
Master of Telematics - Communication Networks and
Networked Services (2 year)

July 2010
Rolv Bræk, ITEM
Humberto Nicolás Castejón, Telenor R&I

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Coordination Patterns for Reactive
Services

Urooj Fatima

Problem Description
In [1] a service engineering approach was proposed. In this approach the services of a distributed
reactive system are modeled in two steps: service structure is first modeled using UML 2
collaborations (i.e. services are described as collaborations between roles); thereafter, service
behavior is modeled as a choreography of sub-collaborations (i.e. sub-services) using UML 2
activity diagrams. The service models obtained in this way can then be used to synthesize role
behaviors in the form of state machines. Two related problems need still to be addressed:

1. The behavior of each system component has to be designed as a composition of the roles
played by the component. During this design process extra functionality may need to be added in
order to coordinate such roles (e.g. in the case a component may play simultaneous roles in
concurrent sessions of a service). Can this be done in a modular and systematic way?

2. In real life, it is common to improve systems by adding new functionality to their services
(e.g. we may want to improve a basic call service by adding the possibility to transfer calls). Can
new functionality be incrementally added to an existing service model? And can the behavior of
system components be extended with such functionality in a modular way?

Both of the above problems deal with adding new/extra functionality to an existing model, although
for different purposes. The student should initially focus on problem 1 and study it in detail. Based
on the modeling and design of various service examples the student should extract general rules
and patterns that may be applied to address such problem. If time allows, and with the experience
gained from the resolution of problem 1, the student should present initial thoughts and examples
of how to address the problem 2.

[1] H. N. Castejón, "Collaborations in service engineering: Modeling, Analysis and
Execution", PhD thesis, Norwegian University of Science and Technology (NTNU), 2008

Assignment given: 15. February 2010
Supervisor: Rolv Bræk, ITEM

 I

Abstract

In our everyday life we come across countless reactive systems. These are the systems

that engage in stimulus-response behaviour. The development of distributed reactive

systems is quite complex. Being able to rapidly develop and incrementally deploy new

services, while avoiding interactions with existing ones, is a challenging task.

In this thesis, service examples of a distributed reactive system are modeled using the

service engineering approach proposed by Humberto Nicolás Castejón in his PhD thesis;

Collaborations in Service Engineering: Modeling, Analysis and Execution. First, services

are modeled as collaborations between roles. Thereafter, the behaviour of each system

component is designed as a composition of the roles it plays in the different services.

In many cases, a component may be requested to participate simultaneously in several

occurrences of the same service, or of different services (e.g. a UserAgent representing a

user in a telecommunication system may be requested to participate in several phone calls

simultaneously). To address such problems, extra coordination functionality is introduced

in this thesis to coordinate the roles or role instances that a system component may play

at a given point in time. For this, another role is defined, which is external to the service

roles and serves to coordinate role binding. This role is named as ‘Controller’. The

Controller is designed to keep track of the resource status, assign the resource if it is free,

and if it is not then respond to the service invitation requests according to the preferences

of the actors that receive them.

Depending upon how the Controller performs the coordination functionality, some

coordination patterns have been investigated. Apart from modeling the service from

scratch and investigating the coordination patterns for it, it has been explored in this

thesis how this coordination functionality can be added into an existing service model in

a modular way. Some solutions are discussed but these are the initial thoughts which can

be further explored in depth. The general structure of the coordination patterns has also

been identified, which further strengthened the generality of the coordination patterns.

 II

 III

Preface

This master’s thesis is written at the Department of Telematics in the Norwegian

University of Science and Technology (NTNU) during the Spring Semester, 2010.

First of all, I would like to thank my supervisor Humberto Nicolás Castejón and

Professor Rolv Bræk for their timely advices, continuous support and encouragement.

From the point of origin to the point of completion of my thesis, I never found a single

moment when my questions were not answered, not even on the weekends. They are

blessed with very kind personalities. Special thanks to them for keeping my spirits up in

the difficult moments and guiding me through the tricky tasks. I am also thankful to them

for providing me valuable comments and suggestions during report writing. I have learnt

a lot under their inspiring guidance.

I am also grateful to the Higher Education Commission of Pakistan (HEC) for funding

my studies in Norway.

I am thankful to my Mother, Salma Nasim and Sister, Nida Batool for being there always

for me to keep my moral high, regardless of being thousands of miles away from me. I

would also like to thank my friends who supported me and encouraged me whenever I

felt alone.

I hope that the reader will find my work interesting, and that my contributions in this

thesis can play a part for the further research.

Urooj Fatima

Trondheim, July 2010

 IV

 V

Contents

Abstract .. I

Preface ... III

Contents...V

List of figures ...VII

Abbreviations...IX

Chapter 1: Introduction ...1

1.1 Motivation ... 1

1.2 Problem to be solved ... 2

1.3 Report Outline ... 2

Chapter 2: Background ..5

2.1 Services and Components ... 5

2.2 Service and Design Models... 7

2.2.1 UML 2.0 Collaborations ... 9

2.2.2 Collaboration-Oriented Development ... 10

2.3 What are Design Patterns? .. 11

Chapter 3: Methodology for Service Development ..13

3.1 Problem Description.. 13

3.2 The System Engineering Approach Followed .. 14

3.2.1 Service Modeling .. 16

3.2.2 System Composition ... 21

Chapter 4: Coordination Patterns ...23

4.1 Simultaneous Collaboration Occurrences and Unexpected role Interactions ... 23

4.1.1 Extra Coordination Functionality.. 23

4.1.1.1 Assign and Reject – by Polling (AR-P) pattern 25

4.1.1.2 Assign and Reject – by Status Update (AR-SU) pattern....................... 32

4.1.1.3 Assign and Wait- by Status Update (AW-SU) pattern.......................... 36

 VI

4.2 System Diagram (with Controller role)... 41

4.3 Controller role as Coordinating Entity for Different Agents with Multiple Roles

 ………………………………………………………………………………... 41

4.3.1 AR-P pattern with Controller as a Central Entity 43

4.3.2 AR-SU pattern with Controller as a Central Entity................................... 43

4.3.3 AW-SU Pattern with Controller as a Central Entity 44

4.4 When to use which solution .. 47

4.5 Coordination within an Actor (UserAgent)... 49

4.6 Whether to Relay the Invitation Request or Not? ... 49

Chapter 5: Applying Coordination Patterns to an Existing Service Model51

5.1 Identification of General Structure in Coordination Patterns............................ 51

5.2 Applying the coordination pattern into an existing model................................ 53

5.2.1 By Using UML 2.0 Generalization Relationship...................................... 53

5.2.2 By Using UML 2.0 templates ... 58

5.2.3 By Using UML 2.0 ‘extend’ Relationship .. 61

5.2.4 By Using Service Composition... 65

Chapter 6: Discussion and Conclusion...69

6.1 Achievements .. 69

6.1.1 Identification of Coordination Patterns ... 69

6.1.2 Applying Coordination Patterns into Existing Services............................ 70

6.2 Discussion ... 71

6.3 Future Work .. 73

References ..75

 VII

List of figures

Figure 2.1: Services as collaboration among service roles played by system components 7

Figure 2.2: Service-oriented development: Service models are first created and then used

to synthesize behaviour of individual system components [Cas08] 8

Figure 2.3: Graphical notation for UML 2.0 collaboration: Connector represents

association among collaboration roles .. 9

Figure 2.4: Collaboration-Oriented Development [Cas08]... 11

Figure 3.1: Service Engineering Approach [Cas08] ... 15

Figure 3.2: a SimpleChat collaboration... 19

Figure 3.3: Choreography for SimpleChat Collaboration ... 19

Figure 3.4: UML 2.0 sequence diagram for ChatInvite sub-collaboration of SimpleChat21

Figure 3.5: System diagram for the InstantMessagingSystem .. 22

Figure 4.1: UML collaboration of the AR-P pattern... 26

Figure 4.2: Choreography for the AR-P collaboration.. 27

Figure 4.3: Sequence diagram of ChatInvite sub-collaboration of AR-P 28

Figure 4.4: Sequence diagram of Reject sub-collaboration of AR-P 29

Figure 4.5: Sequence diagram of GetStatus sub-collaboration of AR-P........................... 29

Figure 4.6: Sequence diagram for ChatSession sub-collaboration 30

Figure 4.7: Sequence diagram of Disconnect sub-collaboration....................................... 30

Figure 4.8: UML Collaboration of Assign .. 31

Figure 4.9: Choreography for the Assign sub-collaboration ... 31

Figure 4.10: Sequence diagrams of Seize (a) and Grant (b) sub-collaborations of Assign

... 31

Figure 4.11: UML collaboration of the AR-SU pattern .. 33

Figure 4.12: Choreography for the AR-SU collaboration... 34

Figure 4.13: Sequence diagrams for sub-collaborations of AR-SU pattern...................... 35

Figure 4.14: UML collaboration of the AW-SU pattern... 36

Figure 4.15: Choreography for the AW-SU collaboration.. 39

Figure 4.16: Sequence diagram for ChatterWaiting sub-collaboration of AW-SU pattern

... 40

Figure 4.17: Sequence diagram for ChatterQuit sub-collaboration of AW-SU pattern ... 40

 VIII

Figure 4.18: System Diagram with Controller role... 41

Figure 4.19: System diagram of InstantMessagingSystem where Controller role is bound

to a new component... 42

Figure 4.20: Sequence diagram of ChatInvite when the Controller role is central for

different UserAgents ... 43

Figure 4.21: Roles and sub-collaborations in the TeleConsultation service [CBB07] 46

Figure 4.22: Comparison of System diagrams (a) two possibilities: single role per agent

and multiple roles per agent (b) multiple roles - different agents 48

Figure 5.1: UML collaboration of the AR-SU pattern depicting the separation between

General Structure and Service Specific Structure ... 52

Figure 5.2: General AR-SU pattern; Chattee role and Chatter role are renamed as Sender

and Receiver. Similar renaming can be observed in the sub-collaborations..................... 52

Figure 5.3: UML collaboration of BasicPhoneCall service .. 55

Figure 5.4: Choreography of the BasicPhoneCall collaboration 55

Figure 5.5: UML 2.0 Generalization relationship: BPCwithAR-SU collaboration is

specialized from general AR-SU collaboration .. 56

Figure 5.6: Choreography for BPCwithAR-SU collaboration: The symbol represents a

complex activity .. 57

Figure 5.7: (a) AR-SU template declaration (b) Bound collaboration resulting from

binding the BasicPhoneCall to UndefinedService parameter of AR-SU template 59

Figure 5.8: Choreography of the bound collaboration BasicPhoneCall_AR-SU. The

BasicPhoneCall is substituted in place of UndefinedService collaboration parameter of

the AR-SU template. ... 60

Figure 5.9: UML 2.0 extend relationship [OMG09] ... 62

Figure 5.10: Applying coordination pattern to existing service using UML extend

relationship .. 63

Figure 5.11: Choreography of BasicPhoneCall extending AR-SU using UML extend

relationship. The symbol represents a complex activity. ... 64

Figure 5.12: UML collaboration of BasicPhoneCall(AR-SU); a composition of

BasicPhoneCall and AR-SU service collaborations ... 66

Figure 5.13: Choreography for BasicPhoneCall (AR-SU) collaboration.......................... 66

 IX

Abbreviations

AR-P Assign and Reject – by Polling

AR-SU Assign and Reject – by Status Update

AW-SU Assign and Wait – by Status Update

SDL Specification and Description Language

UML Unified Modeling Language

 X

Chapter 1: Introduction

 1

Chapter 1: Introduction

This chapter presents the motivation for this thesis and the problem to be solved. An

outline of the thesis is also provided.

1.1 Motivation

In our everyday life we come across countless reactive systems. They are everywhere,

from digital watches, microwave ovens and robots to telecommunication systems,

information systems and complex industrial plants. One can observe that common to all

of these is “the notion of system responding or reacting to external stimuli” [HP85].

Reactive systems are “the systems that engage in stimulus-response behaviour” [Wie03].

The concept of reactive systems encompasses many other systems, including real-time

systems, embedded and control systems. They all share a fundamental characteristic:

once they are switched on, they enforce a certain desirable behaviour on their

environment [Wie03].

On the other hand, transformational systems accept inputs, perform transformations on

them and produce outputs, and may prompt the user from time to time to provide extra

information [HP85]. They do not leave the system in a significant state after performing

terminating computations. Unlike transformational systems, reactive systems

continuously interact with their environment and are repeatedly prompted by the

environment and must be designed from the structure of the environment.

When reactive systems are distributed, “they consist of separated autonomous

components that may take independent initiatives, operate concurrently and interact with

each other and the environment in order to provide services” [Cas08]. Being able to

rapidly develop and incrementally deploy new services, while avoiding interactions with

existing ones, is a challenging task. These systems often follow a peer-to-peer structure.

During the construction of the design models of such systems, the possibility of having

simultaneous occurrences of the services they provide, and the need to coordinate them,

Chapter 1: Introduction

 2

have to be addressed. Thus, the challenge for the designer of such distributed reactive

systems is to avoid undesired interactions between the system components and to ensure

correct system behaviour. It is a difficult task, but interesting as well.

1.2 Problem to be solved

A service engineering approach is proposed in [Cas08] for modeling services of a

distributed reactive system. The behaviour of each system component is designed as a

composition of the roles played by that system component in different services. During

this design process extra coordination functionality may need to be added between

different roles or role instances, incase a component may participate in multiple

concurrent occurrences of the same service or of different services. The first goal of this

thesis is to investigate patterns for coordination mechanisms. This will be done by

modeling service examples and extracting general patterns. The second goal of this thesis

is to present initial thoughts for improvement of systems by adding new functionality to

their services. Both of these goals deal with adding new/extra functionality to an existing

model, although for different purposes.

1.3 Report Outline

This thesis is structured as follows:

• “Chapter 1: Introduction” presents the motivation behind this thesis. It gives an

overview of the report and the problem to be solved.

• “Chapter 2: Background” describes the theoretical background for the work

done in this thesis.

• “Chapter 3: Methodology for Service Development” narrows down the

problem to a set of tasks, and explains the system engineering approach followed

by [Cas08] for the development of reactive systems, which this thesis is based on.

Chapter 1: Introduction

 3

• “Chapter 4: Coordination Patterns” presents patterns for coordination of the

service roles played by a system component.

• “Chapter 5: Applying Coordination Patterns to an Existing Service Model”

presents some initial thoughts on adding new/extra functionality to an existing

service model.

• “Chapter 6: Discussion and Conclusion” concludes the thesis by summing up

the results, discussing them and proposing future work.

Chapter 1: Introduction

 4

Chapter 2: Background

 5

Chapter 2: Background

This chapter introduces the theoretical background regarding the concepts which are

relevant to the work done in this thesis. It begins by describing the notion of services and

components. Then it explains the service, design models and collaboration-oriented

approach recognized and followed by [Cas08]. It highlights shortly the area of our

concern in design process. In the end, it discusses design patterns in general and their

significance which is obviously related to our problem.

2.1 Services and Components

The concepts; service and component, are interlinked. Therefore, we will discuss them in

an interleaving fashion in this section.

The concept of “service” is used widely in our daily lives. The literature provides many

informal definitions of the term “service” pertaining to different domains. We will have a

flavour of some of them as follows:

- “a service is a meaningful set of capabilities provided by or over a network to its

different players, including end users, network providers, and service providers”

[MTJ93].

- “a service is the functionality an object provides” [CV93].

- “a (software) service is a set of functions provided by a (server) software or

system to a client software or system, usually accessible through an application

programming interface” [BKM07].

- “a (telecommunication) service is offered by an administration to its customers in

order to satisfy a specific telecommunication requirement”[KK98].

Service is also identified as a set of features; where feature is defined as “an incremental

unit of functionality” [BDC
+
89, Zav01]. According to [KK98], telecommunication

services can be divided into two major groups; bearer services and teleservices. A Bearer

Chapter 2: Background

 6

service provides the capability for the transmission of signals between user network

interfaces. A teleservice
1
 provides the complete capability, including terminal equipment

functions, for communication between users according to protocols established by

agreement between administrations.

By having a glance at these definitions of service, we can deduce that a single entrenched

definition of service does not exist. [KBH09] uses a general definition of service which

captures most common uses of the term “service”. The definition is:

“A service is an identified functionality aiming to establish some effects among

collaborating entities” [KBH09].

[KBH09] further elaborates the definition of service by characterizing the service into

following properties:

• Services are functionalities; they are behaviors performed by entities.

• Services imply collaborations; it makes no sense to talk about a service unless at

least two entities collaborate.

• Service behavior is cross-cutting; it involves coordination of two or more entity

behaviors to fulfill a certain task.

• Service behavior is partial; it is to be composed with all the other services

provided by the system to obtain a complete behaviour of the system.

We talked about entities that collaborate with each other to fulfill a specific task (i.e. the

goal of the service). These entities are the “(system) components”. Therefore, a

component may participate in different services. So generally, the behaviour of services

is composed from partial component behaviours, while component behaviour is

composed from partial service behaviours [KBH09, CBB07]. This results in two axes of

decomposition as depicted in Figure 2.1. This definition binds services to system

components but there is not a one-to-one relationship between services and system

components [Cas08]. As recognized by [Cas08], separation between services and

1
 In this thesis, we will use the general term “service” in place of teleservice.

Chapter 2: Background

 7

components can be obtained by using the concept of service role which is defined as the

part that a system component plays in a service. Therefore, the final definition of service

which we will use in this thesis is:

“A service is an identified functionality with value for the service users, which is

provided in a collaboration among service roles played by system components and/or

service users” [Cas08].

Figure 2.1: Services as collaboration among service roles played by system components

[Cas08, KBH09]

This definition enables us to specify services independent of particular system designs or

implementations. Moreover, in this definition service is emphasized as a functionality

which is provided by the collaboration among service roles.

2.2 Service and Design Models

We discussed in section 2.1 about the two axes of decomposition depicted in figure 2.1.

[KBH09] named these axes as collaborative axis (decomposing the system functionality

into services and focusing on collaborations) and component axis (decomposing the

Chapter 2: Background

 8

system functionality into components, defining complete behaviour of each). Because the

component axis defines systems and system behaviours completely, traditionally, this

axis was emphasized more. Moreover, component behaviour can be modeled as

communicating state machines (as supported by SDL and UML) which define reactive

behaviour of components in a precise and human-understandable manner, can be

automatically analyzed and can serve as input for automatic code generation [Cas08,

KBH09]. But, as discussed in section 2.1; there is not a one-to-one relationship between

components and services. Consequently, in order to understand how services work, the

joint behaviour of several components must be considered. Modeling reactive systems

and describing complete component behaviour from end-user requirements (which are

usually not given from the point of view of individual components) is challenging

[Cas08]. Therefore, there is a need to understand collaborative behaviour of components

and to model services independent of particular component designs. For this, a service-

oriented modeling approach is given by [Cas08] which is shown in figure 2.2. In this

approach, service models describing services explicitly are first created. Thereafter, they

are used for the synthesis of the behaviour of the individual system components.

Figure 2.2: Service-oriented development: Service models are first created and then used to

synthesize behaviour of individual system components [Cas08]

Chapter 2: Background

 9

Interaction diagrams, for instance UML sequence diagram [OMG09], are a common

solution to express collaborative behaviour using messages which are exchanged between

components. But this solution is applicable for limited scenarios only and contains other

drawbacks mentioned in [CBB07]. Therefore, interaction diagram may not be a good

choice to model services completely. UML 2.0 collaborations
2
 and activity diagrams are

utilized by [Cas08] as useful mechanisms to model service behaviours more completely.

Let us have a brief introduction of what these useful mechanisms are.

2.2.1 UML 2.0 Collaborations

[OMG09] defines a collaboration as “a structure of collaborating elements (roles), each

performing a specialized function, which collectively accomplish some desired

functionality”. This definition explains the reason why [Cas08, KBH09 etc] found UML

collaborations as a promising candidate for service modeling i.e. UML collaborations

successfully model the notion of service described in section 2.1. The roles represent the

partial objects that interact with each other to achieve a joint task. UML 2.0

collaborations are structured classifiers and can have any kind of behavioral descriptions

associated [OMG09]. Figure 2.3 depicts the graphical notation for the UML 2.0

collaboration. Associations among roles are represented by ‘connectors’. These

connectors specify the communication paths that must exist between the participating

instances. Relationships among roles and connectors inside a collaboration are

meaningful in that context only.

Figure 2.3: Graphical notation for UML 2.0 collaboration: Connector represents association

among collaboration roles

2
 UML 2.0 collaborations should not be confused with UML 1.x collaboration diagrams, which are now

called communication diagrams.

Chapter 2: Background

 10

A collaboration use can appear within the definition of a larger collaboration. In other

words, a collaboration can have other smaller collaborations. In this context, the roles of

the smaller (sub-)collaboration are bound to the roles of the larger (containing)

collaboration by means of a collaboration use [RJB05, Cas08]. This topic is discussed in

detail in the chapter 3 (section 3.2.1). Thus, UML 2.0 collaborations support the concept

of service composition as well. Moreover, they are particularly useful as a means for

capturing standard design patterns [OMG09].

The structural decomposition of collaborations may result in elementary collaborations

(i.e. collaborations that are not further decomposed into sub-collaborations). These

collaborations are simple enough to be defined by UML sequence diagrams [Cas08]. To

define the global execution ordering of the sub-collaborations, [Cas08] makes use of a

‘choreography graph’. For this, UML 2.0 activity diagrams are utilized (with some

extensions in notation). We will come to this again in chapter 3.

2.2.2 Collaboration-Oriented Development

A collaboration-oriented approach has been proposed by [Cas08] where the main

structuring units are collaborations, for the reasons discussed in section 2.2.1. The key

elements of this approach are depicted in figure 2.4 and explained below:

• Service models are used to separately specify the global behavior of services.

UML collaborations are used to provide a structural framework for these models.

Sequence diagrams are used to describe the behavior of elementary collaboration

and choreography graphs for specifying the global behavior of composite service

collaborations.

• Design models describe the system structure, as well as the complete local

behavior of each system component type. Asynchronously communicating state

machines are used at this level.

• Implementations consist of executable code that is automatically generated from

the design models.

• Execution platforms are the systems where software processes are executed to

provide services.

Chapter 2: Background

 11

Figure 2.4: Collaboration-Oriented Development [Cas08]

2.3 What are Design Patterns?

During the construction of a design model we have to deal with the possibility of having

multiple concurrent occurrences of a service running in the system. At this point, there is

a need for coordination mechanism between different role instances. In this thesis, some

coordination patterns are identified. Let us have a glance at what design patterns

generally are and why we need them.

Design patterns were first described for civil engineering. In that context, Christopher

Alexander says: "Each pattern describes a problem which occurs over and over again in

our environment, and then describes the core of the solution to that problem, in such a

way that you can use this solution a million times over, without ever doing it the same

way twice" [GHJ
+
94]. Although, Christopher Alexander illustrates this concept with

reference to civil engineering, it is still applicable for object-oriented design patterns.

Chapter 2: Background

 12

[GHJ
+
94] defines design patterns for object-oriented systems; “A design pattern

systematically names, motivates, and explains a general design that addresses a

recurring design problem in object-oriented systems”.

The main purpose of defining such patterns is to make designs more flexible, elegant, and

ultimately reusable. A designer who is familiar with such patterns can apply them

immediately to design problems without having to rediscover them [GHJ
+
94].

Nevertheless, design patterns help designers to choose among design alternatives that

best suites their system requirements.

We have discussed design patterns in this section to learn about the advantages and need

of patterns. In this thesis, we have not followed any particular standard schema for

defining our coordination patterns. We will learn in the next chapters that there are more

powerful mechanisms for reusability as compared to patterns (for example; inheritance).

Chapter 3: Methodology for Service Development

 13

Chapter 3: Methodology for Service Development

This chapter discusses the ‘problem description’ and narrows down the problem to a set

of tasks. It explains the system engineering approach followed by [Cas08] for the

development of reactive systems, which is the basis of this thesis. The approach is

explained with the help of a service example, which will be used as running example

throughout the rest of the thesis.

3.1 Problem Description

In [Cas08] a service engineering approach was proposed. In this approach the services of

a distributed reactive system are modeled in two steps: service structure is first modeled

using UML 2 collaborations (i.e. services are described as collaborations between roles);

thereafter, service behavior is modeled as a choreography of sub-collaborations (i.e. sub-

services) using UML 2 activity diagrams. The service models obtained in this way can

then be used to synthesize role behaviors in the form of state machines. At that point, two

related problems need to be addressed:

1. The behavior of each system component has to be designed as a composition of the

roles played by the component. During this design process extra functionality may

need to be added in order to coordinate such roles (e.g. in the case a component may

play simultaneous roles in concurrent sessions of a service). Can this be done in a

modular and systematic way?

2. In real life, it is common to improve systems by adding new functionality to their

services (e.g. we may want to improve a basic call service by adding the possibility to

transfer calls). Can new functionality be incrementally added to an existing service

model? And can the behavior of system components be extended with such

functionality in a modular way?

Chapter 3: Methodology for Service Development

 14

3.2 The System Engineering Approach Followed

In the proposed modeling approach of [Cas08], the behaviour of a system is first

decomposed in terms of the services that the system provides. Figure 3.1 illustrates this

service engineering approach
3
. Let us first have a brief overview of the five main

activities involved in this iterative approach.

1. Service modeling: A service model is created for each individual service to be

provided by the system under development. Each service is modeled as a UML

collaboration defining the structure of roles needed for the service, and its

decomposition into elementary collaborations. The complete behaviour of

elementary collaborations is specified with sequence diagrams, while the global

behaviour of the service collaboration is described with a choreography graph

describing the execution ordering of its sub-collaborations.

2. Realizability analysis: Each service model is analyzed in search of realizability

problems. The aim is to ensure that the service model does not imply behaviors

that are not explicitly specified, but that may arise in the design model.

3. Service role synthesis: For each service model, the local behaviours of its service

roles are automatically synthesized in the form of state machines. The

choreography graph and sequence diagrams are used as input for the synthesis.

4. System composition: The system structure is specified in terms of system

components (with type and multiplicity) and their relationships. The complete

behaviour of each system component type is designed as a composition of the

service roles that it may play. To determine the correct way of coordinating the

role behaviours, an analysis of potential interactions is necessary (see next

activity).

3
 The contents of this service engineering approach are taken as extracts from [Cas08]. For more details, the

reader is referred to [Cas08].

Chapter 3: Methodology for Service Development

 15

Figure 3.1: Service Engineering Approach [Cas08]

5. Role interactions analysis: A system component may simultaneously participate

in different service collaborations, as well as in several occurrences of the same

service collaboration. We analyze whether undesired interactions may arise

between the roles that the system component may play in simultaneous service

collaborations. The results of this analysis will dictate how role behaviors should

be coordinated and composed into system component behaviors (see previous

activity).

The final goal of this activity and the previous one is to design system components

so that they can play appropriate roles in each service collaboration they

participate in, without undesired interactions with other running roles. This can

Chapter 3: Methodology for Service Development

 16

be seen as a problem of dynamic role binding, and policies may be defined to

govern such role binding.

The focus of our work is to deal with the last two activities discussed above (see chapter

4). In this chapter, we will discuss the processes of service modeling and system

composition.

3.2.1 Service Modeling

In this section, we introduce and model a SimpleChat service, which will be used as a

running example throughout the rest of the thesis.

Example Service: Simple Chat

SimpleChat is a kind of Instant Messaging (IM) service. According to Wikipedia,

“Instant Messaging is a form of real-time direct text-based communication between two

or more people using personal computers or other devices, along with shared software

clients”. To keep the example simple and easy to understand, only two communicating

entities are considered (a Chatter and a Chattee) i.e. the functionality of conferencing

between many people is omitted. This is why we said in the beginning that it is a kind of

Instant Messaging.

The specification of a service collaboration can be divided into five steps:

1. Identification of the roles needed to provide the service.

2. Identification of the sub-collaborations in which the service roles may engage.

3. Structural composition of the sub-collaborations identified in the previous step.

4. Description of the global service behavior by specifying the order in which the sub-

collaborations should be executed.

5. Description of the behavior of each sub-collaboration.

Each of these steps is explained next.

Chapter 3: Methodology for Service Development

 17

Identification of service roles

We have to identify the service roles needed to provide the service. This is related to the

problem domain and the logical architecture of the service execution environment. Each

role specifies the properties and behaviour that a component should have in order to

participate in a single occurrence of the service under specification.

At the early stages of service modeling it makes little sense to identify the implementation

level objects that will participate in providing the service. One should rather focus on

identifying actors representing domain entities such as users involved in the service (e.g.

a UserAgent representing a user). Moreover, one should focus on identifying the

properties and behaviour that those actors shall have, and specify these as roles, which

may later be bound to system components in different ways [CBB07].

In our SimpleChat service, we can identify two roles:

• Chatter: The Chatter role is the one that can initiate a chat session.

• Chattee: The Chattee role is the one that receives the chat invitation.

A component (e.g. UserAgent) playing the Chatter role can initiate chat sessions, a

component playing the Chattee role can receive chat invitations, and a component

playing both roles can initiate sessions and receive invitations

Identification of sub-collaborations

It is discussed earlier in section 2.2.1 that decomposing a service collaboration results in

more manageable sub-collaborations whose behaviour can be completely described with

sequence diagrams. This decomposition can be achieved by thinking of the global phases

that the service goes through.

Several phases are involved in the SimpleChat service. They can be described as follows:

a) Chat Invite
4
: Chatter will send a chat invitation request to the actor playing the

role of Chattee.

4
 Here it is assumed that the Chattee exists and can be addressed in the chat invite i.e. the role is statically

bound to the role actor.

Chapter 3: Methodology for Service Development

 18

b) Chat Session: When the actor playing the role of Chattee accepts the invitation,

the actor playing the Chatter role initiates a chat session (between the Chatter and

Chattee) where text messages can be exchanged.

c) Disconnect: The chat session will be ended if either the Chatter or the Chattee

disconnects.

These phases are identified as separate sub-collaborations associated with the interface

between Chatter and Chattee (see figure 3.2). Their behaviour can be described by

sequence diagrams. For example, figure 3.2 shows the ChatInvite sub-collaboration and

figure 3.4 shows its sequence diagram.

Definition of collaboration structure

The service is structurally modeled as a UML collaboration, describing the structure of

roles taking part in the sub-collaborations identified in the previous step. Each sub-

collaboration is represented as a collaboration use and its sub-roles are bound to the

composite-roles of the main service collaboration i.e. SimpleChat. For example, in Figure

3.2 the sub-role ‘cr’ from ChatSession is bound to the composite-role Chatter of

SimpeChat. Figure 3.2 depicts the collaboration structure for SimpleChat clarifying the

initiating roles (filled circles) and terminating roles (filled squares). Note that this

notation for initiating and terminating roles is not standard UML.

Collaboration choreography construction

At this point, we know the sub-collaborations in which service roles must participate in

order to provide the service. We do not know the order in which the sub-collaborations of

SimpleChat should be executed, so that their global, joint behaviour matches the intended

behaviour for the service collaboration. This global behaviour of SimpleChat can be

defined by specifying the overall ordering of its sub-collaborations – the so-called

choreography. The choreography of the SimpleChat collaboration is shown in figure 3.3.

Chapter 3: Methodology for Service Development

 19

Figure 3.2: a SimpleChat collaboration

reject

dc1.Disconnect

accept

chatter

ci.ChatInvitechatter chattee

<<external>>

dcByChatter

 cs.ChatSessionchatter

act SimpleChat

<<external>>

dcByChattee

dc2.Disconnectchatter

chattee

chattee chattee

Figure 3.3: Choreography for the SimpleChat Collaboration

Chapter 3: Methodology for Service Development

 20

UML activity diagrams are utilized by [Cas08] for choreography description. The use of

the UML activity diagrams is syntactically correct, but the semantics deviates from the

standard in the following points [CBB07]:

• In a collaboration with several initiating roles, the different initiating roles may

start the execution of their part of the collaboration independently of one another,

and therefore at different times. Similarly, the terminating sub-actions of a

collaboration may be executed at different times.

• Control flow edges between different activities have the meaning of weak

sequencing
5
 (unless explicitly specified as strong sequence

6
).

In choreography, it is important to show participation of roles in the collaborations and

whether they are initiating or termination roles. [Cas08, CBB07] utilized the UML

concept of Partition that may be used to indicate parts that participate in activities. In

collaborations the parts are roles and thus [Cas08, CBB07] used partitions to represent

roles.

Specification of elementary collaboration behaviour

One needs to describe the behaviour of each of the sub-collaborations. Some sub-

collaborations may be composed of other smaller sub-collaborations. In that case, their

behaviour would also be given by choreography. UML 2.0 sequence diagrams are

proposed by [Cas08] to specify the complete behaviour of elementary sub-collaborations,

where each role in the collaboration will be represented as a lifeline. Continuations may

be used to identify states in the collaboration or in the role behaviors. These could then be

used to relate the sequence diagram behavior with the pins of activities in the

choreography graph (see [Cas08] for details). The sequence diagram for ChatInvite sub-

collaboration of SimpleChat is shown in figure 3.4.

5
 Weak sequencing of two sub-collaborations C1 and C2, basically requires each composite role in C2 to be

completely finished with C1 before it may initiate participation in C2 [CBB07].

6
 Strong sequencing between two sub-collaborations C1 and C2, requires C1 to be completely finished, for

all its roles, before C2 can be initiated [CBB07].

Chapter 3: Methodology for Service Development

 21

alt

ir ie

sd ChatInvite

inviteReq

accept

reject

accept

reject

Figure 3.4: UML 2.0 sequence diagram for ChatInvite sub-collaboration of SimpleChat

3.2.2 System Composition

In service modeling, the focus was on specification of the services offered by the system

under development. In the system composition phase the focus is on designing the

complete behaviour of each of the system components. In order to design the behaviour

of a system component it is necessary to know:

• the service collaborations in which the component participates, and the role(s) it

plays in them;

• whether the component may simultaneously participate in multiple occurrences of

a given service collaboration; and

• whether the roles played by the component may interact in unexpected ways if

executed concurrently.

Chapter 3: Methodology for Service Development

 22

In the following we will discuss the first issue. The remaining two issues will be

discussed in the next chapter (chapter 4), which needs to be addressed as part of this

thesis.

System diagram

The system diagram is essentially a UML structured class with inner parts, where the

structured class represents the system itself, and the internal parts represent the system

components, with type and multiplicity. The services provided by the system are

represented by collaboration uses defining appropriate binding of service roles to system

components. Figure 3.5 shows the system diagram for the InstantMessagingSystem

consisting of multiple UserAgents that can behave both as Chatters and as Chattees to

provide a SimpleChat service.

Figure 3.5: System diagram for the InstantMessagingSystem

Chapter 4: Coordination Patterns

 23

Chapter 4: Coordination Patterns

In this chapter we present patterns for coordination of the service roles played by a

system component, which is the first task of this thesis. The service example

(SimpleChat) introduced and modeled in chapter 3, will be used in this chapter as a tool

to identify and specify the coordination patterns.

4.1 Simultaneous Collaboration Occurrences and
Unexpected role Interactions

During service modeling phase (chapter 3), the focus was on one isolated occurrence of

the service. But during the design process, we have to deal with the possibility of having

multiple concurrent occurrences of the service running in the system and the roles played

by the system component may interact in unexpected ways if executed concurrently.

As depicted in figure 3.5 (chapter 3), in the final system (InstantMessagingSystem) many

service occurrences may coexist. Sometimes, a UserAgent may be requested to

simultaneously participate in several occurrences of the SimpleChat collaboration. For

example, a UserAgent may be requested to join an occurrence of SimpleChat when it is

already participating in another occurrence of that collaboration. Therefore, extra

coordination functionality must be added to coordinate the role behaviours.

4.1.1 Extra Coordination Functionality

Extra coordination functionality can be modeled by defining another role for each actor

(UserAgent). This role is named as Controller and it is external to the service roles (i.e.

Chatter and Chattee roles in SimpleChat example). Depending upon the service

requirements, the Controller role can perform the coordination functionality for different

UserAgents (i.e. it behaves as a central controlling entity for different agents). This case

will be discussed in detail in section 4.3 with the help of a service example. However, the

Chapter 4: Coordination Patterns

 24

basic functionality of the Controller will remain the same for both the cases. In this

section, the functionality of Controller is described in detail by extending our SimpleChat

service example.

In our example service, Controller will act as a coordinator between the Chatter and

Chattee roles and their respective agents/actors. Since Controller is coordinating among

the roles played by one actor or different actors, it must have some basic knowledge

about the actor and its preferences, for instance, whether an actor can have one instance

of a particular role or many. Consider the example of SimpleChat. It is earlier discussed

in section 3.2.1 that Chatter sends the chat invitation directly to the actor playing the role

of Chattee. Now, the Chatter role will send the invitation request to the Controller of the

actor playing the role of Chattee. Controller is responsible for keeping track of the status

of its UserAgent playing the role of Chattee and to respond the Chatter whether it can be

connected to the Chattee or not
7
. If the Chattee can be connected to the Chatter i.e. when

Chattee is available, Controller will accept the invitation by the Chatter and as a result the

Chatter will initiate the chat session. Hence, the responsibility of the Controller is to

create a possible communication session between the two parties (roles).

The responsibility of the Controller can be seen as:

• To keep the resource status of the UserAgent.

- By Polling

- By Status Update

• Busy handling

- By Reject

- By Wait (queuing)

Depending upon how the Controller fulfills its responsibilities, some coordination

patterns are proposed.

1. Assign and Reject - by Polling (AR-P)

2. Assign and Reject - by Status Update (AR-SU)

3. Assign and Wait - by Status Update (AW-SU)

7
 It is assumed here that an instance of Chattee role is always running (statically bound to the role actor), so

we need to know whether it is busy or not.

Chapter 4: Coordination Patterns

 25

The naming convention followed for coordination patterns is explained below:

• First part describes how the Controller responds to an invitation i.e. Assign the

resource (Chattee) to the Chatter when Chattee is available and Reject the

invitation or putting into Wait when Chattee is busy.

• Second part describes how the Controller keeps the resource status i.e. by Polling

or by Status Update.

The SimpleChat example is used just as a tool to identify and specify coordination

patterns. Therefore, to keep the coordination patterns flexible we have assumed that the

actor (UserAgent) can allow multiple instances of the roles (Chatter/Chattee).

These coordination patterns are discussed in detail in the next sections.

4.1.1.1 Assign and Reject – by Polling (AR-P) pattern

In the AR-P pattern, the Controller Assigns the resource (Chattee) to the Chatter if the

Chattee is available (Assign sub-collaboration) and Rejects the invitation request sent by

the Chatter (Reject sub-collaboration), if the Chattee is busy. Figure 4.1 shows the UML

collaboration structure of AR-P coordination pattern. The session collaborations

(ChatSession, Disconnect) remain invariant over the pattern
8
.

Next question is how the Controller keeps track of the status of the Chattee in the AR-P

pattern. In AR-P, the Controller polls the Chattee (or set of Chattees) to learn whether it

is available or busy by means of GetStatus sub-collaboration. The term 'Polling' is

defined as the continuous checking of other programs or devices by one program or

device to see what state they are in, usually to see whether they are still connected or

want to communicate; a definition from whatis.com. So, as the name of the pattern

indicates, in this case the Controller will check the status of the Chattee every time the

Chatter sends a chat invitation request (ChatInvite sub-collaboration). If the Chattee is

busy, the invitation request will be simply rejected. However, if the Chattee is available,

8
 The session collaborations will remain invariant over all the patterns including the AR-P pattern.

Chapter 4: Coordination Patterns

 26

the Chatter will be assigned the available Chattee, and Chatter will initiate the chat

session.

The UserAgent may allow multiple instances of the roles associated with SimpleChat.

Thus, if the Controller is designed using the AR-P pattern then it must poll all the Chattee

roles of a UserAgent and assign the first available Chattee to the Chatter. Consequently,

designing the Controller using the AR-P pattern is not an efficient solution. Or in other

words, the presence of Controller is not meaningful if it is designed using the ‘Polling’

option. Besides, the Chattee may be dynamically created and thus, not possible to be

polled.

AR-P

Chatter

Chattee

ci:

ChatInvite

cs:

ChatSession

dc1:

Disconnect

dc2:

Disconnect

ce

cr

dr

de

dr

de

ir

Controller

ie

gs:

GetStatus

gr

ge

rt:

Reject

rr

re

as:

Assign

are

aee

ar

Figure 4.1: UML collaboration of the AR-P pattern

Extension in Semantics of Collaboration choreography construction

Figure 4.2 elaborates the choreography of the SimpleChat collaboration shown in figure

4.1. The semantics of the choreography used in [Cas08] deals with one instance of a

service. In this thesis, these semantics are extended to represent multiple instances (if it is

allowed by the actor). For this, the sign of multiplicity [*] is added in the partitions (used

Chapter 4: Coordination Patterns

 27

to represent the roles). The possibility of showing global operations (in the sense: not-yet-

localized) in the flows of choreography is also introduced (e.g. status=chatteeStatus() in

figure 4.2). Since, there can be multiple instances of roles (Chatter/Chattee) active at a

given time, so it is assumed that the flows of choreography can have multiple tokens

flowing in them, at any given time i.e. one token per instance.

dc1.Disconnectchatter

ci.ChatInvitechatter ctlr

<<external>>

dcByChatter

 cs.ChatSessionchatter

act AR-P

<<external>>

dcByChattee

dc2.Disconnectchatter

chattee

chattee chattee

gs.GetStatusctlr chattee

rt.Reject ctlrchatter

status=chatteeStatus()

[status==busyl]

[]
as.Assignctlr

chatter

chattee

[status==availablel]

[]

[]

Figure 4.2: Choreography for the AR-P collaboration

Chapter 4: Coordination Patterns

 28

Elementary Collaboration Behaviour

As discussed in section 3.2.1 (Service Modeling; chapter 3), the behaviour of each of the

sub-collaborations should be described in order to complete the service specification.

Some sub-collaborations may further be composed of smaller sub-collaborations. Their

behaviour should be given by a choreography. For example, the Assign sub-collaboration

is further composed of two sub-collaborations (discussed later in this section). [Cas08]

proposes to use UML sequence diagrams for the description of collaborative behaviour.

Figures 4.3-4.7 depict the behaviour of each of the sub-collaborations of AR-P shown in

figure 4.1 (except Assign; which is discussed later).

Each role of a sub-collaboration is represented as a lifeline in the sequence diagram.

Local actions are represented as rounded rectangles along the lifeline of the

corresponding role (for example, remove(chatteeList, chatteeId) is the local action which

is performed by the ‘qe’ role in ChatteeQuit sequence diagram as shown in figure 4.13).

Figure 4.3: Sequence diagram of ChatInvite
9
 sub-collaboration of AR-P

9
 The behaviour of ChatInvite sub-collaboration of AR-P is not same as ChatInvite sub-collaboration of

SimpleChat shown in figure 3.4; chapter 3. The names of these sub-collaborations are kept same for the

sake of simplicity. They should not be confused with each other. For the rest of the thesis, ChatInvite sub-

collaboration will refer to the coordination patterns only.

Chapter 4: Coordination Patterns

 29

Figure 4.4: Sequence diagram of Reject sub-collaboration of AR-P

alt

gr ge

sd GetStatus

getStatusReq

available

busy

Figure 4.5: Sequence diagram of GetStatus sub-collaboration of AR-P

Chapter 4: Coordination Patterns

 30

cr ce

sd ChatSession

sendMsg(msg)

respToMsg(r_msg)

loop

done

msg: String

r_msg: String

Figure 4.6: Sequence diagram for ChatSession sub-collaboration

Figure 4.7: Sequence diagram of Disconnect sub-collaboration

The Assign sub-collaboration

The Assign sub-collaboration is further composed of two sub-collaborations; Seize and

Grant, as shown by the UML collaboration of Assign in figure 4.8. As it can be seen from

the choreography graph of the AR-P pattern (figure 4.2), Assign is executed when the

Chattee is available for the Chatter. The available Chattee is seized for the Chatter and

then granted to the Chatter in Seize and Grant sub-collaborations respectively, as shown

in the sequence diagrams in figure 4.10. The choreography of Assign is shown figure 4.9.

After the assignment of the Chattee to the Chatter, the ChatSession can be initiated by the

Chatter.

Chapter 4: Coordination Patterns

 31

gr ge

sd Grant

grant(chatteeId)

Figure 4.8: UML Collaboration of Assign

sz.Seizeaee ar

act Assign

gt.Grant arare

Figure 4.9: Choreography for the Assign sub-collaboration

 (a) (b)

Figure 4.10: Sequence diagrams of Seize (a) and Grant (b) sub-collaborations of Assign

sr se

sd Seize

seize(chatterId)

Chapter 4: Coordination Patterns

 32

4.1.1.2 Assign and Reject – by Status Update (AR-SU) pattern

In the AR-SU pattern, the Controller does not ask Chattee for its current status as in

AR-P pattern. Instead, Chattee takes the autonomous initiative
10
 to update the Controller

about its status whenever it becomes available (Update sub-collaboration). The

Controller maintains a Chattee list (chatteeList) (which is the same concept of List in

Java, supported by Jdk 1.5 and higher versions). In this list, the Controller inserts the

Chattee which sends the update message of its availability. When Chatter sends an

invitation request, the Controller checks this list. This function is performed by the

operation chatteeId=chatteeStatus(chatteeList) shown in the choreography graph (figure

4.12). If the list is empty it means no Chattee is available, all are busy

i.e. chatteeId = = Null. If the Chattee is available (chatteeId ! = Null) and when an

invitation request is received (ans ! = Null), the Controller gets one Chattee from the list

and assigns it to the Chatter (Assign sub-collaboration). The operation

ans=isChatterThere() checks whether any invitation request is received. The details of

the Assign sub-collaboration is already discussed in section 4.1.1.1. If all the Chattees are

busy i.e. chatteeList is empty, then the Controller rejects the invitation request (Reject

sub-collaboration) as in the AR-P pattern. The UML collaboration of the AR-SU pattern

is shown in figure 4.11.

When a Chattee makes itself available via the Update sub-collaboration, the Controller

checks whether an invitation request has just been received (ans=isChatterThere). If no

invitation request is received (ans = = Null), the Controller sends a message to the

Chattee to wait (ChatteeWaiting sub-collaboration). While in the ChatteeWaiting sub-

collaboration, the Chattee can opt to quit waiting (ChatteeQuit sub-collaboration), if it

decides not to wait more. If this happens, the Chattee will be deleted from the chatteeList

by the Controller (remove(chatterId , chatteeList) shown in figure 4.13 (c)). If the Chattee

continues to wait, then whenever the Chatter sends an invitation request, the

ChatteeWaiting sub-collaboration will be interrupted and Chattee will be assigned to the

Chatter by the Controller. It is illustrated in the choreography graph in figure 4.12 that if

10
 Here we assume active Chattees that may take initiatives. This will be more relevant for multiple agents

than single agents. We will come to multiple agents’ discussion later in section 4.3.

Chapter 4: Coordination Patterns

 33

the UserAgent allows multiple roles then only one instance will be interrupted (flows of

choreography have one token per instance flowing in them; discussed earlier in section

4.1.1.1). The Chatter will then be able to initiate the ChatSession. The execution order of

the sub-collaborations of AR-SU collaboration is illustrated in the choreography graph

shown in figure 4.12. The behaviour of the sub-collaborations of AR-SU can be better

understood by the sequence diagrams in figure 4.13
11
 which also show the local actions

performed by the sub-roles.

AR-SU

Chatter

Chattee

ci:

ChatInvite

cs:

ChatSession

dc1:

Disconnect

dc2:

Disconnect

ce

cr

dr

de

dr

de

ir

Controller

ud:

Update

ie

ue

ur

cew:

Chattee

Waiting

cewr

cewe

ceq:

ChatteeQuit

qe

qr

rt:

Reject

rr

re

as:

Assign

are

aee

ar

Figure 4.11: UML collaboration of the AR-SU pattern

11
 The sequence diagrams of the sub-collaborations which are new in the AR-SU pattern are illustrated in

figure 4.13. The sequence diagrams which are similar to those in the AR-P pattern are already depicted in

section 4.1.1.1.

Chapter 4: Coordination Patterns

 34

Figure 4.12: Choreography for the AR-SU collaboration

Chapter 4: Coordination Patterns

 35

(a)

(b)

qr qe

sd ChatteeQuit

quit
removes chatteeId

from chatteeList where

chatteeId: PId

chatteeList:Java List

remove (chatteeList,chatteeId)

(c)

Figure 4.13: Sequence diagrams for sub-collaborations of AR-SU pattern

 (a) Update (b) ChatteeWaiting (c) ChatteeQuit

Chapter 4: Coordination Patterns

 36

4.1.1.3 Assign and Wait- by Status Update (AW-SU) pattern

In this pattern, if the Chattee is not available, the Controller puts the Chatter on waiting

(ChatterWaiting sub-collaboration). The Controller maintains a chatteeList of available

Chattee roles (see section 4.1.1.2 for details). If this list is empty, the Controller inserts

the chatter ID into a waiting queue (waitQ) and communicates to the Chatter its current

position in the queue. Meanwhile, the Chatter can opt to quit the waiting option

(ChatterQuit sub-collaboration). In that case, the Chatter will be deleted from the waiting

queue by the Controller (remove(waitQ , chatterId)), as shown by the sequence diagram

of ChatterQuit sub-collaboration in figure 4.17. Whenever a Chatter leaves the queue,

either because it decided not to wait any more, or because it was assigned a Chattee when

it becomes available, the Controller updates the position of the other Chatters in the

queue, and informs them about their new position. The UML collaboration of the

AW-SU pattern is shown in figure 4.14. The behaviour of the ChatterWaiting sub-

collaboration is specified by the sequence diagram shown in figure 4.16.

AW-SU

Chatter

Chattee

ci:

ChatInvite

cs:

ChatSession

dc1:

Disconnect

dc2:

Disconnect

ce

cr

dr

de

dr

de

ir

Controller

ud:

Update

ie

ue

ur

crw:

Chatter

Waiting
cew:

Chattee

Waiting

cewr

cewe

crwr

crwe

ceq:

ChatteeQuit

qe

qr

crq:

ChatterQuit

qe

qr

as:

Assign

are

ar

aee

Figure 4.14: UML collaboration of the AW-SU pattern

Chapter 4: Coordination Patterns

 37

The concept of waiting queue is the same as Queue in Java (supported by Jdk 1.5 and

higher versions). In our design, the Controller is the entity which maintains the waiting

queue. However, another possibility could be that the actor allows local waiting queues to

be maintained by each role that it plays. But in that case, we may need to modify the

behaviour of the original roles. The former solution, where the Controller maintains the

waiting queue and there is no need to modify the original Chattee role, is preferred here.

We have discussed how the Controller responds to the Chatter when the Chattee is

available and when it is not. We now discuss how the Controller keeps track of the

resources (Chattee), is important to be analyzed specifically when the Chatter is put on

waiting.

As we know, the Controller may keep track of the resource status in two ways:

• by Polling

• by Status Update

The difference between these alternatives has already been discussed in section 4.1.1.1

and 4.1.1.2 in connection with the AR-P and AR-SU patterns. The first alternative (i.e.

‘Polling’) is not recommended for the case where Chatters are placed on a waiting queue.

The reason is explained below.

Let us suppose that we have designed the Controller selecting the ‘Polling’ option. The

Controller will recognize the status of the Chattee by means of GetStatus sub-

collaboration, which is invoked only once for a particular chat request (inviteReq). If the

Chattee is busy, Controller will request the Chatter to wait and it will be in the

ChatterWaiting sub-collaboration with the Chatter. In this case, unfortunately, Controller

will keep the Chatter in the ChatterWaiting sub-collaboration forever, unless the Chatter

opts to quit. Because, by using the Polling for this design, once the Controller is in

ChatterWaiting collaboration with the Chatter, Controller cannot be updated by the

Chattee if it becomes available. Hence, there is no way to identify the availability of the

Chattee for the Controller. Consequently, ChatterWaiting collaboration will never lead to

the Assign and ChatSession sub-collaborations. Another possibility to design the

Chapter 4: Coordination Patterns

 38

Controller using the ‘Polling’ option, is to poll the Chattee at regular intervals when

Chatter is in ChatterWaiting sub-collaboration with the Controller, but it is not an

efficient solution. Therefore, this demonstrates the polling is undesirable in most cases.

When the Chatter is to be put on wait then, the second alternative (i.e. by Status Update)

works better. As discussed earlier in section 4.1.1.2, in this case, the Chattee takes the

autonomous initiative to update the Controller about its status whenever it becomes

available (Update sub-collaboration). So the Controller always has the current status

information of the Chattee. When the Chattee becomes available, the Controller extracts

the Chatter from the head of the waiting queue, ChatterWaiting collaboration is

interrupted for one instance and Controller assigns the Chattee to the Chatter.

Accordingly, the Controller updates the queue number to other Chatters in the waiting

queue.

If the Chattee is available and there is no Chatter waiting in the queue i.e. waitQ is empty

(shown by the operation chatterId=chatterWaiting(waitQ) in choreography graph figure

4.15), then the Controller sends a message to the Chattee to wait (ChatteeWaiting sub-

collaboration). While in the ChatteeWaiting sub-collaboration, the Chattee can opt to quit

(ChatteeQuit sub-collaboration), if it decides not to wait more. If this happens, the

Chattee will be deleted from the chatteeList by the Controller. The sequence diagrams of

ChatteeWaiting and ChatteeQuit is already shown in figure 4.13 in section 4.1.1.2 for the

AR-SU pattern. ChatteeWaiting will be interrupted when a chat request is received, and

the Controller will assign the Chattee to the Chatter (details of Assign sub-collaboration

are already discussed in section 4.1.1.1).

The above discussion is illustrated by the choreography of the AW-SU collaboration in

figure 4.15. The choreography is showing the global operations along with the execution

order of AW-SU sub-collaborations. For the detailed behaviour of sub-collaborations, see

the sequence diagrams in figure 4.16 and 4.17. The sequence diagrams for ChatInvite,

Update, ChatteeWaiting, ChatteeQuit can be found in sections 4.1.1.1 and 4.1.1.2.

Chapter 4: Coordination Patterns

 39

 dc1.Disconnectchatter

<<external>>

dcByChatter

 cs.ChatSessionchatter

act AW-SU

<<external>>

dcByChattee

dc2.Disconnectchatter

chattee

chattee chattee

 ci.ChatInvitechatter ctlr ud.Updatectlr chattee

chatteeId=chatteeStatus(chatteeList)

[chatteeId==Null] [chatteeId!=Null]]

ceq.ChatteeQuitctlr chattee

cew.Chattee

Waiting
chatteectlr

<<external>>

end

chatterId=chatterWaiting(waitQ)

[chatterId!=Null]

crq.ChatterQuit ctlrchatter

crw.Chatter

Waiting
chatter ctlr

<<external>>

end

waiting

as.Assignctlr
chatter

chattee

[chatterId==Null]

[] []

[][]

interrupting only

one instance
interrupting only

one instance

Figure 4.15: Choreography for the AW-SU collaboration

Chapter 4: Coordination Patterns

 40

Figure 4.16: Sequence diagram for ChatterWaiting sub-collaboration of AW-SU pattern

qr qe

sd ChatterQuit

quit
removes chatterId

from waitQ where

chatterId: PId

waitQId: Integer

remove (waitQ,chatterId)

Figure 4.17: Sequence diagram for ChatterQuit sub-collaboration of AW-SU pattern

Chapter 4: Coordination Patterns

 41

4.2 System Diagram (with Controller role)

The system diagram including the Controller role in addition to Chatter and Chattee roles

is shown in figure 4.18. In this new system diagram, we bind the Controller role to an

appropriate Component i.e. UserAgent. Compare this system diagram (in figure 4.18)

with the system diagram presented earlier in section 3.2.2 (figure 3.5).

InstantMessagingSystemWithController

:UserAgent[*]

SimpleChat

chatter

chattee

controller

Figure 4.18: System Diagram with Controller role

There can be two possibilities depending upon the preference of each actor (UserAgent):

• single role per UserAgent

• multiple roles per UserAgent.

If single role per UserAgent is preferred, then the design of the Controller can be seen as

a special case of multiple roles per UserAgent with the Controller maintaining only one

available Chattee in the chatteeList. Therefore, the coordination patterns discussed for

multiple roles per UserAgent can be used without modifications for single role per

UserAgent case.

4.3 Controller role as Coordinating Entity for Different
Agents with Multiple Roles

We discussed in section 4.1.1 that we modeled extra coordination functionality by

defining another role (Controller role) for each actor. In the SimpleChat service example,

it is required that the actor playing the role of the Chatter contacts a specific actor that

Chapter 4: Coordination Patterns

 42

plays the role of Chattee. For example, if a user wants to contact John and he is not

available, then the availability of any other person cannot serve one’s purpose. However,

there are services examples, where the Sender role (e.g. Chatter role in SimpleChat) does

not need to contact any specific actor among the actors which play the Receiver role (e.g.

Chattee role in SimpleChat). In other words, the actor playing the Sender role can take

advantage of the availability of any of the actors instead of a specific actor. We will

discuss a service example with this requirement in section 4.3.3.

In this section, we will discuss the Controller role which will perform the coordination

functionality for different UserAgents with multiple roles (or it will behave as a central

controlling entity for different UserAgents). That is; instead of having a Controller role

for each UserAgent, all the UserAgents will be controlled by a central Controller. We will

discuss this design approach first for our example SimpleChat to keep the understanding

simpler. That is; how to design SimpleChat with Controller as a central entity for

different UserAgents with multiple roles. Then later in section 4.3.3 we will discuss this

solution for other examples for more clarity.

When the Controller will play the role as a central entity then it maintains an inventory of

all UserAgents it is controlling. For this design approach, we bind the Controller role to a

new component Controller instead of UserAgent. The system diagram is shown in figure

4.19. Compare this system diagram with the system diagram presented in figure 4.18.

InstantMessagingSystem

:UserAgent[*]

SimpleChat

chatter

chattee

controller

:Controller

Figure 4.19: System diagram of InstantMessagingSystem where Controller role is bound to a new

component

Chapter 4: Coordination Patterns

 43

Now we will look at how the Controller as a central entity can affect our coordination

patterns. We will discuss the patterns one by one.

4.1.1 AR-P pattern with Controller as a Central Entity

We discussed in detail in section 4.1.1.1 that in the AR-P pattern, the Controller Assigns

the resource (Chattee) to the Chatter if the Chattee is available (Assign sub-collaboration)

and Rejects the invitation request sent by the Chatter (Reject sub-collaboration), if the

Chattee is busy. The Controller polls the Chattee to learn whether it is available or busy

by means of the GetStatus sub-collaboration. Figure 4.1 shows the UML collaboration

structure of the AR-P coordination pattern.

If a Chatter wants to chat with a specific actor playing the role of Chattee, it has to tell the

Controller which UserAgent it wants to contact. For this purpose, Chatter has to send

additional information i.e. chatteeName, chatteeId along with the invitation request as

shown in the sequence diagram of ChatInvite in figure 4.20 (compare it with figure 4.3).

Accordingly, the Controller will poll the respective UserAgent playing the Chattee role.

Figure 4.20: Sequence diagram of ChatInvite when the Controller role is central for different

UserAgents

4.1.2 AR-SU pattern with Controller as a Central Entity

It is discussed earlier in section 4.1.1.2 that in the AR-SU pattern, Chattee takes the

autonomous initiative to update the Controller about its status whenever it becomes

available (Update sub-collaboration). The Controller maintains a Chattee list

Chapter 4: Coordination Patterns

 44

(chatteeList). In this list, the Controller inserts the Chattee which sends the update

message of its availability. But now the Controller is responsible for different

UserAgents. As we know, the Chatter wants to chat with a specific actor playing the role

of Chattee. To manage this, the Controller has to maintain separate chatteeList for each

UserAgent containing the available Chattees for that UserAgent. When Chatter sends an

invitation request containing the chatteeName and chatteeId as shown in figure 4.20, the

Controller checks the corresponding chatteeList by using this chatteeId as index to

indicate the specific actor (UserAgent) chatteeList. If the corresponding chatteeList is

empty, the invitation request is rejected or if that chatteeList has any Chattee available it

will be assigned to the Chatter. It is important to mention here that the basic AR-SU

pattern will remain the same as discussed in section 4.1.1.2, except the minor changes we

just discussed in this section.

4.1.3 AW-SU Pattern with Controller as a Central Entity

As discussed in section 4.3.2, the Controller as central entity has to maintain separate

chatteeList for each UserAgent. When a Chatter sends an invitation request, the

Controller checks the corresponding chatteeList. If the list is empty, the Controller

inserts the chatter ID into a waiting queue (waitQ) and sends its current position in the

queue. It is important to mention here that the basic AW-SU pattern will remain the same

as discussed in section 4.1.1.3, except the minor changes we discussed in section 4.3.2

regarding the chatteeList and some other issues when Controller is central to different

UserAgents. These issues are discussed next.

Some questions arise when we consider the design of Controller as a central entity; how

it will maintain waiting queues for a number of UserAgents? Should there be only one

waiting queue for all the UserAgents or separate waiting queues for each UserAgent?

Which solution is more efficient? In our service example SimpleChat, the Chatter wants

to chat with a specific UserAgent playing the role of Chattee. Hence, it is desirable for

SimpleChat service that the Controller should maintain separate waiting queues for each

UserAgent so that the Chatters waiting for a specific UserAgent can be inserted into the

waiting queue reserved for that UserAgent. But, there are other service examples where it

Chapter 4: Coordination Patterns

 45

will be preferred to maintain one waiting queue for all the UserAgents. These examples

are discussed next.

Controller maintaining one waiting queue (as central entity for different

UserAgents)

The AW-SU pattern discussed so far (with the Controller as a central entity for different

UserAgents), is based on our SimpleChat example. Because the Chatter wants to chat

with a specific Chattee, the Controller has to maintain separate waiting queues for each

UserAgent. However, there are service examples that require only one waiting queue.

One such example is the telemedicine consultation service, or TeleConsultation service,

that can be found in [CBB07, Cas08]. The service is described as follows:

“A patient is being treated over an extended period of time for an illness that requires

frequent tests and consultations with a doctor at the hospital to set the right doses of

medicine. Since the patient may stay at home and the hospital is a considerable distance

away from the patient’s home, the patient has been equipped with the necessary testing

equipment at home and a terminal with the necessary software. The patient will call the

hospital on a regular basis to consult with a doctor and have remote tests done. A

consultation may proceed as follows:

1. The patient uses the terminal to access a virtual reception desk at the hospital and to

request a consultation session with a doctor assigned to this kind of consultation.

2. If no doctor is available, the patient will be put on hold, possibly listening to music,

until a doctor is available. If the patient does not want to wait he/she may hang up (and

call back later).

3. When a doctor becomes available while the patient is still waiting, the doctor is

assigned to the patient.

4. A voice connection is established between the patient terminal and the doctor terminal

allowing the consultation to take place.

5. During the consultation the doctor may perform remote tests using the equipment

located at the patient’s site and a central data logging facility located at the hospital. The

doctor evaluates the results and advises the patient about further treatment. Either the

doctor or the patient may end the consultation call.

Chapter 4: Coordination Patterns

 46

6. After the consultation call is ended, the doctor may spend some time updating the

patient journal and doing other necessary work before signaling that he/she is available

for a new call. The doctor may signal that he/she is unavailable when leaving office for a

longer period, or going off-duty”.

In the TeleConsultation service we can identify two roles, the patient and the doctor, that

behave partly independently of each other and may take uncoordinated initiatives to

initiate activities that involve the other. A third role, the virtual reception desk, serves to

coordinate these initiatives. Figure 4.21 shows a collaboration describing the structure of

the TeleConsultation service.

Pat

Trm

Doc

Trm

VRec

Dsk

pt

dt

d

gaga

d

TeleConsultation

p

g
rd:

Request

Doc

c:

Consultation

u:

Unavailable

av:

Available

d

as:

Assign

w:

Waiting

wd:

Withdraw

g

g

p

p

p

Data

Logger

dl

TeleConsultationact

Figure 4.21: Roles and sub-collaborations in the TeleConsultation service [CBB07]

If we compare this example with our SimpleChat service example that uses AW-SU

pattern (shown in figure 4.14), we can say that virtual reception desk role is similar to the

Controller, with a minor difference as explained next. The Doctor role (DocTrm in figure

4.21) updates its status (available/unavailable) to the virtual reception desk role (VRecDsk

in figure 4.21). Since, in this example, the Patient role (PatTrm in figure 4.21) wants to

Chapter 4: Coordination Patterns

 47

get remote assistance from any of the doctors i.e. not from any specific doctor, the

VRecDsk role can assign any of the available doctors through the Assign sub-

collaboration as shown in the figure 4.21. Let us assume that VRecDsk inserts the PatTrm

role into a waiting queue if no doctor is available. Since, it does not matter which doctor

should be assigned, VRecDsk does not need to maintain separate waiting queues for each

doctor. It will maintain a single waiting queue for all the doctors in which all the Patients

waiting for the availability of any of the doctors will be inserted. The same argument

holds for maintaining one list for all the available doctors. Hence, it is unlike the

SimpleChat example where the Controller needs to maintain separate waiting queues for

each Chattee because Chatter wants to chat with a specific actor playing the role of

Chattee.

For the sake of simplicity and to keep the understanding of the central Controller design

simple, let us stick to our SimpleChat example and assume (temporarily) that the actor

playing the Chatter role does not require chatting with a specific actor playing the Chattee

role. For example, contacting a user named John can serve the purpose instead of

contacting another user named Cristian. With this assumption, it can be clearly

understood that the design of the Controller as central entity (for different UserAgents

with multiple roles) will not require any modifications or additional operations as

discussed in sections 4.3.1, 4.3.2 and 4.3.3. We just need to bind the Controller role to a

new component instead of binding it with the UserAgent. See the next section for details.

4.4 When to use which solution

We have discussed the Controller design with three possibilities:

• Single role per agent

• Multiple roles per agent

• Multiple roles-different agents

These alternative solutions have advantages and disadvantages depending on which

service they will be applied to. We discussed the Controller design for SimpleChat with

two options; the Controller maintaining a single waiting queue and the Controller

maintaining separate waiting queues for each UserAgent. The latter approach introduces

Chapter 4: Coordination Patterns

 48

a processing power overhead for maintaining and managing different waiting queues,

which will affect the computation speed. However, it is the service requirements that put

the constraints on which design to choose. When to use which solution is explained as

follows:

• When there are several alternate resources and the Chatter may want to contact an

actor playing the role of the Chattee, but it does not matter which actor

(UserAgent) (as in the case of the TeleConsultation service example), then one

may prefer to follow the system diagram shown in figure 4.22 (b), where the

Controller is bound to a new component and it is the coordinating entity for

different UserAgents with multiple roles.

• When Chatter wants to chat with a particular actor playing the role of Chattee,

then a Controller role will be defined for each actor (UserAgent). The system

diagram for this approach is shown in figure 4.22 (a). The Controller will

maintain a single waiting queue for that specific actor playing the role of Chattee.

Another example where we should use this approach is phone call service. The

Caller wants to talk to a specific actor (UserAgent) playing the role of Callee,

Controller cannot assign any of the available UserAgents playing the role of

Callee.

 (a) (b)

Figure 4.22: Comparison of System diagrams (a) two possibilities: single role per agent and

multiple roles per agent (b) multiple roles - different agents

Chapter 4: Coordination Patterns

 49

4.5 Coordination within an Actor (UserAgent)

In our coordination patterns, we have focused on dealing with external communication

i.e. between actors. However, the Controller should also be made responsible to

coordinate for the internal communication within an actor.

A system component plays one or more initiating roles whose execution is triggered by

an external event. Then, it is possible that a system component that is already

participating in an occurrence of a service collaboration, tries to initiate a new

collaboration occurrence in response to an external event. For example, let us consider

that in the SimpleChat service, single instance of roles (Chatter/Chattee) is possible per

UserAgent. The Chatter role is the initiating role whose execution is triggered by an

external event (end-user). One cannot control the actions of an end-user. The event can

happen while the UserAgent is already busy playing the role of the Chatter in another

SimpleChat occurrence. In this case, the Controller needs another decision policy in order

to respond to this event. The decision will then be dependent on whether the Chatter role

already exists or not. If it already exists within the UserAgent, then the Controller

responds according to the coordination patterns identified in previous sections i.e. either

by rejecting the end-user initiative or putting it on wait. The basic structure of the

coordination patterns will remain the same as already discussed in this chapter, only the

decision policy of the Controller will be different.

4.6 Whether to Relay the Invitation Request or Not?

In our coordination patterns, we have considered that it is the responsibility of the

Controller to keep the track of the resources and to respond back to the Chatter depending

upon the availability of the resource. If the Chattee role is busy, the Controller either

rejects the chat invitation request or gives the option of waiting to the Chatter. But if the

Chattee is available, the Controller assigns the Chattee to the Chatter by seizing the

Chattee and granting it to the Chatter. In other words, the Controller itself decides to

accept the chat invitation request by sensing the availability of the Chattee.

Chapter 4: Coordination Patterns

 50

There is a possibility to design the Controller to relay the invitation request to the

Receiver role (Chattee). As a result, the Chattee role itself responds to the Chatter for its

invitation request. But this approach kills the real purpose of the Controller, which is

designed to respond to the autonomous events. It is defined external to the service roles

and serves to coordinate role binding by dynamically binding the roles to actors during

execution. Therefore, relaying of the invitation request by the Controller is not

recommended for the coordination patterns proposed in this chapter.

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 51

Chapter 5: Applying Coordination Patterns to an

Existing Service Model

In this chapter, we will focus on the second task of this thesis i.e. how to improve systems

by adding new/extra functionality to an existing service model. This chapter presents

initial thoughts to address this problem by taking an example service. The coordination

patterns identified in this thesis (presented in chapter 4) are considered in this chapter as

an extra/new functionality which we want to apply to an existing service model. The

explanation is given for the AR-SU pattern as a case study. We start by identifying

general structure in coordination patterns.

5.1 Identification of General Structure in Coordination
Patterns

We have discussed in detail the coordination patterns in chapter 4, using the SimpleChat

service example. From these patterns we can see that the Controller role is involved in the

coordination patterns until the chat invitation request is processed by the assignment of

Chattee to the Chatter (Assign sub-collaboration) in the case of successful connection, or

in other words, until the ‘actual’ service starts between the two parties. This gives the

indication that we can extract coordination patterns from the SimpleChat service example

which are generic to a broad range of services.

Let us look at how this extraction is possible. We will take the case of the AR-SU pattern.

As shown in figure 5.1, it is understandable that the sub-collaborations ChatSession and

Disconnect are specific to the SimpleChat service, and the sub-collaborations ChatInvite,

Reject, Assign, Update, ChatteeWaiting and ChatterQuit are generic to all services. We

can easily draw a separation line between general structure and service specific structure

as depicted in figure 5.1. Consequently, the general AR-SU pattern will become as

depicted in figure 5.2. To be general, Chatter and Chattee roles are renamed as

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 52

Figure 5.1: UML collaboration of the AR-SU pattern depicting the separation between General

Structure and Service Specific Structure

AR-SU

Sender

Receiver

iv:

Invite

ir

Controller

ud:

Update

ie

ue

ur

rw:

Receiver

Waiting

cewr

cewe

rq:

ReceiverQuit

qe

qr

rt:

Reject

rr

re

as:

Assign

are

aee

ar

Figure 5.2: General AR-SU pattern; Chattee role and Chatter role are renamed as Sender and

Receiver. Similar renaming can be observed in the sub-collaborations

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 53

‘Sender’ and ‘Receiver’. Similarly, the ChatInvite sub-collaboration is renamed as Invite,

ChatteeWaiting as ReceiverWaiting and ChatteeQuit as ReceiverQuit.

5.2 Applying the coordination pattern into an existing
model

The next question is “how an existing service will use the coordination patterns as an

additional functionality”. In the following we will discuss some of the potential

opportunities for reuse that UML 2.0 offers:

• UML 2.0 generalization relationship

• UML 2.0 templates

• UML 2.0 extend relationship

Another solution of the above cited question is to exercise ‘service composition’ as

worked out by [Ros09]. We will discuss how we can apply these solutions with their pros

and cons.

5.2.1 By Using UML 2.0 Generalization Relationship

[OMG09] defines generalization as “a taxonomic relationship between a more general

classifier and a more specific classifier. Each instance of the specific classifier is also an

indirect instance of the general classifier. Thus, the specific classifier inherits the

features of the more general classifier”.

The service models which need to have the functionality of coordination among roles

should specialize from a coordination pattern, for instance from the AR-SU. By

specializing a general classifier, all the properties of the general classifier are inherited by

the specialization but any redefinable element of the general classifier may be either

replaced or extended and declared as {redefined} in the specialization [HPW03]. An

entity that cannot be redefined in specializations is declared as {final} in the general

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 54

classifier [OMG09]. Now let us see how we can use the UML 2.0 generalization

relationship to reuse our coordination patterns in existing service models.

Consider for example a BasicPhoneCall service as shown in figure 5.3. This

collaboration consists of two roles, Caller and Callee, involved in sub-collaborations;

CallSession and CallEnd. The roles of these sub-collaborations are bound to Caller and

Callee. For instance, caller (cr), disconnecter (dr) and disconnectee (de) roles are bound

to the Callee role of the containing collaboration (BasicPhoneCall). The execution order

of the sub-collaborations involved is defined by the choreography graph in figure 5.4.

If the BasicPhoneCall service needs to have the coordination functionality of the AR-SU

pattern, we can create a new BPCwithAR-SU collaboration that specializes the AR-SU

pattern and extends it with the functionality of BasicPhoneCall. For that, we redefine the

Sender and Receiver roles and extend them with the behaviour defined by the Caller and

Callee roles. Because, we do not want the Controller to be redefined, it is declared as

{final} in the AR-SU pattern (see figure 5.5). The inherited aspects are represented by

dashed lines which differentiate them from the extension added in the classifier

[HPW03]. Since, dashed lines are also used to represent the ellipse of UML 2.0

collaborations, we use a solid line (shown in red in figure 5.5) inside the dashed lines of

collaboration to represent the extensions in specialization. The specialized

BPCwithAR-SU service is shown in figure 5.5. It can be seen that Sender and Receiver

roles are redefined in BPCwithAR-SU. Inheritance is not defined in UML for activity

diagrams, however it is defined for state machines (which are used to model behaviour

like activity diagrams). We have worked out a way to define inheritance for activity

diagrams. In order to represent the elements that are inherited in activity diagrams, we

used dashed lines in combination with solid lines such that dashed lines appear inside

solid lines (see figure 5.6). We avoid using only dashed lines because they are used to

represent interruptible regions in activity diagrams. The choreography for the

BPCwithAR-SU collaboration is shown in figure 5.6. It can be seen in figure 5.6 that the

Sender and Receiver roles are redefined only for the BasicPhoneCall collaboration.

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 55

Figure 5.3: UML collaboration of BasicPhoneCall service

 ce1.CallEndcaller

<<external>>

endByCaller

 cs.CallSessioncaller

<<external>>

endByCallee

ce2.CallEndcaller

callee

callee callee

act BasicPhoneCall

Figure 5.4: Choreography of the BasicPhoneCall collaboration

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 56

Parent Classifier

Child Classifier

AR-SU

Sender

Receiver

iv:

Invite

ir

Controller

{final}

ud:

Update

ie

ue

ur

rw:

Receiver

Waiting

cewr

cewe

rq:

ReceiverQuit

qe

qr

rt:

Reject

rr

re

as:

Assign

are

aee

ar

BPCwithAR-SU

Sender
{redefined}

Receiver
{redefined}

iv:

Invite

ir

Controller

{final}

ud:

Update

ie

ue

ur

rw:

Receiver

Waiting

cewr

cewe

rq:

ReceiverQuit

qe

qr

rt:

Reject

rr

re

as:

Assign

are

aee

ar

bpc:

BasicPhone

Call

caller

callee

Figure 5.5: UML 2.0 Generalization relationship: BPCwithAR-SU collaboration is specialized

from general AR-SU collaboration

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 57

arsu.AR-SU
Ctrl

{final}

act BPCwithAR-SU

bpc.BasicPhone

Call

Receiver

{redefined}

Sender

{redefined}

Receiver

Sender

[]

[]

Figure 5.6: Choreography for BPCwithAR-SU collaboration: The symbol represents a

complex activity

Pros and Cons

The BPCwithAR-SU service which is specialized from the AR-SU pattern, surely

contains the intended behaviour. This solution has advantage over UML 2.0 extend

relationship and UML 2.0 templates because of the following reasons;

1. By specializing a general classifier, we cannot only add new properties but can also

redefine the existing ones.

 2. It is guaranteed that the Sender role and Caller role are played by the same actor.

Similarly, Receiver role and Callee role are played by the same entity (this is not certain

when we use UML 2.0 extend relationship; it is discussed later in section 5.2.3).

3. Unlike UML 2.0 templates, we do not need to introduce an UndefinedService

parameter (we will discuss it in section 5.2.2).

The redefinition of elements is advantageous if the properties are added, but if the

existing behaviour of the Sender and Receiver role is replaced then it will be detrimental.

So additional constraints are required which ensure that the redefinition will result in the

addition of properties but not in replacement. For this, it must be ensured that the

Controller role should be declared as {final}. The major drawback of generalization

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 58

relationship is that it is not completely modular i.e. we have to modify the general model

for additional functionalities. For example, the Sender role of AR-SU pattern should be

modified in accordance with the behaviour defined by the Caller role of BasicPhoneCall.

5.2.2 By Using UML 2.0 templates

[RJB05] defines template as “the descriptor of an element with one more unbound

parameters”. Typically, the parameters are the classifiers
12
 but they can be operations

and packages as well. UML templates are not directly instantiatable as they have

unbound parameters. The templates must be instantiated by binding the unbound

parameters to actual values. The unbound parameters are substituted by the actual values.

UML templates allow us to create UML elements (classifiers, packages) to work with

other UML elements when we do not know specifically what those elements are.

We will discuss how UML templates can be used to solve our problem. Collaborations (a

UML classifier) also support the ability to be defined as templates [OMG09]. Figure 5.7

illustrates how to use UML template concept for applying the coordination patterns to an

existing service. It shows the concept by using the example of AR-SU coordination

pattern as a UML collaboration template and BasicPhoneCall service (earlier shown in

figure 5.3) as the binding collaboration. To represent the UML collaboration as a

template, a dashed rectangle is used at the upper right corner of the collaboration as

shown in figure 5.7(a). In the rectangle there is a place holder for the unbound parameter.

Since, we are now using the AR-SU coordination pattern as a UML collaboration

template, a sub-collaboration is introduced (UndefinedService) between the Sender and

Receiver roles which is not defined. The UndefinedService is used as an unbound

parameter that is constrained to be a UML collaboration (the symbol ‘>’ defines a

constraint which is placed just after the unbound parameter; constraints are optional

[OMG09]). When an existing service model uses the AR-SU template, it will be called

“derivation”. In our example, the AR-SU template is being used by

BasicPhoneCall_AR-SU collaboration (in other words the BasicPhoneCall collaboration

12
 [RJB05] defines classifier as “a model element that describes behavioral and structural features” (e.g.

class, collaboration).

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 59

is derived from the AR-SU template). The UndefinedService unbound parameter is

substituted by the BasicPhoneCall collaboration

The choreography of the derived BasicPhoneCall_AR-SU collaboration (bound

collaboration) is shown in figure 5.8. It can be observed that BasicPhoneCall is

substituted in place of UndefinedService collaboration which is the unbound parameter

defined in the AR-SU collaboration template already shown in figure 5.7(a).

Unbound parameter

which is constrained to

be a ‘Collaboration’

AR-SU

Sender

Receiver

iud:

InviteUd

ir

Controller

ud:

Update

ie

ue

ur

rw:

Receiver

Waiting

cewr

cewe

rq:

ReceiverQuit

qe

qr

rt:

Reject

rr

re

as:

Assign

are

aee

ar

us:

Undefined

Service

UndefinedService > Collaboration

(a)

(b)

Figure 5.7: (a) AR-SU template declaration (b) Bound collaboration resulting from binding the

BasicPhoneCall to UndefinedService parameter of AR-SU template

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 60

bpc.BasicPhone

Call
sender

act BasicPhoneCall_AR-SU

receiver

rt.Reject ctlrsender

 iv.Invitesender ctlr ud.Updatectlr receiver

receiverId=receiverStatus(rcvrList)

[receiverId==Null] [receiverId!=Null]

 rq.ReceiverQuitctlr receiver

rw.Receiver

Waiting
receiverctlr

<<external>>

end

ans=isSenderThere()

[ans!=Null]

[ans==Null]

[] []

[]

[]

as.Assignctlr
receiver

sender interrupting only

one instance

substituted in place

of 'UndefinedService'

Figure 5.8: Choreography of the bound collaboration BasicPhoneCall_AR-SU. The

BasicPhoneCall is substituted in place of UndefinedService collaboration parameter of the

AR-SU template.

Pros and Cons

UML templates allow us to provide abstractions. It is another way to introduce a new

functionality in an existing service model, keeping the essence of modularity. Unlike

extend relationship, templates allow to bind the roles. But in UML templates the binding

of the role means complete substitution of the role. For example, Sender role can be

declared as an unbound parameter which can be defined to be substituted by the actual

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 61

Caller role of BasicPhoneCall service. But the derived BasicPhoneCall_AR-SU service

will not behave as it is intended to be. As the Sender role is completely replaced by the

Caller role, the derived BasicPhoneCall_AR-SU service will discard the presence of the

Controller and that will result in the original BasicPhoneCall service (as if it was not

derived). If we see the other way round, Sender role cannot be declared as an unbound

parameter because it is already bound in sub-collaborations of AR-SU.

The UML templates has an advantage over the extend relationship. It is obvious that

Caller role will be played by the Sender role and Callee role will be played by the

Receiver Role (this is not obvious in extend relationship; discussed in next section). First

reason; the UndefinedService is an undefined sub-collaboration between Sender and

Receiver roles, the BasicPhoneCall will replace it. Second reason ; as shown in figure

5.7(a), Sender is the role will initiate the service (UndefinedService) and Receiver role

can only terminate the service (represented by filled circle and filled square respectively)

and in BasicPhoneCall, Caller role can initiate the service and Callee role can only

terminate.

But the concept of UML templates does not solve the dilemma of role binding without

substituting the roles of the collaboration template.

5.2.3 By Using UML 2.0 ‘extend’ Relationship

In UML 2.0 ‘extend’ is defined as a relationship from an extending use case to an

extended use case which defines how the behaviour of the extending use case can be

inserted into the behaviour of the extended use case [OMG09, RJB05]. In other words,

the extending use case expands the behaviour of the extended use case. The extend

relationship contains one or more extension points defined in the extended use case.

Extension point is the location within the behaviour sequence of extended use case at

which additional behaviour can be inserted [RJB05]. The extend relationship may have a

condition that must hold for the extension to take place when the extension point is

reached. The condition and extension point can optionally be defined in a Note attached

to the extend relationship as shown in figure 5.9 [OMG09].

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 62

Figure 5.9: UML 2.0 extend relationship [OMG09]

When the extension point is reached in the behaviour of the extended entity, the condition

on the extend relationship is evaluated. If it is true, then the behaviour of the extending

use case is executed [RJB05].

We can comfortably say that the elegancy of extend relationship lies in the fact that “the

extending use case incrementally modifies the extended use case in a modular and

systematic way”. But, as we have discussed, the UML 2.0 extend relationship is defined

for use cases in the standard. As far as modularity is concerned, UML 2.0 extend

relationship stands in a better position as compared to the UML 2.0 generalization

relationship and UML 2.0 templates. With this spirit, we are going to present extend

relationship for UML 2.0 collaborations with additional profiling.

First, we will discuss that how to define the extension point for UML 2.0 collaborations.

The solution is simple; we know that the behaviour of the each of the elementary

collaborations can be specified by the UML 2.0 sequence diagrams. Therefore, we can

define the extension point as the location within the behaviour sequence of the extended

collaboration at which additional behaviour can be inserted. The condition can be defined

as reception of a certain message by an entity (collaboration role).

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 63

BasicPhoneCall

Caller Callee
cs:

CallSession

ce1:

CallEnd

ce2:

CallEnd

cecr

cr
ce

cr
ce

extension point

Receiver is Assigned

<<extend>>

condition:{Sender receives 'Grant' message}

extension point: Receiver is Assigned

AR-SU

Sender

Receiver

iv:

Invite

ir

Controller

ud:

Update

ie

ue

ur

rw:

Receiver

Waiting

cewr

cewe

rq:

ReceiverQuit

qe

qr

rt:

Reject

rr

re

as:

Assign

are

aee

ar

Figure 5.10: Applying coordination pattern to existing service using UML extend relationship

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 64

Now let us see how we can use the UML 2.0 extend relationship to reuse our

coordination patterns in existing service models. In figure 5.10, it is illustrated how the

coordination pattern AR-SU will be applied to the existing BasicPhoneCall service using

extend relationship. The behaviour of the BasicPhoneCall service (extending

collaboration) will be inserted into AR-SU coordination pattern (extended collaboration).

When the extension point (Receiver is Assigned) is reached i.e. the Controller assigned

the resource (Receiver) to the Sender, then the condition on the extend relationship is

evaluated. The condition is; Sender receives ‘Grant’ message i.e. if the Sender receives

grant message from the Controller, confirming that the Receiver is assigned, then the

BasicPhoneCall service behaviour will be executed. Figure 5.11 shows the choreography

of the extend relationship shown in figure 5.10. The choreography explains that when the

extension point is reached in AR-SU choreography, the condition is evaluated which is

represented by the output pin “Sender receives “Grant” message, if it is true, the

choreography of BasicPhoneCall will be executed. If the Sender receives the “Reject”

message from the Controller, then BasicPhoneCall behaviour cannot be executed.

AR-SU

Sender Receives

‘Grant’ message

Sender Receives

‘Reject’ message

AR-SU

BasicPhoneCall

Figure 5.11: Choreography of BasicPhoneCall extending AR-SU using UML extend relationship.

The symbol represents a complex activity.

Pros and Cons

By using the extend relationship, we can conveniently apply the coordination patterns to

an existing service model in a simple and modular way. Because, the only thing we have

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 65

to mention is the extension point (and/or condition) without changing or modifying

anything in the system. So it assumes a simple sequential ordering.

The major drawback of this solution for applying the coordination pattern to an existing

service is that we cannot ensure that the Sender role and Caller role (of BasicPhoneCall

example) or Receiver role and Callee role (of BasicPhoneCall example) will be played

by the same actor. Binding of the roles is not defined in extend relationship, since

“extend” is defined for use cases in the standard.

5.2.4 By Using Service Composition

When a functionality is required that cannot be realized by the existing services, then the

existing services can be combined together to fulfill the requirement [SHP03]. This is

known as service composition. According to [FB03, Ros09], “compositional design

allows service developers to put service components together and reuse the individual

components”.

As said earlier in section 5.2, adding the functionality of coordination patterns to an

existing service model can be addressed by the results of [Ros09] which provides the

solution of our problem with service composition. The mechanism of composition of

existing service model and coordination patterns is described next.

We will use the example of BasicPhoneCall service already under discussion. Figure 5.4

shows the UML 2.0 collaboration illustrating the BasicPhoneCall service. We will take

the case of AR-SU pattern (shown in figure 5.2) with which we want to compose

BasicPhoneCall service. In figure 5.12, the UML 2.0 collaboration diagram of

BasicPhoneCall(AR-SU) service is shown. This service is a composition of the

BasicPhoneCall and AR-SU collaborations. This new service has three composite roles

Caller, Callee and Controller which have participated in the composition. The Sender,

Receiver and Controller roles of AR-SU are bound to the Caller, Callee and Controller

roles of BasicPhoneCall-AR-SU respectively. Similarly Caller and Callee roles of

BasicPhoneCall are bound to the Caller and Callee roles of BasicPhoneCall(AR-SU)

respectively. Therefore by using [Ros09] method, we can model the composition of

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 66

existing services and coordination patterns structurally. The choreography graph of the

new created service BasicPhoneCall(AR-SU) is shown in figure 5.13.

Figure 5.12: UML collaboration of BasicPhoneCall(AR-SU); a composition of BasicPhoneCall

and AR-SU service collaborations

arsu.AR-SUctrl

act BasicPhoneCall (AR-SU)

bpc.BasicPhone

Call
calleecaller

caller

callee

[]

[]

Figure 5.13: Choreography for BasicPhoneCall (AR-SU) collaboration

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 67

Pros and Cons

‘Service composition’ combines the extra functionality with an existing service model

and creates a new service which contains both functionalities. The new service contains

the intended behaviour. Moreover, ‘service composition’ is equally good as

generalization relationship. It is the ‘service composition’ that creates new service but the

drawback is that the new functionality cannot be inserted into the existing service model

in a modular way. In other words, service composition is powerful but less elegant.

Cut and Paste solution

None of the four solutions we discussed, fully serve our purpose of adding extra

functionality to existing services in a modular way. They have pros and cons at the same

time. Generalization relationship stands in a better position among the solutions proposed

in this chapter. These are the initial thoughts which can be further explored in depth. For

the time being, the solution which fully serve our purpose is Cut and Paste. To add a new

functionality into an existing service model we have to manually modify the UML

collaborations and their corresponding choreography graph to achieve 100% results.

Chapter 5: Applying Coordination Patterns to an Existing Service Model

 68

Chapter 6: Discussion and Conclusion

 69

Chapter 6: Discussion and Conclusion

This chapter briefly summarizes the results achieved in this thesis. It discusses the

limitations and, at the end, some future work is proposed which is based on the

discussion.

6.1 Achievements

In this section, we highlight the results achieved against the tasks identified in the

problem description discussed in section 3.1.

6.1.1 Identification of Coordination Patterns

An example service (SimpleChat) is modeled and designed using the service engineering

approach proposed in [Cas08]. The service is first modeled using UML 2.0 collaborations

i.e. the service is described as collaborations between roles; thereafter, the service

behaviour is modeled as a choreography of sub-collaborations using UML 2.0 activity

diagrams (with semantics which deviates from the standard). This service modeling is

initially focused on one isolated occurrence of the service. The focus is on role

behaviours. The behaviour of system component is then designed as composition of the

roles it plays.

To deal with the possibility of having multiple concurrent occurrences of the service

running in the system, extra coordination functionality is introduced in this thesis by

defining another role which is external to the service roles and serves to coordinate role

binding. This role is named as ‘Controller’. The Controller is designed to keep track of

the resource status, assign the resource if it is free (i.e. not participating in another

occurrence of the service collaboration), and if not then respond to the service invitation

requests according to the preferences of the actors that receive them. Depending upon

how the Controller performs the coordination functionality just discussed, three

Chapter 6: Discussion and Conclusion

 70

coordination patterns are identified: Assign and Reject – by Polling (AR-P); Assign and

Reject – by Status Update (AR-SU); Assign and Wait – by Status Update (AW-SU).

Based on the modeling and design of our example service SimpleChat, the design of the

Controller has been investigated and these coordination patterns have been described.

Moreover, several other possibilities have been taken into account within the

coordination patterns e.g. whether the Controller role is defined for each UserAgent

(actor) or whether the Controller is defined for different UserAgents (actors).

 The semantics of the choreography graph (proposed in [Cas08]) have also been extended

to take into account the multiple concurrent occurrences of a service.

6.1.2 Applying Coordination Patterns into Existing Services

Apart from modeling the service from scratch and investigating the coordination patterns

for it, it has been explored in this thesis how this coordination functionality can be added

into an existing service model in a modular way. For this task, the general structure of the

coordination patterns has been identified. This strengthens the generality of the

coordination patterns i.e. they are not defined for a specific service but also exercised to

be kept general so that they can be used in any existing service model. This exercise

addresses the second requirement of the thesis i.e. can new functionality be incrementally

added to an existing service model in a modular way?

To address the above mentioned problem, coordination functionality is considered as an

additional/new functionality which we want to apply to an existing service model. Initial

thoughts are presented to address this problem. This includes the concepts of: UML 2.0

generalization relationship; UML 2.0 templates; UML 2.0 extend relationship; and

service composition [Ros09]. By using these concepts, one of the identified coordination

patterns is exercised to be added into an existing service model, keeping the modularity

as our first concern.

Chapter 6: Discussion and Conclusion

 71

6.2 Discussion

We have discussed coordination patterns as a basic requirement for a system where

components may be requested to simultaneously participate in several occurrences of a

given service collaboration and also when there is contention for the actor/roles. The

Controller role is the core of these patterns. It has been designed to take care of the

service invitation requests and to respond to these invitation requests. If the resource is

free then the Controller assigns it to the inviting entity i.e. the actor playing the Sender

role. If the resource is not available (i.e. participating in another occurrence of that

service collaboration), then the Controller responds to the invitation request according to

the preferences of the actor that is playing the Receiver role. For this case, two major

possibilities are considered: either to reject the invitation request; or to put the Sender in

waiting queue. The possibility to reject the invitation request is one of the simplest

approaches. It is not elegant but serves at least the purpose of handling the invitation

requests in a simpler way when the resource is busy/not available. As compared to this,

the second possibility, which is to put the Sender of the invitation request in a waiting

queue, is a better approach to handle busy resources. The Sender is not forced to wait

once it has sent the invitation request. It can opt to quit the waiting queue anytime.

In some service models, the actor playing the Sender role may want to be connected to a

specific actor playing the Receiver role e.g. PhoneCall Service. Other services may not

have this requirement e.g. TeleConsultation Service (where any of the available doctors

can be assigned to a patient) [Cas08]. These two services have slightly different

requirements. This has been addressed in this thesis by either defining the Controller role

for each actor or by defining the Controller role for a set of actors.

Apart from the benefits discussed above, the coordination patterns may some times be

limited to be applicable for particular situations only. For example, consider the Taxi

Reservation System example in [TRS10]. This system assigns the available taxis

(resources) to customers. The decision of this assignment is not only dependent on the

availability of the resource (taxi) but also the location of the taxi. In our coordination

patterns, the latter possibility of decision is not considered in the design of the Controller

Chapter 6: Discussion and Conclusion

 72

but may easily be added by modifying the search criteria for the list of available

resources (for example, by modifying receiverId=receiverStatus(rcvrList) in figure 5.8).

We have presented the coordination patterns with their focus on dealing with external

communication i.e. between actors. However, the Controller should also be made

responsible to coordinate for the internal communication within an actor. We have

discussed this by considering the case in which the SimpleChat service can have single

instance of roles (Chatter/Chattee) per UserAgent. Chatter is the initiating role whose

execution is triggered by an external event (end-user). This event can happen while the

UserAgent is already busy playing the role of Chatter in another SimpleChat occurrence.

The decision of the Controller, whether to reject the end-user initiative or put it on wait,

will then be dependent on whether Chatter role already exists in UserAgent or not.

One of the coordination patterns is AR-P (Assign and Reject - by Polling). In this pattern,

the Controller polls the resource to learn about its status (free/available). When the

question comes to choose among the coordination patterns identified in this thesis, then

this pattern should be given the least preference to be chosen. The reason is that, in some

situations, polling might not be possible. For example;

- When the Receiver role is dynamically created and thus, not possible to be polled.

- If the actor allows several service roles, then polling all of them to learn their

status will overload the system with traffic.

- The decision to reject the invitation request may depend on other roles as well.

(discussed in fourth para of this section).

- Waiting in a fair way will be difficult.

Moreover, ‘Polling’ destroys the elegance of the Controller and its real purpose.

We would like to mention here that the basic coordination patterns proposed in this thesis

may remain the same in spite of the limitations discussed in this section. However,

different decision policies can be added to the design of the Controller. These decision

policies will be performed by the Controller locally. Therefore, the basic structure of the

patterns will remain the same as identified in this thesis.

Chapter 6: Discussion and Conclusion

 73

Coordination patterns are made general. They are not specific to any service. Therefore,

some of the initial thoughts are presented in this thesis regarding how to add the

coordination patterns (as a new functionality) into an existing service model, but none of

the solutions proposed is completely modular. All the solutions have some drawbacks

which are discussed in chapter 5. The UML 2.0 generalization relationship stands in a

better position among other solutions proposed in this thesis. This can be an interesting

area of further research.

6.3 Future Work

Several Controllers with different decision policies (discussed in section 6.2) can be

made available in the coordination patterns for a service engineer. The service engineer

will then be able to pick the Controller with that decision policy which suits his/her

service requirements. Moreover, by giving different options of decision policy, he/she

will be free to decide which Controller design to choose.

Apart from variation in decision policy, other features can be added to the design of the

Controller in the coordination patterns. For example, security features can be added.

Location awareness of the resources can be added as another feature. The coordination

pattern, in which the Controller has the location awareness feature, will be able to be used

for Taxi Reservation System and other similar system examples.

Besides, service engineer can be enabled to compose a new Controller design by re-using

the existing Controllers with various decision policies and features. This can be done by

using the basic structure of coordination patterns identified in this thesis. Moreover, other

patterns can also be incorporated.

It would be interesting to explore further how a new functionality can be incrementally

added to an existing service model in a modular way.

Chapter 6: Discussion and Conclusion

 74

References

 75

References

[BDC
+
89] T.F. Bowen, F.S. Dworack, C.H. Chow, N. Griffeth, G.E. Herman, and Y.J.

Lin. The feature interaction problem in telecommunications systems. In Proc.

of the 7th Int’l Conf. Soft. Eng. for Telecommunications Switching Systems

(SETSS’89), pages 59–62, 1989.

[BKM07] Manfred Broy, Ingolf H. Kr¨uger, and Michael Meisinger. A formal model of

services. ACM Transactions on Software Engineering and Methodology,

16(1):5, 2007.

[Cas08] Humberto Nicolás Castejón. Collaborations in Service Engineering:

Modeling, Analysis and Execution. PhD thesis, Department of Telematics,

Norwegian University of Science and Technology, 2008.

[CBB07] Humberto Nicolás Castejón, Gregor v. Bochmann, and Rolv Bræk. Using

Collaborations in the Development of Distributed Services. In Proc. of the

14
th
 Asia-Pacific Soft. Eng. Conf (APSEC’07), pages 73-80. IEEE Computer

Society Press, 2007.

[CV93] E. Jane Cameron and Hugo Velthuijsen. Feature Interactions in Telecommun-

ications Systems. IEEE Communications Magazine, August 1993.

[FB03] J. Floch and Rolv Bræk. Using SDL for modeling behaviour composition. In

Proc. of the 11
th
 International SDL Forum (SDL 2003), volume 2708 of

LNCS, pages 36-54, 2003. Springer.

[GHJ
+
94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems, volume 13 of

Nato Asi Series F: Computer And Systems Sciences, pages 477-498, 1985.

Springer.

References

 76

[HPW03] Oystein Haugen, Birger Moller-Pedersen, Thomas Weigert. UML for real:

design of embedded real-time systems, pages 53-76, Kluwer Academic

Publishers, 2003.

[KBH09] Frank Alexander Kræmer, Rolv Bræk, and Peter Hermann. Compositional

Service Engineering with Arctis. Telektronikk 1, 2009.

[KH06] Frank Alexander Kraemer and Peter Hermann. Service specification by

composition of collaborations – an example. In Proc. of the 2
nd

 Intl.

Workshop on Service Composition (SERCOMP’06), pages 129-133, 2006.

[KK98] Dirk O. Keck and Paul J. Kuehn. The Feature and Service Interaction
Problem in Telecommunications Systems: A Survey. IEEE Transactions on

Software Engineering, volume 24, October 1998.

[MTJ93] John Mierop, Stefan lax, and Ronald Janmaat. Service Interaction in an

Object-Oriented Environment. IEEE Communications Magazine, August

1993

[OMG09] Object Management Group (OMG). UML 2.1.2 Superstructure Spec.,

February 2009.

[RJB05] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling

Language Reference Manual, Second Edition. Addisen-Wesley, 2005.

[Ros09] Judith E.Y. Rossebø. Dynamic Composition of Services – a Model – Based

Approach. PhD thesis, Department of Telematics, Norwegian University of

Science and Technology, 2009.

[SHP03] Evren Sirin, James Hendler, and Bijan Parsia. Semi-automatic Composition

of Web Services using Semantic Descriptions. In WebSerives: Modeling,

Architecture and Infrastructure workshop in International Conference on

Enterprise Information Systems (ICEIS 2003), April 2003.

References

 77

[TRS10] Taxi Reservation System. Engineering Distributed Real Time Systems

http://www.item.ntnu.no/academics/courses/ttm4115/assignments, accessed

July 21, 2010.

[Wie03] R. J. Wieringa. Design Methods for Reactive Systems: Yourdon, Statemate,

and the UML. Morgan Kaufmann Publishers, 2003.

[Zav01] Pamela Zave. Feature-oriented description, formal methods, and DFC. In

Proc. of the FIREworks Workshop on Language Constructs for Describing

Features, pages 11-26. Springer-Verlag, 2001.

	Title Page
	Problem Description
	Microsoft Word - Urooj_Thesis.doc

