
June 2010
Peter Herrmann, ITEM
Sergiy Gladysh, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Real-Time End-User Service
Composition Using Google Wave

Espen Herseth Halvorsen

Problem Description
Google Wave is an open and extensible platform for real-time end-user cooperation and
communication, which was first presented at the Google I/O Conference on May 27, 2009, and has
already attracted the interest of both software-developers, enterprises and end-users. Google
Wave is not just a product of Google, but is an open standard, with a well-documented set of
protocols and algorithms, open-source software, open APIs for 3rd party developers, playground
for debugging and a free service.

The task in this thesis is to examine how Google Wave can be used as a platform/tool for end-user
service composition. The in-depth analysis of the Google Wave platform should be done by looking
into the following questions: a) overview of the components of Google Wave technology; b)
discussion of Google Wave from an end-user service composition viewpoint; c) developing a
concrete proof of concept of a service composed in Google Wave based on an end-user service
composition scenario; d) investigation of possibilities to make service composition more intelligent
and automated (semi-automated) with the help of Google Wave Robots.

Assignment given: 15. January 2010
Supervisor: Peter Herrmann, ITEM

Abstract

This thesis explores Wave, a brand new communication and collaboration
platform, from the perspective of end user service composition. A descrip-
tion of the different frameworks that are available and a study of how these
can be used to create components that can be easily integrated with the
platform are provided. Several examples of how the platform can be used
to simplify different use cases involving multiple users collaborating on a
common goal are provided. A complete solution to collaboratively organize
meetings is also developed using these tools, and a detailed explanation of
how one creates the necessary Wave Gadgets using web technologies like
HTML, CSS and JavaScript, and the necessary back-end Wave Robots
using Java are provided.

i

ii

Preface

This thesis represents the finalization of my master’s degree in Communi-
cation Technology at the Department of Telematics (ITEM), Norwegian
University of Science and Technology (NTNU). The responsible supervi-
sors have been Sergiy Gladysh and Prof. Peter Herrmann.

I would like to thank my fellow students Mats, Kim, Hovard and Hen-
rik, whom I have shared an office with during the work. The semester
would without doubt have been less interesting without your presence. As
part of this I would also like to thank the institute for providing me with
the office and equipment needed for this work.

Most of all I would like to thank my supervisor Sergiy Gladysh. You
have been giving me valuable feedback and guidance through my work,
provided ideas and hints that have driven my work forward, and have gen-
erally been a great help in doing this work. Thank you!

Espen Herseth Halvorsen
June 3rd, 2010

Trondheim

iii

iv

Contents

Abstract i

Preface iii

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Contribution . 2
1.2 Outline . 3

2 Background 5
2.1 Computer supported cooperative work 5

2.1.1 The CSCW Matrix 8
2.2 Google Wave . 8

2.2.1 Google Wave as a CSCW system 9
2.3 Wave - the Open Source version 10

2.3.1 Terminology . 10
2.3.2 Different open sourced parts 11

2.4 Wave Federation Protocol 14
2.4.1 Handling multiple servers 14

2.5 API’s for extending Wave functionality 15
2.5.1 The Gadget API . 16

v

vi CONTENTS

2.5.2 The Robot API . 19

3 User service composition in Wave 25
3.1 User service composition . 25
3.2 Using service composition in communication 26
3.3 Existing solutions: The Extension gallery 27

3.3.1 Different ways to access the content in the Extension
gallery . 28

3.4 Example composition 1: Collaborative movie night voting . 30
3.5 Example composition 2: Wave as an aid for developers . . . 32

4 Organizing meetings collaboratively 37
4.1 What do we want to solve 37

4.1.1 The planning phase 38
4.1.2 The meeting phase 38
4.1.3 The review phase . 39

4.2 Existing solutions . 39
4.2.1 Clientside software solutions 39
4.2.2 Web-based solutions 40

4.3 Advantages of using a collaborative approach 41
4.4 Gadget for time scheduling 43

4.4.1 Underlying data structure 44
4.4.2 Calculating the number of possible attendees 47
4.4.3 The final gadget . 48

4.5 Gadget for a collaborative agenda 50
4.5.1 Underlying data structure 51
4.5.2 The final gadget . 52

4.6 Making it all come together 53

5 Enhancing communication using Wave Robots 57
5.1 Robots as equal participants 58
5.2 Enhancing the previous example using robots 59

5.2.1 Setting up the wave 59
5.2.2 Automatically decide a suitable time 62
5.2.3 Automatically decide a possible schedule based on

user input . 71
5.3 The finished solution . 82

CONTENTS vii

6 Conclusion and Future work 85
6.1 Future work . 86

6.1.1 Trust and security in Wave 86
6.1.2 Combining Wave and Arctis 87

viii CONTENTS

List of Figures

1.1 Illustration of how one can use user service composition in
Wave to create any new service to suit a specific task at hand. 2

2.1 The CSCW Matrix, as proposed by Johansen and detailed
by Baecker in [1]. Figure reproduced and released under
public domain by Magnus Manske, 2009. 7

2.2 The different parts of a wave, diagram from [12] 12

3.1 Screenshot of Wave user composition Use Case: Wave used
for selecting films for a movienight. 31

3.2 Screenshot of a wave used by developers to collaborate on
a new feature in a software system. 34

4.1 The final gadget for doing time scheduling 49
4.2 The final gadget for collaborative agenda creation. 54
4.3 The extension installer as shown in Google Wave 56

5.1 Top: the new menu item created by the extension installer.
Bottom: the resulting wave containing the two gadgets
added by the robot. 63

5.2 The Gadget for time scheduling, with the scores for the
different time slots calculated by the robot shown beneath. 72

ix

x LIST OF FIGURES

5.3 The agenda gadget, with voting and time specification. Be-
neath the gadget is the note taking template generated by
the robot. 81

5.4 A wave showing the finished gadgets and results of the
robots calculations, upper part 83

5.5 A wave showing the finished gadgets and results of the
robots calculations, bottom part 84

List of Tables

2.1 The key differences between the two types of Wave Exten-
sions; Robots and Gadgets [13]. 16

2.2 Events that can be catched using the Java Client Library
method overriding. Information from [16]. 21

2.3 The different context scopes an event can return data for.
Information from [16]. 22

5.1 The default values for the adding or substraction of points
for the timeslot based on user priorities. 67

xi

xii LIST OF TABLES

Chapter 1
Introduction

End-user service composition is an idea based around the principle that
users should be able to easily create systems that solves their everyday
problems in a suitable way. Various solutions have incorporated this idea
into products which have had various success rates. In 2009, Google re-
leased a first version of a new product called Wave, which aims to be a
platform for communication and collaboration. Due to the extensible na-
ture of this platform, it can be used as a tool for highly collaborative end
user service composition.

This thesis explores Wave from the perspective of end user service compo-
sition. We look at various use cases where Wave can be used to simplify
communication by using externally developed extensions. By adding ex-
tensions such as gadgets which end users can interact with directly, and
robots which takes the same role as a regular user and can be used to
automate repeating tasks, we can greatly enhance tasks that involve com-
munication and collaboration. The concept of reusing the same extensions
in several different waves is illustrated in Fig. 1.1.

1

2 CHAPTER 1. INTRODUCTION

We also create a complete system based on Wave that aims to solve the
problem of collaboratively plan and hold meetings. This solution includes
gadgets that let users schedule a time and collaborate on agenda items,
and also a robot that automates tasks that can better be solved algorith-
mically than manually by humans.

Figure 1.1: Illustration of how one can use user service composition in Wave
to create any new service to suit a specific task at hand.

1.1 Contribution

In this thesis, we have given an in-depth overview of the Wave platform
from an end-user service composition viewpoint. By giving several exam-
ples of how Wave can be used by end users to compose services to suit
their needs, we have shown that the platform can be a viable option for
this usage scenario. A concrete example of such a scenario have been pro-
posed, and the necessary components have been developed from scratch
to illustrate the steps needed to create new components for the platform.

1.2. OUTLINE 3

We have also detailed the idea behind using robots as an aid in commu-
nication, and elaborated on some of the challenges this gives us regarding
both technical complexity and end user anxiety from the feeling of los-
ing control. An example robot has been created, showing of some of the
potential this technology has to ease communication.

1.2 Outline

This thesis consists of six chapters:

Chapter 2
In this chapter we provide background information about the different
technologies used in this thesis. We look at the research field of computer
supported cooperative work, and also describe the communication and
collaboration platform Wave, which will be used throughout the thesis.
We especially look at the possibilities of extending this platform.

Chapter 3
This chapter explores the idea of end user service composition. We look at
how this can be applied to communication platforms, and provide several
examples of how Wave can be used as an end user service composition
system.

Chapter 4
This chapter contains a description that details the process of develop-
ing a system that helps users collaboratively organize meetings using the
Wave platform. We explore the different phases of the meeting process,
and survey how existing solutions tries to solve the problem. Based on
these insights, we create components for the system using the Wave Gad-
get framework.

4 CHAPTER 1. INTRODUCTION

Chapter 5
In this chapter we explains the process of further developing the solution
we built in Chap. 4. We now add intelligence to the system by integrat-
ing a Robot developed using the Wave Robot framework. This lets us
automate tasks which for the users can be repeating and burdensome to
perform manually.

Chapter 6
This chapter summarizes the work done through the thesis. We also dis-
cuss a potential future project that could be a continuation of the work
done in this thesis.

Chapter 2
Background

This chapter explores some key background technologies. We start by
looking at the research field of Computer supported cooperative work in
Sect. 2.1. Next, in Sect. 2.2 we look at Google Wave, a new product
developed by Google that adheres to the key principles of the CSCW
research field. The technology behind this is open sourced, and we look
at the general solution named Wave in Sect. 2.3. We explore the technical
details of the Wave communication platform in Sect. 2.4, and look at
different possibilities to extend the platform in Sect. 2.5. We take a special
look at the Gadget API (Sect. 2.5.1) and the Robot API (Sect. 2.5.2) -
two key technologies we will employ later in the thesis.

2.1 Computer supported cooperative work

Computer supported cooperative work (CSCW) is an academic field that
aims to research how the coordination of collaborative activities can be
supported by computer systems. The term CSCW was first used by Irene
Grief and Paul M. Cashman at a workshop held in 1984 [19].

One of the cornerstones of this research is that it aims to bring sci-

5

6 CHAPTER 2. BACKGROUND

entists from a wide variety of disciplines together to better be able to
consider all the different aspects of the problem. Researchers from the
field of computer science are a natural fit, but individuals from fields such
as psychology and sociology are also researching this topic.

Wilson has defined the term CSCW as the following:

CSCW is a generic term, which combines the understand-
ing of the way people work in groups with the enabling technolo-
gies of computer networking, and associated hardware, soft-
ware, services and techniques [34].

One of the results of this research is a set of needs such systems should
fulfill in order to help aiding the collaborative work. These needs can be
summarized by these three key principles [7, 34]:

1. Awareness: When a group of people are working together, they
need to be aware of the work done by others in the group. Each
individual needs information about the progress and results of other
participants in order to support his own work.

2. Articulation: If a large amount of work should be done by a group
of people, one needs some way to split the workload up into smaller
pieces to let parts of the group or individuals work on it by them-
selves. Later, one needs a way to integrate the results of this work
back into the shared result.

3. Tailorability: A system designed to help individuals work together
electronically would have to be flexible enough to let the users tailor
its functionality to their needs, and in some situations use it in a
manner not imagined by the creator of the system at the time of
creation.

2.1. COMPUTER SUPPORTED COOPERATIVE WORK 7

Figure 2.1: The CSCW Matrix, as proposed by Johansen and detailed by
Baecker in [1]. Figure reproduced and released under public domain by Magnus
Manske, 2009.

Research has shown that even though systems fulfills these principles,
and are built using knowledge learned from the field of CSCW, there are
no guarantee that they will be successful. There are too many unknown
factors that are hard to generalize. The success of a CSCW system is
based on a variety of factors, where the social context of the users using
the system and the specific problem domain it is employed to solve plays
a large role. For this reason it is difficult to predict whether a specific
CSCW systems will succeed or fail before actually trying it out [18].

8 CHAPTER 2. BACKGROUND

2.1.1 The CSCW Matrix

A result of the work done in the field of CSCW is a classification to
categorize different types of collaborative tools. The separation of differ-
ent tools into a CSCW Matrix was first proposed in 1988 by Johansen,
and a specific figure appeared in [1]. The idea is to separate collabo-
rative tools by looking at whether they enable collaboration to happen
between people residing at the same place (colocated), or people working
at different places (remotely). By also dividing the systems in those that
support real-time synchronous communication and those where communi-
cation happens asynchronous, we get a 2x2 matrix where systems can be
placed according to the details of their workings.

The CSCW Matrix, with a selection of different collaborative systems
placed in the different regions, can be seen in Fig. 2.1. It is important
to note that many systems can be placed in the intersection between the
different parts of the matrix if they provide functionality that enables
different types of communication regarding location and time.

2.2 Google Wave

Google Wave is a specific implementation of what Google sees as the future
of communication and collaboration over the Internet. It is thought of
as a successor to e-mail, and is marketed as ”e-mail reinvented in the
twenty-first century” by its developers. And by looking at the different
features, it can also be seen as a merging of the concepts behind different
communication paradigms such as e-mail, instant messaging and wiki-
systems [30].

One of the ideas of Google Wave is that it should be a platform in
which developers are given the power to extend the system in different
ways to facilitate communication and collaboration. Thanks to this flex-
ibility, the end result will be that communication that happens through

2.2. GOOGLE WAVE 9

this new system is happening in a richer and more user-friendly way than
communication happening over older mediums it is meant to replace [29].

Another big difference between e-mail and Wave is that on Wave, the
entire conversation is stored on a server. Hence the client just has to
retrieve the small deltas that happen when people contribute to the con-
versation, instead of transferring the whole history every time, as many
people do when sending e-mails and quoting the entire thread. Each con-
versation is stored on the server of the user who started it, but is also
synced to the servers of other users participating in the wave.

Both the specific implementation of a Wave front end provided by
Google, and the details of the infrastructure that lies behind it, is fairly
new. It was first revealed at a conference hosted by Google in May 2009,
and was unavailable to regular users until September the same year, when
a technical preview was released on an invite-only basis. In May 2010,
Google Wave was finally released as a Google Labs product, and registra-
tion is now open to all [20].

2.2.1 Google Wave as a CSCW system

Google Wave is an idea that fits perfectly with the description of a CSCW
system. But if one tries to position Wave in one of the four corners of
the CSCW Matrix, one gets a problem with which one to pick. In a
way, Wave is a perfect example of a CSCW system that positions itself in
the intersection point between the four different classifications. Wave is
suitable to use as a same time/same place system, where it can be used as a
way to share information between participants at the same location real-
time. The real-time component also facilitates the same time/different
place component. It fits into the different time/same place category as
well, since it is ideal for task listings and such functionality. And since
Wave also allows asynchronous communication, it fits in to the different
time/different place category as well.

10 CHAPTER 2. BACKGROUND

2.3 Wave - the Open Source version

Despite the fact that Google Wave is a product introduced and developed
by Google, it is important to note the openness of the development. As
mentioned, Google sees Wave as a possible successor to e-mail, and to
make that happen they have decided that the technologies behind Wave
should be open sourced [5].

2.3.1 Terminology

To be able to distinguish between the specific implementation provided
by Google, and the open source version which can be deployed by anyone,
we will use different terms when describing them:

• Google Wave: This term will be used to describe the commercial
product developed and hosted by Google. As an analogy, this is
what Google’s GMail is to the e-mail platform.

• Wave: This term is used to describe the open source part of the
platform. This includes the specifications of the communication pro-
tocol, the extension APIs and development methodologies, and the
specification for server and client requirements. To use the same
analogy, this is what SMTP, POP, IMAP and different other speci-
fications are to e-mail.

Google has coined a few new terms when they created Wave, and it
is important to know them to be able to distinguish between the different
parts of a conversation happening in Wave. This is outlined in Fig. 2.2.

• Wave (capitalized): Refers to the whole communication system.
Google Wave is here the specific implementation of Wave made by
Google.

2.3. WAVE - THE OPEN SOURCE VERSION 11

• wave: Refers to a single threaded conversation, hosted by a Wave
server. This conversation can have several participants, and the wave
is federated to the Wave servers of all participants.

• wavelet: Inside each conversation, the participants can create sev-
eral distinct threads. Each of these is called a wavelet, and lives
inside of the single wave. It is important to notice that inside a
wave with a lot of participants, one can create a wavelet with just
a subset of these as participants. This wavelet is then just synced
between the servers of these distinct participants.

• blip: Each distinct message posted by the participants is called a
blip. This lives inside a wavelet, and they can be nested inside each
other.

2.3.2 Different open sourced parts

The approach taken by Google is to wait with open sourcing the different
parts until they become polished, to avoid confusion. As of now, the
following parts are either open sourced already or in the process of being
open sourced. The license used for this code is the Apache 2.0 license [10].

The Operational Transformation code, with test suite

The Operational Transformation code is the part responsible for the way
collaboration works in Wave. As part of the code for concurrency control,
it is the ”heart and soul of Wave’s collaboration” [3]. Wave is based on
an idea that most of the editing work will be done and represented locally
to provide a high level of interactivity. To be able to synchronize all the
different changes between the servers and then to the end users, deltas of
the changes need to be distributed in a fast and atomic way.

12 CHAPTER 2. BACKGROUND

Figure 2.2: The different parts of a wave, diagram from [12]

Google has released this code as open source to enable other parties
creating Wave servers to be able to reuse it, since it is important that
all servers federate the changes in the exact same way. Any little dif-
ference can propagate since there will be a large number of change deltas
distributed over the lifetime of a single wave. They will also release a com-
prehensive test suite to aid developers creating their own implementation,
or porting the code to other languages [3, 5].

Underlying Wave Model

The Underlying Wave Model is the code that provides the data structures
necessary to hold all data related to Wave. This is also a fairly complex

2.3. WAVE - THE OPEN SOURCE VERSION 13

matter, since Wave provides a complete history of the activity related to
every single wave [3].

There is a difference between holding the waves in memory when one
needs to perform operations on them, such as applying a delta provided
by the operational transformation code, and storing them for later re-
trieval. The model aims to solve both these problems, and by releasing
it as open source, Google takes away much of the burden of constructing
suitable data structures from developers aiming to create Wave clients and
servers [4].

A client/server prototype

To provide a reference implementation of the two previously mentioned
parts, Google has also provided a prototype of a server and a client. These
are fairly simple at this time, for once the server only holds the waves in
memory, it can’t store them in a reliable fashion. The client is a command
line interface version of Wave, aimed at showing that Wave clients can be
coded for any platform - it is not just a web based tool [3].

Even though these prototypes are fairly simple, they show of the pro-
tocols and data structures, and hence act as a working demo of the other
open sourced code.

The Wave rich text editor

Wave provides a way to annotate the text in a wave to make changes to
its appearance. This can be done using an interface similar to the ones
one find in rich text editors such as Microsoft Word. Since Google Wave is
a web based product, some sort of JavaScript code is needed to allow for
such functionality in the browser. In May 2010, Google open sourced this
code to let people use it as a reference implementation when developing
their own Wave clients [20].

14 CHAPTER 2. BACKGROUND

2.4 Wave Federation Protocol

Wave is meant to be a highly cooperative environment, with a strong fo-
cus on real-time updates of the content. To be able to achieve this, a new
protocol was needed. The proposed protocol is called the Wave Federation
protocol [2], and is an extension of XMPP.

Extensible Messaging and Presence Protocol (XMPP) is an open
protocol based on XML, created for facilitating real-time message passing
and presence control. It was formerly named Jabber, and has mostly been
used to power instant messaging programs [11].

The Wave Federation protocol is open and makes it possible for anyone
to be a Wave provider. Just as it is the case with mail of today, where
companies can provide a mail server as a service to its users or users can
host one themselves, anyone with the interest to do so can also set up
a server which acts as a Wave server by speaking the Wave Federation
protocol.

Even though the full specification for the protocol is still a work
in progress, it is published as a proposed standard through a series of
whitepapers [26, 4, 33, 22, 32, 25].

2.4.1 Handling multiple servers

To be able to handle the unlimited amount of servers which can possibly
participate in any single wave, the protocol is designed with a highly
decentralized architecture in mind. Each server has to have a unique
identifier, in most cases this will be a URL. To uniquely identify a single
wave, this URL is used as an identifier in conjunction with an identifier
unique only on that server. This makes it easy to have unique identifiers
without each server having to negotiate this with each other [26, 2].

2.5. API’S FOR EXTENDING WAVE FUNCTIONALITY 15

Each wave is owned by the server of the user who started it, and the
wave is then called a local wave on this server. Through the use of the
Wave Federation protocol, this wave is kept in sync with the servers of
other participating users. The wave is called a remote wave on these
servers.

The security model is also improved over the basic implementation
in XMPP. This is mostly done to improve the verification of identities,
and aims to make it impossible to perform a man-in-the-middle attack.
Where XMPP only specifies security on the transport layer, the Wave
Federation protocol takes this one step further and provides end-to-end
security between users [22, 32].

2.5 API’s for extending Wave functionality

One of the design philosophies of Wave is that the basic functionality
should be fairly simple, and just contain the essence of what is needed for
any type of conversation and collaboration [30]. Instead of including func-
tionality for special requirements directly into the platform itself, there
exists API’s which provides any developer with the tool to extend the
product to fit their needs. This platform is called the Extension API’s.

To let users install an extension in Wave, the developer provides an
Extension installer. This is a manifest which specifies which back-end
elements are included in the extension package, and how users can interact
with them using new front-end elements. It is possible to install parts of
an extension without having to package it as an Extension installer as
well, but this is mostly intended as a feature to ease development.

There are two types of extensions one can develop, and both serve
a different purpose. The technologies utilized to develop them, and the
different possibilities one have by choosing either one of them is outlined
in Table 2.1. It is important to note that one in many cases needs to

16 CHAPTER 2. BACKGROUND

Robots Gadgets

Coded using any language, official li-
braries for Java and Python.

Coded using web technologies such as
JavaScript, HTML and CSS.

Runs at a centralized server. Runs locally at the client.
There can only be one single instance
of a robot in one single wave, but at
the same time there can be many dif-
ferent robots participating in a single
wave.

There can be an unlimited number of
instances of a gadget within one single
wave.

A robot is a participant in the wave
just as any other human participant,
and have the same capabilities.

A gadget have limited possibilities,
and can’t modify a wave, it can only
access it’s own content. In addition
it can detect when people/robots join
and leave a wave.

A robot can add, remove, and modify
gadgets.

A gadget has no idea whether partic-
ipants of a wave is human beings or
robots, and hence can’t treat robots
in a special way.

Table 2.1: The key differences between the two types of Wave Extensions; Robots
and Gadgets [13].

combine them to create a solution for the problem one tries to solve.

2.5.1 The Gadget API

As mentioned in Table 2.1, a gadget is a single block of functionality that
lives inside a wave, in one or multiple instances. The gadget is shown
as a border-less rectangle inside a single blip to be able to blend in with
the other regular content. It reacts to user input just as any other web
content, since it is based on HTML and CSS. As a side note, it is also
possible to embed other content here through browser plugins, just as
one would on any other HTML site. The gadget also has a way to store
text, and this is hidden and only available through the gadget code. In
addition to this, one can also store data that are totally anonymous on

2.5. API’S FOR EXTENDING WAVE FUNCTIONALITY 17

a per-user basis. Hence one can hide data and only show it to specific
users, enabling gadgets for different scenarios such as anonymous voting
and games [14, 13].

There are two different ways a gadget can be added to a wave:

1. A user can add it anywhere in a preexisting wave either by using
a toolbar button previously added through the use of an Extension
Installer, or by adding it using the universal gadget embedder com-
bined with the URL to the XML specification of the gadget.

2. A robot can add the gadget when it is added as a participant to the
wave, or at a later time as a response to a specific event.

Difference from regular Google Gadgets

Google has a framework for embedding dynamic content on websites called
Google Gadgets. When they set out to specify how gadgets should work
in Wave, they utilized this specification. But due to the nature of Wave,
gadgets here needed an expanded set of capabilities. The main difference
is that a gadget coded specifically for Wave has a way to persist data.
This data storage is a hidden part of the wave, and is shared among all
participants (or only the creator for the per-user data-store). This makes
it easy for developers, since the data of their gadget is distributed to
users automatically. This also makes gadgets play nice along with the
playback capabilities of Wave, since it just shows a previous snapshot of
the underlying data [14].

Gadgets coded specifically for Wave also have the possibility of detect-
ing all participants of the wave, and can also call a function to find out
which user is currently viewing it.

18 CHAPTER 2. BACKGROUND

XML Format

All the code of a gadget is packed inside an XML file. The basic structure
of this file is the following:

1 <?xml v e r s i o n=” 1 .0 ” encoding=”UTF−8” ?>

2 <Module>

3 <ModulePrefs t i t l e=”Example gadget ”>

4 <Require f e a t u r e=”wave” />

5 </ModulePrefs>

6 <Content type=”html”>

7 < ! [CDATA[
8 HTML, CSS AND JAVASCRIPT GOES HERE
9]] >

10 </Content>

11 </Module>

This code is mostly boilerplate code, the important thing to note is
that one can add additional Require-tags to specify features the gadget
needs. All the important code of the gadget is embedded in the CDATA-
tag.

Storing state information

The data storage capabilities of a gadget designed specifically for Wave is
based around a state-object which can store key and value-pairs. This is
stored in a textual way, but to simplify it is available through JavaScript-
functions. To store a change in the state based on some user input, one
calls a method named submitDelta(delta), which takes as input an array of
the key-value-pairs one wants changed. On can also call a method called
storeValue(key, value) to store a single value. This makes it possible to
specify an atomic ”transaction” of all the changes one wants committed,
and Wave then makes these changes.

One of the main advantages of Wave is that users can contribute on
the same message at the same time. This should also be the case for

2.5. API’S FOR EXTENDING WAVE FUNCTIONALITY 19

gadgets; even though multiple users interact with it at the same time, and
hence changes the state simultaneously - it should work. This is mostly
handled by Wave, since two state changes performed at the same time will
be resolved as long as they donŠt change the same keys. But the developer
also has to take this into consideration when designing the gadget, and
not assume that all changes will go through.

Another important thing to note is that one should use a callback
function to do the changes in the GUI based on user input that changes
the state. This delta is propagated to all the participants of the wave,
including the user who made the change. Hence one can combine the code
that reflects changes the user does himself, and changes coming from other
users.

2.5.2 The Robot API

The Wave Robot API is a collection of tools that let developers create
a robot which can act as any other participant in waves. There is no
difference between human participants and robots in Wave, they have
the same capabilities and there is no visual distinction between them in
the user interface. Since they can be deployed to any domain, there is
no way to see that a participant is a robot by looking at its address.
The same applies for regular users, which will have an id on the form
of username@googlewave.com or username@wavesandbox.com if they are
using the service provided by Google, but can have any other address if
they are registered on another Wave provider.

This similarity is intentional, since a part of the vision of Wave is that
humans and robots should be able to collaborate and communicate in the
same manner that humans do with other humans. Robots can then aid
humans in their communication, by doing routine tasks and other things
that is easier and faster to do programmatically.

20 CHAPTER 2. BACKGROUND

Communication between Wave servers and robots

While humans communicate with Wave using a Wave client, robots com-
municate using a protocol to interact directly with the server. This proto-
col is called the Wave Robot Wire Protocol. It is based on JSON Message
Bundles and JSON-RPC (JavaScript Object Notation - Remote Procedure
Calls). Events happening at the Wave server are communicated to the
robot in a message bundle, and responses to these events are transferred
to the server using remote procedure calls. There also exists functionality
in the protocol to initiate actions without the server first communicating
an event. This is called the Active Robot API [15].

To make it easier to develop robots, Google provides client libraries
that abstracts away the protocol and instead lets you focus on the code
needed to handle events. Libraries for Java and Python is provided, but
since the protocol specification is open, anyone can create libraries for any
language.

Java library for events

The Java Library is based on a model where there exists an abstract class
containing handler methods for all the events a robot can receive. The
programmer can then easily extend this class and override any methods
he wants. This effectively means that the methods that get overridden
represent the list of events the robot is interested in. When one deploys
the robot, a file called capabilities.xml is created. This file specifies which
events the robot is interested in, which helps reduce the load on the Wave
server since it can cache this file and afterwards just send out events to the
robots that are actually interested in them. The strong coupling between
the method overrides and this file makes it easy to create programmati-
cally [16].

The different events a robot can listen to is listed in Table 2.2. To be

2.5. API’S FOR EXTENDING WAVE FUNCTIONALITY 21

Event Description

WaveletBlipCreated Event triggered when a new blip is created.
WaveletBlipRemoved Event triggered when a blip is removed.
WaveletParticipantsChanged Event triggered when participants are added

and/or removed from a wavelet.
WaveletSelfAdded Event triggered when a robot is added to a

wavelet.
WaveletSelfRemoved Event triggered when a robot is removed from

a wavelet.
WaveletTitleChanged Event triggered when the title of the wavelet

has changed.
BlipContributorChanged Event triggered when contributors are added

and/or removed from a blip.
BlipSubmitted Event triggered when a blip is submitted.
DocumentChanged Event triggered when a blip content is

changed.
FormButtonClicked Event triggered when a form button is clicked.
GadgetStateChanged Event triggered when the state of a gadget

has changed.
AnnotatedTextChanged Event triggered when text with an annotation

has changed.

Table 2.2: Events that can be catched using the Java Client Library method
overriding. Information from [16].

able to do something in response to the event, the robot needs data about
the blip, wavelet or participant the event has happened to. A way to
reduce bandwidth is to be specific about what scope you need data about.
Table 2.3 summarizes the different scopes a robot can ask for when it gets
an event. The default scopes that will be delivered if nothing are specified
are PARENT, CHILDREN, ROOT, SELF.

22 CHAPTER 2. BACKGROUND

Scope Description

PARENT Indicates that the event should pass the parent data.
Note that PARENT makes no difference to Wavelet
events.

CHILDREN Indicates that the event should pass any children of
the event’s level. For Wavelets, this context passes
all child Blips.

ALL Indicates that the event passes all associated data.
SIBLINGS Indicates that the event passes any siblings. For

Blips, this context will pass data for all sibling blips
within the Wavelet.

SELF Indicates that the event only passes information per-
taining to itself.

ROOT Indicates that the event only passes information per-
taining to the root blip.

Table 2.3: The different context scopes an event can return data for. Informa-
tion from [16].

Handling of operations

In response to events, the robot can do any number of operations on the
wave’s content. All operations are performed on the server, so information
about the desired changes have to be transferred back to the server before
they are applied. This is made easy when one uses the Java client library.
All the changes are performed as if they were done locally, using text
editing methods. These methods don’t change the wave immediately;
instead they act as a gateway, translating calls to them into a JSON
format which is then sent to the server for execution.

All operations are done on individual blips, and is basically simple text
altering operations. There are two parts to this, first one needs to apply a
selector method to choose a subset of the text, and then one uses an action
method to alter the text. The following selector methods can be used:

2.5. API’S FOR EXTENDING WAVE FUNCTIONALITY 23

• all(element/text) selects all instances of the matching text string
or element (e.g. a gadget type).

• first(criteria) selects only the first instance of the matched criteria.

• at(index) selects a specific position in the text, zero-indexed.

• range(start, end) selects a specific range in the text, zero-indexed.

After selecting a subset of the text, one can then apply one of the
following methods:

• insert(element/text) inserts the element or text passed at the
start of the selection.

• insert after(element/text) inserts the element or text passed at
the end of the selection.

• replace(element/text) replaces the selection with the passed tex-
t/element.

• delete() deletes the selected text.

• annotate(name,value) annotates the selected text with the passed
name and value-pair. This can either be a hidden meta-data about
the selection, or can alter the visible appearance.

• clear annotation() removes any annotation for this specific selec-
tion.

• update element(value) performs an update of the element at the
selection with the passed value.

As an example of how this works, these three examples shows adding
a gadget at position 12, replacing the text between position 4 and 8 with
replacementText, and last replacing all instances of the word foo with the
word bar.

24 CHAPTER 2. BACKGROUND

1 b l i p . at (12) . i n s e r t (e lements . Gadget (URLTOGADGET)) ;
2 b l i p . range (4 , 8) . r e p l a c e (” replacementText ”) ;
3 b l i p . a l l (” foo ”) . r e p l a c e (” bar ”) ;

The Active Robot API

The first version of the Robot API was only capable of responding to
events. With version 2.0 of the API, it’s also possible to initiate actions
based on events happening outside of the Wave platform. This new tech-
nology is called the Active Robot API. To be able to do this securely, one
need to register the Robot with the Wave server to be able to exchange
cryptographic keys. This makes the server able to identify the robot, and
then only accept change requests from the trusted robot server. When au-
thenticated, the robot then has the same capabilities as when it responds
to a specific event. In addition, it can also create entirely new waves.

Hosting robots on a server

There are two possibilities for hosting robots. The first is to host the robot
on your own server. By doing this, you can use any language to code the
robot, by manually handle the protocol. You can also download either the
Java or Python Robot Library, and deploy that on the server.

Another possibility is to host the robot on Google’s infrastructure.
This solution is called Google App Engine. Developers of robots sign up
for this service, and will be able to register up to 10 different domains
for free, each which can run one single robot. The URL’s are in the form
selectedName.appspot.com, and the created robot then gets the address
selectedName@appspot.com. This environment is free for simple uses, but
for large scale robots, one needs to buy a plan that gives additional band-
width. The tools provided integrate well with Eclipse, and deployment of
new code is as easy as a single click.

Chapter 3
User service composition in Wave

This chapter starts off by looking at the general idea of user service com-
position in Sect. 3.1. We then move on to look at how this principle can
be applied to the field of communication and collaboration in Sect. 3.2. In
Sect. 3.3 we take a look at how one can find existing components to utilize
in waves. Lastly, we create two examples of compositions users easily can
make using Wave: an example of collaboratively proposing and deciding
between selectable objects in Sect. 3.4, and a exploration of the differ-
ent compositions developers can create to utilize Wave to plan software
development in Sect. 3.5.

3.1 User service composition

We use the term ”user service composition” as a way to describe systems
that let users set up the system in different ways according to their needs.
Instead of designing a ”one suit fits all”-system that are minimalistic and
just suits the basic needs of the user, or doing the opposite and designing
a comprehensive solution that tries to solve everything, a better approach
is to design a user configurable system. This makes the solution easy

25

26 CHAPTER 3. USER SERVICE COMPOSITION IN WAVE

for new users to grasp, since the basic functionality will be fairly simple.
At the same time, it makes the system a good solution for power users,
since they will find it easy to add additional functionality as their needs
demands it. User service composition also makes the solution grow with
the users, hence as novice users grow into power users, the service grows
with them, and they can stay with the solution instead of switching to
gradually more complex solutions.

Wave is based on the idea that it should be fairly simple and minimal-
istic, but as previously discussed in Chapter 2, there are different types
of APIs and extension points that lets developers create plug-ins to the
system. Since these possibilities exists, one can look at Wave as a system
that lets users compose services to suit their needs. One can look at Wave
as the culmination of user service composition-systems, since Wave lets
each user compose each new wave in an unlimited number of ways. Hence
there are almost an endless number of possible tasks Wave can be used
for.

3.2 Using service composition in communication

Today, online communication and collaboration are based around a lot of
different systems that each has their different strengths and weaknesses.
The most prominent examples are e-mail, which provides a very simple
text-communication, and instant messaging that provides real-time tex-
tual communication, often only between two parties. There are also a
lot of different systems that are based more around the idea of collabo-
ration instead of communication, like online wiki systems, document col-
laboration, and various other systems specifically tailored to suit different
business needs.

Wave is an attempt to unify these different types of systems into one
core communication and collaboration platform. The only sensible way

3.3. EXISTING SOLUTIONS: THE EXTENSION GALLERY 27

to do this was to make the core product fairly simple, but at the same
time create many points where developers can add extra functionality that
enriches the platforms capabilities. The way this was done was to let the
actual users select which components they want to add.

Users of Wave can install extensions into their Wave account, making
them easier to access later. The actual usage of the different extensions
happens in a ”per wave”-fashion. This means that the user service com-
position is done every time the user needs to initiate communication and
collaboration with some other people. The user who initiates the com-
munication starts the wave, adds the desired components needed for the
communication, and invite other users to participate in the wave. If an-
other participant has write-rights to the wave, he can also add additional
components to the wave. This makes Wave a truly multi-user service
composition system.

To automate the process even further, there is possible to define tem-
plates one can easily use to initiate a specific type of communication or
collaboration. This makes it easy to define which user selectable compo-
nents one needs one time, and then having the whole service composition
process automated every other time the user needs this set of tools in the
future.

Another way to automate the process is to include robots that can do
some of the repetitive tasks of configuring the service composition. These
robots can be configured to respond to certain events, and can hence
improve the communication and collaboration by automatically adding
service components into the wave when it deems them necessary.

3.3 Existing solutions: The Extension gallery

As mentioned in Sect. 2.3, Wave is largely based on open source solutions.
This also applies to the extensions developers can create for user service

28 CHAPTER 3. USER SERVICE COMPOSITION IN WAVE

composition. There are no formal requirements extensions have to comply
to before they can be used inside Wave, the only requirement is that they
resist on a server that are accessible by Wave. This means that developers
can host their gadgets on their private server, and just provide users with
an URL to the extension. The same applies for robots.

Even though the ecosystem surrounding extensions are free and open,
Google have provided a solution for developers who want to spread their
extensions to end users. This solution is called the Extension Gallery.
Basically, this is just an online directory of extensions that developers have
submitted which is then checked and approved by Google. By browsing
through this gallery, one can find extensions for many different purposes.
This makes it easier for users to be able to perform service composition,
since they just have to find existing extensions that suits their needs, and
by doing this don’t have to create them themselves.

3.3.1 Different ways to access the content in the Extension
gallery

As of today, the Extension gallery provided by Google is mostly meant
for developer use. The reason for this is that Wave and Google Wave
still is in the early phases of development. The version of Wave users can
use is just a preview-edition, and hence the whole ecosystem surrounding
the platform is not ready. For these reasons, the Extension gallery is
mostly focused on the idea that developers should use it to share ideas
and techniques. As Wave matures, so will the Extension gallery, and
features targeted at end users will be developed [24].

This means that there today are quite a few different ways one can
access the content in the Extension gallery. Not all extensions have all the
possibilities, and as the platform matures some of these possibilities will
most likely disappear for some extensions. The different ways to access
extensions are:

3.3. EXISTING SOLUTIONS: THE EXTENSION GALLERY 29

• Textual description, video preview and user comments: Each
extension have its own page that provides the necessary information
about the extension.

• Live demo: This provides a link to a public wave containing the
robot or gadgets that the extension consists of. This lets you test
out the extension directly.

• Source code: For gadgets, the source code always have to be avail-
able, since gadgets are based on technology that runs on the end
users computer. For robots, the inclusion of the source code is not
necessary since it runs on a server, but many extensions in the gallery
provides it nevertheless.

• Gadget XML URL / Robot Address: For gadgets, the user
needs the URL to the XML describing the gadget to be able to
install it manually. Robots use an address resembling an e-mail
address to add them to a wave.

• Extension installer: Many extensions also provides an Extension
installer through the Extension gallery. This is just a link to a special
form of wave, that lets the user install custom icons, templates and
contacts to their Wave account. This is often the preferred way to
add an extension for most users, since it is most user friendly and
also plays nicely with the integrated extension management solution
in Wave.

By using the different ways to add extensions one finds in the Extension
gallery, one can combine the work of many different developers into a
totally user composable service solution.

30 CHAPTER 3. USER SERVICE COMPOSITION IN WAVE

3.4 Example composition 1: Collaborative movie
night voting

Consider the scenario that a group of people should all attend an event
where one has to select between multiple possible activities. One simple
example of this is a ”movie night”. Everyone wants to go see a movie, but
you need to decide which film you are going to see. For this purpose, online
communication is good. But by using a system that lets you compose the
service you need to make the process specifically tailored to your need,
you can make the process easier.

By doing this in Wave, there are a few pre-existing components you
can include:

• The IMDB Robot: This is a robots that automatically transforms
any IMDB-link (The Internet Movie Database) into a nice short
summary of the movie, containing the poster, rating and prominent
actors. By integrating this information, people can make their choice
just by glancing at the wave. And if they need more information
about the movie, they can just follow the link.

• The Rating Robot: This robot automatically adds a system that
lets the participants of the wave easily vote on the different wavelets
in the wave, either by pressing a +1 or a -1 button.

By including these two robots, and then write a short text instructing
the participants to paste links to movies they propose in new wavelets,
you have composed a complete system for deciding between movies. The
result of a wave like this is shown in Fig. 3.1

This solution is also fairly customizable. You can use the same ap-
proach to decide between any type of items, just by including the rating
robot and then instructing the participants to post each proposal as a

3.4. EXAMPLE COMPOSITION 1: COLLABORATIVE MOVIE NIGHT VOTING31

Figure 3.1: Screenshot of Wave user composition Use Case: Wave used for
selecting films for a movienight.

32 CHAPTER 3. USER SERVICE COMPOSITION IN WAVE

single wavelet. Either one can just use textual proposals, or one can in-
corporate robots that fetch information from other external sources to
help the participants take informed choices.

3.5 Example composition 2: Wave as an aid for
developers

Developers use a wide variety of tools to keep track of development, discuss
potential new features, and keeping track of who does what and when
the various tasks should be finished. Bug tracking systems, physical and
digital ”scrum-boards”, meetings to discuss new features, interacting with
users using a variety of channels, and systems for monitoring progress is
just a few examples of the different needs they have to find a solution to.

A user composable system would be ideal for developers. For once,
developers are the pickiest about the software solutions they use - they
won’t put up with badly working solutions. Also, developers are the most
suited group to pioneer this sort of solutions, since they are the most
technically competent users out there, and hence is a good group to beta-
test a new system for user composition.

By using a variety of extensions from the Extension gallery, and prob-
ably also implementing a few themselves to suit their exact needs, devel-
opers can gain a lot from using Wave. Shown in Fig. 3.2 are just a few
possible solutions that can be integrated into one single wave to help out
in the development of a single new feature for a system. The gadgets
shown are:

• A digital scrum board: This gadget lets the participants add user
stories to the backlog, and also add different sub-tasks to each user
story. The tasks can be assigned to different user, and moved along
the scrum-board by using drag and drop. This gadget fills most of

3.5. EXAMPLE COMPOSITION 2: WAVE AS AN AID FOR DEVELOPERS33

the needs of developers using the scrum process [31].

• A progress indicator: To track progress of the feature, a progress
indicator can be added, making it easy to change the status using
only a single click. Creative developers can extend this gadget to
suit their needs better, for example by making it track the progress
automatically based on some sort of input, either from another gad-
get in the wave or from an external system using the Active Robot
API.

• Polling gadget: When the team needs to decide something, they
can include a gadget that facilitates the decision making. There are
many different solutions for this in the Extension gallery, an example
is anonymous polling.

Not shown in Fig. 3.2 is the following extensions types that also can
aid in a developer wave:

• Translation robot: By utilizing a robot that automatically trans-
lates the blips of different users into a common language, develop-
ers from multiple countries can all work together without having
to use external translation services before they can communicate.
Some robots even include real time translation features, meaning
that users who speak other languages can participate in the instant
communication Wave provides.

• Integration with bug tracking systems: There are different
active robots in the Extension gallery that automatically creates
new waves as bugs are created in the external bug tracking system.
This makes it easy to use Wave as a communication platform for the
bugs, but at the same time maintaining the legacy system.

34 CHAPTER 3. USER SERVICE COMPOSITION IN WAVE

Figure 3.2: Screenshot of a wave used by developers to collaborate on a new
feature in a software system.

3.5. EXAMPLE COMPOSITION 2: WAVE AS AN AID FOR DEVELOPERS35

• Integration with e-mail: Software companies often have existing
solutions for dealing with user requests. By integrating Wave with
e-mail, one can automatically get mails users send into Wave, to
make it easier for the developers and support staff to discuss and
collaboratively come up with a suitable response. Sending out the
response can also be done automatically from inside Wave.

As these examples show, the possibilities of Wave are almost endless
when it comes to simplifying a developer’s workflow. And by having the
developers using the system, the system just gets better, since this is this
group that is capable of extending the system and hence make it even
more suitable for normal users.

36 CHAPTER 3. USER SERVICE COMPOSITION IN WAVE

Chapter 4
Organizing meetings
collaboratively

In this chapter, we tackles the problem of collaboratively scheduling, plan-
ning and holding physical meetings. We explain the problem in greater
detail in Sect. 4.1, and look at existing solutions in Sect. 4.2. Next, we
look at some of the advantages can gain by using a highly collaborative
approach in Sect. 4.3. In Sect. 4.4 and Sect. 4.5, we explain the process of
developing two gadgets for the Wave platform that can aid in the process
of solving the problem, and in Sect. 4.6 we explain how we integrate these
gadgets with the Wave platform.

4.1 What do we want to solve

In all kind of collaborative work, having physical meetings between differ-
ent people on the teams are of crucial importance. Even though it now
exists ways to meet virtually, the old form of a physical meeting is still
used in a large fashion. And even when the meetings takes place using

37

38 CHAPTER 4. ORGANIZING MEETINGS COLLABORATIVELY

chat or video conferencing tools, many of the old necessaries still exists.
There are essentially three phases of a meeting: the preparation before

the meeting, the actual meeting, and the aftermath of the meeting.

4.1.1 The planning phase

To be able to hold a successful meeting, one needs to do some prepara-
tion. The first and foremost problem is determining who will attend the
meeting, and then sending out invites. In doing this, one can either take
an approach where one determines a date and time beforehand, and then
makes the people who have this time slot free attend. Another approach
is to discuss with the different participants who are attending the meeting
to find a suitable time where most people can attend.

In addition to this scheduling problem, one also needs to plan what
one should talk about in the meeting. Often, it is the meeting scheduler
who decides on the agenda for the meeting, and if others need to come
with proposals for agenda items, they have to coordinate this with the
scheduler in some way.

4.1.2 The meeting phase

When it is time to hold the meeting, there are a few requirements that
often is put in place for the meeting to be successful. The first is that the
schedule should be presented to all the participants in some way. Often,
this schedule is sent out beforehand as well, but it also needs to be present
at the meeting.

During the meeting, it is often preferable that someone takes notes.
This is useful both for reviewing the meeting afterwards, to be able to
have a way to remember everything that took place in the meeting, but
also serves as a way to let people who could not attend the meeting get
up to speed on the matters discussed.

4.2. EXISTING SOLUTIONS 39

It would also be ideal to have a way to note down the progression of the
discussion. By doing this, it is easier to grasp not only the end result, but
also the progress that made the group take that decision. Sometimes, it
would also be useful to have systems in place that facilitates the meeting.
Examples of this is solutions that lets the participants vote on ideas (open
or anonymously), and tools that facilitates brainstorming.

4.1.3 The review phase

After the meeting, one need to distribute the notes to all parts who should
have access to them, and might also need to review the results and have
a way to store them for later retrieval. Some of the more formal meetings
might also need to have some kind of documentation system put in place,
that ensures all parties that votes and decisions which happened during
the meeting were conducted in the right way.

4.2 Existing solutions

The problem of handling meetings in an efficient manner has been tackled
by a lot of different vendors. There are different existing solutions for the
various phases outlined in Sect. 4.1. To be able to determine what to look
into in our solution, we will analyze the different solutions to find their
strengths and weaknesses.

4.2.1 Clientside software solutions

There exists a wide variety of solutions for scheduling meetings based on
e-mail. These are often integrated in the client-software that handles the
e-mail. Microsoft Exchange (with the client software Microsoft Outlook)
and Lotus Domino (with the client software Lotus Notes) are examples of
these types of solutions. These systems is largely based around the idea

40 CHAPTER 4. ORGANIZING MEETINGS COLLABORATIVELY

that one person should be responsible for handling the practical details
around the meeting, and should take care of the different aspects of the
organization manually [28, 27].

Systems like these are often well suited for use within one organization,
since the details of all employees’ calendars and contact details lie inside
one system. The organizer can then use tools to compare the calendars of
all the desired participants to determine which time slots is available in
each person’s calendar. By manually determining a time where most of
the participants are able to attend, the scheduler can then pick a time and
send out an invitation. These sorts of systems then rely on e-mail-replies
to let the attendees RSVP and the system will parse these e-mails in a
special way to keep the attendee list updated with the statuses.

To handle the agenda, the person responsible for the meeting needs
to get proposed topics from the participants either by e-mail or by some
other manual fashion. Before the meeting, this one person needs to take
all the different proposals and combine them to create the agenda.

After the meeting, this solution is also mostly based on the e-mail
format. A common practice is for one person to be responsible for taking
notes, and later distributing these to the other participants.

4.2.2 Web-based solutions

Quite a few vendors have created different web solutions to solve the prob-
lem of successfully plan and hold meetings. Some of these solutions are
specifically targeted at one of the aspects of the process, while others try
to be more of a universal solution.

Doodle is an example of a free web based product that tries to solve
the scheduling problem. It lets the creator propose a lot of different time
slots, and then provides a link which can be sent to all the proposed
participants. When they go to the site, they will be presented with the
different options, and can pick the ones that is available to them. After

4.3. ADVANTAGES OF USING A COLLABORATIVE APPROACH41

all participants have gone through this procedure, the person responsible
for the meeting can see the answers, and pick the time where most of the
participants can join. The rest of the planning is done manually [9].

There exist quite a few different tools that can be used to collabora-
tively create agendas and notes. Google Docs is an example of this, and
with the recent updates it lets participants concurrently work on the same
documents without big problems with syncing of the different changes [6].
The process of sharing the documents and keeping all the different re-
sources created for a single meeting organized can become a burden, since
Google Docs in mostly focused on creating documents, and not maintain-
ing a set of resources for a single event.

4.3 Advantages of using a collaborative approach

We believe the task of scheduling and executing meetings can be greatly
improved by using a highly collaborative platform like Wave. The core
idea of having a meeting is to get multiple people together to collaborate
on some task. To not let all of the participants collaborate in the same
manner on the digital platform hinders the whole idea of collaboration.

The solutions one have today makes the usage of digital tools very un-
collaborative, and hence it has become a norm to not use them during the
meeting, since this have a tendency to destroy some of the collaborative
nature of meetings. But by making the tools highly collaborative, this
trend can be turned. The goal has to be to make the tools so good that
they instead enrich the meeting.

There are some few key areas where today’s tools need improvements.
These are:

1. Collaborative scheduling: If one can make the scheduling solu-
tion simpler than the old process of manually picking a time, this
solution will be preferred. We want a single solution for picking the

42 CHAPTER 4. ORGANIZING MEETINGS COLLABORATIVELY

attendees, and then have the scheduling solution set up automati-
cally, with the invites automatically distributed, and the solution for
responding also automatically integrated.

2. Let the user be in control, but aid in the process: The pro-
cess of deciding a date after getting all the responses should still
be done manually to let the user feel in control and give room for
unplanned changes, but the task of picking the time and informing
all participants should still be as easy as a click on a button.

3. Collaborative agenda within the solution: By making it easy
for participants to give inputs to the agenda, and also collabora-
tively decide on what should be included, they will feel more of an
ownership in the meeting. This makes the meeting seem more like a
group-work, rather than something that one person has organized.

4. Make it easy to take notes: Instead of designating one person
to take notes of the meeting, one should instead distribute this work
among the participants. The solution should be able to automati-
cally create an outline based on the agenda, and make it easy for
each and every participant to add their bits to the notes. By making
the solution intelligent and adding in features that drags in relevant
data from external sources, the notes gets better and the meeting
can also progress faster since one immediately gets access to addi-
tional data. The solution can also aid in different cases, for example
by providing a way to hold anonymous votes right inside the notes.

5. Make the distribution of material automatic: By integrating
all the functionality inside one solution, one greatly eases the task of
distributing material. When one has picked the participants in the
beginning, the solution should automatically distribute everything
to everyone.

4.4. GADGET FOR TIME SCHEDULING 43

6. Keep record of everything: Since everything is integrated in one
solution, there should be fairly simple so retain the information for
later reference.

4.4 Gadget for time scheduling

The solution we end up creating is based on Wave. To be able to easily
schedule the meeting, we create a new gadget that can be included in a
wave to facilitate time scheduling. As described in Sect. 4.2.2, the website
doodle.com has come up with a great user interface for voting on different
time slots. We want to use some of the lessons learned from studying this
solution when we create the gadget in Wave.

First and foremost, we can see that a square representing each person
for a single timeslot is a good user interface paradigm. By having the
different time slots along the horizontal axis, the participants along the
vertical axis, and having each person-timeslot relation in the space between
these two axises, we manage to condense a lot of complex information into
a small and easily graspable space.

We also want to use the universally acceptable colors red and green,
where red is negative and hence means that the person can’t attend, and
green means that they can. By sticking to these conventions, we can make
the user interface uncluttered by not having to include that much help-text
and descriptions. We also include a gray square which just means that the
user hasn’t made a choice yet. This color is very modest, and just serves
as a way to keep the grid intact even before all users have decided upon
all timeslots.

One problem with Doodle is that there is no concise way to see who
haven’t answered the poll yet. Their solution shows just those who have
answered. This limitation is mostly based on the fact that the actual
sending of invitations is handled outside of the system. In the scheduling

44 CHAPTER 4. ORGANIZING MEETINGS COLLABORATIVELY

gadget we develop, we definitely want to tackle this problem and create a
solution that lets you easily grasp who have and who haven’t answered.
This means that we have to grab the list of persons from the wave partic-
ipant list, and show them all, even if they haven’t replied yet.

One important aspect of Wave is that everything can be changed at
any time, and that all changes are kept track of in a history that anyone
can look through at a later time. Hence we want our gadget to be able
to let users change their status for the different timeslots at any time. If
they can’t take a decision on one timeslot when they receive the invitation
to the meeting, it’s better to let them make their decision on all other
timeslots and still let them be able to keep that timeslot undecided. One
potential problem of letting all users change their status at any time is that
they can change their minds after a decision have been made regarding the
time of the meeting. But by having a tight integration with the history
feature of Wave, one can just go back in time and look at the history to
fix any misunderstandings. This problem can also be easily solved using
some lines of JavaScript.

4.4.1 Underlying data structure

To be able to store the data about the choices users makes regarding the
different time slots, we need a data structure. As outlined in Sect. 2.5.1,
Wave provides a simple solution to store state information from a gadget.
This information is hidden from the users, and can only be accessed by
the Javascript-code of the gadget. The way one stores data is to create a
structure consisting of key-value pairs, and then calling the submitDelta-
function to store them in the gadgets data store. The following example
shows how one sets (or updates) the key attending.

1 var stateChange = { ’ a t tend ing ’ : ’ no ’ } ;
2 wave . ge tS ta t e () . submitDelta (stateChange) ;

4.4. GADGET FOR TIME SCHEDULING 45

If you just need to change one value in the state store, you can use a
simpler function where you don’t have to initialize a stateChange-object:

1 wave . ge tS ta t e () . submitValue (’ a t tend ing ’ , ’ no ’) ;

One major limitation of Wave’s current state-storage mechanism is
that it only supports strings as values. This means that there is no simple
way to store a structured data set, like an array or an object. We have to
find some way to serialize the data structure we create to be able to store
it in a string.

As we discussed in Sect. 2.5.1, Wave provides good concurrency han-
dling, meaning that many users can interact with the gadget at the same
time as long as they don’t change the same keys in the underlaying data
structure at the same time. This means that if we store all information in
one complex data structure, and then serialize this and assigns it to one
key, we break this concurrency handling. We want to avoid this, and hence
have to take this into consideration when we design the data structure.

The ideal solution would be to have one key for each user; then we can
guarantee that the system will work with any number of concurrent users,
as long as each user is just logged in from one location at any given time.
We can indeed achieve this in this case, by storing each user’s attendee
statuses in separate keys. The code to create and store the data structure
is the following:

1 var currentUserID = wave . getViewer () . ge t Id () ;
2 var u se rS ta t e = {} ;
3
4 //Add i n f o about each t i m e s l o t to u s e r S t a t e
5
6 var s e r i a l i z e d U s e r S t a t e= JSON. s t r i n g i f y (u s e rS ta t e) ;
7 wave . ge tS ta t e () . submitValue (currentUserID , s e r i a l i z e d U s e r S t a t e)

;

46 CHAPTER 4. ORGANIZING MEETINGS COLLABORATIVELY

In the code above, we first find a suitable key for each user’s state
store. We just use the user ID fetched from wave, since this will be unique
for each user. We then create an object that can hold the key-value pairs
consisting of keys for each timeslot and values representing the attendee-
status of the user for that timeslot. Here we don’t assign any statuses,
meaning that each timeslot will be shown with gray. This is the initial
state of each user before they have made any decisions.

We then serialize the object to be able to store it as a string. We use a
serialization that converts the object to a JSON string. This is a standard
serialization, specified in IEEE RFC 4627 [8]. As of today, most browsers
have support for serialization and de-serialization of JSON through native
JavaScript functions. We could have used a fall-back technique to sup-
port browsers that doesn’t include this, but since the current Wave client
doesn’t support these browsers anyway, this is not necessary. Lastly, we
store this string in the key for the user.

The data structure for the different timeslots will have to be accessible
to all participants of the wave. But since this is not changed nearly as
frequently, this is an acceptable trade-off. To initialize this structure and
store it, we use the following code:

1 var newTimeslotTable = [] ;
2 var s e r i a l i z e d T a b l e = JSON. s t r i n g i f y (newTimeslotTable) ;
3 wave . ge tS ta t e () . submitValue (” t i m e s l o t s ” , s e r i a l i z e d T a b l e) ;

This code is mostly a simpler version of the code for the user state
storage, only that we here uses a table instead of an object, since we only
have to store single values, not key-value pairs. And we store it in the
timeslots key instead of a dynamic key that changes according to which
user is logged in. When a user adds a timeslot, we will go through the
following procedure:

1 //Find the t i m e s l o t to add
2 var form = document . getElementById (”newTimeForm”) ;

4.4. GADGET FOR TIME SCHEDULING 47

3 var newTimeSlot = form . newTime . va lue ;
4
5 var s e r i a l i z e d T a b l e = wave . ge tS ta t e () . get (’ t i m e s l o t s ’) ;
6 var t imes lo tTab l e = JSON. parse (s e r i a l i z e d T a b l e) ;
7
8 t imes lo tTab le . push (newTimeSlot) ;
9

10 s e r i a l i z e d T a b l e = JSON. s t r i n g i f y (t imes lo tTab l e)
11 wave . ge tS ta t e () . submitValue (’ t i m e s l o t s ’ , s e r i a l i z e d T a b l e) ;

Here we see the process one have to go through each time one wants
to change something in a serialized data structure. One have to find what
to change in the data structure, then fetch the serialized version from the
key and de-serialize it. Then one does the desired changes to the data,
and lastly serializes it and overwrites the old value of the key. The process
of changing a user attendee state is mostly the same, just with a bit of
complexity added to find the current user.

4.4.2 Calculating the number of possible attendees

A needed feature is to be able to easily see how many users can attend
the meeting at each proposed timeslot. One would think that this should
be a fairly trivial calculation to do, but since we have spread the data out
in many different keys to achieve great concurrency handling, we have to
do a fair amount of data fetching to calculate this number. The following
code does the task:

1 func t i on countPar t i c ipant s (t imeS lo t s) {
2 var p a r t i c i p a n t s = wave . g e t P a r t i c i p a n t s () ;
3 for (var t in t imeS lo t s) {
4 var count = 0 ;
5 for (var p in p a r t i c i p a n t s) {
6 c u r r e n t P a r t i c i p a n t I d = p a r t i c i p a n t s [p] . ge t Id () ;
7 var u se rS ta t e = JSON. parse (wave . ge tS ta t e () . get (

c u r r e n t P a r t i c i p a n t I d)) ;

48 CHAPTER 4. ORGANIZING MEETINGS COLLABORATIVELY

8 i f (u s e rS ta t e [t imeS lo t s [t]] == 1) {
9 count++;

10 }
11 }
12 // Output or s t o r e the count f o r t h i s t i m e s l o t
13 }
14 }

This code loops through all the timeslots to calculate how many users
have marked this as green (meaning they can attend). For each timeslot,
we have to loop through all the participants to check if they have marked it
green, and then increase the count by one. Lastly we need to reflect this in
the GUI, this code is omitted since it is mostly trivial HTML generation.

4.4.3 The final gadget

When one has the underlying data structure ready, most of the remaining
work is to create a GUI that can be used to access and change the data.
All the details of this are too much to include in this thesis, but most of
is fairly standard HTML and CSS, plus a fair bit of JavaScript to make
it as dynamic as possible. The result can be seen in Figure. 4.1, and by
installing the complete work of this thesis as explained later, you can also
test it out in Wave.

One important thing to note about the way the GUI is created is the
decision made about when one updates the GUI to reflect user actions.
There are two times the GUI needs to be updated: either when the user
himself does some changes it needs to react to, or as a result of someone
else also participating in the same wave doing some changes. Wave is
meant to be highly cooperative, and results of other usersŠ actions should
immediately be reflected in the GUI. Hence we have chosen to do all GUI
updates as a result of changes coming from the Wave server, and none as
a result of local events.

4.4. GADGET FOR TIME SCHEDULING 49

Figure 4.1: The final gadget for doing time scheduling

50 CHAPTER 4. ORGANIZING MEETINGS COLLABORATIVELY

What this decision means in practice is that we only have to have
one set of functions that updates the GUI. When a user does something
that causes some changes to content of the underlying data structure, the
action handler ships these changes to the Wave server, but doesn’t touch
the GUI. These changes are then propagated to all participants of the
wave, including the user who caused them. Then we can have a single
point of interaction with the GUI. It doesn’t matter if you are the user
who caused the change or if you just receive them, both users will see
the changes reflected at the same time (the network speed is the only
difference).

What this all means it that we have to write the code that sends the
changes to the server in a way that makes this process fast. One would
think that this roundtrip to the server causes the GUI to be sluggish and
unresponsive, but in practice this is not happening as long as one writes
fast and concise code.

4.5 Gadget for a collaborative agenda

As we have discussed earlier in this chapter, the approach taken by many
meeting organizer tools today is that one person have to be responsible for
the agenda, and have all other participants send him or her suggestions,
which is then incorporated into the agenda by this one person.

We want to take another approach, where the agenda is created col-
laboratively by all the participants of the meeting. All participants should
be able to see the agenda as it is created, and be able to add new items
to it as they see fit. Since Wave has powerful features for recapping the
history of a wave, we should be able to give people the power to do just
about anything to the schedule such as deleting items others have added,
with the confidence that one always is able to revert to an earlier state
should someone misuse their rights or accidentally delete something.

4.5. GADGET FOR A COLLABORATIVE AGENDA 51

Our solution will consist of a gadget that is fairly simple. It will list all
the items proposed by the different participants, and also allow anyone to
add new items to the list. It should also be possible to delete items from
the list, and anyone should be able to do this, regardless of who originally
added the proposal.

The user interface of the gadget should be fairly simple to not over-
whelm the user with too much needless information. In its simplest form,
it should just list the ideas, and hide all the details. These details can be
stored for later use, but should not be shown here.

As with the scheduling gadget, we have to be careful when designing
the backend of the gadget, to make sure it conforms to the architectural
principles of Wave regarding concurrent interaction with it by multiple
users and the gadgets ability to integrate well with the history-showing
replay-feature of Wave.

4.5.1 Underlying data structure

For the agenda gadget, we create a fairly simple data structure to hold
the agenda. We just need a few pieces of information about each agenda
proposals, namely the text of the proposals itself, and some metadata
about it, such as who created it and when it was created.

We will extend this gadget in later chapters when we introduce a robot
into the solution, so we need to keep that in mind when designing the initial
simple data structure. By using JavaScript objects for the storage of each
proposal, we are free to extend the data structure object as we see fit at
a later time.

For this gadget, the best solution is to let a single key hold the serialized
array of the different agenda items. The decision to do this has some
advantages, namely making it much simpler to do all the operations on
this list. One trade-off is that we lose some of the automatic concurrency
handling Wave provides. But since there is no way to store arrays in the

52 CHAPTER 4. ORGANIZING MEETINGS COLLABORATIVELY

underlying gadget data structure, this is a trade-off we have to live with.
When we create a new agenda item object as a response to a user

writing in the title and pushing a button, we do the following to fetch all
the relevant data:

1 var agendaItem = {} ;
2 agendaItem . agendaItemName = form . newSak . va lue ;
3 agendaItem . userName = wave . getViewer () . getDisplayName () ;
4 agendaItem . userThumbnail = wave . getViewer () . getThumbnailUrl () ;
5 agendaItem . timeSubmitted = wave . getTime () ;

Here, we first create a new empty object to hold all the data about
the agenda item. We then populate it with data, first the value the user
entered into the text field representing the description of the agenda item,
then the username and thumbnail picture of the user, and lastly the cur-
rent time.

As we discussed in Sect. 4.4.1, there are not much support for data
structures in the underlying storage model for gadgets in Wave. We
hence have to use a serialization method to be able to represent our data
structures as strings in the key-value data store for the gadget. Refer to
Sect. 4.4.1 for all the details about this procedure. As explained there, we
fetch the existing data and deserializes it, adds the new data to this, and
then serializes it again and stores it back into the same variable. The code
for this procedure is the following:

1 var e x i s t i n g I t e m s = JSON. parse (wave . ge tS ta t e () . get (’ agenda ’)) ;
2 e x i s t i n g I t e m s . push (agendaItem) ;
3 wave . ge tS ta t e () . submitDelta ({ ’ agenda ’ : JSON. s t r i n g i f y (

e x i s t i n g I t e m s) }) ;

4.5.2 The final gadget

With the underlying data structure in place, we can easily create a GUI
to present the agenda to the user. We simply loop through all the agenda

4.6. MAKING IT ALL COME TOGETHER 53

items in the data structure, and show them in the gadget. The code for
this is the following:

1 var items = JSON. parse (wave . ge tS ta t e () . get (’ agenda ’ , ’ 0 ’)) ;
2 for (var i in items) {
3 //Show t h i s agenda item in the GUI
4 }

As we explained in Sect. 4.4.3, all the code for updating the GUI is
located in the method that gets called when the Wave client receives an
update from the server. Hence we can write one single GUI code that
responds to both other users’ actions and our own commands to the GUI.
This also means that we can be certain that the changes we did were
propagated to the server when we see the change in the GUI.

The final gadget is shown in Fig. 4.2. Here we see the simple view the
user sees when he isn’t interacting with the wave. As we can see, all the
details about each agenda item is hidden, and only the most important
thing, namely the description of each item, is shown.

4.6 Making it all come together

To make it simpler to utilize these features, we need to make it possible
to ”install” them into the Wave client. The solution to this is to make
an Extension installer. As discussed in Sect. 2.5, this is an XML file that
specifies what GUI-elements to add in the Wave client, and how these
interact with the back-end. This XML file is then used as input for a
specific wave template, which creates a wave containing the description,
instruction and an install link for the extension package.

The specification for the extension installer XML file format includes
a lot of different possibilities regarding how one can extend the Wave
client. We will only be using one of these possibilities for these gadgets,
namely the function that lets you add gadget-inserting toolbar icons in

54 CHAPTER 4. ORGANIZING MEETINGS COLLABORATIVELY

Figure 4.2: The final gadget for collaborative agenda creation.

4.6. MAKING IT ALL COME TOGETHER 55

the compose window. The complete XML for the extension installer is
the following.

1 <extens i on
2 name=” Meeting Extension ”
3 thumbnailUrl=” http :// f o l k . ntnu . no/ espenher /wave/ All−mail . png”
4 d e s c r i p t i o n=” Lets you schedule , plan and have meetings us ing

Wave as the c o l l a b o r a t i o n t o o l . ”>

5 <author name=”Espen Herseth Halvorsen ”/>

6 <menuHook l o c a t i o n=” too lba r ” t ext=”Add schedu l ing gadget ”
7 i conUr l=” http :// f o l k . ntnu . no/ espenher /wave/ ca l endar . png”>

8 <inser tGadget u r l=” http :// f o l k . ntnu . no/ espenher /wave/
doodleGadget . xml”/>

9 </menuHook>

10 <menuHook l o c a t i o n=” too lba r ” t ext=”Add agenda gadget ”
11 i conUr l=” http :// f o l k . ntnu . no/ espenher /wave/ c l i pboa rd . png”>

12 <inser tGadget u r l=” http :// f o l k . ntnu . no/ espenher /wave/
s a k s l i s t e . xml”/>

13 </menuHook>

14 </extens ion >

This XML file first defines the extension, and gives it a name, thumb-
nail picture and description. This meta-data will be used by the Wave
client to display the extension nicely in the GUI. Then we define the ex-
tension author. The next two parts are the menuHooks, i.e. what the
extension adds to the Wave client. In this case, we can see that we add
two new items to the menu. We specify the location to be the toolbar,
which is the set of icons over the wave when it is in edit mode. We spec-
ify an icon, a tooltip text and the actual address to the XML file of the
gadget.

Next, we use a specific template to input this XML, and this creates
a nicely formatted Extension installer wave as shown in Fig. 4.3.

56 CHAPTER 4. ORGANIZING MEETINGS COLLABORATIVELY

Figure 4.3: The extension installer as shown in Google Wave

Chapter 5
Enhancing communication using
Wave Robots

In this chapter we extends the solution we created in Chap. 4 to include the
usage of Wave Robots. Since this might have some implications for how
users interact with the solution, we begin by looking at the psychological
side of having robots as equal participants in Sect. 5.1. Next, we move
on to describe how we extend the previously created gadgets functionality
in Sect. 5.2. We look at a way to automatically initialize a new wave in
Sect. 5.2.1, a way to automatically find the best time to hold the meeting
in Sect. 5.2.2 and a way to automatically decide upon a fitting meeting
schedule in Sect. 5.2.3. We end this chapter by looking at the final solution,
explaining and illustrating each step of the process of planning and holding
a meeting by using Wave in Sect. 5.3.

57

58CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

5.1 Robots as equal participants

As we have seen through the example in Chap. 4, one can greatly improve
communication and collaboration by using gadgets in Wave. This allowed
us to create a comprehensive solution that made the process of setting up
meetings and collaboratively decide upon time and topics easier.

Even though this solution works great just using the different gad-
gets, we can do better. As we have seen from the example compositions
described in Sect. 3.4 and 3.5, we can enhance a wave even further by
using robots to assist users in tasks that are either repetitive or can be
done better by an automated system. There we saw the robots helping
users by bringing in additional external data that enriched the communi-
cation. Robots also could help in decision making, and assist users in the
communication easing the process for all parties.

To be able to fully understand the implication of allowing a robot to
interact in a conversation, we have to look at the psychological effects. As
we have discussed earlier, one of the main design principles of Wave is that
there should be no strict difference between a human user and a robot.
They are equal participants in the wave when you look at them from a
permission-viewpoint. They also appear similar in the user interface -
aside from the name, there are no way to distinguish between a robot and
a human user. This means that the users participating in a wave where
there is one or more robots actively participating have to be comfortable
with this situation.

As we develop robots for Wave that are smarter than robots that
just bring in information, for example robots that can look at input from
real users and actually make decisions for the group based on this data,
the psychological problem becomes more important. Not all users will
be comfortable having a computer making decisions for them. Hence we
have to be very open about which factors the robot takes into consideration

5.2. ENHANCING THE PREVIOUS EXAMPLE USING ROBOTS 59

when making decisions, making the skeptical users able to find the result
of the work done by the robot by manual computation, and compare the
result to the one generated by the robot. By having a way to show the users
the exact mathematical algorithms the robot uses for its composition, we
can reduce the likelihood of users feeling a loss of control.

The skepticism against robots will most likely become smaller as these
users get used to robots participating in the communication, and hence
we can make the robots smarter over time without running into the risk
of making the users feel that they lose control.

5.2 Enhancing the previous example using robots

In Chap. 4, we created two gadgets that aids in the cooperative scheduling
of meetings. By adding a robot with some extra capabilities to the wave,
we can greatly expand their functionalities, making them even simpler to
use. The processes that had to be done manually based on just the two
gadgets, can now be automated and done by the robot. We will look
into a few examples of things the robot can automate for the participants,
beginning with the creation of the wave.

5.2.1 Setting up the wave

As we saw in Sect. 4.6, we can make it easier to add gadgets to a wave
by installing buttons for each gadget to the toolbar of the Wave client.
There is a similar functionality that lets you create new waves where a set
of participants gets added automatically.

We want to have a new option in the ”new wave”-menu for creating
a new meeting, where we automatically add a robot that will aid in the
process. To do this, we extend our already existing Extension installer
which we created and explained in Sect. 4.6, adding this part inside the
extension-tag:

60CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

1 <menuHook l o c a t i o n=”newwavemenu” text=”New Meeting ”
2 i conUr l=” http :// f o l k . ntnu . no/ espenher /wave/ us e r s . png”>

3 <createNewWave>

4 <p a r t i c i p a n t id=” wave20apitest@appspot . com” />

5 </createNewWave>

6 </menuHook>

As we see, the syntax of this is almost the same as we saw in Sect. 4.6.
We have a menuHook-tag which specifies that we want to extend the
menu of the Wave client. We specify the desired text and icon we want to
appear. As for now, Google’s Wave client doesn’t use the icon, but this
is an example of an area where the different Wave clients can implement
things differently. Hence it is smart to include it anyway, to be future
proof regarding new clients that will appear.

Inside the menuHook-tag, we specify what should happen when the
user selects our new menu item. We want to create a new Wave, hence we
specifies the createNewWave-tag. Inside this tag, we add a participant-tag
which specifies the address to out newly created robot. The result of this
is that a new wave will be created, containing the user currently logged in
as well as our robot as participants.

Automatically adding the gadgets to the wave

Now that we have a robot as a participant in the wave, we can begin to
think of different procedures that are tedious and repeating, and hence
can be automated. As we explained in Sect. 5.1, robots participate in a
wave in the same way as humans, and can perform all the same tasks as
humans. This means that we can delegate things we don’t want to have
to do manually to the robot.

The process of adding the two gadgets to a new wave for planning a
meeting is perhaps the most repeated task, it is the first thing you do
each time you want to plan a meeting. Hence it is a great first task for

5.2. ENHANCING THE PREVIOUS EXAMPLE USING ROBOTS 61

the robot.
As we explained in Sect. 2.5.2, the robot can subscribe to different

events that happens in a wave. We want to add the gadgets to the wave
as soon as it is created. As we see from Table 2.2, the suitable event to
listen to is the WaveletSelfAdded-event. We don’t have an event for the
creation of the wave, but this event is triggered when the robot is added
to the wave, and since the robot is added at the creation of the wave, this
is actually the first time the robot can interact with the wave.

We use the official Wave Java Robot Library to specify the desired
actions when this event happens. Using the library, the only thing we
have to worry about is overriding the method corresponding to this event,
the framework will set up everything else for us - namely creating a file
called capabilities.xml which specifies which events the Wave server should
notify the robot about.

The code for the method override is the following:

1 @Override
2 public void onWaveletSelfAdded (WaveletSelfAddedEvent event) {
3 Bl ip roo tB l ip = event . ge tB l ip () ;
4 roo tB l ip . append (new Gadget (”URL TO SCHEDULING GADGET”)) ;
5 roo tB l ip . append (new Gadget (”URL TO AGENDA GADGET”)) ;
6 }

Here, we first find the blip corresponding to the events. (As explained
in the terminology section [2.3.1], a blip is the single message inside a
wave) Since the context of this event is the main wavelet of the wave, the
blip we get will be the root blip, e.g. the first message of the wave.

Next, we use the append-function on the blip, adding a BlipContent-
object to the blip. In this case, these BlipContent-objects is Gadget-
objects instantiated with the URL of the two gadgets we want to add.

We don’t have to do anything more after this, the Wave Java Robot
Framework will take care of replicating the changes we did to the blip

62CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

when we return from the method.
The result of all this can be seen in Fig. 5.1, where we first show the

new item added to the menu, and then the new wave which gets created
when a user selects this menu item. The gadgets will be added as soon as
the response from the robot returns, which in most cases happens within
a few seconds.

5.2.2 Automatically decide a suitable time

In the previous chapter, we created a gadget that lets each participant
vote on different timeslots for the meeting by indicating whether they can
participate at that timeslot or not. This provides us with a good solution
for simply seeing which timeslots are the most popular ones, but there are
still some manual work left that could be automated by a robot.

One of the first things that comes to mind when thinking about meet-
ings is that the different participants might be of various importance.
Some of the people invited to the meeting might be crucial for the success
of the meeting, in such a way that a meeting without them cannot be held.
Other persons might just be ”nice to have” spectators, their attendance
is not required but it might still be nice to have them attend. And others
again might just be regular participants, in which one should try to find
a time where they can attend since they might have valuable input in the
meeting, but the meeting can still be held even if a few of these people are
unable to attend.

With all this extra data in play, it becomes a bit harder to see which
timeslot is the most suited. Even though a timeslot have a lot of partici-
pants who can attend, it doesn’t matter if all of these are in the unimpor-
tant category and the important participants can’t join. Hence we need
some sort of automated procedure which can help us pick between the
timeslots.

5.2. ENHANCING THE PREVIOUS EXAMPLE USING ROBOTS 63

Figure 5.1: Top: the new menu item created by the extension installer. Bottom:
the resulting wave containing the two gadgets added by the robot.

64CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

Assigning priorities to the different participants

To be able to automate this process, we first need a way to assign the
priority of the different participants. How many different priorities one
should have is a matter of discussion, for the gadget we are developing we
will go with three different classes of users:

1. Normal priority: This is the default priority assigned to all new
participants.

2. Low priority: This is the participants who are just ”nice to have”
attending the meeting.

3. High priority: This is the participants which are crucial for the
meeting.

Now that we have decided upon these three classes, we need a way
to represent it in the graphical user interface, and also a way to change
the priority. We developed a way to show and assign attendee status in
Sect. 4.4 which also have three different statuses: unknown, attending and
not attending. The changing of status was done by a simple click on the
block showing the status.

We can easily reuse that principle in this case. As seen in Fig. 4.1, each
participant is shown using their profile picture. Since there is a convention
to click on the squares to change the status, we can use the same principle
here: click on the profile picture to change the priority of the user. This
is however not immediately recognizable as a feature, hence we have to
explain it somewhere. We explained the feature to change the attendee
status using text on the boxes for the current user, but this can’t directly
be transferred to the profile picture since we don’t want to put text over
a picture. Hence we instead explain it textually beneath the function.

We also need a way to display the assigned priority. We will use the
same principle as the other boxes: namely using colors. But now we only

5.2. ENHANCING THE PREVIOUS EXAMPLE USING ROBOTS 65

use a small stroke, since we want the profile pictures to be the main item.
We assign a gray color to normal priority participants, a yellow color to
low priority participants, and a green color to high priority participants.

The code for changing and showing the priorities is JavaScript code,
since this happens only in the gadget - we haven’t touched the robot yet.
We use the same principle as earlier, with the response to an interaction
with the GUI causing a new variable to be stored in the underlying data
structure of the gadget. The following method will change the priority of
a user, and is called when a user click on any participants profile picture:

1 func t i on changeUserPr io r i ty (newUserStatus , u se r Id) {
2 var u s e r P r i o r i t i e s = JSON. parse (wave . ge tS ta t e () . get (’

u s e r P r i o r i t i e s ’)) ;
3 i f (u s e r P r i o r i t i e s == null) {
4 u s e r P r i o r i t i e s = new Object () ;
5 }
6 u s e r P r i o r i t i e s [u se r Id] = newUserStatus ;
7 wave . ge tS ta t e () . submitValue (’ u s e r P r i o r i t i e s ’ , JSON. s t r i n g i f y

(u s e r P r i o r i t i e s)) ;
8 }

The structure of this code is fairly similar to the previously shown code
snippets for updating the underlying data structure. First, we fetch the
existing priorities-object. If this is not already set, we create an empty
object. Next, we assign the priority value in this object for the user which
profile picture was clicked. Then, we store the object back into the under-
lying data structure.

Next, we have to alter the code which shows the profile pictures of
each user to add the color stroke around the pictures based on the assigned
priority. The following code is used to decide upon the color of the picture:

1 var u s e r P r i o r i t i e s = JSON. parse (wave . ge tS ta t e () . get (’
u s e r P r i o r i t i e s ’)) ;

2 i f (u s e r P r i o r i t i e s == null | |
3 u s e r P r i o r i t i e s [p a r t i c i p a n t s [i] . ge t Id ()] == null | |

66CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

4 u s e r P r i o r i t i e s [p a r t i c i p a n t s [i] . ge t Id ()] == 0) {
5 // Output p i c t u r e wi th gray s t r o k e
6 } else i f (u s e r P r i o r i t i e s [p a r t i c i p a n t s [i] . ge t Id ()] == 1) {
7 // Output p i c t u r e wi th green s t r o k e
8 } else i f (u s e r P r i o r i t i e s [p a r t i c i p a n t s [i] . ge t Id ()] == 2) {
9 // Output p i c t u r e wi th y e l l o w s t r o k e

10 }

This code is fairly self explanatory. The only tricky part is the first
if statement, since we have to take into consideration the case where no
user priorities have been set, and the case where the user priority for the
user in question hasn’t been set. In both these cases, we assume that the
priority of the uses is ”normal”.

The algorithm for ranking timeslots

Before we create the robot that will automatically rank the different times-
lots, we have to develop an algorithm that it will use. Based on the earlier
work, we see that we can use the different priorities assigned to people
to rank the different timeslots based on the attendee responses of the
participants.

To be able to easily rank the different timeslots, we will simply calcu-
late a numerical value for each timeslot and show this to the user. Then
the user can make an informed decision about the timeslots. In most cases
there will be one clear winning timeslot, but since we want the user to feel
that he or she remains in control, we will leave the ultimate choice to the
user.

The pseudo code for the algorithm will be the following:

1 loop through a l l the t i m e s l o t s :
2 loop through a l l the p a r t i c i p a n t s
3 add or subt rac t to the t i m e s l o t ’ s s c o r e based on p r i o r i t y

and attendee−s t a t u s o f user .

5.2. ENHANCING THE PREVIOUS EXAMPLE USING ROBOTS 67

User priority Color repre-
sentation

If user are at-
tending

If user are not
attending

Normal Gray +3 points -1 points
High Green +5 points -3 points
Low Yellow +1 points 0 points

Table 5.1: The default values for the adding or substraction of points for the
timeslot based on user priorities.

We need to have some default values for the algorithm. The default
values chosen are summarized in Table 5.1.

Using a robot to implement the algorithm

Now that we have a ranking system of the participants in place, and a
algorithm for ranking the different timeslots based both user priorities and
their attendee status on the different timeslots, we can begin implementing
the code for the robot that should do all the calculation.

First, we need a way to be able to tell the robot to start the calculation.
Ideally, we would have developed the solution in a way that allowed us to
show the rankings at all times, and also let the robot update the rankings
each time a user changes a priority or attendee status. But due to a bug in
the current implementation of the Google Wave Robot API (Issue 679 in
the Google Wave API Bug Tracker [17]), we have no way to communicate
a result directly back into the gadget. Instead, we chose to implement the
solution in a way that lets the user push a button to calculate the result.
The Robot will communicate the result to the user through a textual
response beneath the gadget.

We create a button in the GUI of the gadget, and when this is pushed,
we store a value in the underlying data structure which the robot can then
query to see if it should calculate the result. We store the value using this
code:

68CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

1 func t i on scheduleMeet ing () {
2 wave . ge tS ta t e () . submitValue (” decideTime ” , ” t rue ”) ;
3 }

This makes it possible for the robot to query the decideTime-property,
and if it is set to true, it can start the calculation.

The robot is coded in Java using the Wave Robot Java Client Library,
which as explained in Sect. 2.5.2 lets us respond to changes in a wave by
simply overwriting methods. As we can see from Table 2.2, the event we
want to respond to is the GadgetStateChanged-event. This event will be
triggered each time a gadget’s underlying data structure is changed. Since
we are just interested in the scheduling gadget, we need to filter on this.
The following code will filter out the scheduling gadget, and then see if
the property decideTime is set to true.

1 @Override
2 public void onGadgetStateChanged (GadgetStateChangedEvent event)

{
3 Bl ip mainBlip = event . ge tB l ip () ;
4 Gadget gadget = Gadget . class . c a s t (mainBlip . at (event . getIndex

()) . va lue ()) ;
5 i f (gadget . getUr l () . s tartsWith (URL TO SCHEDULING GADGET)) {
6 i f (gadget . getProperty (” decideTime ”) . s tartsWith (” t rue ”)) {
7 //The code f o r the a l gor i thm goes here .
8 }
9 }

10 }

Here, we first fetch the blip containing the gadget, and then finds the
gadget that received a change in that blip and casts it to a Gadget-object.
We check if the URL of the gadget is matching the URL of the scheduling
gadget, and then uses the function getProperty(String propertyName) to
get the decideTime-property to check if it is set to true.

Next, we need to fetch the data from the underlaying data structure

5.2. ENHANCING THE PREVIOUS EXAMPLE USING ROBOTS 69

of the Gadget to be able to have some data for the algorithm. We use the
same method for this. The following code will fetch all the data we need:

1 JSONObject u s e r S t a t u s e s = new JSONObject (gadget . getProperty (”
use rSta tus ” , ”{}”)) ;

2 JSONArray t imeS lo t s = new JSONArray(gadget . getProperty (”
t i m e s l o t s ” , ” [] ”)) ;

3 P a r t i c i p a n t s p a r t i c i p a n t s=event . getWavelet () . g e t P a r t i c i p a n t s () ;

As we explained in Sect. 4.4.1, we needed to serialize our data struc-
tures using JSON. Since Java doesn’t have a native JSON parser, we need
to use a third party library to de-serialize our JSON strings. We have
chosen an open source library provided by json.org [21], which lets us cre-
ate JSON objects and JSON arrays from serialized strings, and later on
query these objects to get the desired data from our data structures. This
library’s de-serializing functions works by simply inputting the serialized
strings into the JSONObject and JSONArray constructors, based on what
our serialized string is. We also need the participants of the wave, and
gets this by using the getParticipants() function on the wavelet.

Now that we have all this, we can loop through each timeslot, and
then loop through all the participants, look at their attendee status for
that timeslot and add to or subtract to the score based on the values in
Table 5.1. The code is structured according to the pseudo code developed
in Sect. 5.2.2, but is fairly complicated due to all the different checks one
needs to put in place since both the attendee status and priority of users
can be unknown if the users have yet to make a choice in the GUI.

1 for (int i = 0 ; i < t imeS lo t s . l ength () ; i++) {
2 St r ing t imeS lot = t imeS lo t s . g e t S t r i n g (i) ;
3 P a r t i c i p a n t s p a r t i c i p a n t s = event . getWavelet () .

g e t P a r t i c i p a n t s () ;
4 for (I t e r a t o r i t e r a t o r = p a r t i c i p a n t s . i t e r a t o r () ; i t e r a t o r .

hasNext () ;) {
5 St r ing userID = (St r ing) i t e r a t o r . next () ;

70CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

6 St r ing userPart ic ipat ingStatusJSON = gadget . getProperty (
userID) ;

7 i f (userPart ic ipat ingStatusJSON != null) {
8 JSONObject u s e r P a r t i c i p a t i n g S t a t u s = new JSONObject (

userPart ic ipat ingStatusJSON) ;
9 i f (u s e r P a r t i c i p a t i n g S t a t u s . has (t imeS lo t) &&

u s e r P a r t i c i p a t i n g S t a t u s . g e t I n t (t imeS lot)==1) {
10 i f (! u s e r S t a t u s e s . has (userID)) {
11 t i m e s l o t S c o r e s [i] += 3 ;
12 } else i f (u s e r S t a t u s e s . g e t I n t (userID) == 0) {
13 t i m e s l o t S c o r e s [i] += 3 ;
14 } else i f (u s e r S t a t u s e s . g e t I n t (userID) == 1) {
15 t i m e s l o t S c o r e s [i] += 5 ;
16 } else i f (u s e r S t a t u s e s . g e t I n t (userID) == 2) {
17 t i m e s l o t S c o r e s [i] += 1 ;
18 }
19 } else i f (u s e r P a r t i c i p a t i n g S t a t u s . has (t imeS lo t) &&

u s e r P a r t i c i p a t i n g S t a t u s . g e t I n t (t imeS lot)==0) {
20 i f (! u s e r S t a t u s e s . has (userID)) {
21 //No a l t e r a t i o n to the score
22 } else i f (u s e r S t a t u s e s . g e t I n t (userID) == 0) {
23 t i m e s l o t S c o r e s [i] −= 1 ;
24 } else i f (u s e r S t a t u s e s . g e t I n t (userID) == 1) {
25 t i m e s l o t S c o r e s [i] −= 3 ;
26 } else i f (u s e r S t a t u s e s . g e t I n t (userID) == 2) {
27 //No a l t e r a t i o n to the score
28 }
29 }
30 }
31 }
32 }

This code is provided without further explanation, since it shows just
the actual Java implementation of the pseudo code provided in Sect. 5.2.2.
The two for-loops refer to the for-loops in the pseudo code, and everything
inside these implements the actual logic for assigning scores according to

5.2. ENHANCING THE PREVIOUS EXAMPLE USING ROBOTS 71

the values in Table 5.1.
Lastly, we need to transfer the results back to the wave. For now, we

will simply put it in textual form. When the bug that hinders us from
communication the result back to the gadget is fixed, some future work
could be to incorporate this directly into the gadget and have it update
in real-time as participants interact with the gadget.

The code we use for appending the result to the end of the blip is the
following:

1 for (int i = 0 ; i < t i m e s l o t S c o r e s . l ength ; i++) {
2 mainBlip . append (” Score f o r t i m e s l o t s t a r t i n g ” + t imeS lo t s .

g e t S t r i n g (i) + ” : ” + t i m e s l o t S c o r e s [i] + ” po in t s \n”)
;

3 }

The final gadget and robot result

Based on all the changes described in this section, the gadget looks a bit
different. The final result can be seen in Fig. 5.2. Beneath the gadget, the
results given by the robot can be seen in textual form.

5.2.3 Automatically decide a possible schedule based on
user input

In Chap. 4, we also created a gadget that enables users to collaboratively
create an agenda by adding agenda items to a list. We also added the
possibility to delete agenda items. But apart from this, the gadget was
fairly simple, and didn’t offer any features to let the participants easily
filter the agenda items and decide upon which of them should be included
in the actual meeting.

We want to include a robot in the back-end to help the participants
intelligently choose between the proposed agenda items. To do this, we

72CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

Figure 5.2: The Gadget for time scheduling, with the scores for the different
time slots calculated by the robot shown beneath.

5.2. ENHANCING THE PREVIOUS EXAMPLE USING ROBOTS 73

need a way to let the participants rate the agenda items in a meaningful
way. By simply letting the participants vote on the different agenda items,
we could easily implement an algorithm in the robot to rate and sort the
agenda items based on popularity.

To automatically select the agenda items that fit into the meeting, we
also need a way to know how long each agenda item will take to discuss,
and also the total duration of the meeting. Hence we need to have an extra
field to let the users input the assumed time each agenda item will take to
discuss. In addition, we need a way to specify how long the meeting will
be.

Based on all this, we need to make some changes to the Gadget before
we can develop the Robot.

Adding time and rating features to the gadget

The first thing we have to do is to add a field to let the participants specify
how long they think each agenda item they proposes will take during
the meeting. We add this field directly beside the field for inputting the
description of the agenda item.

After the user pushes the button to add the agenda item, we execute
the previously explained function to store the agenda item in the underly-
ing data structure of the gadget. We add the following line to this function
to also store the assumed time:

1 newAgendaItem . agendaItemDuration = form . durat ion . va lue ;

We also update the code generating the list of proposed agenda items
to include this new information behind the description of the agenda item.
This lets the participants take a more informed choice regarding the voting
on the different agenda items.

Next, we have to create a way for users to be able to vote on the
different agenda items. We do this by adding a check mark in front of

74CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

each agenda item in the list. When the user clicks on this check mark,
we call a function that will store the fact that the user have voted on this
item in the underlying data structure. The code for this function is the
following:

1 func t i on voteOnAgendaItem (s tate , agendaItemID) {
2 var thisUsersVoteKey = ’ votesBy ’ + wave . getViewer () . ge t Id () ;
3 var votes = JSON. parse (wave . ge tS ta t e () . get (thisUsersVoteKey)

) ;
4 i f (votes == null) {
5 votes = new Array () ;
6 }
7 votes [agendaItemID] = s t a t e ;
8 wave . ge tS ta t e () . submitValue (thisUsersVoteKey , JSON. s t r i n g i f y

(votes)) ;
9 }

As we see from this code, we keep a separate array for each participant’s
votes. We need to do this to be able to show each user which items they
have voted on in the GUI, and to let them undo the vote at a later time.
By keeping each single vote in the underlying data structure, instead of
just a count of the total number of votes for each agenda item, we also
have more control over the consistency of the data. And lastly, we gets
all the concurrency features offered by Wave since each user only is able
to change the value of one key in the underlying state storage system.

The rest of this code is based around the same principles as all the other
code we have developed to respond to user input in the GUI. First, we fetch
the existing data from the underlying data structure. If it doesn’t exist,
we create an empty array. We alter the data adding the new information,
and then submit it back into the underlying data structure.

The updating of the GUI happens when the altered data structure
returns from the server. Here, we need to check if the user viewing the
gadget has voted on any of the agenda items. If he or she has, we mark

5.2. ENHANCING THE PREVIOUS EXAMPLE USING ROBOTS 75

these items with a green color to indicate that they have voted on them.
We also alter the way the voteOnAgendaItem()-function is called, making
it cancel the vote if executed on an agenda item that is voted on.

A robot that selects agenda items

Now that we have some data to use for deciding between the different
proposed agenda items, we can implement a robot that does this automat-
ically. To start this process, we use the same principle as in Sect. 5.2.2.
We create a button to start the selection of agenda items, which calls the
following method that sets a variable the robot later can query.

1 func t i on star tMeet ing () {
2 var meetingLength = prompt (’ P lease s p e c i f y the l ength o f the

meeting . ’)
3 i f (meetingLength != null) {
4 wave . ge tS ta t e () . submitValue (” s tar tMeet ing ” , meetingLength)

;
5 }
6 }

Note that we here also prompt the user and ask about the desired
length of the meeting. This will be used by the robot to select the correct
number of agenda items.

Now we can extend the method in the Wave Java Robot Client Library
that responds to the GadgetStateChanged-event, and then filter out events
that happens on the agenda gadget. We do this using the following code,
which is fairly similar to the one provided in Sect. 5.2.2.

1 @Override
2 public void onGadgetStateChanged (GadgetStateChangedEvent event)

{
3 Bl ip mainBlip = event . ge tB l ip () ;
4 Gadget gadget = Gadget . class . c a s t (mainBlip . at (event . getIndex

()) . va lue ()) ;

76CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

5 i f (gadget . getUr l () . s tartsWith (URL TO AGENDA GADGET)) {
6 St r ing meetingLength = gadget . getProperty (” s tar tMeet ing ”)

;
7 i f (meetingLength != null) {
8 //The code f o r s e l e c t i n g i tems goes here
9 }

10 }
11 }

The check here is a bit different, since we doesn’t check if the property
startMeeting is set to true, instead we just checks if it is set at all, and if
it is, the value is the meeting length specified by the user who pushed the
button to select agenda items.

Inside this code, we will do the calculation of the score for each agenda
item. We will simply count a vote from any user as a single point in the
score. One could alternatively develop a more sophisticated algorithm,
taking into account the different priorities of the participants, and whether
they are attending the meeting at the selected meeting time or not. For
now, this functionality is left out to keep the two gadgets fairly separate
regarding shared code, but as a future work this seems like a nice optional
feature for the gadget.

Since we have kept a separate data structure for each userŠs votes, we
now need to combine them all to count the total votes for each agenda
item. We do this using Java code matching the following pseudo code:

1 Create o b j e c t to hold the vote count for each agenda item
2 Loop through a l l the p a r t i c i p a n t s
3 Loop through p a r t i c i p a n t ’ s votes
4 Add one vote to the agenda item the user voted f o r

To implement this pseudo code, we first create a new Class that can hold
an agenda item and its vote count using this code:

5.2. ENHANCING THE PREVIOUS EXAMPLE USING ROBOTS 77

1 class Items implements Comparable<Items> {
2 int id ;
3 int count ;
4 public Items (int id , int count) {
5 this . id=id ;
6 this . count=count ;
7 }
8 @Override
9 public int compareTo (Items other) {

10 i f (this . count == other . count) {
11 return 0 ;
12 } else i f (this . count < other . count) {
13 return −1;
14 } else {
15 return 1 ;
16 }
17 }
18 }

Note that this Class implements the Comparable interface, meaning
that we later on can use the Collections-package in the Java library to
sort and reverse sort the list we creates containing the instances of these
objects. We create this List using the following code:

1 JSONArray agendaItems = new JSONArray(gadget . getProperty (”
agenda ” , ” [] ”)) ;

2 ArrayList<Items> agendaItemsVotes = new ArrayList<Items >() ;
3 for (int i = 0 ; i < agendaItems . l ength () ; i++) {
4 agendaItemsVotes . add (new Items (i , 0)) ;
5 }

Here we first fetch all the agenda items from the gadget. We then
creates an empty ArrayList, then loops through the agenda items and
adds one instance of the object we created and sets the id to match the id
of the agenda item. The count we obviously initializes to 0.

78CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

The next phase is to loop through all the users, fetch all their votes,
and increase the total vote count for each agenda item accordingly. The
following code implements the pseudo code we specified earlier:

1 P a r t i c i p a n t s p a r t i c i p a n t s=event . getWavelet () . g e t P a r t i c i p a n t s () ;
2 for (I t e r a t o r i t e r a t o r = p a r t i c i p a n t s . i t e r a t o r () ; i t e r a t o r .

hasNext () ;) {
3 St r ing par t i c ipant ID = (St r ing) i t e r a t o r . next () ;
4 JSONArray userVotes = new JSONArray(gadget . getProperty (”

votesBy ” + part i c ipant ID , ” [] ”)) ;
5 for (int i = 0 ; i < agendaItems . l ength () ; i++) {
6 i f (userVotes . optBoolean (i)) {
7 agendaItemsVotes . get (i) . count++;
8 }
9 }

10 }

This code is fairly self explained, as it uses the same principles as the
code explained in Sect. 5.2.2. Note that according to the JavaScript code
of the gadget, we used the key votesBy+PARTICIPANTID for the voting
tables, hence we use the same here to fetch the value of the property. We
specify an empty Array as the default value, since this property can be
null if the user hasn’t voted on any agenda items. This lets us use the
method optBoolean(index) to fetch the vote, as this method returns false
for all items other than ”true”, even though the array value is unset. This
spares us from writing a lot of checks to see if variables are assigned or
not.

Lastly, we need to sort the ArrayList containing the count of all the
votes. Since we implemented the Comparable interface on the Class we
stored the votes in, we can use the Collections class in Java to do this.
The following code will first sort the ArrayList, and then reverse it. This
gives us a list of all the agenda items, sorted reversely on the number of
votes, which means that the agenda items with the most votes comes first
in the list.

5.2. ENHANCING THE PREVIOUS EXAMPLE USING ROBOTS 79

1 C o l l e c t i o n s . s o r t (agendaItemsVotes) ;
2 C o l l e c t i o n s . r e v e r s e (agendaItemsVotes) ;

Creating a template for meeting notes

We need a way to communicate back to the participants which agenda
items were selected. As we discussed in Chap. 4, we also need to provide
a way for the participants to take notes during the meeting. These two
things can easily be combined, meaning that the template for the meeting
notes will provide the participants with the necessary information regard-
ing the priority of the different agenda items.

Since we have an ArrayList of all the agenda items sorted by votes,
it is fairly easy to generate this template. Wave already provides a great
solution for collaboratively editing text; hence we don’t need to create a
new gadget for taking notes. Instead, we just uses the agenda description,
number of votes and the time as a heading, and provides a pre-made list
beneath each item for the participants to take notes collaboratively.

1 int meetingTimeRemaining = I n t e g e r . pa r s e In t (meetingLength) ;
2 for (int i = 0 ; i < agendaItemsVotes . s i z e () ; i++) {
3 meetingTimeRemaining = meetingTimeRemaining − agendaItems .

getJSONObject (agendaItemsVotes . get (i) . id) . g e t I n t (”
agendaItemDuration ”) ;

4 S t r ing o p t i o n a l = ”” ;
5 i f (meetingTimeRemaining <0) {
6 o p t i o n a l = ” (o p t i o n a l) ” ;
7 }
8 mainBlip . append (head ing2Sty le) ;
9 mainBlip . append (o p t i o n a l + agendaItems . getJSONObject (

agendaItemsVotes . get (i) . id) . g e t S t r i n g (”agendaItemName”)
+ ” (” + agendaItems . getJSONObject (agendaItemsVotes . get (
i) . id) . g e t S t r i n g (” agendaItemDuration ”) + ” min) ” + ” [”
+ agendaItemsVotes . get (i) . count + ” votes] ”) ;

10 mainBlip . append (b u l l e t e d S t y l e) ;

80CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

11 mainBlip . append (” [i n s e r t your notes here] ”) ;
12 }

Here, we have also included a counter for the meeting time. We sub-
tract the time taken for each item we picks, and when we have gone over
the designated time for the meeting, we add the prefix ”(optional)” in
front of the agenda items. This allows the participants to be more flexi-
ble, allowing them to incorporate more agenda items into the meeting if
they have misrepresented the time for the first agenda items.

The final gadget, with the generated agenda complete with votes can
be seen in Fig. 5.3.

5.2. ENHANCING THE PREVIOUS EXAMPLE USING ROBOTS 81

Figure 5.3: The agenda gadget, with voting and time specification. Beneath the
gadget is the note taking template generated by the robot.

82CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

5.3 The finished solution

Now that we have used a robot to extend the functionality of our solution,
the process of arranging a meeting has been greatly simplified. The process
is as follows, and each step is illustrated in Fig. 5.4 showing the upper part
of the wave, and Fig. 5.5 showing the bottom part of the wave.

1. Select ”new meeting” from the ”new wave”-menu. The robot is
added as a participant automatically, and then the robot adds the
two necessary gadgets.

2. Add the desired meeting participants as receivers of this wave.

3. Propose a few timeslots, or let the other participants do this. Wait
until the participants have indicated their attendee-status for the
different timeslots.

4. At the same time, collaboratively propose agenda items, and vote
on the proposals.

5. When you want to decide upon a time, push the button in the
scheduling gadget, and let the robot rank the timeslots. Pick the
one you want, based on the information you are given.

6. When you are ready to start the meeting, push the button in the
agenda gadget, specify the meeting-length, and a template for the
meeting notes with the selected agenda items are created by the
robot.

7. Collaboratively take notes during the meeting, and have this auto-
matically saved for later reference.

5.3. THE FINISHED SOLUTION 83

1

2

3

4

5

6

Figure 5.4: A wave showing the finished gadgets and results of the robots calcu-
lations, upper part

84CHAPTER 5. ENHANCING COMMUNICATION USING WAVE ROBOTS

5

6

7

Figure 5.5: A wave showing the finished gadgets and results of the robots calcu-
lations, bottom part

Chapter 6
Conclusion and Future work

Through this thesis, we have explored Wave, a new communication and
collaboration platform developed primarily by Google and released under
an open source license. By analyzing Wave in the perspective of end user
service composition, we have identified different use cases where such a
highly cooperative platform can help users perform everyday tasks in a
more efficient manner.

We have also looked into the different ways one can extend the func-
tionality of Wave, and explained the details of the frameworks that let
developers create robots and gadgets which can inter-operate with Wave.
The possibility of reusing existing components created by other develop-
ers to perform service composition has been thoroughly explored, and two
different example compositions have been explained.

The last part of this thesis focuses on creating examples of Wave extensions
that aims to solve the problem of organizing meetings. We have created
two different gadgets which solves respectively the problem of scheduling
a meeting and the problem of collaboratively creating a meeting schedule.

85

86 CHAPTER 6. CONCLUSION AND FUTURE WORK

In addition, we have also developed a robot designed to automate some
of the more complex tasks which is suited to solve algorithmically. This
involves automatically picking suitable time slots for the meeting based
on the input of the participants, and to pick agenda items based on the
time limit of the meeting and the votes on the different items and utilize
these to create a template which can be used for collaborative note-taking
during the meeting.

6.1 Future work

Based on the results of this thesis, two different areas worth further ex-
amination is proposed. Each of these areas could be the basis of a future
work.

6.1.1 Trust and security in Wave

Due to the highly cooperative nature of Wave, there are a lot of issues
related to trust and security that should be looked into. The work done
in this thesis has been limited regarding this area, but this doesn’t mean
that it isn’t important.

Google has put a lot of thought into the he specification of the Wave
framework regarding security and trust[22, 32], hence one gets a lot ”for
free” just by using the frameworks provided. A future work could consist
of looking into all the detailed specification of access control in Wave,
examining whether the solutions given in the specification provides enough
security for such a platform. Additional security measures, one example
being obtaining a higher level of trust by storing encryption keys of users
in their private data store provided by gadgets, should also be proposed
and detailed.

6.1. FUTURE WORK 87

6.1.2 Combining Wave and Arctis

Arctis is a tool for creating reactive systems, developed at the Department
of Telematics at NTNU [23]. The tool is based around the principle that
small building blocks can be created and shared among developers, which
in turn can combine them to form larger blocks. By repeating this process,
one will in the end have a complete system consisting of different reusable
parts.

Throughout this thesis, we have explained how Wave can be used as
a system for end user service composition. As we can see, these two ideas
are in principal quite similar. Hence one can imagine that it could be
possible to integrate the Arctis framework with Wave, hereby making it
possible to develop extensions for Wave using the Arctis toolset.

Based on these ideas, a future work could consist of looking into
whether these two technologies can be combined, and doing some measure-
ments to see if combining them actually makes the development process
easier. If the result is that it is worth doing this fusion, a code generator
for the Arctis framework could be developed, that would translate Arctis
building blocks into Java code for Wave Robots, and JavaScript, HTML
and CSS for Wave Gadgets.

88 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

[1] R.M. Baecker. Readings in human-computer interaction: toward the
year 2000, 1995.

[2] Anthony Baxter, Jochen Bekmann, Daniel Berlin, Soren Lassen, and
Sam Thorogood. Google wave federation protocol over xmpp, 2009.

[3] Jochen Bekmann. Updates from google wave federation day, 2009.

[4] Jochen Bekmann, Michael Lancaster, Soren Lassen, and David Wang.
Google wave data model and client-server protocol, 2009.

[5] Jochen Bekmann and Sam Thorogood. Google wave federation pro-
tocol and open source updates, 2009.

[6] Google Docs Blog. A rebuilt, more real time google documents, 2010.

[7] Uwe M. Borghoff and Johann H. Schlichter. Computer supported
cooperative work: Introduction to distributed applications, 2000.

[8] Douglas Crockford et al. Json specification, request for comments:
4627, internet engineering task force, 2006.

[9] Doodle. The doodle documentation, 2010.

89

90 BIBLIOGRAPHY

[10] The Apache Foundation. Apache license, version 2.0, 2004.

[11] XMPP Standards Foundation. The extensible messaging and pres-
ence protocol, 1999.

[12] Adam Pash Gina Trapani. The complete guide to google wave, 2010.

[13] Google. Wave extensions api overview, 2009.

[14] Google. Wave gadgets api, 2009.

[15] Google. Wave robot wire protocol, 2009.

[16] Google. Wave robots api, 2009.

[17] Google. google-wave-resources - bug tracker for the google wave apis,
2010.

[18] J. Grudin. Why cscw applications fail: problems in the design and
evaluation of organization of organizational interfaces, 1988.

[19] J. Grudin. Computer-supported cooperative work: history and focus.
Computer, 27(5):19 –26, may 1994.

[20] Stephanie Hannon. The google wave blog: Google wave available for
everyone, 2010.

[21] json.org. Json java library, 2010.

[22] Lea Kissner and Ben Laurie. General verifiable federation, 2009.

[23] Frank Alexander Kraemer. Arctis and Ramses: Tool Suites for
Rapid Service Engineering. In Proceedings of NIK 2007 (Norsk infor-
matikkonferanse), Oslo, Norway. Tapir Akademisk Forlag, November
2007.

[24] Google Labs. The google wave extension samples gallery, 2010.

BIBLIOGRAPHY 91

[25] Michael Lancaster. Google wave attachments, 2009.

[26] Soren Lassen and Sam Thorogood. Google wave federation architec-
ture whitepaper, 2009.

[27] Lotus. Lotus domino and notes documentation, 2010.

[28] Microsoft. Microsoft exchange and outlook documentation, 2010.

[29] Douwe Osinga. Introducing the google wave apis: what can you
build?, 2009.

[30] Lars Rasmussen. Went walkabout. brought back google wave. (intro-
duction of google wave), 2009.

[31] Linda Rising and AG Communication Systems Norman S. Janoff.
The scrum software development process for small teams, 2000.

[32] Jon Tirsen. Access control in google wave, 2009.

[33] David Wang and Alex Mah. Google wave operational transformation,
2009.

[34] P. Wilson. Computer supported cooperative work: An introduction,
1991.

	Title Page
	Problem Description
	Abstract
	Preface
	List of Figures
	List of Tables
	Introduction
	Contribution
	Outline

	Background
	Computer supported cooperative work
	The CSCW Matrix

	Google Wave
	Google Wave as a CSCW system

	Wave - the Open Source version
	Terminology
	Different open sourced parts

	Wave Federation Protocol
	Handling multiple servers

	API's for extending Wave functionality
	The Gadget API
	The Robot API

	User service composition in Wave
	User service composition
	Using service composition in communication
	Existing solutions: The Extension gallery
	Different ways to access the content in the Extension gallery

	Example composition 1: Collaborative movie night voting
	Example composition 2: Wave as an aid for developers

	Organizing meetings collaboratively
	What do we want to solve
	The planning phase
	The meeting phase
	The review phase

	Existing solutions
	Clientside software solutions
	Web-based solutions

	Advantages of using a collaborative approach
	Gadget for time scheduling
	Underlying data structure
	Calculating the number of possible attendees
	The final gadget

	Gadget for a collaborative agenda
	Underlying data structure
	The final gadget

	Making it all come together

	Enhancing communication using Wave Robots
	Robots as equal participants
	Enhancing the previous example using robots
	Setting up the wave
	Automatically decide a suitable time
	Automatically decide a possible schedule based on user input

	The finished solution

	Conclusion and Future work
	Future work
	Trust and security in Wave
	Combining Wave and Arctis

