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Abstract

When performing dynamic analyses, model reduction is a method used that will reduce
the computational cost and storage requirements in finite element analysis programs. The
dynamic analysis software Fedem uses the same model reduction techniques as the fi-
nite element analysis software ANSYS. As ANSYS has a wider range of element types
available for analyses, Fedem would benefit from utilizing this when performing dynamic
analyses.

To enable this integration between Fedem and ANSYS, the ANSYS ACT extension ”ModRed”
has been developed. It offers the possibility of calculating and exporting the matrices
needed by Fedem for performing dynamic analyses. In order to test performance of the
extension, CMS model reduction of the same models has been performed in both ANSYS
and Fedem for investigating the equality of the resulting matrices.

The results show that the full mass matrices of both systems are nearly identical, but the
reduced mass matrices show poor similarity, with 10% to 15% difference from the Fedem
reference matrix. The calculated gravity vectors give very varied equality to the used
Fedem reference; from being close to identical to having a 36.5% difference in the worse
test case.

As an issue in partitioning ANSYS matrices has been discovered, and since this issue is
believed to be a cause for the varied results, it is too early to make a conclusion on the
accuracy acquired from the extension. More testing using a wider range of test models
and element types, as well as resolving the issue of matrix partitioning is needed. Despite
varying results in testing, the ModRed extension has proven to be a valuable and easy-to-
use method for enhancing the analysis capabilities of Fedem.
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Sammendrag

Ved utførelse av dynamisk analyse er modellreduksjon en metode ofte tatt i bruk. Denne
metoden vil redusere utregningstiden og lagringsbehovene for elementmetode-program.
Dynamisk analyse-programvaren Fedem benytter de samme teknikkene for modellreduk-
sjon som det som blir brukt i elementmetode-programmet ANSYS. Ettersom ANSYS har
et større utvalg av elementtyper tilgjengelig, vil det kunne være nyttig for Fedem å utnytte
dette i dynamiske analyser.

ANSYS ACT-programtillegget ”ModRed” er blitt utviklet for å gjøre en slik integrering
mellom ANSYS og Fedem mulig. Programtillegget gjør det mulig å regne ut og eksportere
de nødvendige matrisene som skal til for at Fedem skal kunne utføre dynamiske analyser.
For å teste ytelsen til programtillegget, har en CMS-modellreduksjon av identiske mod-
eller blitt utført i både ANSYS og Fedem, og de resulterende matrisene er blitt sammen-
liknet.

Resultatene viser at de fulle massematrisene fra begge systemer er så godt som identiske.
Det viser seg imidlertid at de reduserte massematrisene kun i liten grad er like, med 10%
til 15% forskjell fra Fedems referansematrise. De utregnede gravitasjonsvektorene viser
svært varierende likhet til referansen fra Fedem; fra å være tilnærmet identiske, til å være
36.5% forskjellige i tilfellet med størst forskjell.

Ettersom et problem med partisjonering av ANSYS-matriser har blitt oppdaget, og siden
dette antas å være en årsak til de varierende resultatene, er det for tidlig å fastslå nøyaktigheten
man kan oppnå ved å bruke programtillegget. Ytterligere testing med bruk av et større ut-
valg test-modeller og element-typer, samt å rette opp i matrise-partisjonerings-problemet
er nødvendig. Til tross for varierende resultater ved testing, har ModRed-programtillegget
vist seg å være en verdifull metode som det er lett å ta i bruk for å utvide Fedems mu-
ligheter for analyse.
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Chapter 1

Introduction

When performing dynamic analyses of structures, similar repeated matrix calculations
must be performed for every time step in the analysis. Dynamic analyses are therefore
generally much more expensive in terms of computational time and storage space than
performing static analyses. In order to reduce the cost of performing dynamic analyses,
model reduction methods that reduce the number of degrees of freedom in the system may
be applied. Guyan reduction and the component mode synthesis method are examples of
such methods. The finite element software ANSYS have both these methods implemented
in its APDL solver. In order to access these methods through the ANSYS Mechanical
software, an ANSYS ACT extension must be developed, as model reduction techniques
are currently not available through ANSYS Mechanical.

The dynamic analysis software Fedem uses the same model reduction techniques as AN-
SYS. Due to the extensive finite element library available, it is of interest to perform model
reduction in ANSYS. The reduced models may thereafter be imported to Fedem for fur-
ther dynamic analyses. This thesis will present such an extension that enables this integra-
tion.
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Chapter 2

Theory

2.1 The Finite Element Method in Linear Dynamics

When analyzing continuous problems, very few of them have an exact, closed-form so-
lution, implicating that discretization techniques should be applied in order to make an
approximated system. The behavior of the discretized system could then be computed
and used as an approximation for the continuous system. The finite element method is an
discretization method that has become the preferred computational method for analyzing
structures. Dividing the a structure into a finite number of elements, then assembling them
while keeping continuity in the displacements of connected elements for representing the
global displacements is the core principle of the finite element method.

For illustrating the principle of the finite element method, we consider a bar of length L
in axial deformation subjected to axial loads P1 and P2. The bar is divided into N finite
elements of length l, as shown in Figure 2.1.

L

Element e

x

u1(t) u2(t)

l

Figure 2.1: Bar in axial deformation

For each element, the displacement field u(x, t) is linearly interpolated by

u(x, t) = u1(t)φ1(x) + u2(t)φ2(x) (2.1)

3



Chapter 2. Theory

where φ1(x), φ2(x) are so-called shape functions of the element. The shape functions are
chosen in such a way that they fullfill the boundary conditions

u(0, t) = u1(t) u(l, t) = u2(t)

u1 and u2 are axial displacements at the element ends, referred to as nodes.

For the bar in axial deformation, the shape functions are linear, given as

φ1(x) = 1− 1

l
φ2(x) =

x

l
(2.2)

(2.1) can be written in matrix form

u(x, t) = Fe(x)qe(t) (2.3)

where x must be within the element e, and

Fe(x) =
[
φ1(x) φ2(x)

]
qe(t) =

[
u1(t) u2(t)

]T (2.4)

Using this, we can compute the elementary mass and stiffness matrices Me and Ke given
by

Me =

∫ l

0

mFT
e Fedx

Ke =

∫ l

0

EA
dFT

e

dx

dFe

dx
dx

(2.5)

For the axial bar, we obtain the matrices

Ke =
EA

l

[
1 −1
−1 1

]
Me =

ml

6

[
2 1
1 2

]
(2.6)

The force element vector ge is equal to to the end loads of the element:

g(1)
e =

[
P1

P2

]
(2.7)

2.1.1 Assembling elements to the global structure

For expressing dynamic equilibrium for whole bar, we need to know the topology of every
element e: Where is it located with respect to the global model and with respect to the
other elements of the structure? This is solved by a topology matrix Le. It is constructed
so that

qT = Leq (2.8)

4



2.1 The Finite Element Method in Linear Dynamics

where q is a matrix containing all (N + 1) nodal displacements:

q =
[
u0 u1 u2 · · ·uN

]T
For instance, element 1 and 2 of Figure 2.1 have the topology matrix

L1 =

[
0 0 0 0 · · · 0
0 1 0 0 · · · 0

]
L2 =

[
0 1 0 0 · · · 0
0 0 1 0 · · · 0

] (2.9)

Using the topology matrix, we can assemble all N elements into a global system, and we
can then define

• The mass matrix of the assembled system:

M =

N∑
e=1

LT
e MeLe (2.10)

• The stiffness matrix of the assembled system:

K =

N∑
e=1

LT
e KeLe (2.11)

• The load vector of the assembled system:

g =

N∑
e=1

LT
e ge (2.12)

This corresponds to an assembly as seen in Figure 2.2. From the figure, one can observe
that

• The diagonal terms of the stiffness and mass matrix add up two and two along the
diagonal of the matrix.

• The shaded zone correspond to the clamped end of the bar, and could therefore be
set to 0.

5



Chapter 2. Theory

Figure 2.2: Assembly of the global matrices

For the axially loaded bar, the global structural matrices become

K =
EA

l



2 −1
−1 2 −1 0

−1 2
. . .

. . . . . . −1
0 −1 2 −1

−1 1


(2.13)

M =
ml

6



4 1
1 4 1 0

1 4
. . .

. . . . . . 1
0 1 4 1

1 2


(2.14)

2.2 Reduction Methods for Dynamic Problems

When a finite element analysis of a static system is performed, static deformations and
stress levels in small details of the system is usually of interest. The static FEM models
will therefore usually have a highly refined mesh and a corresponding very high number of
degrees of freedom. One are able to solve these models fairly efficiently with static solvers,
but if one wishes to find the dynamic behavior of the system, the computing time required
is often unacceptable. However, the highly refined meshes used in static analyses are often
not needed to capture the dynamic behavior of the system. If one were to find the free
vibration modes of the system, we know that the first free vibration modes have a rather
smooth deformation, meaning that a coarser mesh would be sufficient to capture these

6



2.2 Reduction Methods for Dynamic Problems

modes. The reduction methods for dynamic problems addresses this problem. Because
creating a fine mesh that captures the required static solutions is an important and time-
consuming part of FE analysis, the reduction methods do not modify the fine mesh created
for static analyses, but instead reduces the size of the dynamic problem to solve.

Model reduction can in general be expressed as

v = Hq (2.15)

where v is the full set of degrees of freedom for the fine mesh and is of size (n × 1). H
is the reduction matrix and q is the reduced set of displacements used for capturing the
dynamic behavior and is of size (m × 1). The aim for the model reduction is to achieve
m << n without a significant loss in accuracy for the stress results.

The matrix equation that governs system dynamics is expressed as

Mv̈ + Kv = Q (2.16)

if one neglects damping. When reduction methods are applied to the system equations, the
equation is partitioned as follows[

Mee Mei

Mie Mii

] [
v̈e

v̈i

]
+

[
Kee Kei

Kie Kii

] [
ve

vi

]
=

[
Qe

Qi

]
(2.17)

where subscript e represents external nodes and subscript i represents internal nodes. Ex-
ternal nodes in the model will typically be chosen to be joints, springs, dampers, external
loads, control input, points of interest, etc. There should be as few as possible external
nodes to reduce the simulation model as much as possible. As will be shown, the reduc-
tion methods will eliminate the internal nodes from the FE model.

From (2.17), the stiffness relation for a sub-structure can be written as[
Kee Kei

Kie Kii

] [
ve

vi

]
=

[
Qe

Qi

]
(2.18)

Writing out the equations gives

Keeve + Keivi = Qe

Kieve + Kiivi = Qi

(2.19)

Solving the second equation for vi gives

vi = K−1
ii Qi −K−1

ii Kieve

= K−1
ii Qi + Bve

where B is denoted as the influence matrix, given by B = −K−1
ii Kie.

The internal displacements vi can then be expressed as

vi = vdyn
i + vstat

i (2.20)

7



Chapter 2. Theory

where vdyn
i represents internal displacements with external DOFs fixed, the dynamic part

of the internal node’s displacements

vdyn
i = K−1

ii Qi (2.21)

and vstat
i represents internal displacements as a function of external displacements, called

the ”static” part, because the internal nodes respond quasi-statically to the external nodes’
displacements.

vstat
i = −K−1

ii Kieve = Bve (2.22)

When applying model reduction techniques, two methods are commonly used, namely
Guyan reduction and Component Mode Synthesis (CMS). The two methods differ in how
they are expressing the internal displacements vi. When applying Guyan reduction, the
”dynamic” part vi

i is neglected, and the reduction is based purely on the static response of
the internal nodes from displacements at the external nodes, while the Component Mode
Synthesis method uses both the dynamic and static part of the internal nodes’ displace-
ments

2.2.1 Guyan Reduction

Guyan reduction utilizes the fact that the quasi-static response of the internal nodes is often
sufficient for describing the substructure’s displacements. The reduction method neglects
the dynamic part of the internal node’s displacements, thus setting vdyn

i = 0. It is also
assumed that no forces are applied on the internal nodes, Qi = 0. The reduction is then
built by

v =

[
ve

vi

]
= HGuyanve =

[
I
B

]
ve (2.23)

where I is the identity matrix, and B = −K−1
ii Kie is the influence matrix.

The reduced stiffness and mass matrices from the Guyan reduction, respectively kGuyan
and mGuyan, are then found by premultiplying (2.16) with HT

Guyan and inserting (2.23) for
v. The reduced stiffness and mass matrices are then

kGuyan = HT
GuyanKHGuyan

= Kee −KeiK
−1
ii Kie

mGuyan = HT
GuyanMHGuyan

= Mee −MeiK
−1
ii Kie −KeiK

−1
ii Mie + KeiK

−1
ii MiiK

−1
ii Kie

(2.24)

Using this, the dynamic equation for the whole system (2.16) can be reduced to the fol-
lowing for an undamped system

mGuyanv̈e + kGuyanve = Qe (2.25)

This results tells us that the whole system now is being represented only by the external
node’s accelerations, displacements and loads. Applying the Guyan reduction technique
will therefore reduce the number of degrees of freedom in the system drastically.

8



2.2 Reduction Methods for Dynamic Problems

If the Guyan reduction is applied to static problems, the exact solution is found. It is
also computationally efficient, thus being a widely used reduction technique. However, if
the structure has a dynamic behaviour, an approximation is introduced by neglecting the
dynamic response of the internal nodes.

2.2.2 CMS Model Reduction

The Component Mode Synthesis (CMS) model reduction was introduced by Craig and
Bampton [1] in 1968. The method is therefore also called the ”Craig-Bampton Method”.
When applying CMS reduction, the term vdyn

i is no longer neglected. Instead it is ap-
proximated by a linear combination of eigenvalues. In the following, we assume that we
originally have n degrees of freedom. By partitioning through (2.17), we get p external
and n− p internal degrees of freedom.

In order to approximate vdyn
i , we remember that vdyn

i correspond to the displacements in
the substructure when the external degrees of freedom are fixed. This corresponds the the
case where

Qi = ve = 0 (2.26)

Inserting this into (2.17) gives the equation

Miiv̈
dyn
i + Kiiv

dyn
i = 0 (2.27)

When considering simple harmonic motion, the displacement vdyn
i may be expressed as

vdyn
i = φφφ sinωt (2.28)

where φφφ is the eigenvector defined by the eigenvalue problem

(Kii − ω2Mii)φφφ = 0 (2.29)

It is possible to describe an arbitrary displacement as a linear combination of the (n − p)
eigenmodes. Using a selection s of the eigenmodes, vdyn

i can be approximated as

vdyn
i =

s∑
k=1

φφφkyk = Φy s < n− p (2.30)

where
Φ =

[
φφφ1 φφφ2 · · · φφφs

]
(2.31)

is the eigenvector matrix with dimensions (n− p)× s.

Using this result, the displacement vector v can be expressed as

v =

[
ve

vi

]
=

[
I 0
B Φ

] [
ve

y

]
= HCMS

[
ve

y

]
(2.32)

9



Chapter 2. Theory

When combining the substructure dynamic equation (2.17) with the time derivatives of
(2.32) and pre-multiplying with HT

CMS we get[
m11 m12

m21 I

] [
v̈e

ÿ

]
+

[
k11 0
0 k22

] [
ve

y

]
=

[
q1

q2

]
(2.33)

where
m11 = Mee + BTMie + MeiB + BTMiiB

m12 = mT
21 = MeiΦ + BTMiiΦ

k11 = Kee + KT
ieB

k22 =


ω2
1

ω2
2

. . .
ω2
n−p


q1 = Qe + BTQi

q2 = ΦTQi

(2.34)

For the k22 matrix, ω2
1 , ω2

2 , . . . , ω2
n−p are the eigenvalues corresponding to the eigenmodes

of eigenvector matrix Φ.

The substructure will be fully represented - meaning that no approximations are introduced
- if all eigenmodes of the substructure is taken into account, thus setting s = n−p. Setting
s = 0 will give the Guyan reduction presented in Section 2.2.1. When applying CMS
reduction, one tries to keep s as small as possible for reducing the problem size. A criteria
often used in practice is to include all eigenmodes having frequencies up to 1.8 or 2 times
the highest frequency one wants to compute in the global structure. [2]

2.3 Using ANSYS for Solving Finite Element Problems

ANSYS is an American company founded in 1970 which develops and sells finite ele-
ment simulation software. Their key product, the Mechanical APDL program, has the
analysis capability to solve static and dynamic structural analyses, steady-state and tran-
sient heat transfer problems, mode-frequency and buckling eigenvalue problems, static
or time-variying magnetic analyses, and various types of field and coupled-field applica-
tions.

2.3.1 ANSYS Parametric Design Language (APDL)

The Mechanical APDL program uses a command-line syntax called ANSYS Parametric
Design Language (APDL) for writing commands to the FE solver. The language offers
the possibility to use features like repeating commands, macros, if-then-else-branching,
for-loops and matrix operations with APDL Math. In the last years, Mechanical APDL
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has been replaced by, among others, the new products ANSYS Workbench and ANSYS
Mechanical. However, all new ANSYS products still use the the FE solver implemented in
Mechanical APDL. Learning to use the APDL language for writing FE solver commands
is therefore of great importance. An example of APDL syntax can be seen in Section 2.3.2
and in the onExportData() method of ModRed.py, Section A.1. However, specifics
of the APDL syntax will not be presented here. The Mechanical APDL Element Reference
[3] serves as a great guide for referencing specific commands.

Figure 2.3: Example of a modal analysis set up in ANSYS Workbench that will be performed in the
ANSYS Mechanical program.

Figure 2.3 shows the ANSYS Workbench environment that is used to analyse a simple
beam constructed by shell elements. The ANSYS Workbench environment makes it easy
to perform multi-domain analyses by dragging-and-dropping the analysis type seen to the
left. When an analysis is opened, the user is taken to the ANSYS Mechanical program,
where the analyses will be performed. When an analysis is correctly defined and the user
hits ”Solve”, the following happens:

1. All items in the ANSYS Mechanical tree are converted to APDL commands, and
written to the file ds.dat located in the ANSYS solver directory, illustrated in
Figure 2.4.

2. Mechanical APDL is invoked in the background, performs the commands defined
in the ds.dat file and returns results written in the file file.rst

3. The result file is read by ANSYS Mechanical, and displayed graphically to the user.

This means that it would be possible to write custom APDL commands directly to the
ds.dat file for solving your specific problem. This is what is utilised in the ModRed
application, Section 3.1

11
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Figure 2.4: When the user hits ”Solve” in ANSYS Mechanical, all analysis settings are translated
to APDL code and sent to APDL in the background.

2.3.2 Performing Model Reduction in ANSYS

Model reduction is currently (Version 19.2) not available in the ANSYS Mechanical pro-
gram. However, multiple model reduction techniques are available through APDL com-
mands, among them Guyan (static) reduction and CMS reduction. Guyan reduction could
be applied to both structural and non-structural analysis types. If Guyan reduction is ap-
plied to non-structural analyses, the K and M matrices are no longer expressing stiffness
and mass quantities. Instead, they are matrices representing zero order terms (K) and sec-
ond order terms (M). The CMS reduction implemented in APDL is not as versatile, and
can only be applied to structural analyses. When performing model reduction in ANSYS,
the process is divided into three separate steps, namely the generation pass, use pass and
expansion pass.

The Generation Pass

The generation pass could further be divided into two parts: model generation and su-
perelement generation.

The model generation part involves defining the element types, material properties, model
geometry and specifying the jobname for reuse in the later use and expansion passes. If
the model is already defined, as will be the case in the ModRed application, this part
would involve importing the model and its properties correctly into the ANSYS environ-
ment.

The superelement creation part involves condensing the full model into one or multiple
superelements. The superelement is defined by selecting external (master) nodes that will
serve as the interface between other elements and the superelement. The master nodes
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need to be defined even though the superelement is not to be connected to other non-
superelements. Master nodes need to be selected with care, as forces or constraints will
later be applied only to the master nodes. The master nodes are therefore typically selected
to be at the joints or extremities of the full model. Figure 2.5 shows how one can model a
bridge using super elements. It is modeled with bar elements taking axial deformation, as
described in Section 2.1. By selecting green nodes as external nodes, 9 super elements can
be created, one for every truss in the bridge. Their ID is marked with a square in Figure
2.5. The external nodes are selected at the joints, as this is where forces or constraints will
be applied later. The external nodes’ ID is marked with a circle.

4

1 2 3

5 6
7 8

95

1 2 3 4

6

External nodes

Internal nodes
External node ID1

1 Super element ID

Figure 2.5: Structure simplified into finite elements

When the solve command is issued at the generation pass, multiple files are generated.
Some are written in ASCII format, making it possible to read and edit them. However, the
majority of files are written in the non-editable binary form for preserving the calculations
and making them transportable between different computer systems. The most important
generated binary files during a model reduction are

.sub : The superelement matrix file, which contains the reduced matrices m = HTMH,
k = HTKH and load vectors if any load is applied during the generation pass.

.emat : Element matrices file containing matrices for all elements in the model.

.esav : Element saved data files

.seld : Superelement load vector data from generation pass.

.ln22 : Factorized stiffness matrix from the sparse solver

.full : Assembled global stiffness and mass matrices for the full model.

.db : Database file.

Among these, the .sub file is of particular interest, because it contains the mass and
stiffness matrix for the reduced system. At a later stage, this file will be read and the
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matrices converted and written out in ASCII format.

The following APDL code snippet shows a small example of a generation pass imple-
mented in APDL code. It shows how one can define variables, as well as modelling a line,
meshing it and selecting the element type to be used for the analysis.

Example of a generation pass in APDL

1 !
2 ! Example of a generation pass in APDL
3 !
4
5 / title , Cantilever Beam
6 / filname , gen ! Changing filename for clarity
7 save ! Saving
8
9 ! Defining parameters

10 *set ,youngs,20.58e10 ! Young’s modulus [N/mˆ2]
11 *set , density ,7800 ! Density [kg/mˆ3]
12 *set , length , 0.6 ! Length [m]
13 *set , nElements, 10 ! Number of elements used
14 /prep7
15 k ,1,0,0 ! Enter Keypoints
16 k ,2, length ,0
17 l ,1,2 ! Create Line between keypoints
18 et ,2, beam188 ! Element Type for non−super elements
19 mp,ex,1,youngs ! Defining Young’s Modulus
20 mp,prxy,1,0.33 ! Poisson’s Ratio
21 mp,dens,1, density ! Density
22 sectype ,1, beam, rect , , 0 ! Setting the beam’s cross section
23 secoffset , cent ! Setting section offset
24 secdata , 0.08, 0.005,0,0,0,0,0,0,0,0,0,0 ! Defining cross−section
25 lesize , all ,,, nElements ! Number of elements
26 lmesh, all , , nElements ! Mesh Line
27
28 / solu
29 antype , substr ! Defining a substructuring / CMS analyis type .
30 seopt ,gen ,2,0,0,0 ! Defining options for substructuring analysis . Generating K

and M matrices
31 lumpm,0 ! Not using lumped mass matrix.
32 m, 1, all ! Selecting node 1 and 2 as master nodes. ”Giving them access” to all

degrees of freedom.
33 m, 2, all
34 save
35 solve ! Issuing the solve command
36 finish
37 / quit
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The Use Pass

In the use pass, the superelement is used in analyses. Either by being a part of the model,
connected to other non-superelements, or the entire model may be a superelement. Any
analysis type except explicit dynamics analysis could be performed in the use pass, just like
any other analysis. The difference being that yourm model now contains the superelement
generated in the generation pass. The superelement portion of the model needs to be
defined with the ANSYS element type MATRIX50 for the solver to know it is a super
element. When the solve command is issued, the results will consist of a complete
solution for the non-superelements, and a reduced solution containing the solution just at
the selected master nodes, for the super elements. The reduced solution will be written to
the file use.dsub.

The Expansion Pass

In the expansion pass, the reduced solution use.dsub is expanded, and results at all
degrees of freedom in the superelement is calculated. Multiple expansion passes could be
issued if multiple superelements were created in the use pass. The solver uses the files
gen.asav, gen.full, gen.sub, gen.ln22, gen.db and gen.seld from the
generation pass and use.dsub from the use pass. The type of expansion pass method is
automatically detected by the solver.

2.3.3 Accuracy of Model Reduction Performed in ANSYS

The Mechanical APDL program has an extensive database of verification test cases used
for quality assurance of its element types and solution algorithms. The test cases are based
on validated results from published work, and are used for validating new versions of the
program with extended functionality. A full overview of available test cases can be seen
in [4].

Multiple test cases are available for testing the model reduction methods of Mechanical
APDL. This section will present one of them, namely an automotive suspension system
seen in Figure 2.6. The model is used for demonstrating the benefits of CMS reduction.
Three super elements are created; left and right wheel and the main frame. The main frame
is then constrained in the top bolts. Next, a modal analysis is performed, and the first 100
eigenfrequencies are extracted.
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Figure 2.6: Automotive suspension system used for testing CMS reduction accuracy

Mode # Full Model [Hz] CMS Model [Hz] % Diff

1 31.12 31.31 0.59
2 33.13 33.12 0.03
3 44.66 44.69 0.08
4 53.17 53.10 0.12
5 87.88 88.18 0.34

Table 2.1: Comparison of found eigenfrequencies for the automotive suspension assembly in the
full model vs the CMS reduced model

An excerpt of the results is presented in Table 2.1, where the resulting 5 first eigenfre-
quencies for the corresponding modes are shown. It shows a very little loss of accuracy -
a maximum of 0.59% - between analysing the full model and the model created by super
elements. The full results could be seen in [5].

Full Model [s] CMS Model

Generation Pass [s] Use + Expansion Pass [s]

1291.0 1336.0 3.0

Table 2.2: Elapsed time for solving the full model and applying CMS reduction. Note that the
generation pass is only necessary to do once when a geometry is set.

The improvement in solution time is also significant when using CMS reduction, as can be
seen in Table 2.2, where the elapsed time for the modal analysis to calculate the first 100
frequencies of the model is shown. The results show that creating the super elements in the
generation pass is a relatively expensive process, with an elapsed time close to solving the
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full model. However, once the super elements are created, solving the modal analysis in
the use and expansion passes is over 400 times faster than solving the full model. Applying
CMS reduction to finite element models can therefore be a major advantage, as it enables
a more agile development process, where multiple analyses could be performed rapidly,
with a high accuracy for one design.

2.3.4 ANSYS ACT

As model reduction is currently not available through the ANSYS Mechanical applica-
tion, one needs to create a custom way of accessing the model reduction techniques of
APDL through the graphical user interface of ANSYS Mechanical. ANSYS Customiza-
tion Toolkit (ACT) provides this possibility by enabling users to create apps for the AN-
SYS environment that could be tailored to fit their engineering problem. ACT can currently
(Version 19.2) be used to customize the following ANSYS products:

• AIM

• DesignModeler

• DesignExplorer

• Electronics Desktop

• Fluent

• Mechanical

• SpaceClaim

• Workbench

2.3.5 Structure of an ACT Application

Two basic parts make up an ACT extension:

• An XML file defining context, custom GUIs and callbacks to functions.

• An IronPython script that contains functions responding to user interactions and
GUI events, as well as the app’s behavior. The IronPython language is an open-
source implementation of the Python programming language. Its strength is its tight
integration with the .NET Framework. Using IronPython, the user can use both the
.NET Framework and Python libraries. In addition, other .NET languages can use
the IronPython code. Further documentation can be seen in [6]

The extension may also contain components like external Python libraries, input files, and
images to be displayed in the app. Once the extension is developed, it can be shared in two
different formats, seen in Figure 2.7.
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Figure 2.7: The two formats used for sharing ACT extensions: scripted or binary. 1

The scripted extension contains the XML and IronPython script, as well as subdirectories
containing additional code, images and image files. The contents of the scripted extension
is all editable, allowing easy modification of functions in the extension.

The binary extension is a binary WBEX (WorkBench Extension) file that is generated
when the scripted extension is built and compiled. The file could easily be shared and
installed on another computer with an ANSYS license. The contents of the extension can
not be edited, meaning that a new version of the WBEX file needs to be built, compiled
and shared for the users to see changes made in the extension.

For the ANSYS Mechanical program, ANSYS ACT offers a wide range of possibilities
for customisation:

• APDL macros can be run in the background, opening for automation of repetetive
solver steps

• Having access to APDL scripting through ANSYS Mechanical enables the user to
use solver capabilities of APDL that are not exposed in ANSYS Mechanical.

• Pre-processing features can be added, like custom loads and boundary conditions.

• Post-processing features could be developed in order to show custom results specif-
ically tailored for the problem to solve.

• Third-party solvers are possible to integrate in the ANSYS environment for solver
customisation.

• Graphics in ANSYS Mechanical is possible to tailor, opening possibilities to display
custom information like drawing lines, surfaces and text descriptions.

2.3.6 ANSYS Element Library

The ANSYS element library contains all possible element types ANSYS offers for finite
element analysis. Currently (Version 19.2) it contains 146 different elements, each spe-
cialized for its intended use. Elements have the following characteristics:

1Image courtesy of [7].
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(a)
(b)

(c) (d)

Figure 2.8: The four main element types: (a) Mass element, (b) Line element, (c) Area element, (d)
Volume element. Element illustrations taken from [8]

• Element name: All element types have a unique name on a maximum of eight
characters such as BEAM188. It consists of a group label (BEAM) as well as a
unique number (188).

• 2D/3D: The model is set in 2D or 3D depending on what elements to use. 2D models
are defined in the X-Y plane and run faster than equivalent 3D models. The model
becomes 3D if any 3D elements are used. A 2D element may be used in a 3D model.

• Element Shape: All elements are in general divided into four shapes, seen in Figure
2.8:

– Point elements are defined by one node. Point elements are typically mass
elements.

– Line elements are represented by a line or arc that is connecting two or three
nodes. Typical elements are beams, pipes and axisymmetric shells.

– Area elements have triangular or quadrilateral shape. It might be a 2D solid
element or a shell element.

– Volume elements have tetrahedral or brick shape. Typical elements are 3D
solid elements.

• Discipline: Specialized elements for the following disciplines are available:

– Structural

– Thermal

– Acoustic

– Diffusion

– Fluid

– Magnetic Electric

– Electric Circuit

– Coupled-Field

– Contact

– Combination

– Matrix

– Infinite

– Load

– Meshing

– Reinforcing

– User-defined
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SHELL181

The SHELL181 element (Figure 2.9 is a 4-node (I , J , K, L) strucural shell element for
3D space. It has six degrees of freedom at each node: Translation in x, y, z and rotation
about the x, y, z axis. It is suitable for analyzing thin to moderately-thick shell structures.
Its shell thickness needs to be defined with the APDL commands

Commands for Setting Thickness at SHELL181 Element

1 setcype , , shell
2 secdata , thickness

Figure 2.9: The SHELL181 element from the ANSYS element library [9]

For defining the shape functions of SHELL181, the following definitions and notations are
used, referencing Figure 2.9: [8]

• As this is a shell element, the element coordinate system is not the same as the
global Cartesian system. For SHELL181, u and v are in-plane motions and w is
out-of-plane motion.

• Coordinates s, t and r are normalized, going from −1.0 on one side of the element,
to +1.0 on the other side. They are not necessarily orthogonal to each other.

• Subscripted variables such as uJ refer to the u motion at node J .

For the stiffness and mass matrix, the following shape functions are used:

u =
1

4
(uI(1− s)(1− t) + uJ(1 + s)(1− t)

+ uK(1 + s)(1 + t) + uL(1− s)(1 + t))
(2.35)
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v =
1

4
(vI(1− s)(1− t) + . . . (analogous to u) (2.36)

w =
1

4
(wI(1− s)(1− t) + . . . (analogous to u) (2.37)

θx =
1

4
(θx,I(1− s)(1− t) + θx,J(1 + s)(1− t)

+ θx,K(1 + s)(1 + t) + θx,L(1− s)(1 + t))
(2.38)

θy =
1

4
(θy,I(1− s)(1− t) + . . . (analogous to θx) (2.39)

θz =
1

4
(θz,I(1− s)(1− t) + . . . (analogous to θx) (2.40)

If a lumped mass approximation is selected, only (2.35) - (2.37) is used.

2.3.7 Degree of Freedom Ordering

ANSYS use an internal ordering method for the set of degrees of freedom (DOFs). When
assembling the full mass and stiffness matrix M,K, ANSYS saves matrix data in a bi-
nary file located in the solver directory with the extension .FULL. Items saved in the
.FULL file uses an internal solver ordering. The ordering is obtained by an internal AN-
SYS algorithm that reorders the equations in order to minimize the solver time and disk
requirements. The DOF ordering is specified in the file filename.mapping, written
out by setting the Mapping parameter to Yes in the APDL command HBMAT. An exam-
ple of the .mapping file for the simple twoQUAD4 model seen in Figure 4.1 is shown
here.

Mapping file for the twoQUAD4 model

Matrix Eqn Node DOF
1 5 UX
2 5 UY
3 5 UZ
4 5 ROTX
5 5 ROTY
6 5 ROTZ
7 4 UX
8 4 UY
9 4 UZ

10 4 ROTX
11 4 ROTY
12 4 ROTZ
13 1 UX
14 1 UY
15 1 UZ
16 1 ROTX
17 1 ROTY
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18 1 ROTZ
19 2 UX
20 2 UY
21 2 UZ
22 2 ROTX
23 2 ROTY
24 2 ROTZ
25 6 UX
26 6 UY
27 6 UZ
28 6 ROTX
29 6 ROTY
30 6 ROTZ
31 3 UX
32 3 UY
33 3 UZ
34 3 ROTX
35 3 ROTY
36 3 ROTZ

2.4 Fedem

Fedem, an acronym for Finite Element Dynamics in Elastic Mechanisms, is a computer
program that provides features for creating, solving and post-processing a model in a 3D
graphical environment. The program has multiple solver modules for performing different
types of calculations. Detailed descriptions of each module can be seen in [10] (Fedem
Version 7.2), and are briefly discussed here:

• Reducer: Performs a CMS reduction of the mass and stiffness matrices of a FE
model for faster simulation of nonlinear dynamics.

• Dynamics Solver: Performs a non-linear dynamics simulation of the superele-
ments’ reaction over time to displacements and control system output.

• Stress Recovery: Recovers stresses and strain in the internal nodes from the defor-
mations of the external nodes imposed at the model.

• Mode Shape Recovery: Recovers mode shapes from the eigenvalue results of the
Dynamics solver.

• Strain Rosette Analysis: Applies virtual strain gauges on the FE model and out-
puts strain and stresses from the model over time similar to output from real strain
gauges.

• Strain Coat Analysis: Recovers stresses and strains from the coat elements in a FE
model, outputting the recovered stresses and strains for the model over the entire
time history.
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• Curve Export Utility: Allows the user to automatically export result curves to a
single ASCII file.

2.4.1 Model Reduction in Fedem

The Fedem Reducer has implemented the Guyan reduction and CMS reduction techniques
presented in Section 2.2 for effectively solving dynamic problems. The reduction tech-
nique is well suited for flexible mechanism analyses due to it preserving the effective
masses and inertias of the model. The external nodes needed for the reduction are defined
during modelling of the mechanism as ”triads”. The triads are defined on the connection
points for joints, springs, dampers, external loads external load, control inputs or other
points of interest. The reduction begins automatically when a dynamics simulation is
started, and Fedem determines which parts that need to be reduced based on how the tri-
ads are chosen and their connection to the rest of the model. The number of component
modes to use for the reduction is specified by the user before reduction. It is recommended
to include the lowest modes of vibration in order to achieve good results.

2.4.2 Importing reduced models to Fedem

As Fedem does not support modelling or meshing of finite element models, they need to be
created in external CAE systems, stored in separate files and imported into Fedem. Fedem
supports importing files using the Nastran Bulk Data Format (.nas or .bdf), SESAM
Input Interface File Format (.fem) as well as the older Fedem Link Model format (.flm).
After reading these files, Fedem stores the info retrieved in the Fedem Technology Link
Format (.ftl).

The .ftl file format contains all data needed for defining FE parts. It is defined in ASCII
format, and can thus easily be edited using a text editor. The file contains a set of identifiers
and parameters expressed with the same syntax:

identifier{id value1 value2 ... valueN {reference id text}}

where the parameters are listed in Table 2.3 taken from [10]

An example of an identifier with attributes is

QUAD4{4 22 34 12 32{PMAT 1}}

This defines a 4-noded tetrahedron element with ID=4 that is coupled to the nodes 22, 34,
12 and 32. The element uses an attribute of type PMAT with ID=1.

PMAT{1 2.10e+11 8.00e+10 2.90e-01 7.82e+03}

This defines the material property that is referred to in the QUAD4 element. The decimal
numbers describe material parameters like Young’s modulus, shear modulus, Poisson’s
ratio and density. A comprehensive guide of the available identifiers can be found in [10,
p. 298]
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Table 2.3: Syntax of Technology Link Format

In order to perform calculations on imported models, Fedem does also need matrix files
from the reduced models. Those are saved internally as binary .fmx files after model
reduction is performed. Binary .fmx files are created for the reduced stiffness and mass
matrices, as well as for the gravity vector described in Section 2.4.3

2.4.3 Gravity Vectors in Fedem

Gravitational forces in Fedem are calculated from unit gravitational acceleration vectors,
as described in [11, p. 118]. Unit acceleration in the x, y and z direction is denoted
Ux, Uy and Uz respectively. The unit vectors are constructed so that for all degrees of
freedom in Ux that correspond to x translation, the acceleration component of Ux is set
to 1, otherwise 0. Ux will be of size ((ne + ni) ·DOFs)× 1) where ne is the number of
external nodes, and ni is the number of internal nodes. The total number of nodes in the
model is n = ne + ni. For an element with 6 DOFs per node, Ux, Uy and Uz will then
be

Ux =
[
1 0 0 0 0 1 0 0 0 · · · 0

]T
Uy =

[
0 1 0 0 0 0 1 0 0 · · · 0

]T
Uz =

[
0 0 1 0 0 0 0 1 0 · · · 0

]T
The gravitational forces Gx corresponding to Ux are calculated from[

Gxe

Gxi

]
=

[
Mee Mei

Mie Mii

] [
Uxe

Uxi

]
=

[
MeeUxe + MeiUxi

MieUxe + MiiUxi

]
(2.41)

The forces are then reduced by the CMS tranformation matrix H to gx:
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[
gxe

gxg

]
=

[
I BT

0 Φ

] [
Gxe

Gxi

]
=

[
Gxe + BTGxi

ΦTGxi

]
(2.42)

When inserting (2.41), and taking into account the symmetry property

Mei = MT
ie (2.43)

the full expression for gxe and gxg becomes

gxe = MT
ieUxi + MeeUxe + BTMiiUxi + BTMieUxe

gxg = ΦTMiiUxi + ΦTMieUxe

(2.44)

Finding gravitational forces in the y and z direction is an equivalent process by change of
indexes:

gye = MT
ieUyi + MeeUye + BTMiiUyi + BTMieUye

gyg = ΦTMiiUyi + ΦTMieUye

(2.45)

gze = MT
ieUzi + MeeUze + BTMiiUzi + BTMieUze

gzg = ΦTMiiUzi + ΦTMieUze

(2.46)

The matrix used by Fedem for calculating gravitational forces is then the assembled matrix
G:

G =

[
gxe gye gze

gxg gyg gzg

]
(2.47)

G will be of size ((p ·DOFs+ s)× 3) where p is the number of external nodes, DOFs
is the number of degrees of freedom per node and s is the number of selected component
modes.

Calculating the Gravity Vector from the Reduced Mass Matrix

The gravity vectors in Fedem could also be calculated from the reduced mass matrix m =
HTMH. The gravity vectors could then simply be calculated as[

gxe

gxg

]
=

[
m11 m12

m21 m22

] [
Uxe

Uxc

]
=

[
m11uxi + m12uxe

m21uxi + m22uxe

]
(2.48)

The displacement vector Uxe is the same as described in Section 2.4.3. Uxc is of size
(s× 1) and is set to 0. Expanding (2.48) gives for all directions:

gx = HTMHUred
x

gy = HTMHUred
y

gz = HTMHUred
z

(2.49)
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Comparing this to what is given when using the full mass matrix, we see that gravity
vectors from the full mass matrix are given by

gfull
x = HTMUfull

x

gfull
y = HTMUfull

y

gfull
z = HTMUfull

z

(2.50)

where Ufull
i are defined as in Section 2.4.3.

2.4.4 The FFQ4 Shell Element in Fedem

FFQ4, seen in Figure 2.10, is a 4-node quadrilateral shell element used for modelling shell
structures in Fedem. It is composed of a Quadrilateral plate Bending Element with Shear
deformation (QBESH) and a Quadrilateral Membrane element with Rotational degrees
of Freedom (QMRF). The element nodes are numbered clockwise 1-2-3-4, referring to
Figure 2.10. Each of the four nodes have six degrees of freedom: u, v, w, rx, ry , rz where
ri refer to rotation about axis i.

Figure 2.10: FFQ4 element used in Fedem 2

The FFQ4 shell element is unfortunately poorly documented, but is based on free formula-
tion theory developed by Pål Bergan, Magne Nygård et.al. where an element is constructed

2Image courtesy of [12]
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of two parts: one for describing rigid body modes, and one describing higher order terms
[13, 14]. From Fedem version 7.3, the FFQ4 shell element is replaced with a new element:
ANDES, proposed by Felippa, Militello in [15] and researched by Haugen, Skallerup in
[16].

2.4.5 Degree of Freedom Ordering in Fedem

The mass and stiffness matrix in Fedem is, similarly to ANSYS, restructured by the Fedem
solver, in order to reduce disk requirements and make the solving process more efficient.
The mapping of equation number to corresponding degree of freedom is defined in the
file MEQN.res, which is written to the Fedem solver directory by the additional solver
option -debug 3. This mapping is used in the CMS reduction process, when the full
mass matrix is partitioned into

M =

[
Mee Mei

Mie Mii

]

The partitioning process is easier understood by a small example. We create a custom
mass matrix where every element in the matrix is set to its corresponding index number
(row-column):

M =


11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55


The mapping of degree of freedom to the corresponding equation is given by the following
Python-style dictionary:

1 mapping = {
2 1: 3,
3 2: 4,
4 3: 5,
5 4: 1,
6 5: 2
7 }

The dictionary maps DOF number to the corresponding equation: mapping[dof] =
equation, e.g. mapping[1] = 3, mapping[4] = 1.

When the matrix is partitioned, the equations corresponding to the external nodes are
moved to Mee, while the equations corresponding to the internal nodes are moved to
the Mii part of the matrix. The Mei, Mie parts of the matrix will be a combination of the
equations from the external and internal nodes. In addition, Fedem sorts the partitioned
parts by ascending equation number.
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The partitioning process will first move the rows corresponding to the equation numbers
of the external and internal degrees of freedom. If the external degrees of freedom are
chosen to be

[
2 5

]
and internal degrees of freedom are

[
1 3 4

]
, the M matrix will be

restructured to the following after moving the rows:


21 22 23 24 25
41 42 43 44 45
11 12 13 14 15
31 32 33 34 35
51 52 53 54 55


Next, the columns are moved, resulting in the partitioned matrix


22 24 21 23 25
42 44 41 43 45
12 14 11 13 15
32 34 31 33 35
52 54 51 53 55


The partitions of the matrix will then be

Mee =

[
22 24
42 44

]
Mei =

[
21 23 25
41 43 45

]

Mie =

12 14
32 34
52 54

 Mii =

11 13 15
31 33 35
51 53 55



2.5 Software Development

When developing software, many related processes lead to the production of a software
system; specifications for the software’s functionality are set, the software is developed
and it is validated to ensure it meets the set specifications. Hence, the process of how
one develops software should be investigated in order to optimize the process. Multiple
models for software processes exist. For simplification, it is possible to divide the type of
processes in two: plan-driven processes and agile processes. In plan-driven processes all
process activities are planned in advance of the development. Progress made in the project
as well as the resulting product is then measured against the plans set before development
has started. In agile processes, the planning is continuous, and is a subject of change
through the whole development process. Incremental development is one type of agile
process.
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Figure 2.11: Incremental development process.

When software is developed incrementally, it is based on the idea that one develops an
initial version of the software. This is then tested and feedback is generated. The software
will then evolve in incremental versions until a system meeting the requirements set has
been developed. The specification, development and validation phases of the project will
always be subject for change through the whole development. This is illustrated in Figure
2.11. In this way it reflects the way humans solve problems: a complete solution to a
problem is rarely known in advance, but we move closer to a solution in small steps, and
backtrack if a mistake is discovered. Sommerville [17] states three major advantages to
incremental development:

• There is little cost related to implementing changes in requirements, as the speci-
fication, development and validation processes are always continuous and open for
change. This means the amount of analysis and documentation that has to be redone
when requirements change is reduced.

• It is easier to get feedback on work in development, as one at an early stage of the
development process tries to have a working, initial version of the product. For
people outside the development process, it is easier to judge a product and perhaps
edit its specifications if they can have it demonstrated.

• It is possible to gain value from a product at an early stage in the process, as some
stand-alone features might be available for use.

2.5.1 Validating Software by Unit Testing

Unit testing is the process of testing the small units that make up a computer program.
Individual functions are usually seen as the simplest type of component, and is therefore
usually the target for unit testing. When performing unit testing, the aim is simply to test
if your functions behave as expected. This is accomplished by calling these routines with
a range of different input parameters, and montoring if the expected result is returned or
produced. Ideally, functions should be tested in isolation. This means that the test should
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be free of dependencies to other parts of the program. In this way, we ensure that we are
actually testing the desired unit of the program.

IronPython offers an automated unit testing framework unittest [18] for writing and
running tests. It gives the possibility to run all tests written for a program, and reports
the outcome of each individual test. The automated tests of unittest consist of three
parts:

1. Setup part: Here, one can set up the initial state of the program. The setup is run
before each single test, ensuring equal initial conditions for each test.

2. Call part: This is where the object or function to test is being called from the testing
framework.

3. Assertion part: The behavior of the function is compared to what is expected.
An evalutaion of the assertion that evaluates to True means that the test has been
successful, if it is False, it has failed.

The following example, taken from [18] with small modifications, shows a small, basic
example of testing the behavior of Python’s random module

Basic Unit Test Example

1 import random
2 import unittest
3
4 class TestSequenceFunctions( unittest .TestCase) :
5
6 def setUp( self ) :
7 self . seq = range(10)
8
9 def test shuffle ( self ) :

10 # make sure the shuffled sequence does not lose any elements
11 random. shuffle ( self . seq)
12 self . seq . sort ()
13 self . assertEqual ( self . seq , range(10))
14
15 def test choice ( self ) :
16 element = random.choice( self . seq)
17 self . assertTrue (element in self . seq)
18
19 if name == ’ main ’ :
20 unittest .main()
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Method

ANSYS supports the same CMS model reduction as implemented in Fedem. This means
that ANSYS is able to generate the same reduced mass, stiffness and transformation ma-
trix H as needed by Fedem to perform dynamics analyses. And this again means that
the reduced models from ANSYS could be used in the Fedem environment, allowing the
following benefits:

• Creating models could be performed in ANSYS with the CAD programs ANSYS
SpaceClaim or ANSYS DesignModeler. The CAD programs support parametriza-
tion of the models, which in return facilitates the analysis of design changes.

• The ANSYS Meshing program could be used to create finite element meshes. The
program supports advanced mesh configuration tools like automated inflation, physics-
aware meshing and controls for moving, merging and editing nodes and elements.

• When meshing is performed in ANSYS, the full finite element library [9] of AN-
SYS is available. Currently (Version 19.2) it contains 146 different elements. Each
element type is thoroughly documented, and specific elements for different applica-
tions are available.

• The extensive material data and material designer capabilities of ANSYS could be
integrated in the models. This makes it possible to model composite materials,
anisotropic material and more in the analysis.

• Using a combination of ANSYS and Fedem for analyses would make it possible to
verify results to a larger extent than what is currently possible. Identical analyses
could be performed using both systems, thus extending the possibilities for verifying
results.

This chapter will introduce the ANSYS ACT extension ”ModRed” that will enable an
easy-to-use integration of CMS model reduction performed in ANSYS into Fedem. Its
implementation details will be explained, and different use cases will be presented.
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3.1 The ModRed Extension for Performing CMS Model
Reduction in ANSYS

In order to open and analyze models in Fedem, the following matrices and data is needed:

• The reduced mass matrix by CMS reduction: m = HTMH

• The reduced stiffness matrix by CMS reduction: k = HTKH

• A FE mesh in .nas, .fem or .ftl format

• The assembled gravity vectors G

The ACT extension ”ModRed” is able to create all of these matrices and data, enabling
easier integration between ANSYS and Fedem.

3.1.1 Installation

The ModRed extension will be available both as a compiled WBEX file, as well as a scripted
extension containing the full source code. Installing the extension is an easy procedure,
but differs slightly depending on what type is to be installed:

Compiled WBEX extension
In ANSYS Workbench, go to

Extensions→ Install Extension

and select the .wbex file in the file dialog. This will install the extension to the ANSYS
environment. If the extension does not show, try checking the ”Loaded” box for ModRed
under Extensions→ Manage Extensions

Scripted extension
In ANSYS Workbench, open the ACT Start Page tab. From there, go to Manage Exten-
sions, click the Settings icon and select Add Folder. Then select the folder containing the
file ModRed.xml. This will install the extension into the environment, and also allows
editing the source code while using the extension. When opening the ANSYS Mechanical
program, the ModRed extension is added to the toolbar, as seen in Figure 3.1

Figure 3.1: The ModRed extension loaded into the toolbar. The left button places ModRed in the
ANSYS Mechanical solution tree. The right button exports Fedem data.

Figure 3.1 shows the ModRed app loaded into the ANSYS Mechanical model tree, as
a new ”Solution” type. This allows the extension to edit solver commands as well as
performing post-processing manipulation of solver data.
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Figure 3.2: The ModRed extension loaded into ANSYS Mechanical

3.1.2 Importing a model into ANSYS Mechanical

There are multiple ways to import models into the ANSYS Mechanical program. Common
for all is that this process is handled by ANSYS Workbench.

Importing an Existing Mesh

If the model and mesh is already defined, ANSYS may import the mesh file through the
External Model module, Figure 3.3

Figure 3.3: Importing an existing mesh into ANSYS Mechanical

From the External Model module, the file formats possible to import are listed in Table
3.1
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APDL Common
Database

Abaqus
Input

NASTRAN
Bulk Data

Fluent
Input ICEM CFD LS-DYNA

.cdb .inp .bdf, .dat, .nas .msh, .cas .uns .k

Table 3.1: Supported mesh file formats for import to ANSYS Mechanical

When using the External Model module to import a meshed model, ANSYS will convert
the element type used in the external system to the most similar ANSYS element type in
order to be able to solve the system.

Modelling From Scratch in ANSYS

If the modelling is to be performed in ANSYS, a Geometry component is used to import
the model from the modelling program and into ANSYS Mechanical. Figure 3.4 shows a
model made in DesignModeler being imported into ANSYS Mechanical. This method is
the most versatile, as the geometry made in ANSYS is possible to parametrize, making it
possible to perform analyses on multiple geometrical variations.

Figure 3.4: Import a Native Model
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3.1.3 Defining Settings for the ModRed Extension

Figure 3.5: The ModRed extension loaded into ANSYS Mechanical

Selecting external nodes

As ANSYS is not going to perform any analyses, only calculate the reduced stiffness
and mass matrices, one only needs to perform the generation pass of CMS reduction in
ANSYS. Here, the user selects what nodes to be used as external or ”triads” in Fedem.
ANSYS will then mark these as master nodes when the APDL solver is invoked. The
external nodes may be selected in two ways:

Geometry Selection: Using the integrated ANSYS tool for selecting geometry, the user
may simply select the nodes that will be set as triads in Fedem. Using the node selection
tool, Figure 3.6, changes the view to render the mesh, and allows only nodal points to be
selected. Press Ctrl while selecting nodes to select multiple nodes.

Figure 3.6: Node selection tool

Named Selection: ANSYS also allows selecting the desired nodes and saving them to a
Named Selection which may be accessed from the ModRed settings. In this way, the user
can select and save multiple sets of external nodes in order to decide what will yield the
best results.

Setting Model Reduction Settings

The ModRed extension allows the user to select two types of model reduction: Guyan and
CMS reduction. If the Guyan reduction option is selected, no additional component modes
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are selected, and the transformation matrix is H = HGuyan from Section 2.2.1. If the CMS
reduction method is chosen, the user also gets the possibility of setting the number of
component modes to be extracted from the model. The transformation matrix will then be
set as H = HCMS, from Section 2.2.2.

The File name tab allows the user set a file name that will be given to the .ftl file and
binary .fmx files to be generated. This is useful if multiple parts is to be reduced. A
unique name for each part will then make the process of importing the data into Fedem
easier.

The user can also select whether or not to use lumped matrices. Setting the option to Yes
will force the APDL solver to use the LUMPM command that makes the solver use a lumped
mass approximation for reducing the disk space needed to save the matrices.

Setting Export Options

In the Export Options, the user can select whether the matrices are to be exported or not.
This is beneficial if the user wants to force ANSYS to not export new matrices on every
Solve command. In the Fedem File Directory tab, the user selects to which folder to output
the generated .ftl and .fmx files.

3.1.4 The APDL Commands Written by ModRed

Once all necessary settings to perform the model reduction has been set, the model is
ready to be solved. This is done by hitting the Solve button. This will then invoke the
onSolve() method in ModRed.py, which adds APDL commands to the ds.dat file
to be read by the solver, as explained in Section 2.3.1. The code below shows an excerpt
from the ds.dat file that is generated when solving a model with nodes 1, 2, 3, 4 selected
as the external nodes. See the comments marked with ! for more information about each
command. Extensive documentation for each command is found in [19].

Excerpt from ds.dat

1 ! ****** Begin Command Snippet ******
2 !
3 ! Commands written by ModRed
4 !
5 finish
6 / filname , master ! Setting the file name
7 save
8 / solu
9 antype , substr !Defining a substructure analysis ( includes both Guyan and CMS)

10 outpr , nsol , all ! Print command that must be defined if iokey==”tcms”
11 cmsopt, fix ,2,,,,, tcms !Fixed interface normal modes with 2 component modes
12 seopt , master , 2, 0, 0, , ! Super element name and generating mass+ stiffness matrix
13 m, 1, all ! Setting node 1−4 as master nodes, ”having access to” all degrees of

freedom
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14 m, 2, all
15 m, 3, all
16 m, 4, all
17 alls ! Selecting all nodes before solving
18 solve
19 save
20 finish
21 ! Master node selection finished
22 ! Exporting matrices ...
23 *dmat, cst , d, import , tcms, master . tcms, cst ! Importing the CST matrix
24 *dmat, nor , d, import , tcms, master . tcms, nor ! Importing the NOR matrix
25 save
26 *export , cst , mmf, CST.mmf ! Exporting CST and NOR matrices to MMF format
27 *export , nor , mmf, NOR.mmf
28 /aux2
29 fileaux2 , master , sub ! Specifying to dump the reduced matrices
30 hbmat, M red, hbmat, , ascii , mass, no !Dumping reduced mass and stiffness matrix to

Harwell−Boeing format (16−decimal precision)
31 hbmat, K red, hbmat, , ascii , stiff , no
32 fileaux2 , master , full ! Specifying to dump full matrices
33 hbmat, M full , hbmat, , ascii , mass, no, yes ! Dumping full mass matrix in

Harwell−Boeing format (16−decimal precision)
34 finish
35 *smat, M red, d, import , hbmat, M red.hbmat, ascii ! Importing Harwell−Boeing format

matrices
36 *smat, M full , d, import , hbmat, M full .hbmat, ascii
37 *smat, K red, d, import , hbmat, K red.hbmat, ascii
38 *export , M red, mmf, M red.mmf ! Exporting matrices in MMF format (maintains

16−decimals precision)
39 *export , M full , mmf, M full.mmf
40 *export , K red, mmf, K red.mmf
41 save

3.1.5 Matrix Export

When the model has been solved with the added APDL commands seen in Section 3.1.4,
matrices are then exported to the ANSYS solver directory. This can be accessed by right-
clicking the Solution in the ANSYS Mechanical tree and then selecting Open Solver Files
Directory. The following matrices are written to this directory:

• M full.mmf: This is the full mass matrix, saved in a sparse format, and formatted
in the MatrixMarket file format. Note also the following:

– The matrix is saved column-first.

– In order to utilize symmetry and reducing storage space needed, only the lower
triangular part of the matrix is saved in the .mmf file.
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• M full.mapping: Mapping file for the full mass matrix. This relates node to the
corresponding equation in the matrix.

• M red.mmf, K red.mmf: The reduced mass and stiffness matrix, saved in sparse
format.

• CST.mmf: The static part of the transformation matrix H, namely

CST =

[
I
B

]
(3.1)

CST is saved in dense form, column-first

• NOR.mmf: The component modes part of the transformation matrix H, namely

NOR =

[
0
Φ

]
NOR is saved in dense form, column-first

3.1.6 Generation of files to be read by Fedem

When the model has been solved, the user can click the Export Fedem Data button in the
ModRed toolbar, thus invoking the onExportData() method in modRed.py. The
full mass matrix will then be partitioned into external and internal parts as described in
Section 2.4.5.

For visualising the solved model in Fedem, a .ftl file of the model is created and saved in
the specified Fedem directory. Binary .fmx files containg the reduced mass and stiffness
matrix and gravity vectors are also generated.

3.2 Verifying Data From the ModRed Extension

In order to verify that all matrix handling is performed correctly, an IronPython Unit Test
framework has been set up. Here, all methods that are involved in matrix calculations are
tested for common errors for ensuring correct code and matrix calculations. An excerpt of
what is tested is shown in the following section.

Verification of Matrices

The exported matrices from ANSYS in MatrixMarket Format need to be read by the
ModRed extension in order to generate the needed Fedem files. As the used math library
Math.NET.Numerics.LinearAlgebra [20] does not have any built-in functions
for reading MatrixMarket formatted files, this method has to be written customly for the
ModRed app. Thus, it is important that the matrices are read correctly before further cal-
culations.
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Testing that the matrix is read properly could be done through unit testing. The following
code snippet shows how it is verified that the matrix is correctly read into IronPython by
verifying the number of rows and columns on a test file, as well as checking some entries
custom-picked from the ASCII-formatted .mmf file.

1 def test readMMFMatrix full( self ) :
2 path = self . resourcesFolder + ”\\beam.nas” + ”\\Ansys” + ”\\M full.mmf”
3 mat = ModRed.readMMFMatrix(path, ”full”)
4
5 # Checking if dimensions are correct
6 self . assertEqual (mat.RowCount, 630)
7 self . assertEqual (mat.ColumnCount, 630)
8
9 # Checking some values at the boundaries :

10 self . assertEqual (mat [0,0], 8.688888888888170E−02)
11 self . assertEqual (mat[0, 629], 0)
12 self . assertEqual (mat[629, 0], 0)
13 self . assertEqual (mat[629, 629], 1.448148148148030E−16)
14
15 # Testing random values:
16 self . assertEqual (mat [23,23], 1.448148148148030E−16)
17 self . assertEqual (mat[285,243], 3.620370370370130E−07)
18 self . assertEqual (mat[291,291], 5.792592592592110E−06)

Testing for Symmetry

The generated mass and stiffness matrix should be symmetrical, both for the full and for
the reduced versions. This is verified by the following simple test, which is also performed
on the reduced mass matrix:

1 def test readMMFMatrix full isSymmetric( self ) :
2 path = self . resourcesFolder + ”\\beam.nas” + ”\\Ansys” + ”\\M full.mmf”
3 mat = ModRed.readMMFMatrix(path, ”full”)
4
5 # Checking if matrix is symmetric:
6 for row in range(0, mat.RowCount):
7 for col in range(0, mat.ColumnCount):
8 self . assertEqual (mat[row, col ], mat[col , row])
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Testing for Consistent Mass

In order to verify that the mass matrix has a consistent mass after reduction, one can
compute the total mass of the system by pre- and post-multiplying the system with unit
translation in x, y and z direction:

mtotal = uT
transmutrans (3.2)

This is then compared with the mass of the model computed by Fedem. The same test is
done with the full mass matrices by the following unit test:

1 def test readMMFMatrix red correctMass( self ) :
2 ”””
3 Applying unit translation in x, y, z direction
4 and verifying that it is the same mass as computed in Fedem
5 ”””
6 path = self . resourcesFolder + ”\\beam.nas” + ”\\Ansys” + ”\\M red.mmf”
7 mat = ModRed.readMMFMatrix(path, ”sub”)
8 correct mass = 3.12800E+01
9

10 for i in [1, 2, 3]:
11 u = ModRed.createUnitVector(i , 4, 2)
12 m = u.Transpose() . Multiply(mat). Multiply(u) [0,0]
13 self . assertAlmostEqual( correct mass , m)

Note that the assertAlmostEqual method is used, as there will be a small difference
in results because of floating point precision. The assertAlmostEqual method tests
for equality down to 7 decimal places by default.

Testing if matrix is diagonal

As both mass and stiffness matrices will be diagonal, one could check if elements not
on the diagonal are zero. This is best tested after the matrix has been partitioned, as the
partitioned matrix should remain diagonal.

1 def test massMatrix diagonality ( self ) :
2 #
3 # Verifying that a lumped matrix is diagonal
4 #
5 mat = ModRed.readMMFMatrix(self. resourcesFolder + ”\\beam.nas” + ”\\Ansys” +

”\\M full lumped.mmf”, ”full”)
6 for row in range(0, mat.RowCount):
7 for col in range(0, mat.ColumnCount):
8 if row == col :
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9 self . assertTrue (mat[row, col ] != 0.0 )
10 else :
11 self . assertTrue (mat[row, col ] == 0.0)

Testing if Matrices are Partitioned Correctly

Testing if the matrices are partitioned correctly may only be partially done. This is due to
the fact that Fedem, which is used as a reference, does only export the full, unpartitioned
mass matrix M, the Mee part of the partitioned matrix, and the reduced mass matrix m.
ANSYS does only export the full mass matrix M and the reduced mass matrix m. This
implies that it could only be verified that the Mee part of the matrix is partitioned correctly.
It should be noted that this only tells us that Mee is partioned in an identical way as done
by the Fedem reducer, not that it is identical to what ANSYS does, because ANSYS does
not export the partitioned matrix. An example of testing the partitionMatrix function is
shown in the following:

Test of partitionMatrix function

1 def test partitionMatrix beam Mee ( self ) :
2 # Testing with M full from beam.nas (medium model)
3 mapping = ModRed.readMappingFileFedem(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\MEQN.res”)
4 M full = ModRed.readFedemMatrix(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\M full.res”)
5 eNodes = [1, 2, 3, 4]
6 iNodes = [ i for i in range(5, 106)]
7 M full partitioned = ModRed.partitionMatrix(M full , eNodes, iNodes, mapping, 6)
8 # Using M ee from Fedem as reference
9 M ee = ModRed.readFedemVector(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\M ee.res”)
10
11 for row in range(0, M ee.RowCount):
12 for col in range(0, M ee.ColumnCount):
13 self . assertAlmostEqual( M full partitioned [row, col ], M ee[row, col ])
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Results

Testing has been performed with the three FE models listed in Table 4.1. All models are
NASTRAN .nas files created in an external CAD system. For acquiring matrices from
ANSYS, the model is imported through the External Module component and opened in
ANSYS Mechanical. The ModRed extension is then used for selecting external nodes and
exporting the needed matrices. To acquire matrices from Fedem, the same external nodes
as defined in ANSYS have been selected, and the fedem reducer module is run. The
matrices are then read from the result file fedem reducer.res for analyses.

Small Medium Large

Fedem element QUAD4 QUAD4 QUAD4
ANSYS element SHELL181 SHELL181 SHELL181
Number of nodes 6 105 7869
Number of elements 2 80 7680
Material Steel Steel Aluminium
Thickness [m] 0.02 0.02 0.01
Number of selected external nodes 2 4 4
File name twoQUAD4 beam plate

Table 4.1: FE models used for testing the ModRed extension

The small model can be seen in Figure 4.1. It is very simple, containing two 4-node shell
elements, with node 1 and 3 chosen to be external. The model is used because it facilitates
easier debugging of its corresponding matrices and degree of freedom ordering.
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Figure 4.1: The small test model put togeter of two 4-node shell elements. The external nodes are
marked green.

4.1 Similarity of Mass Matrices between ANSYS and Fe-
dem

When analyses of dynamics is performed in Fedem, it is vital that the structural matri-
ces for the models yield identical results, independent of what the origin of matrices are.
When the ModRed app is to be used for enabling analyses in Fedem, FE models and their
associated structural matrices are likely to be of two different origins:

1. The FE model will be made in an external CAD software and exported to a file
format that could be imported by Fedem. The external nodes (triads) will then be
selected in Fedem, and the Fedem reducer will be used to generate the reduced mass
matrix m used in calculations.

2. The FE model is created or imported to ANSYS. The external nodes will then be
selected in ANSYS Mechanical, and the internal ANSYS APDL solver will be used
for calculating the reduced mass and stiffness matrix. These matrices will then be
saved in a binary .fmx format and read by Fedem. The Fedem reducer will not be
used.

In order to test the similarity of structural matrices in ANSYS and Fedem, structural ma-
trices for the models seen in Table 4.1 have been generated in both ANSYS and Fedem
and then compared. In order to quantify their internal difference, the Euclidean distance
d between the sum of the two matrices is calculated. Then the relative difference α of the
distance compared to the reference matrix is calculated:

d =

√√√√ n∑
i=1

n∑
j=1

(aij − bij)
2

α =
d∑n

i=1

∑n
j=1 bij
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Here, aij is the elements of the matrix that will be compared, and bij is the matrix used
as reference. n is the total number of rows in the matrices. When using this method for
comparing matrices, α = 0 means the two matrices are identical. α = 1 would imply
there is a 100% difference between the matrices. I.e. a matrix filled with 2’s compared
to a matrix filled with 1’s used as a reference, would give α = 1. In the analysis, Fedem
mass matrices are used as a reference in all models.
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Figure 4.2: Percentage difference of full and reduced mass matrices from Fedem and ANSYS in
relation to the number of nodes in the model

Figure 4.2 shows the percentage difference α of the full and reduced mass matrices of the
test models. The full mass matrices yield good results for models with > 100 nodes, with
α < 10−5. For the small model with only six nodes, about 1% difference is obtained.
The reduced mass matrices however, show overall relatively poor results, with α values
indicating 10 − 15% difference between the reduced ANSYS and Fedem matrices. This
means that if one were to set an acceptance limit of 1% difference, indicated in the figure,
none of the reduced matrices would pass. Despite their poor α results, the reduced matrices
are used in the following results, where they are, surprisingly, proven to yield some very
good results. The results are further discussed in Section 5.1.
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4.2 Testing for Consistent Mass in Models

As the full mass matrix is reduced in order to be used by Fedem, a key test for verifying
that the reduced mass matrices are reduced correctly is to calculate the total mass of the
model from the reduced mass matrix, and compare it to the total mass calculated from the
full model. The model’s total mass could be found by pre- and post-multiplying the mass
matrix with unit translation in the x, y and z direction, similar to what is done in Section
2.4.3:

mtotal = UT
x,redmUx,red (4.1)

The calculated total mass from reduced mass matrices in ANSYS is then compared to
the calculated total mass from the full mass matrix from Fedem for all models. The full
Fedem mass matrix is used as a reference in all calculations. The reference weight is found
as an average of resulting weight of the full Fedem model after x, y and z translation.
Mass calculated from the reduced mass matrices is also found as an average of x, y and z
translation.

Ref. [kg] Diff. [%]

Small 312.8 −2.24× 10−12

Medium 31.28 −1.14× 10−10

Large 5.184 8.22× 10−10

Table 4.2: Mass of test models calculated from the reduced mass matrix compared to mass calcu-
lated from the full mass matrix

Table 4.2 shows resulting percentage difference of mass calculated from the reduced mass
matrix compared to mass calculated from the full mass matrix. For all models, there is
close to no difference between the calculated masses. This indicates that the reduction
process has been successful.

4.3 Calculation of Gravity Vectors

Gravity vectors have been calculated for all three test models and compared to the gravity
vector given by Fedem, which is calculated from the full mass matrix. For quantifying
the vectors’ similarity to the Fedem gravity vector, the relative difference α based on the
Euclidean distance (4.1) is used. However, because we are now comparing two vectors,
namely gx from Fedem and ANSYS, the Euclidean distance d is found by summing all
entries in the 1-dimensional vector. The same is done in y and z direction. The gravity
vector from Fedem is used as reference for all models.

Both the full and reduced mass matrix from ANSYS have been used for calculating gravity
vectors, following the equation set described in Section 2.4.3.
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Figure 4.3: Relative difference of the gravity vector from Fedem and ANSYS, calculated with
Fedem vectors used as reference

Figure 4.3 presents the resulting differences α between the gravity vectors. Resulting
vectors when using the full mass matrix M are shown in filled black color, while resulting
vectors when using the reduced mass matrix m are shown in un-filled grey. The results
are very varied: some gravity vectors are nearly identical to gravity vectors from Fedem,
namely the small model’s x vector, the medium model’s x and y vector and the large
model’s z and x vector, all from the reduced mass matrix. They have all α < 10−11. If
one were to set α = 0.01, corresponding to a 1% difference between ANSYS and Fedem
vectors, as an acceptance limit, 12 out of 18 vectors are considered to have acceptable
results. The worse result are obtained in the z vector from the medium model. Here,
using both the full and reduced mass matrix gives 36.5% difference between ANSYS and
Fedem vectors. Interestingly, using the reduced mass matrix generally gives better results
than using the full mass matrix, with 5 vectors having α < 10−11.

There seem to be no ovious patterns regarding what direction gives the best results: both
x, y and z vectors have α values close to the 1% difference mark, but are also almost
identical to the Fedem reference in other models. Surprisingly, the number of nodes in
the model seems to have almost no effect on the α values, although the large model gives
acceptable results, with α < 3.9 · 10−3 for all vectors.
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4.4 Replicating Fedem Gravity Vectors

Due to the varied results when calculating gravity vectors from ANSYS matrices, gravity
vectors using M and H matrix from Fedem have been calculated in order to replicate the
results given by Fedem. The medium model is used for testing, and results are shown in
Table 4.3. 1

gx gy gz

α 8.15× 10−9 8.94× 10−9 3.34× 10−8

Table 4.3: Verifying the calculations made in the ModRed extension by replicating gravity vectors
from Fedem by using Fedem matrices in all calulations

The results are very close to what Fedem gives, with all vector directions having α <
3.34 × 10−8. Even better results could probably be obtained if a higher precision on the
exported Fedem matrices were chosen. Here, six decimals were used. These results verify
that the calculations performed in the ModRed extension are able to replicate calculations
performed by Fedem. Further comments to why the gravity vectors from using ANSYS
matrices do not show better results are discussed in Section 5.1.

4.5 Generation of FTL Files in ANSYS

For models to be displayed in Fedem, a .ftl file of the model needs to be generated. It
defines node coordinates as well as nodal and element connectivity in the model. When the
Export button in the ModRed extension is pressed, a .ftl file of the model is generated
along with binary .fmx files containing the reduced stiffness, mass and gravity vectors.
For the simple twoQUAD4 model, the generated .ftl file is given as

FTL file for the twoQUAD4 model

1 FTLVERSION{4 ASCII}
2 #
3 # FTL file generated by ModRed at 2019−06−07 08:59:07
4 #
5
6 #
7 # Nodal coordinates
8 #
9 NODE{1 1 0.0 0.0 0.0}

10 NODE{2 0 1.0 0.0 0.0}
11 NODE{3 1 2.0 0.0 0.0}
12 NODE{4 0 0.0 −1.0 0.0}

1Performed in test results.py, in method
test quadraticSumDifference gravityVector beam Fedem
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13 NODE{5 0 1.0 −1.0 0.0}
14 NODE{6 0 2.0 −1.0 0.0}
15 #
16 # Element definitions
17 #
18 QUAD4{1 5 4 1 2 {PTHICK 1} {PMAT 1}}
19 QUAD4{2 6 5 2 3 {PTHICK 1} {PMAT 1}}
20 #
21 # Local coordinate systems
22 #
23 PCOORDSYS{2 0 0 0 0 0 1 1 0 0}
24 #
25 # Material properties
26 #
27 PMAT{1 2.07e+11 8.02e+10 0.29 7820}
28 #
29 # Shell thicknesses
30 #
31 PTHICK{1 0.02}
32 #
33 # End of file

Currently, dummy values for the coordinate system, material properties and shell thickness
is inserted, but should in the future be read from the ANSYS API. A future version of
Fedem should also be able to detect that the model is reduced externally, and then use
the .fmx files created by ModRed in analyses. This could for example be accomplished
by reading the header of the .ftl file. If it says ”FTL file generated by ModRed at
...”, Fedem should recognize that it is an externally reduced model, and not start its own
reducer.

Figure 4.4 shows the twoQUAD4 element opened in Fedem from the ModRed generated
FTL file. The external nodes in the top left and right, with node ID 1 and 3, are correctly
read and marked with a green triad.

4.6 Screencast Demonstration of the ModRed Extension

A video demonstrating the features of ModRed has been made and can be watched at
https://youtu.be/-E5c-ZojjsE. It is demonstrated how to import models, the
different settings for the extension, as well as how to import the generated .ftl file into
Fedem.
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Chapter 4. Results

Figure 4.4: Visualisation of the twoQUAD4 element in Fedem, read from the ModRed generated
FTL file
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Chapter 5

Discussion and Future Work

5.1 Instability of Results

When observing the results obtained from the current version of the ModRed extension,
there are some interesting observations to note:

• The full mass matrix M from ANSYS is shown to have much similiarity with the
mass matrix generated by Fedem when the number of nodes is sufficiently high
(over 102).

• The reduced mass matrices from ANSYS show less similarity, from 10 to 15% dif-
ference from Fedem matrices. However, when the same reduced mass matrices are
used for calculating the gravity vector, some very good results are obtained - in fact,
the gravity vectors from the reduced mass matrix are more similar to what Fedem
gives than the gravity vectors calculated from the full mass matrix.

• Testing the mass matrices for mass consistency after partitioning shows us that no
element data is lost in the process.

• If using H and M from Fedem when calculating gravity vectors, identical results
are obtained from the ModRed extension as what is calculated by Fedem, indicating
that the ModRed extension is replicating the calculations performed in Fedem.

From this, it seems likely that the reason for the inconsistent results comes from how AN-
SYS is structuring its mass matrices, and that this is not handled correctly by the ModRed
extension. In the following, it is shown that partitioning of an ANSYS mass matrix, with
the identical partitioning method as used by a Fedem mass matrix, does not generate an
ANSYS mass matrix partitioned identically as the Fedem reference.

Test of Matrix Partitioning

1 def test partitionMatrix difference twoQUAD4 ( self ) :
2 ”””
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3 Testing if Fedem and ANSYS matrices are partitioned correctly .
4 Using the partitioned Fedem matrix as reference , as this is proven to yield
5 the identical gravity vector as Fedem calculates .
6 ”””
7 dict fedem = ModRed.readMappingFileFedem(self. resourcesFolder +

”\\twoQUAD4” + ”\\Fedem” + ”\\MEQN.res”)
8 dict ansys = ModRed.readMappingFile(self. resourcesFolder + ”\\twoQUAD4” +

”\\Ansys” + ”\\M full lumped.mapping”)
9 M full fedem = ModRed.readFedemMatrix(self. resourcesFolder + ”\\twoQUAD4” +

”\\Fedem” + ”\\M full.res”)
10 M full ansys = ModRed.readMMFMatrix(self. resourcesFolder + ”\\twoQUAD4” +

”\\Ansys” + ”\\M full lumped.mmf”, ”full”)
11
12 eNodes = [1, 3]
13 iNodes = [2, 4, 5, 6]
14 fedem = ModRed.partitionMatrix(M full fedem, eNodes, iNodes, dict fedem , 6,

sorting =”equation”)
15 ansys = ModRed.partitionMatrix( M full ansys , eNodes, iNodes, dict ansys , 6,

sorting =”equation”)
16
17 for row in range(0, ansys .RowCount):
18 for col in range(0, ansys .ColumnCount):
19 if row==col: # both matrices are diagonal
20 self . assertAlmostEqual(fedem[row, col ], ansys[row, col ], places=1)

Result of Matrix Partitioning Test

r : 0, c: 0, fedem: 39.1, ansys: 39.1
r : 1, c: 1, fedem: 39.1, ansys: 39.1
r : 2, c: 2, fedem: 39.1, ansys: 39.1
r : 3, c: 3, fedem: 0.278214, ansys: 0.00130333333333
r : 4, c: 4, fedem: 0.393552, ansys: 0.00130333333333
r : 5, c: 5, fedem: 0.651667, ansys: 1.30333333333e−13
r : 6, c: 6, fedem: 39.1, ansys: 39.1
r : 7, c: 7, fedem: 39.1, ansys: 39.1
r : 8, c: 8, fedem: 39.1, ansys: 39.1
r : 9, c: 9, fedem: 0.278214, ansys: 0.00130333333333
r : 10, c: 10, fedem: 0.393552, ansys: 0.00130333333333
r : 11, c: 11, fedem: 0.651667, ansys: 1.30333333333e−13
r : 12, c: 12, fedem: 39.1, ansys: 78.2
r : 13, c: 13, fedem: 39.1, ansys: 78.2
r : 14, c: 14, fedem: 39.1, ansys: 78.2
r : 15, c: 15, fedem: 0.278214, ansys: 0.00260666666667
r : 16, c: 16, fedem: 0.393552, ansys: 0.00260666666667
r : 17, c: 17, fedem: 0.651667, ansys: 2.60666666667e−13
r : 18, c: 18, fedem: 39.1, ansys: 39.1
r : 19, c: 19, fedem: 39.1, ansys: 39.1
r : 20, c: 20, fedem: 39.1, ansys: 39.1
r : 21, c: 21, fedem: 0.278214, ansys: 0.00130333333333
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r : 22, c: 22, fedem: 0.393552, ansys: 0.00130333333333
r : 23, c: 23, fedem: 0.651667, ansys: 1.30333333333e−13
r : 24, c: 24, fedem: 78.2, ansys: 78.2
r : 25, c: 25, fedem: 78.2, ansys: 78.2
r : 26, c: 26, fedem: 78.2, ansys: 78.2
r : 27, c: 27, fedem: 0.556428, ansys: 0.00260666666667
r : 28, c: 28, fedem: 0.787103, ansys: 0.00260666666667
r : 29, c: 29, fedem: 1.30333, ansys: 2.60666666667e−13
r : 30, c: 30, fedem: 78.2, ansys: 39.1
r : 31, c: 31, fedem: 78.2, ansys: 39.1
r : 32, c: 32, fedem: 78.2, ansys: 39.1
r : 33, c: 33, fedem: 0.556428, ansys: 0.00130333333333
r : 34, c: 34, fedem: 0.787103, ansys: 0.00130333333333
r : 35, c: 35, fedem: 1.30333, ansys: 1.30333333333e−13

The resulting printout of every diagonal item in the mass matrix shows that the partitioning
of the two matrices is not identical. Using the partitioned Fedem matrix as a reference, one
can see on line 13 that the partitioning of the ANSYS matrix can not be correct. The matrix
entry should equal what Fedem gives (39.2), but is set to 78.2. This obviously wrong, as
the translational DOFs from Fedem and ANSYS are similar (39.1 and 78.2) and should
be set to the same position in both matrices. Attempts to resort the partitioned ANSYS
matrix from other parameters than what Fedem uses - namely ascending equation number
- has not yet proven successful.

The reason this issue is not straight-forward to resolve, is that it is limited what matrices
could be exported from Fedem and ANSYS. From Fedem, one can obtain the full mass
matrix, the Mee part of the partitioned matrix and the reduced mass matrix. From AN-
SYS, you can only obtain the full and reduced mass matrices. This means that the only
reference available for how to partition the mass matrix correctly, is Mee from Fedem.
It has therefore been assumed through the whole development process that ANSYS par-
titions the mass matrix identical to how Fedem does it. However, when it is proven that
partitioning is handled differently in ANSYS, there is no Mee matrix from ANSYS to use
as reference, verifying that the partitioning has been done correctly.

This unresolved issue in matrix partitioning is believed to be the cause for the unstable
results when calculating gravity vectors. The reason some of the gravity vectors gave very
precise results is probably because large portions of the mass matrix is partitioned cor-
rectly, as seen in the example. The gravity vectors that gave very good results are there-
fore believed to have most parts of the mass matrix used for calculating them partitioned
correctly.

The issue of matrix partitioning could also explain why the gravity vectors calculated from
the reduced mass matrix give better results than using the full mass matrix for this. That is
because when using the reduced mass matrix, the issue of matrix partitioning is removed,
as the matrix is already partitioned internally by ANSYS before the reduced mass matrix
is created from pre- and post-multiplying with H

Due to the unstable results, it is difficult to make a general conclusion for the accuracy
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of results obtained from ModRed. However, it is shown that the extension has the capa-
bility of producing precise results, with α < 10−11 for some of the gravity vectors. If
the assumption that the root of unstable results lies in handling matrix partitioning, there
should not be too much work in resolving the issue. In any way, more testing is needed,
as well as some extra functionality discussed next, for the ModRed extension to be used
effectively.

5.2 Future Work

In the following, suggestions for future development of the ModRed extension are listed.
The list is based on experiences from developing the current version of the app, and will
hopefully be a helpful reference in the future.

• Extending the elements supported by the ModRed extension should be a priority.
Not only will it enable extra functionality for the extension, but will also extend
the testing possibilities, thus making it easier to determine its accuracy compared to
Fedem.

• When using ANSYS’ automatic meshing capabilities, ANSYS is likely to create a
mesh containing many different element types for the same model. Shell/membrane
elements are automatically used for thin surfaces, different types of solid elements
could be used for thicker surfaces, and contact elements are used where ANSYS
finds it likely to be a contact point between two surfaces. If the model is to be ex-
ported to a .ftl file, the different elements created by ANSYS need to be mapped
to a corresponding, similar Fedem element. This is currently not supported, as only
SHELL181 elements are handled by the extension. ¨

• When importing the .ftl files into Fedem, it must be detected that the model
has been externally reduced by ANSYS. This could for example be performed by
reading the header of the FTL file, which will say FTL file created by ModRed at
[Date and time]. If the text is detected, Fedem knows that the model is already
reduced.

In the current version of ModRed, the reduced mass matrix is used for calculating
the gravity vectors needed by Fedem. Due to this, the calculations can be performed
faster, as the H matrix is no longer needed for calculations, and thus does not have
to be read line-for-line into the program. However, a future version of the ModRed
extension should probably use the full mass matrix for gravity vector calculations as
this should give better results.

• For future development, it is highly recommended to implement the code base in C#
instead of the current IronPython language. The reasons for this are many:

– Visual Studio, the text editor used for developing the ModRed extension, has
a very limited support for the IronPython framework. For example is no auto-
completion available, and method headers will normally not appear when call-
ing methods written in the extension. This means that every input parameter
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for methods used must be manually checked, resulting in tedious manual work,
as well as code that is much more likely to contain errors.

– The ANSYS ACT API can be read by a C# environment, meaning that every
method available through the API will be listed as auto-completion sugges-
tions when handling ANSYS ACT objects. As the available ACT extension
examples are relatively sparse, the development process often contains much
trial-and-error for figuring out what methods from the API to use. Due to the
lack of auto-completion in Visual Studio, all calls to the API must either be in-
vestigated through the ACT Console in ANSYS Mechanical, looked up online
or in the Developer’s Guide. This is very time-consuming, but the added help
from the IDE if using C# would make this much easier.

– The Visual Studio debugger for IronPython is very unstable and is very likely
to crash when connected to ANSYS Mechanical for debugging. Debugging
the code is therefore often easier to perform with print statements.

• Overriding ANSYS’ choice of elements for a mesh is proven to be a more compli-
cated process than imagined. One can add the APDL command

APDL command for overriding ANSYS’ choice of mesh elements

et , matid, 181

However, as this is a command sent directly to the APDL solver, the override of
element type is not detected by ANSYS Mechanical, meaning there is no graphical
feedback telling the user that the material type has been changed. In addition, the
override of element type is not reflected in ANSYS ACT, meaning that internal node
and element numbering could be altered at solve time.

• When performing model reduction through the ModRed extension, ANSYS Me-
chanical tells the user that an unknown error occured. However, the solver output
from the APDL solver contains no errors, and all internal APDL solver files are gen-
erated. The error message is therefore probably occuring because of two reasons:

1. When defining CMS as the solution type in APDL, we are accessing a solu-
tion type that is not supported by ANSYS Mechanical. Thus it is likely that
the program defaults to show an error message, because it has no graphical
interface for showing the CMS solution type.

2. Many additional files are exported from ANSYS through APDL commands.
Additionally, ANSYS moves all solver files to a temporary folder while the
APDL solver is running. The export operations are therefore likely to be con-
flicting with ANSYS’ internal file movement, which could be the cause for a
default error message.

• In order to obtain 16-decimal precision on the exported mass and stiffness matrix,
the full mass and the reduced stiffness and mass matrices are currently exported
twice. This is because it is found that 16-decimal precision matrices are only ex-
ported in the Harwell-Boeing (.hbmat) format, accessed through the fileaux2

55



Chapter 5. Discussion and Future Work

-> hbmat command. After export to the .hbmat format, the matrices are im-
ported to an APDL Math matrix, and again exported to the Matrix Market For-
mat. This format was found to be much easier to handle than the .hbmat format,
because custom import methods for matrices had to be written, as the Math.NET
package did not support matrix import in any of the formats. However, this double
export is definitely a time- and space-consuming operation, and a method for read-
ing .hbmat matrices should be made. Optionally, the APDL command *MWRITE
should do exactly what we want: writing a matrix to a file in a user-formatted se-
quence. Unfortunately, it has not been possible to make this command work when
writing commands directly to the ds.dat file.
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Conclusion

The ANSYS ACT extension ModRed has been developed in order to perform model re-
duction in ANSYS. By using it, one can access the reduced matrices as well as the needed
transformation matrix after model reduction in ANSYS Mechanical. The matrices from
ANSYS have been tested for equality against reference matrices from Fedem. The ob-
tained results were varied:

• For large models with more than 100 nodes, the full mass matrices from Fedem and
ANSYS are close to identical. However, the reduced mass matrices show overall
poorer results, with the comparison method used indicating 10% to 15% difference
between the reduced ANSYS and Fedem matrices.

• Despite being relatively unequal, the reduced matrices have identical mass to the
full matrices, indicating that no information is lost in the reduction process. When
calculating gravity vectors the reduced mass matrices surprisingly give overall better
results than when using the full mass matrices in calculations.

A possible explanation to the varied results may be found in the way ANSYS structures
their mass matrices differently than Fedem. It has been discovered that matrix partitioning
in ANSYS is performed differently than what is the case in Fedem. This may explain
why the results seem partially inconsistent. Extended testing using a wider range of test
models, as well as resolving the issue on matrix partitioning should therefore be performed
before one can conclude on the accuracy of results acquired from the extension. Despite
the varied results, the extension has proven the potential to become an easy-to-use method
for integrating ANSYS solver capabilities in the Fedem software.
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A

Source Code for the ModRed
ACT Extension

A.1 ModRed.py

ModRed.py

1 import clr
2 clr .AddReferenceToFileAndPath(r”C:\Program Files\ANSYS

Inc\v192\Addins\ACT\bin\Win64\MathNet.Numerics.dll”) # Using the Math.NET dll.
Can not use NumPy, as this is not supported by IronPython.

3 import MathNet.Numerics.LinearAlgebra as la # math library
4 import os
5 import subprocess
6 import datetime # For writing current date in generated FTL file
7 import ctypes
8 import cPickle as pickle # For saving object to file
9 import System

10
11
12 def createUnitVector (pos, nnodes, cmodes=0):
13 ’’’
14 Creates a vector with unit length at the specified position pos.
15
16 :param pos: Int of position to give unit length . 1=UX, 2=UY, 3=UZ, 4=ROTX,

5=ROTY, 6=ROTZ
17 :param nnodes: Int of number of nodes to create unit length for .
18 :param cmodes: Number of component nodes to add unit length
19 return matrix of size ((nnodes*6)+cmodes x 1)
20 ’’’
21 if (pos <= 0):
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22 raise Exception(”pos argument must be int > 0”)
23
24 u = la .Matrix[System.Double].Build .Dense(nnodes*6 + cmodes, 1) # initializing

with zeroes
25 for i in range(pos−1, nnodes*6, 6) : # Adding 1 at position pos
26 u[ i , 0] = 1
27 for i in range(nnodes*6, nnodes*6 + cmodes): # Filling component mode

entries with 0s
28 u[ i , 0] = 0
29 return u
30
31
32
33
34 def onCreateModRed(analysis):
35 ”””
36 Adding the ModRed model object in the model tree
37
38 :param analysis : The currently active analysis
39 ”””
40 if str ( analysis .AnalysisType) == ”Modal”:
41 # Use the analysis to create the APDL Based Result Evaluation result .
42 analysis .CreateLoadObject(”modred”, ”ModRed”)
43
44 else :
45 # Display an error message in the Mechanical message log .
46 ExtAPI.Application .LogError(”Can only select ModRed for Modal analysis .”)
47
48
49 def saveObject (obj , fname):
50 ”””
51 Saves the current object to fedemDir
52 ”””
53 testResourcesPath = ExtAPI.ExtensionManager.CurrentExtension. InstallDir +

”\\ test−resources”
54 with open( testResourcesPath + ”\\” + fname + ”.p”, ”wb”) as input:
55 pickle .dump(obj, input , pickle .HIGHEST PROTOCOL)
56
57
58 def onExportData( analysis ) :
59 ’’’
60 :param analysis : Ansys.ACT.Automation.Mechanical.Analysis object .
61 − Calculates gravity vectors from reduced mass matrix
62 − Creates FTL file for Fedem
63 − Creates FMX files from fmxWriter DLL
64 − All files are saved in solverData . fedemDir
65 ’’’
66
67 ExtAPI.Log.WriteMessage(”Exporting data for Fedem...”)
68 load = analysis .GetLoadObjects(”ModRed”)[0]

64



69 solverData = SolverData( analysis , load) # Creating a SolverData object
for the current analysis .

70
71 # Collecting exported matrices in Math.NET format
72 M red = readMMFMatrix(analysis.WorkingDir + ”M red.mmf”, ”sub”)
73 K red = readMMFMatrix(analysis.WorkingDir + ”K red.mmf”, ”sub”)
74
75 G = calculateGravityVectorReduced (M red, len( solverData . eNodes),

int ( solverData . cModes)) # Using reduced mass matrix
76 # Generating FTL file for Fedem
77 ftlFile = open(os.path . join ( solverData . fedemDir, solverData . filename + ”. ftl ”) ,

”w”) # Creating a new ftl file
78 generateFTL(solverData .getNodes() , solverData .getElements () , solverData . eNodes,

ftlFile ) # Generating FTL file to be placed in the solver directory .
79 ExtAPI.Log.WriteMessage(”FTL file ” + str ( solverData . filename ) + ”. ftl written to

” + solverData . fedemDir)
80
81 # Generating FMX file for Fedem
82 generateFMX(mathNET2list(G), mathNET2list(M red), mathNET2list(K red), solverData )
83
84 def calculateGravityVectorReduced (M red, nENodes, cmodes):
85 ”””
86 Calculates gravity vectors for Fedem from the reduced mass matrix .
87 :param M red: The reduced mass matrix .
88 :param nENodes: Number of selected external nodes
89 ”””
90 # Creating reduced unit vectors
91 u x = createUnitVector (1, nENodes, cmodes)
92 u y = createUnitVector (2, nENodes, cmodes)
93 u z = createUnitVector (3, nENodes, cmodes)
94 u = u x.Append(u y).Append(u z)
95
96 G red = M red.Multiply(u)
97 return G red
98
99

100
101
102
103 def calculateGravityVector (M full , H, nENodes, nINodes, dofs) :
104 ”””
105 Calculates gravity vectors for Fedem from the full mass matrix and H matrix .
106 Follows equations from page 118 in ” Virtual Testing of Mechanical Systems”
107 :param M full: The full , partitioned mass matrix .
108 :param H: The H matrix
109 H =
110 [[ I 0],
111 [B, phi ]]
112 :param nENodes: Number of selected external nodes
113 :param nINodes: Number of selected internal nodes
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114 :param dofs: Number of degrees of freedom for the element
115 ”””
116 # Extracting the partitions of the M matrix
117 partitions = extractPartitions (M full , nENodes, dofs)
118 M ee = partitions [0]
119 M ei = partitions [1]
120 M ie = partitions [2]
121 M ii = partitions [3]
122
123 # Creating unit vectors :
124 u x e = createUnitVector (1, nENodes)
125 u x i = createUnitVector (1, nINodes)
126 u y e = createUnitVector (2, nENodes)
127 u y i = createUnitVector (2, nINodes)
128 u z e = createUnitVector (3, nENodes)
129 u z i = createUnitVector (3, nINodes)
130
131 # Gravitational forces :
132 G x i = M ii . Multiply( u x i ) .Add(M ie.Multiply(u x e) ) # M ii*u x i + M ie *

u x e
133 G x e = M ei.Multiply( u x i ) .Add(M ee.Multiply(u x e))
134 G y i = M ii . Multiply( u y i ) .Add(M ie.Multiply(u y e) )
135 G y e = M ei.Multiply( u y i ) .Add(M ee.Multiply(u y e))
136 G z i = M ii . Multiply( u z i ) .Add(M ie.Multiply(u z e ) )
137 G z e = M ei.Multiply( u z i ) .Add(M ee.Multiply(u z e))
138
139 # Collecting in one matrix :
140 G x = G x e.Stack(G x i)
141 G y = G y e.Stack(G y i)
142 G z = G z e.Stack(G z i)
143
144 # Reducing to unit gravitational acceleration on the full matrix :
145 G x = H.Transpose() . Multiply(G x)
146 G y = H.Transpose() . Multiply(G y)
147 G z = H.Transpose() . Multiply(G z)
148
149 # Collecting gravity vectors in one matrix
150 G = G x.Append(G y).Append(G z)
151 return G
152
153
154
155 def extractPartitions (mat, numENodes, dofs):
156 ”””
157 Extracts the partitions
158 M =
159 [[M ee, M ei],
160 [M ie, M ii ]]
161 from the matrix mat
162 M ee of size (numENodes*dofs, numENodes*dofs)
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163
164 :param mat: Symmetric Math.NET matrix already partitioned into M ee, M ei, ...
165 :param eNodes: Number of selected external nodes
166 :param dofs: Number of degrees of freedom per node
167 ”””
168 nRows = mat.RowCount
169 nCols = mat.ColumnCount
170
171 M ee = mat.SubMatrix(0, numENodes*dofs, 0, numENodes*dofs) # Top left of M
172 M ei = mat.SubMatrix(0, numENodes*dofs, numENodes*dofs, nCols − numENodes * dofs)

# Top right
173 M ie = mat.SubMatrix(numENodes*dofs, nRows − numENodes * dofs, 0,

numENodes*dofs) # Bottom left
174 M ii = mat.SubMatrix(numENodes*dofs, nRows − numENodes * dofs, numENodes*dofs,

nCols − numENodes*dofs) # Bottom right
175 return [ M ee, M ei, M ie, M ii ]
176
177 def mathNET2list(matrix) :
178 ”””
179 Returns a Python list of the items in the matrix
180
181 :param matrix : Math.NET matrix
182 return One−dimensional list of items in matrix saved column−first .
183 ”””
184 list = [0] * (matrix .ColumnCount * matrix.RowCount)
185 index = 0
186 for col in range(0, matrix .ColumnCount):
187 for row in range(0, matrix .RowCount):
188 list [index] = matrix[row, col ]
189 index += 1
190 return list
191
192
193
194 def onSolve(load , stream) :
195 ”””
196 Adds the required APDL commands to the solver input (ds . dat ) file . Activates when

the user hits ”Solve”
197
198 :param load: the load associated to the callback . Interface IUserLoad
199 :param stream: a System.IO. StringWriter object , to which solver commands should be

appended ( represents the ds . dat file )
200 ”””
201
202 # Collecting user input :
203 nodeSelectionMethod = load . Properties [”Generation” ]. Properties [”Geometry”].Value
204 method = load . Properties [”Method”]. Properties [”ReductionMethod”].Value
205 filename =

load . Properties [”Method”]. Properties [”ReductionMethod”]. Properties [”Name”].Value
# string
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206 nmode =
load. Properties [”Method”]. Properties [”ReductionMethod”]. Properties [”Nmode”].Value

# string
207 isUseLumped =

load. Properties [”Method”]. Properties [”ReductionMethod”]. Properties [”LumpedMatrix”].Value
# string

208 eNodes = []
209 if (nodeSelectionMethod==”Geometry”):
210 eNodes = getENodes(load) # List [ int ]
211 if (nodeSelectionMethod==”RBE2 Import”):
212 eNodes = getRBE2Nodes(load)
213 isExport = load . Properties [”Export” ]. Properties [”IsExport” ]. Value
214 if ( isExport == ”Yes”):
215 isExport = True
216 else :
217 isExport = False
218
219 stiffnessName = ”Kmat”
220 massName = ”Mmat”
221 matrixFormat = ”MMF” # Set this to ”. matrix” for lower precision , but more

readable matrices
222
223 #
224 # Writing solver commands to the ds . dat file
225 #
226 stream.WriteLine(” finish ”)
227 stream.WriteLine(”/ filname , ” + filename ) # Name of the super element file to

be generated
228 stream.WriteLine(”save”)
229 stream.WriteLine(”/ solu”)
230 stream.WriteLine(”antype , substr ”) # Defining a substructure analysis type

( includes both Guyan and CMS)
231 if (method == ”CMS”): # If CMSOPT needs to be set
232 cmsmeth = ”fix”
233 nmode = str(nmode)
234 freqb = ””
235 freqe = ””
236 fbddef = ””
237 fbdval = ””
238 iokey = ”tcms”
239 if (iokey==”tcms”):
240 stream.WriteLine(”outpr , nsol , all ”) # Print command that must be

defined if iokey==tcms
241 stream.WriteLine(”cmsopt, ” + cmsmeth + ”,” + nmode + ”,” + freqb + ”,” + freqe

+ ”,” + fbddef + ”,” + fbdval + ”,” + iokey)
242 sename = filename # name of superelement matrix file
243 sematr = str (2) # generate stiffness and mass matrices
244 sepr = str (0) # Do not print superelement matrices or load vectors
245 sesst = str (0) # Do not save space for stress stiffening
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246 stream.WriteLine(”seopt , ” + sename + ”, ” + sematr + ”, ” + sepr + ”, ” + sesst +
”, ,”)

247 for nodeID in eNodes:
248 stream.WriteLine(”m, ” + str (nodeID) + ”, all ”)
249 if (isUseLumped == ”Yes”):
250 stream.WriteLine(”lumpm, on”) # Using a lumped mass matrix
251 stream.WriteLine(” alls ”)
252 stream.WriteLine(”solve”)
253 stream.WriteLine(”save”)
254 stream.WriteLine(” finish ”)
255 stream.WriteLine(”! Master node selection finished ”)
256
257 if ( isExport ) : # Exporting matrices if selected
258 stream.WriteLine(”! Exporting matrices ... ”)
259 # Creating H matrix . H = [CST NOR]
260 stream.WriteLine(”*dmat, cst , D, import , tcms, ” + filename + ”. tcms, cst ”)

# Constraint mode data
261 stream.WriteLine(”*dmat, nor , D, import , tcms, ” + filename + ”. tcms, nor”)

# Fixed− interface normal mode data
262 stream.WriteLine(”save”)
263 if (matrixFormat ==”MMF”):
264 stream.WriteLine(”*export , cst , MMF, CST.mmf”) # Exporting

constraint modes
265 stream.WriteLine(”*export , nor , MMF, NOR.mmf”) # Exporting

fixed− interface normal mode data
266
267 stream.WriteLine(”*smat, nod2solv, D, import , full , ” + filename + ”. full ,

nod2solv”) # Importing the mapping vector internal −> solver ordering
268 stream.WriteLine(”*vec, mapback, I , import , full , ” + filename + ”. full ,

back”) # Importing the BACK nodal mapping vector for external −> internal
ordering .

269
270 stream.WriteLine(”/aux2”) # Manipulating binary files
271 stream.WriteLine(”FILEAUX2, ” + filename + ”, sub”) # Specifying

to dump reduced matrices file
272 stream.WriteLine(”HBMAT, M red, hbmat, , ASCII, MASS, NO”) #

Dumping reduced mass matrix to Harwell−Boeing format for 16−decimal precision
273 stream.WriteLine(”HBMAT, K red, hbmat, , ASCII, STIFF, NO”) # Dumping

reduced stiffness matrix
274
275 stream.WriteLine(”FILEAUX2, ” + filename + ”, full ”) # Specifying to

dump full mass matrix
276 stream.WriteLine(”HBMAT, M full, hbmat, , ASCII, MASS, NO, YES”) #

Dumping full mass matrix in Harwell−Boeing format
277 stream.WriteLine(” finish ”)
278 stream.WriteLine(”*smat, M red, D, import , HBMAT, M red.hbmat, ASCII”) #

Creating sparse matrix from Harwell−Boeing format. Preserving 16−decimal precision
279 stream.WriteLine(”*smat, M full , D, import , HBMAT, M full.hbmat, ASCII”)
280 stream.WriteLine(”*smat, K red, D, import , HBMAT, K red.hbmat, ASCII”)
281
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282 stream.WriteLine(”*export , M red, MMF, M red.mmf”) # Exporting
to Matrix Market Format. Preserves 16−decimal precision

283 stream.WriteLine(”*export , M full , MMF, M full.mmf”)
284 stream.WriteLine(”*export , K red, MMF, K red.mmf”)
285
286 if (matrixFormat == ”. matrix”) :
287 stream.WriteLine(”*PRINT, Kmat, ” + stiffnessName + ”. matrix”) #

Printing matrix directly in easy−to−read format
288 stream.WriteLine(”*PRINT, Mmat, ” + massName + ”.matrix”)
289
290 stream.WriteLine(”save”)
291
292 stream.WriteLine(”/ eof”) # Quits correctly
293
294
295
296
297 def generateFMX(G, M red, K red, solverData ) :
298 ”””
299 This will save FMX files of G, M red and K red at the solver directory .
300
301 :param G: One−dimensional list of gravitational vectors saved column−first .
302 :param M red: One−dimensional list of reduced mass matrix saved column−first .
303 :param K red: One−dimensional list of reduced stiffness matrix saved column−first .
304 :param solverData : SolverData object .
305
306 ”””
307 # Converting to double slashes and in bytes representation
308 file = solverData . fedemDir + ”\\” + solverData . filename
309 file = file . replace (”\\”, ”\\\\”)
310 file = bytes ( file , ’ utf−8’)
311
312 # Skriver stivhetsmatrise
313 status = writeFMX(file , 1, K red)
314
315 # Skriver massematrise
316 status = writeFMX(file , 2, M red)
317
318 # Skriver gravitasjonskrefter
319 status = writeFMX(file , 3, G)
320
321 ExtAPI.Log.WriteMessage(”FMX files written to ” + solverData . fedemDir)
322
323
324
325 def writeFMX(file , ityp , data ) :
326 ”””
327 Writes a square matrix as a binary FMX−file for FEDEM, using the fmxWriter DLL
328
329 arg file : Full path to the fmx−file to be written
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330 arg ityp : 1= stiffness matrix , 2=mass matrix, 3=gravity force vectors
331 arg data : Matrix content , column−wise storage
332 return : Zero on success , otherwise negative
333 ”””
334 # Loading DLL for writing FMX files:
335 extensionDir = ExtAPI.ExtensionManager.CurrentExtension. InstallDir
336 dll = ctypes . cdll .LoadLibrary( extensionDir + ”\\fmxWriter\\fmxWriter.dll”)
337 cfil = file
338 ctyp = ctypes . c int ( ityp )
339 cdat = ( ctypes . c double*len( data ) ) ()
340 cdat [:] = data
341 clen = ctypes . c int ( len( data ) )
342 return dll .WRITEFMX(cfil, ctypes.byref(ctyp) , cdat , ctypes . byref ( clen ) , len( file ) )
343
344
345 def getENodes(load):
346 ”””
347 Returning list with node numbers of selected external nodes
348
349 :param load: The current load object
350 : return List [ int ] Sorted list with integers representing node numbers of current

selected nodes.
351 ”””
352 selectedIDs =

load . Properties [”Generation” ]. Properties [”Geometry”]. Properties [”Geometry”].Value. Ids
353 return sorted( selectedIDs ) # List [ int ]
354
355
356
357 def generateFTL(nodes, elements , eNodes, file ) :
358 ’’’
359 Generates the FTL file for the current model to be used by Fedem.
360 The FTL file is placed in the solverData . fedemDir
361
362 :param nodes: list [Node] of all nodes in the model. Sorted ascending by id
363 :param elements: list [Element] of all elements in the model. Sorted ascending by id
364 :param eNodes: list [ int ] of ids of external nodes
365 :param file : FTL file object
366 ’’’
367 #
368 # Writing file header
369 #
370 date = datetime . datetime .now(). strftime (”%Y−%m−%d %H:%M:%S”)
371 file . write (”FTLVERSION{4 ASCII}\n”)
372 string =”#\n# FTL file generated by ModRed at ” + str ( date ) + ”\n#\n\n”
373 file . write ( string )
374 string = ”#\n# Nodal coordinates \n#”
375 file . write ( string + ”\n”)
376
377 #
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378 # Writing NODE part
379 #
380 for node in nodes:
381 nodeString = getNodeString(node, eNodes)
382 file . write (nodeString + ”\n”)
383
384 #
385 # Writing element definitions part
386 #
387 thicknessId = 1
388 materialId = 1
389 file . write (”#\n# Element definitions \n#\n”)
390 for element in elements :
391 elString = getElementString (element, thicknessId , materialId )
392 file . write ( elString + ”\n”)
393 #
394 # Writing coordinate system part
395 #
396 file . write (”#\n# Local coordinate systems\n#\n”)
397 file . write (”PCOORDSYS{2 0 0 0 0 0 1 1 0 0}” + ”\n”)
398
399 #
400 # Writing material properties part
401 #
402 file . write (”#\n# Material properties \n#\n”)
403 file . write (”PMAT{1 2.07e+11 8.02e+10 0.29 7820}” + ”\n”) # Dummy material
404
405 #
406 # Writing shell thicknesses part
407 #
408 file . write (”#\n# Shell thicknesses \n#\n”)
409 file . write (”PTHICK{1 0.02}” + ”\n”)
410
411 #
412 # End of file
413 #
414 file . write (”#\n# End of file ”)
415
416 file . close () # Closing the created FTL file
417
418
419 def getNodeString(node, eNodes):
420 ”””
421 Returns node string to write in FTL file .
422
423 :param id : id of node to write to string
424 :param nodes: sorted list [Node] of all nodes in the model. Sorted by node id
425 :param eNodes: list [ int ] of ids of selected external nodes
426 : return string of NODE part to be written in FTL file
427 ”””
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428 string = ”NODE{”
429 string += str (node. id )
430 string += ” ”
431 if (node. id in eNodes):
432 string += ”1”
433 else :
434 string += ”0”
435 string += ” ”
436 string += str (node. x) + ” ” + str (node. y) + ” ” + str (node. z)
437 string += ”}”
438 return string
439
440
441 def getElementString (element, thicknessId , materialId ) :
442 ”””
443 Returns string of ELEMENT part to be written in FTL file
444
445 :param element: Element object of the element to write
446 :param thicknessID : id of thickness PTHICK
447 :param materialID : id of material PMAT
448 ”””
449 string = ”QUAD4{”
450 string += str (element. id ) + ” ”
451 string += str (element. nodes [0]. id ) + ” ”
452 string += str (element. nodes [1]. id ) + ” ”
453 string += str (element. nodes [2]. id ) + ” ”
454 string += str (element. nodes [3]. id ) + ” ”
455 string += ”{PTHICK ”
456 string += str ( thicknessId ) + ”}”
457 string += ” ”
458 string += ”{PMAT ”
459 string += str ( materialId ) + ”}”
460 string += ”}”
461
462 return string
463
464
465
466
467 def isValidNoModes(entity , property):
468 ’’’
469 Returns true if valid input to component modes property. False if not .
470
471 :param entity : IUserObject . The entity containing the property .
472 :param property : ISimProperty . The property to check.
473
474 : return True if property is positive int . False if not .
475 ’’’
476 try :
477 #ExtAPI.Log.WriteMessage(str( int ( property .Value) >= 0))
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478 return int (property.Value) >= 0
479 except ValueError :
480 #ExtAPI.Log.WriteMessage(str(False ) )
481 return False
482
483 def readMappingFileFedem(path):
484 ”””
485 Reads a Fedem mapping file that maps degree of freedom to equation .
486 The MEQN file is structured
487 column 0: dof column 1: equation
488
489 1 25
490 2 26
491 3 27 ...
492
493 This means dof 1 equals equation 25.
494
495 :param path: File path of MEQN.res file from Fedem
496 : return Dictionary on the form
497 dict = {
498 ”dof”: equation
499 }
500 ”””
501 file = open(path, ”r”)
502 line = file . readline () # Reading header line
503 dict = {}
504 lines = file . readlines ()
505 for line in lines :
506 line = line . split ()
507 dof = int ( line [0])
508 eq = int ( line [1])
509 dict [dof] = eq
510 return dict
511
512 def readMappingFile(path) :
513 ”””
514 Reads an ANSYS .mapping file that maps equation to corresponding node.
515
516 The .mapping file is structured :
517 column 0: equation column 1: node column 2: dof
518 Example:
519
520 1 5 UX
521 2 5 UY
522 3 5 UZ
523
524 This means equation 1 is related to node 5, dof UX
525 Relation node −> dof is
526 node 1, UX => dof 1
527 node 1, UY => dof 2
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528 node 1, UZ => dof 3
529 node 2, ROTX => dof 4 ...
530
531 node 2, UX => dof 7
532
533 :param path: File path of ”.mapping” file
534 :param dofDict : Dictionary relating internal dof for a node to it corresponding

numbering.
535 Example: ”UX” = 1, ”UY” = 2, ”UZ” = 3, ”ROTX” = 4
536 : return Dictionary
537 dict = {
538 ”dof”: ”equation”
539 }
540 where ”dof” is in ascending order from node numbers, i .e .:
541 dof = 1 => Node 1, degree of freedom nr 1 (UX)
542 dof = 2 => Node 1, degree of freedom nr 2 (UY)
543 dof = 7 => Node 2, degree of freedom nr 1 (UX)
544 dof = 12 => Node 2, degree of freedom nr 6 (ROTZ)
545 ”””
546 dofDict = {
547 ”UX”: 1,
548 ”UY”: 2,
549 ”UZ”: 3,
550 ”ROTX”: 4,
551 ”ROTY”: 5,
552 ”ROTZ”: 6
553 }
554 dict = {}
555 file = open(path, ”r”)
556 line = file . readline () # Skipping first line
557 lines = file . readlines ()
558 for line in lines :
559 line = line . split ()
560 eq = int ( line [0])
561 node = int ( line [1])
562 dofText = line [2]
563 dof = node2dof(node, dofDict , 6, dofText) # Currently hard−typing in

6 dofs
564 dict [dof] = eq
565 return dict
566
567 def node2dof(node, dofDict , dofs , dofText) :
568 ”””
569 Relates node number to dof number.
570
571 :param node: int of node number
572 :param dofs: Number of dofs for the node
573 :param dofText: string of dof in ANSYS .mapping file. Ex.: ”UX”, ”UY”,
574 ”””
575 dof = (node−1)*dofs + dofDict[dofText]

75



576 return dof
577
578
579
580
581
582 def nodes2Dofs(nodes, dofs) :
583 ”””
584 # Relation dof −> node is
585 # dof = (node − 1) * dofs + a
586 # where a = [1, dofs]
587 #
588 # Example:
589 # nodes = [1, 5, 10] in elements with 6 dofs
590 # => returnDofs = [1, 2, 3, 4, 5, 6, 25, 26, 27, 28, 29, 30, 55, 56, 57, 58, 59, 60]
591 #
592 # Example 2:
593 # nodes = [1, 3]
594 # dofs = 2
595 # => returnDofs = [1, 2, 5, 6]
596 ”””
597 returnDofs = []
598 for node in nodes:
599 partDofs = range((node − 1) * dofs + 1, (node − 1) * dofs + (dofs + 1))
600 returnDofs += partDofs
601 return returnDofs
602
603
604 def dofs2Eqs(dofs , dict ) :
605 ”””
606 Returns a list with the corresponding equation for a node.
607
608 # Example:
609 # dofs = [1, 2, 3]
610 # dict = {
611 1: 2,
612 2: 3,
613 3: 1
614 }
615 returns [2, 3, 1]
616
617 :param dofs: List of dofs . 1−indexed. Length n
618 :param dict : Dictionary coupling dof to equation like
619 dict [dof] = eq
620 :param return : List of equations for the specified dofs . Length n. 1−indexed.
621 ”””
622 eqs = []
623 for dof in dofs :
624 eq = dict [dof]
625 eqs .append(eq)
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626 return eqs
627
628
629
630
631 def partitionMatrix (mat, eNodes, iNodes, dict , dofs , sorting =”equation”) :
632 ’’’
633 Creates a partitioned matrix on the form
634 M =
635 [[Mee, Mei],
636 [Mii, Mii]]
637
638 :param mat: The Math.NET matrix to partition
639 :param eNodes: list [ int ] of the selected external nodes. Indexing starting at 1.

Sorted .
640 :param iNodes: list [ int ] of internal nodes. 1−indexed. Sorted .
641 :param dict : Dictionary with the mapping of DOF to equation number in the matrix .
642 Example: dict [dof] = eq
643 NOTE: dof and equation in the dictionary is 1−indexed!
644 :param DOFs: Number of degrees of freedom per node.
645 :param sorting : How to sort the partitioned matrix .
646 sorting =”equation” means the partitioned matrix is sorted after ascending equation

numbers. This is what Fedem uses.
647 This is the default selection .
648 sorting =”dof” means the partitioned matrix is sorted after ascending degree of

freedom numbers.
649
650 : return partitioned matrix
651 ’’’
652
653 # Getting the dof numbering for the external (e) and internal ( i ) nodes
654 # Relation dof −> node is
655 # dof = (node − 1) * dofs + a
656 # where a = [1, dofs]
657 # Example:
658 # eNodes = [1, 5, 10] in elements with 6 dofs
659 # => eDofs = [1, 2, 3, 4, 5, 6, 31, 32, 33, 34, 35, 36, 61, 62, 63, 64, 65, 65]
660 eDofs = nodes2Dofs(eNodes, dofs)
661 iDofs = nodes2Dofs(iNodes, dofs)
662
663 # Mapping to solver ordering :
664 eEqs = dofs2Eqs(eDofs, dict ) # equations corresponding to external

nodes. 1−indexed.
665 iEqs = dofs2Eqs(iDofs , dict ) # equations corresponding to internal

nodes. 1−indexed.
666 if ( sorting ==”equation”) : #eEqs and iEqs are already sorted by dof number.
667 eEqs = sorted(eEqs)
668 iEqs = sorted(iEqs)
669
670 # Initializing partitioned matrix
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671 nRows = (len(eNodes) + len(iNodes)) * dofs
672 nCols = nRows
673 matPart = la .Double.SparseMatrix(nRows, nCols) # Initializing with zeroes
674
675 # Moving rows
676 row = 0
677 for e in eEqs:
678 matPart .SetRow(row, mat.Row(e−1))
679 row+=1
680 for i in iEqs:
681 matPart .SetRow(row, mat.Row(i−1))
682 row+=1
683 matCopy = la.Double.SparseMatrix(nRows, nCols) # Initializing with zeroes
684 matPart .CopyTo(matCopy) # Using a copy because values are accesed by reference .
685 # Moving columns
686 col = 0
687 for e in eEqs:
688 matPart .SetColumn(col, matCopy.Column(e−1))
689 col+=1
690 for i in iEqs:
691 matPart .SetColumn(col, matCopy.Column(i−1))
692 col+=1
693 return matPart
694
695
696
697
698
699 def readFedemMatrix(filename):
700 ”””
701 Reading a Fedem matrix to MathNETmatrix for easier comparison with ANSYS matrices.
702 Written to import the full mass and stiffness matrix from Fedem
703
704 :param filename : Path to matrix .
705 : return a sparse Math.NET matrix with contents of the matrix in path
706 ”””
707 file = open(filename, ”r”) # Reading data
708 line = file . readline ()
709 line = line . split ()
710 nRows = int( line [0]) # Number of columns and rows are stored in the

first line after the comments
711 nCols = int ( line [1])
712 mat = la .Double.SparseMatrix(nRows, nCols) # Initializing with zeros
713
714 row = 0
715 col = 0
716 content = file . readlines ()
717 for line in range(0, len( content ) ) :
718 splitted = content [ line ]. split ()
719 if ( len( splitted ) != 0) :
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720 if ( content [ line ]. split () [0]. startswith (”+++”)):
721 row = int ( content [ line ]. split () [2]) − 1
722 colLine = content [ line + 1]. split ()
723 valLine = content [ line + 2]. split ()
724 col = int (colLine [0]) − 1
725 val = float (valLine [0])
726 mat[row, col ] = val
727 file . close ()
728 return mat
729
730 def readFedemVector(path):
731 ”””
732 Reads vector from fedem reducer. res file for comparison with vectors from ANSYS
733 Reads gravity vectors , as well as BMAT.res and PHI.res
734
735 :param path: Path to Fedem vector to read .
736 : return Sparse math.NET matrix of the Fedem vector in path
737 ”””
738 file = open(path, ”r”)
739 lines = file . readlines ()
740 firstLine = lines [0]. split ()
741 nRows = int( firstLine [0])
742 nCols = int ( firstLine [1])
743 mat = la .Double.SparseMatrix(nRows, nCols) # Initializing with zeros
744
745 colIndexes = []
746 nextNumCols = 0
747 currNumCols = 0
748 row = 0
749 col = 0
750 startCol = 0
751 for i in range(0, len( lines ) ) :
752 col = startCol
753 line = lines [ i ]. split ()
754 if ( i != ( len( lines ) − 1)) : # if not at end of file
755 nextNumCols = len( lines [ i + 1]. split () )
756 currNumCols = len( line )
757 if (currNumCols > nextNumCols): # if new columns
758 startCol = int ( lines [ i + 1]. split () [0]) − 1
759 continue
760 row = int ( line [0]) − 1
761 vals = list (map(float, line ) ) [1:]
762 for val in vals :
763 mat[row, col ] = val
764 col += 1
765 file . close ()
766 return mat
767
768
769 def readMMFMatrix(filename, format):
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770 ’’’
771 Reading a dense or sparse Matrix Market file format into a Math.NET array.
772 NOTE:
773 − The matrices are saved column first !
774 −Matrices created from the .SUB binary ANSYS file are saved with the full (n x n)

matrix .
775 This is the case for M red and K red files
776 −Matrices created from the .FULL binary ANSYS file have only the lower triangular

part of the matrix saved.
777
778 :param filename : String of file name to the .mmf file . Dense .mmf matrices are

saved column−first!
779 :param format: Format of the MMF matrix. ”sub” for the reduced matrices . ” full ” for

the full matrices .
780 : return Dense Math.NET matrix read from filename . Saved row−first .
781 ’’’
782 isFirstLine = False
783 nRows = 0
784 nCols = 0
785 file = open(filename, ”r”) # Reading data
786 #
787 # Reading the lines defining dimensions of the matrix
788 #
789 dimLine = None
790 while ( isFirstLine == False ) :
791 line = file . readline ()
792 if (not line . startswith ( ’%’)):
793 isFirstLine = True
794 line = line . split ()
795 nRows = int( line [0]) # Number of columns and rows are stored in

the first line after the comments
796 nCols = int ( line [1])
797 dimLine = line # Saving for use in the next for loop
798
799 # Initializing Math.NET matrix
800 mat = la .Double.SparseMatrix(nRows, nCols)
801 isDenseFull = False
802 isSparseFull = False
803 isSparseSub = False
804
805 if ( len(dimLine) == 2 and format==”full”) :
806 isDenseFull = True
807 if ( len(dimLine) == 3 and format==”full”) :
808 isSparseFull = True
809 if ( len(dimLine) == 3 and format==”sub”):
810 isSparseSub = True
811
812
813 # Filling Math.NET matrix with values from the file
814 row = 0
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815 col = 0
816 for line in file :
817 if ( isDenseFull ) : # If we are reading a dense MMF matrix from ANSYS

SUB or full file
818 val = float ( line )
819 mat[row, col ] = val
820
821 if (row != nRows − 1 ): # Updating counting variables
822 row += 1
823 else :
824 col += 1
825 row = 0
826 if (isSparseSub or isSparseFull ) : # We are reading a sparse MMF matrix

from ANSYS FULL file
827 line = line . split ()
828 i = int ( line [0]) − 1 # Reading indexes . Is 1−indexed in the

MMF file
829 j = int ( line [1]) − 1
830 val = float ( line [2])
831 mat[i , j ] = val
832 mat[j , i ] = val # sparse MMF matrix is saved in lower

triangular form
833 file . close ()
834 return mat
835
836
837
838
839 def getRBE2Nodes(load):
840 ’’’
841 Imports RBE2 nodes from NASTRAN file and returns list node ids of RBE2 nodes.
842 ”CompID” is the string from the Workbench site , when pressing on external model,

under ”General” tab . Typically ”Setup X”
843 ” Identifier ” is the string under identifier tab when double−clicking the external

model. Typically ”File1 ”.
844 :param load: The current load object
845
846 : return List [ int ] Sorted list with integer nodal ids of found RBE2 nodes in

NASTRAN file.
847 ’’’
848 compID =

load. Properties [”Generation” ]. Properties [”Geometry”]. Properties [”CompID”].Value
849 identifier =

load . Properties [”Generation” ]. Properties [”Geometry”]. Properties [” Identifier ” ]. Value
850 commands = ExtAPI.DataModel.Project.Model.GetFECommandsRepository(compID,

identifier)
851 rbe2Comms = commands.GetCommandsByName(”RBE2”)
852 rbe2Count = rbe2Comms.Count
853 nodeList = []
854 for i in range (0, rbe2Count):
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855 cmd = rbe2Comms[i+1]
856 nodeList .append(int (cmd.GetArgument[2])) # Node ID is on argument index

two. Convert to int .
857 return sorted(nodeList )
858
859
860 class Element() :
861 ”””
862 Class used for storing info on elements in a mesh
863 ”””
864
865 def init ( self , id , nodes) :
866 self . nodes = nodes # list [Node] connected to the element
867 self . id = id # Element id
868
869
870 def getNodes( self ) :
871 return self . nodes
872
873 def getId ( self ) :
874 return self . id
875
876
877
878
879 class Node:
880 ”””
881 Data storage class for one node from a mesh
882 ”””
883
884 def init ( self , id , dofs , elements , x, y, z) :
885 ”””
886 :param id : Int of nodal id
887 :param dofs: Int of number of dofs for the node
888 :param elements: List [ int ] of element ids to the elements connected to the node
889 :param x: x coordinate
890 :param y: y coordinate
891 :param z: z coordinate
892 ”””
893 self . id = id
894 self . dofs = dofs
895 self . elements = elements
896 self . x = x
897 self . y = y
898 self . z = z
899
900
901 def getId () :
902 return self . id
903
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904 def getDofs() :
905 return self . dofs
906
907 def getElements () :
908 return self . elements
909
910
911
912 class SolverData:
913 #
914 # Class used to store data from the solver and ModRed application.
915 #
916
917 def init ( self , analysis , load) :
918 #
919 # Collecting user input
920 #
921 self . dofs = 6 # Currently hard−typing in number of dofs
922 self . filename =

load . Properties [”Method”]. Properties [”ReductionMethod”]. Properties [”Name”].Value
# string

923 self . workingDir = analysis .WorkingDir
924 self . fedemDir =

load . Properties [”Export” ]. Properties [”IsExport” ]. Properties [” FileDir ” ]. Value
925 self . testResourcesDir = ExtAPI.ExtensionManager.CurrentExtension. InstallDir +

”\\ test−resources”
926 self . eNodes = getENodes(load) # List [ int ] of selected external nodes.

Sorted
927 self . cModes =

int ( load . Properties [”Method”]. Properties [”ReductionMethod”]. Properties [”Nmode”].Value)
# Number of component modes

928
929 self . elements = self .getElementsFromMesh(analysis.MeshData)

#List [Element]
930 self . nodes = self .getNodesFromElements(self. elements ) # list [Node]
931
932 self . nRows = len( self . nodes) * self . dofs # Number of rows in the full

mass matrix
933 self . nCols = self . nRows # Quadratic matrix
934
935
936
937 def saveObject ( self , obj , fname):
938 ”””
939 Saves the current object to fedemDir
940 ”””
941 with open(self . testResourcesDir + ”\\” + fname + ”.p”, ”wb”) as file :
942 pickle .dump(obj, file , pickle .HIGHEST PROTOCOL)
943
944 def getNodes( self ) :
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945 ”””
946 Return sort list [Node] of nodes in the model. Sorted ascending by id
947 ”””
948 return sorted( self . nodes , key=lambda x: x. id )
949
950
951 def getElements( self ) :
952 ”””
953 Return sorted list [Element] of elements in the model. Sorted ascending by id
954 ”””
955 return sorted( self . elements , key=lambda x: x. id )
956
957
958 def getNodesFromElements(self, elements) :
959 ”””
960 Creates list [Node] of nodes connected to the element.
961
962 :param elements: List [Element]
963 : return List [Node] with all nodes in the model
964 ”””
965 nodes = []
966 for e in elements :
967 for n in e.getNodes() :
968 if not any(x. id == n. id for x in nodes) :
969 nodes.append(n)
970 return nodes
971
972 def getNodeIds( self ) :
973 ”””
974 : return Sorted list [ int ] of all node ids in the model
975 ”””
976 ids = []
977 for node in self . nodes:
978 ids .append(node. id )
979 return sorted( ids )
980
981
982 def getElementsFromMesh(self, mesh):
983 ”””
984 Returns list of custom Element objects containing all elements in the model.
985
986 :param mesh: ANSYS MeshData object
987 : return List [Element]
988 ”””
989 returnElements = []
990 ansysElements = mesh.Elements
991 for e in ansysElements:
992 id = e. Id
993
994 nodeList = []
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995 for node in e.Nodes:
996 nodeId = node.Id
997 elements = node.ConnectedElementIds #List [ int ] of ids of

the connected elements
998 node = Node(nodeId, 6, elements , node.X, node.Y, node.Z) #

Currently hard−typing in dofs per node. Should be changed to be read from ANSYS
API

999 nodeList .append(node)
1000
1001 element = Element(id , nodeList )
1002 returnElements .append(element)
1003 return returnElements
1004
1005
1006
1007 class Results :
1008 ”””
1009 Class for calculating results from the model reduction extension
1010 ”””
1011 def init ( self ) :
1012 self . resourcesFolder = os . path .dirname(os. path . realpath ( file ) ) +

”\\ test−resources\\”
1013
1014
1015
1016 def quadraticSumDifference( self , mat, refMat) :
1017 ”””
1018 Quadratic sum of the difference of all elements in n x n matrix
1019
1020 :param mat: Matrix that will be compared
1021 :param refMat: Matrix used as reference for comparison
1022 : return percentage difference on quadratic sum of mat, compared to refMat
1023 ”””
1024 matSum = self .matrixSum(mat)
1025 refMatSum = self .matrixSum(refMat)
1026 squared = (matSum − refMatSum) * (matSum − refMatSum)
1027 diff = math. sqrt (squared)
1028 percentage = diff /refMatSum
1029 return percentage
1030
1031
1032 def quadraticSumDifferenceOfVector( self , vec, refVec) :
1033 ”””
1034 Quadratic sum of the difference of two vectors of size (n x 1)
1035
1036 :param : Vector that will be compared
1037 :param refVec: Vector used as reference for comparison
1038 : return percentage difference on quadratic sum of vec, compared to refVec
1039 ”””
1040 vecSum = vec.Sum()
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1041 refVecSum = refVec.Sum()
1042 squared = (vecSum − refVecSum) * (vecSum − refVecSum)
1043 diff = math. sqrt (squared)
1044 percentage = diff /refVecSum
1045 return percentage
1046
1047
1048 def matrixSum(self , mat):
1049 ”””
1050 Calculating the matrix sum of a mat.NET matrix
1051 :param mat: The matrix to calculate the sum of
1052 : return float Sum of all elements in the matrix
1053 ”””
1054 rowSums = mat.RowSums()
1055 return sum(rowSums)
1056
1057
1058 def calculateMassFromMassMatrix(self, mat, reduced=True, cmodes=2):
1059 ”””
1060 Calculates the mass of a mass matrix mat by applying unit translation :
1061 m tot = uˆT * mat * u
1062
1063 :param mat: The mass matrix
1064 :param reduced: Indicating if it is a reduced mass matrix . Defaults to True.
1065 :param cmodes: Number of component modes in the reduced mass matrix . Defaults

to 2
1066 ”””
1067 if (reduced==True):
1068 nRows = mat.RowCount
1069 nNodes = int ((nRows − cmodes) / 6) # Currently assuming 6 DOFs per

node
1070 u x = ModRed.createUnitVector(1, nNodes, cmodes)
1071 u y = ModRed.createUnitVector(2, nNodes, cmodes)
1072 u z = ModRed.createUnitVector(3, nNodes, cmodes)
1073 mass x = u x.Transpose() . Multiply(mat). Multiply(u x) [0,0]
1074 mass y = u y.Transpose() . Multiply(mat). Multiply(u y) [0,0]
1075 mass z = u z .Transpose() . Multiply(mat). Multiply(u z) [0,0]
1076 return [mass x, mass y, mass z]
1077 else :
1078 nRows = mat.RowCount
1079 nNodes = int (nRows/6) # currently assuming 6 dofs per node
1080 u x = ModRed.createUnitVector(1, nNodes)
1081 u y = ModRed.createUnitVector(2, nNodes)
1082 u z = ModRed.createUnitVector(3, nNodes)
1083 mass x = u x.Transpose() . Multiply(mat). Multiply(u x) [0,0]
1084 mass y = u y.Transpose() . Multiply(mat). Multiply(u y) [0,0]
1085 mass z = u z .Transpose() . Multiply(mat). Multiply(u z) [0,0]
1086 return [mass x, mass y, mass z]
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A.2 ModRed.xml

ModRed.xml

1 <extension version=”1” name=”ModRed”>
2 <!−− This is the GUID for the ModRed extension. It must remain the same independently

↪→ of
3 the extension version or name. It is used to uniquely identify this extension . The

↪→ shortId
4 attribute is needed for compatibility with old projects , it is the name of the

↪→ extension
5 before adding this GUID. −−>
6 <guid shortid=”modred”>D0B4EDE5−4151−4EC1−96B4−BDA4410E0CDE</guid>
7 <script src=”ModRed.py” compiled=”true”/>
8 < interface context=”Mechanical”>
9 <images>images</images>

10 <toolbar name=”modred” caption=”Fedem Reduction”>
11 <entry name=”Fedem Reduction” icon=”fedem−transp” >
12 <callbacks>
13 <onclick>onCreateModRed</onclick>
14 </callbacks>
15 </entry>
16 <separator />
17 <entry name=”Export” caption=”Generate Fedem Data” icon=”fedem−export” >
18 <callbacks>
19 <onclick>onExportData</onclick>
20 </callbacks>
21 </entry >
22 </toolbar>
23 </ interface >
24
25 <simdata context=”Mechanical”>
26 <!−− defining the object that is inserted under ”Model” in the project

↪→ tree −−>
27 <load name=”modred” version=”1” caption=”Fedem Reduction”

↪→ icon=”fedem−transp”
28 isload =”true” color=”#0000FF” contextual=”true”>
29 <callbacks>
30 <!−− Allowing the user to right−click Fedem icon in the tree and select ”Export

↪→ Fedem Data” −−>
31 <action name=”onExportData” caption=”Export Fedem Data”

↪→ icon=”fedem−export”>onExportData</action>
32 <getsolvecommands>onSolve</getsolvecommands><!−−

↪→ Running the specified function when the user hits ”solve”−−>
33 </callbacks>
34
35 <propertygroup name=”Generation”
36 caption=”Selection of Master Nodes”
37 display =”caption”>
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38 <propertygroup name=”Geometry” caption=”Pick Master
↪→ Nodes By...” control =” select ” display =”Property” default=”Geometry”>

39 < attributes options=”Geometry,RBE2 Import” />
40 <property name=”Geometry” control=”scoping”
41 caption=”Geometry Selection”

↪→ visibleon =”Geometry”>
42 < attributes selection filter =”node” />
43 </property>
44 <property name=”CompID” control=”String”

↪→ caption=”Component ID” visibleon=”RBE2 Import” />
45 <property name=” Identifier ” control =”String”

↪→ caption=” Identifier ” visibleon =”RBE2 Import” />
46 </propertygroup>
47 </propertygroup>
48
49 <propertygroup name=”Method” caption=”Model Reduction Method”
50 display =”Caption”>
51 <propertygroup name=”ReductionMethod”

↪→ caption=”Reduction Method” control=”select” display =”Property” default=”CMS”>
52 < attributes options=”Guyan,CMS” />
53 <property name=”Nmode” caption=”Num. of

↪→ Component Modes to Extract”
54 control =”int” default=”2”

↪→ visibleon =”CMS”>
55 <callbacks>
56

↪→ <isvalid>isValidNoModes</isvalid>
57 </callbacks>
58 </property>
59 <property name=”Name” caption=”File Name”

↪→ control=”string”
60 default=”master”

↪→ visibleon =”Guyan|CMS” />
61 <property name=”LumpedMatrix” caption=”Use lumped matrices?” control=”select”

↪→ default=”No” >
62 < attributes options=”Yes,No” />
63 </property>
64 </propertygroup>
65 </propertygroup>
66
67 <propertygroup name=”Export”
68 caption=”Export Options”
69 display =”Caption”>
70 <propertygroup name=”IsExport” control=” select ”

↪→ caption=”Export Matrices to Fedem?” display=”Property”
71 default=”Yes” >
72 < attributes options=”No,Yes” />
73 <property name=”FileDir” caption=”Fedem File

↪→ Directory”
74 control =”folderopen”
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75 default=””
76 visibleon =”Yes”>
77 </property>
78 </propertygroup>
79 </propertygroup>
80 </load>
81 </simdata>
82 </extension>

A.3 test ModRed.py

test ModRed.py

1
2
3 #
4 # Unit tests for ModRed
5 #
6
7 import clr
8 clr .AddReferenceToFileAndPath(r”C:\Program Files\ANSYS

Inc\v192\Addins\ACT\bin\Win64\MathNet.Numerics.dll”) # Using the Math.NET dll.
Can not use NumPy, as this is not supported by IronPython.

9 import MathNet.Numerics.LinearAlgebra as la
10 import System
11 import unittest
12 import os
13 import pickle
14 from System import Array as sys array
15
16 import sys
17 sys . path . insert (0,

r ’C:\Users\adrian\Documents\Dokumenter\NTNU\Master\masters\ModRed\ModRed’)
18 import ModRed
19 from ModRed import Node
20 from ModRed import Element
21 from ModRed import SolverData
22
23
24
25 class TestModRed(unittest .TestCase) :
26
27 def setUp( self ) :
28 self . resourcesFolder = os . path .dirname(os. path . realpath ( file ) ) +

”\\ test−resources\\”
29
30 #
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31 # Defining the twoQUAD4 model
32 #
33 self . node1 = Node(1, 6, [1], 0.0, 0.0, 0.0)
34 self . node2 = Node(2, 6, [1, 2], 1.0, 0.0, 0.0)
35 self . node3 = Node(3, 6, [2], 2.0, 0.0, 0.0)
36 self . node4 = Node(4, 6, [1], 0.0, −1.0, 0.0)
37 self . node5 = Node(5, 6, [1, 2], 1.0, −1.0, 0.0)
38 self . node6 = Node(6, 6, [2], 2.0, −1.0, 0.0)
39
40 self . element1 = Element(1, [ self . node1, self . node2, self . node5,

self . node4]) # clockwise
41 self . element2 = Element(2, [ self . node2, self . node3, self . node6,

self . node5])
42
43 self . elements = [ self . element1 , self . element2]
44 self . nodes = [ self . node1, self . node2, self . node3, self . node4, self . node5,

self . node6]
45 self . unsortedNodes = [ self . node2, self . node1, self . node3, self . node6,

self . node5, self . node4]
46
47
48
49
50
51 def array (*x) : return sys array [ float ](x) # Helper function to create custom

Math.NET matrices
52 self . mat = la .Double.Matrix.Build .DenseOfRowArrays(
53 array (1, 2, 3, 4, 5, 6, 7, 8, 9) ,
54 array (10, 11, 12, 13, 14, 15, 16, 17, 18) ,
55 array (19, 20, 21, 22, 23, 24, 25, 26, 27) ,
56 array (28, 29, 30, 31, 32, 33, 34, 35, 36) ,
57 array (37, 38, 39, 40, 41, 42, 43, 44, 45) ,
58 array (46, 47, 48, 49, 50, 51, 52, 53, 54) ,
59 array (55, 56, 57, 58, 59, 60, 61, 62, 63) ,
60 array (64, 65, 66, 67, 68, 69, 70, 71, 72) ,
61 array (73, 74, 75, 76, 77, 78, 79, 80, 81)
62 )
63 self . indexMat = la .Double.Matrix.Build .DenseOfRowArrays(
64 array (11, 12, 13, 14, 15, 16, 17, 18, 19) ,
65 array (21, 22, 23, 24, 25, 26, 27, 28, 29) ,
66 array (31, 32, 33, 34, 35, 36, 37, 38, 39) ,
67 array (41, 42, 43, 44, 45, 46, 47, 48, 49) ,
68 array (51, 52, 53, 54, 55, 56, 57, 58, 59) ,
69 array (61, 62, 63, 64, 65, 66, 67, 68, 69) ,
70 array (71, 72, 73, 74, 75, 76, 77, 78, 79) ,
71 array (81, 82, 83, 84, 85, 86, 87, 88, 89) ,
72 array (91, 92, 93, 94, 95, 96, 97, 98, 99)
73 )
74
75 self . indexMatSmall = la .Double.Matrix.Build .DenseOfRowArrays(
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76 array (11, 12, 13) ,
77 array (21, 22, 23) ,
78 array (31, 32, 33)
79 )
80
81 self . indexMat5x5 = la .Double.Matrix.Build .DenseOfRowArrays(
82 array (11, 12, 13, 14, 15) ,
83 array (21, 22, 23, 24, 25) ,
84 array (31, 32, 33, 34, 35) ,
85 array (41, 42, 43, 44, 45) ,
86 array (51, 52, 53, 54, 55)
87 )
88
89 def tearDown(self ) :
90 if os . path . exists ( self . resourcesFolder + ”\\testFTL. ftl ”) :
91 os .remove(self . resourcesFolder + ”\\testFTL. ftl ”)
92
93
94
95 def saveObject ( self , obj , fname):
96 ”””
97 Saves the current object to fedemDir
98 ”””
99 with open( self . resourcesFolder + ”\\” + fname + ”.p”, ”wb”) as input:

100 pickle .dump(obj, input , pickle .HIGHEST PROTOCOL)
101
102
103
104
105 def test generateFTL ( self ) :
106 file = open( self . resourcesFolder + ”\\testFTL. ftl ” , ”w”)
107 eNodes = [1, 3]
108 ModRed.generateFTL(self. nodes, self . elements , eNodes, file )
109
110 # Need to open the closed file again
111 with open( self . resourcesFolder + ”\\testFTL. ftl ” , ”r”) as file:
112 fileLines = file . readlines ()
113 file . close ()
114 with open( self . resourcesFolder + ”\\demoFTL.ftl”, ”r”) as file:
115 correctFileLines = file . readlines ()
116 file . close ()
117 print ( fileLines )
118 print ( correctFileLines )
119 self . assertEqual ( len ( fileLines ) , len ( correctFileLines ) ) # Should be the

same length
120 self . assertEqual ( fileLines [3 : ], correctFileLines [3 : ]) # Content is equal

(except for the ”generated at ... ” part
121
122
123
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124 def test getNodeString ( self ) :
125 node = self . node1
126 eNodes = [1, 3]
127
128 string = ModRed.getNodeString(node, eNodes)
129 correctString = ”NODE{1 1 0.0 0.0 0.0}”
130 self . assertEqual ( string , correctString )
131
132
133
134 def test getNodeString notENode ( self ) :
135 ”””
136 If the node id is not in eNodes, it should be marked with 0
137 ”””
138 node = self . node2
139 eNodes = [1, 3]
140
141 string = ModRed.getNodeString(node, eNodes)
142 correctString = ”NODE{2 0 1.0 0.0 0.0}”
143 self . assertEqual ( string , correctString )
144
145 def test getElementString ( self ) :
146 element = self . element1
147 thicknessId = 1
148 matId = 1
149 string = ModRed.getElementString(element, thicknessId , matId)
150 correctString = ”QUAD4{1 1 2 5 4 {PTHICK 1} {PMAT 1}}”
151
152 self . assertEqual ( string , correctString )
153
154 def test getElementString element2 ( self ) :
155 element = self . element2
156 thicknessId = 1
157 matId = 1
158 string = ModRed.getElementString(element, thicknessId , matId)
159 correctString = ”QUAD4{2 2 3 6 5 {PTHICK 1} {PMAT 1}}”
160
161 self . assertEqual ( string , correctString )
162
163
164
165 def test createUnitVector ( self ) :
166 ”””
167 Should return matrix of size ((nnodes*6)+cmodes x 1)
168 ”””
169
170 nnodes = 10
171 cmodes = 2
172
173 u = ModRed.createUnitVector(1, nnodes, cmodes)
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174 self . assertEqual (u [0,0], 1)
175 self . assertEqual (u [1,0], 0)
176 self . assertEqual (u [6,0], 1)
177 self . assertEqual (u.ColumnCount, 1)
178 self . assertEqual (u.RowCount, (nnodes*6) + cmodes)
179 # Checking if component mode positions are 0:
180 self . assertEqual (u[nnodes*6, 0], 0)
181 self . assertEqual (u[nnodes*6 + 1, 0], 0)
182
183 u = ModRed.createUnitVector(2, nnodes, cmodes)
184 self . assertEqual (u [0,0], 0)
185 self . assertEqual (u [1,0], 1)
186 self . assertEqual (u [7,0], 1)
187 self . assertEqual (u.ColumnCount, 1)
188 self . assertEqual (u.RowCount, (nnodes*6) + cmodes)
189 # Checking if component mode positions are 0:
190 self . assertEqual (u[nnodes*6, 0], 0)
191 self . assertEqual (u[nnodes*6 + 1, 0], 0)
192
193 def test extractPartitions ( self ) :
194 def array (*x) : return sys array [ float ](x) # Helper function to create custom

Math.NET matrices
195
196 mat = self . indexMat
197 nENodes = 1
198 dofs = 3
199 parts = ModRed. extractPartitions (mat, nENodes, dofs)
200 parts ee = parts [0]
201 parts ei = parts [1]
202 parts ie = parts [2]
203 parts ii = parts [3]
204
205 corr ee = la .Double.Matrix.Build .DenseOfRowArrays(
206 array (11, 12, 13) ,
207 array (21, 22, 23) ,
208 array (31, 32, 33)
209 )
210 self . assertEqual ( parts ee , corr ee )
211
212 corr ei = la .Double.Matrix.Build .DenseOfRowArrays(
213 array (14, 15, 16, 17, 18, 19) ,
214 array (24, 25, 26, 27, 28, 29) ,
215 array (34, 35, 36, 37, 38, 39)
216 )
217 self . assertEqual ( parts ei , corr ei )
218
219 corr ie = la .Double.Matrix.Build .DenseOfRowArrays(
220 array (41, 42, 43) ,
221 array (51, 52, 53) ,
222 array (61, 62, 63) ,
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223 array (71, 72, 73) ,
224 array (81, 82, 83) ,
225 array (91, 92, 93) ,
226 )
227 self . assertEqual ( parts ie , corr ie )
228
229 corr ii = la .Double.Matrix.Build .DenseOfRowArrays(
230 array (44, 45, 46, 47, 48, 49) ,
231 array (54, 55, 56, 57, 58, 59) ,
232 array (64, 65, 66, 67, 68, 69) ,
233 array (74, 75, 76, 77, 78, 79) ,
234 array (84, 85, 86, 87, 88, 89) ,
235 array (94, 95, 96, 97, 98, 99)
236 )
237 self . assertEqual ( parts ii , corr ii )
238
239 def test extractPartitions FedemMatrix ( self ) :
240 with open( self . resourcesFolder + ”\\beam.nas” + ”\\Fedem” +

”\\M full partitioned .p”) as file:
241 M full = pickle . load( file )
242 mat = ModRed. extractPartitions (M full , 4, 6)
243
244 M ee = mat[0]
245 M ei = mat[1]
246 M ie = mat[2]
247 M ii = mat[3]
248
249 self . assertEqual (M ee.RowCount, 24)
250 self . assertEqual (M ee.ColumnCount, 24)
251 self . assertEqual (M ee[0,0], 9.775000E−002)
252 self . assertEqual (M ee[0,1], 0.0)
253 self . assertEqual (M ee[1,0], 0.0)
254 self . assertEqual (M ee[23,0], 0.0)
255 self . assertEqual (M ee[0,23], 0.0)
256 self . assertAlmostEqual(M ee[23,23], 4.072916E−006)
257
258 self . assertEqual (M ei.RowCount, 24)
259 self . assertEqual (M ei.ColumnCount, 606)
260 self . assertEqual (M ei [0,0], M full [0, 24])
261 self . assertEqual (M ei[0, 605], M full [0, 629])
262 self . assertEqual (M ei[23, 0], M full [23, 24])
263 self . assertEqual (M ei[23, 605], M full [23, 629])
264
265 self . assertEqual (M ie.RowCount, 606)
266 self . assertEqual (M ie.ColumnCount, 24)
267 self . assertEqual (M ie [0,0], M full [24, 0])
268 self . assertEqual (M ie[0, 23], M full [24, 23])
269 self . assertEqual (M ie[605, 0], M full [629, 0])
270 self . assertEqual (M ie[605, 23], M full [629, 23])
271
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272 self . assertEqual (M ii .RowCount, 606)
273 self . assertEqual (M ii .ColumnCount, 606)
274 self . assertEqual (M ii [0,0], M full [24, 24])
275 self . assertEqual (M ii [0, 605], M full [24, 629])
276 self . assertEqual (M ii[605, 0], M full [629, 24])
277 self . assertEqual (M ii[605, 605], M full [629, 629])
278
279
280
281 def test massMatrix correct mass beam ( self ) :
282 ”””
283 Testing if the mass matrix is correct by applying
284 u trans ˆT * M * u trans = m tot
285 ”””
286 # Validating M full from Fedem
287 M full = ModRed.readFedemMatrix(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\M full.res”)
288 correct mass = 3.12800E+01 # Taken from fedem reducer. res . In kg
289 for i in [1, 2, 3] :
290 u = ModRed.createUnitVector(i , 105)
291 m = u.Transpose() . Multiply(M full) . Multiply(u) [0,0]
292 self . assertAlmostEqual( correct mass , m)
293
294 # Testing mass matrix from ANSYS
295 M full = ModRed.readMMFMatrix(self. resourcesFolder + ”\\beam.nas” + ”\\Ansys”

+ ”\\M full.mmf”, ” full ”)
296 for i in [1, 2, 3] :
297 u = ModRed.createUnitVector(i , 105)
298 m = u.Transpose() . Multiply(M full) . Multiply(u) [0,0]
299 self . assertAlmostEqual( correct mass , m)
300
301 # Testing the lumped mass matrix from ANSYS
302 M full = ModRed.readMMFMatrix(self. resourcesFolder + ”\\beam.nas” + ”\\Ansys”

+ ”\\M full lumped.mmf”, ”full”)
303 for i in [1, 2, 3] :
304 u = ModRed.createUnitVector(i , 105)
305 m = u.Transpose() . Multiply(M full) . Multiply(u) [0,0]
306 print (m)
307 self . assertAlmostEqual( correct mass , m)
308
309
310
311 def test partitionMatrix correct mass beam ( self ) :
312 ”””
313 Testing if the mass is unchanged after partitionMatrix method
314 ”””
315 M full = ModRed.readMMFMatrix(self. resourcesFolder + ”\\beam.nas” + ”\\Ansys”

+ ”\\M full.mmf”, ” full ”)
316 eNodes = [1, 2, 3, 4]
317 iNodes = [ i for i in range (5, 106)]
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318 dict = ModRed.readMappingFile(self. resourcesFolder + ”\\beam.nas” + ”\\Ansys”
+ ”\\M full.mapping”)

319 M full = ModRed.partitionMatrix(M full , eNodes, iNodes, dict , 6)
320
321 correct mass = 3.12800E+01 # Taken from fedem reducer. res . In kg
322 for i in [1, 2, 3] :
323 u = ModRed.createUnitVector(i , 105)
324 m = u.Transpose() . Multiply(M full) . Multiply(u) [0,0]
325 print (m)
326 self . assertAlmostEqual( correct mass , m)
327
328
329
330
331 def test partitionMatrix smallMatrices ( self ) :
332 ”””
333 Testing the partitionMatrix method with small matrices
334 ”””
335 def array (*x) : return sys array [ float ](x) # Helper function to create custom

Math.NET matrices
336 dict = { # dof = equation − 1
337 1: 2,
338 2: 3,
339 3: 1
340 }
341 # Remember: 3 DOFs per node
342 eNodes = [1]
343 iNodes = [2, 3]
344 partitioned = ModRed.partitionMatrix( self . indexMatSmall , eNodes, iNodes,

dict , 1, sorting =”dof”)
345 correct = la .Double.Matrix.Build .DenseOfRowArrays(
346 array (22, 23, 21) ,
347 array (32, 33, 31) ,
348 array (12, 13, 11)
349 )
350 self . assertEqual ( correct , partitioned )
351 for row in range (0, correct .RowCount):
352 for col in range (0, correct .ColumnCount):
353 self . assertEqual ( partitioned [row, col ], correct [row, col ])
354
355
356
357 def test partitionMatrix 5x5 ( self ) :
358 #
359 # Testing of partitioning a custom 5x5 matrix
360 #
361 def array (*x) : return sys array [ float ](x) # Helper function to create custom

Math.NET matrices
362 dict = { # dict [dof] = eq
363 1: 3,
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364 2: 4,
365 3: 5,
366 4: 1,
367 5: 2
368 }
369 eNodes = [2, 5]
370 iNodes = [1, 3, 4]
371 partitioned = ModRed.partitionMatrix( self . indexMat5x5 , eNodes, iNodes, dict ,

1, sorting =”equation”)
372 print ( partitioned )
373
374
375 def test partitionMatrix 9x9 ( self ) :
376 #
377 # Testing with 9x9 matrix
378 #
379 def array (*x) : return sys array [ float ](x) # Helper function to create custom

Math.NET matrices
380 dict = {
381 1: 4,
382 2: 5,
383 3: 6,
384 4: 7,
385 5: 8,
386 6: 9,
387 7: 1,
388 8: 2,
389 9: 3
390 }
391 eNodes = [1]
392 iNodes = [2, 3]
393 partitioned = ModRed.partitionMatrix( self . indexMat , eNodes, iNodes, dict , 3,

sorting =”dof”)
394 ”””
395 tmp = la .Double.Matrix.Build .DenseOfRowArrays( # Moving rows
396 array (41, 42, 43, 44, 45, 46, 47, 48, 49) ,
397 array (51, 52, 53, 54, 55, 56, 57, 58, 59) ,
398 array (61, 62, 63, 64, 65, 66, 67, 68, 69) ,
399 array (71, 72, 73, 74, 75, 76, 77, 78, 79) ,
400 array (81, 82, 83, 84, 85, 86, 87, 88, 89) ,
401 array (91, 92, 93, 94, 95, 96, 97, 98, 99) .
402 array (11, 12, 13, 14, 15, 16, 17, 18, 19) ,
403 array (21, 22, 23, 24, 25, 26, 27, 28, 29) ,
404 array (31, 32, 33, 34, 35, 36, 37, 38, 39)
405 )
406 ”””
407 correct = la .Double.Matrix.Build .DenseOfRowArrays( # Moving cols
408 array (44, 45, 46, 47, 48, 49, 41, 42, 43) ,
409 array (54, 55, 56, 57, 58, 59, 51, 52, 53) ,
410 array (64, 65, 66, 67, 68, 69, 61, 62, 63) ,
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411 array (74, 75, 76, 77, 78, 79, 71, 72, 73) ,
412 array (84, 85, 86, 87, 88, 89, 81, 82, 83) ,
413 array (94, 95, 96, 97, 98, 99, 91, 92, 93) ,
414 array (14, 15, 16, 17, 18, 19, 11, 12, 13) ,
415 array (24, 25, 26, 27, 28, 29, 21, 22, 23) ,
416 array (34, 35, 36, 37, 38, 39, 31, 32, 33)
417 )
418 for row in range (0, correct .RowCount):
419 for col in range (0, correct .ColumnCount):
420 self . assertEqual ( partitioned [row, col ], correct [row, col ])
421
422
423 def test dofs2Eqs ( self ) :
424 dofs = [1, 2, 3]
425 dict = {
426 1: 2,
427 2: 3,
428 3: 1
429 }
430 correct = [2, 3, 1]
431 eqs = ModRed.dofs2Eqs(dofs, dict )
432 self . assertEqual (eqs , correct )
433 self . assertEqual ( len (dofs) , len (eqs) )
434
435
436 with open( self . resourcesFolder + ”\\beam.nas” + ”\\Ansys” +

”\\M full.mapping.p”) as file:
437 dict = pickle . load( file )
438 dofs = range (1, 631)
439 eqs = ModRed.dofs2Eqs(dofs, dict )
440
441 self . assertEqual ( len (dofs) , len (eqs) )
442 self . assertEqual (eqs [0], 625) # dof 1 coupled to equation 624
443 self . assertEqual (eqs [1], 626)
444 self . assertEqual (eqs [282], 1)
445
446
447 def test nodes2Dofs ( self ) :
448 ”””
449 # Example:
450 # eNodes = [1, 5, 10] in elements with 6 dofs
451 # => eDofs = [1, 2, 3, 4, 5, 6, 25, 26, 27, 28, 29, 30, 55, 56, 57, 58, 59, 60]
452 ”””
453 eNodes = [1]
454 dofs = 6
455 correct = [1, 2, 3, 4, 5, 6]
456
457 eDofs = ModRed.nodes2Dofs(eNodes, dofs)
458 self . assertEqual (eDofs, correct )
459
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460 eNodes = [1, 5, 10]
461 correct = [1, 2, 3, 4, 5, 6, 25, 26, 27, 28, 29, 30, 55, 56, 57, 58, 59, 60]
462 eDofs = ModRed.nodes2Dofs(eNodes, dofs)
463 self . assertEqual (eDofs, correct )
464
465
466 eNodes = [1, 3]
467 dofs = 2
468 correct = [1, 2, 5, 6]
469 eDofs = ModRed.nodes2Dofs(eNodes, dofs)
470 self . assertEqual (eDofs, correct )
471
472
473
474
475 def test partitionMatrix difference twoQUAD4 ( self ) :
476 ”””
477 Testing if Fedem and ANSYS matrices are partitioned correctly .
478 Using the partitioned Fedem matrix as reference , as this is proven to yield
479 the identical gravity vector as Fedem calculates .
480 ”””
481 dict fedem = ModRed.readMappingFileFedem(self. resourcesFolder +

”\\twoQUAD4” + ”\\Fedem” + ”\\MEQN.res”)
482 dict ansys = ModRed.readMappingFile(self. resourcesFolder + ”\\twoQUAD4” +

”\\Ansys” + ”\\M full lumped.mapping”)
483 M full fedem = ModRed.readFedemMatrix(self. resourcesFolder + ”\\twoQUAD4” +

”\\Fedem” + ”\\M full.res”)
484 M full ansys = ModRed.readMMFMatrix(self. resourcesFolder + ”\\twoQUAD4” +

”\\Ansys” + ”\\M full lumped.mmf”, ”full”)
485
486 eNodes = [1, 3]
487 iNodes = [2, 4, 5, 6]
488 fedem = ModRed.partitionMatrix(M full fedem, eNodes, iNodes, dict fedem , 6,

sorting =”equation”)
489 ansys = ModRed.partitionMatrix( M full ansys , eNodes, iNodes, dict ansys , 6,

sorting =”equation”)
490
491 for row in range (0, ansys .RowCount):
492 for col in range (0, ansys .ColumnCount):
493 if row==col:
494 print (” r: ” + str (row) + ”,\ tc: ” + str ( col ) + ”,\ tfedem: ” +

str (fedem[row, col ]) + ”,\ t\ tansys: ” + str (ansys[row, col ]) )
495 self . assertAlmostEqual(fedem[row, col ], ansys[row, col ], places=1)
496 self . fail (”Not correct ”)
497
498
499
500
501 def test massMatrix diagonality ( self ) :
502 #
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503 # Verifying that a lumped matrix is diagonal
504 #
505 mat = ModRed.readMMFMatrix(self. resourcesFolder + ”\\beam.nas” + ”\\Ansys” +

”\\M full lumped.mmf”, ”full”)
506 for row in range (0, mat.RowCount):
507 for col in range (0, mat.ColumnCount):
508 if row == col:
509 self . assertTrue (mat[row, col ] != 0.0 )
510 else:
511 self . assertTrue (mat[row, col ] == 0.0)
512
513
514
515 def test partitionMatrix twoQUAD4 Ansys( self ) :
516 #
517 # Testing with mass matrix from twoQUAD4.
518 #
519 dict = ModRed.readMappingFileFedem(self. resourcesFolder + ”\\twoQUAD4” +

”\\Fedem” + ”\\MEQN.res”)
520 M full = ModRed.readFedemMatrix(self. resourcesFolder + ”\\twoQUAD4” +

”\\Fedem” + ”\\M full.res”)
521
522 eNodes = [1, 3]
523 iNodes = [2, 4, 5, 6]
524 mat = ModRed.partitionMatrix(M full , eNodes, iNodes, dict , 6)
525 # Checking if diagonal:
526 for row in range (0, mat.RowCount):
527 for col in range (0, mat.ColumnCount):
528 if row == col:
529 self . assertTrue (mat[row, col ] != 0.0 )
530 else:
531 self . assertTrue (mat[row, col ] == 0.0)
532
533 # It seems that some of the precision is lost in Fedem when comparing M full

and M ee from Fedem.
534 # Therefore the assertAlmostEqual
535 self . assertAlmostEqual(mat [0,0], 3.910000E+001)
536 self . assertAlmostEqual(mat [1,1], 3.910000E+001)
537 self . assertAlmostEqual(mat [2,2], 3.910000E+001)
538 self . assertAlmostEqual(mat [3,3], 2.782139E−001, places=6)
539 self . assertAlmostEqual(mat [5,5], 6.516665E−001, places=6)
540 self . assertAlmostEqual(mat [11,11], 6.516665E−001, places=6)
541
542
543 def test partitionMatrix twoQUAD4 Fedem(self ) :
544 #
545 # Testing with mass matrix + dictionary from ANSYS. Compared to M ee from

Fedem
546 #
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547 dict = ModRed.readMappingFile(self. resourcesFolder + ”\\twoQUAD4” +
”\\Ansys” + ”\\M full.mapping”)

548 M full = ModRed.readMMFMatrix(self. resourcesFolder + ”\\twoQUAD4” +
”\\Ansys” + ”\\M full lumped.mmf”, ”full”)

549
550 eNodes = [1, 3]
551 iNodes = [2, 4, 5, 6]
552 mat = ModRed.partitionMatrix(M full , eNodes, iNodes, dict , 6)
553 correct = ModRed.readFedemVector(self. resourcesFolder + ”\\twoQUAD4” +

”\\Fedem” + ”\\M ee.res”)
554
555 # Checking if diagonal:
556 for row in range (0, mat.RowCount):
557 for col in range (0, mat.ColumnCount):
558 if row == col:
559 self . assertTrue (mat[row, col ] != 0.0 )
560 else:
561 self . assertTrue (mat[row, col ] == 0.0)
562
563 # It seems that some of the precision is lost in Fedem when comparing M full

and M ee from Fedem.
564 # Therefore the assertAlmostEqual
565 self . assertAlmostEqual(mat [0,0], 3.910000E+001, places=2)
566 self . assertAlmostEqual(mat [1,1], 3.910000E+001, places=2)
567 self . assertAlmostEqual(mat [2,2], 3.910000E+001, places=2)
568 self . assertAlmostEqual(mat [3,3], 2.782139E−001, places=2)
569 self . assertAlmostEqual(mat [5,5], 6.516665E−001, places=2)
570 self . assertAlmostEqual(mat [9,9], 2.782139E−001, places=5)
571 self . assertAlmostEqual(mat [11,11], 6.516665E−001, places=2)
572
573
574 def test partitionMatrix Fedem beam ( self ) :
575 #
576 # Testing with mass matrix from beam.nas. Using the Fedem matrices,
577 # because here we know the resulting matrix
578 #
579 dict = ModRed.readMappingFileFedem(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\MEQN.res”)
580 M full = ModRed.readFedemMatrix(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\M full.res”)
581
582 eNodes = [1, 2, 3, 4]
583 iNodes = [ i for i in range (5, 106)]
584 mat = ModRed.partitionMatrix(M full , eNodes, iNodes, dict , 6)
585 # Checking if diagonal:
586 for row in range (0, mat.RowCount):
587 for col in range (0, mat.ColumnCount):
588 if row == col:
589 self . assertTrue (mat[row, col ] != 0.0 )
590 else:
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591 self . assertTrue (mat[row, col ] == 0.0)
592
593 # It seems that some of the precision is lost in Fedem when comparing M full

and M ee from Fedem.
594 # Therefore the assertAlmostEqual
595 self . assertAlmostEqual(mat [0,0], 9.775000E−002)
596 self . assertEqual (mat [1,0], 0.0)
597 self . assertEqual (mat [0,1], 0.0)
598 self . assertEqual (mat [1,1], 9.775000E−002)
599 self . assertAlmostEqual(mat [3,3], 1.982601E−006)
600 self . assertAlmostEqual(mat [4,4], 3.048196E−006)
601 self . assertAlmostEqual(mat [5,5], 4.07292E−06)
602
603 self . assertAlmostEqual(mat [11,11], 4.072916E−006)
604 self . assertAlmostEqual(mat[15, 15], 1.982601E−006)
605 self . assertAlmostEqual(mat[22, 22], 3.048196E−006)
606 self . assertAlmostEqual(mat[23, 23], 4.072916E−006)
607
608 self . assertEqual (mat[24, 24], 1.95500E−01)
609 self . assertEqual (mat[629, 629], 1.62917E−05)
610
611
612 def test partitionMatrix Fedem unsrtENodes ( self ) :
613
614 # beam.nas model from Fedem, with selected eNodes = [22, 28, 6, 44]
615
616 dict = ModRed.readMappingFileFedem(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\unsrtENodes” + ”\\MEQN.res”)
617 M full = ModRed.readFedemMatrix(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\unsrtENodes” + ”\\M full.res”) # NOTE: The full mass matrix is
not the same

618
619 eNodes = [6, 22, 28, 44]
620 iNodes = [ i for i in range (1, 106)]
621 for e in eNodes:
622 iNodes.remove(e)
623
624 mat = ModRed.partitionMatrix(M full , eNodes, iNodes, dict , 6)
625 # Checking if diagonal:
626 for row in range (0, mat.RowCount):
627 for col in range (0, mat.ColumnCount):
628 if row == col:
629 self . assertTrue (mat[row, col ] != 0.0 )
630 else:
631 self . assertTrue (mat[row, col ] == 0.0)
632
633 # Checking entries in M ee:
634 self . assertAlmostEqual(mat [0,0], 1.955000E−001)
635 self . assertAlmostEqual(mat [3,3], 3.965202E−006)
636 self . assertAlmostEqual(mat [6,6], 1.955000E−001)
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637 self . assertAlmostEqual(mat [16,16], 6.096392E−006)
638
639
640
641 def test partitionMatrix beam Mee ( self ) :
642 # Testing with M full from beam.nas (medium model)
643 mapping = ModRed.readMappingFileFedem(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\MEQN.res”)
644 M full = ModRed.readFedemMatrix(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\M full.res”)
645 eNodes = [1, 2, 3, 4]
646 iNodes = [ i for i in range (5, 106)]
647 M full partitioned = ModRed.partitionMatrix(M full , eNodes, iNodes, mapping, 6)
648 # Using M ee from Fedem as reference
649 M ee = ModRed.readFedemVector(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\M ee.res”)
650
651 for row in range (0, M ee.RowCount):
652 for col in range (0, M ee.ColumnCount):
653 self . assertAlmostEqual( M full partitioned [row, col ], M ee[row, col ])
654
655
656
657
658 def test partitionMatrix noDict ( self ) :
659 ”””
660 Testing the partitionMatrix method with dictionary dof = equation
661 ”””
662 def array (*x) : return sys array [ float ](x) # Helper function to create custom

Math.NET matrices
663 # Dictionary coupling dof to equation:
664 # dict [dof] = eq
665 noDict = { # dof = equation
666 1: 1,
667 2: 2,
668 3: 3,
669 4: 4,
670 5: 5,
671 6: 6,
672 7: 7,
673 8: 8,
674 9: 9
675 }
676 # Remember: 3 DOFs per node
677 eNodes = [1]
678 iNodes = [2, 3]
679
680 partitioned = ModRed.partitionMatrix( self . mat , eNodes, iNodes, noDict, 3,

sorting =”dof”)
681 # Dictionary with dof = equation and eNodes, iNodes in ascending order
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682 # should return the same matrix
683 self . assertEqual ( self . mat , partitioned )
684
685 partitioned = ModRed.partitionMatrix( self . mat , eNodes, iNodes, noDict, 3,

sorting =”dof”)
686 # Testing first if partitionMatrix works with no dictionary mapping
687
688 correct = la .Double.Matrix.Build .DenseOfRowArrays( # Moving rows
689 array (31, 32, 33, 28, 29, 30, 34, 35, 36) ,
690 array (40, 41, 42, 37, 38, 39, 43, 44, 45) ,
691 array (49, 50, 51, 46, 47, 48, 52, 53, 54) ,
692 array (4, 5, 6, 1, 2, 3, 7, 8, 9) ,
693 array (13, 14, 15, 10, 11, 12, 16, 17, 18) ,
694 array (22, 23, 24, 19, 20, 21, 25, 26, 27) ,
695 array (58, 59, 60, 55, 56, 57, 61, 62, 63) ,
696 array (67, 68, 69, 64, 65, 66, 70, 71, 72) ,
697 array (76, 77, 78, 73, 74, 75, 79, 80, 81)
698 )
699
700 eNodes = [2]
701 iNodes = [1, 3]
702 partitioned = ModRed.partitionMatrix( self . mat , eNodes, iNodes, noDict, 3,

sorting =”dof”)
703 self . assertEqual ( partitioned , correct )
704
705
706
707
708 def test mathNET2list ( self ) :
709 list = ModRed.mathNET2list(self. mat )
710 correct list = [1.0, 10.0, 19.0, 28.0]
711 wrong list = [1.0, 2.0, 3.0, 4.0] # Should be returned column−first
712
713 print (”my list: ” + str ( list [0:4 ]) )
714 self . assertEqual ( list [0:4 ], correct list )
715 self . assertNotEqual ( list [0:4 ], wrong list )
716 self . assertEqual ( len ( list ) , 81) # 9x9 matrix
717
718
719 def test readMMFMatrix red(self ) :
720 M red path = self . resourcesFolder + ”\\beam.nas” + ”\\Ansys” + ”\\M red.mmf”
721 mat = ModRed.readMMFMatrix(M red path, ”sub”)
722
723 self . assertEqual (mat.RowCount, 26)
724 self . assertEqual (mat.ColumnCount, 26)
725
726 self . assertEqual (mat [0,0], 9.037402289784589E+00)
727 self . assertEqual (mat [0,2], 0)
728 self . assertEqual (mat [2,0], 0)
729
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730 self . assertEqual (mat [0,5], 4.528581487170890E−05)
731 self . assertEqual (mat [5,0], 4.528581487170890E−05)
732
733 self . assertEqual (mat [25,25], 1.0)
734
735 M red path = self . resourcesFolder + ”\\plate .nas” + ”\\Ansys” + ”\\M red.mmf”
736 mat = ModRed.readMMFMatrix(M red path, ”sub”)
737
738 self . assertEqual (mat.RowCount, 26)
739 self . assertEqual (mat.ColumnCount, 26)
740
741 self . assertEqual (mat [0,0], 5.871600155722680E−01)
742 self . assertEqual (mat [0,2], 4.381258188504480E−01)
743 self . assertEqual (mat[24, 20], 2.027417791055110E−17)
744
745
746
747
748
749
750 def test readMMFMatrix full( self ) :
751 path = self . resourcesFolder + ”\\beam.nas” + ”\\Ansys” + ”\\M full.mmf”
752 mat = ModRed.readMMFMatrix(path, ”full”)
753
754 # Checking if dimensions are correct
755 self . assertEqual (mat.RowCount, 630)
756 self . assertEqual (mat.ColumnCount, 630)
757
758 # Checking some values at the boundaries:
759 self . assertEqual (mat [0,0], 8.688888888888170E−02)
760 self . assertEqual (mat[0, 629], 0)
761 self . assertEqual (mat[629, 0], 0)
762 self . assertEqual (mat[629, 629], 1.448148148148030E−16)
763
764 # Testing random values:
765 self . assertEqual (mat [23,23], 1.448148148148030E−16)
766 self . assertEqual (mat[285,243], 3.620370370370130E−07)
767 self . assertEqual (mat[291,291], 5.792592592592110E−06)
768
769
770
771
772 def test readMMFMatrix full isSymmetric( self ) :
773 path = self . resourcesFolder + ”\\beam.nas” + ”\\Ansys” + ”\\M full.mmf”
774 mat = ModRed.readMMFMatrix(path, ”full”)
775
776 # Checking if matrix is symmetric:
777 for row in range (0, mat.RowCount):
778 for col in range (0, mat.ColumnCount):
779 self . assertEqual (mat[row, col ], mat[col , row])
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780
781
782 def test readMMFMatrix full correctMass ( self ) :
783 path = self . resourcesFolder + ”\\beam.nas” + ”\\Ansys” + ”\\M full.mmf”
784 mat = ModRed.readMMFMatrix(path, ”full”)
785 correct mass = 3.12800E+01 # Taken from Fedem reducer
786
787 for i in [1, 2, 3] :
788 u = ModRed.createUnitVector(i , 105)
789 m = u.Transpose() . Multiply(mat). Multiply(u) [0,0]
790 print (m)
791 self . assertAlmostEqual( correct mass , m)
792
793
794 def test readMMFMatrix red isSymmetric(self ) :
795 path = self . resourcesFolder + ”\\beam.nas” + ”\\Ansys” + ”\\M red.mmf”
796 mat = ModRed.readMMFMatrix(path, ”sub”)
797
798 # Checking if matrix is symmetric:
799 for row in range (0, mat.RowCount):
800 for col in range (0, mat.ColumnCount):
801 self . assertEqual (mat[row, col ], mat[col , row])
802
803
804 def test readFedemVector red correctMass ( self ) :
805 path = self . resourcesFolder + ”\\beam.nas” + ”\\Fedem” + ”\\M red.res”
806 mat = ModRed.readFedemVector(path)
807 print (mat)
808 correct mass = 3.12800E+01
809
810 for i in [1, 2, 3] :
811 u = ModRed.createUnitVector(i , 4, 2)
812 m = u.Transpose() . Multiply(mat). Multiply(u) [0,0]
813 self . assertAlmostEqual( correct mass , m, places=5)
814
815
816 def test readMMFMatrix red correctMass( self ) :
817 ”””
818 Applying unit translation in x, y, z direction and verifying it is the same

mass
819 as computed in Fedem
820 ”””
821 path = self . resourcesFolder + ”\\beam.nas” + ”\\Ansys” + ”\\M red.mmf”
822 mat = ModRed.readMMFMatrix(path, ”sub”)
823 correct mass = 3.12800E+01
824
825 for i in [1, 2, 3] :
826 u = ModRed.createUnitVector(i , 4, 2)
827 m = u.Transpose() . Multiply(mat). Multiply(u) [0,0]
828 self . assertAlmostEqual( correct mass , m, places=6)
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829
830
831
832
833
834 ”””
835 # Commented out for being able to run all tests faster
836 def test readMMFMatrix largeFiles ( self ) :
837 M full path = self . resourcesFolder + ”\\lca .nas” + ”\\M full.mmf” # Large

file (230 000 lines )
838 M full = ModRed.readMMFMatrix(M full path, ”full”)
839 self . assertEqual (M full .RowCount, 35553)
840 self . assertEqual (M full .ColumnCount, 35553)
841 self . assertEqual (M full [0, 0], 6.837606621530309E−05) # start
842 self . assertEqual (M full [165, 12], 2.229360838501640E−05) # random place
843 self . assertEqual (M full[35552, 35552], 2.580374027760560E−07) # end
844
845
846 def test readMMFMatrix largeFiles2 ( self ) :
847 M full path = self . resourcesFolder + ”\\ reactor ” + ”\\M full.mmf” # Large

file (450 000 lines )
848 M full = ModRed.readMMFMatrix(M full path, ”full”)
849 self . assertEqual (M full .RowCount, 69438)
850 self . assertEqual (M full .ColumnCount, 69438)
851 self . assertEqual (M full [0, 0], 9.966062445579789E−05) # start
852 self . assertEqual (M full[26236, 26236], 7.549508902862550E−04) # random place
853 self . assertEqual (M full[69437, 69437], 8.306723475513540E−04) # end
854 ”””
855
856 def test readFedemMatrix( self ) :
857 path = self . resourcesFolder + ”\\beam.nas” + ”\\Fedem” + ”\\M full.res”
858 mat = ModRed.readFedemMatrix(path)
859 # Checking some entries
860 self . assertEqual (0.1955, mat [0,0])
861 self . assertEqual (mat [0,1], 0.000)
862 self . assertEqual (mat [1,1], 0.1955)
863 self . assertEqual (mat[202, 202], 6.09639E−06)
864 self . assertEqual (mat[605, 605], 1.62917E−05)
865 self . assertEqual (mat[606, 606], 9.77500E−02)
866 self . assertEqual (mat[629, 629], 4.07292E−06)
867
868 def test readFedemVector twoQUAD4(self):
869 path = self . resourcesFolder + ”\\twoQUAD4” + ”\\Fedem” + ”\\gravVec.res”
870 mat = ModRed.readFedemVector(path)
871
872 self . assertEqual (mat [0,0], 1.564000E+002)
873 self . assertEqual (mat [0,1], −3.556089E+001)
874 self . assertEqual (mat [13,2], −9.710526E−015)
875 self . saveObject (mat, ”gravVec”)
876
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877
878 def test readFedemVector ( self ) :
879 path = self . resourcesFolder + ”\\beam.nas” + ”\\Fedem” + ”\\Bmat.res”
880 mat = ModRed.readFedemVector(path)
881
882 self . assertEqual (mat [0,0], 2.270180E−001)
883 self . assertEqual (mat [0,1], 8.015493E−002)
884 self . assertEqual (mat [0,9], 0.0)
885 self . assertEqual (mat [0,17], −3.023801E−004)
886 self . assertEqual (mat [0,23], −7.732552E−003)
887 self . assertEqual (mat [601,0], 1.497216E−002)
888 self . assertEqual (mat [604,0], 0.0)
889 self . assertEqual (mat[605, 23], −2.384053E−002)
890 self . assertEqual (mat [605,23], −2.384053E−002)
891 self . assertEqual (mat [604,9], −2.839266E−004)
892 self . assertEqual (mat [605,9], 0.0)
893
894 self . assertEqual (mat [605,10], 4.054158E−003)
895 self . assertEqual (mat [605,11], −3.068604E−002)
896 self . assertEqual (mat [605,5], 4.054158E−003)
897 self . assertEqual (mat [605,1], 1.572045E−001)
898 self . assertEqual (mat [605,0], 5.364874E−001)
899
900 mat = ModRed.readFedemVector(self. resourcesFolder + ”\\beam.nas” + ”\\Fedem”

+ ”\\phi fedem.res”)
901 self . assertEqual (0.0, mat [0,0])
902 self . assertEqual (6.392561E−016, mat[0,1])
903 self . assertEqual (−8.829041E−002, mat[2,0])
904 self . assertEqual (3.321254E−016, mat[605,0])
905 self . assertEqual (−5.843641E−014, mat[605,1])
906
907 vec = ModRed.readFedemVector(self. resourcesFolder + ”\\beam.nas” + ”\\Fedem”

+ ”\\gravVec.res”)
908 self . assertEqual (vec [0,0], 7.820000E+000)
909 self . assertEqual (vec [0,1], 1.297520E+001)
910 self . assertEqual (vec [25,0], 1.826227E−014)
911 self . assertEqual (vec [25,1], 4.104385E−014)
912 self . assertEqual (vec [25,2], −1.456509E−013)
913
914
915 def test readMappingFileFedem( self ) :
916 dict = ModRed.readMappingFileFedem(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\MEQN.res”)
917
918 dof = 1
919 eq = 607
920 self . assertEqual (eq, dict [dof ])
921
922 dof = 2
923 eq = 608
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924 self . assertEqual (eq, dict [dof ])
925
926 dof = 630
927 eq = 258
928 self . assertEqual (eq, dict [dof ])
929
930
931
932 def test calculateGravityVector Fedem beam ( self ) :
933
934 with open( self . resourcesFolder + ”\\beam.nas” + ”\\Fedem” + ”\\gravVec.p”) as

file:
935 correct = pickle . load( file )
936 with open( self . resourcesFolder + ”\\beam.nas” + ”\\Fedem” + ”\\NOR.p”) as file:
937 NOR = pickle.load( file )
938 with open( self . resourcesFolder + ”\\beam.nas” + ”\\Fedem” +

”\\identityMatrix .p”) as file:
939 ident = pickle . load( file )
940 B = ModRed.readFedemVector(self. resourcesFolder + ”\\beam.nas” + ”\\Fedem” +

”\\Bmat.res”)
941 CST = la.Double.SparseMatrix(630, 24)
942 CST.SetSubMatrix(0, 24, 0, 24, ident )
943 CST.SetSubMatrix(24, 606, 0, 24, B)
944 H = CST.Append(NOR) # H = [CST NOR]
945
946 # Building M full:
947 M full = ModRed.readFedemMatrix(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\M full.res”)
948 dict = ModRed.readMappingFileFedem(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\MEQN.res”)
949 eNodes = [1, 2, 3, 4]
950 iNodes = [ i for i in range (5, 106)]
951 M full = ModRed.partitionMatrix(M full , eNodes, iNodes, dict , 6)
952
953 gravVec = ModRed.calculateGravityVector (M full , H, 4, 101, 6)
954 print (gravVec)
955 for row in range (0, gravVec.RowCount):
956 for col in range (0, gravVec.ColumnCount):
957 self . assertAlmostEqual(gravVec[row, col ], correct [row, col ], places=5)
958
959
960
961
962
963 def test calculateGravityVectorReduced beam ( self ) :
964 with open( self . resourcesFolder + ”\\beam.nas” + ”\\Fedem” + ”\\gravVec.p”) as

file:
965 correct = pickle . load( file )
966
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967 M red = ModRed.readMMFMatrix(self. resourcesFolder + ”\\beam.nas” + ”\\Ansys” +
”\\M red.mmf”, ”sub”)

968
969 gravVec = ModRed.calculateGravityVectorReduced(M red, 4, 2)
970 diffs = []
971 for row in range (0, gravVec.RowCount):
972 for col in range (0, gravVec.ColumnCount):
973 diff = correct [row, col ] − gravVec[row, col ]
974 diffs .append( diff )
975 if ( diff > 1.0) :
976 self . fail (”Too large diff ”)
977
978
979 def test calculateGravityVectorReduced twoQUAD4(self ) :
980 with open( self . resourcesFolder + ”\\twoQUAD4” + ”\\Fedem” + ”\\gravVec.p”)

as file:
981 correct = pickle . load( file )
982
983 CST = ModRed.readMMFMatrix(self. resourcesFolder + ”\\twoQUAD4” + ”\\Ansys”

+ ”\\CST.mmf”, ”full”)
984 NOR = ModRed.readMMFMatrix(self. resourcesFolder + ”\\twoQUAD4” + ”\\Ansys”

+ ”\\NOR.mmf”, ”full”)
985 H = CST.Append(NOR) # H = [CST NOR]
986
987 M red = ModRed.readMMFMatrix(self. resourcesFolder + ”\\twoQUAD4” +

”\\Ansys” + ”\\M red.mmf”, ”sub”)
988
989 gravVec = ModRed.calculateGravityVectorReduced(M red, 2, 2)
990 print (gravVec)
991 diffs = []
992 for row in range (0, gravVec.RowCount):
993 for col in range (0, gravVec.ColumnCount):
994 diff = correct [row, col ] − gravVec[row, col ]
995 diffs .append( diff )
996 print ( diffs )
997 if (max(diffs ) ) > 20:
998 self . fail (”Too large diff ”)
999

1000
1001 def test calculateGravityVectorReduced plate ( self ) :
1002 correct = ModRed.readFedemVector(self. resourcesFolder + ”\\plate .nas” +

”\\Fedem” + ”\\gravVec.res”)
1003
1004 M red = ModRed.readMMFMatrix(self. resourcesFolder + ”\\plate .nas” + ”\\Ansys”

+ ”\\M red.mmf”, ”sub”)
1005
1006 gravVec = ModRed.calculateGravityVectorReduced(M red, 4, 2)
1007 print (gravVec)
1008 diffs = []
1009 for row in range (0, gravVec.RowCount):
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1010 for col in range (0, gravVec.ColumnCount):
1011 diff = correct [row, col ] − gravVec[row, col ]
1012 diffs .append( diff )
1013
1014
1015 print ( diffs )
1016 print (max(diffs ) )
1017 if (max(diffs ) ) > 20:
1018 self . fail (”Too large diff ”)
1019
1020 def test calculateGravityVector Ansys twoQUAD4( self ) :
1021
1022 with open( self . resourcesFolder + ”\\twoQUAD4” + ”\\Fedem” + ”\\gravVec.p”)

as file:
1023 correct = pickle . load( file )
1024 M full = ModRed.readMMFMatrix(self. resourcesFolder + ”\\twoQUAD4” +

”\\Ansys” + ”\\M full lumped.mmf”, ”full”)
1025 CST = ModRed.readMMFMatrix(self. resourcesFolder + ”\\twoQUAD4” + ”\\Ansys”

+ ”\\CST.mmf”, ”full”)
1026 NOR = ModRed.readMMFMatrix(self. resourcesFolder + ”\\twoQUAD4” + ”\\Ansys”

+ ”\\NOR.mmf”, ”full”)
1027 H = CST.Append(NOR) # H = [CST NOR]
1028
1029 dict = ModRed.readMappingFile(self. resourcesFolder + ”\\twoQUAD4” +

”\\Ansys” + ”\\M full lumped.mapping”)
1030 eNodes = [1, 3]
1031 iNodes = [2, 4, 5, 6]
1032 M full = ModRed.partitionMatrix(M full , eNodes, iNodes, dict , 6)
1033
1034 gravVec = ModRed.calculateGravityVector (M full , H, 2, 4, 6)
1035 print (” calculated: ” + str (gravVec))
1036 print (” correct: ” + str ( correct ) )
1037 for row in range (0, gravVec.RowCount):
1038 for col in range (0, gravVec.ColumnCount):
1039 self . assertAlmostEqual(gravVec[row, col ], correct [row, col ], places=1)
1040
1041
1042 def test node2dof ( self ) :
1043 dofDict = {
1044 ”UX”: 1,
1045 ”UY”: 2,
1046 ”UZ”: 3,
1047 ”ROTX”: 4,
1048 ”ROTY”: 5,
1049 ”ROTZ”: 6
1050 }
1051
1052 node = 1
1053 dofText = ”UX”
1054 correctDof = 1
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1055 dof = ModRed.node2dof(node, dofDict, 6, dofText)
1056 self . assertEqual (dof , correctDof )
1057
1058 node = 1
1059 dofText = ”UY”
1060 correctDof = 2
1061 dof = ModRed.node2dof(node, dofDict, 6, dofText)
1062 self . assertEqual (dof , correctDof )
1063
1064 node = 1
1065 dofText = ”UZ”
1066 correctDof = 3
1067 dof = ModRed.node2dof(node, dofDict, 6, dofText)
1068 self . assertEqual (dof , correctDof )
1069
1070 node = 1
1071 dofText = ”ROTX”
1072 correctDof = 4
1073 dof = ModRed.node2dof(node, dofDict, 6, dofText)
1074 self . assertEqual (dof , correctDof )
1075
1076 node = 2
1077 dofText = ”UY”
1078 correctDof = 8
1079 dof = ModRed.node2dof(node, dofDict, 6, dofText)
1080 self . assertEqual (dof , correctDof )
1081
1082 node = 3
1083 dofText = ”UZ”
1084 correctDof = 15
1085 dof = ModRed.node2dof(node, dofDict, 6, dofText)
1086 self . assertEqual (dof , correctDof )
1087
1088
1089
1090 def test calculateGravityVector Fedem twoQUAD4(self ) :
1091 with open( self . resourcesFolder + ”\\twoQUAD4” + ”\\Fedem” + ”\\gravVec.p”)

as file:
1092 correct = pickle . load( file )
1093 M full = ModRed.readFedemMatrix(self. resourcesFolder + ”\\twoQUAD4” +

”\\Fedem” + ”\\M full.res”)
1094 ident = la .Double.SparseMatrix. CreateIdentity (12)
1095 B = ModRed.readFedemVector(self. resourcesFolder + ”\\twoQUAD4” + ”\\Fedem”

+ ”\\BMAT.res”)
1096 nullMat = la .Double.SparseMatrix(12, 2)
1097 phi = ModRed.readFedemVector(self. resourcesFolder + ”\\twoQUAD4” +

”\\Fedem” + ”\\phi.res”)
1098 CST = la.Double.SparseMatrix(36, 12)
1099 CST.SetSubMatrix(0, 12, 0, 12, ident )
1100 CST.SetSubMatrix(12, 24, 0, 12, B)
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1101 NOR = la.Double.SparseMatrix(36, 2)
1102 NOR.SetSubMatrix(0, 12, 0, 2, nullMat)
1103 NOR.SetSubMatrix(12, 24, 0, 2, phi)
1104 H = CST.Append(NOR) # H = [CST NOR]
1105
1106 dict = ModRed.readMappingFileFedem(self. resourcesFolder + ”\\twoQUAD4” +

”\\Fedem” + ”\\MEQN.res”)
1107 eNodes = [1, 3]
1108 iNodes = [2, 4, 5, 6]
1109 M full = ModRed.partitionMatrix(M full , eNodes, iNodes, dict , 6)
1110
1111
1112 gravVec = ModRed.calculateGravityVector (M full , H, 2, 4, 6)
1113 print (gravVec)
1114 for row in range (0, gravVec.RowCount):
1115 for col in range (0, gravVec.ColumnCount):
1116 self . assertAlmostEqual(gravVec[row, col ], correct [row, col ], places=4)
1117
1118
1119
1120
1121 def test calculateGravityVector Fedem unsortedENodes ( self ) :
1122 ”””
1123 Gravity vector with eNodes = [22, 28, 6, 44]
1124 Using the beam.nas model
1125 ”””
1126 correct = ModRed.readFedemVector(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\unsrtENodes” + ”\\gravVec.res”)
1127
1128 B = ModRed.readFedemVector(self. resourcesFolder + ”\\beam.nas” + ”\\Fedem” +

”\unsrtENodes” + ”\\Bmat.res”)
1129 ident = la .Double.SparseMatrix(24) . CreateIdentity (24)
1130 CST = la.Double.SparseMatrix(630, 24)
1131 CST.SetSubMatrix(0, 24, 0, 24, ident )
1132 CST.SetSubMatrix(24, 606, 0, 24, B)
1133
1134 phi = ModRed.readFedemVector(self. resourcesFolder + ”\\beam.nas” + ”\\Fedem”

+ ”\unsrtENodes” + ”\\phi.res”)
1135 nullMat = la .Double.SparseMatrix(24, 2)
1136 NOR = la.Double.SparseMatrix(630, 2)
1137 NOR.SetSubMatrix(0, 24, 0, 2, nullMat)
1138 NOR.SetSubMatrix(24, 606, 0, 2, phi)
1139 H = CST.Append(NOR) # H = [CST NOR]
1140
1141 # Building M full:
1142 M full = ModRed.readFedemMatrix(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\unsrtENodes” + ”\\M full.res”)
1143 dict = ModRed.readMappingFileFedem(self. resourcesFolder + ”\\beam.nas” +

”\\Fedem” + ”\\unsrtENodes” + ”\\MEQN.res”)
1144 eNodes = [22, 28, 6, 44]
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1145 iNodes = [ i for i in range (1, 106)]
1146 for e in eNodes:
1147 iNodes.remove(e)
1148 M full = ModRed.partitionMatrix(M full , eNodes, iNodes, dict , 6)
1149
1150 gravVec = ModRed.calculateGravityVector (M full , H, 4, 101, 6)
1151 print (gravVec)
1152
1153 diffs = []
1154 for row in range (0, gravVec.RowCount):
1155 for col in range (0, gravVec.ColumnCount):
1156 diff = correct [row, col ] − gravVec[row, col ]
1157 diffs .append( diff )
1158 print ( diffs )
1159 print (”max: ” + str (max(diffs ) ) )
1160 for row in range (0, gravVec.RowCount):
1161 for col in range (0, gravVec.ColumnCount):
1162 self . assertAlmostEqual(gravVec[row, col ], correct [row, col ], places=5)
1163
1164
1165
1166 def test calculateGravityVector Ansys beam ( self ) :
1167 with open( self . resourcesFolder + ”\\beam.nas” + ”\\Fedem” + ”\\gravVec.p”) as

file:
1168 correct = pickle . load( file )
1169
1170 CST = ModRed.readMMFMatrix(self. resourcesFolder + ”\\beam.nas” + ”\\Ansys” +

”\\CST.mmf”, ”full”)
1171 NOR = ModRed.readMMFMatrix(self. resourcesFolder + ”\\beam.nas” + ”\\Ansys” +

”\\NOR.mmf”, ”full”)
1172 H = CST.Append(NOR) # H = [CST NOR]
1173
1174 # Building M full:
1175 M full = ModRed.readMMFMatrix(self. resourcesFolder + ”\\beam.nas” + ”\\Ansys”

+ ”\\M full lumped.mmf”, ”full”)
1176 dict = ModRed.readMappingFile(self. resourcesFolder + ”\\beam.nas” + ”\\Ansys”

+ ”\\M full lumped.mapping”)
1177 eNodes = [1, 2, 3, 4]
1178 iNodes = [ i for i in range (5, 106)]
1179 M full = ModRed.partitionMatrix(M full , eNodes, iNodes, dict , 6)
1180
1181 gravVec = ModRed.calculateGravityVector (M full , H, 4, 101, 6)
1182
1183 diffs = []
1184 for row in range (0, gravVec.RowCount):
1185 for col in range (0, gravVec.ColumnCount):
1186 diff = correct [row, col ] − gravVec[row, col ]
1187 diffs .append( diff )
1188 print ( diffs )
1189 print (”max: ” + str (max(diffs ) ) )
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1190 for row in range (0, gravVec.RowCount):
1191 for col in range (0, gravVec.ColumnCount):
1192 self . assertAlmostEqual(gravVec[row, col ], correct [row, col ], places=1)
1193
1194
1195
1196 def test readMappingFile ( self ) :
1197
1198 path = self . resourcesFolder + ”\\twoQUAD4” + ”\\Ansys” + ”\\M full.mapping”
1199 dict = ModRed.readMappingFile(path) # dict [dof] = equation
1200
1201 self . assertEqual ( dict [1], 13)
1202 self . assertEqual ( dict [2], 14)
1203 self . assertEqual ( dict [7], 19)
1204 self . assertEqual ( dict [13], 31)
1205 self . assertEqual ( dict [14], 32)
1206 self . assertEqual ( dict [18], 36)
1207
1208
1209
1210 if name == ” main ”:
1211 unittest .main()
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