastic stiffness: in particular, strain softening, stiffening decrease and unilateral 

effects due to microcracking and microvoids are taken into account(16). Thus, considering 

the positive and negative aspects of both models, it is desirable to combine these two 

approaches for concrete modelling since whether irreversible deformations and 

microcracking contribute to the non-linear behaviour of concrete. 

There are several models implemented in Abaqus which are capable of describing the post-

elastic behaviour such as Drucker Prager or Mohr-Coulomb model differently. 

In particular, there are three models implemented in Abaqus capable of representing the 

cracked concrete behaviour: 

 the smeared cracked model (SC);  

 the brittle cracking model; 

 the concrete damaged plasticity model(CDP).  

These models require multiple parameters, which are usually calculated from experimental 

material tests. The brittle cracking and the smeared cracked model were not used because 

the first technique is only available for Abaqus/Explicit, and the second is not very explored 

in literature projects. Thus, the concrete damaged plasticity model was selected in the 

present project thesis for modelling non-linear behaviour of concrete both in compression 

and in tension, including damage characteristics.  

 

5.2.1 Concrete Damaged Plasticity Model 

Concrete damaged plasticity model is a useful and convenient technique to simulate 

concrete behaviour due to its capabilities to represent plastic strains but also stiffness 

degradations.  

CDP model is a continuum, plasticity-based, damage model for concrete, assuming that 

the two main failure mechanisms are tensile cracking and compressive crushing(17). 

Furthermore, this model defines the inelastic behaviour of concrete using the theory of 

isotropic damaged elasticity in combination with isotropic tensile and compressive 
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plasticity: this theory is based on the plasticity model proposed by Lubliner (18) and Lee 

and Fenves (19). 

The concrete damaged plasticity model is capable of predicting and representing the 

formation of cracks in the concrete, subjected to various loading conditions, including cyclic 

loading(20). Two hardening variables related to concrete failure mechanisms under tension 

and compression are used in the aim of controlling the evolution of the yield surface. The 

CDP model takes into account the degradation of the elastic stiffness caused by plastic 

straining (in compression and tension) by introducing two independents scalar damage 

variables for tension and compression, respectively. For what concerns the elastic range, 

the model assumes the elastic behaviour of concrete to be isotropic and linear. 

In concrete modelling, a non-associated plastic flow potential is implemented using the 

Drucker-Pager hyperbolic function to represent flow potential. 

Finally, a visco-plastic regularisation of the constitutive models is sometimes used to 

improve the convergence rate in the concrete softening and stiffness regimes, but it was 

not used in this project. 

 

5.2.1.1 Concrete compression model 

The stress-strain relation for a given concrete can be described based on uniaxial 

compression tests carried out on it if no data set from tests are available, the relation can 

be described using the relations in the literature or standards. It is observed that concrete 

behaves linearly within the elastic region until the initial yield, σco. After reaching the initial 

yield point, concrete starts behaving in a plastic fashion and exhibits some work-hardening 

up to the ultimate stress  𝜎𝑐𝑢 followed by strain-softening (figure 5.12).  

Figure 5.13 - Compressive stress-strain response of concrete (17) 

For the inelastic response, compressive stresses are provided in a tabular form as a 

function of the inelastic strain, 𝜀𝑐𝑖𝑛, used in the model to describe the hardening rule, and 

which can be calculated by the following equation: 

 

𝜀𝑐
𝑖𝑛 =  𝜀𝑐 − 𝜀0𝑐

𝑒𝑙 =  𝜀𝑐 −  
𝜎𝑐

𝐸𝑐

  

 



 

 

where 𝜀𝑐 is the total compressive strain, 𝜀0𝑐
𝑒𝑙  is the elastic compressive strain corresponding 

to the undamaged material, 𝜎𝑐 is the compressive stress, and 𝐸𝑐  is the initial undamaged 

modulus of elasticity.  

The constitutive equation under uniaxial compression for the CDP model is (17,18): 

𝜎𝑐 = (1 − 𝑑𝑐)𝐸𝑐(𝜀𝑐 − 𝜀𝑐
𝑝𝑙

) =  𝐸(𝜀𝑐 −  𝜀𝑐
𝑝𝑙

) 

 

where 𝑑𝑐is the damage variable: if its value is 0 , it represents the undamaged material 

and, instead, if it is 1 it represents the material under the total loss of strength. 

Furthermore, 𝐸 = (1 − 𝑑𝑐)𝐸𝑐 is the degraded elastic stiffness in compression. The effective 

compressive stress is defined as: 

𝜎𝑐 =
𝜎𝑐

(1 − 𝑑𝑐)
=  𝐸𝑐(𝜀𝑐 − 𝜀𝑐

𝑝𝑙
) 

where 𝜀𝑐
𝑝𝑙

 is the equivalent plastic strain in compression. 

 

5.2.1.2 Concrete tension model 

The stress-strain relation under uniaxial tension is similar to that in compression (figure 

5.13): 

Figure 5.14 - Tensile stress-strain response of concrete (17) 

moreover takes the following form (18,21): 

𝜎𝑡 = (1 − 𝑑𝑡)𝐸𝑡(𝜀𝑡 − 𝜀𝑡
𝑝𝑙

) =  𝐸(𝜀𝑡 −  𝜀𝑡
𝑝𝑙

) 

where 𝑑𝑡is the damage variable in tension and 𝐸 = (1 − 𝑑𝑡)𝐸𝑐 is the degraded elastic stiffness 

in tension. The effective compressive stress is defined as: 

 

𝜎𝑡 =
𝜎𝑡

(1 − 𝑑𝑡)
=  𝐸𝑡(𝜀𝑡 − 𝜀𝑡

𝑝𝑙
) 

where 𝜀𝑡
𝑝𝑙

 is the equivalent plastic strain in compression. Furthermore, it can be seen that 

the stress-strain response is linear elastic until the peak stress 𝜎𝑡0 and once this value is 
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reached, cracks start to appear. The strain-softening behaviour for cracked concrete is 

defined by the “tension stiffening”: the tensile capacity of concrete is usually neglected 

when analysing a reinforced concrete structure, even though concrete continues to carry 

tensile stress between the cracks due to the transfer of stresses from the tensile 

reinforcement to the concrete through bond. This kind of contribution affects the stiffness 

after cracking, the deflection of the member and the width of the cracks under service 

loads(22).  

In Abaqus, the effects of the tension stiffening can be specified in three different ways: 

1. the tensile stress in concrete can be entered in a tabular form as a function of the 

corresponding cracking strain 𝜀𝑡
𝑐𝑘, defined as: 

 

𝜀𝑡
𝑐𝑘 =  𝜀𝑡 − 𝜀0𝑡

𝑒𝑙 =  𝜀𝑡 −   
𝜎𝑡

𝐸
  

 

where  𝜀𝑡
𝑐𝑘 is the cracking strain, 𝜀𝑡  is the total tensile strain, 𝜀0𝑡

𝑒𝑙 is the elastic tensile 

strain corresponding to the undamaged material, 𝜎𝑡 is the tensile stress, and 𝐸 is 

the initial undamaged modulus of elasticity. 

2. the tensile stress can be entered in a tabular form as a function of the crack-

opening-displacement, 𝑤.  

3. using the fracture energy Gf. 

In the second method, the post-peak tensile behaviour of concrete is defined in a way that 

the user has to input the tensile stress as a function of the crack-opening-displacement 𝑤. 

In particular, the cracking displacement at which complete loss of strength takes place is 

defined as(23): 

  

𝑤𝑐 =  
5𝐺𝑓

𝑓𝑐𝑡𝑚

 

 

where 𝑓𝑐𝑡𝑚 is the tensile strength in MPa. In particular, the descending branch can be 

represented using bilinear or non-linear tension softening curve, as described in section 

5.2.2.2. 

In the third method, the fracture energy of concrete Gf, proposed by (24), is defined as 

the energy required to propagate a tensile crack of unit area. The fracture energy should 

be determined by related tests but in the absence of experimental data Gf. in N/m for 

normal weight concrete may be estimated from the following equation(23): 

𝐺𝑓 = 73 ∗  𝑓𝑐𝑚
0.13 

where fcm is the mean compressive strength in MPa. The descending branch is presented 

using a linear tension softening curve (17). 

Further attention to these three methods and their characteristics are given in section 

5.2.2.2. 

 

5.2.1.3 Plastic flow and yield surface 

The concrete damaged plasticity model assumes a non-associated potential plastic flow 

function and a yield surface which make use of two stress invariants of the effective stress 

tensor, namely the hydrostatic pressure stress and the Mises equivalent effective stress, 

defined as: 



 

 

 𝜌 ̅ =  −
1

3
𝑡𝑟(𝜎) 

 𝑞 ̅ =  √
3

2
‖𝑑𝑒𝑣(𝜎)‖ 

where ‖𝑑𝑒𝑣(𝜎)‖ is the effective stress deviator (or deviatoric part of the effective stress 

tensor).  

The concrete damaged plasticity assumes a non-associated plastic flow, defined as (25): 

 

𝜀�̇� =  �̇�
𝜕𝐺 

𝜕𝜎
 

 

where 𝜎 and 𝜀�̇� denote the stress and plastic strain rate tensors, 𝜆 ̇ is the plastic multiplier, 

and G is the Drucker-Prager function used in this model: 

 

𝐺 =  √(𝜖𝑓𝑡𝑡𝑎𝑛𝜓)2 + �̅�2 − �̅�𝑡𝑎𝑛𝜓 

 

When the potential plastic function shares the same shape as the yield surface, the flow is 

classified as “associated flow rule” (i.e. the plastic flow is connected with the yield 

criterion). If the associated rule is used, the plastic flow develops along the normal to the 

loading surface. However, the “non-associated flow rule” refers to the approach of using 

two separate functions, one of the plastic flow and the other for the yield surface. In this 

rule, the plastic flow develops along the normal to the plastic flow potential and not to the 

yield surface (26). 

Referring to the Drucker-Prager function (figure 5.14): 

 𝜓 is the dilation angle measured in the p-q plane at high confining pressure; 

 𝜖 is the eccentricity of the plastic flow potential surface; 

 𝑓𝑡   is the uniaxial tensile strength of concrete. 

In particular, the dilation angle and the eccentricity determine the shape of the flow 

potential surface: 𝜓 represents the angle of inclination of the failure surface towards the 

hydrostatic axis in the meridian plan and 𝜖 adjusts the shape of the plastic potential 

eccentricity.  

The eccentricity is a small positive value which defines the rate of approach of the plastic 

potential hyperbola to its asymptote: its length (measured along the hydrostatic axis) of 

the segment between the vertex of the hyperbola and the intersection of the asymptotes 

of this hyperbola (the centre of the hyperbola). Finally, it can be calculated as a ratio of 

tensile strength to compressive strength(27). 

 

Figure 5.15 - Drucker-Prager hyperbolic function of CDP flow potential and its asymptotes in the 
meridian plane (27) 
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The concrete damaged plasticity model also requires a yield surface capable of determining 

the states of failure or damage. In particular, this model uses the yield function proposed 

by Lubliner et al. (18), with the modifications proposed by Lee and Fenves (19), which 

consider the different evolution of strength under compression and tension.  

The yield surfaces in the plane stress and deviatoric plane conditions are depicted in figure 

5.15(a-b). Furthermore, the yield function is defined in terms of effective stress as 

follows(25): 

𝐹 =  
1

1 − 𝛼
[�̅� − 3𝛼�̅� +  𝛽(𝜀�̃�

𝑝𝑙
 , 𝜀�̃�

𝑝𝑙
)〈�̂�𝑚𝑎𝑥〉 −  𝛾〈−�̂�𝑚𝑎𝑥〉 ] −  𝜎�̅�(𝜀�̃�

𝑝𝑙
) 

where: 

𝛼 =  
(

𝜎𝑏0

𝜎𝑐0
) − 1

2 (
𝜎𝑏0

𝜎𝑐0
) − 1

;   0 ≤ 𝛼 ≤  0.5 

  

𝛽 =  
𝜎�̅�(𝜀�̃�

𝑝𝑙
)

𝜎�̅�(𝜀�̃�
𝑝𝑙

)
(1 − 𝛼) − (1 + 𝛼);              𝛾 =  

3(1 − 𝐾𝑐)

2𝐾𝑐 − 1
 

 

In these expressions: 

 〈�̂�𝑚𝑎𝑥〉 is the maximum principal effective stress;  

 
𝜎𝑏0

𝜎𝑐0
 is the ratio of biaxial compressive yield stress to initial uniaxial compressive yield 

stress; 

 𝜎�̅�(𝜀�̃�
𝑝𝑙

) and 𝜎�̅�(𝜀�̃�
𝑝𝑙

) are cohesion values in compression and tension, depending on 

the compressive and tensile equivalent plastic strains, 𝜀�̃�
𝑝𝑙

 and 𝜀�̃�
𝑝𝑙

; 

 𝛾 represents a dimensionless material constant only for the stress states of triaxial 

compression; 

 𝐾𝑐 controls the failure surface in the deviatoric cross-section and is the ratio of the 

second invariant on the tensile meridian and on the compressive meridian at any 

given value of the pressure invariant. 

 

Figure 5.16 -Concrete yield surface in plane and deviatoric stress(27) 

 



 

 

5.2.1.4 Damage evolution 

In the CDP model, the degradation of stiffness, caused by microcracking, occurs in both 

tension and compression and becomes more significant as the strain increases(28). Under 

cyclic loading, the mechanism of stiffness degradation gets more complicated due to 

opening and closing of the microcracks and, in particular, the unloading response becomes 

weaker and degraded, and the modulus of elasticity is adopted to describe this degradation 

as expressed in Figure 5.16 (25). 

Thus, the two main damage phenomena of the CDP model, the uniaxial tensile and 

compressive ones, can be possibly evaluated by defining two damage variables, namely dc 

and dt, which are used to characterise the degradation and the variation of the elastic 

stiffness (29). 

Figure 5.17 - Definition of tensile and compressive damage (17,25) 

The compressive and tensile damage variable can be computed using the following 

relations(30): 

 

𝑑𝑐 = 1 −  
𝜎𝑐

𝜎𝑐𝑢

 

 

𝑑𝑡 = 1 −  
𝜎𝑡

𝜎𝑡0

 

 

Also, these variables can be defined differently: the tensile damage variable can be 

considered equal to the ratio of the cracking strain to the total tensile strain, and the 

compressive damage variable defined as the ratio of the crushing strain to the total 

compressive strain(31).  

Thus, only when concrete enters in the softening phase in both tension and compression, 

the damage variables start to occur and increase their value(32).  

Once the damage variables are found, it is possible to evaluate the equivalent plastic strain 

for crushed concrete and cracking concrete. In particular, The tensile damage variable can 

be defined as a tabular function of either the crack–opening displacement, �̃�𝑡
𝑝𝑙

, or the 

cracking strain, 𝜀�̃�
𝑝𝑙

(33): 

 

𝜀�̃�
𝑝𝑙

=  𝜀�̃�
𝑖𝑛 −

𝑑𝑐

1 − 𝑑𝑐

𝜎𝑐

𝐸0
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𝜀�̃�
𝑝𝑙

=  𝜀�̃�
𝑐𝑘 −

𝑑𝑡

1 − 𝑑𝑡

𝜎𝑡

𝐸0

 

 

�̃�𝑡
𝑝𝑙

=  �̃�𝑡
𝑐𝑘 −

𝑑𝑡

1 − 𝑑𝑡

𝜎𝑡𝑙0 

𝐸0

 

 

where 𝑙0 is the specimen length and it is assumed to be a unit length(34). Negative and/or 

decreasing plastic strains are indicative of incorrect damage evolutions, which leads to 

generate an error message in Abaqus, preventing the performing of the non-linear 

analysis. Furthermore, if no damage variable is specified for both tension and compression, 

the model become a classic plastic model (31).  

 

 

5.2.1.5 Viscoplastic regularisation 

The softening behaviour and stiffness degradation of some material models, in particular 

for concrete, often lead to severe convergence problems in implicit analysis programs, such 

as Abaqus/Standard. A common technique to solve these convergence issues is the use of 

a viscoplastic regularisation of the constitutive equations, which causes the consistent 

tangent stiffness of the softening material to become positive for sufficiently small time 

increments (21) 

Viscoplasticity regularisation can be used in Abaqus/Standard for concrete damaged 

plasticity model: this technique allows the stresses to be outside of the yield surface.  

The viscoplastic regularisation is based on the use of the Duvaut-Lions regularisation, 

according to which the viscoplastic strain rate tensor,𝜀�̃�
𝑝𝑙

, is defined as: 

 

𝜀�̃�
𝑝𝑙

=  
1

𝜇
(𝜀𝑝𝑙 −  𝜀𝑣

𝑝𝑙
) 

 
where  𝜇 is the viscosity parameter representing the relaxation time of the viscoplastic 

system, 𝜀𝑣
𝑝𝑙

 is the plastic strain evaluated in the inviscid solution and 𝜀�̃�
𝑝𝑙

 is the viscoplastic 

strain. In Abaqus, the default value of 𝜇 is zero, but when it is greater than zero the 

viscoplastic strain start increasing. Furthermore, when the viscoplastic strain is used, the 

viscous stiffness damage variable, �̇�𝑣 is introduced and expressed below: 

 

�̇�𝑣 =  
1

𝜇
(𝑑 − 𝑑𝑣) 

 

where d is the damage variable of the inviscid solution. Thus, if the viscoplastic 

regularisation is used, the model output is based on elastic stiffness degradation and plastic 

strain values, 𝑑𝑣 and 𝜀𝑣
𝑝𝑙

, respectively. 

Using the viscoplastic regularisation with a small value for the viscosity parameter (small 

compared to the characteristic time increment) helps improve the rate of convergence of 

the model, without compromising results. Finally, if the value of 𝜇 approaches zero, the 

solution becomes a plastic response while if the viscosity parameter is assumed larger than 

the iteration time increment, the solution tends to be elastic(21) 

 

 

 



 

 

5.2.2 Identification of constitutive parameters for CDP model 

The plasticity modelling within the concrete damaged plasticity model is governed by the 

following fundamental parameters which identify the shape of the flow potential surface 

and the yield surface in the three-dimensional space of stresses: 

 𝜓 , dilation angle; 

 𝜖 , is the eccentricity which is a parameter that defines the rate at which the 

function approaches the asymptote; 

 
𝜎𝑏0

𝜎𝑐0
 , the ratio of biaxial compressive yield stress to initial uniaxial compressive yield 

stress; 

 𝐾𝑐 , the ratio of the second stress invariant on the tensile meridian to that on the 

compressive meridian for the yield function. 

Usually, it is necessary to carry out a biaxial failure in-plane state of stress and a triaxial 

test of concrete to identify these parameters, while a uniaxial compression and uniaxial 

tension tests are needed to be carried out to describe the evolution of the stress-strain 

curves of concrete (the hardening and the softening rule in tension and compression). 

In this thesis project, none of the parameters of the concrete damaged plasticity model 

was defined experimentally, but their definition was based on literature values and 

calibration parameter.  

𝜓  is physically interpreted as a concrete internal friction angle, it represents the angle of 

inclination of the failure surface towards the hydrostatic axis, measured in the meridional 

plane (Figure 5.14). Various authors suggest different values of the dilation angle: 

Jankowiak (35) ,for his test, supposed ranges from 34° to 42°, while Kmiecik and Kamiński  

(27) indicated that a value of 40° is usually assumed in simulations. Zappitelli et al.(34) 

used a value of 20° for their concrete dam, Hafezolghorani et al. (30) proposed a value of 

31° which was used on various CDP analysis performed on different concrete class and , 

finally, Vermeer and De Borst (36) proposed a value of 13°.  

Each of these authors proposed and used a different value of dilation angle without 

improving a laboratory test: although, the values they proposed are based on their 

particular case of study and, thus, it might not be correct to choose a particular value 

randomly from these research topic because dilation angle values used for the same 

concrete class goes from 20° to 40°.  

For this reason, a dilation angle calibration was performed to get the most accurate value 

to use for the non-linear analysis, as described in section 5.2.3. 

The flow potential eccentricity  𝜖 ensures that the flow direction is always uniquely defined. 

According to the manual, the function approaches the linear Drucker-Prager flow potential 

asymptotically at high confining pressure stress and intersects the hydrostatic pressure 

axis at 90°.  

The default flow potential eccentricity is assumed to be 0.1, which implies that the material 

has almost the same dilation angle over a wide range of confining pressure stress values. 

Increasing the value of provides more curvature to the flow potential, implying that the 

dilation angle increases more rapidly as the confining pressure decreases.  

Moreover, values of eccentricity significantly lower than the default value may lead to 

convergence problems if the material is subjected to low confining pressures because of 

the very tight curvature of the flow potential locally where it intersects the p-axis(21). In 

particular, if it is considered an eccentricity value of 𝜖 = 0 the flow potential tends to a 

straight line. 

𝐾𝑐  is interpreted as a ratio of the distances between the hydrostatic axis and respectively 

the compression meridian and the tension meridian in the deviatoric cross section. Typical 
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values of 𝐾𝑐 are between 0.64 and 0.8 (18). According to “Abaqus Analysis User’s Manual" 

(21) is recommended to assume 𝐾𝑐 = 2/3 . This ratio must always higher than 0.5 and 

when the value of 1 is adopted, the deviatoric cross section of the failure surface becomes 

a circle (as in the classic Drucker-Prager strength hypothesis).  

The term
𝜎𝑏0

𝜎𝑐0
⁄ , the ratio of biaxial compressive yield stress to initial uniaxial compressive 

yield stress. Various authors have worked on this topic and carried out experimental tests 

under various biaxial stress state, in particular, biaxial compressive test, giving their 

reference value and their considerations: 

 Lubliner et al. (1989) reported a range of 1.10 to 1.16; 

 Jankowiak (2005) indicated that 
𝜎𝑏0

𝜎𝑐0
⁄  ratio is sensitive to the change of the dilation 

angle and the eccentricity; 

 Kupfer et al., (1969) after several biaxial tests found out that the ratio range is 

approximately between 1.10 and 1.20; 

 “Abaqus Analysis User’s Manual,( vol3,” ) suggests a default value of 1.16. 

After this brief, this theoretical description, according to an amount of research study 

previously mentioned, the fundamental parameters of yield surface and flow potential used 

in the analysis are defined as follows: 

 𝜓 , dilation angle calibrated and discussed in section 5.2.3; 

 𝜖 , eccentricity value is 0.1; 

 𝐾𝑐  value is 0.66 

 
𝜎𝑏0

𝜎𝑐0
⁄  ratithe o of biaxial compressive yield stress to initial uniaxial compressive 

yield stress value is 1.16. 

 

5.2.2.1 Compression behaviour 

The properties of concrete subjected to uniaxial compression are usually obtained from a 

cylinder or cubic tests. In this project, no experimental results are available to perform an 

analysis using the stress-strain curve for the concrete. Thus, the expressions considered 

to describe the stress-strain curve are based on several studies in the literature. 

The uniaxial compressive stress-strain curve, according to Eurocode 2(1) is depicted in 

figure 5.17. 

The stress-strain curve is divided into three regions: 

 linear elastic; 

 non-linear plastic (hardening phase); 

 post-peak stress (softening phase). 



 

 

According to Eurocode 2 (EC2), concrete exhibits an elastic behaviour up to 0.4𝑓𝑐: at this 

level, which is almost 40% of the maximum uniaxial compressive strength, the specimen 

deformation is fully recoverable. In the pre-peak part of the stress-strain curve, the energy 

dissipation from all these meso-level mechanisms is small compared to the total energy 

stored in the specimen(38). 

Figure 5.18 - Schematic representation of the stress-strain relation 

In the plastic regime, the response of the concrete is characterised by stress hardening 

followed by strain softening beyond the peak stress 𝑓𝑐𝑚. 

In this physic phase, the deformation is no longer recoverable, and the stress-strain 

relation is no longer linear. Immediately after the peak stress, the concrete specimen 

displays strain softening and lateral expansions, which increase with the crack propagation: 

cracks start occurring and influencing the concrete behaviour once the peak stress is 

reached.  

The softening curve of the stress-strain relations should be considered as the envelope to 

all possible stress-strain relations of concrete which tends to soften as a consequence of 

concrete micro-cracking: the descending part is strongly depending on the specimen or 

member geometry, the boundary conditions and the possibilities for load redistribution in 

the structure (1). 

The uniaxial stress-strain curve was determined using the following expression(EC2, 

2004): 

 

𝜎𝑐

𝑓𝑐𝑚

=  
𝑘𝜂 −  𝜂2

1 + (𝑘 − 2)𝜂
 

 

where: 

 𝜎𝑐  is the compressive stress; 

 𝑓𝑐𝑚 is the mean value of concrete cylinder compressive strength; 

 𝜂 =  𝜀𝑐 𝜀𝑐1⁄   ; 

 𝜀𝑐1 = 0.7𝑓𝑐
0.31 ; 

 𝑘 = 1.05𝐸𝑐𝑚  |𝜀𝑐1|/𝑓𝑐𝑚 

This expression is valid for 0 < |𝜀𝑐| < |𝜀𝑐𝑢| where |𝜀𝑐𝑢|  is the nominal ultimate strain: a 

constant value of 𝜀𝑐𝑢 = 0.0035 is provided by EC2 and it can be used for concrete with a 

characteristic value 𝑓𝑐𝑘 less than 55MPa. For characteristic value above the 55Mpa value, 

the ultimate strain value can be expressed as: 
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𝜀𝑐𝑢 = 2.8 + 27 [(98 − 𝑓𝑐) 100⁄ ]4 

 

Since the plasticity curve in EC2 consider the concrete behaviour only up to the ultimate 

strain 𝜀𝑐𝑢 , limited to a value of 0.0035 which may lead to unrealistic overestimation of 

concrete strength (39), the descending branch was developed using the  Pavlović et al. 

(40) curve.  

Pavlović et al. suggested an extension of the compressive stress-strain curve beyond the 

EC2 ultimate strain: this extension is characterised by a sinusoidal descending curve 

between the corresponding EC2 ultimate strain (𝜀𝑐𝑢1, 𝑓𝑐𝑢1) and the ultimate strain (𝜀𝑐𝑢2, 𝑓𝑐𝑢2). 

The following expression defines the Pavlovic curve: 

 

𝜎𝑐 =  𝑓𝑐  [
1

𝛽
−  

sin( 𝜇𝛼𝑡1 𝛼𝑡2  𝜋 2⁄

βsin( 𝛼𝑡2  𝜋 2⁄ )
+ 

𝜇

𝛼
]           𝜀𝑐𝑢1 <  𝜀𝑐 <  𝜀𝑐𝑢2 

  

where: 

𝜇 =  
(𝜀𝑐 − 𝜀𝑐𝑢1) 

(𝜀𝑐𝑢2 − 𝜀𝑐𝑢1) 
            𝛽 =  

 𝑓𝑐

𝑓𝑐𝑢1

 

 

At the end of the descending part (𝜀𝑐𝑢2), concrete strength was reduced to 𝑓𝑐𝑢2 by a 

factor𝛽 =  𝑓𝑐 𝑓𝑐𝑢2⁄ . They adopted a value of 20 and 0.03, for α and 𝜀𝑐𝑢2.The parameters 𝛼𝑡1 

and 𝛼𝑡2 control tangents angles at the starting and end points of the sinusoidal curve and 

their value is set as 0.5 and 1. Table 5.3-5.4 summarizes the values of the stress-strain 

curve for C45/55 and C55/67, which were used for the CDP model and figure 5.18-5.19 

depicts the final compressive stress-strain compression concrete response. 

 

 

 

 

Figure 5.19 - stress-strain curve EC2+Pavlovic – C45/55 
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Figure 5.20 - stress-strain curve EC2+Pavlovic – C55/67 
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𝒑𝒍
 

% - 𝜺𝒄 − 𝜺𝟎𝒄
𝒆𝒍  𝒅𝒄 = 𝟏 − 

𝝈𝒄

𝝈𝒄𝒖

 �̃�𝒄
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= �̃�𝒄
𝒊𝒏 −

𝒅𝒄

𝟏 − 𝒅𝒄

𝝈𝒄

𝑬𝟎

 

0 0 - - - 

0,000565551 21,2 0 0 0 

0,001023352 33,79206 0,000122 0 0 

0,001481153 44,04778 0,000306 0 0 

0,001938954 50,64749 0,000588 0 0 

0,002396755 53 0,000983 0 0 

0,002617404 52,40869 0,001219 0,011157 0,001204 

0,002838053 50,56996 0,001489 0,04585 0,001424 

0,003058702 47,37836 0,001795 0,106069 0,001645 

0,003279351 42,71624 0,00214 0,194033 0,001865 

0,0035 36,45189 0,002528 0,312228 0,002086 

0,00615 19,34564 0,005634 0,634988 0,004736 
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0,0088 13,42983 0,008442 0,746607 0,007386 

0,01145 9,613523 0,011194 0,818613 0,010036 

0,0141 6,968166 0,013914 0,868525 0,012686 

0,01675 5,115306 0,016614 0,903485 0,015336 

0,0194 3,851043 0,019297 0,927339 0,017986 

0,02205 3,048249 0,021969 0,942486 0,020636 

0,03 2,65 0,029929 0,95 0,028586 

0,1 0,4 0,099989 0,992453 0,098586 

Table 5.1 - Compressive stress-strain curve values C45/55 
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𝒊𝒏 d �̃�𝒄

𝒑𝒍
 

% - 𝜺𝒄 − 𝜺𝟎𝒄
𝒆𝒍  𝒅𝒄 = 𝟏 − 

𝝈𝒄

𝝈𝒄𝒖

 �̃�𝒄
𝒑𝒍

= �̃�𝒄
𝒊𝒏 −

𝒅𝒄

𝟏 − 𝒅𝒄

𝝈𝒄

𝑬𝟎

 

0 0 -  -  -  

0,00063462 25,2 0 0 0 

0,00110814 39,798273 0,000106 0 0 

0,00158165 51,895884 0,000275 0 0 

0,00205516 59,992946 0,000544 0 0 

0,00252868 63 0,000942 0 0 

0,00266294 62,72932 0,001083 0,004297 0,001076387 

0,00279721 61,887897 0,001239 0,017652 0,001210652 

0,00293147 60,427973 0,00141 0,040826 0,001344916 

0,00306574 58,296307 0,001598 0,074662 0,00147918 

0,0032 55,433366 0,001804 0,120105 0,001613445 

0,00588 29,331442 0,005141 0,534422 0,004293445 

0,00856 20,247112 0,00805 0,678617 0,006973445 

0,01124 14,355564 0,010878 0,772134 0,009653445 

0,01392 10,244707 0,013662 0,837386 0,012333445 

0,0166 7,3390204 0,016415 0,883508 0,015013445 

0,01928 5,3284283 0,019146 0,915422 0,017693445 

0,02196 4,0196054 0,021859 0,936197 0,020373445 

0,03 3,15 0,029921 0,95 0,028413445 

0,1 0,4 0,09999 0,993651 0,098413445 

Table 5.2 – Compressive stress-strain curve values C55/67  

 



 

 

5.2.2.2 Tensile behaviour 

The behaviour of concrete subjected to tensile loading is similar to the compressive 

behaviour previously described: in fact, even if the stress values are lower than the 

compressive case, the specimen shows a linear response, mostly up to 70% of the uniaxial 

tensile strength, followed by a softening stress-strain response in which are highlighted 

highly non-linear behaviour and the formation of micro-cracks. This softening behaviour, 

which is often ignored in design standards, becomes more critical and evident with 

increasing of strains: in particular, the tensile stress drops gradually with increasing 

deformations until a full crack is formed. 

Finally, when the concrete specimen is unloaded from any point in the non-linear part, the 

response is weakened, and the material elastic stiffness appears to be damaged. 

As for the compressive case, since no experimental results are available, the literature 

stress-strain tensile curves were used. 

The concrete behaviour under uniaxial tension can be modelled by “tension stiffening” 

behaviour: this phenomenon describes the interaction and following stress transfer 

between the concrete and the reinforcement. As mentioned in section 5.2.1.2, there are 

three main methods for taking into account the effects of tension stiffening within Abaqus: 

1. tensile stress-strain approach; 

2. tensile stress-displacement (crack-opening displacement) approach; 

3. using a fracture energy approach. 

The first method consists in describing within Abaqus the tensile behaviour of concrete, 

both linear and nonlinear curves, defining a stress-strain relationship. In particular, Wang 

and T.C Hsu (41) proposed a model which was used in this the present study. 

These authors divided concrete behaviour into two ascending and descending parts, the 

first describes the elastic phase while the second defines the softening stress-strain 

response, and the following expressions can express them: 

 

𝜎𝑡 =  𝐸𝑡  𝜀𝑡      𝑖𝑓          𝜀𝑡   ≤  𝜀𝑐𝑟   

 

𝜎𝑡 =  𝑓𝑡(
𝜀𝑐𝑟

𝜀𝑡

 )𝑛𝜀𝑡      𝑖𝑓          𝜀𝑡   ≥   𝜀𝑐𝑟    

 

Wang and T.C Hsu  proposed a value of n=0.4, which is the rate of weakening. This curve 

shows a sharp change at cracking strain, which may lead to some problems during a finite 

element analysis: to avoid this problem; the authors suggested defining a short plateau at 

the peak point. Moreover, models implementing this technique might encounter major 

mesh sensitivity issues, especially when large regions of concrete has little or no 

reinforcement (21). 

The tensile stress-strain curve adopted in the non-linear analysis is depicted in figure 5.2-

5.3, and its values are shown in table 5.3-5.4. 
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Total Strain Stress 
Cracking  

Strain 
Damage Plastic Strain 

𝜺𝒕 𝝈𝒕 [𝑴𝑷𝒂] �̃�𝒕
𝒗𝒌 d �̃�𝒄

𝒑𝒍
 

% - 𝜺𝒕 − 𝜺𝟎𝒕
𝒆𝒍  𝒅𝒕 = 𝟏 − 

𝝈𝒕

𝝈𝒕𝒖

 �̃�𝒕
𝒑𝒍

= �̃�𝒕
𝒄𝒌 −

𝒅𝒕

𝟏 − 𝒅𝒕

𝝈𝒕

𝑬𝒕

 

0 0 0 0 0 

0,00015 3,795447 0,0000487 0 4,8749E-05 

0,00025 3,0940222 0,00017 0,1848069 0,000148749 

0,00035 2,704408 2,78E-04 0,2874599 0,000248749 

0,00045 2,4457633 3,85E-04 0,355606 0,000348749 

0,00055 2,2571185 4,90E-04 0,4053089 0,000448749 

0,00065 2,1112229 5,94E-04 0,4437485 0,000548749 

0,00095 1,813886 9,02E-04 0,522089 0,000848749 

0,00125 1,6253071 1,21E-03 0,5717745 0,001148749 

0,00155 1,491306 1,51E-03 0,6070803 0,001448749 

0,00185 1,389411 1,81E-03 0,6339269 0,001748749 

0,00215 1,3083503 2,12E-03 0,6552843 0,002048749 

0,00245 1,2417467 2,42E-03 0,6728326 0,002348749 

0,00295 1,1528442 2,92E-03 0,696256 0,002848749 

0,00345 1,0828587 3,42E-03 0,7146953 0,003348749 

0,00395 1,025795 3,92E-03 0,7297301 0,003848749 

0,00445 0,9780373 4,42E-03 0,742313 0,004348749 

0,00495 0,9372541 4,92E-03 0,7530583 0,004848749 

0,00575 0,882739 5,73E-03 0,7674216 0,005648749 

0,00655 0,8379207 6,53E-03 0,77923 0,006448749 

0,00735 0,8001741 7,33E-03 0,7891753 0,007248749 

0,00815 0,7677793 8,13E-03 0,7977104 0,008048749 

0,00915 0,7330456 9,13E-03 0,8068619 0,009048749 

0,01015 0,7032553 1,01E-02 0,8147108 0,010048749 

0,01115 0,6773131 1,11E-02 0,8215459 0,011048749 

0,01615 0,5840236 1,61E-02 0,8461252 0,016048749 

0,02115 0,5242945 2,11E-02 0,8618623 0,021048749 

0,02615 0,4816269 2,61E-02 0,873104 0,026048749 

0,03115 0,4490722 3,11E-02 0,8816813 0,031048749 

Table 5.3 – Tensile stress-strain curve values C45/55 

 

 

 

 

 



 

 

Total Strain Stress Cracking  Strain Damage Plastic Strain 

𝜺𝒕 𝝈𝒕 [𝑴𝑷𝒂] �̃�𝒕
𝒗𝒌 d �̃�𝒄

𝒑𝒍 

% - 𝜀𝑐 − 𝜀0𝑐
𝑒𝑙  𝑑𝑐 = 1 − 

𝜎𝑡

𝜎𝑡𝑢

 𝜀�̃�
𝑝𝑙

= 𝜀�̃�
𝑐𝑘 −

𝑑𝑡

1 − 𝑑𝑡

𝜎𝑡

𝐸𝑡

 

0 0 0 0 0 

0,00015 4,2142936 0,0000439 0 4,38697E-05 

0,00025 3,4354631 0,00016 0,1848069 0,00014387 

0,00035 3,002853 2,74E-04 0,2874599 0,00024387 

0,00045 2,7156656 3,82E-04 0,355606 0,00034387 

0,00055 2,5062028 4,87E-04 0,4053089 0,00044387 

0,00065 2,344207 5,91E-04 0,4437485 0,00054387 

0,00095 2,0140574 8,99E-04 0,522089 0,00084387 

0,00125 1,8046679 1,20E-03 0,5717745 0,00114387 

0,00155 1,6558791 1,51E-03 0,6070803 0,00144387 

0,00185 1,5427395 1,81E-03 0,6339269 0,00174387 

0,00215 1,4527334 2,11E-03 0,6552843 0,00204387 

0,00245 1,3787796 2,42E-03 0,6728326 0,00234387 

0,00295 1,2800664 2,92E-03 0,696256 0,00284387 

0,00345 1,2023576 3,42E-03 0,7146953 0,00334387 

0,00395 1,1389967 3,92E-03 0,7297301 0,00384387 

0,00445 1,0859687 4,42E-03 0,742313 0,00434387 

0,00495 1,0406848 4,92E-03 0,7530583 0,00484387 

0,00575 0,9801536 5,73E-03 0,7674216 0,00564387 

0,00655 0,9303894 6,53E-03 0,77923 0,00644387 

0,00735 0,8884773 7,33E-03 0,7891753 0,00724387 

0,00815 0,8525076 8,13E-03 0,7977104 0,00804387 

0,00915 0,8139409 9,13E-03 0,8068619 0,00904387 

0,01015 0,7808631 1,01E-02 0,8147108 0,01004387 

0,01115 0,752058 1,11E-02 0,8215459 0,01104387 

0,01615 0,6484736 1,61E-02 0,8461252 0,01604387 

0,02115 0,582153 2,11E-02 0,8618623 0,02104387 

0,02615 0,5347769 2,61E-02 0,873104 0,02604387 

0,03115 0,4986296 3,11E-02 0,8816813 0,03104387 

Table 5.4 – Tensile stress-strain curve values C55/67 
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Figure 5.21 - stress-strain curve - Whang & Hsu (41)– C45/55 

 

 

 

 

 

 

Figure 5.22 - stress-strain curve - Whang & Hsu(41) – C55/67 
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The last two methods are both based on the fracture energy criterion but are used 

differently in Abaqus: the post-failure stress can be specified whether as a tabular function 

of displacement or as fracture energy.  

These methods are related to the energy balance approach developed by Hillerborg et al., 

(1976), which showed a reasonable agreement with results from a tensile laboratory test. 

Hillerborg et al. assumed that the response of concrete under tension is linear until the 

fracture surface is reached and then a linear softening branch (figure 5.22 - (25)) beyond 

cracking was adopted (39).  

 

Figure 5.23 - Concrete stress-crack opening curve: (i) Linear softening branch (42) , (ii) Bi-linear 
softening branch (43);(44), (iii) Exponential softening branch ((45) 

Thus, concrete behaviour in this stage is controlled by this energy criterion based on the 

amount of energy absorbed by the formation of a unit area of crack surface.  

In fracture mechanics theory, the fracture energy Gf is determined as the ratio of the total 

energy that is generated to fracture a specimen to the fractured cross-sectional area: in 

particular, fracture energy it is assumed to be the area under the stress-crack opening 

relation. The cohesive crack model, called a fictitious crack model by Hillerborg et 

al.,(1976) has been one of the essential tools in the analysis of the fracture of concrete 

and cement-based materials since its first application to structural analysis.  

The fracture energy is defined, according to Hillerborg et al., (1976), as: 

 

𝐺𝑓 =  ∫ 𝜎𝑑𝑤 

 

Different type of relationships, as depicted in figure 5.22, can be used. All these curves 

have standard essential features, as follows (46): 

 it is non-negative and non-increasing; 

 for zero crack openings, its value equals tensile strength; 

 it tends to zero for large crack openings (complete failure, zero strength); 

 it can be integrated over (0; ∞). 

Assuming a linear approach to define the tensile cracking behaviour is the most 

straightforward approach: although, this approach tends to increase the stiffness of the 

concrete. Instead, a smoothest tension stiffening function, which is recommended, 

describe better the descending branch: in particular, can be used a bi-linear relationship, 

proposed from Hillerborg(1985)(43)  and suggested by Model Code 1993-2010, or an 

exponential relationship provided by Cornelissen et al., (1986) and Hordijk,(1992). These 

formulations are the most used and cited in the literature: Furthermore, a predominantly 

debated in literature is about the location of the kink point. 
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As depicted in figure 5.22, Hillerborg (1985)(43) proposed the coordinates of the kink point 

at: 

 

(0.33𝑓𝑡  , 0.8𝐺𝑓/𝑓𝑡) 

 

while the coordinates suggested by CEB-FIP (1993) were: 

 

(0.15𝑓𝑡  ,
2𝐺𝑓

𝑓𝑡
− 0.15𝑤𝑐𝑟)   

 

where  𝑤𝑐𝑟 =  
𝛼𝑓𝐺𝑓

𝑓𝑡
, 𝐺𝑓 is the total fracture energy and 𝛼𝑓 a dimensionless coefficient, both 

depending on the aggregate size. Instead, as shown in the following figure, with the new 

Model Code, these coordinates of the kink point were changed into: 

 

(0.2𝑓𝑡  ,
𝐺𝑓

𝑓𝑡
)   

 

Also the cracking displacement 𝑤𝑐𝑟 at which complete loss of strength takes place is defined 

differently: 

 

𝑤𝑐𝑟 =  2
𝐺𝑓 

𝑓𝑡

       (“Abaqus Analysis User’s Manual, vol3, ”)           

 

𝑤𝑐𝑟 =  
𝛼𝑓𝐺𝑓

𝑓𝑡

     (𝑀𝑜𝑑𝑒𝑙 𝐶𝑜𝑑𝑒, 1993) 

 

𝑤𝑐𝑟 =  5
𝐺𝑓

𝑓𝑡

     (𝑀𝑜𝑑𝑒𝑙 𝐶𝑜𝑑𝑒, 2010) 

                       

𝑤𝑐𝑟 =  3.6
𝐺𝑓

𝑓𝑡

     (Hillerborg, 1985) 

 

Figure 5.24 - Bi-linear softening curve Model Code 1993-2010 

 

It can be noted that the tail of the exponential law is 1.5 longer than that of Hillerborg, 

(1985) bi-linear law: however, the predict remains unaffected, and the numerical response 

is expected to be similar (25).  

In this project, in order to explore take advantage of all the tools provided by the concrete 

damaged plasticity model, the linear softening relationship and the exponential softening 



 

 

relationship were adopted: in particular, the linear response was used into Abaqus to 

improve “the fracture energy approach”, while the Cornelissen’s exponential curve was 

used for the “crack-opening displacement approach” as described in section 5.2.1.2 and 

5.2.2.2.  

The bi-linear softening curve was not used due to some computational errors within 

Abaqus.  

The exponential law of Cornelissen et al. (1986) has the following expression: 

 

 
𝜎𝑡

𝑓𝑡

=  [1 + (𝑐1

𝑤𝑡

𝑤𝑐𝑟

)] exp (−𝑐2

𝑤𝑡

𝑤𝑐𝑟

)  −  
𝑤𝑡

𝑤𝑐𝑟

 (1 + 𝑐1
3) exp (−𝑐2) 

 

 𝑤𝑐𝑟 = 5.14 
𝐺𝑓

𝑓𝑡

 

 

where 𝜎𝑡 is the tensile stress normal to the crack direction, 𝑓𝑡 is the concrete uniaxial tensile 

strength, 𝑤𝑐  is the crack-opening displacement,  𝑤𝑐𝑟 is the crack-opening displacement at 

the complete release of stress or fracture energy,  𝑐1 and  𝑐2 are material constants taken 

as 3.00 and 6.93, respectively. 𝐺𝑓 is the fracture energy of concrete required to create a 

stress-free crack over unit surface. 

The tensile curve adopted in the non-linear analysis is depicted in figure 5.24-5.25, and its 

values are shown in table 5.5-5.6. 

 

 

 

 

 

Figure 5.25 – Linear, bi-linear and exponential curve - concrete class C45/55 
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Figure 5.26 – Linear,bi-linear and exponential curve - concrete class C55/67 

 

 

 

 

Cracking 
displacement 

Stress Damage Plastic displacement 

�̃�𝒕
𝒄𝒌 𝝈𝒕 [𝑴𝑷𝒂] d �̃�𝒕

𝒑𝒍
 

- - 𝒅𝒕 = 𝟏 − 
𝝈𝒕

𝝈𝒕𝒖

 �̃�𝒕
𝒑𝒍

=  �̃�𝒕
𝒄𝒌 −

𝒅𝒕

𝟏 − 𝒅𝒕

𝝈𝒕𝒍𝟎 

𝑬𝟎

 

0 3,795446994 0,0000 - 

0,020201923 1,938855441 0,4892 0,020152394 

0,040403845 1,133368652 0,7014 0,040332829 

0,060605768 0,78947287 0,7920 0,060525578 

0,080807691 0,605930956 0,8404 0,080722604 

0,101009614 0,467323469 0,8769 0,100920829 

0,121211536 0,343161151 0,9096 0,12111944 

0,141413459 0,231817849 0,9389 0,141318392 

0,161615382 0,136891344 0,9639 0,161517783 

0,181817304 0,059984793 0,9842 0,181717654 

Table 5.5 – Exponential curve values C45/55 
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Cracking 
displacement 

Stress Damage Plastic displacement 

�̃�𝒕
𝒄𝒌 𝝈𝒕 [𝑴𝑷𝒂] d �̃�𝒕

𝒑𝒍
 

- - 𝒅𝒕 = 𝟏 − 
𝝈𝒕

𝝈𝒕𝒖

 �̃�𝒕
𝒑𝒍

=  �̃�𝒕
𝒄𝒌 −

𝒅𝒕

𝟏 − 𝒅𝒕

𝝈𝒕𝒍𝟎 

𝑬𝟎

 

0 4,214293618 0,0000 0 

0,018769058 2,152817869 0,4892 0,018717143 

0,037538117 1,258441571 0,7014 0,037463679 

0,056307175 0,876595164 0,7920 0,056223121 

0,075076234 0,672798478 0,8404 0,074987047 

0,093845292 0,518894959 0,8769 0,09375223 

0,112614351 0,381030706 0,9096 0,112517816 

0,131383409 0,257400112 0,9389 0,131283761 

0,150152468 0,15199799 0,9639 0,150050165 

0,168921526 0,066604416 0,9842 0,168817073 

Table 5.6 - Exponential curve values C55/67 

 

 

 

Cracking 
displacement 

Stress Damage Plastic displacement 

�̃�𝒕
𝒄𝒌 𝝈𝒕 [𝑴𝑷𝒂] d �̃�𝒕

𝒑𝒍
 

- - 𝒅𝒕 = 𝟏 − 
𝝈𝒕

𝝈𝒕𝒖

 �̃�𝒕
𝒑𝒍

=  �̃�𝒕
𝒄𝒌 −

𝒅𝒕

𝟏 − 𝒅𝒕

𝝈𝒕𝒍𝟎 

𝑬𝟎

 

0 3,79544699 0 0 

0,003 3,50692199 7,60E-02 0,002898749 

0,008240447 3,21839699 1,52E-01 0,008139196 

0,013480894 2,92987199 2,28E-01 0,013379643 

0,018721341 2,64134699 3,04E-01 0,01862009 

0,023961788 2,35282199 3,80E-01 0,023860537 

0,029202234 2,06429699 4,56E-01 0,029100983 

0,037062905 1,77577199 5,32E-01 0,036961654 

0,044923575 1,48724699 6,08E-01 0,044822324 

0,052784245 1,19872199 6,84E-01 0,052682994 

0,060644916 0,91019699 7,60E-01 0,060543665 

0,068505586 0,62167199 8,36E-01 0,068404335 

0,078606703 0,33314699 9,12E-01 0,078505452 

Table 5.7 - Linear curve values C45/55 
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Cracking 
displacement 

Stress Damage Plastic displacement 

�̃�𝒕
𝒄𝒌 𝝈𝒕 [𝑴𝑷𝒂] d �̃�𝒕

𝒑𝒍
 

- - 𝒅𝒕 = 𝟏 − 
𝝈𝒕

𝝈𝒕𝒖

 �̃�𝒕
𝒑𝒍

=  �̃�𝒕
𝒄𝒌 −

𝒅𝒕

𝟏 − 𝒅𝒕

𝝈𝒕𝒍𝟎 

𝑬𝟎

 

0 4,2143 0 0 

0,003 3,925775 6,85E-02 0,00289387 

0,007868757 3,63725 1,37E-01 0,007762627 

0,012737514 3,348725 2,05E-01 0,012631384 

0,017606271 3,0602 2,74E-01 0,017500141 

0,022475028 2,771675 3,42E-01 0,022368898 

0,027343785 2,48315 4,11E-01 0,027237655 

0,034646921 2,194625 4,79E-01 0,03454079 

0,041950057 1,9061 5,48E-01 0,041843926 

0,049253192 1,617575 6,16E-01 0,049147062 

0,056556328 1,32905 6,85E-01 0,056450197 

0,063859463 1,040525 7,53E-01 0,063753333 

0,073031356 0,752 8,22E-01 0,072925225 

Table 5.8 - Linear curve values C55/67 

 

 

5.2.3 Dilation angle calibration 

In this section is investigated the role of one other fundamental parameter of the concrete 

damaged plasticity model: the dilation angle 𝜓. This value describe also the level of volum 

change experienced by the concrete as crack occur and slip occurs along crack surfaces 

(48). 

A sensitivity analysis on dilation angle was performed to investigate its influence on the 

response of the structure in terms of CDP model variables output: the calibration of this 

parameter is very common and recommended in the research field even because in most 

of the case, real results from a laboratory test are not available. 

Furthermore, Abaqus doesn’t provide a standard value for the dilation angle. Various 

researches topic analyse this problem, and different values of the dilation angle are used. 

Usually, for concrete, a range between 31° to 42° of the dilation angle parameter is 

recommended (49): this is also confirmed according to various studies performed by 

different authors (19), (50) and (51).  

Besides, it was found out that low dilation angle values produce brittle behaviour while 

higher values produce a more ductile behaviour(52) and in particular, decreasing values 

of the dilation angle reduces the stiffness of the structure in the non-linear stage(53).  

 

 

 



 

 

The dilation angle 𝜓 calibration was performed on the two local models, having the 

following characteristics: 

 a mesh size of 75 mm for the entire model except for the parts where it is expecting 

that cracks occur: in particular, the bottom concrete part and the surfaces where 

the saddle lays on. These parts are meshed using a finer mesh of 50 mm; 

 loads, in particular, SLS combination, and boundary conditions (section 3 - 4.3.4);  

 compressive behaviour described in section 5.2.2.1; 

 tensile behaviour, in particular, the softening branch, is described using the stress-

strain curve(section 5.2.2.2 – table 5.3,5.4); 

 𝜖 = 0.1 (section 5.2.2) 

 
𝜎𝑏0

𝜎𝑐0
= 1.16 (section 5.2.2); 

 𝐾𝑐 = 0.66 (section 5.2.2); 

 µ viscotity parameter value is of 0.001 (section 5.2.2); 

 elastic-perfectly plastic behaviour for reinforcement (section 2.4 – 4.3.2). 

Even if in the previous section, after the mesh sensitivity analysis, a 50 mm mesh size was 

recommended, this value could not be adopted because using that mesh size the 

computational time became extremely long (almost 24 hours); instead, using two different 

value, one coarser for the entire model (75 mm) and one finer for the most sensitive crack 

parts (50 mm), helped decreasing the computational time. The values of eccentricity, 

𝜎𝑏0 𝜎𝑐0⁄ , (ratio of biaxial compressive yield stress to initial uniaxial compressive yield stress), 

𝐾𝑐 and µ were set according to the research study of (54). 

Finally, to investigate the dilation angle influence, this particular model was analysed with 

three different dilation angle values: 20°, 30° and 40°. 

Abaqus offers a variety of output variables for the concrete damaged plasticity model, 

among which (“Abaqus Analysis User’s Manual, vol3,” 2010): 

 DAMAGEC - compressive damage variable 𝑑𝑐; 

 DAMAGET - tensile damage variable 𝑑𝑡; 

 PEEQ - compressive equivalent plastic strain 𝜀�̃�
𝑝𝑙

; 

 PEEQT - tensile equivalent plastic strain 𝜀�̃�
𝑝𝑙

; 

 SDEG - stiffness degradation variable, d. 

 ALLDMD - energy dissipated in the whole (or partial) model by damage; 

 ALLPD - energy dissipated plastic deformation. 

A first check was carried out on reference point 9 and 10, which are both located at the 

bottom concrete part of the model: in particular, for both points, the maximum principal 

plastic strain (PE, MAX.PRINCIPAL), the tensile damage variable (DAMAGET) and the 

stiffness degradation variable (SDEG) were plotted with the time (analysis time t0=0 – 

t1=1, step incrementation time = 0,05). 

The maximum principal plastic strain was checked because it is the leading indicator of 

cracking initiation in concrete damage plasticity model, and it is a powerful tool to visualise 

the direction of cracking. Cracks are supposed to initiate when the tensile equivalent plastic 

strain is greater than zero (𝜀�̃�
𝑝𝑙

> 0) and the maximum principal plastic strain is positive(18). 

In addition, the orientation of cracks is assumed to be perpendicular to the maximum 

principal plastic strains. 
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Figure 5.27 - DAMAGET - Reference point 9 (𝝍 = 𝟐𝟎° , 𝟑𝟎°, 𝟒𝟎°)  

 

Figure 5.28 - Maximum principal plastic strain - Reference point 9 (ψ=20°, 30°, 40°) 

 

Figure 5.29 - Stiffness degradation variable - Reference point 9 (ψ=20°, 30°, 40°) 

0

0,005

0,01

0,015

0,02

0,025

0,03

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

D
am

ag
e

Time [s]

Damaget 20 deg Damaget 30 deg Damaget 40 deg

0

0,000005

0,00001

0,000015

0,00002

0,000025

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

P
E 

-
M

A
X

 

Time [s]

PE-MAX. PRINCIPAL 20 deg PE-MAX. PRINCIPAL 30 deg PE-MAX. PRINCIPAL 40 deg

0

0,005

0,01

0,015

0,02

0,025

0,03

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

SD
EG

Time [s]

SDEG 20 deg SDEG 30 deg SDEG 40 deg



 

 

 

Figure 5.30 - DAMAGET - Reference point 10 (ψ=20°, 30°, 40°) 

 

Figure 5.31 - Maximum principal plastic strain - Reference point 10 (ψ=20°, 30°, 40°) 

 

Figure 5.32 - Stiffness degradation variable - Reference point 10 (ψ=20°, 30°, 40°) 
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From the previous graphs, it is possible to give an interpretation of the influence of the 

dilation angle. The reference point 9-10 show a behaviour which is not the one indicated 

in the literature: as described before, when using higher values of the dilation angle, 

concrete becomes stiffer and whether the damage and the maximum principal plastic strain 

decrease. Instead, it seems that these points, in particular, RP 9, tend to exhibit a different 

behaviour which is characterised by increasing value of the damage and the plastic strain 

with high dilation angle value, as shown in figure 5.26-5.27-5.28: furthermore, the 

reference point 10 shows an entirely different behaviour (fig.5.29-5.30-5.31). 

Thus, these two points are not accurate enough to describe the influence of the dilation 

angle and, for this reason, a more suitable parameter for the check must be identified.  

In particular, a linear path (fig.5.32), perpendicular to the cracks pattern, was defined 

within Abaqus: the previous output variables were plotted along this path. The following 

figure shows where the path is located (results from CDP analysis with 𝜓 = 20°). 

 

Figure 5.33 - Linear path - local model #1(RH)-#2(LH) 

 

It was observed that using different and higher values of this parameter, the pattern of 

the cracks tend to evolve as the stiffness increase: in particular, this alteration causes that 

the two main cracks, showed above, start getting closer to each other and, thus, the 

reference points 9-10 got directly involved. This might be the reason why these two points 

showed a behaviour in terms of stiffness and damage, which is not easy to compare to the 

literature (fig.5.30-5.31).  

From the following graphs (5.33-5.38), in which the three output variables (damage, 

maximum principal stresses and stiffness degradation) are plotted along the path, it is 

possible to understand this situation better. In particular, it was noticed that: 

 as expected, along the path, output curve created with higher values (30° − 40°) of 

the dilatation angle tends to be lower than the other related to lower values of 

𝜓( 20°); in particular, this is clear in the external zone before the peaks, which 

indicate the presence of the main current cracks; 

 between the peaks, higher values of 𝜓 (30°, 40°) define curve which are located 

above the one with 𝜓 = 20°. This behaviour seems to be a demonstration of what 

described before, so that using higher values of the dilation angle, the two cracks 

get closer. Thus, in this case, it is likely that for values of 𝜓  greater than 40° , the 

crack pattern would be define only by one main crack. 

 in correspondence with the cracks, the values of 30°, 40 produce higher peak 

because stiffer model tends to have the damage concentrated in some parts while 

in brittle model, the damage is more scattered, as can be seen from the figure 5.43. 



 

 

Figure 5.34 - Damage - x (local model #1) 

 

Figure 5.35 - Maximum principal plastic strain - x (local model #1) 

 

Figure 5.36 - Stiffness degradation variable - x (local model #1) 
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Figure 5.37 - Damage - x (local model #2) 

 

Figure 5.38 - Maximum principal plastic strain - x (local model #2) 

 

Figure 5.39 - Stiffness degradation variable - x (local model #2) 
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Finally, a further check, based on the energy, was performed. In particular, the attention 

was focused on the energy dissipated in the model by damage (ALLDMD) and the energy 

dissipated by plastic deformation (ALLPD). As depicted in the following figure 5.39-5.42, 

the model show without any doubt the classical behaviour described in literature: 

corresponding to higher value of the dilation angle, since the reinforced concrete is stiffer, 

it produce less energy and, so, the plastic strains and the damage in the whole model 

generate lower quantities of energy. This behaviour can be evicted by the following graphs, 

in which only the last step of the analysis was taken into account. 

 

Figure 5.40 - Energy dissipated by damage (local model #1) 

 

 

Figure 5.41 - Energy dissipated by plastic deformations (local model #1) 
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Figure 5.42 - Energy dissipated by damage (local model #2) 

 

 

Figure 5.43 - Energy dissipated by plastic deformations (local model #2) 

 

Moreover, figure 5.34 depict the damage result for both models within Abaqus: it is shown 

that the damage tends to decrease as the dilation angle increase and, it is also possible to 

see how the crack pattern evolves.  

Besides, the two parts of the top tower are not perfectly symmetrical (tower #2 shows a 

hollow part which leads to a different reinforcement distribution) thence the pattern of the 

cracks is quite bit different. In the following figure, it is also possible to identify with the 

red point the location of reference point 9 and reference point 10 (fig.5.34). 

Therefore, it is reasonable to declare that even if the values in terms of damage, plastic 

strain and stiffness degradation are likely similar to each other, each value of dilation angle 

defines a particular behaviour in terms of crack pattern. Usually, a dilation angle 

calibration, according to the literature, is compared with laboratory test curve or literature 

curve (load-displacement beam for example) but in this case, none of this was available. 

Thus, since a range value between 31° − 42°  is often used in literature after the influence 

of 𝜓 was investigated, it was chosen to define a dilation angle value of 𝜓 = 31°, according 

to the research paper of Hafezolghorani (30), which used this value for testing B50 

concrete class. 
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                    ( 𝜓 = 20°)  

                     ( 𝜓 = 30°)   

                      ( 𝜓 = 40°) 

Figure 5.44 - DAMAGET - local model#1 (LH) -#2(RH) 

 

 

 



 

 

97 

 

5.2.4 Influence of Tension stiffening  

In this section, the influence of the different models used to describe the tension stiffening 

effect was investigated. As previously described in section 5.2.2.2, Abaqus allows the user 

to execute the tension stiffening in three different ways: 

 stress-strain curve (𝜎 − 𝜀); 

 stress- cracking displacement curve (𝜎 − 𝑤); 

 fracture energy. 

The analysis of the two local models were carried out using the value of the dilation angle 

found in the previous section (𝜓 = 31°) and the tension stiffening relations described in 

section 5.2.2.2. For a better and clearer understanding, these models are going to be 

identified as: “stress-strain model”, “stress-displacement model”, “stress-fracture energy 

model”. 

The results obtained from the analysis show different behaviours: in particular, the model 

implemented with the stress-strain curve seems to simulate better the non-linear phase. 

Indeed, since the information about the real behaviour of this structure were not available, 

this model was supposed to be the most accurate mainly because it is more capable than 

the other of providing further details about the crack pattern. This assumption was forced 

by the fact that whether laboratory test data for the material and real cracking analysis 

were missing. 

The differences between these three different models are about their accuracy to represent 

the areas in which the tensile concrete strength has been reached. In particular, as 

depicted in figure 5.51, when the stress and the damage are given in terms of cracking 

displacement, the results are different. It was observed that, first, the models based on 

the fracture energy approach (“stress-displacement model” and “stress-fracture energy 

model”) tend to overestimate the after-peak concrete response: this observation is proven 

by the fact that the damage variable (DAMAGET) and the energy dissipated by the damage 

(ALLDMD) are lower than the “stress-strain” case.  

Damage variable (DAMAGET) was checked considering the two most damaged element 

laying on the two main cracks reported by the “stress-strain model”: in particular, they are 

identified as element n.834185 and n.306495, for local model #1-#2 respectively; 

moreover, these elements was chosen not only for being the most damaged but also for 

being those with the highest values of plastic strain (whether maximum principal strain 

and plastic strain in x-direction) and stiffness degradation. 

For these elements, the maximum principal stresses and the total strain were also plotted 

and investigated: furthermore, the total strain was calculated, adding up whether the 

elastic and plastic strain. Naturally, plastic strain values are zero until the elastic limit is 

reached. 

As can be seen from the following graphs and images, it was observed that the models 

using the fracture energy approach give insufficient results: in particular, whether globally 

that locally these models produce very low values compared to the “stress-strain model”; 

this situation is described in figure 5.44-5.45, in terms of energy dissipated by the whole 

model and, in figure 5.46-5.47, in terms of damage for a single element.  

Moreover, as depicted in figure 5.48-5.49, the stress-strain response given by these three 

different tension stiffening approach is different: in particular, while the response is 

identical up to the peak (linear field), it totally changes in the non-linear field, where, the 

stresses and strains given by the stress-displacement model” and “stress-fracture energy 

model” are quite limited. Thus, it seems that these two models simulate the behaviour of 

concrete after the tensile peak as if it did not lose stiffness. This deduction is demonstrated 



 

 

by the fact that the values of damage are very low and the damaged is not localised but it 

is spread out: in particular, it can also be evicted by figure 5.50 in which PEEQT variable 

output is depicted. It was chosen to depict the tensile plastic strain (PEEQT) instead of the 

damage (DAMAGET) because further and different information needed to be given in order 

to confirm this discussion of the results. 

Instead, the “stress-strain” model seems to be capable in representing the reduction of 

stiffness and strength of the concrete. 

Finally, these different behaviour expressed by these model may also be ascribed to their 

conditions of use within Abaqus: indeed, the specification of tension stiffening using the 

stress-strain relation may lead to convergence problem due to mesh sensitivity: this 

problem occurs typically in the case with little or missing reinforcement(42). Instead, the 

models based on the fracture energy can also be used in case of no reinforcement, but 

their implementation requires the definition of a characteristic length associated with an 

integration point: this definition of the characteristic crack length is used because the 

direction in which cracking occurs is not known in advance. Abaqus assumes by default 

this length value as 1. 
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Figure 5.45 - Energy dissipated by damage (local model #1) 

 

Figure 5.46 - Energy dissipated by damage (local model #2) 

 

Figure 5.47 - DAMAGET – E: 834185 
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Figure 5.48 - DAMAGET – E: 306495 

 

 

Figure 5.49 - Maximum Principal stress-Total strain E: 834185 

 

 

Figure 5.50 - Maximum Principal stress-Total strain E: 306495  
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                     ( "𝑆𝑡𝑟𝑒𝑠𝑠 − 𝑆𝑡𝑟𝑎𝑖𝑛 𝑚𝑜𝑑𝑒𝑙") 

 

 

                     ( "𝑆𝑡𝑟𝑒𝑠𝑠 − 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑚𝑜𝑑𝑒𝑙") 

 

 

                      ( 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝑚𝑜𝑑𝑒𝑙") 

Figure 5.51 - PEEQT - local model#1 (LH) -#2(RH) 

 



 

 

6.1 Cracking on reinforced structures 

Cracks in reinforced concrete are a common occurrence when it is subjected to bending, 

shear, torsion or tension loading. In particular, a reinforced concrete structure develops 

cracks whenever stress in the component exceeds its tensile strength. Cracks may also be 

caused by externally applied forces, imposed deformations and other phenomena such as 

shrinkage or thermal strains. Furthermore, the presence of these fractures may also lead 

to accelerated reinforcement corrosion in severe environments (55). Nevertheless, cracks 

are not always an indicator of a lack of serviceability or durability: in reinforced concrete 

structures, cracking due to tension, bending, shear, torsion is often inevitable and does 

not necessarily impair serviceability or durability. 

The design codes pay much attention to this problem, in particular, for the serviceability 

limit state (SLS). This limit state aims to give the structures the ability to maintain the 

functionality characteristics during the design working life. Thus, in order to certify that 

the structure and/or the structural elements perform adequately in regular use, the 

serviceability limit state must be verified. 

The verifications suggested by Eurocode 2 for the serviceability limit state are about: 

 stress limitation; 

 limit state of cracking; 

 limit states of deformation; 

 vibrations. 

In this project, only the limit state of cracking was examined. Especially, in this section, 

using the cracks pattern information gained thanks to the concrete damaged plasticity 

model, a limitation of crack width was performed.  

This verification was done following various standards: 

 Eurocode 2 EN 1992-1-1:2004 (1); 

 Eurocode 2 EN 1992-1-1:2018 (Draft Version) (56); 

 Fib Bulletin 66: Model Code 2010, Final Draft- Volume 2(57). 

All of these codes suggest the same way to carry out a limitation of crack width, but some 

parameters change from one version to another, and so the final value of the crack width. 

In particular, the codes suggest that the crack width has to satisfy the following conditions: 

 

𝑤𝑑 ≤  𝑤𝑙𝑖𝑚 

 

where: 

 𝑤𝑑 is the design crack width considered at the concrete surface; 

 𝑤𝑙𝑖𝑚  is the nominal limit value of crack width considered at the concrete surface. 

The nominal limit value of crack width is specified for cases of expected functional, 

appearance related or in some cases durability related consequences of cracking. Instead, 

the design crack width is a value which depends on the maximum crack spacing 𝑆𝑟,𝑚𝑎𝑥 and 

from the difference between the mean strain in the reinforcement (including the effect of 

6 Verification of serviceability (SLS)      
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imposed deformations and taking into account the effects of tension stiffening) and the 

mean strain in the concrete between the cracks, 𝜀𝑠𝑚 −  𝜀𝑐𝑚. Furthermore, in order to 

evaluate the relative mean strain 𝜀𝑠𝑚 − 𝜀𝑐𝑚, it is necessary to define the effective area of 

concrete in tension surrounding the reinforcement 𝐴𝑐,𝑒𝑓𝑓 of depth  ℎ𝑐,𝑒𝑓𝑓 (figure 6.1). 

This parameter   ℎ𝑐,𝑒𝑓𝑓 is assumed to be the lesser of these values for each standard: 

 

 ℎ𝑐,𝑒𝑓𝑓 =  min {

2,5 (ℎ −  𝑑)

(ℎ − 𝑥)/3
ℎ/2

                    Eurocode 2 − 2004(1), 𝐷𝑟𝑎𝑓𝑡 2018(56)   

 

 ℎ𝑐,𝑒𝑓𝑓 = min {
2,5 (𝑐 +  𝛷/2)

(ℎ − 𝑥)/3
                         Model Code 2010(57)     

 

where: 

 c is the cover concrete, 7 𝑚𝑚; 

 𝛷 is the diameter of the rebar 32 𝑚𝑚; 

 x is the depth of the neutral axis, ≈ 1000 𝑚𝑚; 

 d is the effective depth; 

 h is the height of the section,3650 𝑚𝑚. 

 

In this case, since there are four layers of reinforcement at different heights in the effective 

area, the effective depth d was calculated in relation to the level of steel centroid, using 

the following equation: 

𝑑 =  
∑ 𝐴𝑖 ∗  𝑑𝑖  𝑖

𝐴𝑡𝑜𝑡

 = 3355 𝑚𝑚 

Figure 6.1 - Effective tension area 

 

The evaluation of the maximum crack spacing 𝑆𝑟,𝑚𝑎𝑥 and the relative mean strain 𝜀𝑠𝑚 −  𝜀𝑐𝑚, 

and consequently the design crack width are reported in the following table.  

 

 

 

 

 

 

 

 



 

 

EUROCODE EN 1992-1-1:2004 

𝑤𝑚𝑎𝑥  [𝑚𝑚] XS 1 

Reinforced members - Quasi - permanent load combination 

0,3 

𝑤𝑘  [𝑚𝑚] 𝑠𝑟,𝑚𝑎𝑥 (𝜀𝑠𝑚 −  𝜀𝑐𝑚) 

𝑠𝑟,𝑚𝑎𝑥 =  𝑘3𝑐 +  𝑘1𝑘2𝑘4

Ф

𝜌𝑒𝑓𝑓
 

(𝜀𝑠𝑚 −  𝜀𝑐𝑚) =

𝜎𝑠 −  𝐾𝑡
𝑓𝑐𝑡

𝜌𝑒𝑓𝑓
 (1 + 𝛼𝜌𝑒𝑓𝑓)

𝐸𝑠
 ≥ 0,6

𝜎𝑠

𝐸𝑠
 

𝜌𝑒𝑓𝑓 [%] 0,024593801 𝜎𝑠 [MPa] 60 

c [mm] 70 𝑓𝑐𝑡𝑚 [MPa] 3,795447 

𝐾1 0,8 d [mm] 3355 

𝐾2 0,5 𝛼 5,335390945 

𝐾3 3,4 𝐾𝑡 0,4 

𝐾4 0,425 𝐸𝑆 [MPa] 200000 

Φ 32 𝐸𝐶 [MPa] 37485,538 

𝑆𝑟,𝑚𝑎𝑥 [mm] 459,1939509 ℎ𝑐 [mm] 737,5 737,5 883,33 1825 

𝑤𝑘  =  𝑠𝑟,𝑚𝑎𝑥 (𝜀𝑠𝑚 −  𝜀𝑐𝑚) =  0,082 𝑚𝑚 

𝐴𝑐,𝑒𝑓𝑓 [𝑚𝑚2] 2876250 

𝐴𝑠 [𝑚𝑚2] 70737,92 

𝜌𝑒𝑓𝑓 [%] 0,024593801 

0,6*𝜎𝑠/𝐸𝑆 [%] 0,02% 

𝜀𝑠𝑚 −  𝜀𝑐𝑚 [%] -0,005% 

Table 6.1 - Calculation of crack width (EN 1992-1-1:2004-7.3.4) (1) 

 

 

 

 

 

 

 

 



 

 

105 

 

MODEL CODE 2010 – FINAL DRAFT – VOLUME 2 

𝑤𝑙𝑖𝑚  [𝑚𝑚] XS 1 

Reinforced members - Quasi - permanent load combination 

0,2 

𝑤𝑚𝑎𝑥   [𝑚𝑚] 2𝑙𝑠,𝑚𝑎𝑥 (𝜀𝑠𝑚 −  𝜀𝑐𝑚) 

𝑙𝑠,𝑚𝑎𝑥 = 𝑘𝑐 +  
1

4

𝑓𝑐𝑡𝑚

𝜏𝑏

Ф

𝜌𝑒𝑓𝑓
  

(𝜀𝑠𝑚 −  𝜀𝑐𝑚) =

𝜎𝑠 −  𝛽
𝑓𝑐𝑡

𝜌𝑒𝑓𝑓
 (1 + 𝛼𝜌𝑒𝑓𝑓)

𝐸𝑠
  

𝜌𝑒𝑓𝑓 [%] 0,084362457 𝜎𝑠 [MPa] 60 

c [mm] 70 𝑓𝑐𝑡𝑚 [MPa] 3,795447 

𝐾 1 d [mm] 3355 

𝑓𝑐𝑡𝑚 3,795447 𝛼 5,335390945 

𝜏𝑏 6,8318046 𝛽 0,4 

Φ 32 𝐸𝑆 [MPa] 200000 

𝑙𝑠,𝑚𝑎𝑥 [mm] 122,68 𝐸𝐶 [MPa] 37485,538 

𝑤𝑚𝑎𝑥  =  2𝑙𝑠,𝑚𝑎𝑥 (𝜀𝑠𝑚 −  𝜀𝑐𝑚) =  0,041 𝑚𝑚 

ℎ𝑐 [mm] 215 215 883,33 - 

𝐴𝑐,𝑒𝑓𝑓 [𝑚𝑚2] 838500 

𝐴𝑠 [𝑚𝑚2] 70737,92 

𝜌𝑒𝑓𝑓 [%] 0,084362457 

𝜀𝑠𝑚 −  𝜀𝑐𝑚 [%] 0,02% 

Table 6.2 - Calculation of crack width (Model Code 2010, Final Draft- Volume 2) (57) 

 

 

 

 

 

 

 

 

 



 

 

EUROCODE EN 1992-1-1:2018 

𝑤𝑚𝑎𝑥  [𝑚𝑚] XS 1 

Reinforced members – Limit 

for appearance 

Reinforced members – Limit 

for durability 

0,3 0,4 

𝑤𝑘  [𝑚𝑚] 𝑠𝑟,𝑚𝑎𝑥 (𝜀𝑠𝑚 −  𝜀𝑐𝑚) 

𝑠𝑟,𝑚𝑎𝑥 = 2𝑐 + 0,35𝑘𝑏

Ф

𝜌𝑒𝑓𝑓
  

(𝜀𝑠𝑚 −  𝜀𝑐𝑚) =

𝜎𝑠 −  𝐾𝑡
𝑓𝑐𝑡

𝜌𝑒𝑓𝑓
 (1 + 𝛼𝜌𝑒𝑓𝑓)

𝐸𝑠
 ≥ 0,6

𝜎𝑠

𝐸𝑠
 

𝜌𝑒𝑓𝑓 [%] 0,024593801 𝜎𝑠 [MPa] 60 

c [mm] 70 𝑓𝑐𝑡𝑚 [MPa] 3,795447 

𝐾𝑏 0,8 d [mm] 3355 

Φ 32 𝛼 5,335390945 

𝑆𝑟,𝑚𝑎𝑥 [mm] 459,1939509 𝐾𝑡 0,4 

𝑤𝑘  =  𝑠𝑟,𝑚𝑎𝑥 (𝜀𝑠𝑚 −  𝜀𝑐𝑚) = 0,091 𝑚𝑚 

𝐸𝑆 [MPa] 200000 

𝐸𝐶 [MPa] 37485,538 

ℎ𝑐 [mm] 737,5 737,5 883,33 1825 

𝐴𝑐,𝑒𝑓𝑓 [𝑚𝑚2] 2876250 

𝐴𝑠 [𝑚𝑚2] 70737,92 

𝜌𝑒𝑓𝑓 [%] 0,024593801 

0,6*𝜎𝑠/𝐸𝑆 [%] 0,02% 

𝜀𝑠𝑚 −  𝜀𝑐𝑚 [%] -0,005% 

Table 6.3 - Calculation of crack width (EN 1992-1-1:2004-7.3.4) (56) 
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The results achieved in this project have given many compelling issues about the non-

linear behaviour of the structure. 

In this section, some aspects of the results obtained in chapter 5 and 6 were analysed. 

As described in section 5.2.4, the “stress-strain model” was assumed to be the most 

capable of representing the non-linear behaviour of the concrete. In particular, it was 

noticed that the model indicate the presence of two main longitudinal cracks pointed in the 

y-direction (figure 5.50): this non-linear model also indicate the presence of other 

damaged zones (figure 7.1-7.2).  

 

Figure 7.1 - DAMAGET - local model#1 - Iso view n.1 

 

These damaged zones shown in the figures were not taken into account because: 

 the damage spread over the external surface of the tower, as depicted in figure 7.1, 

is due to the boundary conditions (“BC3”-section 4.3.4) which were applied to deal 

with the absence of the cross-beam. The presence of these boundary conditions 

(U1, U2, U3, UR1, UR2, UR3=0) causes an increase of localised stress, which lead 

to a damaged state. Thus, it is unlikely that this kind of situation would reflect the 

real behaviour in that zone.  

 

Figure 7.2 - DAMAGET - local model#1 - Iso view n.2 

7 Discussion 



 

 

 the damage, figure 7.2, is due to excessive contact pressure between the steel 

saddle and the concrete part. These damaged regions, even if they may be more 

realistic than the other described above, were not considered. These regions were 

not considered because the interaction properties, which were modelled in the 

contact parts, were set in a non-realistic way: in fact, only, normal contact was 

assumed between the steel saddle and the concrete surface. Usually, in order to 

describe the real behaviour of this type of contact zone, the influence of the shear 

bolts and the presence of the friction should have been modelled. 

Instead, for what concerns the two main cracks highlighted by the “stress-strain model”, 

it is possible to understand how the damage and, so, the cracking, propagate into the solid 

model with the height. In figure 7.3, it is evident that plastic strains 11 (perpendicular to 

the cracks) start to arise below the first row of reinforcement and as the height decrease 

down to the cover concrete, the plastic strains increase their value and spread over the 

bottom of the concrete part. In particular, even if the plastic strains are spread over the 

surface, the highest values are localised in correspondence of the two main microcracks 

(figure 7.3-RH). 

Figure 7.3 - Plastic strains-PE11 – Front view (LH) - Bottom view (RH) 

Also, from figure 7.4, it is possible to understand how the damage caused by the cracking 

evolve along with the height. The following figure was realised making a vertical cut in 

correspondence of one of the two main cracks. In terms of strain, stress and damage, the 

situation in both cracks is almost identical, so for simplicity, the following considerations 

are made regarding only one of them. It is evident that the damage is localised along the 

crack and its value increase progressively up to the concrete cover: in particular, damage 

values start from 0,07 (blue region) up to 0,6≈0,7 (yellow region). 

Figure 7.4 - Damaget - Vertical cut view 
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Then, the stress state of the rebar was checked: as depicted in figure 7.5, the last layer of 

reinforcement, in correspondence with the crack, show the highest values of tensile stress. 

In particular, the maximum stress in the reinforcement is almost 60 MPa, which means 

that the steel is still in the elastic stage, and it is not yielded. Moreover, the whole 

reinforcement of the model is not yielded. 

 

Figure 7.5 - Maximum Principal stress - Rebar 

 

Finally, another check on the stresses was performed: the normal stresses 𝜎11 −  𝜎22 were 

plotted along a vertical axis (as section 5.1) and, then, compared to the stress distributions 

of the linear case (figure 7.7-7.9). It was observed that the compression values of both 

case, linear and non-linear, are quite similar but in the tensile zone it can be observed a 

relevant difference of values. In particular, for both local models, the normal stresses in x-

the direction (σ11), show lower values than the linear case: it can be noticed that in 

correspondence with almost 3 m of height, the stresses reach the tensile strength and then 

decrease. Thus, the elements between almost 3 m and 3.5 m of height are charachterised 

by a post-elastic behaviour (softening) which is why the tensile value are lower than the 

linear case.  

Finally, in order to complete this stress verification, the vertical stress σ33 in the concrete 

part below the saddle was analyzed: this verification was carried out taking in exam, for 

both local models, the three reference point below the saddle (RP 2,4,7 for local model #1 

and RP 1,3,8 for local model #2). It was observed that for each reference point, the 

compressive stress value are lower than the compressive strength of concrete. Reference 

points are described in section 4.3.6. Compressive values are indicated in terms of absolute 

value. 

 

Reference points 
local model #1 

 
Reference points 
local model #2 

RP 2 29 MPa  RP 1 30,8 MPa 

RP 4 31 MPa  RP 3 33 MPa 

RP 7 21 MPa  RP 8 22 MPa 

Table 7.1 – Normal stress σ33 –Reference point 



 

 

Figure 7.6 - Normal stress - σ11 -z (local model #1) 

 

Figure 7.7 - Normal stress - σ22 -z (local model #1) 

 

Figure 7.8 - Normal stress - σ11-z (local model #2) 
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Figure 7.9 - Normal stress – σ22-z (local model #2) 

 

Finally, as described in chapter 6, starting from the results of the non-linear analysis, the 

width of the cracks was calculated, according to different standards. Even if, for each code 

(Eurocode 2-2004/2010- and Model Code 2010)both the design and the limit crack width 

were different, the verification was satisfied. It was observed that using different 

standards, the  parameters that significantly changed more than the others, were the 

maximum crack spacing 𝑆𝑟 and the depth of the effective area, ℎ𝑐,𝑒𝑓𝑓.  

In particular, the draft of the Model Code 2010 tends to give the lower value of the 

maximum cracking spacing 𝑆𝑟 and of ℎ𝑐,𝑒𝑓𝑓: in particular, since in section 6.1 the effective 

depth was calculated in the “slab-case”(figure 8-b), it was tried to evaluate the effective 

depth according to the “beam-case”(figure 8-a) suggested by Model Code 2010 (figure 8). 

 

Table 7.2 - Effective tension area of concrete Ac,eff for: (a) beam;(b) slabs; (c) member in tension 
(shaded area) - (57) 
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In the following table, it is possible to observe the differences between these parameters 

using different standards.  

 

 

Eurocode 2004 Eurocode 2008 

Model Code – Draft - 
2010 

 beam(a) slab(b) 

ℎ𝑐,𝑒𝑓𝑓 [mm] 737,5 737,5 737,5 215 

𝑆𝑟,𝑚𝑎𝑥  [mm] 459,19 504,39 250,7 122,68 

𝑤𝑘 [mm] 0,08 0,09077 0,09025 0,041 

Table 7.3 – Comparison of crack width values 

 

The result is that the crack width value, computed in the slab case according to Model Code 

2010,  is almost half of the value calculated using the Eurocode.  

It can be concluded that concrete damaged plasticity model has been a useful tool to 

investigate the non-linear behaviour of the top tower. It allowed developing many exciting 

considerations, from structure behaviour up to crack verification), which may be useful to 

improve the knowledge of these particular structures. 
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This master thesis project aimed to provide information about the non-linear behaviour of 

this particular reinforced concrete structure, including the presence of cracking. Each 

chapter of this project contributed to creating a complete overview of all the characteristics 

of the structure.  

Concrete damage plasticity (CDP) model appeared to be a useful tool to complete the task 

of this project. CDP was found to be promising for the nonlinear analysis of reinforced 

concrete structural systems. 

This model also showed the importance of an accurate modelling: in fact, in order to obtain 

high-quality results from this model, each aspect had to be widely examined, starting from 

material properties up to the modelling approach. Furthermore, the presented results of 

the analysis showed that a proper choice of CDP model parameters should be made very 

carefully, possibly examining the assumed values with the experimental results (section 

5.2.3 – 5.2.4). This stage of modelling of reinforced concrete structures seems to be the 

most critical and crucial for obtaining realistic results. 

It has been shown that the concrete damaged plasticity model is capable of: 

 detecting the regions where the concrete tensile strength has been reached; 

 providing information about the crack pattern and its evolution during loading; 

 estimating the level of damage in compression and tension; 

 describing the stiffness reduction in concrete. 

 

Based on the results of the non-linear analysis, it can be concluded that the main goal of 

the project has been achieved: considering the assumptions made, a complete overview 

of the most likely non-linear behaviour of this structure was obtained. 

 

 

8 Conclusions  



 

 

The final results are conditioned by the assumptions made. For example, the lacking 

information related both to material laboratory test and the real post-cracking behaviour 

of the structure influence the accuracy of the concrete damaged plasticity model. In 

particular, the choice of the most suitable tension-stiffening model is important. 

In addition to this, both type of analysis, linear and non-linear static, were influenced by 

various executive details, such as prestressed reinforcement or shear bolts, which was 

decided to not implement in the Abaqus models. However, these results about the crack 

pattern and crack width are influenced by various factors.  

The first factor is the tension-stiffening model chosen for the analysis. Even if the stress-

strain relation used to describe this phenomenon, gave acceptable results, it is strongly 

affected by the mesh-sensitivity problem. The solution to this problem, as suggested in 

the Abaqus manual, would be changing the tension-stiffening model. However, if the 

“stress-strain” model has to be used, in order to obtain acceptable estimations of the 

tension stiffening effect, it should be paid attention to the density of reinforcement, the 

quality of the bond between rebar and the concrete, the relative size of the concrete 

aggregate compared to the rebar diameter, and the mesh. Thus, improving these factors, 

the quality of the results would increase, and the mesh-sensitivity would be less of a 

concern. 

The second factor which influences the results is neglecting the prestressed reinforcement. 

This is left out because it was chosen not to model the cross-beam, which is a prestressed 

beam and contains prestressed reinforcement. Moreover the presence of the prestressed 

cable would have improved the strength of the structure, decreasing the probability of 

cracking: it is reasonable to assume that the prestressing would have introduced in the 

tensile zone (which is where these cables are anchored), compressive stresses that would 

have decreased the tensile value at the bottom of the concrete part.  

Furthermore, for the analysis, the real modulus of elasticity of concrete was used, instead 

of the effective modulus 𝐸𝑐,𝑒𝑓 suggested by the standars. The effective modulus is, in fact, 

reduced in order to take into account the long term effects of shrinkage. Finally, creep and 

thermal effects were not considered.  

These considerations and assumptions may be a suitable starting point for further works: 

realising a model with all these aspects would improve the accuracy of the results, making 

them as similar as possible to the real case.  

The creation of a FEM model, implemented with all these aspects, may be a helpful tool for 

the bridge designing: an accurate model would also help predicting and controlling the 

non-linear behaviour of these particular structures.  

 

9 Recommendations for Further Work 
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