
June 2010
Stig Frode Mjølsnes, ITEM
Danilo Gligoroski, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Decoding GSM

Magnus Glendrange
Kristian Hove
Espen Hvideberg

Problem Description
The A5/1 cipher used in GSM has been under attack, analysis and critique for a long time because
of deficiencies, well documented in many papers. However, few findings have evolved into practical
attacks. People declaring A5/1 as broken have never released the tools necessary to perform
decryption of GSM traffic, nor have they published proof that confirms their claims. The media in
particular should also take some part of the blame, as they do not always get the facts right and
create inaccurate or misleading impressions as to whether A5/1 is cracked or not.

In August 2009, Nohl and Krissler announced the A5/1 Security Project. Their aim is to generate
rainbow tables as a precomputation stage to enable a ciphertext-only attack against the A5/1
encryption algorithm. Using the A5/1 Security Project as a basis, this thesis will attempt to create
a set of rainbow tables and investigate the feasibility of capturing GSM traffic. The latter will utilize
interception software provided by the AirProbe project.

In addition, this thesis will try to perform an active attack where a GSM network is created. For
instance, a USRP together with OpenBTS and Asterisk can provide a generic GSM infrastructure,
from the Base Transceiver Station and upwards.
The USRP is an inexpensive hardware device that combined with GNU Radio can facilitate the
deployment of Software-Defined Radio. Adding the capabilities of OpenBTS, a complete GSM stack
could be set up.

The results of this project might become part of the student lab facilities of the Wireless Security
course at NTNU.

Assignment given: 15. January 2010
Supervisor: Stig Frode Mjølsnes, ITEM

Abstract

We have participated in the creation of almost two terabytes of tables aimed
at cracking A5/1, the most common ciphering algorithm used in GSM. Given
114-bit of known plaintext, we are able to recover the session key with a hit rate
of 19%. The tables are expected to be unique as they provide the best coverage
yet known to the authors, and they are the first step in a real-world passive
attack against GSM.

An initial investigation and analysis into the air interface of GSM were
performed, from both a theoretical and practical point of view. These
examinations would be essential in order to utilize the generated tables in a
practical attack.

Additionally, a rogue GSM network was built and deployed without enabling
ciphering and frequency hopping. This active attack was purely based on
open-source software and hardware, implying that real GSM networks could
be spoofed with resources available to the general public.

vi

Preface

This Master’s Thesis is the result of our work in the 10th semester of the 5-year
MSc in Communication Technology at the Department of Telematics, Norwegian
University of Science and Technology. The work has been carried out in the
spring of 2010 in Trondheim, Norway.

The motivation and aim for this thesis was originally a research into the rainbow
table generation project’s attack against GSM. However, the GSM standard
proved to be a complicated matter that took us some time to fully understand.
The GSM specifications constitute well over 1000 documents; and although a
considerably large part of the specifications might be redundant, it is way too
incomprehensible for the average person. Consequently, the first part of this
thesis attempts to describe the specifications, which will later be verified with
real-world captured signals. The study can be seen as a preliminary step in the
process of capturing known plaintext and speech traffic. Hopefully, this work
can be informative and useful as a starting point for people wanting to learn
more about the theoretical and practical aspects of GSM.

We would like to thank our professors Stig Frode Mjølsnes and Danilo Gligoroski
for feedback and great support during the work. We really appreciate their vast
knowledge and skill in key areas such as cryptography, wireless security, ethics,
and their assistance in writing reports.

Gratitude also to Pål Sturla Sæther and Asbjørn Karstensen at ITEM for
fulfilling our many hardware requests.

A final thank you to Frank A. Stevenson for including us in the A5/1 Security
Project and participating in valuable discussions.

- Magnus Glendrange, Kristian Hove and Espen Hvideberg

vii

viii

Contents

Abstract v

Preface vii

List of Figures xv

List of Tables xvii

Listings xx

1 Introduction 1
1.1 Background . 1
1.2 Limitations . 2
1.3 Structure . 2
1.4 Ethical Considerations . 3

2 GSM 5
2.1 Background . 6
2.2 Architecture . 6
2.3 Protocol Stack . 10

ix

2.4 Addressing . 14
2.5 Logical channels . 18
2.6 Burst formats . 22
2.7 Channel Combinations . 24
2.8 Speech Coding . 27
2.9 Channel Coding . 28
2.10 Interleaving . 29
2.11 Frame Structure . 31
2.12 Frequency hopping . 33
2.13 Authentication . 34
2.14 Confidentiality . 35
2.15 Call setup . 37
2.16 SMS setup . 39

3 Attacking A5/1 41
3.1 Related Work . 41
3.2 A5/1 . 42
3.3 A Cryptanalytic Time-Memory Trade-Off 45

3.3.1 Hellman’s Time-Memory Trade-Off 45
3.3.2 Rivest’s Distinguished Point Method 50
3.3.3 Oechslin’s Rainbow Tables 51
3.3.4 A Cryptanalytic Time/Memory/Data Trade-off for Stream

Ciphers . 55
3.4 A5/1’s Reduced Keystream Space 56
3.5 The A5/1 Security Project . 65

3.5.1 Table Structure . 66
3.5.2 Table Lookup . 67
3.5.3 Expected coverage . 68

4 Rainbow Table Generation and Lookup 71
4.1 Laboratory Setup . 72
4.2 Method . 74

x

4.3 Results . 79

5 Acquiring Network Information 83
5.1 Laboratory Setup . 83
5.2 Method - NetMonitor . 84
5.3 Results - NetMonitor . 85
5.4 Method - Trace Logs . 88
5.5 Results - Trace Logs . 89

5.5.1 Message Sequence Diagrams 89
5.5.2 Decoded Message Examples 95

6 Intercepting GSM Traffic 111
6.1 Laboratory Setup . 111

6.1.1 USRP . 112
6.1.2 GNU Radio . 114
6.1.3 AirProbe . 115

6.2 Method . 116
6.3 Results . 119

7 Setting up a Rogue GSM Network 125
7.1 Laboratory Setup . 126

7.1.1 OpenBTS . 126
7.2 Method . 128
7.3 Results . 130

8 Discussion 137

9 Conclusion 143

Bibliography 152

A Gammu Tutorial 153

xi

B Rainbow Table Generation 155

C Processing Crack Results 164

D Original Script from Frank Stevenson 167

E GNU Radio Tutorial 169

F AirProbe Tutorial 171

G OpenBTS Tutorial 173

H LAPDm Frames 185

Acronyms 191

xii

List of Figures

1.1 The Eavesdropping Issue . 4

2.1 Architecture of GSM. 7
2.2 Protocol Stack of GSM [30]. 10
2.3 Structure of the IMSI . 14
2.4 Structure of the MSISDN . 15
2.5 Structure of the MSRN . 16
2.6 Structure of the IMEI and IMEISV 17
2.7 Structure of the LAI . 17
2.8 Logical channels in GSM . 19
2.9 Burst Types in GSM. Adapted from [30]. 22
2.10 Mapping of Logical Channels in a GSM Multiframe 25
2.11 Time-Division Duplex in GSM 26
2.12 Speech Encoding in GSM . 27
2.13 Channel Coding in GSM. From [15] 29
2.14 Interleaving for Speech Blocks in GSM. Adapted from [66] 30
2.15 Interleaving for Signaling Blocks in GSM. Adapted from [66] . . 30
2.16 Frame Structure in GSM . 32
2.17 Authentication in GSM. Modified from [62] 35

xiii

2.18 Key Generation and Encryption in GSM. Modified from [62] . . 36
2.19 Message Flows in a MTC and MOC 37

3.1 The A5/1 stream cipher used for encryption in GSM 43
3.2 Illustration of a single Hellman table of size m× t[19] 47
3.3 Hellman table showing the occurrence of a false alarm 49
3.4 Illustration of difference between Hellman tables and rainbow tables 52
3.5 Comparison of success rate between Hellman tables and rainbow

tables . 54
3.6 Illustration of an illegal A5/1 state, S(t), that can’t be clocked

back . 59
3.7 Illustration showing an A5/1 state clocked back from S(t) to S(t−1) 60
3.8 State space convergence in A5/1 61
3.9 Illustration showing the distribution of siblings after having

clocked back a state 100 times . 63
3.10 Illustration showing how the state space in A5/1 convergences

towards a few preferred states . 64

4.1 Picture of the ATI HD 5870 and ATI HD 5970 73

5.1 Two NetMonitor Tests . 85
5.2 IMSI Attach Message Sequence Diagram 90
5.3 Mobile-Originating Call Message Sequence Diagram 91
5.4 Mobile-Terminating Call Message Sequence Diagram 92
5.5 Mobile-Originating SMS Message Sequence Diagram 93
5.6 Mobile-Terminating SMS Message Sequence Diagram 94

6.1 The USRP . 112
6.2 Universal Software Radio Peripheral Block Diagram. From [21]. . 113

7.1 OpenBTS Architecture . 127
7.2 Four User Interfaces for Managing a GSM Network 129
7.3 Available GSM Networks in the Lab Environment 129

xiv

7.4 Recorded conversations in Wireshark 131
7.5 Encryption and Frequency Hopping Disabled 131
7.6 Mapping between IMSI and TMSI 132

A.1 The configuration of Gammu . 154

B.1 ATI Catalyst 9.10 Driver Installation Window 162
B.2 Choosing mode of installation during ATI driver setup 163

H.1 LAPDm Frame Formats [30]. 186
H.2 Address Field . 187
H.3 Control Field . 188
H.4 Length Indicator Field . 189

xv

xvi

List of Tables

3.1 Illegal states . 61

4.1 Comparison between the ATI HD 5870 and ATI HD 5970 73

5.1 Captured GSM Network Information 87

6.1 Comparison between the USRP and USRP2. Extended from [3]. 114

xvii

xviii

Listings

5.1 Paging Request . 96
5.2 Paging Request with IMSI . 96
5.3 Paging Response . 97
5.4 Immediate Assignment . 98
5.5 Service Request . 99
5.6 Authentication Request . 100
5.7 Authentication Response . 101
5.8 Cipher Mode Command . 102
5.9 Cipher Mode Complete . 103
5.10 Assignment Command . 104
5.11 Location Updating Request . 105
5.12 Identity Request . 106
5.13 Identity Response . 107
5.14 CP-DATA + RP-DATA - first segment 108
5.15 CP-DATA + RP-DATA - last segment 108
5.16 CP-DATA + RP-DATA - reassembled 109
5.17 TMSI Reallocation Command . 110
6.1 Paging Request . 120

xix

6.2 Paging Request with IMSI . 120
6.3 System Information 2 . 121
6.4 System Information 3 . 122
6.5 System Information 4 . 123
7.1 OpenBTS // IMSI Attach . 132
7.2 OpenBTS // MOC . 133
7.3 OpenBTS // MTC . 134
7.4 OpenBTS // MO-SMS . 135
7.5 OpenBTS // MT-SMS . 135

xx

Chapter 1
Introduction

1.1 Background

Security is a important issue, especially in today’s technologically advanced
society. GSM is a world-wide standard for digital wireless mobile telephones,
currently used by 4.4 billion[14] people. These people use their phones to store,
transmit and receive voice and data communications. Unlike a fixed telephone,
which offers some level of physical security, a wireless link enables anyone with a
receiver to passively intercept the traffic. Because of this, it is highly important
that security measures are taken to ensure the confidentiality of users’ phone
calls and SMS messages.

Despite the vast popularity, the security aspects of GSM has not received the
scrutiny it deserves. Theoretical weaknesses have been known for years, with
research ranging from the relatively insecure encryption algorithms to the lack
of network authentication. Still, very little effort has been put into practical
research to confirm the implementations we daily rely on.

1

2 Limitations

Analyzing and capturing GSM traffic was up until recently an unexplored
area. The main reasons being the complex signaling mechanisms involved, the
expensive hardware requirements and lack of interception software. However,
things may be about to change with the emergence of open-source tools, such
as the USRP, GNU Radio, AirProbe and OpenBTS. These tools enables anyone
with interest in GSM security to investigate the theoretical security principles
through practical approach.

1.2 Limitations

There are several angles of attack against GSM; on the ciphering algorithm itself
and on the system as a whole with its attached equipment. However, this thesis
will only cover the following two attack scenarios:

1. The passive attack utilizing rainbow tables to crack the ciphering algo-
rithm and the USRP together with software for passive interception of
traffic.

2. The active attack utilizing the fact that authentication of the network is
not performed.

Regarding the architecture of GSM, the main target (of this thesis) is the air
interface between the Mobile Station (MS) and the Base Transceiver Station
(BTS). The network side of GSM will not be explored in detail.

1.3 Structure

This thesis is divided into 9 chapters. Chapter 1 introduces the purpose and
background of our work, limitations and ethical considerations. Chapter 2
provides a GSM foundation, making the reader capable of understanding the

Chapter 1. Introduction Ethical Considerations 3

subsequent chapters. Some sections in this chapter may be left out if the reader
feels familiar with the topics presented. Chapter 3 presents the A5/1 cipher,
as well as the theory behind the attack on A5/1, including an introduction to
time-memory trade-off.

Chapter 4 contains the creation of rainbow tables, as well as subsequent
utilization by doing lookups. Chapter 5 covers the use of a Nokia 3310 to acquire
network information, while chapter 6 presents the use of a USRP, together
with GNU Radio and Airprobe, to intercept GSM signaling traffic. The last
experiment can be found in chapter 7. This covers the deployment of a rogue
GSM network by utilizing the USRP, GNU Radio, OpenBTS and Asterisk.

Chapter 8 discusses the findings and suggests possible future work. This is
followed by a conclusion in chapter 9. The report also provides 6 appendices,
as well as a list of acronyms at the end.

1.4 Ethical Considerations

During an ethical discussion the authors decided that operating within the
legal framework had the highest priority. There was consensus on the fact
that cracking somebody else‘s GSM traffic should not be performed. Here are
some of the legal implications in Norway:

• GSM security research is allowed

• Receiving GSM traffic is (technically) allowed

• Decoding (e.g. cracking) your own GSM traffic is allowed

• Decoding somebody else’s GSM traffic is illegal

• Setting up a BTS is allowed if you acquire a license. This is applied for
through the Norwegian Post and Telecommunications Authority (NPT).

4 Chapter 1. Introduction Ethical Considerations

Figure 1.1: The Eavesdropping Issue

Chapter 2
GSM

This chapter gives an overview of the basic functions and main entities in
the GSM network. The protocol stack is first examined and studied, before
the relationship between the entities and their addresses is defined. Physical
and logical channels are subsequently explained and illustrated over a series of
sections. In addition, channel coding, interleaving and frequency hopping are
explained to give an understanding of the many complex procedures involved
in GSM. Finally, this chapter outlines some mobility management procedures,
such as authentication, call and SMS setup.

If this is your first introduction to GSM, a word of warning might be in order
at this point. The European Telecommunications Standards Institute (ETSI)
provides a separate document consisting of 10 pages for all the acronyms used
in the GSM specifications [36]. This thesis will sadly not be much better. A full
list of acronyms is given at the end of the thesis.

5

6 GSM - Background

2.1 Background

GSM (Global System for Mobile Communications) is a digital cellular tech-
nology used for transmitting voice and data services. GSM allows users to
roam seamlessly from one network to another, while also providing personal
mobility. In addition, both speech and signaling channels are digitalized, which
essentially labeled GSM as the second-generation (2G) mobile system. Since
its first launch in 1991, GSM rapidly became the most popular mobile phone
system in the world. In June 2010, an estimated 4.4 billion subscribers across
more than 219 countries were using GSM or 3GSM [14].

2.2 Architecture

The architecture of GSM with its entities and interfaces is shown in figure 2.1.
A single GSM network established and operated by a service provider is referred
to as a Public Land Mobile Network (PLMN). In the following section, the key
entities in a PLMN are briefly described.

Mobile Station (MS)

The MS is used by the subscriber as a communication device in the GSM
network. The term MS include the physical phone itself, called the Mobile
Equipment (ME), and the Subscriber Identity Module (SIM). The SIM ensures
secure access to a particular network as it contains algorithms used for
authentication (A3) and for generating an encryption key (A8). It also contains
subscriber related information, such as the user name or, more accurately, the
International Mobile Subscriber Identity (IMSI), the secret authentication key
Ki, and lists of preferred and forbidden PLMNs.

GSM - Architecture 7

Figure 2.1: Architecture of GSM.

Base Station Subsystem (BSS)

The BSS controls all the radio related tasks and provides connectivity between
the network and the MS via the air interface. The BSS is composed of two
parts, the Base Transceiver Station (BTS) and the Base Station Controller
(BSC). The BTS acts as the communication point for the MS. It transmits and
receives signals to and from the MS, while also handling multiplexing, power
control, modulation, speech encoding/decoding and ciphering of these signals.
The interface between the MS and BTS is known as the Um interface (or more
precisely the air interface). The BSC provides the intelligence in a BSS. It
controls a set of BTSs and manages handover decisions, radio channels, paging
coordination and other needed control functions. It communicates with the
BTSs over what is named the Abis interface.

8 GSM - Architecture

Network Switching Subsystem (NSS)

The NSS controls multiple BSSs and its main role is to set up the commu-
nications between two users. It also includes databases needed for additional
subscriber and mobility management. The various components of the NSS are
described in the remainder of this section.

Mobile Switching Center (MSC)

The MSC is the core component of any NSS. This component controls several
BSCs and is responsible for routing of incoming and outgoing calls. It also
provides the management functions for terminal mobility such as registration,
authentication, location information and handover.

Transcoder and Rate Adaptation Unit (TRAU)

The TRAU is responsible for compressing voice communication at the air
interface. It is placed between either the BTS and BSC or between the BSC
and MSC.

Home Location Register (HLR)

The HLR is a database storing the subscriber specific parameters. Information
in the HLR consists of the telephone number allocated to the subscriber, their
current location, Ki, allowed services and the IMSI.

Visitor Location Register (VLR)

The VLR is a database designed to limit the amount of inquiries made to the
HLR. When a subscriber roams away from his own network, information is
forwarded from the subscriber’s HLR to the VLR of the serving network. A
VLR can either be allocated to several MSCs, or co-located with a single MSC.

GSM - Architecture 9

Gateway Mobile Switching Center (GMSC)

The GMSC is an exchange between the PSTN and GSM network that recognizes
mobile telephone numbers and is equipped with the capability to access the
HLR for routing assistance. This entity is needed as the fixed network is unable
to connect an incoming call to the local target MSC (due to its inability to
interrogate the HLR).

Short Message Service Gateway (SMS-G)

The SMS-G (not shown in figure 2.1) is the term used to collectively describe
the two gateways for handling SMS messages headed in different directions.
The SMS-GMSC provides a temporarily ’store and forward’ mechanism for
incoming SMS messages. If the recipient is not available, it queues the SMS
for later retry. The SMS-IWMSC (Short Message Service Inter-Working Mobile
Switching Center) is used for outgoing SMS messages.

Authentication Center (AuC)

The AuC holds a secure database storing identification and authentication
information related to each subscriber. The attributes in this database include
the subscriber’s IMSI, Ki and Location Area Identity (LAI). The AuC is
responsible for generating authentication triplets of values consisting of a
random number (RAND), a signed response (SRES), and session key Kc.

Equipment Identity Register (EIR)

The EIR is a database storing three lists: the white, black, and the gray
list. The white list contains all equipment identities that are permitted for
communication. The black list contains all equipment identities that are denied.
MEs appearing in the gray list are not necessarily denied, but are tracked for
specific purposes.

10 GSM - Protocol Stack

2.3 Protocol Stack

This section offers a short introduction to the protocol stack in GSM as shown
in figure 2.2. The protocol stack consists of three layers: the physical layer
(layer 1), the data link layer (layer 2), and the network layer (layer 3). This
section only looks at the bits sent or received by the MS. A further look into
the protocol stack from the network side will not be explored.

Figure 2.2: Protocol Stack of GSM [30].

Physical layer (layer 1)

All techniques and mechanisms used to make communication possible on the air
interface represent the physical layer procedures [40]. These procedures consist
of synchronization, power control, coding, and other functions that control the
establishment and maintenance of the radio channel.

The physical layer is a combination of frequency-division multiple access
(FDMA) and time-division multiple access (TDMA) to allow users to access

GSM - Protocol Stack 11

the radio resources in a cell. With FDMA, the frequency band is divided into
carriers or channels, each 200 kHz wide. Each channel is divided into eight
separate timeslots (labeled T0 to T7). This division of frequencies in the time
domain is referred to as TDMA. These eight timeslots together is called a TDMA
frame. A subscriber is allowed to utilize one timeslot each frame. The duration
of a frame is 4.615 ms, thus one single timeslot lasts only 0.5769 ms.

There are thirteen different frequency bands defined in GSM [13]. However, the
850 MHz, 900 MHz, 1800 MHz, and 1900 MHz bands are the most commonly
used. The frequency bands employed within each of the four ranges are similarly
organized. They differ essentially only in the frequencies, such that various
synergy effects can be taken advantage of; hence we only give some details for
the usage in the 900 MHz band.

In the 900 MHz band, a total of 70 MHz bandwidth is allocated, two 25-MHz
frequency bands for up- and downlink and a 20 MHz unused guard band between
them. The MS transmits in the 890- to 915-MHz range (uplink) and the BTS
transmits in the 935- to 960-MHz (downlink) band. This corresponds to 124
duplex channels, where each channel within a BTS is referred to as an Absolute
Radio Fequency Channel Number (ARFCN). This number describes a pair of
frequencies, one uplink and one downlink, and is given a channel index between
C0 and C123, with C0 designated as the beacon channel. An ARFCN could
be used to calculate the exact frequency (in MHz) of the radio channel. In the
GSM 900 band, this is computed by the following equations:

Fuplink(n) = 890 + 0.2n, 1 ≤ n ≤ 124

Fdownlink(n) = Fuplink(n) + 45, 1 ≤ n ≤ 124

Similar formulas are also defined for the other GSM frequency bands.

12 GSM - Protocol Stack

Data link layer (layer 2)

The data link layer is responsible for the correct and complete transfer of frames
between the network layer entities over the air interface. The signaling protocol
used in this layer, LAPDm, is a modified version of the LAPD (Link Access
Procedures on the D-channel) which is particularly adapted to the TDMA burst
structure of GSM. The term ’DM channel’ is referred to a collection of all the
various signaling channels required in GSM.

LAPDm implements the following basic functions [37]:

• The organization of layer 3 (network layer) information into frames.

• The establishment, the maintenance, and the termination of one or more
data links on the Dm channel.

• Sequence control in order to maintain the sequential order of frames across
data link connections.

• Detection of format and operational errors on a data link.

• Flow control.

• The acknowledged transmission and reception of numbered information
(I) frames.

• The unacknowledged transmission and reception of unnumbered informa-
tion (UI) frames.

Error detection and correction schemes are provided by a combination of block
and convolutional coding used in combination with interleaving at the physical
layer. This is explained in more detail in section 2.9 and 2.10.

The total length of a LAPDm frame is always 184 bits (23 octets), with
segmentation for larger messages. Appendix H will look further into the different
types of LAPDm frames.

GSM - Protocol Stack 13

Network layer (layer 3)

The network layer contains all the functions necessary to establish, maintain,
and terminate mobile connections [31][32]. The network layer also provides
the control functions to support additional services such as the short message
services (SMS). The three sublayers in layer 3 offer services as follows:

• Radio Resource Management (RR): The RR sublayer is responsible for
configuration of the physical and logical channels at the air interface.
This includes management of frequencies, timeslots, channel configuration,
power control, synchronization, and frequency hopping codes. Another
important RR procedure is the activation of ciphering

• Mobility Management (MM): The MM sublayer manages subscribers and
tracks their movements. These procedures are exclusively performed in
cooperation between the MS and MSC. This include:

– Location update: storing and tracking of the subscriber’s location.

– Mobile authentication: a challenge-response mechanism.

– IMSI attach: the location update procedure (e.g., when the MS is
powered on).

– IMSI detach: tells the network that the MS is no longer in service
(e.g., when the MS is powered off).

– TMSI reallocation: ensures the confidentiality of a subscriber’s IMSI.

• Connection Management (CM): divided further into three sublayers:

– Call Control (CC): establishment, maintenance and release of calls.

– Short Message Service (SMS): management of SMS messages.

– Supplementary Services (SS): handling of all additional services that
are not connected to the core functionality of GSM.

14 GSM - Addressing

2.4 Addressing

GSM specify both user and equipment addressing. Besides these identifiers,
several other codes used for characterizing location areas have been defined; they
are needed for the mobility management and for addressing network elements.
The most important types of addresses and identifiers are presented in this
section.

International Mobile Subscriber Identity (IMSI)

The IMSI is a number (up to 15 digits) that uniquely identifies a subscriber
within the global GSM network. As shown in figure 2.3, the IMSI consists
of the Mobile Country Code (MCC), Mobile Network Code (MNC) and the
Mobile Subscriber Identification Number (MSIN). MSIN uniquely identifies a
user within the home GSM network. The MCC and MNC combined are used to
uniquely identify a GSM PLMN in a country (e.g., 242 as MCC for Norway; and
MNC 01, 02 and 05 for the networks of Telenor, NetCom and Network Norway,
respectively).

Figure 2.3: Structure of the IMSI

The IMSI is used by the network for identifying a (roaming) subscriber, as well
as charging, billing and accounting. This identification is stored in the SIM,
AuC, HLR or locally copied to responsible VLR.

GSM - Addressing 15

Whenever a MS is switched on, it may have to perform an IMSI attach
procedure, which results in the transmission of the IMSI in cleartext. This
is necessary in order to find the subscription data. When registered, the MS
is assigned a temporary identification called the Temporary Mobile Subscriber
Identity (TMSI) within the area. This is a 32-bit code used in subsequent
location updates, paging and call attempts as a security mean to make it more
difficult to track and identify a certain user. The mapping between IMSI and
TMSI is kept by the VLR.

Mobile Subscriber ISDN Number (MSISDN)

The MSISDN uniquely identifies a subscription in GSM and is usually the
telephone number that a person would dial in order to reach another subscriber.
The MSISDN follows the ITU-T E.164[50] recommendation as shown in figure
2.4. It is composed of up to 15 digits; the Country Code (CC), the National
Destination Code (NDC) and the Subscriber Number (SN). The CC identifies a
country or a geographic area the MS is registered to, whereas the NDC identifies
the PLMN within a country. SN is the number assigned to the subscriber by the
service provider. A subscriber is assigned a new MSISDN for each associated
GSM service (one for voice , another for fax etc).

Figure 2.4: Structure of the MSISDN

16 GSM - Addressing

Mobile Subscriber Roaming Number (MSRN)

The MSRN is a temporary, location dependent ISDN number with the same
structure as the MSISDN. Figure 2.5 confirms the identical structure. The
MSRN is assigned to the MS by the local responsible VLR and used to route
calls to the targeted MSC.

Figure 2.5: Structure of the MSRN

International Mobile Equipment Identity (IMEI)

Every ME has an internationally unique identifier, called the IMEI. This number
can be used to deny unlicensed equipment access to the network or track stolen
equipment. The IMEI is composed of a Type Allocation Code (TAC), a Serial
Number (SNR) and a Spare (SP). The TAC uniquely identifies the model of
the ME, the SNR defines the ME’s serial number and the SP is a Luhn Check
Digit1. A newer form of IMEI, named IMEI Software Version (IMEISV) omits
the SP and instead adds a Software Version Number (SVN) at the end. The
SVN identifies which software version the ME is running. The composition of
both the IMEI and IMESI is shown in figure 2.6.

1The Luhn check digit is calculated from the rest of the IMEI and used to verify the
theoretical integrity of that number

GSM - Addressing 17

Figure 2.6: Structure of the IMEI and IMEISV

Location Area Identifier (LAI)

Each GSM network is subdivided into location areas identified by a unique LAI
within the network. This number consists of the MCC, MNC and a Location
Area Code (LAC) as seen in figure 2.7. The LAC is a number of maximum
of five digits which identifies a location area within a PLMN. This is used as
a unique reference for the current location of a subscriber. The location area
is further divided into cells, each being uniquely identified by a Cell Identifier
(CI).

Figure 2.7: Structure of the LAI

18 GSM - Logical channels

Base Station Identity Code (BSIC)

The BSIC is a number that identifies a BTS. The code is 6 bits in length; a 3
bit Network Colour Code (NCC) that identifies the network and a 3 bit Base
Station Colour Code (BCC) that identifies the BTS within a certain area. The
BSIC is used by the MS to distinguish between BTSs broadcasting on the same
frequency. The same code is then sent back to the network by the MS in all its
measurement reports. This allows the network to confirm that the MS is tuned
to the correct frequencies.

2.5 Logical channels

In the GSM terminology, a distinction is made between physical and logical
channels. Physical channels can be described in terms of the frequency and
time domain. They are the actual frequencies and the timeslots the MS or BTS
are transmitting or receiving on. The logical channels are mapped onto these
physical channels. At any particular instant a frequency/timeslot may be either
a traffic channel or some control channels. In other words, a logical channel
describes the operation and function of a physical channel at a given point in
time [42].

There are two types of logical channels that are required to organize GSM:
Common Channels (CCH) and Dedicated Channels (DCH). As the figure 2.8
illustrates, the CCH consist of Broadcasting Channels (BCH) and Common
Control Channels (CCCH), whereas the DCH is divided into Dedicated Control
Channels (DCCH) and Traffic Channels (TCH).

GSM - Logical channels 19

Figure 2.8: Logical channels in GSM

Broadcasting Channels (BCH)

The BCH are defined for downlink only and are used by the BSS to send out the
same information to all MSs in a cell. They include the following three subtypes
of channels:

• Frequency Correction Channel (FCCH): used for broadcasting frequency
synchronization signals that enables the MS to synchronize its carrier
frequency and bit timing with the BTS. The MS will always scan its known
beacon frequencies to find this channel. Having detected the particular
signal, it knows that the next timeslot of the same channel contains the
synchronization channel (SCH).

• Synchronization Channel (SCH): broadcasts frame synchronization signals

20 GSM - Logical channels

containing the TDMA frame number (FN) and the BSIC. This allows the
MS to synchronize in time with the BTS, and to identify the cell.

• Broadcast Control Channel (BCCH): used to inform the MS about specific
system parameters such as location area and network codes, the frequency
hopping sequence, surrounding cell information, particular information
about the channel configuration, and maximum power level. This channel
is always sent in a repeating cycle on the same frequency.

Common Control Channels (CCCH)

The CCCH are mainly used for carrying signaling information necessary for
accessing management functions (e.g., allocation of DCH or radio resource on a
traffic channel). They are divided into three channels:

• Paging Channel (PCH): a downlink channel used to search or ‘page’ the
MS to inform that there is incoming traffic. The MS could be addressed
by its allocated TMSI or IMSI. However, the GSM specifications does not
allow paging by IMEI [31].

• The Random Access Channel (RACH): the uplink counterpart to the
PCH, typically used when the MS initiates a request to the network, (e.g.,
to make a call or send a SMS message). It is accessed by the MS in
a competitive multiple-access mode using the principle of slotted Aloha
[30].

• Access Grant Channel (AGCH): used to set up a connection once a MS
has been paged on the PCH or initiated a request on the RACH. It serves
the purpose of inviting the MS to another control channel, usually the
SDCCH, where the actual signaling set up is performed.

GSM - Logical channels 21

Dedicated Control Channels (DCCH)

The DCCH are used for power control, timing advance and other call related
information, as well as various types of traffic channels. They are made up by
the following types of channels:

• Standalone Dedicated Control Channel (SDCCH): a two-way signaling
channel used for exchange of messages associated with call establishment,
authentication, location updating, SMS and other management functions.

• Slow Associated Control Channel (SACCH): always associated with either
a SDCCH or a traffic channel, and used to inform the MS about the
frequencies of neighboring cells, time alignment and power control on
the downlink. For the uplink it is used for transmitting field strength
measurements as input parameters to a possible handover decision. It can
transmit SMS messages if associated with a traffic channel. This is why
SMS messages can be received while being busy in a call.

• Fast Associated Control Channel (FACCH): always associated with a
traffic channel and used to transmit urgent signaling messages. Its
usage goes at the expense of speech data, as it "steals" timeslots from
its associated traffic channel when the SACCH can not operate quickly
enough. The FACCH is referred to as "fast" because it can carry up to
fifty signaling messages per second against four per second for SDCCH
[57].

Traffic Channels (TCH)

TCH are used for transmitting voice and data traffic. They are either full rate
(22.8 Kbps) or half rate (11.4 Kbps). A full rate channel occupies a complete
timeslot per frame, whereas a half rate channel occupies only one timeslot in
every second frame.

22 GSM - Burst formats

2.6 Burst formats

There are five different types of bursts used for transmission in GSM [39]. These
bursts each have a distinct format structure as shown in figure 2.9. A burst has
a duration of 0.5769 ms and is typically recognized by which logical channel
it is transmitted on. The GMSK scheme used at the air interface provides a
modulation rate of 270.833 kbit/sec, resulting in transmission of 156.25 bits in
one burst. A short introduction to the various burst types are given below:

Figure 2.9: Burst Types in GSM. Adapted from [30].

• The normal burst is used to transmit speech, data and signaling infor-
mation. It is made up by a three-bit tail at each end, two data fields
(payloads) consisting of 57 bits each and a mid-amble consisting of two
stealing bits and a training sequence. The two stealing bits are used to
indicate whether the burst contains traffic (data) or signaling information.
The training sequence is for equalization, i.e. to get the BTS and MS in
’tune’ with each other. It also determines the start of data field, including

GSM - Burst formats 23

the data itself. Finally, there is a guard time between bursts which is used
to separate data packets to avoid that adjacent bursts overlap.

• The frequency correction burst is used for frequency synchronization of
the MS. This burst is periodically transmitted by the BTS on the FCCH,
allowing the MS to find the beacon frequency.

• The synchronization burst is sent from the BTS on the SCH and allows
the MS to synchronize with the TDMA frame. It has two data fields of
39 bits; composed of the FN and BSIC.

• The dummy burst is transmitted by the BTS when no other bursts are to
be transmitted. The purpose of this burst is to allow the MS to perform
signal power measurements.

• The access burst is transmitted by the MS on the RACH when it wants
to request a service (e.g., to establish a call or perform a location update).
In order to avoid that the access burst overlaps with other bursts, these
bursts are shorter than normal bursts. The BTS can estimate the distance
to the MS by determining how much the burst is delayed relative to the
burst sent from the BTS. It then tells the MS to start its transmission
time a number of bits earlier in order to compensate for the delay (and
to ensure arrival within the correct timeslot). This is known as a timing
advance procedure [41][15]. MS advances its burst transmission by up to
64 steps (0-63); each step corresponds to a distance of about 550 meters
away from the BTS.

24 GSM - Channel Combinations

2.7 Channel Combinations

The GSM specification permits only certain ways in which logical channels can
be mapped onto a physical channel [39]. These combinations are numbered
from I to VII and are transmitted on the BCCH where the BTS indicates the
used combination. This allows the MS to find the various information elements
multiplexed on the channel.

The various combinations are:

I TCH/F + FACCH/F + SACCH

II TCH/H + FACCH/H + SACCH.

III 2 TCH/H + 2 FACCH/H + 2 SACCH.

IV FCCH + SCH + BCCH + CCCH

V FCCH + SCH + BCCH + CCCH + 4 SDCCH + 4 SACCH

VI BCCH + CCCH

VII 8 SDCCH + 8 SACCH

The first three combinations apply to the configuration of traffic channels. These
combinations can be used anywhere except in timeslot 0 on the beacon frequency
(C0T0). The other four combinations deal with the multiplexing of control
channels. Combination IV is the default standard used in C0T0. It cannot be
used anywhere else. The same applies to combination V, and this is often used
for small cells. Combination VI is mainly used together with combination IV in
order to provide more capacity for paging and access grant. Finally, the eight
SDCCH/SACCH pairs in combination VII, which is used to provide additional
signaling capacity, can be mapped to a number of timeslots. By convention,
this is usually mapped into timeslot 1 on the first carrier frequency (C0T1).

The information transmitted in a timeslot is categorized and scheduled in a

GSM - Channel Combinations 25

predictable manner, as shown in figure 2.10. The first timeslot (T0) in each
sector is always reserved for CCH signaling. The CCH multiplexing follow a 51-
frame cycle called a ’multiframe’, whereas the TCH follow a 26-frame multiframe
cycle. T2 through T7 is normally allocated to TCH. However, notice that TCH
does not occur on every single frame within the allocated timeslot. There is one
frame reserved for SACCH and one that is idle. Thus, in a traffic multiframe,
a total of 24 frames are used for speech data.

Figure 2.10: Mapping of Logical Channels in a GSM Multiframe

26 GSM - Channel Combinations

Although GSM uses full duplex channels, the BTS and MS do not transmit
at the same time, as illustrated in figure 2.11. The transmit time of the MS
is exactly three timeslots later than the corresponding timeslot from the BTS.
The arrangement is called time-division duplex (TDD) and has the advantage
that the MS does not need to transmit and receive information simultaneously.

Figure 2.11: Time-Division Duplex in GSM

For instance, if the MS is allocated a traffic channel in T2, the BTS transmits
when the downlink is in T2 and the MS sets to receive in T2. At this point, the
uplink is three timeslots behind. Once the uplink reaches T2, the MS begins to
transmit, and the BTS sets to receive in T2. At this point, the downlink is at
T5. When the MS is neither transmitting nor receiving, it monitors the BCCHs
of adjacent cells.

GSM - Speech Coding 27

2.8 Speech Coding

GSM is a digital communication standard. As the human voice is of an analog
quantity, it has to be converted into a digital bit stream2.

The analog voice is digitized (in the ME) by an analog-to-digital converter
(ADC) at a rate of 8000 samples per second. Each sample is quantized with
a resolution of 13 bits, resulting in a bit rate of 104 kbps. This bitrate is far
too high to be transmitted over the air interface, so it has to be reduced to a
bitrate of maximum 13 kbps. A speech encoder is used to compress the speech
signals. In GSM, this can be performed by a variety of speech encoders: The
Regular Pulse Excitation - Linear Predictive Coding (RPC-LPC), Enhanced
Full Rate (EFR) or the most widely used Adaptive Multi-Rate (AMR). A
detailed discussion of these procedures are given in [63]. In essence, they use
vocal characteristics and previous samples (information that does not change
very often) to produce speech frames of 260 bits representing 20ms of audio,
corresponding to a compression ratio of 1 to 8.

Figure 2.12: Speech Encoding in GSM

2If, however, the source of information is signaling or data, the speech coding is not
performed

28 GSM - Channel Coding

2.9 Channel Coding

Once a compressed digital signal is made, redundancy bits are added to protect
the signal from interference. GSM implements block and convolutional coding
to achieve this protection. The specific algorithms differ for speech and for
signaling channels.

A speech sample, consisting of 260 bits, is first divided into three parts (class
Ia, class Ib and class II bits) according to function and importance. The most
important class being Ia where 50 bits are assigned. Class Ib and Class II are
assigned 132 bits and 78 bits, respectively. Three parity bits are computed for
Class 1a and added to the Class Ib bits. An additional 4 bits are then added to
the Class I bits (Ia and Ib combined). These bits are all zeros and are needed
for the actual convolutional encoding. The encoding outputs two bits for every
input bit, thus the number of class I bits are doubled from 189 to 378. Finally,
the 78 least significant bits are added without protection, resulting in a speech
block of 456 bits.

As for signaling information consisting of 184 bits, a 40 bits fire code is added in
order to detect and correct burst errors. In addition, a 4-zero bits is employed
before the signal is passed through the same convolution encoding as the speech.
The output is also here a block of 456 bits.

The complex coding schemes of the speech channel and the combined broadcast
and common control channel are shown in figure 2.13.

GSM - Interleaving 29

Figure 2.13: Channel Coding in GSM. From [15]

2.10 Interleaving

The channel coding will be not be of any use if the entire 456-bit block is lost or
corrupted. One way to alleviate this is to use interleaving. Interleaving spreads
the bits into many bursts such that errors can be corrected by simple forward
error correction methods.

A 456-bit speech block is partitioned into eight sub-blocks of 57 bits each.
The first sub-block of 57 bits contains the bit numbers (0, 8, 16,448), the
second the bit numbers (1, 9, 17,449). Finally, the eighth and last sub-block
contains the bit numbers (7, 15,455). These sub-blocks are then interleaved
onto eight separate bursts.

The first four sub-blocks are mapped onto the even-numbered bits of four
consecutive bursts. The other four sub-blocks are mapped onto the odd-

30 GSM - Interleaving

numbered bits of the next four consecutive bursts. Since each normal burst
can carry two 57 bit blocks, it contains traffic from two separate 456-bit speech
blocks, as seen in figure 2.14.

Figure 2.14: Interleaving for Speech Blocks in GSM. Adapted from [66]

Most signaling blocks (or frames) used on the BCCH, SACCH, SDCCH, AGCH
and PCH have an identical interleaving scheme to that used for the speech
blocks. However, they are spread across four rather than eight interleaving
bursts, as shown in figure 2.15.

Figure 2.15: Interleaving for Signaling Blocks in GSM. Adapted from [66]

GSM - Frame Structure 31

2.11 Frame Structure

A sequence of eight timeslots is known as a TDMA frame. These frames have
a duration of 4.615 ms (8 x 0.5769 ms) and are continuously repeated. Several
TDMA frames are then grouped together to form multiframes. Exactly 51
frames for the control channels (3060/13 ms) and 26 frames for the traffic
channels (120 ms). They are organized in this way to make it possible to
establish a time schedule for when a particular logical channel can use a
physical channel. Since the two types of multiframes have different lengths,
their duration will not be the same. However, since the numbers 26 and 51 are
relatively prime, an idle TDMA frame (the 26th) in the traffic multiframe will
coincide with every other TDMA frame in the control multiframe. This happens
once before the entire sequence is synchronized as a superframe. The idle frame
period allows the MS to listen to control channels or perform other necessary
operations such as measuring the received signal strength from neighboring cells.

So the multiframes are merged to form superframes, consisting of either 51
traffic multiframes or 26 control multiframes. The two types of superframes will
thus have the same duration (6120 ms).

2048 superframes make up a hyperframe. Each TDMA frame is numbered
according to its sequence within the hyperframe, starting from 0 and ending at
2,715,647. This is used as an input to the encryption algorithm over the air
interface and for generation of the slow frequency hopping sequence. Since the
FN changes from burst to burst, each burst is encrypted individually. However,
the FN repeats itself after 3 hours, 28 minutes, 53 seconds and 760 milliseconds.

By structuring the signaling and speech into frames, multiframes, superframes
and a hyperframe; the timing and organization is set into an fixed format that
enables both the MS and BTS to communicate in a efficient and timely manner.
The frame structure illustrating the hierarchy of frames is shown in figure 2.16

32 GSM - Frame Structure

Figure 2.16: Frame Structure in GSM

GSM - Frequency hopping 33

2.12 Frequency hopping

GSM has introduced an optional frequency hopping procedure, known as slow
frequency hopping (SFH). SFH ensures that the interference level is minimized,
and that the total traffic in the system can be increased, while still maintaining
sufficient quality of each call [15]. In GSM, this is applied to change channel
with each burst, meaning that bursts in adjacent frames may appear at different
frequencies. The resulting hopping rate is about 217 changes per second,
corresponding to the TDMA frame duration.

There are essentially two types of hopping algorithms available to the MS:

• Cyclic hopping: the MS changes transmit frequency in accordance to a
predefined list of frequencies in sequential order.

• Random hopping: the MS changes transmit frequency randomly through
a set of frequencies.

The hopping algorithm produces the next channel frequency given the current
FN, a set of frequencies to hop between; the Mobile Allocation (MA), a start
frequency (or more correctly a time delay) within the MA; the Mobile Allocation
Index Offset (MAIO), and a parameter used for determining the hopping
sequence; the Hopping Sequence Number (HSN). A HSN of zero corresponds
to cyclic hopping, whereas values 1 through 63 correspond to different types of
random hopping algorithms.

34 GSM - Authentication

2.13 Authentication

Authentication is one of the most important security functions in GSM
[31][35]. It involves several functional components: the SIM card, MSC,
VLR and the AuC. The MSC verifies the identity of the subscriber through
a challenge-response process. Upon request from the MSC, the VLR returns a
authentication triplet3 consisting of a 128-bit random number (RAND), a 32-bit
signed response (SRES) and the session key Kc. When a MS requests service,
the MSC challenges it by sending the RAND and a 3-bit Cipher Key Sequence
Number (CKSN)4 in in a MM Authentication Request message. The MS must
answer this challenge correctly before being granted access to the network.

The RAND is forwarded from MS to the SIM for processing. Figure 2.17 shows
the information each entity contains in order to authenticate the SIM. The SIM
takes the RAND value and the 128-bit Individual Subscriber Authentication Key
Ki and produces a 32-bit signed response (SRES)5. This is the MS’s response
to the challenge which is sent back to the network in an RR Authentication
Response. If the SRES value is identical to the one given in the authentication
triplet, the authentication is successful.

3The authentication triplet is originally created in the AuC and sent to the VLR in sets of
five.

4The CKSN is stored for future Service Request messages. If the CKSN sent from the MS
is identical to the one stored in the network, the MS is ready to start ciphering without the
need for re-authentication

5To calculate SRES, an algorithm called A3 is used. It utilizes a hash function called
COMP128, which is also used in the generation of a session key needed for confidentiality of
calls and data.

GSM - Confidentiality 35

Figure 2.17: Authentication in GSM. Modified from [62]

2.14 Confidentiality

In addition to the parameters needed for the authentication of subscribers, the
SIM card also contains parameters needed to provide confidentiality. The figure
2.18 illustrates how the information stream is encrypted over the air interface.
An algorithm called A8 is used to generate a session key Kc. By using RAND
and the key Ki, the SIM runs the A8 algorithm to produce a 64-bit Kc. Kc

is then used by a third algorithm called A5. The A5 is used to produce a key
stream of 228 bits from the Kc and the current FN of the timeslot in which the
next segment of the message is sent. The key stream is decomposed into two
halves. While the first half encrypts the downlink frame, the second half is used
to encrypt the uplink frame. For each transmitted frame, a new 228-bit key
stream is calculated by A5 to encrypt (and decrypt) the frame.

The A5 algorithm is implemented in the hardware part of the ME, not in the

36 GSM - Confidentiality

SIM card. It has to operate quickly and constantly to generate a new set of 228
bits every 4.615 milliseconds. Also, since the terminals are designed to operate
in different networks, the A5 must be common to all GSM systems.

Figure 2.18: Key Generation and Encryption in GSM. Modified from [62]

Network operators have the option between three A5 algorithms for ciphering,
namely the A5/1, A5/2 and A5/3. According to the GSM specifications, it is
mandatory for A5/1, A5/2 and non-encrypted mode (A5/0) to be implemented
on the MS [33]. The network shall not provide service to an MS which indicates
that it does not support any of the mentioned ciphering algorithms [43]. A more
detailed analysis of A5/1 is found in section 3.2

GSM - Call setup 37

2.15 Call setup

There is a distinction between a mobile-originating call (MOC) and a mobile-
terminating call (MTC) in GSM [31]. A MOC implies that the call originated
from a MS, and therefore is an outgoing call. A MTC indicates that the call
is ending at the MS, hence an incoming call. Figure 2.19 shows a sequence
diagram for the connection setup for both MTC and MOC at the air interface.
It also illustrates how the various logical channels are used in principle.

Figure 2.19: Message Flows in a MTC and MOC

Mobile-originating Call (MOC)

The establishment of a MOC starts with the MS initiating a RR Channel
Request by transmitting an access burst on the RACH. This is sent upling on

38 GSM - Call setup

the same ARFCN as the BCH. The network responds with an RR Immediate
Assignment message on AGCH; assigning the MS to an SDCCH. This message
also include the FN of when the RR Channel Request was received, frequency
hopping information and a timing advance parameter.

After the initial setup, the MS sends a MM Service Request containing its
TMSI/IMSI, CKSN, supported A5 versions and the requested service - in this
case a MOC. The network accepts the request with a MM Service Request
Acknowledgment by including the TMSI for contention resolution purposes.

The network starts carrying out authentication (if needed) as described in
section 2.13. This is followed by a ciphering procedure issued by the network
using the RR Cipher Mode Command message. This is sent to indicate the
chosen encryption algorithm and could also be used to request the IMEISV. The
MS begins to encrypt (and decrypt), and replies with an encrypted RR Cipher
Mode Complete message. From this moment on all succeeding communication
between the MS and BTS are encrypted.

Once ciphering starts, the MS sends a CC Setup message containing the called
MSISDN. The network responds with a CC Call Proceeding message if the
number is valid and sends an RR Assignment Command to get the MS off from
the SDCCH and onto a TCH+FACCH. The MS acknowledges this transaction
with an RR Assignment Complete message on the FACCH. From this point on,
all signaling transactions are performed on that channel.

An CC Alerting message is sent back from the network to indicate that the
called subscriber is being alerted (in presence of a ringing tone). If the called
party answers, the networks sends a CC Connect message confirming that the
connection was successfully established. The MS finally replies with a CC
Connect Acknowledge message, which indicates that it is ready to exchange
voice data on the TCH.

The TCH+FACCH assignment can occur at any time during the setup,

GSM - SMS setup 39

depending on the configuration of the GSM network. There is essentially three
approaches:

• Late Assignment (Off Air Call Set-Up (OACSU)): A TCH+FACCH is
assigned to the MS first when it receives the alerting message.

• Early Assignment (Non-OACSU): A TCH+FACCH is assigned to the MS
after it receives the call proceeding message. The call setup is initially
performed on the SDCCH, but completed on the FACCH. This is the
most common option chosen by operators[24, p. 142] and described in
section 2.15.

• Very Early Assignment: A TCH+FACCH is assigned immediately to the
MS without using a SDCCH. The entire call setup is performed on the
FACCH.

Mobile-terminating Call (MTC)

The process for a MTC is very similar to a MOC. The BTS initiates the
transaction by sending a RR Paging Request message on the PCH. In reply,
the MS transmits a RR Channel Request message on the RACH. An Immediate
Assignment message with the SDCCH number is the response sent by the BTS
on the AGCH. The MS replies with a RR Paging Response message containing
its mobile identity (IMSI or TMSI). The remainder of the call setup is then
identical to the MOC as explained in the section 2.15. As with the MOC, the
TCH+FACCH assignment can happen at any time.

2.16 SMS setup

The GSM specifications provides information on how SMS messages are
transfered between the network and the MS [34]. Similar to the call setup, the

40 GSM - SMS setup

terms mobile-originating and mobile-terminating are also here used to indicate
the direction in which the SMS message is sent.

Mobile-originating SMS (MO-SMS)

In a MO-SMS, assuming the delivery is made when no active call is in progress,
the MS is assigned a SDCCH applying the same establishment procedure as
described in a MOC. A CM Service Request message is then sent from the
MS shortly after, and it initiates acknowledged mode (multiple frame) with a
Set Asynchronous Balanced Mode (SABM) procedure after the cipher mode
has been set. The SABM is used as a setup message to establish a data link
connection between the MS and BTS.

The MS transmits a SMS CP-DATAmessage containing a RP-DATAmessage as
the RPDU. The RP-DATA contains all the needed information for a successful
delivery and the actual SMS message. The network replies with a SMS CP-ACK
message and delivers a CP-DATA message to the MS, including the RP-ACK
payload in the RPDU. The MS answers with a SMS CP-ACK message and the
network releases the SDCCH with a RR Channel Release message.

Mobile-terminating SMS (MT-SMS)

The process for a MT-SMS is in many ways the reverse operation of a MO-SMS.
The network starts paging the MS with the standard paging procedure, and the
MS is assigned an SDCCH by using the standard RR Paging Response reply.
The remainder of the SMS setup is then identical to that of a MO-SMS, apart
from the flows going in the opposite direction.

Chapter 3
Attacking A5/1

One of the results from this thesis is a set of rainbow tables that can be
used to decrypt a GSM conversation. This chapter will provide the necessary
background theory and give a detailed explanation of how the rainbow table
attack against A5/1 works.

3.1 Related Work

Related work aimed at attacking A5/1 has been carried out for the last two
decades. However, a practical attack did not arise until 2003, when Barkan et
al. published their findings. They used a passive ciphertext-only time-memory
trade-off attack requiring a large amount of precomputed tables [17]. This
was the first real attack not requiring large amounts of known plaintext. It is
uncertain whether tables were generated. Regardless, tables were never publicly
released.

41

42 Attacking A5/1 - A5/1

In 2007, two groups headed by Prof. C. Paar (Ruhr University of Bochum)
and Prof. M. Schimmler (Christian-Albrechts University Kiel) created a Cost-
Optimized Parallel Code Breaker (COPACOBANA), an FPGA-based machine
that could be used to create tables employing the same principles as described
in Barkan et al. The FPGA solution was made commercially available[2], but
no tables were released.

In 2008, the The Hackers Choice (THC), represented by David Hulton and
Steve Muller, reiterated the 2003 attack with 68 FPGA boards[49]. This group
also had a sister project named AirProbe[1] that developed software to capture
and decode GSM signaling traffic. Rainbow tables were claimed to have been
computed, but were never released. They made the assumption that the key
size used in GSM is only 54 bits. Although this was the case in several countries
some years ago, it is not the case as of per today. This means that even if these
tables were to exist, they would not be useful in the process of attacking A5/1.

3.2 A5/1

None of the security algorithms implemented in GSM were originally made
available to the public, but some were later reverse engineered and leaked [25].
In this section, the cryptographic algorithm used in GSM, A5/1, is described in
detail.

Ciphering in GSM is performed using the stream cipher A5/1, which consist of
three linear feedback shift registers (LFSR). They are called R1, R2 and R3,
and are of length 19, 22 and 23, respectively. In an LFSR, all bits are shifted
one place towards the end1 of the register every time the register is clocked.
This leaves the least significant bit (lsb) empty, meaning that this bit needs to
get its new value in a different way. This is solved by letting each register have
a few tapped bits. As seen in figure 3.1, the tapped bits of R1 are bit 13, 16,

1To the left in this case

Attacking A5/1 - A5/1 43

17 and 18, of R2 bit 20 and 21, and of R3 bit 7, 20, 21 and 22. Whenever a
register is clocked the value of these taps are read out before the shifting has
been performed. Their values are then XORed together and the result used as
input to bit 0. Whether a register is clocked or not is decided by the majority

Figure 3.1: The A5/1 stream cipher used for encryption in GSM. Modified from
[20]

function. Three clocking bits exist, denoted by C1, C2 and C3 respectively. C1
is bit 8 of R1, C2 is bit 10 of R2 and C3 is bit 10 of R3. At each clock cycle
the value of these bits are analyzed, and the two or three registers whose bit
agrees with the majority are clocked.

The A5/1 algorithm takes as input a 64-bit key Kc and a 22 bit frame number
Fn and produces 228 bits of keystream. The output is the result of bit 18, 21
and 22 XORed together. Messages between the MS and the BTS are sent in

44 Attacking A5/1 - A5/1

bursts containing 114-bits of payload, and since the same frame number can be
used two times in a row2 A5/1 needs to produce 228 bits of keystream. The first
114 bits of the keystream are used to encrypt downlink traffic (BTS to MS),
while the last 114 bits are reserved for encryption of uplink traffic (MS to BTS).

From initialization to 228-bits of keystream, the A5/1 algorithm goes as follows:

1. All three registers are set to 0. Then, for 64 cycles, the key is mixed into the
registers in parallel using the following algorithm:
for i = 0 to 63 do

R1[0] = R1[0]⊗Kc[i]
R2[0] = R2[0]⊗Kc[i]
R3[0] = R3[0]⊗Kc[i]
Clock all three registers according to the regular clocking scheme.

end for

Where Ri[0] denotes the lsb of register Ri, Kc[0] the lsb in the key and
Kc[63] the most significant bit. It’s important to notice that the majority
clocking mechanism is not used at this stage.

2. 22 additional cycles are clocked, still overlooking the majority function.
During this period the frame number is XORed into the lsb of the registers
in the same way as with the key, that is:
for i = 0 to 63 do

R1[0] = R1[0]⊗ Fn[i]
R2[0] = R2[0]⊗ Fn[i]
R3[0] = R3[0]⊗ Fn[i]
Clock all three registers according to the regular clocking scheme.

end for

3. 100 additional clocks are performed with the the regular majority clocking
mechanism activated, but the output is discarded. The content of the

2Once for both downlink and uplink.

Attacking A5/1 - A Cryptanalytic Time-Memory Trade-Off 45

registers at the end of this state is what we refer to as the initial state of
A5/1.

4. 228 clocks are performed to produce 228 bits of keystream. This is
keystream is then XORed with the plaintext in order to encrypt the data.

3.3 A Cryptanalytic Time-Memory Trade-Off

A5/1 can be attacked using a cryptanalytic time-memory trade-off. The idea
of such a time-memory trade-off (TMTO) comes from Hellman, who in 1980
introduced a TMTO-attack against block ciphers that with high probability can
recover a N key cryptosystem in N2/3 operations using N2/3 words of memory
[48]. Since then, several improvements, analysis’ and optimizations concerning
TMTO-attacks has been released. Going into the details of these would be a
very extensive task and is also without the scope of this thesis. Instead, this
section will focus on providing the relevant background theory needed in order
to understand the time-memory trade-off attack against A5/1.

3.3.1 Hellman’s Time-Memory Trade-Off

There are two naive approaches on how to break a block cipher; exhaustive
search and table lookup. The exhaustive search technique is a known-plaintext
attack, where the ciphertext gets deciphered with each possible key and then
compared with the known plaintext. This gives a time complexity of T = O(N)
and a memory requirement of M = 1.

The approach taken in a table lookup attack is to encrypt some fixed plaintext
with each of the N possible keys in order to produce N distinct ciphertexts.
These ciphertexts are then sorted and stored together with their keys in a table

46 Attacking A5/1 - A Cryptanalytic Time-Memory Trade-Off

of size M = N . The pre-computation cost of such an attack is N operations
and the time complexity for doing lookup is T = O(1).

The problem with these two methods is that the attack time is either to long, i.e
T = O(N) in the case of exhaustive search, or that they require a large amount
of memory, i.e M = N in the case of table lookup. As an example, consider the
amount of memory needed in order to create a lookup table for a 64-bit key:

M = 2× 64× 264 bits = 128× 264

23 × 240 Terabytes = 268 435 456 Terabytes

A number that leaves such an attack impossible in practice. It is easy to do
a comparison with Hellman’s time-memory trade-off, which only needs N2/3

words of memory. In the same case of a 64-bit key, the memory requirement
would be:

M = 2× 64×
(
264)2/3

bits =
128×

(
264)2/3

23 × 240 Terabytes ≈ 102 Terabytes

Although still a large memory requirement, it is well within the limits of what
is practically feasible. With the price for a 2 TB hard drive being around $1303,
obtaining 102 Terabytes of storage would cost around $130 × 102

2 = $6630.
That‘s a price that must be considered to be a small investment for larger
organizations.

Hellman introduced his time-memory trade-off for block ciphers in 1980. Given a
fixed plaintext block P0, this can be encrypted with the cipher S. The ciphertext
C is thus given by:

C = Sk(P0)

The attack works by creating chains consisting of key-ciphertext pairs. The
chain starts with a key value ki. This key is used to encipher P0 in order to

3As of per June 2010

Attacking A5/1 - A Cryptanalytic Time-Memory Trade-Off 47

get Ci = Ski
(P0). The ciphertext Ci can then be converted into a key ki+1

by applying a reduction function4 R on Ci. Chains of alternating keys and
ciphertexts can thus be created by successively applying the cipher S and the
reduction function R:

ki

Ski
(P0)
−→ Ci

R(Ci)−→ ki+1
Ski+1 (P0)
−→ Ci+1

R(Ci+1)−→ ki+2 −→ · · ·

R(Sk(P0)) is the sequence of operations that generates a key from a key. It is
called f(k) = R(Sk(P0)) and leads to a chain of keys:

ki
f−→ ki+1

f−→ ki+2
f−→ · · ·

As can be seen in figure 3.2, a table consist of m chains of length t. However,

Figure 3.2: Illustration of a single Hellman table of size m× t[19]

only the first and last element in each chain are stored in order to reduce the
memory requirements. Given a ciphertext C, the aim is to find out whether the
key used to generate C is in the table. The first step is to apply R to C in order
to obtain a key Y1. This key is compared to the endpoints of the table, and

4The cipher text is longer than the key, hence the reduction

48 Attacking A5/1 - A Cryptanalytic Time-Memory Trade-Off

if a match is found it means that the key used to encipher C might be found
in the next to last column of the corresponding chain. The chain can then be
reconstructed from the startpoint in order to possibly find this key. If there is
no matching endpoint, the function f is applied until a matching endpoint is
found, or until it has been applied a maximum of t − 1 times. A match with
one of the endpoints in the table does not necessarily mean that the key can be
found in that chain. This is due to so-called false alarms. A detailed description
of false alarms will be given later in this subsection.

One of the drawbacks of Hellman’s time-memory trade off is that chains starting
at different keys may collide and merge. This is a consequence of the fact that
R only provides an arbitrary reduction from the space of ciphertexts into the
space of keys. Merges lead to less efficient tables, since there will be keys that
are covered by more than one chain. The chance of finding a key by using a
table of m rows of t keys is given by[48]:

Ptable ≥
1
N

m∑
i=1

t−1∑
j=0

(
1− it

N

)j+1
(3.1)

As can be seen, the efficiency of a single table decreases rapidly with its size.
In order to obtain a high probability of success it is therefore better to generate
multiple tables, where a different reduction function is used for each table. There
can be collisions between chains of different tables when using more than one
table, but they will not merge since different reduction functions are used in
different tables. Using l tables, the probability of success is given by[48]:

Psuccess ≥ 1−

 1
N

m∑
i=1

t−1∑
j=0

(
1− it

N

)j+1
l

(3.2)

False alarms

As mentioned earlier, finding a matching endpoint in the table does not

Attacking A5/1 - A Cryptanalytic Time-Memory Trade-Off 49

necessarily mean that the key is in the table. False alarms are undesirable,
since there needs to be computing time spent in searching through a chain
looking for a key, only not to find it.

Let s be the length of the generated chain at the time when a matching endpoint
is found, and let this generated chain be denoted by z:

C
R−→ Y1

f−→ Y2
f−→ · · · f−→ Ys

Given an endpoint Ej that matches Ys, this chain is then calculated from the
startpoint Sj . If Y1 is not found in this chain it was only a false alarm. This
is the result of chain z merging with the chain where we found a false alarm,
somewhere later than the column where Y1 is. Figure 3.3 shows an example of

Figure 3.3: Hellman table for hash values showing the occurrence of a false
alarm. h1 is the hash value that we’re looking for the password for, and the
false alarm happens at the point where h1 is transformed into the password
value 9. Modified from [56]

a false alarm in the case of a Hellman table for hash values. In this example h1

is the given hash value that we’re looking for the corresponding password to,
in this case 1. If the reduction function R and the hash function H is applied
successively on h1, then the result after a couple of alternations will be the value
9. Since this is also an endpoint in the table, a false alarm will now occur. Note

50 Attacking A5/1 - A Cryptanalytic Time-Memory Trade-Off

that even if the second row had not been a chain in the table, we would still
get a false alarm. In other words, false alarms exist as a result of merges with
chains both inside and outside the table.

3.3.2 Rivest’s Distinguished Point Method

In 1982 Rivest came with the suggestion of using distinguished points as
endpoints for the generated chains[29]. A distinguished point is an endpoint
that satisfies some easily tested syntactic property, e.g the first ten bits of a
key are zero. By letting all endpoints being distinguished points, the number of
data lookups needed gets drastically reduced. Given a ciphertext C, a chain of
keys is generated until a distinguished point is found. Only then is it looked up
in the memory in order to find what chain the key was found in, and what the
start point of that chain is.

In [22] Borst et Al. pointed out that one of the advantages with distinguished
points is that merges can easily be detected. This is due to the fact that
two merging chains will end up having the same endpoint; the next one after
the merge. Since the endpoints have to be sorted anyway, the merges can be
discovered and removed without any additional cost. This means that merge-
free tables can be created simply by removing a chain that merges and replace
it with a new one instead.

Another advantage noted by Borst et Al. in [22] is that distinguished points
can be used to discover loops. If a distinguished point is not found after a large
number of keys5 has been generated, it is generally a good indication that the
chain contain a loop. It is thus discarded in order to obtain loop-free tables.

Unfortunately, using distinguished points also comes with a backside; the
variation in chain length. Short chains will lead to an increased storage

5Intuitively, this number should of course be larger than the average occurrence of a
distinguished point

Attacking A5/1 - A Cryptanalytic Time-Memory Trade-Off 51

requirement, whereas long chains will increase lookup time, give more merges,
and thus also generate more false alarms. As noted earlier, merges can easily be
removed and be replaced by new chains. However, removing a chain does not
remove the false alarms, since a false alarm is not dependent upon the chain
being part of the table.

3.3.3 Oechslin’s Rainbow Tables

The concept of Rainbow Tables comes from Philippe Oechslin who published the
idea in his article Making a Faster Cryptanalytic Time-Memory Trade-Off [55].
Oechslin’s rainbow tables provide a solution to the main limitation of Hellman’s
time-memory trade-off, the fact that two chains that collide within a single table
will merge. With rainbow tables there can still be collisions within the same
table, but the chains will not necessarily merge together.

The difference between Hellman’s tables and rainbow tables lies in the way the
reduction function is used. Whereas the original tables uses the same reduction
function for all the m × t chains within a single table, rainbow tables uses a
new reduction function for every point in the chain. A chain of length t starts
with the reduction function R1 and ends with the reduction function Rt−1. The
big advantage with this approach is that if two chains collide within a table,
they will only merge if the collision appears at the same position in both chains.
This is due to the fact that both chains will continue with different reduction
functions after the collision. It also follows from this that if a collision occurs
in a chain of length t, the chance of the two chains merging is only 1

t .

An illustration of the difference in structure between Hellman’s original tables
and Oechslin’s rainbow tables can be seen in figure 3.4. The figure shows t

classical tables of size m× t on the left, and a single rainbow table of size mt× t

on the right. When doing lookup in rainbow tables, the first step is to check
whether key is in the next to last column of the table. This is done by applying

52 Attacking A5/1 - A Cryptanalytic Time-Memory Trade-Off

Figure 3.4: Illustration showing the difference in structure between Hellman’s
original tables and Oechslin’s rainbow tables. t classic tables of size m × t is
seen on the left, whereas one rainbow table of size mt × t can be seen on the
right. [55]

Rt−1 to the ciphertext and then comparing the result with the endpoints of the
table. If there is a match, the stored start point can be used to reconstruct the
chain and find the key that was used to produce the ciphertext. If the endpoint
is not found, the second to last column is checked by applying Rt−2, ft−1 to
the ciphertext. If it is not there, Rt−3, ft−2, ft−1 is applied, and so forth until
the whole chain hs been checked. The total number of calculations needed to
be performed during lookup is thus t(t−1)

2 [55]. This is half as much as with
Hellman’s tables, that uses t2 calculations to search t tables of size m× t.

The probability of success within a single rainbow table of size m × t is given

Attacking A5/1 - A Cryptanalytic Time-Memory Trade-Off 53

by[55]:

Ptable = 1−
t∏

i=1

(
1− mi

N

)
(3.3)

where m1 = m and mn+1 = N
(
1− e−

mn
N

)
According to Oechslin [55], the success probability of rainbow tables can be
directly compared to that of classical tables. In fact, the success probability of
t classical tables of size m× t is approximately equal to that of a single rainbow
table of size mt × t, since in both cases mt2 keys are covered with t different
reduction functions. It is also interesting to note that a collision within a set
of mt keys (a single classical table or a column in a rainbow table) results in
a merge, whereas collisions with any of the remaining keys does not lead to a
merge. The probability of success are compared in figure 3.5. Note that one axis
have been relabeled from t to l in order to fit with equation 3.2. As can be seen,
rainbow tables seem to have a slightly better probability of success compared to
classical tables. However, this might very well just be that the success rate of
Hellman’s tables are lower bound, whereas the success probability for rainbow
tables is the exact expectation [55].

When compared to Hellman’s tables with distinguished point it becomes
apparent that rainbow tables share some of the same advantages as distinguished
points, but without suffering from their limitations. According to Oechslin,
these are:

• Compared to Hellman’s original method, table look-ups are reduced by a
factor of t. However, since disk access is drastically reduced when using
distinguished points, rainbow tables are still expected to be outperformed
by distinguished points due to the large expenses connected to disk access.

• A merge in a rainbow table will lead to two identical endpoints, meaning
that merges are just as easily detectable as with distinguished points. This

54 Attacking A5/1 - A Cryptanalytic Time-Memory Trade-Off

Figure 3.5: Comparison of the success rate of Hellman’s tables and rainbow
tables. The upper surface represents the constraint of 99.9% success with
classical tables, wheras the lower surface is the same constraint, but for rainbow
tables instead [55].

also means that Rainbow tables can be generated free of merges.

• Since there is a new reduction function for every column in a rainbow
table, no loops can exist. This is better than the loop detection used in
distinguished points, since there’s no need to spend time generating loops
that will be rejected anyway.

• Rainbow chains have constant length, thus avoiding the negative effects of
variable chain length that distinguished points suffers from. This means
that there are fewer occurrences of merges and false alarms in rainbow
tables.

Attacking A5/1 - A Cryptanalytic Time-Memory Trade-Off 55

3.3.4 A Cryptanalytic Time/Memory/Data Trade-off for
Stream Ciphers

There are two major types of symmetric-key cryptosystems; block ciphers and
stream ciphers. Block ciphers take a number of bytes and encrypt them as a
single unit, whereas stream ciphers encrypts one bit at a time. Furthermore,
encryption in block ciphers is carried out by mixing plaintext with the key in
an invertible way, whereas stream ciphers use the key to produce a keystream
that is XORed with the plaintext.

Hellman and Oechslin’s trade-off’s were both directed towards block ciphers.
Since a block cipher takes the plaintext and key as input and produce ciphertext
as output, each ciphertext corresponds to a particular plaintext for block ciphers.
A pre-computed table for a block cipher can thus only be used for one particular
known plaintext.

Stream ciphers on the other hand have a very different behavior when it comes to
time-memory trade-off attacks. It uses its internal state as input and produce
a keystream as output. This means that we have state-keystream pairs that
are independent from any particular plaintext, and it is thus possible to create
pre-computed tables that can be used independently of the plaintext.

The first time-memory trade-off for stream ciphers was described independently
by Babbage[16] and Golic[46]. They connect each of the N possible states of the
generator with the first log2(N) keystream bits produced by the stream cipher
from those states. This mapping can be described as:

f(x) = y (3.4)

where x is the internal states of the stream cipher and y the keystream generated
from x. The attack works by picking M random xi states, computing their
corresponding keystream, yi, and then store all of the (xi, yi) pairs on a disk
sorted on increasing order of yi. Only M out of N states are covered, but coverage

56 Attacking A5/1 - A5/1’s Reduced Keystream Space

can be improved by having more known data points D. Since lookup is done
on log2(N) bits of keystream, D data points give us a total of D − log2(N) + 1
samples of keystream. Thus, lookup can be done on all D−log2(N)+1 keystream
samples in the table. This increases the probability of a hit by 1

D−log2(N)+1 . If a
match is found, the rest of the plaintext can be derived by running the keystream
generator from that point on.

A general attack that combines the work of both Hellman, Babbage and Golic
was proposed by Biryukov et Al. in the article Cryptanalytic Time/Memo-
ry/Data Tradeoffs for Stream Ciphers[19]. Their idea is to succesively apply
f(x) = y from 3.4 and a function that maps the keystream into the state space
again. This forms the basis for the attack used in the A5/1 Security Project
that will be explained in detail in section section 3.5.

It is interesting to note that distinguished points fits especially well together
with time-memory trade-offs that have more than one data point. This has to
do with the fact that a disk access is an extremely expensive operation, and
should be avoided if possible. Thus, when looking up more than one keystream
sample the profit becomes even more apparent.

3.4 A5/1’s Reduced Keystream Space

As explained in section 3.2, A5/1 gets initialized by mixing in a 64-bit key.
In order for A5/1 to be cryptographically strong, it’s important that this key
is utilized in a way that provides a keystream space of almost equal size.
Unfortunately, it turns out that this is not the case with A5/1, and the
keystream space gets reduced to only 16% of the original size after the 100
clockings[10]. This section will provide the details around the reduction in
A5/1’s keystream space.

Attacking A5/1 - A5/1’s Reduced Keystream Space 57

Clocking back A5/1

In order to understand how the keystream space gets reduced in A5/1, a look
at the theory around backclocking is first needed.

In order to decrypt an entire conversation it is important to know either the
key or the state of A5/1 just after the key has been mixed in. Both of these
are of equal value, since the keystream for every frame in a conversation can
be determined directly from both. In the process of obtaining this state, some
backclocking is needed.6

Clocking back one single register is a trivial task. When clocked forward, all the
tapped bits are XORed together and the result used as input to the rightmost
bit (lsb). Backward clocking on the other hand, is performed by taking all the
tapped bits except the leftmost (msb), and then XORing these together with
the rightmost bit. After this, all registers are shifted one step to the right, and
the result from the XOR operation is stored in the leftmost bit position. It is
when clocking back the entire A5/1 machine that things get more complicated,
since majority clocking needs to be taken into account. However, it is also when
looking closer at this process that the reason why the A5/1 algorithm only
utilizes 16% of the key space gets revealed.

By looking at the clockbits of each LFSR, and the bit to the left of it, it becomes
apparent that there are in total 26 = 64 combinations7 of the values that these
bits can have.

Let S(t) = (S1(t), S2(t), S3(t)) denote the whole internal state of A5/1 at time
t ≥ 0, where S(0) is the internal state of A5/1 just after the frame number has
been mixed in. At the same time, let C(t) denote the clock-control sequence at
time t ≥ 0, such that if C(t) = {1, 2}, then registers 1 and 2 are to be clocked, if
C(t) = {1, 2, 3}, then registers 1,2 and 3 is clocked, and so on. Let (i,j,k) denote

6It is possible to generate rainbow tables that can obtain this state without doing
backclocking, but such tables would have reduced efficiency.

76 bits that each can take two values, 0 or 1

58 Attacking A5/1 - A5/1’s Reduced Keystream Space

a permutation of (1,2,3). Then the following six events can occur[46]:

A: for any k, if s′i = s′j 6= s′k = sk, then C(t− 1) = {i, j}

B: for any k, if s′i = s′j 6= s′k 6= sk, then C(t− 1) can take no values

C: if s′1 = s′2 = s′3 = s1 = s2 = s3, then C(t− 1) = {1, 2, 3}

D: if s′1 = s′2 = s′3 6= s1 = s2 = s3, then C(t− 1) can take every of the

four values {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}

E: for any k, if s′1 = s′2 = s′3 = si = sj 6= sk, then C(t− 1) can take

every of the two values {i, j} and {1, 2, 3}

F: for any i, if s′1 = s′2 = s′3 = si 6= sj = sk, then C(t− 1) can take

every of the three values {i, j}, {i, k} and {1, 2, 3}

Further on, if an internal state S(t) is randomly chosen according to uniform
distribution, then the number of solutions for S(t− 1) is a nonnegative integer
random variable Z with the probability distribution[46]:

P (Z = 0) = 24
64 , P (Z = 1) = 26

64 , P t(Z = 2) = 6
64 ,

P (Z = 3) = 6
64 , P (Z = 4) = 2

64
As can be seen, 24 of 64 states cannot be clocked 1 step back. This means that
there is no way that such a state can exist, and it is therefore called an illegal
state. A conclusion that follows immediately from this is that the keystream
space is reduced to 1 − 24

64 = 0.625 = 62.5% of the original key space. An
example of such a state can be seen in figure 3.6.

When looking at the bits to the left of the clocking bits, it becomes apparent
that the registers clocked in the previous round was registers R1 and R3, since

Attacking A5/1 - A5/1’s Reduced Keystream Space 59

Figure 3.6: Illustration of an illegal A5/1 state, S(t), that can’t be clocked back

they make up the majority function. By clocking R1 and R3 one step back the
result is the state seen in figure 3.7.

It is easy to see that this state is not a valid one, since R2 now suddenly is a
part of the majority clocking function, a contradiction to the backclocking step
that was just performed. One would therefore end up with a different state if
an attempt to clock it forward from S(t− 1) to S(t) was made.

The fact that 24 of 64 states cannot be clocked back 1 step was pointed out by
Golic in the paper Cryptanalysis of Alleged A5 Stream Cipher [46], but strangely
enough Golic fails to see the correlation between this and the reduction in
keystream space that follows from this. However, a person under the pseudonym

60 Attacking A5/1 - A5/1’s Reduced Keystream Space

Figure 3.7: Illustration showing an A5/1 state clocked back from S(t) to S(t−1)

M vd S discovered this8 and posted his findings on the A5/1 Security Project
mailing list[67]. M vd S took 1 million random states and tried clocking them
back 100 times. This was done several times in order to check that the numbers
were stable. His discovery was that only 14% of the states can be clocked back
100 times. This means that 86% of the states have no ancestors and are therefore
illegal states. It also follows from this that the keystream space of A5/1 is only
14% of the original 264, since 100 steps of majority clocking is performed before
A5/1 starts producing the keystream. His findings are summarized in table 3.1
An illustration of what happens can be seen in figure 3.8.

8As far as we know, this has not been published before

Attacking A5/1 - A5/1’s Reduced Keystream Space 61

Number of backclockings Amount of illegal states
16 back 57% illegal states
32 back 68% illegal states
48 back 74% illegal states
64 back 78% illegal states
80 back 82% illegal states
96 back 84% illegal states
100 back 86% illegal states
150 back 89% illegal states

Table 3.1: Illegal states

Figure 3.8: State space convergence in A5/1 during 100 clock cycles. Grey paths
are not accessible trough forward clocking, green paths have many ancestors
states leading to the same keystream, whereas red paths have few ancestors
leading to the same keystream

62 Attacking A5/1 - A5/1’s Reduced Keystream Space

As can be seen, there is a lot of initial states converging and ending up in the
same state. It is also illustrated how 86% of the states are illegal9 and thus end
up in a dead end when clocking back.

It becomes apparent when looking at this picture, that a state can have several
ancestors. After having clocked back a certain amount of clockings, in general
we will be between 1 and 100 sibling states[10]. Figure 3.9 shows the recorded
frequency of the number of sibling states in a sample set of one million random
states. The blue dots is the distribution of sibling states when first clocking 100
forward and then 100 backwards, while the red dots refer to the distribution
when backward clocking 100 times without having done forward clocking first.
In the last case, the data point showing that 848000 of 1 million states have no
ancestors has been removed.

When taking a uniform distribution of 264, one would expect the number of
ancestors to be 1

0.14 = 7.1. Although figure 3.9 shows a peak at around 7,
the weighed average for forward-backward clocking is 13.04 and for backward
clocking 1.00. An average of 13.04 seems to indicate that the initial state space
converges to 1

13.04 = 0.077 = 7.7% of the initial space, but this is not the case.
Figure 3.10 illustrates what happens.

As seen, the red dotted line indicates that half the keystreams find their origin
in 82% of the inintial states, while the other half find their origin in only 18% of
the initial states. In addition, the blue dotted line shows that 10% of the actual
keystreams find their origin in 30% of the initial states. In other words, we
see that A5/1 seems to have a preferrence towards a smaller group of favoured
states. This means that there is a even bigger chance of getting a hit in the
table, since 82% of the initial states is covered by only 50% of the keystream.

9Here denoted by grey

Attacking A5/1 - A5/1’s Reduced Keystream Space 63

Figure 3.9: Illustration showing the distribution of siblings after having clocked
back a state 100 times

64 Attacking A5/1 - A5/1’s Reduced Keystream Space

Figure 3.10: Illustration showing how the state space in A5/1 convergences
towards a few preferred states

Attacking A5/1 - The A5/1 Security Project 65

3.5 The A5/1 Security Project

In August 2009, the A5/1 Security Project was launched by Karsten Nohl and
others as a reimplementation of the 2008 work by THC. The project aimed to
distribute the table generation in a way that anyone could volunteer and start
creating tables. Table generating scripts for NVIDIA-devices supporting CUDA
computing10 were made available on the project’s website[10] and finished tables
were shared via BitTorrent. The goal was to compute and share 2 Terabyte
of rainbow tables, but as of per June 2010 only 10% of the targeted goal is
being shared [12]. In addition, these tables are suboptimal since they are of an
early stage table format that don’t take A5/1’s reduced keystream space into
consideration.

However, since the start of the project there has been some major changes. The
most significant one was the development of code based on ATI-graphic cards
instead of NVIDIA. This work was done by Frank A. Stevenson11 on his own
initiative, and the first piece of code was posted on the A5/1 mailing list in
October 2009[64]. Another significant event was M vd S’ post on the mailing
list in January 2010[67] where A5/1’s reduced keystream space was pointed out,
as explained in section 3.4. This discovery lead to a new table format that has
been implemented by Frank Stevenson to work with ATI cards. The new table
structure is not yet implemented for NVIDIA cards, and the code has been down
for a few months now due to a bug in the code.

This section will provide the details around the format of the tables generated
by the ATI-code.

10http://www.nvidia.com/object/cuda_home_new.html
11http://en.wikipedia.org/wiki/Frank_A._Stevenson

66 Attacking A5/1 - The A5/1 Security Project

3.5.1 Table Structure

The current tables are a combination of Hellman tables with distinguished points
and rainbow tables. All the chains within one single table is generated in the
same way. The only thing that separates them is that they all have different
start points.

The generation of a single chain starts by taking a 64-bit random value and
putting it into the registers of A5/1. A5/1 is then first clocked 100 steps forward
with the output bits discarded, before another 64 clockings is performed were
the output is stored as a keystream. As explained in section 3.4, the reason for
doing 100 clocking first is to avoid generating tables that contain keystreams
that would never exist after the 100 initial clockings in A5/1. In order to map
this keystream from the reduced keystream space into the full space of initial
states, a transformation is needed. This transformation is performed by XORing
the keystream with a 64-bit round function that fetches its value from the output
of an LFSR. This LFSR gets initialized with the same value every time12, but
the thing that separates the round functions from each other is that they all use
different parts of the LFSR-output as their value. The LSFR has an advance
function, and 64-bits of output is generated every time this gets called. Every
table takes a number, id, as input, calls advance id times and uses the bits
produced during the last call as the first round function. You can thus avoid
having the same round function ever being used again by not using any two ids
less than 8 numbers apart as input to a table.

Each table uses 8 round functions, and the round function is changed whenever
a distinguished point is found. The indication chosen as a distinguished point
is that the last 12 bits of the keystream is to be zero, and whenever this occurs
the round function gets changed by calling advance once. As mentioned in
subsection 3.3.2, distinguished points can also be used to detect loops. A chain
is therefore dropped if a distinguished point has not been detected before 3

12That is for every round, in every chain, in every table

Attacking A5/1 - The A5/1 Security Project 67

million A5/1 steps have been produced.

A total of 8,662,000,000 (8, 662×109) chains are produced for every table, where
only the startpoint and endpoint is stored for every chain. The chains are then
sorted incrementally on their end value, while at the same time removing any
merging chains.

3.5.2 Table Lookup

In order to do a table lookup, minimum 64-bits of known keystream is needed.
Given that we are already in possession of the ciphertext, knowing the keystream
is equivalent to knowing the plaintext. This is due to the fact that keystream
K can be deduced by simply XORing the plaintext P and the ciphertext C

together:

C ⊗ P = (P ⊗K)⊗ P = (P ⊗ P)⊗K = K

Given a 64-bit keystream sample K, doing lookup is quite an easy task. First
step is to check whether K can be found within one of the eight round intervals
in a table. To do this, 8 different chains are computed from K, were each chain
starts with one of the 8 round functions used by the table we are doing lookup
in and ends with the last round function. This produces 8 different chains,
whose endpoints needs to be compared to that of the tables. If there is a match
between two endpoints, the whole chain is generated from the start point until
K is found again. Unless an false alarm, the value that appears just before K

is the initial state of A5/1 100 clockings before the start of keystream K.

We are interested in knowing the state of A5/1 just after the session key Kc

has been mixed in, but before the frame number is mixed in. By knowing
this one would be able to produce the keystream for every frame in an entire
conversation, since the frame number is already publicly known. As explained
in section 3.2, A5/1 produces 228 bits of keystream. Depending upon where

68 Attacking A5/1 - The A5/1 Security Project

in those 228 bits our keystream sample is taken from, a different amount of
backclocking is needed to be performed in order to find the desired state. Let
Ki denote the keystream taken from bit position i and outwards, where i = 0
is at the start of the keystream generation. It is then needed to clock back
i + 100 + 22 steps in order to find the state just after Kc has been mixed in. As
an example, consider the case of a 64-bit keystream sample from bit position 10
to 73 in the 228 output bits from A5/1. 10+100+22 = 132steps would need to
be clocked back in order to receive at the desired state. As explained in section
3.4, this will lead to some 13 different candidate states. These are all states that
produces the same keystream for that particular frame, but only one of them is
the correct state that can be used to decrypt the rest of the conversation. It is
thus needed to find the correct candidate key if we want to decrypt an entire
conversation, but this is a trivial task since it only needs to be tested on another
frame.

As will be discussed in chapter 8, several frames exists that may contain
minimum 64-bits of known plaintext, and thus gives us the needed keystream
sample. In fact, there are several candidates that are likely to contain even
more known keystream. Given n > 64 bits of keystream, the technique from
Babbage[16] and Golic[46] described in subsection 3.3.4 can be applied in order
to increase the probability of success. This would give n − 64 + 1 different
keystream samples that can be used to do lookup with. This means that the
tables only need to 1

n−64+1 the size and still give the same coverage.

3.5.3 Expected coverage

Doing a mathematical analysis on the expected coverage of the tables is no
trivial task, since it’s difficult to estimate the number of merges. There is
however some general observations that that should be noted.

As pointed out in section 3.4, the keystream space shrinks to only 14% after 100

Attacking A5/1 - The A5/1 Security Project 69

clockings have been performed. This means that the effective keystream space
of A5/1 is no bigger than

Keystream space = 264 × 0.14 = 261.16 (3.5)

In addition, since 51 keystream samples can be used when doing lookup, only
1

51 of the keystream space needs to be covered. This means that the tables only
need to cover:

Cover criteria = 264 × 0.14
51 = 255,49 (3.6)

However, it is when it comes to computing the coverage of the table, things
get more complex. Giving an estimate on the number of merges is complex
task, since it increases with the table size. In addition, the fact that A5/1 has
preferred states will also have an affect on the number of merges. A closer
analysis of this is something that could be a part of a future work that aims at
improving the table structure.

70 Attacking A5/1 - The A5/1 Security Project

Chapter 4
Rainbow Table Generation and
Lookup

As mentioned in section 3.5, only around 10% of the targeted goal of 2 Terabyte
is being shared through torrents as of per June 2010. In addition these are of a
suboptimal format, since they cover a range of keystreams that never occur in
practice.

We therefore aimed at generating these tables ourself in order to deliver a proof
of concept that a time-memory trade-off attack against A5/1 is feasible. The
tables were generated in collaboration with Frank Stevenson and Karsten Nohl,
and the code used to for generation and lookup was the ATI-based code provided
by Mr. Stevenson. This section will explain the details of how the tables were
generated and tested.

71

72 Rainbow Table Generation and Lookup - Laboratory Setup

4.1 Laboratory Setup

Our first approach was to try and generate tables using the CUDA code, since
this was the only code referred to on the A5/1 Security Project website. ATI
code was only occasionally mentioned on the project’s mailing list, so CUDA
code seemed to be the natural way to go. Furthermore, we were already in
possession of a Tesla C870 CUDA device, while an ATI card would had to
bought if we were to use the ATI code. Unfortunately trying to generate tables
with our CUDA device turned out to be a dead end. Almost a month work
was spent on trying to get the CUDA code to compile correctly. Since the
code were dependent on a lot of other software to be installed, we suspected
that maybe a wrong configuration of one of these were the reason that the code
would not compile. In the end we finally got an answer to one of our questions
on the mailing list, where it was confirmed that there was a bug in the CUDA
generation code that prevented the code from compiling.

We therefore shifted towards rainbow table generation with ATI cards instead,
that turned out to be an almost instant success. Two different laboratory setups
were used during this work; one for rainbow table generation and another one
for doing lookup in the tables.

For the rainbow table generation, two different computers were used:

• A custom built computer with an Intel i5 750 2.67GHz processor, 8 GB
RAM, two 7200 RPM hard drives of size 320 GB & 2 Terabyte, and two
ATI HD 5970 graphic cards.

• A HP xw4300 Workstation with an Intel Pentium 4 processor 521 / 2.80
GHz, 3 GB RAM, one 7200 RPM 250 GB hard drive, and one ATI HD
5870 graphics card

The ATI HD 5870 and ATI HD 5970 can be seen in figure 4.1.

They belong to the ATI Evergreen series, a family of GPUs developed by

Rainbow Table Generation and Lookup - Laboratory Setup 73

(a) ATI HD 5870 (b) ATI HD 5970

Figure 4.1: Picture of the ATI HD 5870 and ATI HD 5970

AMD graphics products division, and are equipped with Graphical Processing
Units (GPU) that are capable of processing data a lot faster than a regular
Central Processing Unit (CPU). Of that reason, they are also used to do
supercomputing, in addition to traditional gaming.

A summary of the performance of both cards can be seen in table 4.1.

ATI HD 5870 ATI HD 5970
Engine cloock speed 850 MHz 2 x 725 MHz
Processing power (single precision) 2.72 TeraFLOPS 4.64 TeraFLOPS
Processing power (double precision) 544 GigaFLOPS 928 GigaFLOPS
Memory size 1 GB 2 GB
Memory clock speed 1.2 GHz 4 GHz
Memory data rate 4.8 Gbps 4 Gbps
Memory bandwidth 153.6 GB/sec 256.0 GB/sec
A5/1 chains/sec X X

Table 4.1: Comparison between the ATI HD 5870 and ATI HD 5970

74 Rainbow Table Generation and Lookup - Method

When it comes to doing table lookup, the setup used was quite simple. A total
of 7 computers were used during the lookup stage, with all of them set up to
run Ubuntu 9.04 (Jaunty Jackalope)1.

4.2 Method

Since several computers have been used during the experiment, there might be
some differences when it comes to parameter values. Providing the details for
all the computers would be of little value, and we have therefore chosen to only
use the custom built computer with the twin ATI HD 5970 setup as a reference
point in this section.

Before the rainbow table generation could start, we first needed to set up the
computer correctly. This meant installing the correct driver for the ATI cards,
install supporting software for GPU computing, and finally to download and
compile the table generation/table lookup code. A description on how this was
done can be found in appendix B.

Table generation

The script that generates the tables is GenTable.py. Before executing this script,
we changed the number of GPUs to use in order to utilize the GPUs 100%. This
was done by changing the last parameter of A5BrookInit() from 1 to 4:

1http://releases.ubuntu.com/9.04/

Rainbow Table Generation and Lookup - Method 75

###

#

EDIT: last parameter is number of GPUs to use

#

###

if not a5br.A5BrookInit(c_int(int(id)), c_int(8), c_int(12), 4):

print "Could not initialize Streams engine. Quitting."

sys.exit(-1)

We also needed to change the chain length from 5,400,000,000 to 8,662,000,000:

if total>8662000000:

print "Table completed. - deleting id file"

idx = int(id)+8

os.unlink("a51id.cgi")

After this was done, a file called a51id.cgi was created. It is this file that sets
which table to create, and the only info it needs to hold is the following line:

Your id is: 500

Where 500 is the table id number.

The table generation was then started by executing the GenTable.py script:

./GenTable.py

Table sorting

After having produced a table, we needed to sort it. This was done by executing

./sort2 /media/rt/tables/500 /media/rt/tables/sorted/500

76 Rainbow Table Generation and Lookup - Method

where /media/rt/tables/500 is the path to the unsorted table, whereas
/media/rt/tables/sorted/500 is the path to the location where we want to store
the sorted table. The output from the sorting is a merge free table that has
been reduced in size from approximately 87 GB to 63 GB, in addition to a file
index.dat that holds the sorting.

Table compression

The next step was to compress the table, both to save disk space and to make
it compatible with the lookup tool. We executed the following script in order
to compress the table:

./CompactTable.py /media/rt/tables/sorted/500 /media/rt/tables/

lookup/500

where /media/rt/tables/sorted/500 is the path to the sorted table, while
/media/rt/tables/lookup/500 is the path to the location where the compressed
table is to be stored. The output from CompactTable.py is a folder containing
the table and the index.dat file from the sorting.

Note that there is a tool that is able to compress the tables even more, and that
makes lookup go even faster. This tool is called SSDwriter, and it writes a table
directly to block 0 and outwards on a disk. Unfortunately it only supports one
table pr. disk as per now, but it is still being developed and a new version that
supports multiple tables is likely to come in not to long.

Generating a new challenge set

Since the tools needed to capture a GSM-conversation is still being developed,
a test set has been created in order to verify that the tables are working. This
test set contains 1000 frames with 114-bits of known plaintext from downlink

Rainbow Table Generation and Lookup - Method 77

traffic. Each table has been encrypted using a unique key that has been thrown
away afterwards.

However, it is fully possible to create a new set of different size where the keys
has not been thrown away by changing some lines of code in btest.cpp. The code
that needs to be modified is found within this for-loop:

for (int i=0; i < 1000; i++) {

unsigned char cipherstream[15];

uint64_t key = 0xf5a472fcfa67c694ULL;

fread(&key, sizeof(uint64_t), 1 , rnd);

uint64_t mixed = back.Forwards(key, 100, NULL);

back.Forwards(mixed, 114, cipherstream);

fwrite(cipherstream,sizeof(unsigned char),15,fd);

}

We changed i < 1000 to i < 10000 and added two lines of code after
fread(&key, sizeof(uint64_t), 1 , rnd);:

for (int i=0; i < 10000; i++) {

unsigned char cipherstream[15];

uint64_t key = 0xf5a472fcfa67c694ULL;

fread(&key, sizeof(uint64_t), 1 , rnd);

printf("Frame: i, key:",i+1;

std::cout << std::hex << key << "\n";

uint64_t mixed = back.Forwards(key, 100, NULL);

back.Forwards(mixed, 114, cipherstream);

fwrite(cipherstream,sizeof(unsigned char),15,fd);

}

78 Rainbow Table Generation and Lookup - Method

Having done this, we then compiled btest.cpp by running the following
command:

g++ -o btest btest.cpp Bidirectional.cpp

Then at last we generated a new test set of 10 000 frames by executing the
following command:

./btest mychallenge.bin > mykeys.txt

The key used to encrypt every single frame has been kept in a file named
mykeys.txt, so that hits in the table can be verified.

Table lookup

Having made a new challenge set, it was now time to perform lookup upon
this set. When running make in the tmto-svn/tinkering/A5Util-folder, a lookup
tool called a5lookup gets compiled. However, just recently a new and faster tool
named a5faster was committed. Both of these tools does lookup based on the
assumption that we have 50 keystream samples. This corresponds to having
only 50 + 64 - 1 = 113 bits of keystream2, something that is not the case.
Before we compiled the a5faster tool, the following for loop was set to do 51
iterations instead of 50:

for(int i=0; i<51; i++) {

// std::cout << std::hex << "Looking at " << cipher << "\n";

uint64_t rev = Bidirectional::ReverseBits(cipher);

Since a5faster has not yet been made part of the Makefile yet, we had to compile
the tool on our own. This was done by running the following command in a
terminal window:

2This was a small error that was done early in the process, but the number has deliberately
not been changed due to consistency in the lookup results.

Rainbow Table Generation and Lookup - Results 79

g++ -O2 -o a5faster a5faster.cpp Bidirectional.cpp SSDlookup.cpp

../a5_cpu/A5CpuStubs.cpp -ldl

Lookup could now be ran through the execution of this command:

./a5faster mychallenge.bin 500 /media/rt/tables/lookup/500/index.

dat /media/rt/tables/lookup/500/blockdevicedata.bin >

crack500.txt

where mychallenge.bin is the name of the challenge file, 500 is the table-id,
/media/rt/tables/lookup/500/index.dat is the path to the index.dat file from
sorting, /media/rt/tables/lookup/500/blockdevicedata.bin is the path to the
table and crack500.txt defines the name of the output file.

4.3 Results

In collaboration with Frank A. Stevenson and Karsten Nohl we have produced
41 rainbow tables, that are now publicly available [65]. This is the first time in
history that tables capable of cracking A5/1 has been published. These were
completed during a 4 week period with 6 ATI graphic cards; 2 x ATI HD 5850,
2 x ATI HD 5870 and 2 x ATI HD 5980.

The tables have been named the Berlin A5/1 rainbow table set and fill 1898 GB
in size. The generated tables are 100, 108, 116, 124, 132, 140, 148, 156, 164,
172, 180, 188, 196, 204, 212, 220, 230, 238, 250, 260, 268, 276, 284, 292, 324,
332, 340, 348, 356, 364, 372, 380, 388, 396, 404, 412, 420, 428, 436, 492, 500

Our contribution has been to generate tables 220, 230, 238, 250, 340, 348, 356,
364, 372, 380, 388, 396, 404, 412, 420, 428, 436 and 500. In addition we have
collaborated with Stevenson on producing tables 100, 108, 116, 124, 132 and

80 Rainbow Table Generation and Lookup - Results

140, where Stevenson have computed the lower part and we the upper part.
This means that we have computed a total of 18 full tables, and 6 half tables,
meaning that we have generated approximately 51% of the tables in the Berlin
A5/1 rainbow table set.

We found that the setup that gave the best performance was to have the custom
built computer3 running two scripts simultaneously on two different hard drives.
By doing so we were able to produce 2 x 43 000 = 86 000 chains/second. This
meant that we were able to finish 2 tables within 8,662,000,000

43000 ≈ 56hours. The
HP xw4300 Workstation equipped with the ATI HD 5870 card was running one
script and producing 19 900 chains per second. This means that it were able to
finish one table within 8,662,000,000

43000 ≈ 121hours.

Since the lookup and disk writing tools is still in the development phase, we have
not spent time analyzing this. However it should be noted that a distributed
cracking tool that will be able to do lookup in real-time is in the planning stages.

We have been able to do lookup on all tables except from table 284, 324 and 492,
since they have not been delivered to us yet. Since the challenge set contained
10 000 frames, a script that processes the output from the cracking was needed.
By modifying one of Stevenson’s script, we were able to make a script that would
process the results in order to give us the coverage of the tables. The original
script from Frank Stevenson can be seen in appendix D, while our modified
script can be seen in appendix C. The output of the script can be seen here:

Total number of false positives is: 459

Total percentage of false positives is: 4.59 percent

Total number of frames found is: 1913

Total number of duplicates is: 320

Total coverage is: 19.13 percent

3This was the one equipped with two ATI HD 5970 cards

Rainbow Table Generation and Lookup - Results 81

As seen, we have a total coverage of 19.13% on 38 tables4. This should serve as
proof of concept that a time-memory trade-off attack against A5/1 is feasible.

An observation made during the cracking is the occurrence of 4.59 % false
positives. A false positive occurs whenever the immediate output of two A5/1
states results in the same keystream for 64-bits or more.

441 tables, minus 284, 324 and 492

82 Rainbow Table Generation and Lookup - Results

Chapter 5
Acquiring Network Information

This chapter covers the gathering of network information and aims to give an
overview of how the Norwegian networks actually operate in practice. The
experiment serves as an initial investigation into network operations and may
be useful in the preparation of an attack against GSM.

5.1 Laboratory Setup

This section describes the laboratory setup used for conducting the experiment.
The equipment was placed in room F-260 in Elektroblokk F, NTNU Gløshaugen,
Trondheim, Norway, consisting of the following hardware:

• Acer Aspire 2920Z with Ubuntu1 9.04 32-bit

• Nokia 3310 mobile phone
1Open-source Linux operating system, http://www.ubuntu.com/

83

http://www.ubuntu.com/

84 Acquiring Network Information - Method - NetMonitor

• USB Data Cable2

The Nokia 3310 is a dual band GSM900/1800 mobile phone from the year 2000.
In order to get Ubuntu to communicate with the Nokia, Gammu3 had to be
installed[5]. Gammu is software for managing cellular devices. The installation
and configuration of Gammu can be found in appendix A.

The Nokia can be used for acquiring network information in two different ways;
by using NetMonitor and by trace logging. NetMonitor is covered in sections
5.2 and 5.3, while sections 5.4 and 5.5 are dedicated to trace logs.

5.2 Method - NetMonitor

NetMonitor[7, 45, 51, 68] is an extra menu item on the MS that is able to
show a variety of information, including network parameters, and is useful as
an initial investigation to get an understanding of the mobile phone’s view of
the network. Figure 5.1 shows the two most used NetMonitor tests; 5.1a is test
1 and 5.1b is test 12. Test 1 is useful for learning which ARFCN (5), timeslot
(0) and the type of channel (CCCH) the MS is communicating on. Test 12
shows information on which ciphering algorithm is active (A5/1) and whether
frequency hopping is enabled. Other information is also shown in the two tests,
but has less importance and is not covered.

2Acquired from http://www.cellphoneshop.net/usbdatcabfor.html
3http://wammu.eu/gammu/

http://www.cellphoneshop.net/usbdatcabfor.html
http://wammu.eu/gammu/

Acquiring Network Information - Results - NetMonitor 85

(a) Test 1 (b) Test 12

Figure 5.1: Two NetMonitor Tests

Gammu was used to enable NetMonitor in Nokia 3310:

gammu --nokianetmonitor 243

The three networks active in Norway at the time of writing were surveyed,
namely Telenor, Netcom and Network Norway. Three scenarios for each of the
three networks were executed; Mobile Terminating SMS, Mobile Originating
Call and Mobile Terminating Call. Mobile Originating SMS was not performed
due to a practical limitation; the text Sending Message shows on the display
while the SMS is being sent, and thus makes NetMonitor inaccessible.

5.3 Results - NetMonitor

Table 5.1 is a presentation of the extracted network information. The MCC
and MNC for Telenor, NetCom and Network Norway are given. Further, the
beacon channels’ ARFCN, where the MS listens while idle, is showed. Note that
in the case of both Telenor and NetCom two beacon channels were detected,
probably because two BTSs have similar signal strength at the location of the

86 Acquiring Network Information - Results - NetMonitor

experiment, and the MS was therefore being handed over between the two. The
BSIC, LAC and CID for each identified BTS are also given. Then follows the
data on the different scenarios.

The most notable results are made bold in the table. Both Telenor and NetCom
are changing to a different ARFCN than the beacon channel when receiving
SMS. However, when receiving SMS on Network Norway, the MS seems to stay
on the beacon channel, only changing to timeslot 1. This will turn out to be of
specific relevance when performing the interception experiment in chapter 6.

Ciphering with A5/1 is activated for all the scenarios, but the sending and
receiving of SMS need some discussion. When the authors of this thesis
contacted Telenor and NetCom and asked whether SMS were encrypted, Telenor
answered that they were not because SMS are signaling traffic. NetCom refused
to give an answer. However, NetMonitor showed ciphering to be activated
while receiving SMS. It may be the case that NetMontior shows ciphering to
be enabled after the Nokia receives the Cipher Mode Command and returns
the Cipher Mode Complete messages, even if ciphering is not applied to the
subsequent SMS.

Other important results are that frequency hopping during calls seems to be
turned off for the BTSs on ARFCNs 5 and 983 for NetCom and Network Norway,
respectively. Telenor has frequency hopping activated on both the detected
BTSs.

Acquiring Network Information - Results - NetMonitor 87

T
el
en

or
N
et
C
om

N
et
w
or
k
N
or
w
ay

M
C
C

|M
N
C

24
2
|0

1
24
2
|0

2
24
2
|0

5
A
R
FC

N
of

be
ac
on

ch
an

ne
l(
C
0)

66
/7
1

5/
21

98
3

B
SI
C

va
lu
e

56
/5
6

3/
12

11
Lo

ca
tio

n
A
re
a
C
od

e
(L

A
C
)

15
10
1/
15
10
1

30
5/
30
5

10
40

C
el
lI
de

nt
ifi
er

(C
ID

)
16
51
0/
16
08
5

16
87
3

41
12

M
T
-S
M
S
SD

C
C
H

A
R
FC

N
91
/5
2

17
/9

98
3,

ti
m
es
lo
t
ch
an

ge
M
T
-S
M
S,

ci
ph

er
in
g

A
5/
1

A
5/
1

A
5/
1

M
O
C
,h

op
pi
ng

O
n/

O
n

O
ff
/O

n
O
ff

M
O
C
,c

ip
he

rin
g

A
5/
1

A
5/
1

A
5/
1

M
T
C
,h

op
pi
ng

O
n/

O
n

O
ff
/O

n
O
ff

M
T
C
,c

ip
he

rin
g

A
5/
1

A
5/
1

A
5/
1

Ta
bl
e
5.
1:

C
ap

tu
re
d
G
SM

N
et
w
or
k
In
fo
rm

at
io
n

88 Acquiring Network Information - Method - Trace Logs

5.4 Method - Trace Logs

Nokia used a simple remote logging facility for debugging their firmwares
remotely, but apparently forgot to remove this feature when going into
production. It can be enabled by executing a simple bus command with gammu.
Debug tracing provides useful information and insight to the operational
behavior of GSM.

The file nhm5_587.txt4 is needed to decode trace types. To perform a trace[5]:

gammu --nokiadebug nhm5_587.txt v20-25,v18-19

The trace runs until Ctrl+C is pressed, and the file out.xml is produced. Wire-
shark is able to open the XML-file and give a human-readable interpretation
of the trace. Wireshark is an open source network analyzer that among other
features allows for analysis of GSM traffic. More information about the tool, as
well as download options can be found at the project’s website5.

Five scenarios were executed with trace logging activated; IMSI attach, MOC,
MTC, MO-SMS and MT-SMS. Message sequence diagrams (MSD) for the
different scenarios were made based on the human-readable interpretation by
Wireshark, and were drawn in Microsoft Visio 2007 with the Sandrila6 add-in.
The MSDs can be found in section 5.5.1.

Some of the individual messages encountered were investigated more in detail
with help from gsmdecode from the AirProbe software project, which will be
introduced more thoroughly in section 6.1.3. At this point it is sufficient to
know that gsmdecode converts the raw bits from the air interface to a human-
readable format, similar to the work Wireshark does. However, it provides an

4https://svn.berlin.ccc.de/projects/airprobe/attachment/wiki/tracelog/nhm5_
587.txt

5http://www.wireshark.org/, version 1.2.7 was used
6http://www.sandrila.co.uk/visio-sdl/

https://svn.berlin.ccc.de/projects/airprobe/attachment/wiki/tracelog/nhm5_587.txt
https://svn.berlin.ccc.de/projects/airprobe/attachment/wiki/tracelog/nhm5_587.txt
http://www.wireshark.org/
http://www.sandrila.co.uk/visio-sdl/

Acquiring Network Information - Results - Trace Logs 89

interpretation in a format much better suited for this report. The following
command was used to decode the trace logs:

gsmdecode < out.xml > decoded.txt

gsmdecode uses the output file out.xml from gammu and produces the file
decoded.txt, which is a plain text file containing the decoded data.

The decoded message examples with discussion can be found in section 5.5.2.

5.5 Results - Trace Logs

This section presents the results from the performed trace logs.

5.5.1 Message Sequence Diagrams

Figures 5.2, 5.3, 5.4, 5.5 and 5.6 are the message sequence diagrams of the
scenarios. Most of the messages are at layer 3 in the protocol architecture, and
in front of each message the type of sublayer has been indicated by RR (Radio
Resource Management), MM (Mobility Management) or CC (Call Control). An
explanation of these can be found in section 2.3.

90 Acquiring Network Information - Results - Trace Logs

Figure 5.2: Message Sequence Diagram showing the scenario where the Nokia
performs an IMSI attach to the network. Notice that the network asks for the
IMSI of the MS in an Identity Request message as it does not recognize the
received TMSI.

Acquiring Network Information - Results - Trace Logs 91

Figure 5.3: Message Sequence Diagram showing the scenarioMobile-Originating
Call using early assignment (Non-OACSU) as expected. This diagram confirms
the theory given in in section 2.15. However, the Channel Request could not
be seen in Wireshark due to unknown reason, it may be the case that the
Nokia software drops this message when trace logging. The MOC proceeds as
expected, but note that authentication is skipped because the Connection Mode
Service Request contains a network acceptable CKSN.

92 Acquiring Network Information - Results - Trace Logs

Figure 5.4: Message Sequence Diagram showing the scenario Mobile-
Terminating Call using early assignment (Non-OACSU). It confirms the theory
given in in section 2.15. The Channel Request has again been left out.

Acquiring Network Information - Results - Trace Logs 93

Figure 5.5: Message Sequence Diagram showing the scenarioMobile-Originating
SMS. Notice that ciphering is performed, even though Telenor stated that SMS
messages were not encrypted.

94 Acquiring Network Information - Results - Trace Logs

Figure 5.6: Message Sequence Diagram showing the scenario Mobile-
Terminating SMS.

Acquiring Network Information - Results - Trace Logs 95

5.5.2 Decoded Message Examples

Listings 5.1-5.17 show the decoded examples of many of the encountered
messages. Appendix H explains the LAPDm frame structure, format of fields
and procedures needed to understand these messages. Each listing is built
up with the raw hex-values on the top, and the decoded, human-readable
interpretation, below.

96 Acquiring Network Information - Results - Trace Logs

HEX l2_data_out_Bbis:462 Format Bbis DATA
000: 25 06 21 00 05 f4 0d 44 - 6d b5 2b 2b 2b 2b 2b 2b
001: 2b 2b 2b 2b 2b 2b 2b

0: 25 001001-- Pseudo Length: 9
1: 06 0------- Direction: From originating site
1: 06 -000---- 0 TransactionID
1: 06 ----0110 Radio Resource Management
2: 21 00100001 Paging Request Type 1
3: 00 ------00 Page Mode: Normal paging
5: f4 -----100 Type of identity: TMSI/P-TMSI
6: 0d -------- ID(4/even): 0D446DB5

Listing 5.1: RR Paging Request message sent downlink on the PCH at ARCFN
5. This is a standard paging request, Type 1. There is a total of three paging
types. Type 2 and Type 3 are used for paging several MSs at once. The MS is
being paged with the TMSI 0D446DB5. The RR Paging Response can be found
in listing 5.3. Listing 5.2 is an example of another RR Paging Request using
IMSI to identify the MS.

HEX l2_data_out_Bbis:462 Format Bbis DATA
000: 31 06 21 00 08 29 24 20 - 65 10 24 00 39 2b 2b 2b
001: 2b 2b 2b 2b 2b 2b 2b

0: 31 001100-- Pseudo Length: 12
1: 06 0------- Direction: From originating site
1: 06 -000---- 0 TransactionID
1: 06 ----0110 Radio Resource Management
2: 21 00100001 Paging Request Type 1
3: 00 ------00 Page Mode: Normal paging
5: 29 -----001 Type of identity: IMSI
6: 24 -------- ID(7/odd): 24202XXXXXXXXXX

Listing 5.2: RR Paging Request message sent downlink on the PCH at ARCFN
5. The MS being paged with IMSI as identifier. The MSIN of the IMSI has
been censored with "X" because it uniquely identifies some mobile subscriber.

Acquiring Network Information - Results - Trace Logs 97

HEX l2_data_out_B:194 Format B DATA (up)
000: 01 3f 35 06 27 06 03 33 - 19 81 05 f4 0d 44 6d b5
001: 2b 2b 2b 2b 2b 2b 2b

0: 01 -------1 Extended Address: 1 octet long
0: 01 ------0- C/R: Response
0: 01 ---000-- SAPI: RR, MM and CC
0: 01 -00----- Link Protocol Discriminator: GSM (not Cell Broadcasting)
1: 3f ------11 Unnumbered Frame
1: 3f ---1---- P
1: 3f 011-11-- SABM frame (Set asynchronous balance mode)
2: 35 -------1 EL, Extended Length: y
2: 35 ------0- M, segmentation: N
2: 35 001101-- Length: 13
3: 06 0------- Direction: From originating site
3: 06 -000---- 0 TransactionID
3: 06 ----0110 Radio Resource Management
4: 27 0-100111 RRpagingResponse
4: 27 -x------ Send sequence number: 0
5: 06 -----110 Ciphering key sequence: 6
5: 06 -000---- Ciphering key sequence: 0
6: 03 00000011 MS Classmark 2 length: 3
7: 33 -01----- Revision Level: Phase 2
7: 33 ---1---- Controlled early classmark sending: Implemented
7: 33 ----0--- A5/1 available
7: 33 -----011 RF power class capability: Class 4
8: 19 -1------ Pseudo Sync Capability: not present
8: 19 --01---- SS Screening: Phase 2 error handling
8: 19 ----1--- Mobile Terminated Point to Point SMS: supported
8: 19 -----0-- VoiceBroadcastService: not supported
8: 19 ------0- VoiceGroupCallService: not supported
8: 19 -------1 MS supports E-GSM or R-GSM: supported
9: 81 1------- CM3 option: supported
9: 81 --0----- LocationServiceValueAdded Capability: not supported
9: 81 ----0--- SoLSA Capability: not supported
9: 81 ------0- A5/3 not available
9: 81 -------1 A5/2: available
11: f4 -----100 Type of identity: TMSI/P-TMSI
12: 0d -------- ID(4/even): 0D446DB5

Listing 5.3: RR Paging Response message sent uplink on SDCCH. This includes
the Ciphering Key Sequence Number, 6 in the example, as well as information
on the capabilities of the MS; A5/1 and A5/2 are available. The TMSI is also
attached.

98 Acquiring Network Information - Results - Trace Logs

HEX l2_data_out_Bbis:462 Format Bbis DATA
000: 31 06 3f 00 59 70 25 f4 - 45 62 01 01 03 2b 2b 2b
001: 2b 2b 2b 2b 2b 2b 2b

0: 31 001100-- Pseudo Length: 12
1: 06 0------- Direction: From originating site
1: 06 -000---- 0 TransactionID
1: 06 ----0110 Radio Resource Management
2: 3f 0-111111 RRimmediateAssignment
2: 3f -x------ Send sequence number: 0
3: 00 ------00 Page Mode: Normal paging
3: 00 -0------ No meaning
3: 00 --0----- Downlink assign to MS: No meaning
3: 00 ---0---- This messages assigns a dedicated mode resource
4: 59 -----001 Timeslot number: 1
4: 59 01011--- Channel Description: SDCCH/8 + SACCH/C8 or CBCH

(SDCCH/8), SC3
5: 70 011----- Training seq. code : 3
5: 70 ---1---- HoppingChannel
6: 25 Mobile Allocation Index Offset (MAIO) 0
6: 25 --100101 Hopping Seq. Number: 37
7: f4 111----- Establishing Cause: Other services req. by user
7: f4 ---xxxxx Random Reference : 20
8: 45 xxxxxxxx T1/T2/T3
9: 62 xxxxxxxx T1/T2/T3

10: 01 --xxxxxx Timing advance value: 1
11: 01 00000001 Length of Mobile Allocation: 1
12: 03 ------1- Mobile Allocation ARFCN #2
12: 03 -------1 Mobile Allocation ARFCN #1

Listing 5.4: RR Immediate Assignment message sent downlink on the AGCH at
ARFCN 5. This message assigns a dedicated channel to the MS and it includes
a specific timeslot, a list of ARFCNs, the HSN and the MAIO.

Acquiring Network Information - Results - Trace Logs 99

HEX l2_data_out_B:194 Format B DATA (up)
000: 01 3f 35 05 24 51 03 33 - 19 81 05 f4 0d 44 6d b5
001: 2b 2b 2b 2b 2b 2b 2b

0: 01 -------1 Extended Address: 1 octet long
0: 01 ------0- C/R: Response
0: 01 ---000-- SAPI: RR, MM and CC
0: 01 -00----- Link Protocol Disciminator: GSM (not Cell Broadcasting)
1: 3f ------11 Unnumbered Frame
1: 3f ---1---- P
1: 3f 011-11-- SABM frame (Set asynchonous balance mode)
2: 35 -------1 EL, Extended Length: y
2: 35 ------0- M, segmentation: N
2: 35 001101-- Length: 13
3: 05 0------- Direction: From originating site
3: 05 -000---- 0 TransactionID
3: 05 ----0101 Mobile Management Message (non GPRS)
4: 24 00------ SendSequenceNumber: 0
4: 24 --100100 MMcmServiceRequest
5: 51 -101---- Ciphering key sequence: 5
5: 51 ----0001 Request Service Type: MS originated call
6: 03 00000011 MS Classmark 2 length: 3
7: 33 -01----- Revision Level: Phase 2
7: 33 ---1---- Controlled early classmark sending: Implemented
7: 33 ----0--- A5/1 available
7: 33 -----011 RF power class capability: Class 4
8: 19 -1------ Pseudo Sync Capability: not present
8: 19 --01---- SS Screening: Phase 2 error handling
8: 19 ----1--- Mobile Terminated Point to Point SMS: supported
8: 19 -----0-- VoiceBroadcastService: not supported
8: 19 ------0- VoiceGroupCallService: not supported
8: 19 -------1 MS supports E-GSM or R-GSM: supported
9: 81 1------- CM3 option: supported
9: 81 --0----- LocationServiceValueAdded Capability: not supported
9: 81 ----0--- SoLSA Capability: not supported
9: 81 ------0- A5/3 not available
9: 81 -------1 A5/2: available
11: f4 -----100 Type of identity: TMSI/P-TMSI
12: 0d -------- ID(4/even): 0D446DB5

Listing 5.5: MM Service Request message sent uplink on the SDCCH at ARCFN
5. It contains the Ciphering Key Sequence Number, as well as information on
which ciphering algorithms that are available. The supported GSM frequency
bands are also included.

100 Acquiring Network Information - Results - Trace Logs

HEX l2_data_out_B:194 Format B DATA (down)
000: 03 42 4d 05 12 00 15 e3 - 74 55 08 af 7d 53 cc 70
001: 77 49 39 04 39 ab 2b

0: 03 -------1 Extended Address: 1 octet long
0: 03 ------1- C/R: Command
0: 03 ---000-- SAPI: RR, MM and CC
0: 03 -00----- Link Protocol Discriminator: GSM (not Cell

Broadcasting)
1: 42 -------0 Information Frame
1: 42 ----001- N(S), Sequence counter: 1
1: 42 ---0---- P
1: 42 010----- N(R), Retransmission counter: 2
2: 4d -------1 EL, Extended Length: y
2: 4d ------0- M, segmentation: N
2: 4d 010011-- Length: 19
3: 05 0------- Direction: From originating site
3: 05 -000---- 0 TransactionID
3: 05 ----0101 Mobile Management Message (non GPRS)
4: 12 00------ SendSequenceNumber: 0
4: 12 --010010 Authentication Request
5: 00 -----000 Cipher Key Sequence Number: 0
6: 15 -------- RAND: 15e3745508af7d53cc707749390439ab

Listing 5.6: A downlink MM Authentication Request on SDCCH. Important
parts of the message are the new CKSN, in this case 0, as well as the 128-bit
RAND value. In the MM Authentication Response shown in listing 5.7 the MS
returns the 32-bit SRES value.

Acquiring Network Information - Results - Trace Logs 101

HEX l2_data_out_B:194 Format B DATA (up)
000: 01 44 19 05 14 54 58 63 - ca 2b 2b 2b 2b 2b 2b 2b
001: 2b 2b 2b 2b 2b 2b 2b

0: 01 -------1 Extended Address: 1 octet long
0: 01 ------0- C/R: Response
0: 01 ---000-- SAPI: RR, MM and CC
0: 01 -00----- Link Protocol Discriminator: GSM (not Cell

Broadcasting)
1: 44 -------0 Information Frame
1: 44 ----010- N(S), Sequence counter: 2
1: 44 ---0---- P
1: 44 010----- N(R), Retransmission counter: 2
2: 19 -------1 EL, Extended Length: y
2: 19 ------0- M, segmentation: N
2: 19 000110-- Length: 6
3: 05 0------- Direction: From originating site
3: 05 -000---- 0 TransactionID
3: 05 ----0101 Mobile Management Message (non GPRS)
4: 14 00------ SendSequenceNumber: 0
4: 14 --010100 Authentication Response
5: 54 -------- SRES: 545863ca

Listing 5.7: An uplink MM Authentication Response message on SDCCH. The
message contains the 32-bit SRES value.

102 Acquiring Network Information - Results - Trace Logs

HEX l2_data_out_B:194 Format B DATA (down)
000: 03 22 0d 06 35 11 2b 2b - 2b 2b 2b 2b 2b 2b 2b 2b
001: 2b 2b 2b 2b 2b 2b 2b

0: 03 -------1 Extended Address: 1 octet long
0: 03 ------1- C/R: Command
0: 03 ---000-- SAPI: RR, MM and CC
0: 03 -00----- Link Protocol Discriminator: GSM (not Cell

Broadcasting)
1: 22 -------0 Information Frame
1: 22 ----001- N(S), Sequence counter: 1
1: 22 ---0---- P
1: 22 001----- N(R), Retransmission counter: 1
2: 0d -------1 EL, Extended Length: y
2: 0d ------0- M, segmentation: N
2: 0d 000011-- Length: 3
3: 06 0------- Direction: From originating site
3: 06 -000---- 0 TransactionID
3: 06 ----0110 Radio Resource Management
4: 35 00110101 RR Cipher Mode Command
5: 11 ----000- Cipher: A5/1
5: 11 -------1 Start ciphering
5: 11 ---1---- Cipher Response: IMEISV shall be included

Listing 5.8: RR Cipher Mode Command message sent downlink on SDCCH at
ARFCN 5. This message is used to tell the MS to start ciphering with, in this
case, the A5/1 cipher. Note also that the BTS asks the MS to return its IMEISV
in the RR Cipher Mode Complete message, shown in listing 5.9.

Acquiring Network Information - Results - Trace Logs 103

HEX l2_data_out_B:194 Format B DATA (up)
000: 01 44 35 06 32 17 09 33 - 05 01 13 80 25 59 17 f0
001: 2b 2b 2b 2b 2b 2b 2b

0: 01 -------1 Extended Address: 1 octet long
0: 01 ------0- C/R: Response
0: 01 ---000-- SAPI: RR, MM and CC
0: 01 -00----- Link Protocol Discriminator: GSM (not Cell

Broadcasting)
1: 44 -------0 Information Frame
1: 44 ----010- N(S), Sequence counter: 2
1: 44 ---0---- P
1: 44 010----- N(R), Retransmission counter: 2
2: 35 -------1 EL, Extended Length: y
2: 35 ------0- M, segmentation: N
2: 35 001101-- Length: 13
3: 06 0------- Direction: From originating site
3: 06 -000---- 0 TransactionID
3: 06 ----0110 Radio Resource Management
4: 32 00110010 RR Cipher Mode Complete
7: 33 -----011 Type of identity: IMEISV
8: 05 -------- ID(8/even): 35010310XXXXXX10

Listing 5.9: The RR Cipher Mode Complete message is sent uplink on SDCCH
and contains the IMEISV. The IMEISV has been partly censored with "X"
as requested by the owner of the MS because it uniquely identifies the mobile
equipment. This message is sent encrypted, but the trace log shows the message
before encryption.

104 Acquiring Network Information - Results - Trace Logs

HEX l2_data_out_B:194 Format B DATA (down)
000: 03 88 21 06 2e 0a 63 ed - 05 63 21 2b 2b 2b 2b 2b
001: 2b 2b 2b 2b 2b 2b 2b

0: 03 -------1 Extended Address: 1 octet long
0: 03 ------1- C/R: Command
0: 03 ---000-- SAPI: RR, MM and CC
0: 03 -00----- Link Protocol Discriminator: GSM (not Cell

Broadcasting)
1: 88 -------0 Information Frame
1: 88 ----100- N(S), Sequence counter: 4
1: 88 ---0---- P
1: 88 100----- N(R), Retransmission counter: 4
2: 21 -------1 EL, Extended Length: y
2: 21 ------0- M, segmentation: N
2: 21 001000-- Length: 8
3: 06 0------- Direction: From originating site
3: 06 -000---- 0 TransactionID
3: 06 ----0110 Radio Resource Management
4: 2e 00101110 RR Assign Command
5: 0a -----010 Timeslot number: 2
5: 0a 00001--- Channel Description: TCH/F + ACCHs
6: 63 011----- Training seq. code: 3
7: ed Absolute RF channel number: 1005
8: 05 ---00101 Power Level: 5

10: 21 00100001 Channel Mode: TCH/F or TCH/H rev 2

Listing 5.10: RR Assignment Command message sent downlink on SDCCH
at ARFCN 5. It is used to get the MS off from the SDCCH and onto a
TCH+FACCH. In this example the MS is told to use timeslot 2 on ARFCN
1005. The MS acknowledges this transaction with an RR Assignment Complete
message on the FACCH. From this point on, all signaling transactions are
performed on that channel.

Acquiring Network Information - Results - Trace Logs 105

HEX l2_data_out_B:194 Format B DATA (up)
000: 01 3f 3d 05 08 32 42 f2 - 20 01 31 33 05 f4 0a f6
001: 0f 67 2b 2b 2b 2b 2b

0: 01 -------1 Extended Address: 1 octet long
0: 01 ------0- C/R: Response
0: 01 ---000-- SAPI: RR, MM and CC
0: 01 -00----- Link Protocol Discriminator: GSM (not Cell

Broadcasting)
1: 3f ------11 Unnumbered Frame
1: 3f ---1---- P
1: 3f 011-11-- SABM frame (Set asynchronous balance mode)
2: 3d -------1 EL, Extended Length: y
2: 3d ------0- M, segmentation: N
2: 3d 001111-- Length: 15
3: 05 0------- Direction: From originating site
3: 05 -000---- 0 TransactionID
3: 05 ----0101 Mobile Management Message (non GPRS)
4: 08 00------ SendSequenceNumber: 0
4: 08 --001000 MM Location Update Request
5: 32 -011---- Cipher Key Sequence Number: 3
5: 32 ----0--- No follow-on request pending
5: 32 ------10 Location Update: IMSI attach
6: 42 242 Mobile Country Code (Norway)
7: f2 02f Mobile Network Code (Netcom GSM AS)
9: 01 305 [0x0131] Local Area Code

11: 33 -01----- Revision Level: Phase 2
11: 33 ---1---- Controlled early classmark sending: Implemented
11: 33 ----0--- A5/1 available
11: 33 -----011 RF power class capability: Class 4
13: f4 -----100 Type of identity: TMSI/P-TMSI
14: 0a -------- ID(4/even): 0AF60F67

Listing 5.11: MM Location Updating Request message sent uplink on the
SDCCH. The type of location update in the example is an IMSI attach, which
happens initially when a MS wants to associate to a network. The Cipher
Key Sequence Number is included, and if it matches the CKSN the network
remembers from earlier, no authentication needs to be performed. The TMSI
0AF60F67 is in this example not recognized by the network, and thus a MM
Identity Request message will follow from the network. An example of such a
message can be found in listing 5.12.

106 Acquiring Network Information - Results - Trace Logs

HEX l2_data_out_B:194 Format B DATA (down)
000: 03 20 0d 05 18 01 2b 2b - 2b 2b 2b 2b 2b 2b 2b 2b
001: 2b 2b 2b 2b 2b 2b 2b

0: 03 -------1 Extended Address: 1 octet long
0: 03 ------1- C/R: Command
0: 03 ---000-- SAPI: RR, MM and CC
0: 03 -00----- Link Protocol Discriminator: GSM (not Cell

Broadcasting)
1: 20 -------0 Information Frame
1: 20 ----000- N(S), Sequence counter: 0
1: 20 ---0---- P
1: 20 001----- N(R), Retransmission counter: 1
2: 0d -------1 EL, Extended Length: y
2: 0d ------0- M, segmentation: N
2: 0d 000011-- Length: 3
3: 05 0------- Direction: From originating site
3: 05 -000---- 0 TransactionID
3: 05 ----0101 Mobile Management Message (non GPRS)
4: 18 00------ SendSequenceNumber: 0
4: 18 --011000 MMIdentityRequest
5: 01 -----001 Type of Identity: IMSI

Listing 5.12: MM Identity Request message sent downlink on the SDCCH. It
mainly contains the type of identity to be used - IMSI in this case since the
TMSI was unknown by the network.

Acquiring Network Information - Results - Trace Logs 107

HEX l2_data_out_B:194 Format B DATA (up)
000: 01 22 2d 05 59 08 29 24 - 50 70 20 44 54 90 2b 2b
001: 2b 2b 2b 2b 2b 2b 2b

0: 01 -------1 Extended Address: 1 octet long
0: 01 ------0- C/R: Response
0: 01 ---000-- SAPI: RR, MM and CC
0: 01 -00----- Link Protocol Discriminator: GSM (not Cell

Broadcasting)
1: 22 -------0 Information Frame
1: 22 ----001- N(S), Sequence counter: 1
1: 22 ---0---- P
1: 22 001----- N(R), Retransmission counter: 1
2: 2d -------1 EL, Extended Length: y
2: 2d ------0- M, segmentation: N
2: 2d 001011-- Length: 11
3: 05 0------- Direction: From originating site
3: 05 -000---- 0 TransactionID
3: 05 ----0101 Mobile Management Message (non GPRS)
4: 59 01------ SendSequenceNumber: 1
4: 59 --011001 MMidentityResponse
6: 29 -----001 Type of identity: IMSI
7: 24 -------- ID(7/odd): 24205XXXXXXXXXX

Listing 5.13: The MM Identity Response message from the MS on the SDCCH.
Most notable here is the IMSI, censored with "X" because it uniquely identifies
a mobile subscriber.

108 Acquiring Network Information - Results - Trace Logs

HEX l2_data_out_B:194 Format B DATA (down)
000: 0f 00 53 19 01 1e 01 00 - 06 91 74 74 19 09 00 00
001: 13 00 0a 91 74 39 66

0: 0f -------1 Extended Address: 1 octet long
0: 0f ------1- C/R: Command
0: 0f ---011-- SAPI: SMS and SS
0: 0f -00----- Link Protocol Discriminator: GSM (not Cell Broadcasting)
1: 00 -------0 Information Frame
1: 00 ----000- N(S), Sequence counter: 0
1: 00 ---0---- P
1: 00 000----- N(R), Retransmission counter: 0
2: 53 -------1 EL, Extended Length: y
2: 53 ------1- M, segmentation: Y
2: 53 010100-- Length: 20
3: 19 -------- [SEGMENTED MESSAGE. MORE DATA FOLLOWS...]

Listing 5.14: The first segment of a SMS CP-DATA+RP-DATA message sent
downlink on SDCCH at ARFCN 5. The last segment can be found in listing
5.15, and the reassembled message is shown in listing 5.16.

HEX l2_data_out_B:194 Format B DATA (down)
000: 0f 02 35 05 91 00 00 01 - 50 41 41 72 14 80 01 4b
001: 2b 2b 2b 2b 2b 2b 2b

0: 0f -------1 Extended Address: 1 octet long
0: 0f ------1- C/R: Command
0: 0f ---011-- SAPI: SMS and SS
0: 0f -00----- Link Protocol Discriminator: GSM (not Cell Broadcasting)
1: 02 -------0 Information Frame
1: 02 ----001- N(S), Sequence counter: 1
1: 02 ---0---- P
1: 02 000----- N(R), Retransmission counter: 0
2: 35 -------1 EL, Extended Length: y
2: 35 ------0- M, segmentation: N
2: 35 001101-- Length: 13
3: 05 -------- [SEGMENTED MESSAGE. LAST...]

Listing 5.15: The last segment of the SMS CP-DATA+RP-DATA message sent
downlink on SDCCH at ARFCN 5. The message has been reassembled in listing
5.16.

Acquiring Network Information - Results - Trace Logs 109

HEX l2_data_out_B:294 Format SMS data
000: 19 01 1e 01 00 06 91 74 - 74 19 09 00 00 13 00 0a
001: 91 74 39 66 05 91 00 00 - 01 50 41 41 72 14 80 01
002: 4b

0: 19 0------- Direction: From originating site
0: 19 -001---- 1 TransactionID
0: 19 ----1001 SMS messages
1: 01 00000001 Type: CP-DATA
1: 01 00000001 Length: 1
2: 1e 00011110 Parameter 30
3: 01 00000001 Parameter 1
4: 00 00000000 Parameter 0
5: 06 00000110 SMSC Address Length: 6
6: 91 1------- Extension
6: 91 -001---- International Number
6: 91 ----0001 Numbering plan: ISDN/telephone (E164/E.163)
7: 74 -------- Number(5): 4747919000

12: 00 00000000 Message Flags: 0
13: 13 00010011 Reference Number [continue]
14: 00 00000000 Reference Number: 4864
15: 0a 00001010 Destination Address Length: 10
16: 91 1------- Extension
16: 91 -001---- International Number
16: 91 ----0001 Numbering plan: ISDN/telephone (E164/E.163)
17: 74 -------- Number(9): 47XXXXXXXX00001005
26: 41 01000001 Protocol Identifier: 0x41
27: 41 01000001 reserved
29: 14 XXXXXXXX UNKNOWN DATA (4 bytes)
29: 14 YYYYYYYY REST OCTETS (4)

Listing 5.16: The reassembled SMS CP-DATA+RP-DATA message from the
segments in listings 5.14 and 5.15. In this example the last byte "4b" represents
the actual content of the SMS message: "K". The sender’s phone number has
been censored with "X".

110 Acquiring Network Information - Results - Trace Logs

HEX l2_data_out_B:194 Format B DATA (down)
000: 03 86 35 05 1a 42 f2 10 - 3a fd 05 f4 a0 05 b6 38
001: 2b 2b 2b 2b 2b 2b 2b

0: 03 -------1 Extended Address: 1 octet long
0: 03 ------1- C/R: Command
0: 03 ---000-- SAPI: RR, MM and CC
0: 03 -00----- Link Protocol Discriminator: GSM (not Cell

Broadcasting)
1: 86 -------0 Information Frame
1: 86 ----011- N(S), Sequence counter: 3
1: 86 ---0---- P
1: 86 100----- N(R), Retransmission counter: 4
2: 35 -------1 EL, Extended Length: y
2: 35 ------0- M, segmentation: N
2: 35 001101-- Length: 13
3: 05 0------- Direction: From originating site
3: 05 -000---- 0 TransactionID
3: 05 ----0101 Mobile Management Message (non GPRS)
4: 1a 00------ SendSequenceNumber: 0
4: 1a --011010 TMSI Reallocation Command
5: 42 242 Mobile Country Code (Norway)
6: f2 01f Mobile Network Code (Telenor Mobil AS)
8: 3a 15101 [0x3afd] Local Area Code

11: f4 -----100 Type of identity: TMSI/P-TMSI
12: a0 -------- ID(4/even): A005B638

Listing 5.17: MM TMSI Reallocation Command sent downlink on SDCCH to
assign a new TMSI to the MS. This happens after ciphering is activated.

Chapter 6
Intercepting GSM Traffic

This chapter covers the use of AirProbe to capture GSM signaling traffic. An
introduction to the USRP and GNU Radio is also given.

6.1 Laboratory Setup

This section describes the laboratory setup used for conducting the experiment.
The equipment was placed in room F-260 in Elektroblokk F, NTNU Gløshaugen,
Trondheim, Norway. The following hardware was used in this investigation:

• Acer Aspire 2920Z with Ubuntu1 9.04 32-bit, GNU Radio and AirProbe

• Universal Software Radio Peripheral (USRP)

1Open-source Linux operating system, http://www.ubuntu.com/

111

http://www.ubuntu.com/

112 Intercepting GSM Traffic - Laboratory Setup

6.1.1 USRP

The USRP (Universal Software Radio Peripheral) is an open-source hardware
device that allows a computer to function as a software radio. The main idea is
to make it possible to implement various radio communication systems simply
by replacing the software running on the computer. The USRP was created by
Matt Ettus in an effort to solve the problem of getting signaling samples in and
out of a computer at a high rate. Picture 6.1 shows how the USRP looks like
externally.

Figure 6.1: The USRP

The USRP comes with a built in motherboard featuring four analog-to-digital
(ADC), four digital-to-analog converters (DAC), and a field-programmable gate
array (FPGA) for high-speed signal processing.

In addition, the motherboard support multiple extension cards, also known as
daughterboards, to serve as radio frequency (RF) front end. The daughterboard
acts as an interface between the USRP and the radio world as they translate the

Intercepting GSM Traffic - Laboratory Setup 113

signal between the antenna and the ADC/DAC. The block diagram in figure
6.2 shows how the components in the USRP are connected together.

Figure 6.2: Universal Software Radio Peripheral Block Diagram. From [21].

Daughterboards are available as either transmitters, receivers or both, and are
designed to operate at specific frequency bands. The USRP daughterboards
operating in the GSM frequency range include the DBSRX, RFX900 and
RFX1800 cards; they operate at 800-2400 MHz, 800-1000 MHz and 1.5-2.1 GHz
respectively. In addition, an antenna must be connected to the USRP in order to
transmit or receive signals through the air. Antennas such as the LP0410 (400-
1000 MHz), LP0926 (900-2600 MHz) and VERT900 (824-960 MHz, 1710-1990
MHz) are all capable of tuning into the GSM frequency band.

114 Intercepting GSM Traffic - Laboratory Setup

USRP USRP2
Interface USB 2.0 Gigabit Ethernet
FPGA ltera EP1C12 Xilinx Spartan 3 20006
Internal clock 64 MHz 100 MHz
RF Bandwidth to/from host 8 MHz @ 16bits 25 MHz @ 16bits
Cost 700$ 1400$
ADC Samples 12-bit, 64 MS/s 14-bit, 100 MS/s
DAC Samples 14-bit, 128 MS/s 16-bit, 400 MS/s
Daughterboard capacity 2 TX, 2 RX 1 TX, 1 RX
SRAM None 1 Megabyte
Power 6V, 3A 6V, 3A
AirProbe support Yes Limited
OpenBTS support Yes No

Table 6.1: Comparison between the USRP and USRP2. Extended from [3].

The DBSRX card covers all GSM frequencies, but is a receive only board. A
RFX card is needed in order to actively transmit. However, be aware of that
most countries require a license to transmit, as GSM operates on regulated
frequency bands.

A computer connects to the USRP device over a USB 2.0 cable. A newer version,
USRP2, was made available in May 2009 offering a faster FPGA and a Gigabit
Ethernet interface. A comparison between the two USRP versions are shown in
table 6.1.

The research in this report uses the original USRP with the RFX900 daughter-
board and a VERT900 antenna.

6.1.2 GNU Radio

GNU Radio is an open-source software toolkit for building and deploying
software radio systems. The framework of GNU Radio provides signal processing
runtime and processing blocks for communicating with external hardware (e.g.

Intercepting GSM Traffic - Laboratory Setup 115

a USRP). It is widely used in hobbyist, academic and commercial environments
to support wireless communications research as well as to implement real-
world radio systems. GNU Radio applications are primarily written using the
Python programming language, while the supplied, performance-critical signal
processing path is implemented in C++ [3].

GNU Radio has, since it first started in 1998, been a collaborative effort of
online community constantly improving and developing new code. The GNU
Radio and USRP combined form a system often referred to as software defined
radio (SDR).

GNU Radio does not itself contain any GSM sniffing capabilities, although it can
be used to locate the beacon frequency of an active BTS [44]. However, GNU
Radio can be used in combination with other software packages, like AirProbe,
to perform reception and demodulation of GSM signaling traffic.

A tutorial on how to set up GNU Radio on Ubuntu can be found in appendix
E.

6.1.3 AirProbe

AirProbe is a software project aimed at developing open-source GSM air
interface analysis tools. It is divided into three main subprojects: acquisition,
demodulation and analysis [1]:

• The acquisition module is hardware dependent and contains everything
that has to do with receiving and digitizing the air interface.

• The demodulation module contains all necessary code to make bits out of
the signal captured by acquisition.

• The analysis module contains all the protocol parsing and decoding
capabilities. Wireshark can, for instance, be used to handle parts of the

116 Intercepting GSM Traffic - Method

visualization tasks.

A tutorial on how to set up AirProbe can be found in Appendix F.

6.2 Method

The following parts of AirProbe were mainly used in this experiment:

• gsm-receiver

• gsm-tvoid

• gsmdecode

The latest and most popular part of AirProbe is the gsm-receiver application.
This program implements GSM layer 1, 2, and some layer 3 functionality. It
supports currently only downlink decoding of one channel, and will by default
capture the first timeslot of a given frequency. An alternative to gsm-receiver

is gsm-tvoid, which is able to capture all timelslots of a given frequency.

gsmdecode is another widely used AirProbe application, mainly used to interpret
the GSM messages from the Gammu trace log and the outputs from both
gsm-receiver and gsm-tvoid. gsmdecode basically converts hexadecimal bytes
from GSM layer 2 and higher to human-readable format.

Two combinations of the software were used; gsm-tvoid+gsmdecode and
gsm-receiver+gsmdecode:

Intercepting GSM Traffic - Method 117

gsm-tvoid+gsmdecode

gsm-tvoid with its gsm_scan.py is able to capture all timeslots of a given
frequency. The following command is used to start intercepting the air interface:

./gsm_scan.py -p d -c 5 > scan_results

where the parameters have the following meaning:

• -p to choose what to print to the console, (d)ecoded hex for gsmdecode

• -c to choose which channel to capture, 5 in this case

The output is stored in the file scan_results. This file can be interpreted by
gsmdecode with the following command:

./gsmdecode -X < scan_results

where X can be

• b for Format B (e.g. raw hex SDCCH)

• i for Format Bbis (e.g. raw hex BCCH)

Note that the USRP synchronizes itself to the BTS using the FCCH and is
therefore only able to capture the C0 downlink. Recall also from table 5.1 that
the observed Network Norway BTS only asked the MS to change timeslot while
receiving SMS. This would indicate it should be possible to capture SMSs with
gsm-tvoid, since gsm_scan.py captures all timeslots of the given frequency.
However, this was not pursued extensively due to ethical considerations; it would
be unwise and illegal to read other people’s SMS messages.

118 Intercepting GSM Traffic - Method

gsm-receiver+gsmdecode

gsm-receiver provides two shell scripts that implement all necessary functions
to capture the signals on a frequency, including interpretation of these signals.
By typing

capture.sh 936.0M [duration==10] [decim==112] [gain==52]

it starts capturing the signals on timeslot 0 at the given frequency, in this case
936.0 MHz, and saving it to a file. It essentially recombines the captured GSM
bursts into MAC blocks. The MAC blocks are displayed in 23 byte blocks
and use 2B as padding if there is not enough data to fill a single block. The
duration, decimation and gain in the above statement are optional arguments
with default values. The file capture_936.0M_112.cfile contains the captured
samples. These samples can then be interpreted by calling:

go.sh capture_936.0M_112.cfile [decim==112]

The go.sh script calls the gsm-receiver.py file which filters the information
bits out of the samples. The result is a series of hexadecimal values that display
the information sent out by the GSM network. By taking these values and
run them through gsm-decode, it is possible to decode and view the data
in a human-readable format. gsm-receiver and gsm-decode can also be run
manually on the .cfile:

./gsm_receive.py -d 112 -I capture_936.0M_112.cfile -O

output_file

where

• -d specifies the USRP decimation rate to be 112

• -I specifies the input file

• -O specifies the output file

Intercepting GSM Traffic - Results 119

Then gsmdecode needs to be run to translate into human-readable text:

./gsmdecode -X < output_file

where X can be

• b for Format B (e.g. raw hex SDCCH)

• i for Format Bbis (e.g. raw hex BCCH)

6.3 Results

The results from this experiment are mainly the outputs from gsmdecode, of
which many greatly coincide with the listings in section 5.5.2. They thus also
serve as confirmation of the results from the experiment in chapter 5. The
main difference between the two experiments is that while the Nokia is only
able to view "its own" traffic, the USRP can capture downlink traffic to any MS
connected to the specific BTS. Listings 6.1-6.5 show a selection of the messages
the USRP captured. Appendix H explains the LAPDm frame structure, format
of fields and procedures needed to understand these messages. Each listing is
built up with the raw hex-values on the top, and the decoded, human-readable
interpretation, below.

The System Information messages in listings 6.3-6.5 were also seen by the
Nokia, but in that experiment NetMonitor had already provided much of the
same information. They are however included here because if someone aims
at performing an attack without access to NetMonitor, these SI messages may
provide vital information about the networks.

Other messages, such as Immediate Assignment, were also encountered, but are
not included here because they would be redundant to the listings in section
5.5.2.

120 Intercepting GSM Traffic - Results

HEX l2_data_out_Bbis:462 Format Bbis DATA
000: 25 06 21 00 05 f4 13 6d - f3 36 2b 2b 2b 2b 2b 2b
001: 2b 2b 2b 2b 2b 2b 2b

0: 25 001001-- Pseudo Length: 9
1: 06 0------- Direction: From originating site
1: 06 -000---- 0 TransactionID
1: 06 ----0110 Radio Resource Management
2: 21 00100001 Paging Request Type 1
3: 00 ------00 Page Mode: Normal paging
5: f4 -----100 Type of identity: TMSI/P-TMSI
6: 13 -------- ID(4/even): 136DF336

Listing 6.1: RR Paging Request message similar to listing 5.1. The MS is being
paged with the TMSI. Listing 6.2 is an example of another RR Paging Request
using IMSI to identify the MS.

HEX l2_data_out_Bbis:462 Format Bbis DATA
000: 31 06 21 00 08 29 24 20 - 09 20 67 97 47 2b 2b 2b
001: 2b 2b 2b 2b 2b 2b 2b

0: 31 001100-- Pseudo Length: 12
1: 06 0------- Direction: From originating site
1: 06 -000---- 0 TransactionID
1: 06 ----0110 Radio Resource Management
2: 21 00100001 Paging Request Type 1
3: 00 ------00 Page Mode: Normal paging
5: 29 -----001 Type of identity: IMSI
6: 24 -------- ID(7/odd): 24202XXXXXXXXXX

Listing 6.2: RR Paging Request message similar to listing 5.2. The MS is being
paged with the IMSI. The MSIN of the IMSI has again been censored with "X"
because it uniquely identifies some mobile subscriber.

Intercepting GSM Traffic - Results 121

HEX l2_data_out_Bbis:462 Format Bbis DATA
000: 59 06 1a 00 08 00 00 00 - 00 00 00 00 00 01 02 92
001: 90 a4 8a ff a5 00 00

0: 59 010110-- Pseudo Length: 22
1: 06 0------- Direction: From originating site
1: 06 -000---- 0 TransactionID
1: 06 ----0110 Radio Resource Management
2: 1a 00011010 RRsystemInfo2
3: 00 ---x---- BCCH alloc. seq. num: 0
3: 00 00------ Bitmap 0 format
4: 08 ----1--- BCCH Allocation : ARFCN 116
13: 01 -------1 BCCH Allocation : ARFCN 41
14: 02 ------1- BCCH Allocation : ARFCN 34
15: 92 1------- BCCH Allocation : ARFCN 32
15: 92 ---1---- BCCH Allocation : ARFCN 29
15: 92 ------1- BCCH Allocation : ARFCN 26
16: 90 1------- BCCH Allocation : ARFCN 24
16: 90 ---1---- BCCH Allocation : ARFCN 21
17: a4 1------- BCCH Allocation : ARFCN 16
17: a4 --1----- BCCH Allocation : ARFCN 14
17: a4 -----1-- BCCH Allocation : ARFCN 11
18: 8a 1------- BCCH Allocation : ARFCN 8
18: 8a ----1--- BCCH Allocation : ARFCN 4
18: 8a ------1- BCCH Allocation : ARFCN 2
19: ff 1------- BCCH carrier with NCC = 7 is permitted for monitoring
19: ff -1------ BCCH carrier with NCC = 6 is permitted for monitoring
19: ff --1----- BCCH carrier with NCC = 5 is permitted for monitoring
19: ff ---1---- BCCH carrier with NCC = 4 is permitted for monitoring
19: ff ----1--- BCCH carrier with NCC = 3 is permitted for monitoring
19: ff -----1-- BCCH carrier with NCC = 2 is permitted for monitoring
19: ff ------1- BCCH carrier with NCC = 1 is permitted for monitoring
19: ff -------1 BCCH carrier with NCC = 0 is permitted for monitoring
20: a5 10------ Max. of retransmiss : 4
20: a5 --1001-- slots to spread TX : 12
20: a5 ------0- The cell is barred : no
20: a5 -------1 Cell reestabl.i.cell: not allowed
21: 00 -----0-- Emergency call EC 10: allowed
21: 00 00000--- Acc ctrl cl 11-15: 0 = permitted, 1 = forbidden
21: 00 ------00 Acc ctrl cl 8- 9: 0 = permitted, 1 = forbidden
21: 00 -------0 Ordinary subscribers (8)
21: 00 ------0- Ordinary subscribers (9)
21: 00 -----0-- Emergency call (10): Everyone
21: 00 ----0--- Operator Specific (11)
21: 00 ---0---- Security service (12)
21: 00 --0----- Public service (13)
21: 00 -0------ Emergency service (14)
21: 00 0------- Network Operator (15)
22: 00 00000000 Acc ctrl cl 0- 7: 0 = permitted, 1 = forbidden
22: 00 00000000 Ordinary subscribers (0-7)

Listing 6.3: System Information 2 message containing information about
neighboring cells, access rights, and NCCs

122 Intercepting GSM Traffic - Results

HEX l2_data_out_Bbis:462 Format Bbis DATA
000: 49 06 1b 41 e9 42 f2 20 - 01 31 c8 02 28 64 85 00
001: a5 00 00 3c bb 2b 2b

0: 49 010010-- Pseudo Length: 18
1: 06 0------- Direction: From originating site
1: 06 -000---- 0 TransactionID
1: 06 ----0110 Radio Resource Management
2: 1b 00011011 RRsystemInfo3C
3: 41 16873 [0x41e9] Cell identity
5: 42 242 Mobile Country Code (Norway)
6: f2 02f Mobile Network Code (Netcom GSM AS)
8: 01 305 [0x0131] Local Area Code
10: c8 1------- Spare bit (should be 0)
10: c8 -1------ MSs in the cell shall apply IMSI attach/detach procedure
10: c8 --001--- Number of blocks: 1
10: c8 -----000 1 basic physical channel for CCCH, not combined with SDCCHs
11: 02 00000--- spare bits (should be 0)
11: 02 -----010 4 multi frames period for paging request
12: 28 00101000 T3212 TimeOut value: 40
13: 64 0------- spare bit (should be 0)
13: 64 -1------ Power control indicator is set
13: 64 --10---- MSs shall not use uplink DTX
13: 64 ----0100 Radio Link Timeout: 20
14: 85 100----- Cell Reselect Hyst. : 8 db RXLEV
14: 85 ---xxxxx Max Tx power level: 5
15: 00 0------- No additional cells in SysInfo 7-8
15: 00 -0------ New establishm cause: not supported
15: 00 --xxxxxx RXLEV Access Min permitted = -110 + 0dB
16: a5 10------ Max. of retransmiss : 4
16: a5 --1001-- slots to spread TX : 12
16: a5 ------0- The cell is barred : no
16: a5 -------1 Cell reestabl.i.cell: not allowed
17: 00 -----0-- Emergency call EC 10: allowed
17: 00 00000--- Acc ctrl cl 11-15: 0 = permitted, 1 = forbidden
17: 00 ------00 Acc ctrl cl 8- 9: 0 = permitted, 1 = forbidden
17: 00 -------0 Ordinary subscribers (8)
17: 00 ------0- Ordinary subscribers (9)
17: 00 -----0-- Emergency call (10): Everyone
17: 00 ----0--- Operator Specific (11)
17: 00 ---0---- Security service (12)
17: 00 --0----- Public service (13)
17: 00 -0------ Emergency service (14)
17: 00 0------- Network Operator (15)
18: 00 00000000 Acc ctrl cl 0- 7: 0 = permitted, 1 = forbidden
18: 00 00000000 Ordinary subscribers (0-7)
19: 3c YYYYYYYY REST OCTETS (2)

Listing 6.4: System Information 3 message containing information that
identifies the BTS and the location area. The organization of CCCH is also
given.

Intercepting GSM Traffic - Results 123

HEX l2_data_out_Bbis:462 Format Bbis DATA
000: 31 06 1c 42 f2 20 01 31 - 85 00 a5 00 00 05 2b 2b
001: 2b 2b 2b 2b 2b 2b 2b

0: 31 001100-- Pseudo Length: 12
1: 06 0------- Direction: From originating site
1: 06 -000---- 0 TransactionID
1: 06 ----0110 Radio Resource Management
2: 1c 00011100 RRsystemInfo4-C
3: 42 242 Mobile Country Code (Norway)
4: f2 02f Mobile Network Code (Netcom GSM AS)
6: 01 305 [0x0131] Local Area Code
8: 85 100----- Cell Reselect Hyst. : 8 db RXLEV
8: 85 ---xxxxx Max Tx power level: 5
9: 00 0------- No additional cells in SysInfo 7-8
9: 00 -0------ New establishm cause: not supported
9: 00 --xxxxxx RXLEV Access Min permitted = -110 + 0dB

10: a5 10------ Max. of retransmiss : 4
10: a5 --1001-- slots to spread TX : 12
10: a5 ------0- The cell is barred : no
10: a5 -------1 Cell reestabl.i.cell: not allowed
11: 00 -----0-- Emergency call EC 10: allowed
11: 00 00000--- Acc ctrl cl 11-15: 0 = permitted, 1 = forbidden
11: 00 ------00 Acc ctrl cl 8- 9: 0 = permitted, 1 = forbidden
11: 00 -------0 Ordinary subscribers (8)
11: 00 ------0- Ordinary subscribers (9)
11: 00 -----0-- Emergency call (10): Everyone
11: 00 ----0--- Operator Specific (11)
11: 00 ---0---- Security service (12)
11: 00 --0----- Public service (13)
11: 00 -0------ Emergency service (14)
11: 00 0------- Network Operator (15)
12: 00 00000000 Acc ctrl cl 0- 7: 0 = permitted, 1 = forbidden
12: 00 00000000 Ordinary subscribers (0-7)

Listing 6.5: System Information 4 message serves the purpose of repeating the
information sent in previous System Information messages.

124 Intercepting GSM Traffic - Results

Chapter 7
Setting up a Rogue GSM Network

This chapter describes the feasibility experiment of building a (rogue) GSM
network with open-source hardware and software.

The authentication process described in section 2.13 does not apply to the
network side of GSM, that is, the BTS provides no authentication to the MS it
is communicating with. Thus, it is possible for an attacker to set up a man-in-
the-middle attack, also known as a rouge BTS, with the same MCC and MNC
as the subscriber’s network. If the rouge BTS has a higher signal strength than
a legitimate BTS, it is able encourage the MSs under its radio coverage to get
associated. The attacker can then choose to disable ciphering and frequency
hopping, before routing the traffic to the destination site. By acting as a
middle point between the MS and the legitimate network, it is relatively easy
to intercept calls and SMS messages.

125

126 Setting up a Rogue GSM Network - Laboratory Setup

7.1 Laboratory Setup

This section describes the laboratory setup used for conducting the experiment.
Permission to set up a BTS was acquired from the Norwegian Post and
Telecommunications Authority. The equipment was placed in an anechoic
chamber at NTNU Gløshaugen, Trondheim, Norway, consisting of the following
hardware:

• HP Compaq 8000 Elite with Ubuntu, GNU Radio, OpenBTS and Asterisk

• A USRP with two RFX900 daughtercards and one VERT900 antenna

• Two Nokia 3310 with SIM cards

For an introduction to the USRP and GNU Radio, see sections 6.1.1 and 6.1.2,
respectively.

7.1.1 OpenBTS

OpenBTS is an open-source software access point for GSM, implementing the
air interface by utilizing the USRP and the GNU Radio framework. This
application aims to replace the network-side in GSM, from the BTS and
upwards. OpenBTS has fully integrated RR functions. In addition, it maps
CC and MM procedures to SIP operations without the need for any supporting
MSCs or VLRs. Adding the capabilities of Smqueue1, SMS services are also
provided. By using Asterisk2 on the network back-end, OpenBTS allows MSs
to be used directly as SIP endpoints.

The diagram in figure 7.1 shows a typical architecture of OpenBTS. The
elements in the red box is software that OpenBTS provides. The actual

1A RFC-3428 store and forward server
2An open-source software implementation of a telephone private branch exchange (PBX).

Setting up a Rogue GSM Network - Laboratory Setup 127

network interface is Asterisk. MySQL is planned in future version for mobility
management.

Figure 7.1: OpenBTS Architecture

The OpenBTS project was started by David A. Burgess and Harvind Samra.
Their aim was to reduce the cost of GSM service provision to a 1/10 the cost of
current technologies. A OpenBTS pilot site is now currently up and running in
Niue, an island nation in the South Pacific Ocean. This is the first OpenBTS
installation to provide common-carrier service to the general public [26].

128 Setting up a Rogue GSM Network - Method

7.2 Method

This section only summarizes the main commands and actions taken to set up
a working GSM network. A complete installation and configuration guide can
be found in appendix G.

USRP was booted up and Asterisk command line interface (CLI) was reached
by typing

sudo /usr/sbin/asterisk -rvvvv

A new shell was opened and the following command was used to start smqueue

sudo ./smqueue

Wireshark was set to capture traffic on the localhost, and OpenBTS was
initialized by calling (in yet another shell):

./OpenBTS

Picture 7.2 illustrates the typical user interfaces when running a complete
(rogue) GSM network. The OpenBTS terminal is shown to the upper left corner,
whereas Asterisk is located to the upper right. Smqueue is placed in the bottom
left corner and the familiar Wireshark is found to the bottom right.

• OpenBTS was used to view the signaling traffic on the air interface and
read SMS messages.

• Asterisk was used to see the authentication process.

• Smqueue was used as a store and forward mechanism for SMS messages.

• Wireshark was used to eavesdrop speech traffic by entering "Statistics ->
VoIP calls"

Setting up a Rogue GSM Network - Method 129

Figure 7.2: Four User Interfaces for Managing a GSM Network

Our preferred testing phones were two Nokia 3310. To ensure that these mobile
phones would register to our network, we changed the “select network” setting
in the phones’ menu from automatic to manual. This provided us with a list
of all currently available networks in the area, including our test network (001
01), as shown in picture 7.3. Other GSM phones could also be used. However,
some phones had difficulties trying to register to OpenBTS, and this is mainly
related to a frequency accuracy problem in the USRP[58].

Figure 7.3: Available GSM Networks in the Lab Environment

130 Setting up a Rogue GSM Network - Results

In order to keep the power level to a minimum, the mobile phones were held at a
short distance (of maximum 2 meters) away from the USRP. Once a successful
connection was made, the mobile phones could interact and communicate as
normal. However, as the experiment took place in a closed environment, the
phones were limited to calls and SMS transfer only to other registered users of
our BTS.

We explored various scenarios, such as MOC, MTC, MO-SMS and MT-SMS.
These scenarios involved active connections between two registered users and
a man-in-the-middle performing the actual interception. During the entire
experiment, encryption and frequency hopping were turned off.

7.3 Results

The purpose of this experiment was to give a practical demonstration of how a
GSM network could be built by applying open-source hardware and software.
Having our own GSM network allows us to control and monitor the traffic
going in and out of our local host. Our results indicate that this approach is
fully working and may be applied to real-world scenarios to perform an active
attack.

Even though an attack of this sort has been performed in the past, the equipment
used was either extremely expensive or not available for the public. In this
experiment, all the necessary equipment could be bought in for less than 1500$
and no more than a few hours of configuration.

By deploying the rogue GSM network close to our intended target, we could
intercept the victim’s voice and signaling traffic. Because the traffic is routed
through our machine, Wireshark’s built-in SIP analyzer, as shown in picture 7.4,
allows us to play back voice traffic in real-time or to be recorded for later use.
Alternatively, the Asterisk’s Monitor feature could be activated, which record

Setting up a Rogue GSM Network - Results 131

entire conversations as audio files.

Figure 7.4: Recorded conversations in Wireshark

During MOC and MTC, NetMonitor provided additional information on the
current connection. Picture 7.5 confirms that neither ciphering nor any
frequency hopping were enabled during calls.

Figure 7.5: Encryption and Frequency Hopping Disabled

In addition, SMS messages were displayed in clear-text in the OpenBTS shell.
An example of this is shown in listing 7.4.

132 Setting up a Rogue GSM Network - Results

The remainder of this section gives an overview of the various interactions
between the phones and our rogue GSM network. An understanding of the
GSM protocol stack and basic SIP procedures are helpful when reading through
the following listings.

ChannelDescription=(typeAndOffset=SDCCH/4-0 TN=0 TSC=0 ARFCN=986) RequestReference=(RA=29 T1
’=17 T2=14 T3=15) TimingAdvance=1

MM Location Updating Request LAI=(MCC=001 MNC=01 LAC=0x29a) MobileIdentity=(TMSI=0x4c0c008c)
MM Location Updating Request LAI=(MCC=001 MNC=01 LAC=0x29a) MobileIdentity=(TMSI=0x4c0c008c)
L3 SAP0 sending MM Identity Request type=IMSI
L3 recv MM Identity Response mobile id=IMSI=242050700152535
registration SUCCESS: IMSI=242050700152535
L3 SAP0 sending MM MM Information short name=(Cryptos)
L3 SAP0 sending MM Location Updating Accept LAI=(MCC=001 MNC=01 LAC=0x29a)ID=(TMSI=0

x4c0c139b)
L3 SAP0 sending RR Channel Release cause=0x0

Listing 7.1: This listing shows a successful IMSI attach on our GSM network.
The network sends out an Identity Request, as it does not recognize the TMSI
transmitted from the MS. Hence, the MS replies with its IMSI in an Identity
Response message. It is also clearly shown that we are a test network in a test
country (MCC = 001 and MNC = 01) using channel combination V at ARFCN
986. A MS should never connect to it by default.

By typing ’tmsis’ in the OpenBTS shell, an overview of the connected phones
is given with the corresponding TMSIs allocated by our network. Picture 7.6
illustrates the mapping between the IMSI and TMSI for our two mobile phones.

Figure 7.6: Mapping between IMSI and TMSI

Setting up a Rogue GSM Network - Results 133

MM CM Service Request serviceType=MOC mobileIdentity=(TMSI=0x4c139f70)
MOC: MM CM Service Request serviceType=MOC mobileIdentity=(TMSI=0x4c139f70)
L3 SAP0 sending MM CM Service Accept
MOC: CC Setup TI=(0,0) CalledPartyBCDNumber=(type=unknown plan=E.164/ISDN digits=2102)
new transaction 1804289388 TI=(0,0) IMSI=242025601404061 MOC to=2102 Q.931State=MOC
SIP send INVITE IMSI242025601404061
creating SIP message FIFO callID 1208560147
write INVITE sip:2102@127.0.0.1 SIP/2.0
sending AssignmentCommand for 0x8288038 on 0xbfc90370
L3 SAP0 sending RR Assignment Command channelDescription=(typeAndOffset=TCH/F TN=2 TSC=0

ARFCN=986) powerCommand=0 mode1=speech1
MOC: transaction: 1804289388 TI=(0,0) IMSI=242025601404061 MOC to=2102 Q.931State=MOC

initiated SIPState=Starting
L3 SAP0 sending CC Call Proceeding TI=(1,0)
MOC A: wait for Ringing or OK
L3 SAP0 sending CC 0x3 TI=(1,0) prog_ind=(location=1 progress=0x0)
MOC A: SIP:Ringing, send Alerting and move on
L3 SAP0 sending CC Alerting TI=(1,0)
MOC: wait for SIP OKAY
SIP send Ringing IMSI242050700152535
write SIP/2.0 180 Ringing
SIP send Ack IMSI242025601404061
GSM Connect Acknowledge IMSI=242025601404061
MOC: sending Connect to handset
MOC MTC connected, IMSI=242025601404061 entering callManagementLoop

Listing 7.2: An excerpt of a outgoing call viewed from our OpenBTS shell.
A TCH+FACCH is assigned immediately to the MS without using a SDCCH.
The entire call setup is performed on the FACCH. Knowing that this call is
performed, the speech traffic could be listen in on using Wireshark.

134 Setting up a Rogue GSM Network - Results

set up MTC paging for channel=TCH/F
INVITE to IMSI242050700152535
creating SIP message FIFO callID 1c493d7165aba6146e5047850ba5e0cc
new transaction 1804289390 TI=(1,0) IMSI=242050700152535 MTC from=IMSI24202560140 Q.931State

=MTC paging
IMSI=242050700152535 added to table
paging 1 mobile(s)
RR Paging Response mobileID=(IMSI=242050700152535)
MTC on FACCH transaction: 1804289390 TI=(1,0) IMSI=242050700152535 MTC from=IMSI24202560140

Q.931State=MTC paging
MTC: sending GSM Setup to call type=national plan=E.164/ISDN digits=IMSI24202560140
L3 SAP0 sending CC Setup TI=(0,0) CallingPartyBCDNumber=(type=national plan=E.164/ISDN

digits=IMSI24202560140)
SIP send Trying IMSI242050700152535
write SIP/2.0 100 Trying
GSM Connect IMSI=242050700152535
MTC:: allocating port and sending SIP OKAY
SIP send INVITE-OK IMSI242050700152535
write SIP/2.0 200 OK
read ACK sip:IMSI242050700152535@127.0.0.1:5062 SIP/2.0
read SIP/2.0 200 OK
L3 SAP0 sending RR Channel Mode Modify description=(typeAndOffset=TCH/F TN=3 TSC=0 ARFCN

=986) mode=(speech1)
MTC:: waiting for GSM Alerting and Connect
GSM Alerting IMSI=242050700152535
SIP send Ringing IMSI242050700152535
write SIP/2.0 180 Ringing
received sip_method=INVITE
read SIP/2.0 180 Ringing
L3 SAP0 sending CC Connect TI=(1,0)
L3 SAP0 sending CC Connect Acknowledge TI=(0,0)
MOC MTC connected, IMSI=242050700152535 entering callManagementLoop

Listing 7.3: An excerpt of a incoming call viewed from our OpenBTS shell.

Setting up a Rogue GSM Network - Results 135

MM CM Service Request serviceType=SMS mobileIdentity=(TMSI=0x4c139f70)
L3 SAP0 sending MM CM Service Accept
CPData CP-DATA TI=(0,7) RPDU=(00030006917429000100241145048112200000

a71dcd3c685e1ecbcb74103c3c9fdfdf7232283d0785e5f3b23bcc06)
SMS RP-DATA 0 ref=1 origSMSC=(type=unknown plan=unknown digits=) destSMSC=(type=

international plan=E.164/ISDN digits=4792001000) TPDU=(primitive=undefined data
=(1145048112200000a71dcd3c685e1ecbcb74103c3c9fdfdf7232283d0785e5f3b23bcc06))

SMS SMS-SUBMIT 1 RD=0 VPF=2 RP=0 UDHI=0 SRR=0 MR=69 DA=(type=unknown plan=E.164/ISDN digits
=2102) PI=0 DCS=0 VP=(expiration=(Sun Jun 14 16:59:50 2010)) UD="My secret password is
arsenal"

from IMSI=242025601404061 mesage: 1 RD=0 VPF=2 RP=0 UDHI=0 SRR=0 MR=69 DA=(type=unknown plan
=E.164/ISDN digits=2102) PI=0 DCS=0 VP=(expiration=(Sun Jun 14 16:59:50 2010)) UD="My
secret password is arsenal"

TI=(0,0) IMSI=242025601404061 SMS to=2102 Q.931State=SMS submission
SIP send to 2102@127.0.0.1 MESSAGE My secret password is arsenal
creating SIP message FIFO callID 852050533
write MESSAGE sip:2102@127.0.0.1 SIP/2.0
read SIP/2.0 202 Queued
successful
removing SIP message FIFO callID 852050533
sending RPAck in CPData
CPAck CP-ACK TI=(0,7)
closing
L3 SAP0 sending RR Channel Release cause=0x0

Listing 7.4: An excerpt of the SMS message sent to one of our phones - viewed
from our OpenBTS shell. The actual SMS is in the RP-DATA message. Notice
that our interceptor easily reads the content of the SMS message in clear text.

set up MTC paging for channel=SDCCH
MESSAGE to IMSI242050700152535
new transaction 1804289385 TI=(1,0) IMSI=242050700152535 MTSMS Q.931State=MTC paging message

="My secret password is arsenal"
paging 1 mobile(s)
RA=0x14 when=0:1869128 age=24 TOA=1.0000
RR Paging Response mobileID=(IMSI=242050700152535)
MTSMS: transaction: 1804289385 TI=(1,0) IMSI=242050700152535 MTSMS Q.931State=MTC paging

message="My secret password is arsenal"
MTSMS: sending CPAck
MTSMS: closing
L3 SAP0 sending RR Channel Release cause=0x0

Listing 7.5: An excerpt of the same SMS message received by the other phone.

136 Setting up a Rogue GSM Network - Results

Chapter 8
Discussion

Our tables

As pointed out in section 4.3, we have a total coverage of 19.13% on 38 tables.
This is must be considered to be a serious breach in the security of A5/1,
and should be a warning to both GSMA and the public that A5/1 cannot be
considered to be secure anymore.

The obvious way to improve this coverage of the tables is to generate more
of them. Given todays hard drive prices, such an option would by no means
be a expensive solution. Another way to improve coverage, is by having even
more known plaintext. The above coverage percent is when 114 bits of known
plaintext is known, but it is possible to get an ever higher coverage if we are in
possession of even more known plaintext. The last way to improve coverage is of
course by changing the table format or parameters. Given an in depth analysis
on this is without the scope of this thesis and will not be done. It would require
an extensive amount of theoretical analysis and experimental verification, and
is therefor left as future work. However, an interesting approach that should be

137

138 Discussion

researched further is to take keystream samples of less than 64-bits. This would
lead to more false positives, but will at the same time give more samples to do
lookup on.

Known plaintext needed for the tables

From our decoded signaling traffic in 5.5.2, LAPDm frames occurs at predictable
periods of time. Some of these frames are filled with so-called filling bits (or
padding), which offers samples for a known-plaintext attack against A5/1. A
possible source of known plaintext may be found in the Cipher Mode Complete
message. This is transmitted in an uplink frame and interleaved over four
consecutive bursts. However, our research in chapter 5 suggests that the
Norwegian networks include the IMEISV in this message. Taking this into
account, the message could be less attractive as known plaintext than previously
thought. Regarding networks not including the IMEISV, this message still
provides large quantities of filling bits.

As the Cipher Mode Complete message is sent uplink, it is difficult to
capture, and focus should be directed towards downlink messages. Particularly
interesting downlink sources of known plaintext may be the System Information
5 and System Information 6 messages. These frames are sent on the SACCH in a
repeating pattern, similarly for MOC and MTC. Further analysis in Wireshark
revealed several potential sources of known plaintext, summarized below.

For MTC:

• Acknowledge to the Assignment Complete message

• Acknowledge to the Alerting message

• The Connect Acknowledge message

For MOC:

• Acknowledge to the Cipher Mode Complete message

Discussion 139

• The Call Proceeding message

• The Alerting message

• The Connect message

Future work should investigate the feasibility of using the mentioned messages
as known plaintext, as well as determine other sources.

Improvements to AirProbe

As the rainbow tables approach fully generated, the focus should be turned
to capture data from the air interface. The AirProbe project is a likely
candidate for this work, but it needs significant improvements before it can
perform satisfactory. Firstly, the software should be made better at decoding
the downlink bursts, as it still produces unexpected anomalies. This might
also require changes in GNU Radio and/or the USRP hardware, depending on
where the reception problems actually exist. Secondly, support for intercepting
uplink traffic should be added. However, as the USRP requires fairly strong
signal strengths to be able to decode correctly, uplink capture remains an
unresolved issue. Another big challenge is to passively capture traffic if
frequency hopping is employed, which based on figure 5.1 seems to be fairly
common in use. Frequency hopping was originally implemented to minimize
interference, although its presence proves to be a real issue for both AirProbe
and the USRP. In some sense it has evolved to a security feature. Having said
that, the frequency hopping sequence may still be transmitted in clear-text by
the BTS as shown in listings 5.4 and 5.10. Therefore, if frequency hopping is
activated in a cell, the attacker needs to:

1. Capture the entire frequency band of interest and find the hopping
sequence pattern later; or

2. Configure the USRP to follow the frequency hopping sequence in real-time.

140 Discussion

The first approach seems to be supported by the majority of the AirProbe
community, as it provides the highest probability of success. The drawback is
that it requires the capture and transfer of huge amount of data. If AirProbe
solves the current compatibility issues with the USRP2, it should be feasible to
record the entire GSM band in one direction. Currently, no AirProbe software
can capture multiple channels.

The second approach is by far the most elegant solution. However, the
margin of failure is extremely narrow, as the USRP has to process the hopping
sequence relatively fast without loosing synchronization. In some scenarios, the
hopping sequences could be exchanged during ciphered mode, meaning that the
encryption must be cracked within milliseconds. A moment’s thought shows
that this is not feasible.

Recall from table 5.1 that not all cells activate frequency hopping, and the first
succeeding practical attacks will typically be directed against these.

Having said that, AirProbe must implement speech decoding in order to make
a passive attack truly feasible. Given the complex schemes of channel coding
and interleaving of speech traffic, this will require significant amount of work.

The applications of OpenBTS

OpenBTS in all its complexity provides us with a working GSM stack fully
operational with the USRP. It is an effective learning tool, ideal for both students
and hobbyists who wants to learn and understand the fundamentals of the GSM
protocols close-up. However, be aware of any legal constraints before running
OpenBTS in a GSM band. It might interfere with the services of a local operator
or even worse; an unsuspecting user could register on your BTS trying to make
an emergency call that you can not connect. Doing so would violate a number
of civil and criminal laws. The safest way to run OpenBTS is in a closed
environment, with all signals confined in a Faraday cage.

Discussion 141

Originally designed for setting up low-cost networks, OpenBTS could also be
exploited to act as a rogue GSM network. From our controlled experiment in
chapter 7, we eavesdropped conversations, monitored the signaling traffic and
intercepted SMS messages. Alternately, our rogue GSM network could have
been set up as a relay and route traffic through a local VoIP gateway to connect
calls and SMS to the "outside" world. However, this would have been highly
illegal, and was thus not tested.

To create and set up a rogue GSM network in a real-world scenario, all an
attacker needs to do is broadcast the appropriate MCC and MNC of a local
PLMN and emit a stronger signal than any other BTSs in the area. Having said
that, the process of building and implementing a successful rogue GSM network
is still far from plug-and-play, as appendix G shows.

Advice to users

Users wanting to be as secure as possible while using GSM should choose a
network operator that enables frequency hopping on MOCs, MTCs and SMS
messages. This project’s limited survey on the Norwegian networks in chapter
5 revealed that Network Norway only changes timeslot when delivering SMS
messages on the examined BTS. Some AirProbe software is already capable
of capturing all timeslots of C0, and it should thus be an achievable task to
intercept these SMS messages. Further, NetCom and Network Norway did not
hop during calls on all BTSs. Telenor is the only operator utilizing frequency
hopping in all the scenarios.

Another interesting question is whether SMS messages are encrypted or not.
When the authors of this thesis asked the various operators, Telenor was the
only company to admit that they were not encrypted. This fact is particularly
surprising, given the vast amount of applications and services that today offer
secure login through SMS. It seems to be optional for the operator to encrypt
SMS, because we have reports of it being encrypted in Germany.

142 Discussion

Advice to operators and equipment manufacturers

Even though frequency hopping is "security by obscurity" it should be enabled
for the scenarios like MOC, MTC, MO-SMS and MT-SMS. In the longer term
the introduction of A5/3 as an alternative ciphering algorithm could mitigate
utilization of the produced tables. However, all old equipment would still be
vulnerable as it would fall back to A5/1 if not both endpoints support A5/3.
Another important factor would be to randomize the filling bits found in the
LAPDm frames in order to reduce the amount of known plaintext. Also, if
SMS messages are transmitted in clear-text, as stated by Telenor, they are in
constant exposure to interception attacks. Thus, it is in the interest of all to
implement secure transmission mechanisms of these messages.

In addition, the MS should provide the user with information about the
encryption scheme applied when connected to a GSM network. By displaying
an open padlock if encryption is disabled, it could prove valuable to prevent
or detect rogue networks. According to one of the GSM specifications [33],
whenever a connection is in place, which is, or becomes unencrypted, an
indication shall be given to the user. However, this alert is unfortunately seldom
displayed, as it also states; the encryption indicator feature may be disabled in
the SIM by the home network operator.

The issues with hardware and software

An extensive amount of work was put into configuring, installing and trou-
bleshooting both hardware and software. Software installations were often
related to compatibility issues with library versions or other configuration
problems. The software side is thus supported by a number of tutorials found
in the appendix, ranging from Gammu to OpenBTS.

Chapter 9
Conclusion

In collaboration with Frank Stevenson and Karsten Nohl we have generated
1896 gigabyte of rainbow tables that given 114-bits of known plaintext have
more than 19% probability of decrypting a GSM conversation.

Several sources of where to find the needed known plaintext were discovered.
However, capturing GSM traffic is still troublesome, with frequency hopping
currently being the main obstacle. Improvements to AirProbe have been
suggested, and the authors expect the process of capturing multiple channels
and decoding speech traffic will become feasible in the near future.

From our controlled experiment, OpenBTS was exploited to perform an
active attack. Conversations were tapped and signaling traffic, including
SMS messages, were viewed in cleartext. It is no longer the case that GSM
interception is limited only to government agencies. Today, an average hacker
can purchase hardware equipment for less than 1500$ to capture raw GSM traffic
or to perform an active attack. An awareness is thus raised by pointing the way
to a more secure future for the users, operators and equipment manufacturers.

143

144 Conclusion

Bibliography

[1] Airprobe. https://svn.berlin.ccc.de/projects/airprobe/. Last
accessed June 11, 2010.

[2] COPACOBANA - A Codebreaker for DES and other Ciphers. http://

www.copacobana.org/. Last accessed June 11, 2010.

[3] GNU Radio. http://gnuradio.org/redmine/wiki/gnuradio. Last
accessed June 9, 2010.

[4] GNU Radio Ubuntu Build Instructions. http://gnuradio.org/redmine/

wiki/gnuradio/UbuntuInstall. Last accessed June 10, 2010.

[5] GSM decoding with Nokia 3310 phone. https://svn.berlin.ccc.de/

projects/airprobe/wiki/tracelog. Last accessed May 05, 2010.

[6] Working with the USRP. https://svn.berlin.ccc.de/projects/

airprobe/wiki/WorkingWithTheUSRP. Last accessed May 29, 2010.

[7] Nokia NetMonitor Manual, 0.95 edition, November 2002. http://www.

nobbi.com/download/nmmanual.pdf, last accessed June 8, 2010.

145

https://svn.berlin.ccc.de/projects/airprobe/
http://www.copacobana.org/
http://www.copacobana.org/
http://gnuradio.org/redmine/wiki/gnuradio
http://gnuradio.org/redmine/wiki/gnuradio/UbuntuInstall
http://gnuradio.org/redmine/wiki/gnuradio/UbuntuInstall
https://svn.berlin.ccc.de/projects/airprobe/wiki/tracelog
https://svn.berlin.ccc.de/projects/airprobe/wiki/tracelog
https://svn.berlin.ccc.de/projects/airprobe/wiki/WorkingWithTheUSRP
https://svn.berlin.ccc.de/projects/airprobe/wiki/WorkingWithTheUSRP
http://www.nobbi.com/download/nmmanual.pdf
http://www.nobbi.com/download/nmmanual.pdf

146 Bibliography

[8] Gammu:Compiling/installing in Linux. http://www.gammu.org/wiki/

index.php?title=Gammu:Compiling/installing_in_Linux, August
2007. Last accessed May 29, 2010.

[9] The GSM Sniffer Project. http://web.archive.org/web/

20071018030844/http://wiki.thc.org/gsm/, 2007.

[10] A5/1 Security Project. http://reflextor.com/trac/a51, May 2010. Last
accessed June 11, 2010.

[11] GSM for Dummies. http://students.ee.sun.ac.za/~gshmaritz/

gsmfordummies/intro.shtml, February 2010. Mirror for
www.gsmfordummies.com.

[12] Index of /torrents. http://reflextor.com/torrents/, February 2010.

[13] 3rd Generation Partnership Project. Radio Access Network; Radio trans-
mission and reception. http://www.3gpp.org/ftp/Specs/html-info/

45005.htm.

[14] GSM Association. GSM World - Home of the GSM Association. http:

//www.gsmworld.com/, June 2010. Last accessed June 11, 2010.

[15] Jan A. Audestad. Technologies and Systems for Access and Transport
Networks. Artech House, 2008.

[16] S. Babbage. A Space/Time Tradeoff in Exhaustive Search Attacks on
Stream Ciphers. In European Convention on Security and Detection,
number 408 in IEE Conference Pulication, May 1995.

[17] Elad Barkan, Eli Biham, and Nathan Keller. Instant Ciphertext-Only
Cryptanalysis of GSM Encrypted Communication. 2007.

[18] Eli Biham and Orr Dunkelman. Cryptanalysis of the A5/1 GSM Stream Ci-
pher, volume 1977/2000 of Lecture Notes in Computer Science, pages 43–51.
Springer Berlin / Heidelberg, January 2000. http://www.springerlink.

http://www.gammu.org/wiki/index.php?title=Gammu:Compiling/installing_in_Linux
http://www.gammu.org/wiki/index.php?title=Gammu:Compiling/installing_in_Linux
http://web.archive.org/web/20071018030844/http://wiki.thc.org/gsm/
http://web.archive.org/web/20071018030844/http://wiki.thc.org/gsm/
http://reflextor.com/trac/a51
http://students.ee.sun.ac.za/~gshmaritz/gsmfordummies/intro.shtml
http://students.ee.sun.ac.za/~gshmaritz/gsmfordummies/intro.shtml
http://reflextor.com/torrents/
http://www.3gpp.org/ftp/Specs/html-info/45005.htm
http://www.3gpp.org/ftp/Specs/html-info/45005.htm
http://www.gsmworld.com/
http://www.gsmworld.com/
http://www.springerlink.com/content/gugp3fwpg2f2ecyh/fulltext.pdf
http://www.springerlink.com/content/gugp3fwpg2f2ecyh/fulltext.pdf

Bibliography 147

com/content/gugp3fwpg2f2ecyh/fulltext.pdf, last accessed March 08,
2010.

[19] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data
Tradeoffs for Stream Ciphers. In ASIACRYPT 2000, pages 1–13. Springer-
Verlag Berlin Heidelberg, 2000.

[20] Alex Biryukov, Adi Shamir, and David Wagner. Real Time Cryptanalysis
of A5/1 on a PC. 2001. http://www.springerlink.com/content/

hjytym5f7pnx6wna/fulltext.pdf, Last accessed March 02, 2010.

[21] Eric Blossom. Exploring GNU Radio. http://www.gnu.org/software/

gnuradio/doc/exploring-gnuradio.html, November 2004. Last accessed
May 19, 2010.

[22] Johan Borst, Bart Preneel, and Joos Vandewalle. On the Time-Memory
Tradeoff Between Exhaustive Key Search and Table Precomputation. In
Proc. of the 19th Symposium in Information Theory in the Benelux, WIC,
pages 111–118, 1998.

[23] Noureddine Boudriga. Security of Mobile Communication. Auerbach
Publications, 2009.

[24] Alex Brand and Hamid Aghvami. Multiple Access Protocols for Mobile
Communications: GPRS, UMTS and Beyond. Wiley, 2002.

[25] Marc Briceno, Ian Goldberg, and David Wagner. A pedagogical
implementation of A5/1. http://scard.org/gsm/a51.html/, 1998. Last
accessed June 11, 2010.

[26] David A. Burgess. The OpenBTS Chronicles. http://openbts.blogspot.

com/. Last accessed June 3, 2010.

[27] Praphul Chandra. Bulletproof Wireless Security - GSM, UMTS, 802.11,
And Ad Hoc Security. Elsevier Inc, 2005.

http://www.springerlink.com/content/gugp3fwpg2f2ecyh/fulltext.pdf
http://www.springerlink.com/content/gugp3fwpg2f2ecyh/fulltext.pdf
http://www.springerlink.com/content/hjytym5f7pnx6wna/fulltext.pdf
http://www.springerlink.com/content/hjytym5f7pnx6wna/fulltext.pdf
http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html
http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html
http://scard.org/gsm/a51.html/
http://openbts.blogspot.com/
http://openbts.blogspot.com/

148 Bibliography

[28] GNU Radio Community. Um interface. http://en.wikipedia.org/wiki/

Um_interface. Last accessed May 29, 2010.

[29] D.E. Denning. Cryptography and Data Security, chapter 2, page 100. ACM
Classic Books Series. Addison-Wesley, 1982.

[30] Jörg Eberspächer, Hans-Joerg Vögel, Christian Bettstetter, and Christian
Hartmann. GSM – Architecture, Protocols and Services, 3rd edition. John
Wiley & Sons Ltd, 2009.

[31] ETSI. Digital cellular telecommunications system (Phase 2+); Mobile radio
interface layer 3 specification (GSM 04.08 version 8.0.0 Release 1999), July
1999.

[32] ETSI. Digital cellular telecommunications system (Phase 2+); Mobile
radio interface signalling layer 3; General aspects (GSM 04.07 version 7.3.0
Release 1998), December 1999.

[33] ETSI. Digital cellular telecommunications system (Phase 2+); Mobile
Stations (MS) features (GSM 02.07 version 8.0.0 Release 1999), June 1999.

[34] ETSI. Digital cellular telecommunications system (Phase 2+); Point-
to-Point (PP) Short Message Service (SMS) Support on Mobile Radio
Interface (GSM 04.11 version 7.0.0 Release 1998), August 1999.

[35] ETSI. Digital cellular telecommunications system (Phase 2); Security
related network functions (GSM 03.20 version 8.0.0 Release 1999),
November 1999.

[36] ETSI. Digital cellular telecommunications system (Phase 2+); Abbrevia-
tions and acronyms (GSM 01.04 version 8.0.0 release 1999), May 2000.

[37] ETSI. Digital cellular telecommunications system (Phase 2+); Data Link
(DL) layer; General aspects (GSM 04.05 version 8.0.1 Release 1999),
September 2000.

http://en.wikipedia.org/wiki/Um_interface
http://en.wikipedia.org/wiki/Um_interface

Bibliography 149

[38] ETSI. Digital cellular telecommunications system (Phase 2+); Mobile
Station - Base Stations System (MS - BSS) interface Data Link (DL) layer
specification (GSM 04.06 version 8.0.1 Release 1999), September 2000.

[39] ETSI. Digital cellular telecommunications system (Phase 2+); Multiplexing
and multiple access on the radio path (GSM 05.02 version 8.5.1 Release
1999), November 2000.

[40] ETSI. Digital cellular telecommunications system (Phase 2+); Physical
Layer on the Radio Path (General Description) (GSM 05.01 version 8.4.0
Release 1999), July 2000.

[41] ETSI. Digital cellular telecommunications system (Phase 2+); Radio
subsystem synchronization (GSM 05.10 version 8.2.0 Release 1999), July
2000.

[42] ETSI. Digital cellular telecommunications system (Phase 2+); Mobile
Station - Base Station System (MS - BSS) interface; Channel structures
and access capabilities (GSM 04.03 version 8.0.1 Release 1999), September
2001.

[43] ETSI. Digital cellular telecommunications system (Phase 2+); Security
aspects (GSM 02.09 version 8.0.1 Release 1999), June 2001.

[44] Robert Fitzsimons. Find a GSM base station
manually using a USRP. http://273k.net/gsm/

find-a-gsm-base-station-manually-using-a-usrp/, April 2007.
Last accessed February 1st, 2010.

[45] El Gambo. Nokia NetMonitor Manual. http://www.mob385.com,
2.1a edition. http://www.mob385.com/download/netmonitor.pdf, last
accessed June 8, 2010.

http://273k.net/gsm/find-a-gsm-base-station-manually-using-a-usrp/
http://273k.net/gsm/find-a-gsm-base-station-manually-using-a-usrp/
http://www.mob385.com/download/netmonitor.pdf

150 Bibliography

[46] Jovan Dj. Golic. Cryptanalysis of Alleged A5 Stream Cipher. InAdvances in
Cryptology - EUROCRYPT ´97, volume 1233 of Lecture Notes in Computer
Science, pages 239 – 255. Springer Berlin / Heidelberg, 1997.

[47] Google. Google Wave Overview. http://wave.google.com/about.html,
2010. Last accessed May 11, 2010.

[48] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE
Transactions on Information Theory, IT-26(4):401–406, July 1980.

[49] David Hulton. The A5 Cracking Project. http://events.ccc.de/camp/

2007/Fahrplan/events/2015.en.html, August 2007. Last accessed June
11, 2010.

[50] ITU-T. Recommendation E.164, The International Public Telecommu-
nication Numbering Plan. http://www.itu.int/rec/dologin_pub.asp?

lang=e&id=T-REC-E.164-200502-I!!PDF-E&type=items, February 2005.
Last accessed May 25, 2010.

[51] Jari P. Jokinen. Field Test Display Specification. Nokia, 1.0 edition, April
2004. http://www.bakx.pl/download/netmonitor_guide_official_

nokia_6630.zip, last accessed June 8, 2010.

[52] Inc. Kestrel Signal Processing. The OpenBTS Project. http://openbts.

sourceforge.net/. Last accessed June 5, 2010.

[53] Ettus Research LLC. The USRP. http://www.ettus.com. Last accessed
May 1, 2010.

[54] Alexsander Loula. OpenBTS - Installation and Configuration
Guide. http://gnuradio.org/redmine/attachments/139/OpenBTS_

Guide_En_v0.1.pdf, May 2009. Last accessed June 7, 2010.

http://wave.google.com/about.html
http://events.ccc.de/camp/2007/Fahrplan/events/2015.en.html
http://events.ccc.de/camp/2007/Fahrplan/events/2015.en.html
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-E.164-200502-I!!PDF-E&type=items
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-E.164-200502-I!!PDF-E&type=items
http://www.bakx.pl/download/netmonitor_guide_official_nokia_6630.zip
http://www.bakx.pl/download/netmonitor_guide_official_nokia_6630.zip
http://openbts.sourceforge.net/
http://openbts.sourceforge.net/
http://www.ettus.com
http://gnuradio.org/redmine/attachments/139/OpenBTS_Guide_En_v0.1.pdf
http://gnuradio.org/redmine/attachments/139/OpenBTS_Guide_En_v0.1.pdf

Bibliography 151

[55] Philippe Oechslin. Making a Faster Cryptanlytic Time-Memory Trade-Off.
In Advances in Cryptology - CRYPTO 2003, Lecture Notes in Computer
Science, pages 617–630, 2003.

[56] P.Oechslin. Rainbow Cracking: Do you need to fear the Rainbow?, 2006.
Last accessed June 8, 2010.

[57] Ian Poole. Cellular Communications Explained: From Basics to 3G.
Elsevier Ltd, 2006.

[58] GNU Radio. Bts clocks. http://gnuradio.org/redmine/wiki/1/

OpenBTSClocks.

[59] GNU Radio. Building and running openbts. http://gnuradio.org/

redmine/wiki/1/OpenBTSBuildingAndRunning. Last accessed June 10,
2010.

[60] GNU Radio. OpenBTS Handset Compatibility. http://gnuradio.org/

redmine/wiki/1/OpenBTSCompatibility. Last accessed June 9, 2010.

[61] Man Young Rhee. Mobile Communication Systems and Security. Wiley,
2009.

[62] Jochen H. Schiller. Mobile Communication, 2nd edition. Addison Wesley,
2003.

[63] Raymond Steele and Lajos Hanzo. Mobile Radio Communications, 2nd
Edition. Wiley-IEEE Press, 1999.

[64] Frank A. Stevenson. A5/1 Security Project Mailing List, October 21, 2009.

[65] Frank A. Stevenson. Announcing "Berlin A5/1 rainbow table
set". http://lists.lists.reflextor.com/pipermail/a51/2010-June/

000657.html, June 2010. Last accessed June 16, 2010.

http://gnuradio.org/redmine/wiki/1/OpenBTSClocks
http://gnuradio.org/redmine/wiki/1/OpenBTSClocks
http://gnuradio.org/redmine/wiki/1/OpenBTSBuildingAndRunning
http://gnuradio.org/redmine/wiki/1/OpenBTSBuildingAndRunning
http://gnuradio.org/redmine/wiki/1/OpenBTSCompatibility
http://gnuradio.org/redmine/wiki/1/OpenBTSCompatibility
http://lists.lists.reflextor.com/pipermail/a51/2010-June/000657.html
http://lists.lists.reflextor.com/pipermail/a51/2010-June/000657.html

152 Bibliography

[66] Fabian van den Broek. Catching and Understanding GSM-Signals.
http://www.ru.nl/publish/pages/578936/fvdbroekscriptie.pdf,
March 2010. Last accessed June 10, 2010.

[67] M vd S. The A5/1 Security Project Mailing List. http://lists.lists.

reflextor.com/pipermail/a51/2010-January/000480.html, January
9th 2010. Last accessed June 7, 2010.

[68] Marcin Wiaceks. NetMonitor in Nokia DCT1-DCT3 Phones. http://

www.mwiacek.com/www/?q=node/114, October 2002. Last accessed May 8,
2010.

http://www.ru.nl/publish/pages/578936/fvdbroekscriptie.pdf
http://lists.lists.reflextor.com/pipermail/a51/2010-January/000480.html
http://lists.lists.reflextor.com/pipermail/a51/2010-January/000480.html
http://www.mwiacek.com/www/?q=node/114
http://www.mwiacek.com/www/?q=node/114

Appendix A
Gammu Tutorial

This tutorial covers the installation and configuration of Gammu.

Version 1.27.93 of the Gammu source code was downloaded from http://dl.

cihar.com/gammu/releases/gammu-1.27.93.tar.bz2. To extract the source
code:

tar xjvf gammu-1.27.93.tar.bz2

CMake is an open-source make system and must be installed in order for Gammu
to be configured and compiled. Version 2.6.2 of CMake can be installed using
the built-in Synaptic Package Manager1 in Ubuntu. To configure, build and
install Gammu [8]:

./configure
make
sudo make install

1System->Administration->Synaptic Package Manager

153

http://dl.cihar.com/gammu/releases/gammu-1.27.93.tar.bz2
http://dl.cihar.com/gammu/releases/gammu-1.27.93.tar.bz2

154 Gammu Tutorial

The package dialog displays user-friendly dialog boxes from shell scripts and
is needed by Gammu. Install dialog by running the following command:

sudo apt-get install dialog

Gammu then needs to be configured to the state shown i figure A.1 by running:

gammu-config

Figure A.1: The configuration of Gammu

Appendix B
Rainbow Table Generation

Appendix B gives a summary of the steps taken in order to set up a computer
for rainbow table generation.

Step 1: Installing Ubuntu 9.04

First step was to make a clean install of Ubuntu 9.04 32-bit (Jaunty Jackalope).
The iso file was be downloaded from http://releases.ubuntu.com/9.04/.
After Ubuntu was installed, we ran Update Manager in order to have a fully
updated system.

Step 2: Installing ATI Catalyst driver

Next step was to install a working driver for our ATI-card. We tested for both
the ATI Radeon HD 58701 and the ATI Radeon HD 59702, and found that

1http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5870/
Pages/ati-radeon-hd-5870-overview.aspx

2http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/

155

http://releases.ubuntu.com/9.04/
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5870/Pages/ati-radeon-hd-5870-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5870/Pages/ati-radeon-hd-5870-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx

156 Rainbow Table Generation

the 5870-card works with the ATI Catalyst 9.10 driver, while the 5970-card
works with the ATI Catalyst 9.12 driver. The 9.10-driver can be downloaded
from http://support.amd.com/us/gpudownload/linux/9-9/Pages/radeon_

linux.aspx, wheras the 5970-driver can be downloaded from http://support.

amd.com/us/gpudownload/linux/9-12/Pages/radeon_linux.aspx. If you’re
in need of another driver, you can pick the driver of your choice from the ATI
website (http://ati.amd.com/support/driver.HTML).

The rest of this appendix follows the installation of the 9.10 driver, but
instructions are the same for all other driver versions, except that you have
to change the file names.

After we had downloaded the 9.10 driver, we opened up a terminal window and
typed in:
sudo sh ./ati-driver-installer-9-10-x86.x86_64.run

We selected Install Driver as seen in figure B.1 and clicked continue.

We then press I Agree when prompted about the licence agreement, and then
select Automatic when asked about mode of installation, as seen in figure B.2.

A Window saying that the installation has finished was now displayed, as to
where we clicked Exit. In the terminal window, we then typed in:
sudo /usr/bin/aticonfig --initial

A reboot of the system was then performed in order to finish the installation of
the driver.

Step 3: Configuring the xorg.conf file

In order to get direct rendering to work, a few lines was added to the xorg.conf -
file. In a terminal window, we typed in:
pages/ati-radeon-hd-5970-overview.aspx

http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://support.amd.com/us/gpudownload/linux/9-9/Pages/radeon_linux.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://support.amd.com/us/gpudownload/linux/9-9/Pages/radeon_linux.aspx
http://support.amd.com/us/gpudownload/linux/9-12/Pages/radeon_linux.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://support.amd.com/us/gpudownload/linux/9-12/Pages/radeon_linux.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://ati.amd.com/support/driver.HTML
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5970/pages/ati-radeon-hd-5970-overview.aspx

Rainbow Table Generation 157

sudo gedit /etc/X11/xorg.conf

Under Section "Module", we then added the following lines:

Load "dri"
Load "glx"

And then added the following section to the document:

Section "dri"
Mode 0666

EndSection

An example of how our xorg.conf looked like can be seen under:

Section "ServerLayout"
Identifier "aticonfig Layout"
Screen 0 "aticonfig-Screen[0]-0" 0 0

EndSection

Section "Files"
EndSection

Section "Module"
Load "dri"
Load "glx"

EndSection

Section "ServerFlags"
Option "Xinerama" "off"

EndSection

Section "Monitor"
Identifier "Configured Monitor"

EndSection

Section "Monitor"
Identifier "aticonfig-Monitor[0]-0"
Option "VendorName" "ATI Proprietary Driver"
Option "ModelName" "Generic Autodetecting Monitor"
Option "DPMS" "true"

EndSection

158 Rainbow Table Generation

Section "Device"
Identifier "Configured Video Device"

EndSection

Section "Device"
Identifier "aticonfig-Device[0]-0"
Driver "fglrx"
BusID "PCI:4:0:0"

EndSection

Section "dri"
Mode 0666

EndSection

Section "Screen"
Identifier "Default Screen"
Device "Configured Video Device"
Monitor "Configured Monitor"

EndSection

Section "Screen"
Identifier "aticonfig-Screen[0]-0"
Device "aticonfig-Device[0]-0"
Monitor "aticonfig-Monitor[0]-0"
DefaultDepth 24
SubSection "Display"

Viewport 0 0
Depth 24

EndSubSection
EndSection

We then rebooted our system, in order to finish the configuration of our graphics
card. To verify that everything was set up correctly we ran a few tests, and
checked that they all passed:
glxinfo | grep rendering
glxgears
fgl_glxgears

Step 4: Installing ATI Compute Abstraction Layer (CAL)

In order for the rainbow table generation code to work, Compute Abstraction

Rainbow Table Generation 159

Layer (CAL) needed to be installed. From the http://developer.amd.com/

gpu/ATIStreamSDK/ATIStreamSDKv1.4Beta/Pages/default.aspx website, we
downloaded the atistream_1.4.0_beta-lnx32.tar.gzip file into our home folder.
Unfortunately, Ubuntu is not supported as an operating system for ATI Stream
SDK v1.4-beta, but there’s a few tricks that we did in order to make it work
anyway.

First, the zlib1g-dev, alien and libstdc++5 packages was installed by typing in
the following command in a terminal window:
sudo apt-get install zlib1g-dev alien libstdc++5

We then typed in:
xdpyinfo | less

To be sure that ATIFGLRXDRI and XFree86-DRI showed up under the list of
extensions. Had they not, a different driver might have been needed.

We then started the installation of ATI Cal by opening a terminal window and
then typing in:
sudo tar xvfz atistream-1.4.0_beta-lnx34.tar.gzip
dd if=atistream-cal-1.4.0_beta.i386.run of=atical.tar.gz bs=1 skip=16384

This stripped away the run script at the beginning and created a tar-file instead.
We then navigated to the /usr/local/ folder in a terminal window, and typed
in:
sudo mkdir atical
cd atical
sudo tar xvfz /home/cryptos/atical.tar.gz

This extracted the tar-file and produced a RPM packet named atistream-cal-
1.4.0_beta-1.i386.rpm. Since RPM packets are not supported by Ubuntu, we
converted the ATI Cal packet into a debian packet by using alien. This was
done by typing the following in a terminal window:

http://developer.amd.com/gpu/ATIStreamSDK/ATIStreamSDKv1.4Beta/Pages/default.aspx
http://developer.amd.com/gpu/ATIStreamSDK/ATIStreamSDKv1.4Beta/Pages/default.aspx

160 Rainbow Table Generation

sudo alien atistream-cal-1.4.0_beta-1.i386.rpm

At last we did the install of ATI Cal by typing the following command in a
terminal window:

sudo dpkg -i atistream-cal_1.4.0_beta-2_i386.deb

We then rebooted our system and ATI Cal in order to finish the installation of
ATI Cal. As a test to check that it was working, we ran FindNumDevices from
the /usr/local/atical/bin/lnx32 folder:

./FindNumDevices

Step 5: Compiling the rainbow table code

To check out the code from the project, subversion was needed:

sudo apt-get install subversion

When this was done, we started downloading the rainbow table code by typing
the following in a terminal window:

svn co https://svn.reflextor.com/tmto-svn

When asked about certificate, we chose p in order to accept it permanently.
During our timeline, several different revisions have been used, but the latest
one checked out was revision 152.

The only thing left now was to compile the code. First the rainbow table
generation code was compiled by running the following commands:

cd tmto-svn/tinkering/new_ati_code
make
mkdir tables

Rainbow Table Generation 161

Note that the creation of tables directory is needed in order for the script to
work. Having done this, we then compiled to code for lookup and other tools
by opening a new terminal window and typing in the following:

cd tmto-svn/tinkering/A5Util
make

The computer was now set up properly and ready to generate rainbow tables.

162 Rainbow Table Generation

Figure B.1: ATI Catalyst 9.10 Driver Installation Window

Rainbow Table Generation 163

Figure B.2: Choosing mode of installation during ATI driver setup

Appendix C
Processing Crack Results

#!/usr/bin/python

f = open("10000keys.txt")
ks = f.readlines()
f.close()

keys = {}
foundFrames = {}
candidates = {}
duplicates = 0
candidateCounter = 0
for k in ks:

pc = k.find(",")
pk = k.find("key:")
f = k[7:pc]
key = k[pk+4:].strip()
keys[int(f)] = key

f = open("found.txt","r")

line = f.readline()
found = False

164

Processing Crack Results 165

while line!="":
line = line.strip()

if line[:11]=="Candidate: ":
candidates[candidateCounter] = line[11:]
candidateCounter += 1

elif line[:4]=="### ":
fr = line[13:]
ps = fr.find(" ")
frame = int(fr[:ps])
if keys[frame] in candidates.values():

candidates = {}
if frame not in foundFrames:
foundFrames[int(frame)] = keys[frame]

else:
duplicates += 1

found = True

if not found:
if frame not in falseFrames:
falseFrames[int(frame)] = 1

else:
falseFrames[int(frame)] += 1

found = False
line = f.readline()

print "--"
print "Total number of false positives is:",sum([i for i in falseFrames.values()])
print "Total percentage of false positives is:", (sum([i for i in falseFrames.values()]) /

10000.0)*100,""printprint "–––––––––––––––––––––––––––––"printtotalFrames =
len(foundFrames

print "Total number of frames found is:",totalFrames
print "Total number of duplicates is:",duplicates
print "Total coverage is:",(totalFrames/10000.0)*100,""print

"–––––––––––––––––––––––––––––"f.close(

166 Processing Crack Results

Appendix D
Original Script from Frank
Stevenson

#!/usr/bin/python

f = open("mykeys.txt")
ks = f.readlines()
f.close()

keys = {}
for k in ks:

pc = k.find(",")
pk = k.find("key:")
f = k[7:pc]
#print pc,pk,k
key = k[pk+4:].strip()
keys[int(f)] = key

#print keys

f = open("found.txt","r")

167

168 Original Script from Frank Stevenson

line = f.readline()
found = False
while line!="":

line = line.strip()
if line[:4]=="----":

fr = line[28:]
ps = fr.find(" ")
frame = int(fr[:ps])

elif line[:11]=="Candidate: ":
key = line[11:]
#while len(key)<16:
key = "0" + key
if keys[frame]==key:

#print "Found: ", frame, key
found = True

elif line[:12] == "### Frame is":
if not found:

print "Not found for frame: ", frame
found = False

line = f.readline()

f.close()

Appendix E
GNU Radio Tutorial

This appendix provides a tutorial on how to set up GNU Radio on Ubuntu 9.04
32-bit[4].

The GNU Radio version 3.1.3 source code is downloaded1. Version 3.2.2, which
was the newest version as of April 27, 2010, was experimented with, but it has
some compatibility issues with AirProbe, and thus it was decided to use the
older version.

1ftp://ftp.gnu.org/gnu/gnuradio/gnuradio-3.1.3.tar.gz

169

170 GNU Radio Tutorial

To install packages required for compiling GNU Radio the following command
is issued:

sudo apt-get -y install \
swig g++ automake1.9 libtool python-dev fftw3-dev \
libcppunit-dev libboost1.35-dev sdcc-nf libusb-dev \
libsdl1.2-dev python-wxgtk2.8 subversion git guile-1.8-dev \
libqt4-dev python-numpy ccache python-opengl libgsl0-dev \
python-cheetah python-lxml doxygen qt4-dev-tools \
libqwt5-qt4-dev libqwtplot3d-qt4-dev pyqt4-dev-tools

After extracting gnuradio-3.1.3.tar.gz the following commands are issued
to configure, make and install GNU Radio:

./configure
make
sudo make install

The PYTHONPATH has to be updated, and ldconfig has to be run:

export PYTHONPATH=$PYTHONPATH:/usr/local/lib/python2.6/site-packages/
sudo ldconfig

Finally the user has to be given access to the USRP:

sudo addgroup usrp
sudo addgroup <USERNAME> usrp
echo ’ACTION=="add", BUS=="usb", SYSFS{idVendor}=="fffe", SYSFS{idProduct}=="0002", GROUP:="

usrp", MODE:="0660"’ > tmpfile
sudo chown root.root tmpfile
sudo mv tmpfile /etc/udev/rules.d/10-usrp.rules

Appendix F
AirProbe Tutorial

This appendix contains a tutorial on setting up AirProbe[6]:

sudo apt-get install git-core
git clone git://svn.berlin.ccc.de/airprobe

The package libpcap0.8-dev has to be installed1 in order to be able to make
gsm-receiver.

To build the receiver software:

cd airprobe/gsm-receiver
./bootstrap
./configure
make

1System->Administration->Synaptic Package Manager

171

172 AirProbe Tutorial

To build the acquisition software:

cd airprobe/gsm-tvoid:
./bootstrap
./configure
make all

To build the frame decoder:

cd airprobe/gsmdecode
./bootstrap
./configure
make

Appendix G
OpenBTS Tutorial

Appendix G provides a tutorial for setting up OpenBTS 2.5.4 and Asterisk 1.4
on Ubuntu 9.04 with all its dependencies.

The following hardware requirements must be met

• A computer with USB-2.0 port.

• One USRP

• Two RFX900 daughtercards

• One VERT900 antenna

• Two GSM mobile phones

• Two SIM cards

173

174 OpenBTS Tutorial

The following software requirements must be met

• GNU Radio 3.1.3

• OpenBTS 2.5.4

• Asterisk 1.4

• Smqueue

• oSIP2 library files

• oRTP library files

Install two RFX900 daughterboards in the USRP. This serves the purpose of
minimizing crosstalk between the receive and transmit sections. In the USRP,
there is an "A" board (installed on "TXA" and "RXA") and a "B" board (installed
on "TXB" and "RXB"). OpenBTS transmits on the "A" board, on the "TX/RX"
connector, and receive on the "B" board, on the "RX2" connector.

The VERT900 antenna is mounted to the USRP on the receive section with a
SMA connector. Configuring a transmitter antenna is not really necessary, as
there is sufficient power leaks for close-range testing. In fact, using a transmitter
antenna only causes transmit power to interfere with the receiver antenna,
thereby reducing the performance and limiting the uplink range.

OpenBTS uses dependencies from GNU Radio. A detailed instruction of how
to install GNU Radio is given as a tutorial in appendix E. In addition, library
versions of oSIP and oRTP must be installed. The preferred way to install them
in Ubuntu is to use the Synaptic Package Manager. They are found under the
name libosip2 and libortp7.

Once all the dependencies are satisfied, download the OpenBTS 2.5.4 source
code from

http://sourceforge.net/projects/openbts/files/

OpenBTS Tutorial 175

After extracting openbts-2.5.4Lacassine.tar.gz, the following commands are
issued to configure, make and install OpenBTS:

./configure
make
sudo make install

After installation is finished, three files need to be edited: OpenBTS.config.example,
sip.conf and extensions.conf.

Locate and open the OpenBTS.config.example in the openbts-2.5.4Lacassine/apps
directory.

The following configurations have to be made:

• Set the OpenBTS up as a test network: enter the codes 001 and 01 for
the GSM.MCC and GSM.MNC, respectively.

• Define the frequency band you will be operating on: set the GSM.Band
to 900

• Find an appropriate ARFCN for your selected frequency band. This can
be calculated from http://www.aubraux.com/design/arfcn-calculator.

php. For the 928 MHz downlink frequency (E-GSM900), the ARFCN is
989.

OpenBTS and Asterisk will be running on localhost, so port assignments must
be coordinated. These are the standard port assignments for an OpenBTS host
[59]:

• OpenBTS runs SIP on UDP port 5062 and RTP on UDP ports 16484-
16583.

• Asterisk runs SIP on UDP port 5060 and RTP on UDP ports 16386-16483.

• The SMS store and forward server smqueue, runs SIP on UDP port 5063.

http://www.aubraux.com/design/arfcn-calculator.php
http://www.aubraux.com/design/arfcn-calculator.php

176 OpenBTS Tutorial

When finished editing, save the file as OpenBTS.config in the same folder. A
complete and working OpenBTS.config is given at the end of this appendix.

OpenBTS uses Asterisk for handling VoIP calls and user authentication. Every
MS has to be registered in the sip.conf and extensions.conf with its IMSI.
These two configuration files are found in the following folder: openbts-
2.5.4Lacassine/AsteriskConfig.

Edit the extensions.conf with the following parameters:

...

[sip-local]
; local extensions

This is a simple mapping between extensions and IMSIs.
exten => 2101,1,Macro(dialSIP, Enter your IMSI here, e.g. IMSI242050123456789)
exten => 2102,1,Macro(dialSIP, Enter your IMSI here, e.g. IMSI242059876543210)

...

The extensions 2101 and 2102 will be used by the two corresponding mobile
phones.

OpenBTS Tutorial 177

In sip.conf, the following changes must be made:

...

; This is a GSM handset entry.
; You need one for each SIM.
; The IMSI is a 15-digit code in the SIM.
; You can see it in the Control log whenever a phone tries to register.
[IMSI242050123456789] ; <- The IMSI is used as a SIP user ID.
canreinvite=no
type=friend
context=sip-external
allow=gsm host=dynamic
host=dynamic

[IMSI242059876543210] ; <- The IMSI is used as a SIP user ID.
canreinvite=no
type=friend
context=sip-external
allow=gsm host=dynamic
host=dynamic

...

When finished, copy extensions.conf and sip.conf to the /etc/asterisk directory.

Smqueue provides the SMS service. To build smqueue, go to the openbts-
2.5.4Lacassine/smqueue directory and type:

make -f Makefile.standalone

If changes are made in extensions.conf or sip.conf while running the system,
Asterisk has to be restarted by typing the following command:

sudo /etc/init.d/asterisk restart

178 OpenBTS Tutorial

Our complete OpenBTS.config is given below:
Sample OpenBTS configuration file.
Format of each line is. <key><space><value>
The key name can contain no spaces.
Everything between the first space and the end of the line becomes the value.
Comments must start with "#" at the beginning of the line.
Blank lines are OK.

As a gerenal rule, non-valid configuration values will crash OpenBTS.

Logging parameters

The initial global logging level: ERROR, WARNING, NOTICE, INFO, DEBUG, DEEPDEBUG
LogLevel INFO

The log file path. If not set, logging goes to stdout.
#LogFileName test.out

Wireshark support
The standard IANA for GSMTAP is 4729
If if this is not defined, we do not generate the GSMTAP dumps.
Wireshark.Port 4729

Port number for test calls.
This is where an external program can interact with a handset via UDP.
TestCall.Port 28670

Transceiver parameters

Transceiver interface
This TRX.IP is not really adjustable. Just leave it as 127.0.0.1.
TRX.IP 127.0.0.1
This value is hard-coded in the transcevier. Just leave it alone.
TRX.Port 5700

Path to transceiver binary
YOU MUST HAVE A MATCHING libusrp AS WELL!!
TRX.Path ../Transceiver/transceiver

TRX logging.
Logging level.
TRX.LogLevel ERROR
Logging file. If not defined, logs to stdout.
TRX.LogFileName test.TRX.out

SIP, RTP, servers

OpenBTS Tutorial 179

Asterisk PBX
Asterisk.IP 127.0.0.1
Asterisk.Port 5060

Messaging server
Messenger.IP 127.0.0.1
Messenger.Port 5063

Local SIP/RTP ports
SIP.Port 5062
RTP.Start 16484
RTP.Range 98

If Asterisk is 127.0.0.1, this is also 127.0.0.1.
Otherwise, this should be the local IP address of the interface used to contact asterisk.
SIP.IP 127.0.0.1

Local SMS port for short code delivery.
SMSLoopback.Port 5064

Special extensions.

Routing extension for emergency calls.
PBX.Emergency 2101

SIP parameters

SIP registration period in seconds.
Ideally, this should be slightly longer than GSM.T3212.
SIP.RegistrationPeriod 3600

SIP Internal Timers. All timer values are given in millseconds.
These are from RFC-3261 Table A.

SIP Timer A, the INVITE retry period, RFC-3261 Section 17.1.1.2
SIP.Timer.A 1000

SMS parameters

ISDN address of source SMSC when we fake out a source SMSC.
SMS.FakeSrcSMSC 0000
ISDN address of destination SMSC when a fake value is needed.
SMS.DefaultDestSMSC 0000

The SMS HTTP gateway.

180 OpenBTS Tutorial

Comment out if you don’t have one or if you want to use smqueue.
#SMS.HTTP.Gateway api.clickatell.com

IF SMS.HTTP.Gateway IS DEFINED, SMS.HTTP.AccessString MUST ALSO BE DEFINED.
#SMS.HTTP.AccessString sendmsg?user=xxxx&password=xxxx&api_id=xxxx

Open Registration and Self-Provisioning
This is a bool and if set to 1, OpenBTS will allow all handsets to register
Control.OpenRegistration 1

"Welcome" messages sent during IMSI attach attempts.
ANY WELCOME MESSAGE MUST BE LESS THAN 161 CHARACTERS.
ANY DEFINED WELCOME MESSAGE MUST ALSO HAVE A DEFINED SHORT CODE.
Comment out any message you don’t want to use.

The message sent upon full successful registration, all the way through the Asterisk server
.

Control.NormalRegistrationWelcomeMessage Welcome to Cryptos!
Control.NormalRegistrationWelcomeShortCode 0000

Then message sent to accpeted open registrations.
IF OPEN REGISTRATION IS ENABLED, THIS MUST ALSO BE DEFINED.
Control.OpenRegistrationWelcomeMessage You’re doing it wrong! Welcome anyway!
Control.OpenRegistrationWelcomeShortCode 23

Then message send to failed registrations.
Control.FailedRegistrationWelcomeMessage It’s been fun. See you next year.
Control.FailedRegistrationWelcomeShortCode 666

GSM

Network and cell identity.

Network Color Code, 0-7
GSM.NCC 0
Basesation Color Code, 0-7
GSM.BCC 0
Mobile Country Code, 3 digits.
US is 310
MCC MUST BE 3 DIGITS. Prefix with 0s if needed.
Test code is 001.
GSM.MCC 001
Mobile Network Code, 2 or 3 digits.
Test code is 01.
GSM.MNC 01
Location Area Code, 0-65535

OpenBTS Tutorial 181

GSM.LAC 666
Cell ID, 0-65535
GSM.CI 10
Network "short name" to display on the handset.
SHORT NAME MUST BE LESS THAN 8 CHARACTERS.
GSM.ShortName Cryptos

Assignment type for call setup.
This is defined in an enum AssignmentType in GSMCommon.h.
0=Early, 1=VeryEarly.
GSM.AssignmentType 1

Band and Frequency

Valid band values are 850, 900, 1800, 1900.
GSM.Band 900
#GSM.Band 850

Valid ARFCN range depends on the band.
GSM.ARFCN 986
ARCN 975 is inside the US ISM-900 band and also in the GSM900 band.
#GSM.ARFCN 975
ARFCN 207 was what we ran at BM2008, I think, in the GSM850 band.
#GSM.ARFCN 207

Neightbor list
GSM.Neighbors 29

Downlink tx power level, dB wrt full power
GSM.PowerAttenDB 0

Channel configuration
Number of C-VII slots (8xSDCCH)
GSM.NumC7s 1
Number of C-I slots (1xTCH/F)
GSM.NumC1s 5

Beacon parameters.

L1 radio link timeout advertised on BCCH.
This is the RAW parameter sent on the BCCH.
See GSM 10.5.2.3 for encoding.
Value of 15 gives 64-frame timeout, about 30 seconds on the TCH.
This should be coordinated with T3109.
GSM.RADIO_LINK_TIMEOUT 15

182 OpenBTS Tutorial

Control Channel Description (CCD)

Attach/detach flag.
Set to 1 to use attach/detach procedure, 0 otherwise.
This will make initial registration more prompt.
It will also cause an un-regstration if the handset powers off.
GSM.CCD.ATT 1

CCCH_CONF
See GSM 10.5.2.11 for encoding.
Value of 1 means we are using a C-V beacon.
GSM.CCD.CCCH_CONF 1

RACH Parameters

Maximum RACH retransmission attempts
This is the RAW parameter sent on the BCCH.
See GSM 04.08 10.5.2.29 for encoding.
GSM.RACH.MaxRetrans 3

Parameter to spread RACH busts over time.
This is the RAW parameter sent on the BCCH.
See GSM 04.08 10.5.2.29 for encoding.
GSM.RACH.TxInteger 14

Access class flags.
This is the RAW parameter sent on the BCCH.
See GSM 04.08 10.5.2.29 for encoding.
Set to 0 to allow full access.
GSM.RACH.AC 0

GSM.RACH.CellBarAccess 0

NCCs Permitted.
An 8-bit mask of allowed NCCs.
Unless you are coordinating with another carrier,
this should probably just select your own NCC.
GSM.NCCsPermitted 1

Cell Selection Parameters (CS)

GSM.CS.MS_TXPWR_MAX_CCH 0
GSM.CS.RXLEV_ACCESS_MIN 0

Cell Reselection Hysteresis
See GSM 04.08 10.5.2.4, Table 10.5.23 for encoding.

OpenBTS Tutorial 183

Encoding is 2N dB, value values of N are 0..7 for 0..14 dB.
GSM.CS.CELL_RESELECT_HYSTERESIS 7

Reject cause for location updating failures
Reject causes come from GSM 04.08 10.5.3.6
Reject cause 0x04, IMSI not in VLR
GSM.LURejectCause 0x04

Maximum TA for accepted bursts.
Can be used to control the range of the BTS.
The unit is GSM symbols of round trips delay, about 550 meters per symbol.
GSM.MaxRACHDelay 20

GSM Timers. All timer values are given in milliseconds unless stated otherwise.
These come from GSM 04.08 11.2.

T3212, registration timer.
Unlike most timers, this is given in MINUTES.
Actual period will be rounded down to a multiple of 6 minutes.
Any value below 6 minutes disables periodic registration, which is probably a bad idea.
Valid range is 6..1530.
Ideally, this should be slightly less than the SIP.RegistrationPeriod.
GSM.T3212 6

T3122, RACH holdoff timer.
This value can vary internally between the min and max ends of the range.
When congestion occurs, T3122 grows exponentially.
GSM.T3122Min 2000
T3211Max MUST BE NO MORE THAN 255 ms.
GSM.T3122Max 255000

184 OpenBTS Tutorial

Appendix H
LAPDm Frames

This appendix describes the frame structure, format of fields and the procedures
of the LAPDm in the data link layer.

LAPDm supports two operational modes: acknowledged mode (multiple frame)
and unacknowledged mode.

In acknowledged mode, data is transmitted in Numbered Information (I) frames
that are acknowledged by the receiving data link layer. Lost messages are
retransmitted and flow control procedures are specified and activated. An
example of such message is the SMS, which is sent between the MS and BTS.
This operation is initiated by using a Set Asynchronous Balanced Mode (SABM)
command.

In unacknowledged mode, data is transmitted in Unnumbered Information (UI)
frames. No flow control mechanisms nor error recovery mechanisms are defined
for these messages. An example of such message is the ’Measurement Result’,
which is sent periodically by the BTS to the BSC.

185

186 LAPDm Frames

Figure H.1 shows an overview of the different types of LAPDm frames. Their
respective uses depend on the type of information to be transmitted.

Figure H.1: LAPDm Frame Formats [30].

The type A frame is sent (on DCCH) in acknowledged mode as a fill frame when
no payload is available in an active connection. The type B frame is used (on
DCCH) for exchanging the actual signaling data. For unacknowledged mode,
format types Abis and Bbis are used. They are characterized by the fact that
they do not have an address field.

A-format and B-format frames are transmitted in both uplink and downlink,
whereas Abis and Bbis frames are only sent on the downlink (BCCH, PCH,
AGCH).

LAPDm Frames 187

The Address field is further divided into five main parts, as shown in figure H.2.

Figure H.2: Address Field

• Spare bit (spare, 1 bit): currently unused and reserved for future use.

• Link Protocol Discriminator (LPD, 2 bits): always set to 00 and serve the
purpose to specify the use of LAPDm.

• Service Access Point Identifier (SAPI, 3 bit): set to 000 for RR, MM and
CC messages, or 011 for low-priority messages such as SMS.

• Command/Response field bit (C/R, 1 bit): used to specify whether the
message is a command or a response.

• Address field extension bit (EA, 1 bit): by default set to 1 (meaning that
there is no further extension of the address field).

The control field, as shown in figure H.3, is used to carry the sequence number
and to specify the type of frame (command or response). It is composed of the
following parts:

• Numbered Information transfer format (I format): used to perform an
information transfer between layer 3 entities.

• Supervisory format (S format): used to perform data link administrative
control functions, such as: acknowledge I frames, request retransmission
of I frames and request a temporary suspension of I frame transmissions.

• Unnumbered format and Control Functions (U format): used to provide
additional data link control functions and unacknowledged information
transfer.

188 LAPDm Frames

Figure H.3: Control Field

As figure H.3 shows, these formats contain several new fields:

• Send Sequence Number (N(S)) and Receive Sequence Number (N(R)):
serve the purpose of acknowledging the transfer and the receipt of I frames.
Three bits are used, allowing frame number values between 0 and 7.

• Poll/Final bit (P/F): used to indicate the function of a frame. If it is
a Command frame, a one in this bit indicates a poll. If the frame is a
’Response’, a one in this bit indicates that the current frame is the final
one.

• Supervisory function (S) and Unnumbered function (U): used to encode
certain command messages like Receive Ready (RR), Disconnect(DISC)
and SABM. A detailed definition of these commands are given in [38]

LAPDm Frames 189

The length indicator field, as depicted in figure H.4, is used to distinguish the
information carrying field from the fill-in bits. It is composed of three parts:

Figure H.4: Length Indicator Field

• Length indicator (L, 6 bits): used to indicate the number of octets
contained in the information field.

• More data bit (M, 1 bit): used to indicate segmentation of layer 3 message
on the data link layer. If the M bit is set to ‘1’, it indicates that the
information field of this message contain only a part of a layer 3 message.
If the M bit is set to ‘0’, it indicates:

– that the information field contains a complete layer 3 message unit
provided that the M bit of the previous frame was set to ’0’.

– that the information field contains the last segment of a layer 3
message unit if the M bit of the previous frame was set to ’1’.

• Length indicator field extension bit (EL, 1 bit): default set to 1 (meaning
that it is the final octet of the field).

The Information Field itself carries the signaling data up to a maximum number
of octets (N201), which depends on the type of logical channel being transmitted.

Finally, if a LAPDm frame is less than 184 bits (or 23 octets), so called fill bits
are added. An octet of fill bits sent by the network is set to ‘00101011’ or a
random value. ‘00101011’ or ‘11111111’ or a random value is used as fill bits
when sent by the MS. ‘00101011’ is chosen as default because of its relation
with the modulation and interleaving scheme used in GSM [38]. The ‘00101011’
decodes to the hexadecimal value “2B”.

190 LAPDm Frames

Acronyms

2G Second-generation

A3 Authentication Algorithm

A5 Encryption Algorithm

A8 Key Generation Algorithm

AGCH Access Grant Channel

AMR Adaptive Multi-Rate

ARFCN Absolute Radio Frequency Channel Number

AuC Authentication Center

BCCH Broadcast Control Channel

BCC Base station Colour Code

BCH Broadcast Channels

BSIC Base Station Identity Code

191

BSS Base Station Subsystem

BTS Base Transceiver Station

C/R Command/Response Field

CCCH Common Control Channels

CC Call Control

CC Country Code

CI Cell Identifier

CKSN Cipher Key Sequence Number

CLI Command Line Interface

CM Connection Management

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DCH Dedicated Channels

EA Address Field Extension

EFR Enhanced Full Rate

EIR Equipment Identity Register

EL Length Indicator Field Extension

FACCH Fast Associated Control Channel

FCCH Frequency Correction Channel

FDMA Frequency-Division Multiple Access

192

FN Frame Number

FPGA Field Programmable Gate Array

GDM GNOME Display Manager

GMSC Gateway Mobile Switching Center

GMSK Gaussian Minimum-Shift Keying

GPU Graphical Processing Unit

GSM Global System for Mobile Communications

HLR Home Location Register

HSN Hopping Sequence Number

IMEISV International Mobile Equipment Identity Software Version

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscriber Identity

ITU International Telecommunication Union

I Numbered Information

Kc 128-bit Session Key

Ki 128-bit Individual Subscriber Authentication Key

LAC Location Area Code

LAI Location Area Identity

LAPD Link Access Procedures on the D-channel

LFSR Linear feedback shift register

193

LPC Link Protocol Discriminator

lsb least significant bit

L Length Indicator

MAIO Mobile Allocation Index Offset

MA Mobile Allocation

MCC Mobile Country Code

ME Mobile Equipment

MM Mobility Management

MNC Mobile Network Code

MO-SMS Mobile-Originating SMS

MOC Mobile-Originating Call

msb most significant bit

MSC Mobile Switching Center

MSD Message Sequence Diagrams

MSIN Mobile Subscriber Identification Number

MSISDN Mobile Station Integrated Services Digital Network

MSRN Mobile Subscriber Roaming Number

MS Mobile Station

MT-SMS Mobile-Terminating SMS

MTC Mobile-Terminating Call

194

M More Data

N(R) Receive Sequence Number

N(S) Send Sequence Number

NCC Network Colour Code

NDC National Destination Code

NSS Network Switching Subsystem

OACSU Off Air Call Set-Up

P/F Poll/Final

PBX Private Branch Exchange

PCH Paging Channel

PLMN Public Land Mobile Network

RACH Random Access Channel

RAND 128-bit Random Number

RPC-LPC Regular Pulse Excitation - Linear Predictive Coding

RPDU Relay Protocol Data Unit

RR Radio Resource Management

RX Receive

SABM Set Asynchronous Balanced Mode

SACCH Slow Associated Control Channel

SAPI Service Access Point Identifier

195

SCH Synchronization Channel

SDCCH Standalone Dedicated Control Channel

SDK Software Development Kit

SDR Software Defined Radio

SFH Slow Frequency Hopping

SIM Subscriber Identity Module

SIP Session Initiation Protocol

SMA SubMiniature version A

SMS-GMSC Short Message Service Gateway Mobile Switching Center

SMS-G Short Message Service Gateway

SMS-IWMSC Short Message Service Inter-Working Mobile Switching Center

SMSC Short Message Service Center

SMS Short Message Service

SNR Serial Number

SN Subscriber Number

SP Spare

SQL Structured Query Language

SRES Signed Response

SS Supplementary Services

TAC Type Allocation Code

196

TCH Traffic Channels

TDD Time-Division Duplex

TDMA Time-Division Multiple Access

TMSI Temporary Mobile Subscriber Identity

TMTO Time-Memory Trade-Off

TRAU Transcoder and Rate Adaptation Unit

TX Transmit

T Timeslot

UDP User Datagram Protocol

UI Unnumbered Information

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

VLR Visitor Location Register

VoIP Voice over Internet Protocol

197

	Title Page
	Problem Description
	Abstract
	Preface
	List of Figures
	List of Tables
	Listings
	Introduction
	Background
	Limitations
	Structure
	Ethical Considerations

	GSM
	Background
	Architecture
	Protocol Stack
	Addressing
	Logical channels
	Burst formats
	Channel Combinations
	Speech Coding
	Channel Coding
	Interleaving
	Frame Structure
	Frequency hopping
	Authentication
	Confidentiality
	Call setup
	SMS setup

	Attacking A5/1
	Related Work
	A5/1
	A Cryptanalytic Time-Memory Trade-Off
	Hellman's Time-Memory Trade-Off
	Rivest's Distinguished Point Method
	Oechslin's Rainbow Tables
	A Cryptanalytic Time/Memory/Data Trade-off for Stream Ciphers

	A5/1's Reduced Keystream Space
	The A5/1 Security Project
	Table Structure
	Table Lookup
	Expected coverage

	Rainbow Table Generation and Lookup
	Laboratory Setup
	Method
	Results

	Acquiring Network Information
	Laboratory Setup
	Method - NetMonitor
	Results - NetMonitor
	Method - Trace Logs
	Results - Trace Logs
	Message Sequence Diagrams
	Decoded Message Examples

	Intercepting GSM Traffic
	Laboratory Setup
	USRP
	GNU Radio
	AirProbe

	Method
	Results

	Setting up a Rogue GSM Network
	Laboratory Setup
	OpenBTS

	Method
	Results

	Discussion
	Conclusion
	Bibliography
	Gammu Tutorial
	Rainbow Table Generation
	Processing Crack Results
	Original Script from Frank Stevenson
	GNU Radio Tutorial
	AirProbe Tutorial
	OpenBTS Tutorial
	LAPDm Frames
	Acronyms

