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Abstract

This Master’s thesis are aiming to find out if it is possible to program a robot
solely by information contained in assembly data from 3D design software (CAD).
More so, how this program can be implemented on a commercially available off-
the-shelf robot manipulator. The solution should be developed with the potential
relevance for the industry in mind. Ever more production firms need to give way
for the robots to survive. How can the programming be easier and faster?

The programming is approached with the newly open-sourced framework for con-
straint based robot programming, called eTaSL. eTaSL is as of now the most
complete system for constraint based robot control. It is already a fully func-
tional framework, but to be available for more systems, parts of the project has
been to adapt it to ROS and ROS Control.

CAD constraints are extracted from SolidWorks by a C# code which utilizes their
API. The way those constraints are formulated mathematically led to the making
of a new set of geometrical functions and constraint types for eTaSL. These have
been used with the new eTaSL ROS controller to define a peg-in-hole test case.

It has been shown that the implemented solution is able to complete the peg-in-
hole case with a KUKA KR6 R900 robot using their sensor interface RSI. This
was tested with three different sets of pegs with different tolerances. The precision
of the system is good enough to be able to even place the pegs with the tightest
tolerance, which does not allow for any error larger than ±0.016 mm on average.

It is concluded that even though this system is in early stages, does it present a
promising future for robot programming. That is because it can be implemented
on a commercial robot and that it has the possibility to reduce the time consump-
tion from the design stage to a fully assembled product.





Sammendrag

Denne masteroppgaven har som mål å finne ut om det er mulig å programmere
en robot utelukkende med informasjon tilgjengelig i 3D-design software (CAD).
Mer spesifikt, hvordan dette programmet kan bli implementert på en kommersielt
tilgjengelig robot. Løsningen skal implementeres med industrien og dens relevans
for dem i bakhodet. Stadig flere produksjonsbedrifter skaffer seg roboter for å
overleve. Hvordan kan programmeringen av disse gjøres enklere og raskere?

Programmeringsproblemet er tilnærmet med et nylig “open-sourced” rammeverk
for “constraint based” robotprogrammering, kalt eTaSL. eTaSL er for øyeblikket
det mest komplette systemet innen dette feltet. Det er et allerede fullt funksjoni-
belt rammeverk, men for å gjøre det mer tilgjengelig for flere robotsystemer, har
en del av prosjektet blitt å tilpasse det for ROS og ROS Control.

Geometriske relasjoner fra CAD er hentet ut fra SolidWorks med en C# kode som
bruker deres API. Måten SolidWorks formulerer denne geometriske informasjonen
matematisk førte til at et nytt sett med geometriske funksjoner og relasjonstyper
ble utviklet for eTaSL. De har blitt brukt med den nye eTaSL-ROS-kontrolleren
til å definere et “peg-in-hole” testforsøk.

Det har blitt vist at den implementerte løsningen får til å gjennomføre “peg-in-
hole”-forsøket med en KUKA KR6 R900 robot gjennom deres sensor grensesnitt
RSI. Testen ble gjort med tre forskjellige sett med sylindere med forskjellige toler-
anser. Presisjonen i systemet er så bra at det er mulig å plassere selv de sylinderene
med trangest toleranse, som ikke tillater et større avvik enn ±0.016 mm.

Det konkluderes med at selv om systemet er i en tidlig fase, så leder det vei for en
lovende fremtid for robotprogrammering. Det er fordi det kan bli implementert på
en kommersiell robot og at det har muligheten til å redusere tidsforbruket mellom
design fasen og et ferdig sammenstilt produkt.
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Chapter 1.

Introduction

The main aim of the work in this Master’s thesis is to present the possibilities
of constraint based robot programming. Particularly the eTaSL framework when
using it to define a constraint based task from geometrical constraints derived from
CAD software. More so, this thesis will present how we can utilize interrelations
between parts to develop software that can determine a trajectory and constrain
the motion of an industrial robot in an assembly task. As these interrelations,
more precisely termed geometrical constraints, are already defined by designers
during product development in 3D design software (CAD), there should be no
need for robot programmers to repeat that process.

The most common method for robot programming in an assembly task today
is to manually program the sequence by the pose of the robot arm. This is
done either by positioning the robot at intermediate steps saving the pose, called
online programming, or by offline programming where changes are hard to make.
Recent research has made it possible for the programmers to have a more intuitive
job in offline programming, by taking advantage of CAD-models for graphical
programming interfaces. Solutions to online control does also begin to be more
and more robust. One of the best solutions so far is constraint based programming.
More on that later.

The work in this thesis is also meant to be the initial work for a larger project on
“CAD to constraint based robot programming” at the Department of Mechanical
and Industrial Engineering at the Norwegian University of Science and Technology
(NTNU).



2 Chapter 1. Introduction

1.1. Research Questions

This Master’s thesis aims to answer:

1. Is it possible to program a robot solely by information contained
in CAD-constraints?

2. How can it be implemented on a commercially available off-the-
shelf robot manipulator?

3. How can this project be of relevance to the industry?

As we step into the realms of Industry 4.0, a need for more flexible and easier to
use industrial manipulators are arising. Ever more businesses have to consider the
adoption of automation in their production to survive, as payments increase and
technology becomes cheaper. The field of robotics is one of the fields which looks
into production automation. Industrial robots have already enabled the industry
to speed up production and reduce cost, but to make the final step into Industry
4.0, the flexibility of production lines need to get down to “size 1 batches.” That
is, production where changing between different products on the same production
line is not more time consuming than big batches. In robot assembly processes,
this can be partly achieved by automating the programming process. Within
the frame of robot control and assembly tasks, there have been developed many
different ways of approaching this challenge. A presentation of the most related
work follows.

1.2. Related Work

1.2.1. Constraint-Based Robot Control

Constraint-based control is built on the premises of spatial relationships between
parts and the environment in a robot operation. These can be mathematically de-
scribed by equalities and inequalities between features on rigid bodies. Instead of
instructing the robot with end-effector positions and orientations, it is instructed
on the relation between the bodies it transforms. That is, the instructions could
be: “keep at minimum some distance clearance from an obstacle” or “position the
face of the part such that it is equal to the face of another part.”
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One way of dividing a robot operation into manageable chunks is to use a task
specification approach. In such an approach, the operation is divided into ele-
mentary sub-tasks. An elementary sub-task could be a single rotation of a part,
a single linear translation, a maximal contact force or other similar tasks, where
any further subdivision is impossible.

Aertbeliën and De Schutter [3], presents a constraint-based task specification lan-
guage using expression graphs (eTaSL), where expression graphs are treelike rep-
resentations of arithmetical operations. Any parameter can be constrained as
long as it is possible to formulate it mathematically. The constraints are weighted
position-level or velocity-level, where a position-level constraint expresses a de-
sired position the robot evolves towards in a control loop. The weighting ensures
that in a situation where different constraints conflicts, the highest prioritized
constraint will be satisfied first. A lower priority can be a trajectory, while a
higher priority can be a clearance to obstacles. Thus, the trajectory constraint
will be temporarily omitted if the clearance constraint is violated.

A similar approach for constraint-based control, where a constraint is used in the
broad term, is presented by Smits et al. [34] in an instantaneous task specification
using constraints (iTaSC). The constraints could be a distance between robot and
operator, a fixed relation between two parts in two robotic arms, a maximal end-
effector velocity, etc. They have developed a control scheme, which is able to
derive the control equations for a task involving ten primary constraints.

Mansard and Chaumette [24], divides the constraints into sub-tasks in a stack
during sensor based control, to avoid locking the robot motion to the predefined
constraints, thus being able to temporarily conflict the constraints for instance
when avoidance of obstacles are necessary. The stack of tasks is prioritized bottom
up, where the highest priority task, the position, is satisfied first. Only the sensor
data concerning the position is at the stack until a secondary controller sees a
potential obstacle. Then the necessary tasks for avoidance are added to the stack.

Somani et al. [30, 36] proposed a framework for robot programming using ge-
ometric constraints specified in CAD software. Part models are imported from
STEP, which is a vendor-independent file format developed for the interaction
of CAD data between different CAD software. Not all information is available
in the STEP format, as for instance geometrical constraint information. Thus
Somani et al. have the geometrical constraints specified by the robot programmer
in a self-developed software. One advantage of using STEP is that they make a
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system suited for businesses with different software in-house. Somani et al. have
also worked on the mathematical models of the constraints defined in the software
and geometric properties of constraint nullspaces, to make an exact solver for a
robot trajectory optimization for geometrical constraints [37].

A CAD based approach to constraint based control in eTaSL is outlined by
Arbo et al. [5]. The extracted CAD data are parameters as feature frames, inser-
tion lengths etc. The task in eTaSL is defined by a skill set, where the extracted
CAD data is used by the user to chose the necessary skills for the task. The CAD
data is also used with fussy logic to define parameters for force control.

1.2.2. Robot Based Assembly

The robot-based assembly task is solved in many different ways in the literature.
Classical approaches to robotic assembly are often cumbersome since the pro-
gramming is done by either manual hardcoding or manual drag-and-teach. More
recently a way of solving the problem is described by Perzylo et al. [29]. They
have made a system where they want the programming to be more intuitive for
a workshop floor programmer. They achieve this by making augmented cognitive
helping systems for the programmer.

Ji et al. [18], are trying to reduce human intervention in the programming task
by having made a programming-free robot assembly method based on virtual
training, where assembly sequences are tested iteratively in the virtual world
until a feasible assembly plan is generated. Gao et al. [15] are also solving the
problem in a new way in considering a force feedback assembly approach for the
peg-in-hole problem, using neural networks to process the online data from the
force feedback.

1.2.3. Extraction of Mating Features

The method for extraction of mating features/geometrical constraints from CAD
models used in this paper is highly influenced by papers on assembly sequencing.
One of those papers is presented by Mathew et al. [25, 26]. They use SolidWorks
API to extract mating information from an assembly model, for generation of all
feasible assembly sequences. The SW data is then used for the determination of
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the optimum sequence, where the results are represented in a liaison graph. A
liaison graph is a simple graphical representation of parts as nodes and relations
between parts as liaison arcs between the nodes. Mathew et al. aims at reduc-
ing the time needed for planning of the assembly sequencing, thus also the cost,
for human-operated assembly. A similar approach is made by Agrawal et al. [4].
They use the SW API to extract information on interference directions to make
an interference matrix. Together with a fitness function aimed at reducing tool
changes and part re-orientations, a generic algorithm is used to find an optimal
disassembly sequence for human operation. The interference matrix give a repre-
sentation of possible disassembly directions in relation to the other parts in the
assembly.

Pan et al. [28] does also generate interference matrices, but calculates the inter-
ference based on a 2D projection of the assembly from STEP files instead. Their
goal is to generate the optimal assembly sequence.

1.3. Contributions

There are three main contributions of this thesis:

1. Constraint based robot programming based solely on geometric
relations between rigid bodies. Each sub task in the assembly task
are defined purely by geometric relations, derived from CAD constraints,
with their end goal. There is for instance not sat any constraints on the
intermediate trajectory. This is done to test whether the information con-
tained in CAD assembly models can be enough to define an assembly task,
hence minimizing the potential need for human interaction (programming),
between a designers finalizing of an assembly model and the actual robot
assembly of the parts.

2. ROS based eTaSL controller. Together with Lars Tingelstad, an eTaSL
controller based on ROS has been developed. As many robots are or can
be controlled by ROS and the original implemetation of eTaSL is based on
Orocos, it seemed necessary to formulate the ROS controller. This would
also be the easiest way of being able to run eTaSL on the KUKA robots in
the robot lab at NTNU.

3. eTaSL ROS controller implemented on a industrial off-the-shelf
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robot. To make this project relevant to the industry, the eTaSL ROS
controller are implemented on a commercially available off-the-shelf robot
manipulator. Specifically the KUKA KR6 R900 robot. For this to work,
a joint limit interface had to be implemented in the hardware interface for
KUKA RSI.

1.4. Outline of the Thesis

The robot assembly problem is approached by developing software which is based
on SolidWorks [7] API. The developed software will be extracting the mathe-
matical relations in all of the predefined geometrical constraints from assembly
files in SW. The output of this software is then used to define a set of functions
for geometrical relations, which can be used in any assembly task with the con-
straint based robot programming framework in eTaSL. eTaSL is a recently open
sourced framework for constraint based robot programming, by Aertbeliën and
De Schutter [3]. The geometrical functions are then used with eTaSL to define a
constraint based assembly task for the classical peg-in-hole problem. By working
on the peg-in-hole task, we want to expose possibilities and limitations in both
the eTaSL framework, and a newly developed ROS based controller for eTaSL by
Lars Tingelstad. Any missing links or bugs in the eTaSL ROS controller should
be solved.

This thesis will first introduce some basics on robot kinematics and screw theory
in chapter 2, before an outline of all necessary software and programming tools
essential for understanding the work in this thesis, is presented in chapter 3.
The main work and contribution of this thesis is presented in chapter 4 and 5,
with the mathematics of the function set for geometrical relations, and how CAD
constraints can be implemented in constraint based frameworks as eTaSL. The
test setup and belonging results for validating the implemented task are given in
chapter 6, before a discussion and the final conclusion rounds off this thesis in
chapter 7 and 8 respectively.



Chapter 2.

Robot Kinematics and Screw
Theory

In this chapter, we present the basics of robot kinematics that are necessary for the
development of our assembly task. You will also be presented for the fundamentals
behind the mathematics of screw theory. The mathematics presented are based
on work by Siciliano et al. [33] in the book “Robotics – Modelling, Planning and
Control” and a note on “Advanced Robotics” made available by O. Egeland [10].

2.1. Rigid Body Motions

The position and orientation of a rigid body in space can be fully described in
respect to a reference frame by six parameters. An example of such a body is
shown in Figure 2.1. The position and orientation are often denoted as the pose
of the body. The position can be described by a vector,

p = [px, py, pz]T ∈ R3 (2.1)

pointing from the reference frame {a} to the frame {b} of the rigid body.

The direction of x′, y′, and z′ can be described by parts of x, y, and z in the
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z y

x{a}

p

z′
x′

y′
{b}

Figure 2.1.: Rigid body

reference frame;
x′ = x′xx+ x′yy + x′zz

y′ = y′xx+ y′yy + y′zz

z′ = z′xx+ z′yy + z′zz

. (2.2)

2.1.1. Rotation Matrices

The vectors x′, y′, and z′ from (2.2) can be derived from the vectors x, y, and z
by multiplication with a matrix R ∈ R3×3 called a rotation matrix;

R =


x′x y′x z′x

x′y y′y z′y

x′z y′z z′z

 , (2.3)

where
[x′,y′, z′]T = R[x,y, z]T .

Rotation matrices can be used to present a vector q in {a} as a rotation relative
to {b}. This is possible, as R ∈ SO(3). SO(3) is called the special orthogonal
group, which is a set of all matrices R ∈ R3×3 that satisfies RTR = RRT = I
and detR = 1. All members of SO(3) are linear transformations that preserve
both lengths and rotations.
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A point in space q can be transformed from frame {b} to frame {a} by

qa = Rabq
b, (2.4)

where Rab denotes a rotation from {b} to {a}. If we rearrange (2.4), we can
transform the point back

qb = (Rab )−1 qa. (2.5)

The properties of SO(3) is giving this useful result:

R−1 = RT . (2.6)

Thus by (2.6), (2.5) can be rewritten to

qb = (Rab )T qa.

The rotation of a vector from one frame to another is equivalent to rotating the
vector within a single frame by the same angels.

Quaternion

A useful mathematical description of rotations of rigid bodies in space is the
quaternion. A unit quaternion is defined as Q = {ε, η} where

ε = sin
(
θ

2

)
n

and
η = cos

(
θ

2

)
are called the vector part and the scalar part of the quaternion respectively. The
quaternion is useful to construct a rotation matrix for a rotation of θ radians
about some unit vector n. That is,
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zb yb

xb{b}

nb

za
xa

ya

n

na

{a}
pba

Figure 2.2.: Transformation from frame {a} to frame {b}

R(ε, η) =


η2 + ε2x − ε2y − ε2z 2(εxεy − ηεz) 2(εxεz + ηεy)

2(εxεy + ηεz) η2 − ε2x + ε2y − ε2z 2(εyεz − ηεx)
2(εxεz − ηεy) 2(εyεz + ηεx) η2 − ε2x − ε2y + ε2z

 . (2.7)

The quaternion is often given by (x, y, z, w) instead of (εx, εy, εz, η).

2.1.2. Homogeneous Transformation Matrices

Unlike a rotation matrix, a transformation matrix includes both a rotational and a
translational part. Thus, transformation matrices can be used not only to rotate a
vector between coordinate frames, but also translate them when there is a physical
distance between the two frames. A transformation matrix is on the form

T ba =
[
Rba pba

0 1

]
,

where R is the rotation matrix, as in (2.3), and p is the translation between the
frames, as in (2.1). The sub- and superscript denotes the frame of reference and
the referred frame respectively. If the vector n is rewritten to its homogeneous
representation

ñ =
[
n

1

]
,
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m

q

ω

Figure 2.3.: Moment notation

it can be transformed from frame {a} to frame {b}, given in Figure 2.2, by the
homogeneous transformation matrix. That is,

ñb = T ba ñ
a.

2.1.3. Screws

A screw is a useful tool in describing lines in 3D-space. A line in 3D has 4 degrees
of freedom (DOF), which means that it can be fully described by four parameters.
A usual description of a line has six parameters. These six parameters are given
by two points q and p, with their three Euclidean parameters each. Then, any
point on the line can be defined as r = q + λ(p − q) where λ is a real scalar. If
p− q is rewritten to ω = p− q, then a line is described by a point q on the line
and a direction vector ω.

To describe a line by a screw, as in Figure 2.3, we have to define the moment m
of the line;

m = p× ω,

where ω is a unit vector giving the direction of the line and p is a vector from the
reference frame to an arbitrary point on the line. If the given parameters are the
moment m and the direction vector ω, it follows that we can find the point q on
the line which is closest to the reference frame. That is:

q = ω ×m.

Thus a line can be described by the direction vector ω and the moment m. This



12 Chapter 2. Robot Kinematics and Screw Theory

is a six parameter description, with two conditions |ω| = 1 and ω×m = 0, which
is in agreement with the fact that lines have 4 DOF.

A line described by ω andma in reference to frame {a} can easily be transformed
to frame {b} with the screw notation;

mb = ma + pab × ω,

where pab is a vector from frame {b} to frame {a}. A general screw is written in
coordinate-free form as

s = (u,v)

and in coordinate form as
S =

{
u

v

}
,

where u and v are 3-dimensional column vectors. Another common method for
denoting a screw is

S =
[
u

v

]
.

The important thing to remember with both of the denoting methods, is that the
screw has special computation rules. A line in frame {a} can be written in screw
form as

La =
{
ω

ma

}
.

The product of a scalar α and a screw S is component-wise, that is

αS =
{
αu

αv

}
,

the sum and difference of two screws are also component-wise;{
u0

v0

}
+
{
u1

v1

}
=
{
u0 + u1

v0 + u1

}
{
u0

v0

}
−
{
u1

v1

}
=
{
u0 − u1

v0 − u1

}
.
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{a}

z

y

x

v

ω

Figure 2.4.: Twist

The dot and cross product of two screws are given as{
u0

v0

}
·
{
u1

v1

}
=
{

u0 · u1

u0 · v1 + v0 · u1

}
{
u0

v0

}
×
{
u1

v1

}
=
{

u0 × u1

u0 × v1 + v0 × u1

}
.

2.1.4. Twist

A screw is a useful tool for representation of angular and linear velocities of rigid
bodies, called a twist. A representation of a twist is given in Figure 2.4. As
twists can be formulated as a screw, they will have the same computation rules as
described above. A twist will trace out the helical field of a literal screw, where
the ratio between the angular and the linear velocity would compare to the pitch
of the screw.

A twist can be written as
Ta =

{
ω

v

}
,

where ω is the angular velocity and v is the linear velocity of the twist, relative
to frame {a}.
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2.1.5. Wrench

A screw can also be used to represent force and torque applied to rigid bodies.
This is called a wrench. A wrench can be written as

Wa =
{
F

T

}
,

where F is the x, y, z component of the force relative to frame {a} and T are
equivalently the moments about x, y, z.

2.2. Robot Kinematics

An industrial robot is described by its degrees of freedom, which is equal to the
number of joints on the robot. The types of joints are revolute or prismatic,
that is rotational joints or translational joints. Most industrial robots have 6
DOF with all joints being revolute. In this chapter, we will present a brief, but
essential introduction to robot kinematics. For more in-depth theory, see Siciliano
et al. [33].

2.2.1. Direct Kinematics

The aim of direct kinematics is to compute the pose of the end-effector as a
function of the joint variables. In robotics, a common convention for describing
the direct kinematics is the Denavit-Hartenberg [8] (DH) convention. In the DH
convention, a reference frame is placed in all joints. As described in [33], the
position and orientation of a frame relative to the proceeding can be fully described
by four parameters ai, di, αi and θi:

ai : distance between Oi and Oi′ ,

di : coordinate of Oi′ along zi−1,

αi : angle between axes zi−1 and zi about axis xi to be taken positive when
rotation is made counter-clockwise,

θi : angle between axes xi−1 and xi about axis zi−1 to be taken positive when
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Link i− 1 Link i

Joint i− 1 Joint i Joint i+ 1

ai−1

di

Oi−1

Oi′

ai

θi

αi

zi−1

xi−1

yi−1

zi′

xi′yi′

zi

xi

yi

Figure 2.5.: The four parameters of the DH convention. [33]

rotation is made counter-clockwise.

An illustration of the parameters is given in Figure 2.5. By deriving all parame-
ters for a robot, one is able to construct a link to link transformation matrix to
get the final transformation matrix describing the relative position and rotation
between the base frame and end-effector. The transformation matrices are all
functions of the joint variables qi. As mentioned earlier, most industrial robots
the variable part of the transformation matrix is the rotation θi about each joint.
The transformation matrix from Frame i to Frame i− 1 is given as

T i−1
i (θi) =


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di

0 0 0 1

 ,

where by conventional typesetting in robotics, cθi is equivalent to cos(θi) and
similarly sθi is sin(θi). To simplify writing even more, c1 = cos(θ1) and c12 =
cos(θ1 + θ2).

The resulting transformation matrix from base to end-effector is then

T 0
6 = T 0

1 T
1
2 T

2
3 T

3
4 T

4
5 T

5
6 =

[
n0

6 s0
6 a0

6 p0
6

0 0 0 1

]
,
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where p0
6 is the position of the end-effector and a0

6, s0
6 and n0

6 are the unit ap-
proach, sliding and normal vectors of the end-effector respectively.

2.2.2. Inverse Kinematics

Inverse kinematics is the opposite of direct kinematics. In other words, the aim
of inverse kinematics is to find a set of joint angles which gives the desired end-
effector pose. This solution is usually not unique. Inverse kinematics is solved by
either analytical methods, iterative solvers or a combination of both, where the
result of the analytical method is used as an initial guess for the iterative solver.

For a 6 DOF manipulator, there are in general 16 possible solutions to the inverse
problem if considering joints being able to rotate fully 2π radians. The different
configurations are denoted by terms of the human arm. The robot shoulder could
be facing towards or away, the elbow can be pointing up or down and the wrist can
be either extended or contracted. To get a unique solution to the problem, one
usually define the desired arm configuration in advance. Computation of solutions
to the analytic problem require algebraic and geometric intuition, and will not be
introduced here.

Geometrical Jacobian

While there, in general, is no linear relationship between the joint angles and the
end effector position and orientation, a linear relationship is found between the
angular joint velocities q̇ and the angular and linear velocities ωe and ṗe of the
end-effector frame in Cartesian space. The relation between the two spaces is the
Jacobian J , where

ωe(t) = JO
(
q(t)

)
q̇(t)

and
ṗe(t) = JP

(
q(t)

)
q̇(t).

Within robotics, we usually omit (t) for readability, so remember that all joint
angles and velocities, and Cartesian positions and velocities are dependent on
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time. JO and JP are the orientation and position parts of the Jacobian J ;

J =
[
JO

JP

]
, (2.8)

hence the relationship between the joint velocities and end-effector velocities can
be written as

v = J(q)q̇,

where
v =

[
ω

ṗ

]
.

Geometrical Jacobian by Twists

The geometrical Jacobian can also be obtained by twists. A revolute joint will be
a twist with zero pitch, that is, zero linear velocity. Thus, the twist about joint i
is

Ti =
{

z

p× z

}
,

where z is the unit vector of the z axis of frame i.

A prismatic joint on the other hand, will be a twist with infinite pitch, that is,
zero angular velocity. The twist for a prismatic joint i is

Ti =
{

0
z

}
.

Then, the Jacobian becomes

J =
n∑
i=1
Ti,

in screw form, and

J =
[
ω

v

]
=
[
JO

JP

]
,

in coordinate form, which is the same as the geometrical Jacobian in (2.8).
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2.3. Resolved Motion Rate Control

As shown in the last section, we are able to calculate the angular and linear
velocities of the end-effector through the Jacobian from the joint velocities by

v = J(q)q̇.

If instead, we want to find the necessary joint velocities for imposed angular and
linear velocities, we get

q̇ = J(q)−1v. (2.9)

There is one issue; the Jacobian is usually not invertible, as it is often not square.
A solution to this is to take the pseudoinverse (J+) of the Jacobian instead. That
is,

J+ = JT (JJT )−1,

hence (2.9) becomes
q̇ = J(q)+v. (2.10)

Resolved motion rate control is one way of solving the Cartesian end-effector
problem, which uses (2.10) to compute incremental joint velocity commands by
incremental changes in the desired end-effector velocities. The discrete counter-
part to (2.10) is used in the following way in resolved motion rate control. The
desired joint velocities are computed by

q̇k = J(qk)+vk,

before the next joint configuration is calculated by

qk+1 = qk + q̇k∆t



Chapter 3.

Software Tools for Robotics
Programming

This chapter will present basics of programming tools used through the work in
this Master’s thesis.

3.1. Industrial Robot Programming Status Quo

Common programming methods for industrial robots are tedious, and requires a
great amount of skills. Co-bots are arriving fast, and they are meant to be easy
to setup for anybody. Still, for bigger industrial applications and robot systems
requiring communication with several sensor inputs, you would need a skilled
robot programmer.

The most common methods are online programming either by the use of a teach
pendant or manual guidance. Those methods are often associated with point-to-
point motions, as the robot programmer will guide the robot to desired setpoints.
The setpoints are recorded and played back with either a linear, circular, or spline
motion between them at execution. Those methods are in-flexible and usually time
consuming.

Online programming is most common, but offline programming is becoming more
and more used by the industry. In offline programming, the robot program is
created independently of the actual robot. Usually alongside a graphical 3D
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visualization. The main advantage of offline programming compared to online
programming is that the robot can be used to other production tasks parallel to
programming. The offline programming tools does also often contain methods of
helping the programmer, by for instance collision detection. The greatest weak-
ness of both online and offline programming is that they usually can not cope with
unforeseen events during execution. This is where constraint based programming
really comes in handy.

3.2. ROS

“The Robot Operating System (ROS) is a flexible framework for writing robot
software. It is a collection of tools, libraries, and conventions that aim to simplify
the task of creating complex and robust robot behavior across a wide variety of
robotic platforms” [32].

3.2.1. Master

The ROS master is in charge of detect which nodes, topics and services who needs
peer-to-peer interconnection. The master is the first component to be started
during a ROS execution, where it sets up an URI for TCP communication. This
URI is unique, and thus can be accessed from other computers. This means that
a ROS system can be set up and communicate over several hardware systems.

3.2.2. Nodes and Topics

The core advantage of ROS, is the possibility of dividing the code into small sub
modules called nodes. Usually one node is made for every sub-task of the robot
system, having only a single purpose. For instance, one node can have the purpose
to drive the motors of the wheels on a mobile robot, while another is reading values
of the velocity sensors of the wheels. For increased flexibility, one can choose the
programming language most suited for the task for each node, mainly Python or
C++.

The nodes are connected through messages published on and subscribed from top-
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ics. Messages published to and subscribed from topics are continuous unidirec-
tional streams. That is, all information is published continuously to the topics and
both the publisher and the subscriber nodes are unaware about other nodes con-
nected to the same topic. The sensor node, could for instance publish a message
containing decimal points (Float64) on a /velocity_sensor topic. A controller
node for the robot could then subscribe to the messages on the /velocity_sensor
topic while at the same time being publishing data to another topic in which
the motor driver node subscribes to. The ROS library is extensive, with many
standard message types, such as Bool, Float64, String, etc., but also more com-
plicated ones, such as Pose and Wrench. The Pose message is basically a message
containing 7 Float64. 3 for the position (x, y, z) and 4 for the orientation as
a quaternion (x, y, z, w). One is also able to define custom message types if
necessary.

3.2.3. Services and Clients

As topics are anonymous continuous streams, and the nodes are unaware of each
other, there is a need for direct single communication between nodes. This is
achieved in ROS through services and clients. A service node can request an
action from a client node, which processes this request and returns a response to
the service node. Thus, only a single message is sent from the service node and
likewise only a single message is returned. The messages could be of any type,
and contain many different variables.

3.2.4. Parameters

The ROS master has a server containing parameters. That is, variables that can
be changed and retrieved by any node in the system. The parameters are useful
for setting variable values that many nodes need but does not need to change
continuously. Preferably only a couple of times during run-time.

3.2.5. URDF

In ROS, the Unified Robot Description Format (URDF) is the standard for defin-
ing and describing robots. It is an XML document modelling the kinematics and
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dynamics of any robot type. The URDF is ROS’ alternative to the DH convention
described in chapter 2. In addition, it also contains 3D models for visualization
purposes. URDFs are easily defined in so-called xacro-files, where we define the
robot by its links, which can contain meshed geometries for visualization, and its
joints. Joints are defined by their type (prismatic, revolute or continous), a parent
and a child link, and the relative position and rotation between the links. A limit
for joint positions, velocities, and torque can also be defined. The description for
the first joint of the KUKA KR6 is shown in Listing 3.1.

Listing 3.1: First Joint of KUKA KR6
<joint name="${prefix}joint_a1" type="revolute">

<origin xyz="0 0 0.400" rpy="0 0 0"/>
<parent link="${prefix}base_link"/>
<child link="${prefix}link_1"/>
<axis xyz="0 0 -1"/>
<limit effort="0" lower="${-DEG2RAD*170}" upper="${DEG2RAD*170}"

velocity="${DEG2RAD*360}"/>
</joint>

3.2.6. Rviz

Rviz is ROS’ visualization tool. It is the GUI of choice when debugging 3D-data
from ROS. Rviz can visualize anything from coordinate frames to URDF models
to 3D-markers of basic or meshed shapes. The Rviz environment is configured by
selecting the parts of the robot you want to show, which frames of the robot to
be visualized or by subscribing to topics that contains 3D-data.

3.2.7. ROS Control

While ROS is used to calculate desired setpoints for a robot, ROS Control is the
code that takes those setpoints and translate them into the actual control of the
robot. Hence, ROS Control is the bridge between software and hardware. A ROS
controller can be written to communicate and control any robot that has an open
communication platform to computers. There are many convenient functions
build in to ROS Control. One example is the joint_limits_interface which
lets you ensure that the robot does not receive commands that are physically
impossible to achieve.
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3.3. eTaSL

The creator of eTaSL describes it the following way:

“eTaSL is a task specification language for reactive control of robot systems. It
is a language that allows you to describe how your robotic system has to move and
interact with sensors. This description is based on a constraint-based method-
ology. Everything is specified as an optimization problem subject to constraints”–
E. Aertbeliën [2].

eTaSL became open source in 2018, and is as of now the most complete system
for constraint based robot control. Hence, it has been chosen as the framework in
this project. The following subsections explains all necessary parts of eTaSL used
in this project.

3.3.1. Expression Graphs

Expression graphs are treelike structures which defines sets of single mathematical
operations, deriving an output expression from an arbitrarily number of input
values. These inputs can be either constant or variable relative to time. The
formulation of expression graphs are used extensively in eTaSL, firstly because
it makes numerical calculations easy, but mainly because forward accumulated
automatic differentiation falls almost directly out of the expression trees.

Automatic differentiation is a technique for numerical differentiation of a function,
where the basic arithmetic operations in computer calculation are used together
with the chain rule. This results in calculations of derivatives of arbitrary order
to be computed efficiently and without loss of precision.

A simple example of an expression graph and its derivative is shown in Figure 3.1.
From the figure we can see an example of a expression graph where we want to
sum the value of sine of input0 and the product of input0 and input1. If input0
is some function x(t) dependent on time and input1 is some other function y(t)
dependent on time, the output in Figure 3.1a is

sin (x(t)) + x(t)y(t).
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input0 input1

sin multiply

add

output

(a) Expression

x(t) y(t)

cos (x(t))ẋ(t) ẋ(t)y(t)
+x(t)ẏ(t)

+

cos (x(t))ẋ(t)
+ẋ(t)y(t) + x(t)ẏ(t)

(b) Derivative of expression

Figure 3.1.: Expression graphs and their derivatives

Each block will have its own derivation rule, and are combined with the other
derivatives following the chain rule. Hence we get the output in Figure 3.1b as

cos (x(t))ẋ(t) + ẋ(t)y(t) + x(t)ẏ(t).

eTaSL supports six different expression types. They are the C++ types double,
KDL::Vector, KDL::Rotation, KDL::Frame, KDL::Twist, and KDL::Wrench. Their
corresponding derivatives are double, KDL::Vector, KDL::Vector, KDL::Twist,
KDL::Twist, and KDL::Wrench respectively. KDL stands for Kinematics and Dy-
namics Library [35], and is a C++ library used by eTaSL.

3.3.2. Joint and Feature Variables

There are three different types of variables, two that the eTaSL solver will optimize
during a solver step and time. The two solver variables are robot joint variables
and feature variables. The controller has to provide relative velocity steps for all
the joints of the robot in each cycle. Each solved joint variable will restrain one
degree of freedom for the robot motion. Feature variables is auxiliary additional
variables, that can be used to free up degrees of freedom. One example of the
use of feature variables are a case where we want a laser to track a path, but the
actual distance between the laser origin and the laser point on the surface is free
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Figure 3.2.: Laser with feature variable

to vary.

Listing 3.2: Feature variable
d = Variable{

context = ctx,
name = "d",
vartype = "feature"

}

We can define the distance between the laser origin and the laser point on the
surface as shown in Figure 3.2 as a feature variable d as given in Listing 3.2. The
laser point can then be modeled as

laserpoint = laserorigin*translate_z(d),

where laserpoint and laserorigin are frames and the multiplication with the
translate_z(d) is equivalent with a transformation of the laserorigin frame by
a transformation matrix with the rotation part equal to the identity matrix, and
the translation equal to [0.0, 0.0, d]T . The new frame laserpoint can then be used
together with constraints to define the path tracking.

3.3.3. Constraints

A set of constraints can be applied on the robot motion. We can call this a task.
The three variables time, joint, and feature, described above is solved as a first
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Unit step

Time

e−τ/T

Figure 3.3.: Exponential behavior of a first order system

order system. In a first order system, a proportional control constant K is used.
This means that the system will evolve towards its goal in an exponential manner,
as shown in Figure 3.3.

Following Aertbeliën [1] we will see that in the first order task function, the feature
variables χf (t) and the robot joint variables q(t) can be solved for simultaneously
as a combined state q̃(t).

With the combined state q̃ and a control constant K, the first order system can
be written as:

d
dte(q̃) = −Ke(q̃)

By expanding this to its partial derivatives

∂

∂t
e(q̃) + ∂

∂q̃
e(q̃) ˙̃q = −Ke(q̃),

we can see that the Jacobian falls directly out. That is,

J(q̃) ˙̃q = −Ke(q̃)− ∂

∂t
e(q̃), (3.1)

which is then used to formulate a hard constraint in an optimization problem
for the task. A hard constraint is a constraint that can not be violated. We
might want to have a set of constraints that constrain more than all 6 DOFs. In
that case, some of the constraints has to have the possibility of being violated
temporary. Such a constraint is called a soft constraint, where a slack variable ε
is introduced:

∂

∂t
e(q̃) + ∂

∂q̃
e(q̃) ˙̃q = −Ke(q̃) + ε

J(q̃) ˙̃q = −Ke(q̃)− ∂

∂t
e(q̃) + ε.
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A weight w is introduced to the slack variable

wε2,

which decides how important the soft constraint is.

A constraint is formulated in eTaSL as shown in Listing 3.3, where K is the control
constant K, weight is the weight w of the constraint and priority determines
whether the slack variable is introduced or not. priority = 1 means a hard con-
straint, that is, no slack variable and priority = 2 means a soft constraint, that
is, the slack variable is introduced. A constraint can be an inequality constraint,
which means that the constraint converges to a bound region instead of a single
target. To ensure convergence to an inequality region, the constraint has to be a
hard constraint.

Listing 3.3: Constraint formulation
Constraint{

context = ctx,
name = "name"[optional],
expr = (expression),
target = (expression/scalar)[optional] (if other than 0),
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)

}

If we want to make a constraint which makes a laser track a path at some distance
d as described earlier in section 3.3, the constraint could be defined as shown in
Listing 3.4, where tgt can be a vector input from a ROS publisher node defining
the path. This constraint makes the origin of the laser point coincide with the
target point, but as the laser point is a function of a feature variable, the distance
between the laser pointer and the laser point is free to vary. The key feature of the
feature variable in this example, is that as the distance is free to vary, the robot
is able to choose its own distance to the laser point, thus having the possibility to
avoid singularities.
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Listing 3.4: Laser constraint
Constraint{

context = ctx,
name = "follow_path",
expr = tgt - origin(laserpoint),
target = vector(0.0, 0.0, 0.0),
K = 4,
priority = 2

}

3.3.4. Monitors

eTaSL includes the possibility of monitoring expressions to be able to make actions
whenever an event has happened. For instance, one can monitor the expression
of a constraint, and find out when the the value of the expression is within some
threshold from the target value. This can then be used to switch to the next task
or activation and deactivation of groups of constraints.

Listing 3.5: Monitor formulation
Monitor{

context = ctx,
name = "name",
expr = (expression),
lower = (scalar)[optional],
upper = (scalar)[optional],
actionname = "exit",
argument = (string)[optional]

}

Monitors are defined by giving an expression to monitor and a lower or an upper
limit or both, which defines when the monitor is triggered. They also take an
action name which defines how the controller behaves upon trigger. The schemat-
ics of how a monitor is formulated is shown in Listing 3.5. A monitor is edge
triggered, which means that it is activated whenever the value of the expression
passes the upper or the lower bound, as illustrated in Figure 3.4. Hence, a monitor
will never trigger if the bound is set higher than the initial value of the expression.
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Figure 3.4.: Triggering of monitors

3.3.5. QP-solver

qpOASES is a C++ based software for solving a quadratic programming (QP)
problem. eTaSL uses qpOASES to solve the constraint problem. The algorithm
of qpOASES will try to

minimize 1
2

˙̃qTH ˙̃q

subjected to lb ≤ ˙̃q ≤ ub
lbJ ≤ J ˙̃q ≤ ubJ.

H is the Hessian which is an n×n square matrix where n is the number of joints
of the robot plus the number of soft constraints. The Hessian is a 0 matrix filled
with the defined regularization factor on the diagonal elements for the elements
of the joints and the regularization factor plus the weight on the rest of the
diagonal elements. The regularization factor is a small value, typically 0.001 set
to discourage the complexity of the model. For a robot with 6 joints and 3 soft
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constraints with weight = 1.5, the Hessian would look like this:

0.001 0 0 0 0 0 0 0 0
0 0.001 0 0 0 0 0 0 0
0 0 0.001 0 0 0 0 0 0
0 0 0 0.001 0 0 0 0 0
0 0 0 0 0.001 0 0 0 0
0 0 0 0 0 0.001 0 0 0
0 0 0 0 0 0 1.501 0 0
0 0 0 0 0 0 0 1.501 0
0 0 0 0 0 0 0 0 1.501



lb and ub are the lower and upper bound for the box constraints sat on the
joints. That is, the min and max angles of each joint, and −∞ and∞ for the soft
constraints. In eTaSL ∞ = 1E20. J is the Jacobian of the left hand side of (3.1)
with the derivatives of all active constraints. lbJ and ubJ are the intermediate
lower and upper bounds, which is calculated by the right hand side of (3.1).

3.3.6. URDF Parser

One core advantage of eTaSL, is that the solver does not treat any trajectory or
robot joint differently, thus a task will be solved independently of the kinematic
chain of the robot. eTaSL has a built-in URDF-reader that generates an expression
graph for the robot. The geometrical Jacobian of the robot is calculated from this
expression graph by the joint twists. The Jacobian becomes a 6× n matrix, with
each column describing the resulting end-effector linear and angular velocity of a
unit change of the corresponding joint velocity.

We showed in subsection 3.3.3 that the Jacobian falls directly out of the equation
of the first order system of the applied constraints. This means that the closed
loop inverse kinematics of the robot is never directly computed. A result of that,
is that if any of the joints does not have any constraint constraining it, it will
not be considered by the solver. As an example, the orientation of a symmetrical
gripper around the symmetry axis is not important, and can have no constraints
defining its direction. If so, the orientation of that joint will never be calculated.
An interesting result of this, is that the corresponding singularity problem will be
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avoided.

3.4. SMACH

SMACH is a Python library for easy implementation of finite-state machines
(FSM) with ROS. FSMs are abstract machines constructed of a finite number
of states. The machine can only be in a single state at any instant, and are exe-
cuted until a logical condition triggers a transition to another state. SMACH can
be used to model complex robot behaviour at task-level. Each state in SMACH
are classes with a __init__-function where possible outcomes of the state and
potential member variables are declared. Then, an execute-function executes the
state task. This can be anything from switching of controllers to a call of a ser-
vice requests to trigger a publisher node. The transition to the next state can be
triggered by conditional if-sentences, service responses, message arrivals, etc.

3.5. KUKA Robot Sensor Interface

KUKA has two controller schemes, known as KUKA Robot Language (KRL) and
KUKA Robot Sensor Interface (RSI). KRL is the most common, and is used by
setting end-frames for desired goals, either by position and orientation of the end-
effector frame by (X, Y, Z, A, B, C) or by joint angles (A1, A2, A3, A4, A5, A6),
and whether the trajectory should be linear, circular or splines. The intermediate
trajectory is set by the robot controller itself. RSI is build on top of KRL to
allow for small position corrections of the programmed paths due to sensor data.
Connected to an external computer monitoring sensor data, these corrections can
be sent to the controller as commands in the XML format. An implementation
for RSI commands through ROS is available on github in the kuka_experimental

repository [12], which can be used to fully control a KUKA robot by incremental
joint position steps, where the underlying KRL commands are not used.

Sensor based control needs to react fast to events to execute properly. Today,
sensor based robot systems are usually calculating paths and corrections at 250
to 1000 Hz. The fastest operating mode of RSI is at 250 Hz, that is, a new
command is executed every 4 ms.





Chapter 4.

Constraint-Specification from
CAD-Assemblies

This chapter will give an overview of the possibilities CAD software gives, par-
ticularly SolidWorks [7], in defining geometrical constraints. The constraints can
then be used to define the needed expressions in eTaSL to solve the task, as we
give the general mathematics behind the constraints.

4.1. Mates in SolidWorks

SW is one of many available 3D modeling software. As a product is designed
in such software, designers are able to design single parts which are later given
an interrelation in an assembly. Such relations are generally called geometrical
constraints, while SW is calling them mates. The reason for choosing SW for this
application is that SW gives access to an API in which the functionality of the
software can be exploited in standalone code.

There are five basic mate types in SW that are defined by up to eight parameters.
The output of the Mate API call is, as described at the SW reference page [11],
the following array of doubles:

[pointX, pointY, pointZ, vectorI, vectorJ, vectorK, radius1, radius2]

where



34 Chapter 4. Constraint-Specification from CAD-Assemblies

pointX: the x component of the location vector of this mate entity in the
assembly model space

pointY: the y component of the location vector of this mate entity in the
assembly model space

pointZ: the z component of the location vector of this mate entity in the
assembly model space

vectorI: the i component of the assembly mate direction vector

vectorJ: the j component of the assembly mate direction vector

vectorK: the k component of the assembly mate direction vector

radius1: the value for the first radius

radius2: the value for the second radius

The mate entities defined above can be used to describe the mate types given in
Table 4.1. All coordinate information is given in terms of the assembly coordinate
system where the mate resides.

The standard mate types of SW are given in Table 4.2, together with their re-
turn value. A graphical description of the possible mate relations are shown in
Figure 4.1.

 

Feature

COINCIDENT

Point Line Plane

CONCENTRIC

Cylinder Cone

PERPENDICULAR

Line Plane

PARALLEL

Line Plane

TANGENT

Cylinder Cone Line Plane

DISTANCE

Point Line Plane

ANGLE

Line Plane

Figure 4.1.: SW mate inheritance
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Table 4.1.: List of mate entity types
Mate Type Returned

swMatePoint(0) [pointX, pointY, pointZ]
swMateLine(1) [pointX, pointY, pointZ, vectorI, vectorJ, vectorK] where

the point is a point on the line and the vector represents the
line direction.

swMatePlane(3) [pointX, pointY, pointZ, vectorI, vectorJ, vectorK] where
the point is a point on the plane and the vector represents
the plane normal.

swMateCylinder(4) [pointX, pointY, pointZ, vectorI, vectorJ, vectorK,
radius1] where the point is a point on the cylinder axis,
the vector represents the cylinder axis direction and radius
the radius of the cylinder.

swMateCone(5) [pointX, pointY, pointZ, vectorI, vectorJ, vectorK,
radius1, radius2] where the point is a point on the cone
axis, the vector represents the cone axis direction and
radius1 and radius2 the first and second radius of the cone.

swMateSphere(6) [pointX, pointY, pointZ, radius1] where the point is the
center point of the sphere, and radius1 the radius of the
sphere.

4.2. Geometrical Constraints

Geometrical constraints define the relative positioning and orientation between
rigid bodies. Such can be that the edge of one body is coincident with the face of
the other body or that a hole and cylinder is concentric. This section describes
these kind of constraints.

4.2.1. Degrees of Freedom

The number of DOF defines how an object can be translated and rotated in the
3D space. A 3D-object in space will have 6 DOF. That is, translation in x-, y-
and z-direction and rotation about i, j and k. A point in space is defined by only
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Table 4.2.: List of standard mate types
Mate Type CODE

swMateCOINCIDENT 0

swMateCONCENTRIC 1

swMatePERPENDICULAR 2

swMatePARALLEL 3

swMateTANGENT 4

swMateDISTANCE 5

swMateANGLE 6

3 DOF since any rotation of a point gives the same point. A line is defined by
4 DOF. Here only two translations and two rotations would change the line. A
plane is defined by 3 DOF, as only one translation and two rotations change the
plane.

In CAD software, mates or constraints can be defined between parts to define
how they behave or are positioned relative to each other. Mates can be defined
on points, lines, and planes, and each mate would lock some DOF of a part.
In SW, the first part selected in an assembly is defining the global reference
coordinate system for the entire assembly. All other parts in the assembly are
given coordinates relative to this. That means that the first part will have all 6
DOF defined. When a mate is defined between that part and the next, the mate
will constrain some DOF of the new part dependent on the type of mate. The
mates and their constraining DOF is described in subsection 4.2.3.

4.2.2. Kinematic Pairs

A kinematic pair is a relation between two rigid bodies imposing constraints on
their relative movements [19]. Kinematic pairs are significant in understanding
how different geometrical constraints from CAD, limit the motion between parts.
Kinematic pairs are divided into two sub-classes called lower and higher pairs. A
lower pair is all kinematic pair in which both rigid bodies has a surface contact
with the other body. In higher pairs, one of the bodies edges gets constrained to
the surface of the other body. Cases of lower pairs are described in [19] as:
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Revolute pair : requires a line in the moving body to remain co-linear with a line
in the fixed body, and a plane perpendicular to this line in the moving
body maintain contact with a similar perpendicular plane in the fixed body.
This imposes five constraints on the relative movement of the links, which
therefore has 1 independent DOF.

Prismatic joint: requires that a line in the moving body remain co-linear with a
line in the fixed body, and a plane parallel to this line in the moving body
maintain contact with a similar parallel plane in the fixed body. This im-
poses five constraints on the relative movement of the links, which therefore
has 1 independent DOF.

Screw pair : requires cut threads in two links, so that there is a turning as well as
sliding motion between them. This joint has 1 independent DOF.

Cylindrical joint: requires that a line in the moving body remain co-linear with
a line in the fixed body. It is a combination of a revolute joint and a sliding
joint. This joint has 2 independent DOF.

Spherical joint: or ball and socket joint requires that a point in the moving body
remain stationary in the fixed body. This joint has 3 independent DOF,
corresponding to rotations around orthogonal axes.

Planar joint: requires that a plane in the moving body maintain contact with a
plane in the fixed body. This joint has 3 independent DOF. The moving
plane can slide in two dimensions along the fixed plane, and it can rotate
on an axis normal to the fixed plane.

4.2.3. The Mathematics of SW Constraints

Following below is a description of all mate types in SW, and the mate entities
that can be defined within each mate. The tables describe two features, with the
mate entity that is defined on that feature, how the dependency is between the
features and how many DOF that are constrained on feature 2 after the mate is
defined. Feature 1 is considered fixed to the reference world coordinate system.
All direction vectors are described by unit vectors, thus simplifying some of the
equations.
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Distance

A distance mate can be assigned between points, lines and planes. The depen-
dencies of these are shown in Table 4.3.

Table 4.3.: Distance mates
Feat.
1

Feat.
2

Dependency Constrained
DOF

Point Point The point is at a sphere with origin in the
other point and a radius of the defined distance
(Spherical joint)

3 DOF

Point Line The line is tangential to a sphere with origin in
the point and a radius of the defined distance
(Spherical joint)

3 DOF

Point Plane Makes the plane tangential to a sphere with
origin in the point and a radius of the defined
distance (Spherical joint)

3 DOF

Line Line The defined distance is the shortest distance
between two lines that cannot intersect (Cylin-
drical joint)

4 DOF

Line Plane The line and plane are parallel at the defined
distance

2 DOF

Plane Plane The planes are parallel at the defined distance 3 DOF

The distance d between two points pa and pb are

d = ||pa − pb||. (4.1)

Given a point p and a line (q,ω), the distance d between the point and the line is

d = ||(p− q)− ω(ω · (p− q))||. (4.2)

The shortest distance d between a point p and a plane (q,n) is

d = |(p− q) · n| (4.3)
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The shortest distance d between two lines (qa,ωa) and (qb,ωb) can be described
as

d =


||(qa − qb)− ωb(ωb · (qa − qb))||, if ||ωa × ωb|| = 0
|(qa − qb) · ωa × ωb|

||ωa × ωb||
, otherwise

(4.4)

The distance d between a line (ql,ω) and a plane (qp,n) is

d =
{
|(ql − qp) · n|, if ω · n = 0
0, otherwise

(4.5)

The distance d between two planes (qa,na) and (qb,nb) is

d =
{
|(qa − qb) · nb|, if ||na × nb|| = 0
0, otherwise

(4.6)

Angle

An angle mate can be assigned between lines and planes. The dependencies of
these as shown in Table 4.4. The function atan2 is used for calculating angles
between two vectors. This is a function which returns the angle in the interval
[−π, π]. atan2 is defined as

atan2(y, x) =



arctan
(
y

x

)
, if x > 0

arctan
(
y

x

)
+ π, if x < 0 and y ≥ 0

arctan
(
y

x

)
− π, if x < 0 and y < 0

+π

2 , if x = 0 and y > 0

−π2 , if x = 0 and y > 0

undefined, if x = 0 and y = 0
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Table 4.4.: Angle mates
Feat.
1

Feat.
2

Dependency Constrained
DOF

Line Line The defined angle is the angle between the two
infinite lines

1 DOF

Line Plane The defined angle is the angle in the intersec-
tion between the infinite line and the infinite
plane

1 DOF

Plane Plane The defined angle is the angle between the two
intersecting infinite planes

1 DOF

The angle θ between two lines (qa,ωa) and (qb,ωb) is

θ = atan2 (||ωa × ωb||,ωa · ωb) , (4.7)

while the angle θ between a line (ql,ω) and a plane (qp,n) is

θ = π

2 − |atan2 (||ω × n||,ω · n) |. (4.8)

The angle θ between two planes (qa,na) and (qb,nb) is

θ = atan2 (||na × nb||,na · nb) . (4.9)

Coincident

A coincident mate can be assigned between points, lines, and planes on the as-
sembled parts. The dependencies of these are shown in Table 4.5.

Two points pa and pb are coincident if the distance between them is 0. That is,
if the distance d in (4.1) is equal to 0. Namely, if

||pa − pb|| = 0.

A point p is coincident with a line (q,ω) if the distance between them are 0. That
is, if the distance d in (4.2) is equal to 0. Namely, if

||(p− q)− ω(ω · (p− q))|| = 0.
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Table 4.5.: Coincident mates
Feat.
1

Feat.
2

Dependency Constrained
DOF

Point Point Locks the points together 3 DOF
Point Line Locks the point on the infinite line 2 DOF
Point Plane Locks the point on the infinite plane 1 DOF
Line Line Locks the lines to the same infinite line 4 DOF
Line Plane Locks the line to the infinite plane 2 DOF
Plane Plane Locks the planes to the same infinite plane 3 DOF

A point p is coincident with a plane (q,n) if the distance d in (4.3) is equal to 0.
Namely,

|(p− q) · n| = 0.

Two lines (qa,ωa) and (qb,ωb) are coincident if the angle and the distance between
them is 0. That is, when θ in (4.7) and d in (4.4) is equal to 0. Namely, if

atan2 (||ωa × ωb||,ωa · ωb) = 0

and
||(qa − qb)− ωb(ωb · (qa − qb))|| = 0.

A line (ql,ω) is coincident with a plane (qp,n) if the angle and the distance
between the line and the plane are 0. That is, when θ in (4.8) and d in (4.5) is
equal to 0. Namely if,

π

2 − |atan2 (||ω × n||,ω · n) | = 0

⇒ |atan2 (||ω × n||,ω · n) | = π

2

and
|(ql − qp) · n| = 0.

Two planes (qa,na) and (qb,nb) are coincident if the angle and the distance
between them are 0. That is, when θ in (4.9) and d in (4.6) is equal to 0. Namely
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if,
atan2 (||na × nb||,na · nb) = 0

and
|(qa − qb) · nb| = 0.

Concentric

A concentric mate can be assigned between center lines of cylindrical, conical or
spherical faces. The dependencies of these are shown in Table 4.6.

Table 4.6.: Concentric mates
Feat.
1

Feat.
2

Dependency Constrained
DOF

Line Line Aligns the center lines to the same infinite line 4 DOF

With center lines described by the lines (qa,ωa) and (qb,ωb), concentricity is the
same as coincident lines. That is, if

atan2 (||ωa × ωb||,ωa · ωb) = 0

and
||(qa − qb)− ωb(ωb · (qa − qb))|| = 0

Perpendicular

A perpendicular mate can be assigned between lines and planes. The dependencies
of these are shown in Table 4.7.

Two lines (qa,ωa) and (qb,ωb) are perpendicular if the angle between them are
±π/2. That is, when the absolute value of the angle θ in (4.7) is equal to π/2.
Namely if,

|atan2 (||ωa × ωb||,ωa · ωb) | =
π

2 .

A line (ql,ω) and a plane (qp,n) is perpendicular if the angle between them is
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Table 4.7.: Perpendicular mates
Feat.
1

Feat.
2

Dependency Constrained
DOF

Line Line Makes the lines perpendicular 1 DOF
Line Plane Makes the line and the plane perpendicular 2 DOF
Plane Plane Makes the planes perpendicular 1 DOF

±π/2. That is, when the angle θ in (4.8) is equal to π/2. Namely if,

π

2 − |atan2 (||ω × n||,ω · n) | = π

2
⇒ |atan2 (||ω × n||,ω · n) | = 0.

Two planes (qa,na) and (qb,nb) are perpendicular if the angle between them is
±π/2. That is, when the absolute value of the angle θ in (4.9) is equal to π/2.
Namely if,

|atan2 (||na × nb||,na · nb) | =
π

2 .

Parallel

A parallel mate can be assigned between lines and planes. The dependencies of
these are shown in Table 4.8.

Table 4.8.: Parallel mates
Feat.
1

Feat.
2

Dependency Constrained
DOF

Line Line Makes the lines parallel 2 DOF
Line Plane Makes the line and the plane parallel 1 DOF
Plane Plane Makes the planes parallel 2 DOF

Two lines (qa,ωa) and (qb,ωb) are parallel if the angle between them are 0. That
is, when the angle θ in (4.7) is equal to 0. Namely if,

atan2 (||ωa × ωb||,ωa · ωb) = 0.
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A line (ql,ω) and a plane (qp,n) is parallel if the angle between them is 0. That
is, when the angle θ in (4.8) is equal to 0. Namely if,

π

2 − |atan2 (||ω × n||,ω · n) | = 0

⇒ |atan2 (||ω × n||,ω · n) | = π

2 .

Two planes (qa,na) and (qb,nb) are parallel if the angle between them is 0. That
is, when the angle θ in (4.9) is equal to 0. Namely if,

|atan2 (||na × nb||,na · nb) | = 0.

Tangent

A tangent mate can be assigned between the face of a cylinder, cone or sphere
and a line or a plane. The dependencies are shown in Table 4.9.

Table 4.9.: Tangent mates
Feat. 1 Feat.

2
Dependency Constrained

DOF

Cylinder Line The infinite line intersects a line on the face
(Cylindrical joint)

2 DOF

Cylinder Plane The infinite plane intersects a line on the
face (Cylindrical joint)

3 DOF

Sphere
face

Line A point on the sphere is on the infinite line
(Spherical joint)

3 DOF

Sphere
face

Plane A point on the sphere is on the infinite
plane (Spherical joint)

3 DOF

A line (qa,ωa) is a tangent of a cylinder (qc,ωc, r) if the distance between the
centerline of the cylinder and the line is equal to the radius r. That is, if the
distance d in (4.4) is equal to r, where qb and ωb is substituted by qc and ωc
respectively. Namely if,

||(qa − qc)− ωc(ωc · (qa − qc))|| = r.
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A plane (qp,n) is a tangent of a cylinder (qc,ωc, r) if the distance between the
centerline of the cylinder and the plane is equal to the radius r. That is, if the
distance d in (4.5) is equal to r, where ql is substituted by qc. Namely if,

|(qc − qp) · n| = r.

A line (q,ω) is a tangent of a sphere (p, r) if the distance between the center
point of the sphere and the line is equal to the radius r. That is, if the distance
d in (4.2) is equal to r. Namely if,

||(p− q)− ω(ω · (p− q))|| = r.

A plane (q,n) is a tangent of a sphere (p, r) if the distance between the center
point of the sphere and the plane is equal to the radius r. That is, if the distance
d in (4.3) is equal to r. Namely if,

|(p− q) · n| = r.





Chapter 5.

Software Implementation

The contribution made in software by this thesis is presented in this chapter. That
is, a CAD constraint extractor for SolidWorks, geometric functions for eTaSL, the
eTaSL ROS controller, and a joint limit interface for KUKA RSI.

5.1. Constraints from SolidWorks

SolidWorks (SW) is one of many software packages made for 3D modeling. CAD
in general terms can be used to describe either 2D vector (line), 3D surface or 3D
solid body based software. In the rest of this report, CAD is used to describe a 3D
solid body modeling program in general terms, independent of software supplier.
The source code which controls the workings of CAD software is usually hidden
from the users, as much money goes into the development. SW is different from
many other CAD software suppliers, as they have an accessible API. API is short
for application programming interface and is a tool for software building. The API
of SW gives access to predefined functions which makes it possible to interact with
their software system.

SW has a large library of API calls implemented for C#. By an implementation
in a stand-alone .NET [27] application interface, we are able to implement a
set of calls to extract the necessary information from the CAD assembly model.
The workings of this application is inspired by [4] and [26] among others with
their approach described in section 1.2. The code is available in its entirety at
GitHub [21]. In short, the three most important API interfaces used are IModel-
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Doc2, IModelDocExtension, and IDragOperator. These three interfaces have many
member functions, that open possibilities for interaction with the CAD model.
IModelDoc2 is used to open and give access to the assembly and parts within the
assembly, while the IModelDocExtension lets you select and interact with a range
of parameters in SW. In this instance, it was used to select the parts for mate
suppression and also for the export of mesh files. The IDragOperator was used to
be able to transform the parts for generation of possible assembly directions.

The OpenDoc6() member of IModelDoc2 was used to open the assembly file and
get the parts. The SaveAs() member of IModelDocExtension was used to save the
parts into the .stl file format, which is a file format giving a meshed representa-
tion of the parts. The MathUtility interface was used to extract the x, y and z
components of the transform attached to the part origin. The mate parameters,
as described thoroughly in section 4.1, can be exploited using the IMate2 inter-
face. There is no direct API interface giving possible assembly directions, but
by using the IDragOperator interface, we can make an algorithm that moves the
parts in increments along the three principal axes, while checking for a collision
between the assembly parts. By acknowledging that most engineering assemblies
are assembled along the principal axes [6], a collision along an axis would suggest
an unable assembly direction, while no collision would give a possible approach
direction during the assembly operation. This is illustrated in Figure 5.1, where it
is shown that a translation of the cylinder in the positive x-direction would result
in a collision between the parts.

It is easy to see that the only possible direction of assembly would be along
the y-axis. The result of the assembly direction check is an array on the form
(x+, x−, y+, y−, z+, z−), where the parameters would be either 0 or 1 depending
on whether it collides or not along that direction. Thus, the interference array
for this assembly will be as given in Listing 5.1. Any automatic transition from
the output of the SW API to eTaSL constraints is out of scope for this project,
but the structure and information is used when defining the geometrical functions
described previously in chapter 4 and the constraints used for the peg-in-hole task.
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x
y

z

Figure 5.1.: A collision is detected in the positive x-direction

Listing 5.1: Part of code output
Coincident1
Type = 0
Alignment = 1
Can be flipped = False

Component = peg1
Origin = (25, 0, -25)
Mate entity type = 3
(x,y,z) = (25, 0, -25)
(i,j,k) = (0, -1, 0)
Radius 1 = 0
Radius 2 = 0

(x+, x-, y+, y-, z+, z-) = (0, 0, 1, 1, 0, 0)
1 is possible, 0 is not possible

All dimensions are in mm

5.2. Geometric Functions in eTaSL

The mathematics of the constraints presented in section 4.2 have been imple-
mented in geometric3.lua as functions that can be used with eTaSL to set up
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geometrical constraints. The eTaSL framework does already have a function li-
brary for geometric entities in a script called geometric2.lua. We saw a need for
writing our own geometric functions as geometric2.lua where missing some of the
functions presented in section 4.2. We also wanted the inputs for the functions to
be more in line with the output of the SolidWorks output generator. In addition,
instead of formulating a constraint as presented in Listing 3.3, the constraints are
now formulated as given by the examples in Listing 5.2 and 5.3

For example in Listing 5.2, the arguments from context to priority are the same
as the original constraint formulation. Where expr was used before, point_-

a, dir_a, point_b, dir_b should be used instead. For a concentric constraint,
points are points on the lines and directions are unit direction vectors of the
lines. Not all CAD constraints need all four vector expressions, and some would
need more. Coincident_point_point{} would only need point_a and point_b for
instance, and Tangent_plane_cylinder{} would need r, the radius, as well. The
formulation for all the different constraints are given in Appendix A. The source
code is available in its entirety at GitHub [22]. To sum up, point is a necessary
argument for all geometric entities, dir is necessary for lines, planes and cylinders,
and r for cylinders and spheres.

The functions are implemented in a way that helps the user to call the functions
correctly. If unsure of what parameters are necessary, the function call can be left
empty. That is, as an example Coincident_point_line{}. A message describing
the possible inputs will then be printed. If the function is written in the opposite
order, for instance Coincident_line_point{}, the same message will be printed. If
defining too many arguments, the functions would discard what ever is in excess
and it would print the information message if any non optional arguments are
missing. The order of the arguments are indifferent.

Listing 5.2: Constraint formulation for concentricity
Concentric{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on one line],
dir_a = (vector expression)[unit vector along that line],
point_b = (vector expression)[point on other line],
dir_b = (vector expression)[unit vector along that line]

}
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Listing 5.3: Constraint formulation for a plane tangent to a sphere
Tangent_plane_sphere{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on the plane],
dir_a = (vector expression)[unit normal vector of plane],
center = (vector expression)[center point],
r = (positive scalar)[radius of sphere]

}

5.3. eTaSL ROS Controller

As many robots can be controlled by ROS control, but the developers of eTaSL
uses the Orocos framework as the controller layer, there was a need for a ROS
based controller for eTaSL. In the beginning of this project, Lars Tingelstad wrote
the initial code for an eTaSL ROS controller. One of the aims of this project has
been to develop this further. The code is available in its entirety at GitHub [40].

5.3.1. Schematics of eTaSL ROS Controller

The eTaSL ROS controller is set up in a way that ROS message types can be used
as inputs and outputs of the eTaSL expression types presented in section 3.3. The
ROS message types and their corresponding eTaSL expression types are given
in Table 5.1. As ROS uses quaternions to represent rotations and eTaSL uses
rotation matrices, the quaternion is translated into a rotation matrix with the
formula (2.7) presented in chapter 2. Equivalently, a geometry_msgs::Pose is a
composition of a geometry_msgs::Point and a geometry_msgs::Quaternion, while
the KDL::Frame is a transformation matrix. Hence, the quaternion is translated
into the rotation part of the transformation matrix as in (2.7) and the point
becomes the translation part of the transformation matrix.

The main purpose of the use of ROS message types, is that other nodes in the
ROS system can publish information to the eTaSL task or for instance graph
outputs of eTaSL. As an example, we can have a 3D-image node that publishes
the position and orientation of a part on a Pose message, which then can be used
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Table 5.1.: ROS message types vs eTaSL expression types
ROS message type eTaSL expression type
std_msgs::Float64 double

geometry_msgs::Point KDL::Vector

geometry_msgs::Quaternion KDL::Rotation

geometry_msgs::Pose KDL::Frame

geometry_msgs::Twist KDL::Twist

geometry_msgs::Wrench KDL::Wrench

to make an expression for a constraint.

The eTaSL ROS controller is driven by the controller manager of ROS Con-
trol, which at startup initiates the controller, starts it, and calls update until
it is stopped. The initiation of eTaSL ROS controller sets up a ROS Control
hardware_interface of the type VelocityJointInterface. The type of robot
which communicates with the hardware interface is indifferent as long as that
robot is set up with a ROS Control hardware interface of the same type and that
it has an available URDF model. When started, the joint positions of the robot
is read from the robot, and eTaSL is initiated with the values. At every update
cycle, any inputs from other ROS nodes are read, before the current joint posi-
tions are read from the hardware interface. The inputs and joint positions are
written to eTaSL, and the optimization problem is solved. Then, the new desired
joint velocities are read from eTaSL and written to the hardware interface. An
illustration of the data flow during the update cycle is shown in Figure 5.2, where
a KUKA robot with a RSI hardware interface is used as an example.

5.3.2. Task Switching

When setting up a task in eTaSL, one would often like to divide the task into
subtasks which are being switched between, either because a subtask is finished
or some event has happened. ROS has an implementation for task switching
where a ROS service call can be made to switch between different controllers.
This service call is time consuming, and needs the subtasks to be divided into
several task scripts. To try to both decrease the time needed for a switch and and
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ROS
nodes

eTaSL ROS
Controller

eTaSL
Solver

RSI HW
Interface

KUKA
Robot

ROS msgs
inputs

ROS msgs
outputs

setJointPos()

setInput()

getJointVel()

getOutput()

getPosition() setCommand()

read()

write()

Figure 5.2.: Data flow in eTaSL ROS controller

make it all happen within eTaSL itself using monitors and groups, the following
has been done.

Monitors

eTaSL is made to be able to activate and deactivate constraints from within the
task specification script through monitors with grouping observers. This can be
achieved by having actionname = "activate" and argument = "+global.group_-

to_activate -global.group_to_deactivate", ref. Listing 3.5.

Unfortunately, this implementation is not possible with the ROS controller di-
rectly, as the controller has to be stopped before activating any group. Hence,
another method is used. The actionname for the default observer is "exit" where
no argument is given, but the ROS controller will allow for an argument similar
to the grouping observer monitor. As the monitor is triggered, the ROS con-
troller will read the argument, stop the controller, edit the active groups, and
start the controller again. This is achieved by checking if any monitor has sat a
finishStatus, before iterating through all monitors checking for an active mon-
itor that has been triggered, giving a stopRequest to the controller, reading the
argument into the activate_cmd()-function, and finally giving a startRequest

to the controller. A task switching monitor needs to be structured like given in
Listing 5.4.
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Listing 5.4: Task switching monitor
Monitor{

context = ctx,
name = "name",
expr = (expression),
lower = (scalar)[optional],
upper = (scalar)[optional],
actionname = "exit",
argument = "+global.group_to_activate

-global.group_to_deactivate"
}

Service Request

Another solution to activate and deactivate groups, that is available to any ROS
node, is made. This solution is a ROS service named activate_cmd. When the
eTaSL ROS controller is initiated, a service is advertised which gives access to the
built in eTaSL function activate_cmd(). Any ROS node, for instance the SMACH
state machine, could then set up a service client on /controller_name/activate_-

cmd, and call it with a command similar to the argument of the task switching
monitors. This will stop the controller, edit the active groups, and start the
controller again. In a Python node, it would look as in Listing 5.5

Listing 5.5: Task switching service client
rospy.wait_for_service(’/controller_name/activate_cmd’)
activate_cmd = rospy.ServiceProxy(’/controller_name/activate_cmd’,

Command)
resp = activate_cmd("+global.group_to_activate")
return resp.ok

During debugging and testing, this service comes to handy, as any service can be
called from command line during execution. Thus, one is able to test the effect of
some constraints or temporary stop the execution, by the activate_cmd-service.
It can be called in terminal as shown in Listing 5.6, which shows an example of
how all constraints are deactivated.

Listing 5.6: Task switching from terminal
rosservice call /controller_name/activate_cmd ’!!str -global.*’
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5.3.3. Exit Event Publisher

When a monitor triggers it sets a finish flag to a finishStatus-variable. A function
is implemented in the ROS controller which checks this variable, and publishes
the string "exit" to a topic named e_event. This can for instance be used by
SMACH to know when the robot is in its pick up position, thus when to activate
the gripper.

5.4. Hardware Interface for KUKA RSI

Robots have different kinematic and dynamic properties. Thus, they are able
to behave differently to the same joint commands from eTaSL. Within the ROS
Control hardware_interface there exists a joint_limits_interface which lets
you impose robot specific velocity and acceleration limits. This is essential when
using the robot for an eTaSL task with CAD-constraints because of the exponen-
tial behaviour of eTaSL constraints, which were presented in section 3.3. eTaSL
does not know the dynamical properties of the robot, so it will try to reach the
goal at an exponential rate. This can mean that both the desired joint velocities
from eTaSL and the corresponding accelerations are too high for the robot. This
is where the joint_limits_interface comes in handy.

The hardware interface for KUKA RSI communicates with the robot controller
via Ethernet UDP/IP with XML strings. KUKA RSI runs at 250 Hz, which
dictates the update cycle for all calculations in the entire eTaSL system. When the
function read() is called in the hardware interface, an XML string with the current
joint angles of the robot is read of the robot controller and sent to the hardware
interface. Similarly, when the write() function is called, desired incremental joint
positions are sent as an XML string back to the robot controller. As the clock of
the robot controller dictates the execution, it will always execute every 4 ms. If no
command is available from the hardware interface at that moment, the execution
will fail.
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Joint Limits

As KUKA RSI operates with incremental joint positions in degrees, and eTaSL
solves for incremental joint velocities in rad/s, they have to be translated before
write() is called. This is also where the joints limits are enforced. When the
setCommand() is called, it will give the desired joint velocities of eTaSL to the
hardware interface. The hardware interface then takes these joint velocities and
compares them to the defined velocity and acceleration limits. The maximum
allowed velocity would be lowest velocity of either the previous velocity plus the
acceleration limit times the time step or the velocity limit. That is,

vel_high = min(prev_vel + max_acceleration*dt, max_velocity);

If the commanded velocity is lower than this value it will be kept. Otherwise
vel_high is kept. The commanded incremental joint angle sent to the robot is
then calculated as the kept velocity times the time step and converted to degrees.
The command write() is then called. The KUKA hardware interface with the
implemented joint limits written during this project is available at GitHub [39].
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Testing eTaSL with a KUKA
Robot

Three tests have been set up to verify the behaviour of the eTaSL ROS controller
and the defined assembly task, when paired with a physical robot. The first is
looking at the switching times that can be achieved with the different methods of
task switching presented in section 5.3. The second is looking at the behaviour of
the robot when an eTaSL task is ran with the eTaSL ROS controller. The last is
looking at the ability to perform a peg-in-hole task operation with peg and hole
combinations with different tolerances.

6.1. Test of Switching Times

Three different methods for task switching was presented in section 5.3. That is,
one method using smach to call a switching service on the controller manager,
one method calling a service on the eTaSL ROS controller directly activating and
deactivating groups of constraints, and one method where monitors in the eTaSL
task specification activates and deactivates constraint groups directly in the eTaSL
ROS controller.

To find out which method of task switching that is the fastest, and if any of them
are fast enough for realtime control, a timer was implemented in code to time the
time needed to stop the controller, change task, and start back up again. The
task was run three times and the time consumption for all switches with all the
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different switching methods are plotted. The results are given in the next section,
and discussed in section 7.1.

6.2. Results of Switching Timing
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Figure 6.1.: Switching times with switching service
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Figure 6.2.: Switching times with service call
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Figure 6.3.: Switching times with monitors

6.3. Test of Robot Behaviour with eTaSL

The software has been run several times both in simulation and on the physical
robot during the entire project, to continuously strive for a better performance.
Some plots of intermediate and final behaviours of the robot will be presented in
the next section and will be discussed thoroughly in section 7.2.
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6.4. Results of Robot Behaviour Test
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Figure 6.4.: Exponential behavior of joints
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Figure 6.5.: Joint velocities with limits derived from joint positions
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Figure 6.6.: Joint positions with limits
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6.5. Hardware Setup Peg-In-Hole Test

The following gear where used in the experiments, and can be seen in Figure 6.8
as well as in Figure 6.9.

• KUKA Agilus KR6 R900 sixx (Robot)

• Zivid One (3D camera)

• ATI Gamma IP60 (Force sensor)

• Robotiq 2F–85 (Grippers)

• Steel bar with 5 holes

• 3 sets of 5 pegs

KUKA Agilus KR6 R900 sixx

The robot used in the tests are KUKA’s Agilus KR6 R900 sixx. Technical data
for the robot can be found in [38]. The most important factor of the robot for
the tests, are what is referred to as “Pose repeatability (ISO 9283)”, which for
this robot is ±0.03 mm. This is a measure of how much variance there is in
the actual pose of the end-effector frame approaching a goal pose from the same
direction. It does not really tell how accurate the robot is at positioning, but gives
an estimate of how precise one could expect it to be. It is also worth noticing
that the maximum payload is 6 kg.

Zivid One

Zivid One is a 3D-camera delivering point clouds in the RGB-D format. That is,
each point in the cloud has a distance relative to the camera frame together with
its x and y position and a color value. According to their user guide [31], a point
cloud frame is 2.3 Mpixels at 1920x1200 pixels and has a depth resolution of 0.1
mm. At a distance of 1100 mm, which the camera is mounted at, the resolution
in the plane becomes aprx. 0.41 mm.
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(a) KUKA KR6 R900 [20] (b) ATI Gamma IP60 [13]

(c) Robotiq 2F–85 gripper [16] (d) Zivid One [41]

(e) Bar with holes and pegs

Figure 6.8.: Gear used in lab setup
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Figure 6.9.: RVIZ model of lab setup

ATI Gamma IP60

The force/torque sensor used is the Gamma IP60 by ATI Industrial Automation.
The measuring ranges and resolutions are as given in Table 6.1 according to their
operation manual [14].

Table 6.1.: Sensing ranges ATI Gamma IP60
Fx, Fy Fz Tx, Ty Tz

Sensing ranges 65 N 200 N 5 Nm 5 Nm
Resolution 1/80 N 1/40 N 10/13333 Nm 10/13333 Nm
Resonant Frequency 1200 Hz 1200 Hz 1200 Hz 1200 Hz

Robotiq 2F–85 gripper

The two finger gripper 2F–85 by Robotiq has been used together with custom
v-grooved fingers for picking and holding of the pegs. It can according to Robo-
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Table 6.2.: Selection of ISO tolerances for holes and shafts [17]
Nominal size

mm
Above 3 6 10 18 30 50 80 120 180 250
Up to 6 10 18 30 50 80 120 180 250 315and inc.

Deviation limits
µm

H9 +30 +36 +43 +52 +62 +74 +87 +100 +115 +130
0 0 0 0 0 0 0 0 0 0

d9 -30 -40 -50 -65 -80 -100 -120 -145 -170 -190
-60 -76 -93 -117 -142 -174 -207 -245 -285 -320

h6 0 0 0 0 0 0 0 0 0 0
-8 -9 -11 -13 -16 -19 -22 -25 -29 -32

tiqs documentation [16], apply clamping forces between 20 and 235 N and has a
maximum payload of 5 kg. The position repeatability of the fingertips are 0.05
mm.

Test objects

The test objects are a set of one steel bar with 5 holes, and 3 sets of five steel pegs,
with different ISO tolerances. The applicable tolerances is given in Table 6.2. The
holes in the bar are all of �20H9 mm. That is, �20+0.052

0.000 mm, which means that
all holes have a diameter between 20.000 and 20.052 mm.

The pegs are divided into three sets of five pegs where each set is at different
tolerances. The first set with a clearance to the holes are �19.6 mm. The second
set has a “free running clearance fit” with the holes and are �20d9 = �20

−0.065
−0.117

mm. That is, all peg have a diameter between 19.883 and 19.955 mm. The last
set has a “sliding clearance fit” with the holes and are �20h6 = �20 0.000

−0.013 mm.
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(a) Pick up (b) Line up (c) Insertion

Figure 6.10.: Assembly steps

6.6. Software Setup Peg-In-Hole Test

All the necessary constraints for the peg-in-hole task will be presented in the fol-
lowing section. The lua code with the task specification is available at GitHub [23].

6.6.1. Implementation in eTaSL

For the peg-in-hole assembly task, there are four main subtasks; “Pick up line
up”, “pick up”, “insertion line up” and “insertion”. The states of the peg during
those subtasks are shown in Figure 6.10.

For the pick up line up of the peg, three constraints are needed, defined through
two functions of the geometric3.lua script. The first is the function Coincident_-

line_line{} which takes the origin and direction of the peg which can be found
by origin() and by unit_z(rotation()) of the peg frame input respectively, and
the origin and the direction of the gripper frame, which is a variable of the joint
positions. The Coincident_line_line{}-function will set up two constraints with
the same K, weight, and priority values. One constraint using the distance_-

line_line()-function as the expression and one using the angle_line_line()-
function. The third is a constraint using the distance_plane_plane()-function as
the expression, which takes the gripper origin and direction, and the peg origin
and direction as inputs. It also takes a target value that makes the gripper line
up a little bit above the peg before the final approach.

The pick up subtask takes the same arguments as the pick up line up subtask,
except the distance_plane_plane() now has its target set to zero.

The line up subtask, does also take three constraints, which are defined through
two functions. The first is the function Concentric{} which does the same as the
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Coincident_line_line{}-function described above, although the input is now the
origin and direction of the hole center input frame and the origin and the direc-
tion of the peg relative to the gripper.The third constraint takes the distance_-

plane_plane()-function as the expression, which takes the same variables as the
Concentric{}-function, together with a target value a little bit above the hole.

The insertion subtask has the same constraints as the insertion line up subtask,
except that the target of the distance_plane_plane() constraint is set to zero.

These 4 subtasks are then looped 5 times for the five different pegs before a set of
constraints are set on the joint angles for the robot to go back to “home” position.

6.6.2. ROS Nodes for the Peg-in-Hole Task

The eTaSL framework allows for a set of message types from ROS to be used
as input variables in the task specification script. Those are Float64, Point,
Quaternion, Pose, Twist, and Wrench. The eTaSL ROS controller requires the
inputs to be subscribed from /node_handle/input_name topics, where /node_-

handle is the name of the assigned controller. The node map given in Figure 6.11
shows all the nodes and all the topics of the peg-in-hole task, and how they are
connected. This map is automatically generated from ROS, and seems complex.
Robot systems may often be complex, but the beauty of ROS, is that the real
implementation is far less complex. A presentation of all the nodes are given in
the following sections.

Pose Publisher Node

As the output message of the 3D-scanner and matching node publishes a Pose-

Stamped message and the eTaSL framework takes the simpler Pose message as
input, a republisher node was made, that subscribes to the messages from the
3D-scanner node, and publishes them back out as Pose messages. It does also
publish Marker messages that publishes meshes of the parts for visualization in
Rviz.
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Figure 6.11.: All nodes and topics
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Gripper Controller Node

The 2F-85 gripper from Robotiq, has its own ROS library with a TCP controller
node, amongst others, that is used in our task. When the controller node is
initiated, it will subscribe to an outputMsgmessage on a /Robotiq2FGripperRobot-
Output topic and act accordingly while publishing back an inputMsg message on
a /Robotiq2FGripperRobotInput topic with the status of the gripper. A node has
been written that publishes opening and closing commands on the /Robotiq2F-

GripperRobotOutput topic and reads the status on the /Robotiq2FGripperRobot-

Input topic.

Force Sensor Publisher Node

A ROS library for the force sensor used is already made by the user fsuarez6 and
is available at GitHub [14]. The publisher node for the force sensor in this library
publishes by default a Wrench message on the /netft_data topic. The only thing
needed to use this publisher was to use the remap statement in the launch file.
This is done as the eTaSL task needs the controller name as node handle on the
topics. Thus, the force sensor node publishes on a /"node_handle"/netft_data

topic instead of the /netft_data topic.

6.6.3. State Switching in SMACH

SMACH is used to control the switching between the eTaSL task and the actuation
of the gripper and request for a scan with the 3D-camera. SMACH subscribes to
the published exit events from the eTaSL controller to keep track of the states of
the robot. When SMACH has received an exit event from the pick up monitor or
the insertion monitor it will close and open the grippers accordingly. A service
request is send to the eTaSL controller to activate the robot again as soon as the
gripper actuation is complete. A node map generated by SMACH with all the
states are shown in Figure 6.12.
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Figure 6.12.: Smach State Map

6.7. The Peg-In-Hole Test

To test the precision of the eTaSL peg-in-hole task, the robot will be run through
the entire task with the three different sets of pegs. The peg-in-hole task was
presented in section 6.6. In short, the robot starts from “home”-position, picks up
the first peg and inserts that peg. Then the next peg is picked up and positioned
until all five are inserted. The robot should then return to “home.” In the robot
lab, the “home”-position is an upright position besides the table. The pegs will
be positioned randomly around the center of the workspace range of the robot.
The robot will have to show that it is able to position the pegs from different
distances and angles from the block with the holes.

For the first set of pegs, which is �19.6 mm, the clearance to the holes will be
between 0.400 mm and 0.462 mm. This means that even though the robot misses
its target position at insertion, it can on average be off by ±0.215 mm in any
direction. The second set at �20d9 mm, the clearance with the holes will be
between 0.065 mm and 0.169 mm. Thus the position of the robot can in this
case be off by ±0.059 mm on average. The last set at �20h6 mm has a clearance
between 0.000 mm and 0.065 mm. Worst case, the robot has to be spot on. On
average it can be off by ±0.016 mm.

Looking at the precision of the position of the peg in the grippers after it has
been picked up by the robot, we can assume that the precision of the 3D-camera
is irrelevant. That is because as long as the gripper is approximately in the right
position when it closes, the v-shape of the gripper fingers will center the peg in
the gripper. Thus, only the precision of the robot and the gripper determines the
position precision of the peg. Assuming that the precision of both the robot and
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the grippers are normal distributed, the total precision becomes

T =
√
T 2
r + T 2

g

T =
√

(0.03 mm)2 + (0.05 mm)2

T = 0.058 mm.

If we assume that the block with the holes is perfectly in place, this means that
we could expect the robot to be able to place all of the �19.6 mm and �20d9
mm pegs, but struggle with the �20h6 mm pegs. Another assumption has to be
made for this to be correct. That is, that there is no or only a small error in the
orientation of the peg. The peg can easily become jammed during insertion if the
robot is inserting it at an inclination.

The assumption that the block is perfectly placed, can be almost true if it is placed
manually with a preprogrammed position. When determining it with a 3D-camera
on the other hand, that assumption is not valid. The pose determination is done
with a matching scheme borrowed from Eirik Wik Haug, another Master’s student
at NTNU. It is based on the algorithm of Drost et al. [9]. Theoretically, will this
algorithm not perform worse than the resolution of the 3D-camera used. For the
configuration of the Zivid camera used, that is 0.41 mm. Thus, the total precision
of the system becomes

T =
√

(0.03 mm)2 + (0.05 mm)2 + (0.41 mm)2

T = 0.414 mm.

In that case we could not expect any of the pegs to be placed correctly. The
results are given in the next section, and discussed in section 7.3.

6.8. Results of Peg-in-Hole Task

Unfortunately, the 3D-matching did not work properly within the time frame of
the project. But as that only were meant to be an extra addition to the test,
it does not make any difference to the validation of the eTaSL peg-in-hole task.
Thus, a preprogrammed position of the pegs and block where used instead. The
pegs and the block where placed manually on the table with the corresponding
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Figure 6.13.: Forces and torques acting on one of the h6 pegs during insertion

position of the robot. With that in mind, the precision of 0.058 mm can be
assumed.

The robot where able to complete the entire eTaSL peg-in-hole task for all the
three sets of pegs. All pegs where placed without getting stuck or hitting the
block. The entire task took about 1 min 30 sec to complete.

Even though the task where finished, there is one point during the task where the
robot vibrates at a high frequency. This is the same spot for all runs. There is
also some noticeable wobbles once in a while.

In Figure 6.13 a plot of the forces and torques acting on the tip of the peg during
insertion is given. This is with one of the �20h6 mm pegs. The forces acting on
the other h6 pegs where similar but with varying magnitudes. The forces acting
on the other sets of pegs where insignificant.





Chapter 7.

Discussion

In this chapter, the results of the three different tests outlined in chapter 6.

7.1. Switching Times in eTaSL ROS Controller

To be able to react to sensor inputs, as a reading of the force/torque sensor on the
robot, there are real-time requirements to be met. For instance, if the controller
is not able to switch fast enough in case of a high force measurement, the actual
force acting before the task is switched can be at a damaging level. In the case
of KUKA RSI, its real-time capability pushes 250 Hz. That is, one executed
command every 4 ms. Real-time control is a challenge to ROS, more so, being
able to switch between subtasks as fast as any other controller tick is something
it is not capable of yet.

The different switching methods were timed and plotted with their average in
Figure 6.1, 6.2 and 6.3 from the results in section 6.2. In each run of the peg-in-
hole task, the switching of subtasks happens 25 times with monitors and 10 times
with services. Hence, three times that is shown in the two last figures. In the first
figure, an other eTaSL task was used when timing the switch controller service,
but the task is irrelevant for the time consumption here.

Looking at the “switch controller”-method from Figure 6.1 first, we can see that
the average is 7.5 ms and not a single switch is capable of getting beneath 4.0 ms
which is clearly not good enough.
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The “ROS controller service”-method from Figure 6.2 is faster, but with an av-
erage of 5.3 ms and only 6 out of 30 times at or beneath 4.0 ms it is still not
fast enough. A reason for the better performance of this method compared to the
previous, is that this method is only activating and not deactivating tasks. It will
therefore not need to use time on finding out which controllers to stop. This does
also mean that it is not really necessary for this method to be below 4.0 ms, as
this is only used when the robot is starting after standstill.

The “monitor”-method from Figure 6.3, is clearly the fastest method, with an
average of 2.3 ms. In most cases this would be good enough, but as 7 instances
are above 4.0 ms, this method are not mission critical proof. It seems like there
are two clear separate groupings of switching times. This is most likely due to the
fact that every two out of five switches are actually turning all active tasks off,
and not activating any. Which would be less demanding to initiate.

7.2. Robot Behaviour with eTaSL

The task function for a control task in eTaSL is, as mentioned in section 3.3, a
first order system, which means that the system evolves in an exponential manner
towards its goal. This was illustrated in Figure 3.3 and has particularly one
significant challenge in use with geometrical constraints. A first order system
will follow an input with small deviations really well, but in case of constraints
where the deviation between the goal and the initial state are large, it will try
to evolve towards the goal really fast in the first part of the movement. What
that does, in physical terms, is that if for instance the robot end-effector is far
of its goal position, the velocities applied to the joints will create an acceleration
a real robot cannot cope with. This is exactly what happens when the peg-in-
hole task starts from “home position” and are lining up for the first peg. The
velocities applied in the first split seconds, creates an almost infinite acceleration.
The plots in Figure 6.4 from the results in section 6.4 shows the joint positions
and velocities when the simulated robot is lining up for the fist peg where no
limitations on velocities or accelerations are set. Here we can clearly see the
exponential behaviour of the first order system.

This exponential behaviour is the main reason why constraints based solely on
geometrical relations are a hard task. During the work of this thesis, different
methods of solving that problem has been tested. The KUKA RSI interface takes
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by default incremental joint angle commands, hence the hardware interface was
originally set up as a joint position interface (PositionJointInterface). The
joint_limits_interface of the hardware interface lets you apply joint velocity
limits to a position controlled interface. This helps in restraining the robot max-
imum velocity, but are not able to slow down the acceleration.

eTaSL is originally set up to solve for joint velocities in each solver step, hence
the position interface of RSI, where possibly limiting optimal behaviour of eTaSL.
A solution to that, became to rewrite both the hardware interface, and the RSI
interface on the robot controller. By implementing a VelocityJointInterface,
the behaviour shown in Figure 6.5 and 6.6 where obtained on the physical robot.
The VelocityJointInterface makes it possible to apply acceleration limits as
well as position limits to the joints. The results given in Figure 6.5 and 6.6
where obtained by applying the limits given in Listing 7.1. Compared to the
initial simulated behaviour in Figure 6.4, where eTaSL was free to output any
joint angle and velocity, we can clearly see now that the acceleration are of a
magnitude that makes more sense for a physical structure.

Listing 7.1: joint_limits.yaml
joint_limits:
joint_a1:
max_velocity: 0.6283185307179586
max_acceleration: 10.0

joint_a2:
max_velocity: 0.5235987755982989
max_acceleration: 10.0

joint_a3:
max_velocity: 0.6283185307179586
max_acceleration: 10.0

joint_a4:
max_velocity: 0.6649704450098396
max_acceleration: 10.0

joint_a5:
max_velocity: 0.6771877497737998
max_acceleration: 10.0

joint_a6:
max_velocity: 1.0733774899765127
max_acceleration: 10.0

Comparing the joint velocity plot and the joint limits, we can see that the robot
adheres to the limits. The slope of the velocities are flattened according to the
acceleration limits, and the joint velocities are capped off at the velocity limits. In
this case, this can be seen in the beginning of the trajectory for joint q1. The rest
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of the joints never reach their limit. This method works, but has its drawbacks.
That is, this method makes eTaSL and the hardware interface fighting each other
over the joint velocities for the robot. eTaSL will try to impose joint velocities
that makes the robot behave as a first order system, while the hardware interface
shuts eTaSL down in its attempt every time they do not adhere to the applied
limits.

The fighting between eTaSL and the hardware controller, seems to make the
robot behave strangely at times. Firstly, the limits needs some tuning for the
robot to behave. When there is a large difference between the velocity limits
and the acceleration limits, the robot starts to wobble. When the acceleration is
set too low, the robot starts to overshoot the constraints, since it is not able to
decelerate fast enough. When all velocity limits are set to the same value, some
constraints will get ahead of others, as there are different efforts needed to obtain
the same velocity for different joints. Thus, any limiting of joint velocities has to
be proportional to their robot specific joint velocity limits.

The plots of Figure 6.7 shows the Cartesian coordinates of the gripper in the
upper plot, and the corresponding joint angles, for some 5 seconds during the
peg-in-hole task with the final implementation of the controller. Both in plots
and while looking at the robot, it now seems to run quite smooth. But, there are
still some issues that are hard to explain. Two of those instances are marked with
the vertical dotted lines, but more can be seen. What happens, is that the robot
suddenly shifts a little bit off course before returning immediately. This happens
immediately after switching of subtasks, where the applied velocities increases
again. Most surprising are the wobbles in joint q4, as it should theoretically never
move with the set of constraints applied to the robot in this task.

7.3. Peg-In-Hole Test

The robot was able to complete the peg-in-hole task for all the three sets of pegs.
The two first where expected, the last where a little bit more surprising. The
reason why it where able also with the tightest tolerance is most likely due to
the fact that all pegs and all holes are chamfered. That is, a small trimming of
the edge of about 0.5 mm. An illustration can be seen in Figure 7.1. What the
chamfer allows is that if the peg is a off by less than 1.0 mm when contacting
the hole, and there is some flex in the system, the peg can be lined up properly
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Figure 7.1.: Possible deviation with chamfer

with the hole. In this test, the most likely source of flex is the table at which the
assembly happens and the fact that the bar with the holes where not fixed to the
table. Even so, there where no noticeable shift in the bar during the tests.

Another thing we can draw from this test is that the deviation in the alignment
angle of the peg must have been insignificant. When trying to force it in by hand,
any angle more than 1 degree would make the peg jam. We can see in Figure 6.13,
from the results in section 6.8, that the pegs with the tightest tolerance where
not running freely during insertion. Thus, some small deviations in position and
orientation of the pegs where most likely present after all.

Even though the positioning of the pegs are really good in the xy-plane, there
are some clearly visible deviations in the positioning of the grippers along the
approach axis z. It seemed to vary with up to aprx. 3 mm. The most likely
reason why the xy positioning is almost perfect while z is quite bad, is that
eTaSL has far longer time to converge to the Concentric constraint than the
Coincident_plane_plane constraint. But, the monitor that monitors the “pick
up” and “insertion” is set to not trigger before the distance between the planes
are less than 1 mm. In this test, it was not really important that the positioning
along z is perfect. But, a better positioning could be achieved by having a lower
bound on the monitor. This comes at cost of time. And, a robot may never be
able to reach the bound if the bound is too low, because of encoder errors in the
robot joints.

The vibration of the robot during the testing is a known problem. Further inves-
tigation showed that the vibration would happen when the robot where stretched
out at a radius in the region between 600 to 700 mm from the base frame. Any
further out than that, and the robot would more often than not vibrate before
shutting out with the error “Command gear torque A1.” The error message means
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that the commanded torque to the joint is to high, or not smooth enough. The
issue is twofold, and related to RSI. eTaSL has a tendency, as described in the
previous section, to command joint velocities that has an acceleration that the
robot can not cope with. Before applying joint limits to the commanded joint
positions, the robot would stop with the gear torque error at the moment the
robot started. Even though this behaviour has been restrained, there is still some
irregularities in the commands. This is the first part of the issue. The second
is the way RSI is used with ROS and how it does not comply with the dynamic
models of KUKA.

When using RSI with ROS, only incremental joint positions are commanded, and
the robot controller will try to execute that command in 4 ms as described in
section 3.5. But the motors at the joints are not controlled by joint positions,
its controlled by an applied current that produces a desired torque. For the
controller to know how much torque to apply, it needs a good dynamical model
for the robot. Without precise data on the weight, center of mass, and inertia
matrix of the force/torque sensor and gripper combination, the controller will
output the wrong torque to the joints. Thus, resulting in vibrations and gear
torque errors. The gear torque errors stems from a contradiction between where
the robot believes it should be after applying some torque and its actual position
after applying that torque.

7.4. Industrial Relevance

eTaSL ROS Control with CAD-constraints has the possibility to be really useful
for the production industry. But as seen through testing, there is some instability
of the controller that has to be resolved first. But when that is solved, there is
some real benefits to this system.

First of all, is the eTaSL ROS controller interchangeable between all robot brands
that has a ROS control hardware interface. As of now, that is KUKA and Univer-
sal Robotics (UR), but that can change over time. One should be able to use the
controller directly with any KUKA robot sat up with RSI capability. Secondly,
does eTaSL, with CAD-constraints, allow for a short transition from the design
phase to the actual robot assembly.

There are some requirements. Any business wanting to implement eTaSL in their
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factory will need a robot programmer with knowledge in ROS, as well as sensor
systems that can be implemented in ROS. ROS is also, as of now, only available
for the Ubuntu platform, and eTaSL is restricted to Ubuntu 16.04 and ROS Ki-
netic. Thus, the controller PC communicating with the robot controller has to be
running on Ubuntu.

The solution for extracting CAD-constraints are dependent on SolidWorks. If the
business uses anything other than SolidWorks, they would not be able to extract
the constraint information as done here. A vision for the future is that this CAD-
information could be extracted from STEP information instead, which is a vendor
independent file format for CAD-data. That STEP file could then be opened in
a program which loads the CAD-constraints and the robot cell information and
generates a finished assembly task ready for execution. This program would not
need to know the position of the parts to assembly, as the position can be an
input from 3D-cameras.





Chapter 8.

Conclusion

This thesis began by giving an introduction to robot kinematic and screw theory,
before presenting the necessary software tools for the programming in this thesis,
such as eTaSL, ROS, SMACH and KUKA RSI. Then the constraint formulation
of SolidWorks where presented, with the belonging mathematics.

The aim of this thesis have been to discover whether it was possible or not to
program a robot solely by information contained in CAD-constraints and if it
could be implemented on a commercially available off-the-shelf industrial robot
manipulator. In chapter 5, it was shown how this where solved during the work on
this thesis by a ROS implementation of eTaSL and constraints from SolidWorks.
The CAD-data is collected from SolidWorks by a C# code using their API, before
they are used with the geometrical functions presented in section 5.2 to define
constraints in the eTaSL ROS controller. It has been showed that it actually
is possible to program a robot solely by CAD-constraints, and that it can be
implemented on a commercially available off-the-shelf industrial robot. That is,
at least the KUKA KR6 R900 robot and other KUKA robots. The most important
discovery made to make it work on the physical robot where the joint_limits_-

interface of ROS control. By applying joint limits, it is possible to restrain the
exponential behaviour of eTaSL to give feasible joint commands to the robot.

Through a set of tests presented in chapter 6, it has been showed how the formula-
tion of a CAD constraint based task for a peg-in-hole test case where done. In the
test case five pegs where successfully inserted in five different holes by the KUKA
KR6 R900 robot in less than 1.5 minutes. The pegs placed had a tight tolerance
that did not allow for a positioning error larger than ±0.016 mm on average. Still,
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the pegs where successfully placed with only a small insertion force of 25 N. But,
even though the robot completes the test case, there are some irregularities in the
trajectories that have not been fully understood. There are some vibrations that
stems from combined faults in eTaSL and the ROS implementation for KUKA
RSI. There are also some wobbles and unwanted behaviour by the robot, in which
the source is still unidentified.

The fact that the assembly program is implemented on a KUKA robot, without
any modifications to the robot controller, and that it is not done on some hightech
research robot, makes this project relevant to the industry. With some knowledge
in python, C++ and ROS, the eTaSL ROS controller should be relatively easily
implemented on any KUKA or UR robot. After the system is up an running,
the implementation of a new assembly task will probably be faster than it can be
done today.

This work is still in the early stages of what CAD-constraint based programming
can be. Never the less, does it lead the way for a promising future within industrial
robot programming. Constraint based robot programming with CAD-data has the
possibility to remove almost all human intervention between product design and
fully assembled parts. This means that concurrent product development is even
easier, in the way that product refinements can be easier tested in its finished state.
This is really important in reducing the cost of product changes. It also means
that the time cost of giving costumers the possibility of product customization
is reduced, giving more satisfied consumers, increasing their willingness to pay,
without noticeable increase in cost.

8.1. Future Work

Future work should continue to try to find the cause of the small wobbles of the
robot. It should also debug the reason for the early exits that happens once in a
while during initiation of a new task when switching.

eTaSL allows for the use of sensor data of all kind. This possibility has not
been utilized in this work. Future work could try to find out the possibilities of
sensor data in an assembly task. For instance for force controlled assembly, safety
measures, etc. The intention of using a 3D-camera for capturing the position of
the parts where also abandoned. That should be solved for a more robust system.
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A late discovery of the possibility of different controllers within eTaSL, made
it only possible to briefly test an implementation before the end of the project.
Future work should seek to find out how the ControllerProportionalSaturated-
class, within the controller.cpp script, can help restraining the robot when con-
strained by CAD-constraints. It should also find out if a self developed controller
class would be a better solution.

To make the eTaSL ROS Controller with CAD-constraints even more relevant to
the industry, two main developments should be made. That would be to make
the CAD-information independent on SolidWorks. In other words, independent
on CAD-software vendors. A suggestion is to find the possibilities of extracting
geometrical constraint data from the ISO STEP-format. The other thing, would
be to find a way to generate all necessary eTaSL constraints automatically from
the STEP information, or at least a semi-automatic solution. This would make the
eTaSL ROS Controller even more relevant because of less need for knowledgeable
programmers and shorter time used at implementation.
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Appendix A.

Constraints in geometric3.lua

Listing A.1: Constraint formulation for two coincident points
Coincident_point_point{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[first point],
point_b = (vector expression)[second point]

}

Listing A.2: Constraint formulation for a point coincident with a line
Coincident_point_line{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[the point],
point_b = (vector expression)[point on the line],
dir_b = (vector expression)[unit vector along the line]

}

Listing A.3: Constraint formulation for a point coincident with a plane
Coincident_point_plane{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[the point],
point_b = (vector expression)[point on the plane],
dir_b = (vector expression)[unit normal vector of plane]

}
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Listing A.4: Constraint formulation for two coincident lines
Coincident_line_line{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on one line],
dir_a = (vector expression)[unit vector along that line],
point_b = (vector expression)[point on other line],
dir_b = (vector expression)[unit vector along that line]

}

Listing A.5: Constraint formulation for a line coincident with a plane
Coincident_line_plane{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on the line],
dir_a = (vector expression)[unit vector along the line],
point_b = (vector expression)[point on the plane],
dir_b = (vector expression)[unit normal vector of plane]

}

Listing A.6: Constraint formulation for two coincident planes
Coincident_plane_plane{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on one plane],
dir_a = (vector expression)[unit normal vector of that plane],
point_b = (vector expression)[point on other plane],
dir_b = (vector expression)[unit normal vector of that plane]

}

Listing A.7: Constraint formulation for concentricity
Concentric{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on one line],
dir_a = (vector expression)[unit vector along that line],
point_b = (vector expression)[point on other line],
dir_b = (vector expression)[unit vector along that line]

}
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Listing A.8: Constraint formulation for two perpendicular lines
Perpendicular_line_line{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on one line],
dir_a = (vector expression)[unit vector along that line],
point_b = (vector expression)[point on other line],
dir_b = (vector expression)[unit vector along that line]

}

Listing A.9: Constraint formulation for a line perpendicular to a plane
Perpendicular_line_plane{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on the line],
dir_a = (vector expression)[unit vector along the line],
point_b = (vector expression)[point on the plane],
dir_b = (vector expression)[unit normal vector of plane]

}

Listing A.10: Constraint formulation for two perpendicular planes
Perpendicular_plane_plane{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on one plane],
dir_a = (vector expression)[unit normal vector of that plane],
point_b = (vector expression)[point on other plane],
dir_b = (vector expression)[unit normal vector of that plane]

}

Listing A.11: Constraint formulation for two parallel lines
Parallel_line_line{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on one line],
dir_a = (vector expression)[unit vector along that line],
point_b = (vector expression)[point on other line],
dir_b = (vector expression)[unit vector along that line]

}
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Listing A.12: Constraint formulation for a line parallel to a plane
Parallel_line_plane{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on the line],
dir_a = (vector expression)[unit vector along the line],
point_b = (vector expression)[point on the plane],
dir_b = (vector expression)[unit normal vector of plane]

}

Listing A.13: Constraint formulation for two parallel planes
Parallel_plane_plane{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on one plane],
dir_a = (vector expression)[unit normal vector of that plane],
point_b = (vector expression)[point on other plane],
dir_b = (vector expression)[unit normal vector of that plane]

}

Listing A.14: Constraint formulation for a line tangent to a cylinder
Tangent_line_cylinder{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on the line],
dir_a = (vector expression)[unit vector along the line],
point_b = (vector expression)[point on center line],
dir_b = (vector expression)[unit vector along the center line],
r = (positive scalar)[radius of cylinder]

}
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Listing A.15: Constraint formulation for a plane tangent to a cylinder
Tangent_plane_cylinder{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on the plane],
dir_a = (vector expression)[unit normal vector of plane],
point_b = (vector expression)[point on center line],
dir_b = (vector expression)[unit vector along the center line],
r = (positive scalar)[radius of cylinder]

}

Listing A.16: Constraint formulation for a line tangent to a sphere
Tangent_line_sphere{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on the line],
dir_a = (vector expression)[unit vector along the line],
center = (vector expression)[center point],
r = (positive scalar)[radius of sphere]

}

Listing A.17: Constraint formulation for a plane tangent to a sphere
Tangent_plane_sphere{

context = ctx,
name = "name"[optional],
K = (scalar)[optional],
weight = (scalar)[optional],
priority = (1 or 2)[2 default],
point_a = (vector expression)[point on the plane],
dir_a = (vector expression)[unit normal vector of plane],
center = (vector expression)[center point],
r = (positive scalar)[radius of sphere]

}





Appendix B.

Running Peg-In-Hole with
eTaSL

Build etasl_ros_control from source

For now, etasl_ros_control is only supported on Linux and Ubuntu 16.04 / ROS
Kinetic

Follow all the instructions to install ROS Kinetic. Please make sure you have
followed all steps and have the latest versions of packages installed:

$ rosdep update
$ sudo apt-get update
$ sudo apt-get dist-upgrade

Source installation requires wstool:

$ sudo apt-get install python-wstool

Optionally create a new workspace, you can name it whatever:

$ mkdir ~/etasl_ros_control_ws
$ cd ~/etasl_ros_control_ws
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Next, source your ROS workspace to load the necessary environment variables.

$ source /opt/ros/kinetic/setup.bash

This will load the ${ROS_DISTRO} variable, needed for the next step.

Download and build etasl_ros_control

For now, the examples described in this thesis is only available at the develop
branch. But will hopefully be available at the master branch later on. The url

https://raw.githubusercontent.com/daglofthus/etasl_ros_control/develope/
etasl_ros_control.rosinstall

can then be exchanged by

https://raw.githubusercontent.com/tingelst/etasl_ros_control/master/
etasl_ros_control.rosinstall

Pull down the required repositories and build from within the root directory of
your catkin workspace:

$ wstool init src
$ wstool merge -t src https://raw.githubusercontent.com/daglofthus/

etasl_ros_control/develope/etasl_ros_control.rosinstall
$ wstool update -t src
$ rosdep install -y --from-paths src --ignore-src --rosdistro

${ROS_DISTRO}
$ catkin_init_workspace src
$ catkin_make --cmake-args -DCMAKE_BUILD_TYPE=Release

Source the catkin workspace

Setup your environment - you can do this every time you work with this particular
source install of the code, or you can add this to your .bashrc (recommended):

$ source ~/etasl_ros_control_ws/devel/setup.bash
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Running Peg-In-Hole Example

For simulation, run in terminal:
$ roslaunch etasl_ros_control_cmd smach_peg.launch

To run with a higher gain on all constraints (i.e. 5x faster):
$ roslaunch etasl_ros_control_cmd smach_peg.launch speed:=5.0

When not simulating, and connected to force sensor and gripper:
$ roslaunch etasl_ros_control_cmd smach_peg.launch sim:=false

connected:=true
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