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Abstract
Curved screens are often used to transform the velocity profile in the test section of ex-
perimental facilities. The existing relations for determining the screen shape given the flow
conditions upstream and the desired flow conditions in the test section are, unfortunately,
limited to moderate changes in the velocity profile. Hence, a lot of time may be spent on
trying to determine a screen shape that adequately accurate produces the desired velocity
profile. The aim of this thesis is therefore to construct a computational fluid dynamics (CFD)
model that accurately simulates flows passing through curved screens within a reasonable
amount of time. This model will be used to study how the downstream velocity profile is
affected when changing the screen shape/curvature, inlet velocity, and water depth using the
commercial CFD solver ANSYS Fluent 19.2.

Resolving all flow structures that are present in flows passing through screens proved to
be a computationally intensive task. It was therefore decided to model the flow resistance
introduced by a screen using the porous media model (PMM) in ANSYS Fluent, such that
the screen was substituted by a porous region. Empirical relations for the pressure drop over
screens were used to approximate the loss factors that need to be specified in the PMM.

A closed channel model was created to verify that the PMM accurately modelled the flow
obstruction introduced by a physical screen. The verification of the model was performed by
comparing the velocity profile resulting from CFD-simulations, using several screen shapes,
with the velocity profile predicted by a theoretical relation. This comparison showed that
the agreement between the two was almost perfect.

Experimental data provided by PhD Candidate Benjamin Smeltzer was used to validate
the CFD-model for open channel flows. Comparison between the measured velocity profile
and the profile resulting from the CFD-model showed an adequate agreement between the
two.

After the CFD-model had been carefully verified and validated, several cases investigat-
ing how certain changes affected the velocity profile downstream of the screen were tested.
Simulations showed that:

• Making a screen more convex, as perceived by the flow, results in an even more concave
velocity profile and a decrease in the shear in the region near the free-surface.

• Making a screen more concave, as perceived by the flow, results in an even more convex
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velocity profile and an increase in the shear in the region near the free-surface.

• For a straight screen, an increase in the angle between the screen normal vector and the
streamwise direction results in a greater change in the velocity profile over the screen.

• Increasing the inlet velocity will decrease the change in the velocity profile over the
screen.

• Changing the water depth, keeping all other parameters constant, gave no effects on
the normalized velocity profile. This result is though not assumed to be general.
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Sammendrag
Krummede nettinger blir ofte brukt til å endre hastighetsprofilet i testområdet i eksperi-
mentelle anlegg. De eksisterende uttrykkene som kan brukes til å bestemme formen på net-
tingen, gitt strømningsforholdene opp- og nedstrøms av testområdet, er dessverre kun gyldig
for små endringer i hastighetsprofilet over nettingen. Mye tid kan derfor ende opp med og
brukes på å bestemme formen på nettingen som produserer det ønskede hastighetsprofilet
med tilstrekkelig nøyaktighet. Målet for denne masteroppgaven er derfor å lage en CFD-
modell som kan simulere strømning over krummede nettinger med tilstrekkelig nøyaktighet
innen rimelig tid. Denne modellen vil videre brukes til å undersøke hvordan hastighetspro-
filet nedstrøms for nettingen endrer seg ved å endre formen på nettingen, innløpshastigheten
og vanndybden ved bruk av CFD programmet ANSYS Fluent 19.2.

Å løse opp alle strømningsstrukturene som oppstår i en strømning over en netting viste
seg å være en svært tidkrevende beregningsoppgave. Det ble derfor bestemt å modellere
strømningsmotstanden som introduseres av en netting ved bruk av porøst medium mod-
ellen (PMM) i ANSYS Fluent, hvor nettingen byttes ut med et porøst område. Empiriske
sammenhenger for trykktapet over en netting ble brukt til å tilnærme tapsleddene som må
spesifiseres i PMM.

En modell for strømning i lukket kanal ble brukt til å verifisere at PMM modellerte
strømningsmotstanden til en fysisk netting nøyaktig. Modellen ble verifisert ved å sammen-
ligne hastighetsprofilet fra CFD-simuleringene med hastighetsprofilet predikert av en teo-
retisk sammenheng. Denne sammenligningen viste en nesten perfekt sammenheng mellom
hastighetsprofilene.

Doktorgradsstudenten Benjamin Smeltzer bidro med eksperimentelle data som ble brukt
til å validere CFD-modellen for strømning i åpen kanal over en krummet netting. Hastighet-
sprofilet fra CFD-modellen viste seg å predikere hastighetsprofilet fra de eksperimentelle
dataene med tilstrekkelig nøyaktighet.

Etter å ha verifisert og validert CFD-modellen nøye, ble det undersøkt hvordan enkelte
endringer påvirket hastighetsprofilet nedstrøms for nettingen. Simuleringene viste at:

• Å gjøre en netting mer konveks, sett av strømningen, resulterer i et mer konkavt
hastighetsprofil og reduserer styrken på skjærprofilet nær den frie overflaten.

• Å gjøre en netting mer konkav, sett av strømningen, resulterer i et mer konvekst
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hastighetsprofil og øker styrken på skjærprofilet nær den frie overflaten.

• For rette nettinger vil en økning i vinkelen mellom normal vektoren til nettingen og
strømningsretningen resultere i en større endring i hastighetsprofilet over nettingen.

• En økning i innløpshastigheten vil redusere endringen i hastighetsprofilet over nettin-
gen.

• Å endre vanndybden, uten å endre andre parametre, viste seg å ikke ha noen effekt på
det normaliserte hastighetsprofilet. Dette resultatet er dog ikke antatt å være generelt.
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Chapter 1

Introduction

1.1 Background

Sheared flows are often being studied as useful idealizations of several industrial and envi-
ronmental flows, e.g. wave propagation at the interface of a fluid subjected to a sheared
current. The production of such a flow is often just an initial step of an experimental study,
as it often is the effect of the sheared flow, and not how it is generated, that is of interest.
The process of producing a specific velocity profile may be a fairly time-consuming process
and might not be as straight forward as first thought.

A transformation of the velocity profile may be performed experimentally by introducing
an obstruction to the flow that deflects the streamlines. The idea is that a desired velocity
profile can be generated by a spatial variation of the flow obstruction, deflecting the flow
in such a manner that the desired velocity profile is created. Such obstructions may be
rows of parallel cylinders with non-uniform spacing (Owen and Zienkiewcz [23]; Livesey and
Turner [20]; McCarthy [22]), screens (Elder [7]; Turner [25]; Castro [3]; Dunn and Tavoularis
[6]), tapered honeycombs(Kotansky[16]), and parallel channels in which obstructions adjust
the flow rate(Karnik and Tavoularis [15]). Each of these methods has its strengths and
weaknesses regarding turbulence production and ability to cause large changes in the velocity
profile up- and downstream of the obstruction. Although there have been several attempts at
constructing a general theoretical relation relating the up- and downstream flow conditions
with the flow obstruction, all of them rely on empirical relations and are mostly restricted
to small changes in the velocity profile over the obstruction.

At the wave laboratory in the fluid mechanics building at the Norwegian University of
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Science and Technology (NTNU), there is an ongoing study of 3D wave phenomena affected
by a sub-surface shear current. The shear current in the laboratory, which set-up is illustrated
in figure 1.1, is generated by the use of a curved screen. Today, the screen is adjusted
manually until a desired downstream velocity profile is generated. It is therefore desired
to get a better understanding of how the produced velocity profile is related to the screen
shape. The goal is to get better control of the downstream velocity profile and to save time
spent on adjusting the screen in the future if other velocity profiles are desired.

Figure 1.1: Set-up in the wave laboratory (fig. by S.Å.E) [27].

1.1.1 Motivation

An example will be used to motivate this thesis. There may be many reasons why it is
desired to transform the velocity profile that is currently available in the test section of a
laboratory. For example, to ensure that a component could be operating safely in a given
velocity field. So, imagine that it is desired to test the performance of a hydrofoil in a certain
velocity profile. The velocity profile in the test section is currently uniform, as illustrated in
figure 1.2, while figure 1.3 shows the velocity profile that it is desired to test the performance
of the hydrofoil in.

The velocity profile that is currently in the lab may be transformed into the desired profile
by placing a screen upstream of the test section. This situation is illustrated in figure 1.4.
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Figure 1.2: The current situation in the test
section.

Figure 1.3: The velocity profile in which it
is desired to test the performance of the hy-
drofoil.

The desired velocity profile will then be produced by the screen if it has the correct shape,
by deflecting the streamlines of the flow such that the desired velocity profile is produced.
Although the main objective of the project is to test the performance of the hydrofoil in
the given velocity profile, a majority of the time allocated for the project may be spent on
determining the correct shape of the screen, such that it will produce the desired velocity
profile. A better routine for testing a screen shape without having to reshape the screen and
support structure manually is therefore needed, such that less time will be wasted on testing
different screen shapes in the future.

Figure 1.4: The desired velocity profile may be generated by placing a screen upstream of
the test section. The screen will transform the uniform profile into the desired profile, if it
has the correct shape.
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1.2 Research Objectives

The main objective of this thesis is to develop a Computational Fluid Dynamics (CFD)
model that accurately simulates laminar flows through curved screens. The idea is that the
model can be used to predict the downstream velocity profile resulting from a given screen
shape and inlet conditions.

The first step will be to develop a quasi-2D model of one periodic screen length’s width
using periodic boundary conditions. A periodic screen length’s width corresponds to the
entity that is repeated in the spanwise direction, an illustration of the replicated entity of
square-knitted screens is given in figure 2.1. A model allowing larger spanwise flow structures
may be necessary depending on the performance of the quasi-2D model. The CFD-results
will be verified and validated using theoretical relations and experimental results.

The CFD-model will then be used to analyze how the velocity profile downstream of the
screen is affected by varying:

• Screen shape/curvature.

• Inlet velocity.

• Water depth.

It is desired that these results will give a better insight on how to design a screen such
that a desired downstream velocity profile is produced. Version 19.2 of the commercial CFD
software ANSYS FLUENT will be used to conduct the CFD-simulations in this thesis. It is
also desired that simulations of the CFD-model are time-efficient, such that it may be used
as an effective tool for determining the correct screen shape for a given case.

1.3 Chapter outline

To address the research objectives of this thesis, it will start with a chapter presenting the
theoretical framework, chapter 2. Where chapter 2.1 will give an introduction to how flows
may be transformed by the introduction of a resistance to the flow. This chapter will focus
on screens used as velocity profile converters and includes an introduction to the relevant
screen parameters and a presentation of the most relevant relations relating screen shape
and parameters with up- and downstream flow conditions. Chapter 2.2 will present some
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documented attempts on simulating flows through screens. These chapters, chapter 2.1
and 2.2, will be useful when trying to construct a numerical model modelling flows passing
through curved screens.

Chapter 3, the methodology chapter, aims at giving a thorough description of the numer-
ical model. Chapter 3.1 will provide a short description of what CFD is. This description
is followed by chapter 3.1.1, 3.1.2, and, 3.1.3, describing the governing equations and two
numerical methods that will be used in the model of the flow problem. Chapter 3.2 will
then present the two numerical models relevant for this thesis, and chapter 3.3 describes the
process of verification and validation, and why this is important when conducting a CFD-
analysis. Chapter 3 concludes with chapter 3.4 that gives a description of the mesh used for
both the models in addition to a discussion about mesh independence.

Chapter 4 presents and discusses the results from the CFD-simulations. The first two
chapters, chapter 4.1 and 4.2, will go through the verification and validation process, which is
an important step to conclude that the numerical model yields results that compare well with
theoretical estimates and experimental data. After the numerical model has been verified and
validated three chapters, chapter 4.3, 4.4, and 4.5, will investigate how the flow is affected
by changing the screen shape, inlet velocity, and water depth. These chapters will then be
followed by chapter 4.6, which discusses the relevant findings in this investigation.

The last chapter, chapter 5, aims at concluding this thesis and discusses how and to what
extent the research objectives given in chapter 1.2 have been achieved.
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Chapter 2

Theoretical Framework

This chapter aims at presenting the reader with relevant information about how velocity
profiles may be transformed experimentally. A thorough description on how screens can
modify the velocity profile in a channel will be given, where the linearized theory relating
the screen shape with up- and downstream conditions will be used as a benchmark for the
CFD-model later. A review of previous attempts using CFD for similar problems will be
given as it provided useful information used to construct the CFD-model used in this thesis.

2.1 The generation of shear flows

Throughout history, several attempts have been made to obtain an analytical expression
relating the upstream velocity profile, obstruction to the flow, and the resulting downstream
velocity profile.

P. R. Owen and H. K. Zienkiewicz [23] produced an almost uniform shear using parallel
rods with a non-uniform spacing back in 1957. The purpose of these rods is to introduce a
resistance that results in a linear variation of total pressure far downstream of the rods. The
resistance is caused by the rods, and the variation in resistance is obtained by the non-uniform
spacing between them. Owen and Zienkiewicz [23] were able to derive an expression for the
spacing between the rods that would transform a uniform upstream flow to a uniformly
sheared downstream flow.

Although they were able to prove that their theory, which was later improved by J. H.
McCarthy [22], was valid even for the generation of strongly sheared downstream flows, wire
screens are usually preferred as velocity profile converters over parallel rods. Reasons for
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this are:

• Parallel rods produce relatively high turbulence levels, about 3-4% compared to ∼ 0.5%
for screens [3].

• A small error in the spacing between the rods may have a great impact on the resulting
velocity field [18].

This project will focus on screens as shear generators as this is used in the fluid mechanics
lab at NTNU.

In 1958, J. W. Elder [7] published his work, in which he was able to relate upstream
profile, downstream profile, screen shape, and screen parameters. Knowledge about any three
of these four parameters allows the last one to be estimated by the linearized relation derived
in his work. Most of the more recent publications regarding screens used for transforming
the velocity profile are based on the analysis by Elder. A presentation of the general results
from Elder’s analysis will be given after having presented some key parameters used in his
analysis.

2.1.1 Screen parameters

The screens analyzed in this thesis are assumed to be uniform, i.e. the spacing between the
wires, the wire diameters, and the plane screen geometry, i.e. the knitting of the wires, is
unchanged over the whole screen. An important parameter describing a screen is its solidity,
which is the ratio between the projected blocked area and the total area in the plane of the
screen. For a uniform square knitted screen with wire diameter d and axis-to-axis spacing
between the wires denoted as l, the solidity may be expressed as in equation (2.1). Figure
2.1 illustrates the relevant lengths and knitting of the screen.

σ =
Projected blocked Area

Total area
=
l2 − (l − d)2

l2
=

2dl − d2

l2
. (2.1)

The screen solidity defined in equation (2.1) is the one used by W. Dunn and S. Tavoularis
[6], while Elder [7] used the projected open area instead, i.e. the porosity φ = 1 − σ, in his
paper.

The Reynolds number is often specified with respect to the wire diameter d and is assumed
to be constant over the screen. With a mean upstream velocity of U and a kinematic viscosity
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d l Center line of
the wires

Figure 2.1: Illustration of a square knitted screen with the relevant screen lengths for calcu-
lating the solidity, which is defined in equation (2.1).

denoted by ν the Reynolds number is defined as,

Red =
Ud

ν
. (2.2)

Another important quantity is the pressure drop over the screen which is often expressed
by the dimensionless pressure drop coefficient, defined as the ratio of the pressure drop over
the screen and the dynamic pressure of the flow as in equation (2.3).

K =
pu − pd
1
2
ρU2

. (2.3)

Where pu and pd in equation (2.3) denote upstream and downstream pressure respectively.
The pressure drop coefficient is also a measure of the dimensionless resistance caused by
the screen to an incompressible flow when viscous effects are assumed to be negligible. The
explanation for this is that the momentum flow normal to the screen will be constant for an
incompressible flow. The continuity equation then reduces to Unu = Und where subscript nu
and nd denote, respectively, the normal component up- and downstream of the screen.

The screen will experience a lift force, in addition to the drag force caused by the pressure
drop and viscous resistance. This lift is caused by a change in the velocity component
tangential to the screen, which is a result of the streamlines being deflected in the direction
of the normal vector of the screen. It is therefore convenient to define a deflection coefficient
as defined in equation (2.4). Where subscripts tu and td denote the tangential component
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up- and downstream of the screen. An illustration of the streamline deflection and the change
of the velocity components over a curved screen is given in figure 2.2.

B =
Utu − Utd

Utu
. (2.4)

The definitions given in equation (2.1), (2.3), and (2.4) will be important inputs in the
expression relating the screen shape with up- and downstream velocity profiles.

Screen

Uu
Ud

U tu
U nu

U nd
U td Streamline

Figure 2.2: The change of the tangential velocity component and deflection of a streamline
as a flow passes a curved screen.

2.1.2 Elder’s analysis

The mathematical analysis performed by Elder is somewhat cumbersome, but in short, he
assumed that the screen caused a small deflection of the streamlines such that the stream
function could be written as ψ + ψ′. Where ψ represents the stream function without the
deflection, i.e. for the present study, the stream function for uniform flow, and ψ′ represents
the small deflection introduced by the screen. An illustration of the flow problem and the
coordinate axis used in the analysis is given in figure 2.3.

Elder used an empirical expression for the pressure drop coefficient, K, in his analysis.
This expression was found experimentally by G. Davis [5] in 1957. Davis showed that the
pressure drop coefficient for flows through screens could be expressed as,

K = K0(σ) +K(σ,Red) =

(
0.05 + 0.95σ

0.95(1− σ)

)2

+
88σ

Red
, (2.5)

10



z

x

Screen

Bottom wall

Upper wall/free surface

h
Flow Direction s n

θ

Figure 2.3: The figure is a 2D illustration of the flow problem. Observe that the screen starts
at the origin at the bottom of the channel with the x-axis aligned with the flow direction,
the z-axis in the normal direction to the flow, while the y-axis is directed into the paper
plane. This definition of the coordinate system is used throughout this thesis.

where K0 is the high Reynolds number limit of K.
In order to obtain an expression for the deflection coefficient, B, Elder assumed the flow

to be similar to a uniform flow past a row of vortices. For a square wire screen, as illustrated
in figure 2.1, Elder showed that B could be expressed as,

B = 1− 1√
1 +K

1
2

. (2.6)

It has been proved that the expression for B given in equation (2.6) over predicts its
value [6]. However, as shown by Dunn and Tavoularis [6], more recent expressions for B
yields even larger values than the expression in equation (2.6) for K ≥ 2. The expression for
B in equation (2.6) is therefore regarded as a sufficiently realistic approximation for flows
through curved screens [6].

Elder linearized the governing equations to obtain an expression relating the empirically
estimated screen parameters and screen shape with the up- and downstream flow conditions.
This linearization means that all terms of second order or higher have been neglected from
the analysis. Elder’s derivation is somewhat cumbersome, so this section focuses on how
to calculate the parameters and functions present in the final expression rather than the
derivation itself. The full derivation can be found in [7].
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In his final expression Elder makes use of an effective loss coefficient, γ, defined as,

γ = K cos2(θs) ≈ γ0(1 + s(z)), (2.7)

where the approximation is a result of the linearization of the expression. Where γ0 is the
average effective loss coefficient and s(z) governs the deviation from this mean value. γ0 is
defined as,

γ0 =
1

h

∫ h

0

K cos2(θs)dz, (2.8)

where h is the channel height, or water depth for open channel flow, and θ the angle between
the screen normal vector and the streamwise direction, as defined in figure 2.3. s(z) will by
the definition of γ0 be restricted by ∫ h

0

s(z)dz = 0.

Elder presented the following expression, which is a general result relating upstream- and
downstream flow conditions with screen shape and screen parameters:

ud − 1 = A(uu − 1)− 1

2
(1− A)s+ EH[Btan(θs)], (2.9)

where uu and ud are, respectively, the up- and downstream velocity profile normalized by
the average velocity, i.e. for uniform upstream flow conditions uu = 1 for all z. E = γ0

2+γ0−B ,
A = 1− γ0(1−E), and H is a transformation, quite similar to a Fourier transform, defined
such that:

g*(πη) = H(g(πη)) =
∞∑
n=1

αn cos(nπη),

g(πη) = H*(g*(πη)) =
∞∑
n=1

αn sin(nπη),

(2.10)

where η = z
h
, such that both functions are defined for 0 ≤ πη ≤ π for any arbitrary function

g. αn are the Fourier coefficients corresponding to g. Equation (2.9) may be solved for the
screen shape when both upstream and downstream conditions are known, i.e. for a known
upstream flow and a desired downstream flow field, the equation then reads:

dxs
dzs

= tan(θ) =
1

B

∞∑
n=1

αnsin(nπη), (2.11)
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where subscript s denotes that these coordinates describe the shape of the screen. The
Fourier coefficients αn are determined in the following way:

n = 1 : α1 =

∫ 1

0

F (η)dη,

n > 1 : αn = 2

∫ 1

0

F (η) cos(nπη)dη,

(2.12)

with F (η) = ud−1
E
− A(uu−1)

E
+ 1

2E
(1 − A)s. The first Fourier coefficient, i.e for n = 1, in

equation (2.12) has to be zero for the solution to satisfy mass conservation.

Equation (2.9) may also be solved for the downstream velocity profile for a given upstream
condition and screen shape and parameters. The solution then reads

B tan(θ) =
∞∑
n=1

αn sin(nπη),

n = 1 : α1 =

∫ 1

0

B tan(θ)dη,

n > 1 : αn = 2

∫ 1

0

B tan(θ) sin(nπη)dη,

ud = 1 + A(uu − 1)− 1

2
(1− A)s+ E

∞∑
n=1

αn cos(nπη).

(2.13)

Elder was able to solve equation (2.9) for the screen shape analytically under the assump-
tion of a uniform upstream flow and a uniformly sheared downstream flow. To describe the
downstream flow, he used the following definition of the shear parameter:

λ = 2
ud − 1

2η − 1
. (2.14)

The integral solution of equation (2.9) then reads:

xs(η) =
λh

EBπ2

∫ a

0

[
2

π

∫ a+π
2

0

log

(
tan(

1

2
t)

)
dt

]
dω,

which Elder claimed had the following solution:

xs(η) ≈ λh

EBπ3

[
−0.915a+

1

3
a3 +

1

60
a5 +

1

1680
a7
]
, (2.15)

where ω = πη and a = πη − π
2
.
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2.1.3 Comments and modifications to Elder’s analysis

The way Elder evaluated the inner integral in equation (2.15) was unfortunately wrong, as
pointed out by D. J. Maull [21] and Y. L. Lau and W. D. Baines [18]. I. P. Castro [3]
calculated the integral and showed that the actual expression for the screen shape should
have been the following:

xs(η)EBπ3

4λh
=

(
πη

2

)2

ln

(
πη

2

)
− 3

2

(
πη

2

)2

+
1

18

(
πη

2

)4

+
7

1350

(
πη

2

)6

+O((πη)8), (2.16)

The difference between this corrected solution and the erroneous results by Elder in equation
(2.15) is considerable, something that can be seen in figure 2.4.

Another problem with equation (2.15) is that Elder assumed the screen loss coefficient
to be constant for all η, i.e. he assumed s(η) = 0 and γ0 = K. This error was pointed out
by both Lau and Baines [18] and J. T. Turner [25]. Lau and Baines [18] developed a more
general expression for any stratified fluid, i.e. not only a homogeneous fluid as Elder did.
When comparing the resulting velocity profile using the screen shape resulting from their
expression and the screen shape using Elder’s analysis, they observed only small differences
in the velocity profiles downstream of the screens [18].

Turner [25] pointed out that equation (2.9) should be solved iteratively for most cases, as
both the resistance variation, s(η), and the mean loss coefficient, γ0, are unknown and their
values should be updated for each iteration. He described an iterative procedure for solving
equation (2.9), where s(η) = 0 and γ0 = K for the first iteration.

Castro [3] observed convergence problems with the iterative scheme given by Turner for
λ
K
> 0.2, when trying to calculate screen shapes that would produce uniformly sheared ve-

locity profiles. Castro attempted to enhance stability by introducing a relaxation scheme,
but this did not solve the convergence issue. He further states that Elder’s analysis becomes
increasingly invalid for increasing λ

K
, which is intuitive as higher order terms become gradu-

ally more important with an increasing change of the velocity profile over the screen. Hence,
violating the assumption that higher order terms are negligible.

Castro [3] did also include a discussion of the order of magnitude of the terms neglected
in Elder’s analysis. In which he argues that the resistance variation, governed by the s(η)-
term, is in fact, a second-order term for small screen inclinations, which makes the solution
including this term a "pseudo"-second order solution [3]. The s-term tends to reduce the
screen inclination, but experimental results suggest that the screen is not sufficiently curved
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for the desired shear when the s-term is included when calculating the screen shape [3].
J. L. Livesey and E. M. Laws [19] experienced that the desired downstream velocity pro-
file was more accurately produced when the resistance variation, s(η), was excluded when
determining the screen shape.

Castro does also discuss the difficulty of determining an accurate value for the deflection
coefficient, B, and that it might be reasonable to assume it to be variable over the screen.
A variable B would make the formulation of even a linearized solution more difficult. He,
therefore, suggests to use the linearized relation as an initial guess for the screen shape and
then adjust the shape empirically, as Maull [21] did, to achieve a desired downstream velocity
profile.

2.1.4 Dunn and Tavoularis’ screen shape

The latest known attempt in relating the screen shape and parameters with a uniform up-
stream flow and a uniformly sheared downstream flow was performed by Dunn and Tavoularis
in 2007 [6]. In developing their expression they made use of Elder’s expressions for the
pressure drop and deflection coefficient, defined in equation (2.5) and (2.6), respectively.
Furthermore, they made use of a dimensionless shear parameter defined as,

β =
h

Uc

du(z)

dz
, (2.17)

where h is channel height, or water depth for an open channel flow, Uc is the center line
velocity, and u(z) the downstream velocity profile. Observe that this definition is equal to
the one used by Elder, see equation (2.14), for a uniform upstream flow and a uniformly
sheared downstream flow.

Dunn and Tavoularis made use of Maull’s [21] solution which can be stated as,

xs =
(2 +K −B)βh

KB
f

(
zs
h

)
, (2.18)

where xs and zs are, respectively, the x and z coordinates of the screen. The function
f
(
zs
h

)
are what differs between Maull’s and Dunn and Tavoularis’s solutions. Maull solved

equation (2.9) for the problem for linear shear analytically using Fourier cosine series and
modified the shape in order to get a uniform downstream shear experimentally. While Dunn
and Tavoularis simplified Maull’s expression as a fitted sixth order polynomial as given in
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equation (2.19). The maximum difference between Maull’s solution and the solution by Dunn
and Tavoularis for the screen shape is 0.07% [6].

f

(
zs
h

)
= −0.739

(
zs
h

)6

+ 2.812

(
zs
h

)5

− 3.839

(
zs
h

)4

+2.687

(
zs
h

)3

− 1.224

(
zs
h

)2

− 0.0054

(
zs
h

)
.

(2.19)

An illustration of the normalized screen shape produced by equation (2.18) with (2.19) is
shown in figure 2.4.

Figure 2.4: The plot illustrates the normalized screen shape, i.e. KBxs
βh(2+K−B)

= f(η). Elder’s
solution, equation (2.15), and Elder’s corrected solution, equation (2.16), were calcutated
using γ0 = K and s(η) = 0.

Dunn and Tavoularis performed several experiments to validate that a screen whose
shape is given by equation (2.18) using (2.19) would actually produce a uniformly sheared
downstream velocity profile. The experiments were performed in an open channel flow of
water with a depth of h = 0.69m. In their experiments, two screens were used, with a solidity
of σ = 0.46 and σ = 0.59, a shear parameter, β, ranging from 0.16−0.43, and a pressure loss
coefficient, K, ranging from 1.5 − 9. The maximum β/K ratio tested in their experiments
was 0.22, which is relatively low and one may say that the assumptions for the linearized
theory of Elder are not seriously violated for the given flow conditions [3, 6]. The resulting
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downstream velocity profiles, measured at a distance 0.4m downstream of the screen and at
several spanwise locations, were in relatively good agreement with theory [6]. The results
may be found in figure 10 in the paper by Dunn and Tavoularis [6].

2.2 Previous simulations of flow through screens

This section will present some previous attempts at simulating flows through screens. Results
from these attempts will be useful for constructing a CFD-model for flows through curved
screens.

2.2.1 S.I. Green et al.

In 2007 S. I. Green et al. [13] performed simulations of flows through straight woven screens
using ANSYS Fluent [13]. Due to limited computational time, the simulations were per-
formed on a geometry consisting of only 6 wires, 2 vertical and 4 horizontal, see figure 2.5.
An illustration of the computational domain can be found in figure 2.6. They performed
a few simulations on more extended wire geometries and longer inlet and outlet domains
in which the results differed with less than 1% compared to simulations using the domain
depicted in figure 2.6[13].

The hybrid mesh used in the simulations performed by Green et al. is illustrated in
figure 2.7. Observe how the small cells are contained to the screen region only, while larger
structured cells are used in the inlet and outlet regions. Velocity inlet and pressure outlet
boundary conditions were used, while periodic boundary conditions were used at the side
walls.

When performing a mesh independence test, they observed that approximately 1.6 million
mesh volumes were needed in the screen domain to produce a solution that was within 1% of
the asymptotic value of the pressure drop over the screen [13]. The simulations showed similar
behaviour for several screens and screen Reynolds numbers. This shows that simulations of
flows through screens are very computationally intensive. Vortex shedding over the wires
in a screen, like vortex shedding over a cylinder in a cross flow, is likely to happen when
the Reynolds number exceeds a specific value. Therefore, a comparison between steady and
unsteady simulations was investigated by Green et al. The comparison showed that the
results differed by less than 1.5% even though vortex shedding over the wires was expected
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to occur [13]. This indicates that the unsteadiness of the flow has little effect on the solution,
and it is, therefore, reasonable to use steady-state solvers to reduce computational time.

Figure 2.5: This illustra-
tion, taken from [13], shows
the wire geometry used by
Green et al. in their simu-
lations. MD and CMD are,
respectively, machine direc-
tion and counter machine
direction and are used to
describe the orientation of
the wires in woven screens.

Figure 2.6: The illustration
is taken from [13] and shows
the computational domain
used by Green et al.

Figure 2.7: The illustration is
taken from [13] and shows the
mesh used in the simulations
performed by Green et al. Ob-
serve how the hybrid mesh en-
sures that the fine cells are con-
tained to the screen region only.

2.2.2 M. Teitel

M. Teitel [24] performed several simulations of flows through woven screens in 2009 to in-
vestigate the pressure drop over the screens. Teitel performed simulations on two distinct
models for flows through screens in a squared channel. The first model was an accurate rep-
resentation of the screen, resolving the whole flow field upstream, within, and downstream
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of the screen, something which is very computationally intensive, see chapter 2.2.1. In the
second model, he substituted the screen with a porous zone. The flow resistance in this
porous zone was then modelled using the porous media model (PMM) in ANSYS Fluent.
The results from this model were then compared with experimental data and results using
the model where the flow field within the screen was fully resolved. The porous media model
will be explained in chapter 3.1.2.

As a benchmark for both simulations Teitel made use of empirical relations and exper-
imental data for the pressure drop over woven screens. The empirical relations used for
evaluating the pressure drop of uniform flows were those of B. J. Bailey et al. [1] and E.
Brundrett [2] given in equation (2.20) and (2.21) respectively. φ and θ, in equation (2.20) and
(2.21), are, respectively, the porosity of the screen and the approach angle of the incoming
flow, i.e. angle between screen normal vector and the streamwise direction. Ten is the base
number for the logarithmic functions in both equation (2.20) and (2.21). The porosity, φ, is
given as the projected open area of the screen in these equations, i.e. φ = 1− σ where σ is
the screen solidity defined in equation (2.1). The first term in equation (2.21), i.e. 7.125

Re cos(θ)
,

is usually multiplied by the ratio of the momentum flux and the flux of kinetic energy. This
ratio is assumed to be 1, corresponding to uniform flow, for all cases investigated in this
thesis.

K =
1− φ2

φ2

[
18

Re
+

0.75

log10(Re+ 1.25)
+ 0.055 log10(Re)

]
. (2.20)

Kθ

cos2(θ)
=

1− φ2

φ2

[
7.125

Re cos(θ)
+

0.88

log10(Re cos(θ) + 1.25)
+ 0.055 log10(Re cos(θ))

]
. (2.21)

The pressure drops from the CFD-simulations resolving the whole flow field around
screens were in excellent agreement with the experimentally measured pressure drop. Both
the experimental data and CFD-results showed that the pressure drop relation given in equa-
tion (2.21) performs better than equation (2.20) for the low and moderate porosity screens at
the given Reynolds numbers, 0 ≤ Red ≤ 60, at an approach angle of zero. This is illustrated
in figure 2.8, which is figure 2a in Teitel’s paper [24], where it may be observed that both
the experimental data and CFD-results lies closer to stippled line given by equation (2.21)
than the solid line given by equation (2.20).

As resolving the whole flow field within the screen is time-consuming, Teitel suggested
using the PMM when the flow structures within and in the near vicinity of the screen are not
of interest. The screen is then substituted by a porous zone where the PMM approximates
the pressure drop using the Darcy-Forchheimer law of porous media, which can be expressed
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Figure 2.8: Comparison of experimental results (+), CFD-simulations (∆), and the solid and
stippled line are the predicted pressure drop using equation (2.20) and (2.21) for a screen
with a porosity of 0.36. The illustration is figure 2a in [24].

as:
∂pi
∂xi

=

j=3∑
j=1

[
Di,jµuj + Ci,j

1

2
ρ|u|uj

]
, (2.22)

whereDi,j and Ci,j are, respectively, the jth component of the viscous and inertial loss factors
in the ith direction. In order to specify the viscous and inertial loss factors in equation (2.22),
Teitel assumed the screen to be a homogeneous porous medium such that the flow resistance
is equal for all velocity components in all directions, i.e.Di,j = D and Ci,j = C. To determine
D and C Teitel made use of a curve-fit tool to represent the pressure drop over a screen for
a given set of velocities on the following form:

∆p = Au+Bu2, (2.23)

where u is the velocity upstream of the screen and A and B are coefficients defined by the
curve-fit tool. A and B are then related to C and D by the following:

C =
A

µ∆x
,

D =
2B

ρ∆x
,

(2.24)

where ∆x is the thickness of the porous region modelling the screen.
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Teitel showed that this model, where the screen is modelled by the PMM, predicts the
pressure drop for flows through screens accurately. The pressure drop predicted by using
this model was almost the same as the pressure drop predicted using the model where the
whole flow field was resolved within the screen. From figure 3 in Teitel’s paper [24] it can
be seen that it is only at the higher Reynolds number for the high porosity screen that the
PMM tends to underestimate the pressure drop over the screen.
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Chapter 3

Methodology

This chapter aims to thoroughly describe the CFD-model that will be used to generate the
results in this thesis. This includes a presentation of the relevant methods and models, how
to solve the linearized solution by Elder to determine theoretical estimates, and a thorough
description of how the screen has been modelled using the PMM. A presentation of the mesh
used for the CFD-model, in addition to a mesh independence study, will be given at the end
of this chapter.

3.1 Computational Fluid Dynamics

The commercial CFD software ANSYS Fluent 19.2 was used for the numerical simulations
in this thesis. ANSYS Fluent is a finite volume based CFD solver which solves a discretized
set of governing equations for a given flow problem on a mesh. This mesh consists of a
finite number of fluid volumes in which all these volumes combined represents the domain of
interest for the given problem, where boundary conditions are specified at all the boundaries
of the given domain. The governing equations are then solved for each of these volumes.

3.1.1 The Governing Equations

The flow problem to be analyzed in the present thesis, i.e. fluid flows through curved
screens, is assumed to be incompressible. For the case of incompressible flow the Navier-
Stokes equations consists of the incompressible continuity and momentum equations, which
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are given in equation (3.1) and (3.2) respectively.

∇ · u = 0. (3.1)

∂u
∂t

+ (u · ∇)u = −1

ρ
∇p+ ν∇2u + g. (3.2)

In equation (3.1) and (3.2) u represents the velocity vector, ρ density, p pressure, ν the kine-
matic viscosity, and g the gravitational acceleration vector. These equations are discretized
using the finite volume method and solved on a computational mesh using ANSYS Fluent
19.2.

Quality Measures of the Computational Mesh

Care must be taken when generating a computational mesh, as the quality of the cell volumes
in the mesh may influence the final solution of a flow problem using that mesh. Two quality
measures that can be used to determine whether the generated mesh should be used or not
are the skewness and the orthogonal quality of the cells. The skewness is a comparison of
the actual cell and the ideal cell. Meshes that includes cells whose skewness is above 0.95
should be avoided, and the average value should be well below this. The reason for this is
that highly skewed cells are associated with less accurate solutions [8]. An illustration of
ideal and skewed cells are given in figure 3.1. Orthogonal quality is defined as “the minimum
of the cosines of the angle between the face normal vector and the corresponding vector from
the centroid of the cell to the centroid of that cell face” (ANSYS Fluent Meshing Users Guide
(2017)) [8]. The closer to one the orthogonal quality is the better, and attention should be
given to cells with low orthogonal qualities.

A mesh independence test should also be conducted to ensure that the solution obtained
by a CFD-simulation is independent of the mesh. Such an analysis can be performed by
investigating how the solution changes when refining the mesh. The mesh should be refined
until further refinement does not change the solution.

3.1.2 Porous Media Model

An initial concern was the huge difference in the length scales that are important to the
problem. Small-scale flow structures will be generated within and in the wake of the screen,
as screens usually consist of very thin wires with a small spacing between them. These
small-scale flow structures may be important to resolve to obtain the correct pressure drop
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Figure 3.1: The illustration is taken from the ANSYS Fluent Meshing User’s Guide [8], and
illustrates the concept of skewness.

over the screen. Getting this pressure drop correct will be important, as this is one of the
effects that cause the change in velocity profile over the screen. The channel height, or
water depth, for the cases investigated in this thesis, will be in the order of 0.1m, and the
combined streamwise extent needed to resolve the flow problem accurately is assumed to be
in the order of a couple of water depths. A problem regarding the number of cells needed in
a numerical model may occur as the length scales of the channel are much larger than the
length scales of the flow structures produced by the screen.

A large number of cells would, therefore, be required to get the correct pressure drop over
a screen. Assuming that the number of cells required in the simulations by Green et al. [13]
is an accurate estimate for the cells required to resolve the flow through curved screens, 1.6
million cells are needed to resolve the flow over four horizontal wires. Such that a channel of a
depth h ∼ 0.1m and a screen with diameter and wire spacing of d = 0.25mm and l = 0.75mm

respectively, would require at least N = h
4l

1.6 · 106 = 53.33 million cells. This will be the
minimum number of cells required to get within 1% of the asymptotic value of the pressure
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drop over a straight screen. The number of cells required for a curved screen used to transform
the velocity profile as described in chapter 2.1, would be even larger as the fluid volume in the
region around the screen increases. Performing the numerical calculations for a domain with
so many cells will be time-consuming, ineffective and would require access to HPC-resources
(high-performance computing resources) for most applications due to both memory issues
and computational time. The fact that transient analysis will most likely be necessary for
multiphase flow simulations strengthens the argument that model simplifications are needed
to study the behaviour of flows through curved screens.

Furthermore, as stated in the research objectives, see chapter 1.2, it is desired that the
CFD-model should be an efficient tool that estimates the downstream velocity profile for a
given screen shape within a reasonable amount of time. This objective cannot be fulfilled
simultaneously as resolving all the length scales of the physical screen.

Teitel [24] showed that the PMM in ANSYS Fluent accurately predicted the pressure
drop associated with flows through straight screens, see chapter 2.2.2. Therefore, it is reason
to believe that this may be an adequate simplification for curved screens as well. The ANSYS
Fluent Theory guide [9] gives a thorough description of the PMM. The PMM introduces a
momentum loss to the flow inside regions which are specified as porous. The porous regions
must be specified by the user. The porous region modelling a screen will take on the same
shape as the physical screen it is modelling in this thesis. The momentum loss introduced in
the porous regions is given in equation (3.3), which may be interpreted as a pressure gradient
or a resistance to the flow in the respective direction. The momentum loss introduced in
the porous region will model how physical flows are affected by screens. The PMM fails
to predict the velocity field in the near vicinity of the screen, as the velocity increase that
occurs in the pores of the screen is neglected when the screen is replaced by the artificial
momentum loss given in equation (3.3). Far downstream of the screen, it is assumed that
this limitation will have a negligible effect on the velocity profile.

Si = −

∑
j

(
Di,jµuj + Ci,j

1

2
ρ|u|uj

) . (3.3)

The terms Di,j and Ci,j in equation (3.3) are, respectively, the viscous and inertial loss
factors, and they need to be specified by the user for each case. These loss factors can be
approximated using experimental data or empirical relations.

Brundrett’s [2] expression for the pressure loss given in equation (2.21) will be used to
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determine Di,j and Ci,j in this thesis. Teitel [24] showed that equation (2.21) was in good
agreement with CFD and experimental results. Hence, using this expression opens for the
possibility to run simulations on screens where experimental data for the pressure loss is not
available. The resistance in the porous medium is assumed to be homogeneous, i.e. D and
C are constant in all directions and for all velocity components. The loss factors can then be
determined by fitting the second order polynomial given in equation (2.23) to the pressure
drop predicted by equation (2.21) assuming an approach angle of zero, using a closed set of
velocities relevant for the specific case. The loss factors are then approximated using the
coefficients obtained by the curve-fit using equation (2.24). This is similar to the procedure
used by Teitel [24] and it was also suggested in ANSYS Fluent Theory Guide [9].

The resistance in the porous region, modelling the screen, is assumed to be homogeneous,
i.e. D and C are constant for all velocity components in the normal and tangential direction
of the screen. As the extent of the porous region is usually several orders of magnitude
larger in the tangential direction compared to the normal direction of the screen, the total
resistance in the tangential direction becomes much larger. As the flow seeks the path of
minimum resistance, it will be deflected in the direction of the normal vector of the porous
region, which is the case for a physical screen as well. A user-defined function (UDF) will,
therefore, be needed to determine the normal vector of the porous region at every location.
This normal vector will then be used to specify the loss factors in the direction normal to the
porous region, such that the path of the least resistance will always be in the same direction
as the normal vector. This will also ensure that the total loss over the screen in this direction
will correspond to the loss predicted by equation (2.21).

Most screen shapes are not given by an analytical function. These screen shapes and
normal vectors are then estimated using the curve-fit toolbox in MATLAB. Curve-fits using
polynomials up to ninth order can be generated to represent a specific screen shape as
accurately as possible. The angle between the normal vector of the screen and the x-axis can
be determined using equation (3.4), as soon as an adequate curve-fit, expressing the screen
shape as xs(zs), has been defined. As the screen shape and the corresponding screen normal
vector is different for most cases, a new and updated UDF is needed for each case where the
screen shape is changed.

θn = tan−1
(
−dxs
dzs

)
(3.4)
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The Modelling of Honeycomb

A honeycomb, which may be seen up- and downstream of the screen in figure 1.1, functions
as a flow straightener which is used to deteriorate the velocity components normal to the flow
direction. For the purposes of this thesis, it is assumed that a honeycomb may be accurately
modelled by the PMM. The reason for this is that it resembles a screen with an elongated
streamwise extent that is placed normal to the flow.

The pressure drop over the honeycomb will be determined using the same equation as
used for the screen, see equation (2.21), only adjusted for porosity. The reason for this
choice is that no relation for pressure drop over honeycombs was found in literature. The
porosity of the honeycomb is given by the ratio of the projected open area to the total area
as perceived by the flow. For a honeycomb consisting of hexagonal elements the porosity is
given as the following:

φ =
dw + 2w2 sin(β) cos(β)

dw + 2w2 sin(β) cos(β) + 6 t
2
w +

√
3
2
t2
.

(3.5)

The cell dimensions used in equation (3.5) are defined in figure 3.2. The blocked area of each
cell is approximated as 6 t

2
w +

√
3
2
t2.

Figure 3.2: Illustration of a the relevant dimensions of a hexagonal cell in a honeycomb.
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The viscous and inertial loss factor, the Ci,j and Di,j in equation (3.3), will be deter-
mined using the same procedure as for the screen. The pressure drop will be calculated
using equation (2.21) for a set of relevant velocities. This pressure drop will then be approx-
imated using a second-order polynomial curve-fit determined using the curve-fit toolbox in
MATLAB. The coefficients resulting from this curve-fit will then be used to determine the
loss factors using equation (2.24).

3.1.3 Volume of Fluid

Volume of Fluid (VOF) is a method for solving problems where two or more immiscible fluids
are present using only a single set of the momentum equations. A thorough description of the
VOF-model used in ANSYS Fluent may be found in the ANSYS Fluent Theory Guide [10].
For this thesis, flows in both closed and open channels are of interest, in which a multiphase
solver is needed for the latter.

The VOF-model uses a modified set of the Navier-Stokes equations that track the volume
fraction of each of the phases in every cell of the computational domain. As the VOF-model
only computes the volume fraction of the phases in each cell, an interface reconstruction will
be needed unless the interface is located precisely at the cell boundaries.

For the open channel cases, air and water are assumed to be incompressible with no mass
transfer mechanism between them, i.e. the effect of evaporation is considered negligible and
will not be considered. The continuity equation can then be expressed as

∂Yq
∂t

+∇ · (Yquq) = 0, (3.6)

where Yq and uq is, respectively, the volume fraction and velocity vector of phase q. The
volume fraction of the primary phase, defined as air for the cases in this thesis, is not obtained
from equation (3.6), but from the following constraint:

n∑
q=1

Yq = 1. (3.7)

This constraint in equation (3.7), ensures that the sum of the volume fractions in a cell
never exceeds one to ensure that total mass is conserved. Only a single set of the momentum
equations are solved when using the VOF-model, as all phases are assumed to share the
same velocity field. This assumption will not hold for cases where large velocity gradients
are present at the interface between two phases [10]. The velocity in the cases studied in
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this thesis will be fairly low, i.e. in the order of 0.1m
s
, such that large velocity gradients at

the air-water interface are not likely to occur. The momentum equations in the VOF-model
are given as

∂u
∂t

+∇ · (uu) = −∇p+∇ · [µ(∇u +∇Tu)] + ρg + F, (3.8)

where the bold u, g, and F are, respectively, the velocity vector, the vector of the gravi-
tational acceleration, and the vector containing the effect of surface tension. The T in ∇T

denotes the transpose, and the fluid properties in equation (3.8) are approximated using the
volumetric average of the cell, i.e.

ρ =
∑
q

Yqρq,

µ =
∑
q

Yqµq.
(3.9)

The Weber number, which is defined as the ratio of inertial and surface tension forces, can
be used to estimate whether surface tension effects can be neglected or not for cases of
Re = ρUL

µ
>> 1. It is defined as We = ρLU2

ς
, where ρ, L, and ς denotes, respectively,

the density, characteristic length, and surface tension. For flows of water with an air-water
interface, i.e. ρ = 998.2 kg

m3 , µ = 0.001003 kg
ms
, and ς = 0.072N

m
, the Reynolds number will

usually be in the region of 103 − 104 for velocity, U , and channel height, h, in the order of
0.1m

s
and 0.1m, respectively. This results in a Weber number in the order of We = O

(
102
)
,

and it could be argued thatWe >> 1 such that the effect of surface tension can be neglected.
Surface tension effects will be neglected for most of the simulations performed in this thesis.
A comparison of the velocity profile resulting from a case neglecting surface tension effects
and one that includes these effects will be given in chapter 4.6.4.

The VOF-model in ANSYS Fluent offers two options for modelling the effects of surface
tension. In which one of them is the continuum surface stress (CSS) model, which will be
used for the case including surface tension effects in the thesis. The stress tensor used to
model the surface tension effects in the CSS model is defined as

T = ς

(
|∇Y |I− ∇Y ⊗∇Y

|∇Y |

)
, (3.10)

where I is the identity matrix, and ⊗ is the outer product of two vectors. The surface tension
force, given in equation (3.11), is expressed in a conservative form in the CSS model.

F = ∇ · T = ∇ · ς
(
|∇Y |I− ∇Y ⊗∇Y

|∇Y |

)
. (3.11)
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The VOF-model also has an Open Channel Flow option, in which the user may specify
the free-surface level for the outlet regions. The pressure at the outlet is then determined
by the adjacent cell, such that the pressure gradient normal to the outlet boundary is zero.
This option was used in the simulations in this thesis, as the flow through a screen resembles
an open channel flow, with zero pressure gradient in the streamwise direction at the outlet.
The pressure at the outlet can also be specified by the user, but this option was not used in
this thesis as the pressure at the outlet is unknown before conducting the simulations.

3.2 Numerical Model

This chapter aims at describing the CFD-model, including model approximations, boundary
conditions, and how the screen shape was determined. A lot of time was spent on developing
a model resolving the whole flow field within the screen at the beginning of the thesis work.
However, for reasons given at the beginning of chapter 3.1.2, it was apparent that it would
be time-consuming to get a solution as it would become very computationally intensive. The
PMM explained in chapter 3.1.2, has proved to be an effective solution for screens normal
to the flow direction, see [24]. The PMM effectively reduces the computational time, as the
effect of the screen is modelled by adding the momentum sink given in equation (3.3).

3.2.1 Screen shape

As stated by Turner [25], equation (2.9) needs to be solved iteratively for most cases as no
general analytical solution exists. This section aims at describing the iterative scheme used
to solve this equation for the screen shape given screen parameters, upstream velocity pro-
file, and the desired downstream velocity profile. The MATLAB script using this iterative
solution method for calculating the screen shape is given in appendix A.1. A scheme pre-
dicting the downstream velocity profile given screen shape, screen parameters, and upstream
velocity profile was also constructed. The MATLAB function for this is given in appendix
A.2.

Iterative Solution for the Screen Shape

Equation (2.9) is a general solution of the linearized problem for flows through screens when
the effect of viscosity is neglected everywhere except in the near vicinity of the screens. It
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may, therefore, be used to determine the screen shape for arbitrary up- and downstream
velocity profiles, given that the approximations are satisfied, e.g. small flow deflections such
that the negligence of the higher order terms can be justified.

In this thesis, equation (2.9) has been solved iteratively with MATLAB using numerical
integration to determine the Fourier coefficients defined in equation (2.12). The iterative
procedure used to determine the screen shape for the desired downstream velocity profile
reads:

1. Calculate K and B given the mean inlet velocity and screen parameters and define
two tolerances. One for the two-norm of the difference of the k’th and (k − 1)’th
iteration and one for the ratio of this and the two norm of the difference between the
first iteration and the initially straight screen shape. The two-norm of the difference
of the k’th and (k− 1)’th iteration is defined in equation (3.12). These tolerances will
be used as convergence criteria for the iterative procedure.

2. Set γ0 = K as an approximation for the first iteration. Define the vector zs, which
contains the positions in the vertical direction that the x-position of the screen, xs,
will be determined for.

3. Calculate E = γ0
2+γ0−B and A = 1− γ0(1− E), and define F (η) = ud−1

E
− A(uu−1)

E
.

4. Calculate the Fourier coefficients, defined in equation (2.12), using numerical integra-
tion.

5. Perform the summation given in equation (2.11) to determine the screen slope.

6. Calculate the discrete screen positions in the following way: xsi+1
= xsi +

1
2
[tan(θsi+1

)+

tan(θsi)](zsi+1
− zsi).

7. Given the new screen shape calculate γ0 using equation (2.8).

8. Calculate the two-norm of the difference between the new screen shape and the screen
shape of the previous iteration.

9. If the two-norm of the difference for iteration k and k−1 and the ratio of this difference
and the two-norm of the difference for first iteration and initial screen shape are less
than the tolerances defined in step 1, the iterative procedure has converged and the
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calculated screen shape satisfies equation (2.9). If one, or more, of the convergence
criteria are not met, return to step 3.

εk =

∆zs
∑
i

(
xksi − x

k−1
si

)2 1
2

(3.12)

The resistance variation, s(η), is not included in the iterative procedure because Livesey
and Laws [19] observed that the results were better when this term was omitted. From
results to be presented later, it is clear that the solution for the screen shape where the
resistance variation is neglected performs better at producing the desired velocity profile.
The MATLAB script used to determine the screen shape for some of the cases in this thesis
is given in appendix A.1. The solution algorithms described by Turner [25] and Castro [3]
were used as inspiration for the solution algorithm presented in this section. The presented
solution algorithm does only provide reasonable results for moderate changes of the velocity
profile over the screen, such that the negligence of higher order terms can be justified.

3.2.2 Set-up of the numerical model

Two distinctive set-ups will be investigated in this thesis, namely, flows through screens in
closed and open channels. The screen will be replaced by a porous region in both set-ups,
where the viscous and inertial loss factors are approximated using the procedure described
in chapter 3.1.2.

The Porous Screen Region

The screen shape will vary from case to case, but common for all is that the screen shape will
be specified in a text-file. This text-file contains discrete points on the screen and consists of
five columns. The first column specifies the part number, this will always be one in this thesis
as only one part will be specified by this text-file. The second column describes the sequence
in which the points are connected, i.e. one is connected to two, which is further connected
to three, and so on. The last three columns specify the x, y, z- coordinates, respectively.
An example of such a text-file is given in figure 3.3. This text-file is imported into ANSYS
DesignModeller, by using the 3D curve tool, to create a line that has the same shape as the
screen defined by the discrete coordinates given in the text-file.
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Figure 3.3: Illustration of the set-up of the text-file that can be imported to ANSYS Design-
Modeller to produce a line specified by the coordinates in this file.

This line specifying the screen shape is then imported into ANSYS Spaceclaim. A new
line is then extruded along the path that represents the screen shape, creating a region with
a thickness equal to one wire diameter of the screen to be modelled. This region will later
be specified as porous and will model the screen.

The viscous and inertial loss factors that model the flow resistance that a screen intro-
duces to the flow are determined using the procedure described in chapter 3.1.2. UDF’s will
then be needed such that the flow resistance can be defined in the normal and tangential
direction of the porous region. Two UDF’s are required to determine the x- and z-component
of the normal vector, with respect to the x-axis, of the screen in every single point. These
UDF’s are then compiled into ANSYS Fluent and used to define the flow resistance in the
normal and tangential direction of the screen. The flow resistance factors, determined by
the procedure described in chapter 3.1.2, is then defined in both the direction normal and
tangential to the screen. Such that the resistance normal to the screen will always be the
same as predicted by equation (2.21). The total resistance will then be much larger in the
tangential direction than the normal direction of the screen, as the thickness of the screen
perceived by the flow will be much larger in the tangential direction. The reason for this
is that the flow resistance is defined as a momentum loss per unit length in the PMM. An
illustration of a UDF calculating the x-component of the screen normal vector can be found
in figure 3.5. This UDF corresponds to the curve fit of the iteratively calculated screen
shape, obtained using the procedure described in chapter 3.2.1, which is illustrated in figure
3.4. A sixth-order polynomial was used to for the curve-fit for this screen.

Two different screens will be modelled in this thesis, and the parameters of these screens
are given in table 3.1
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Figure 3.4: A plot of the iteratively calculated screen shape, and the corresponding curve-fit,
for a uniform inlet flow and a uniformly sheared downstream flow.

Table 3.1: Screen parameters for the screens relevant in this thesis.
Screen 1 Screen 2

Wire Diameter, d 0.45mm 0.25mm

Axis-to-axis spacing, l 1.59 mm 0.75mm

Solidity, σ, 0.4859 0.5666

Porosity, φ 0.5141 0.4444

Model 1: Closed Channel Flow

The closed channel model is an efficient way of testing the performance of a specific screen
shape, as it only contains one phase. The set-up for these cases is relatively simple, and a
steady-state solution of the flow is obtained fast, using the steady-state solver in ANSYS
Fluent 19.2. The effect of gravity was also included in the model and was set to g = −9.81~ez.
The boundary conditions used for these cases are:

• Inlet: The velocity is specified at the inlet, and the velocity profile will be uniform at
the inlet for all cases investigated in this thesis.

• Outlet: At the outlet, the outflow boundary condition is used, as neither pressure
nor velocity profile at the boundary is known prior to the simulation. The outflow
boundary condition assumes zero streamwise gradients for all properties except the
pressure [11].
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Figure 3.5: The UDF calculating the x-component of the screen normal angle corresponding
to the sixth-order polynomial curve-fit shown in figure 3.4.

• Walls: As the linearized relation by Elder, described in chapter 2.1.2, assumes that
viscous effects only are present in the near vicinity of the screen slip walls, i.e. wall
with no shear stress are used in the simulations of the closed channel model in this
thesis.

The screen is defined as a porous region modelled by the PMM, where the viscous and
inertial loss factors in the porous region are determined using the procedure described in
chapter 3.1.2. This model provides an efficient way to verify that the PMM is an accurate
way of modelling the flow resistance introduced by a screen. The reason is that the model
satisfies the assumptions for the linearized relation in equation (2.9) for small changes in
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the velocity profile over the screen. Such that the velocity profile predicted by this relation
can be used as a benchmark when verifying the numerical model. It may also provide an
accurate description of flows through screens in closed channels when no-slip walls are used.
The model may also be used as an initial test of the performance of a screen to be used
in an open channel, by using a slip-wall at the top and a no-slip wall at the bottom. An
illustration of the set-up for the closed channel model is given in figure 3.6.

Velocity Inlet

Screen
OutflowSlip Walls

Figure 3.6: A schematic representation of the set-up for the closed channel flow model.

Model 2: Open Channel Flow

The open channel flow model is more intricate than the closed channel model, as it involves
interaction between two phases and a free-surface that may deform depending on the flow
conditions. The free-surface will generally experience a drop over the screen due to the
momentum loss introduced by the screen, which is modelled by the PMM. The geometry in
the open channel flow model is fairly similar to the closed channel model, except that an air
domain is introduced, such that the screen stretches a little over the initial free-surface. A
honeycomb is also introduced downstream of the screen. The multiphase solver used in this
thesis is the VOF-model, which was described in chapter 3.1.3, using the open channel flow
option. This enables the user to specify a free-surface level at the outlet. The boundary
conditions used in this model are the following:

• Inlet: A uniform velocity profile is specified at the inlet.

• Wall: A no-slip condition is used at the bottom wall.

• Outlet: All boundaries except the inlet and the bottom wall of the open channel model
are assigned as pressure outlets using the open channel flow option. The pressure is
then specified by the adjacent cell at the outlet boundaries, ensuring a zero-pressure
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gradient normal to the boundary. This boundary condition will also make sure that
the free-surface level at the outlet corresponds to that prescribed by the user.

The screen is defined as a porous region, and it is modelled using the PMM, where the viscous
and inertial loss factors are determined using the procedure described in chapter 3.1.2. The
loss coefficients need to be approximated for all the phases present in the model, i.e. both air
and water in this thesis. The honeycomb will also be modelled as a porous medium, similar
to the screen. The loss coefficients will be determined using the procedure given in the part
about honeycombs in chapter 3.1.2.

Figure 3.7 illustrates the set-up for the open channel flow model. The honeycomb which
appears after the screen was first neglected, but was added for reasons to be explained in
chapter 4.2. Honeycomb is also used as flow straightener after the screen in the lab, see
figure 1.1.

Velocity Inlet Screen

Pressure outlet,
with prescribed

free-surface level

No-slip Walls

Pressure outlet, with
prescribed free-surface level

Honeycomb

Air

Water Free-surface

Figure 3.7: A schematic representation of the set-up for the open channel flow model.

Assumptions

The research objectives in chapter 1.2 states that a quasi-2D model or a model with a broader
domain, allowing larger spanwise flow structures, should be constructed. However, resolving
all flow structures within the screen proved to be a very computationally intensive task.
Thus, making the model an inefficient way of simulating flows through screens. The effects
of the screen will, therefore, be modelled by the PMM. The screen is then replaced by a
homogeneous porous medium that is represented in 2D, and it is therefore assumed that no
important spanwise flow structures are present in fluid flows through screens.
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Furthermore, as stated in the research objectives in chapter 1.2, the flow is assumed to
be laminar, but a quick look at the typical Reynolds numbers associated with the closed
and open channel model reveals that this might not be the case. The closed channel flow
model is essentially a representation of flow through an infinitely wide screen between two
infinitely wide parallel plates. The transitional Reynolds number for a flow between two
infinite parallel plates depends on the flow profile. For Poiseuille flow, the critical Reynolds
number is around 2510, while Couette flows remains laminar until higher Reynolds numbers
[17]. The cases to be studied in this thesis will use water as fluid, with ρ = 998.2 kg

m3 and
µ = 0.001003 kg

ms
, and typical velocities will be in the order of 0.1m

s
with channel height in

the order of 0.1m. This results in a Reynolds number of Re = ρUh
µ

= O(104), which suggests
that the flow might be turbulent.

Open channel flows have a transitional Reynolds number around 500 ≤ Re ≤ 2500 [4].
The cases to be studied in this thesis will have velocities and water depth in the same order
as the closed channel model, i.e. U = O(0.1)m

s
and h = O(0.1)m. The hydraulic diameter

associated with a 2D open channel flow is the depth of the channel, as the channel essentially
has an infinite width. Hence, the Reynolds number associated with the open channel flow
to be investigated will be in the order of Re = O(104), which is well above the transitional
limit.

However, the flow will be assumed laminar for the cases studied in this thesis, even
though that the Reynolds number associated with both the closed and open channel model
suggests that the flow might be turbulent. The argument for this is that the screen, and
honeycomb, will break the turbulent structures present in the incoming flow down to a scale
in the order of the spacing between the wires in the screen, and openings in the honeycomb.
This reduction of the turbulent length scales will reduce the turbulence levels downstream
of the screen. Cases studied in this thesis will, therefore, not include turbulence modelling
as the effects of turbulence are assumed to be negligible. Turbulence reduction caused by
screens was well documented by J. Groth and A. Johansson [14].

The following flow assumptions are made:

• Incompressible flow: The flow is assumed to be incompressible, compressible effects
are unlikely to occur considering the relatively low velocities that are associated with
the cases studied in this thesis.

• Laminar flow: The flow is assumed to be laminar for all cases studied in this thesis.
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• Uniform inlet velocity: This is assumed for both the open and closed channel flow, but
an inlet length in the order of one channel height/water depth is used in all simulations.

• Outlet: A zero streamwise pressure gradient is assumed for the open channel model.
A zero streamwise gradient is assumed for all properties except the pressure for the
closed channel model.

• Negligible surface tension effects: The Weber number, calculated in chapter 3.1.3 sug-
gests that the effect of surface tension may be neglected. A case simulated with and
without including surface tension modelling will be presented to investigate the effect
of surface tension.

• The flow resistance introduced by a screen may be accurately predicted by a homoge-
neous porous medium. It is also assumed that the pressure drop coefficient suggested by
Brundrett [2] given in equation (2.21) accurately predicts the pressure drop coefficient
of screens. The same accounts for honeycombs, which are modelled in a similar way
using the same equation with an adjusted porosity to approximate the flow resistance.
The Reynolds number used when calculating the pressure drop over the honeycomb
was calculated using the diameter of screen 2 in table 3.1.

• Walls are assumed to be accurately represented by no-slip and no-penetration boundary
conditions.

• No relevant spanwise flow structures as only 2D models will be investigated in this
thesis.

• No relevant thermal effects.

3.3 Verification and Validation

CFD is a powerful tool that may generate an enormous amount of data and provide accurate
solutions for fluid flows for numerous applications. It may also provide solutions that seem
reasonable despite having no root in reality. It is therefore essential to critically evaluate the
results through a proper verification and validation process. Verification is the process of
making sure that the numerical model solves the physical model accurately, while validation
is the process of determining if the model is an accurate representation of real life flows [26].
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3.3.1 Verification

For most purposes, only an isolated domain of a system or process, including the most
relevant physical effects are analyzed. The reason is that resolving the whole system will often
be very computationally intensive and sometimes also technically impossible. A physical
model representing an isolated domain of the system, in which the system behaviour and
physical phenomena need to be better understood, is then made. As only a part of the system
is analyzed, a proper set of boundary conditions are needed. These boundary conditions are
predictions of the flow conditions at the boundaries of the isolated domain. The verification
process uses certain benchmarks to verify that the CFD-model adequately represents the
physical model, and such benchmarks may be exact analytical or accurate numerical solutions
[26]. A proper verification process includes an investigation of the CFD code, i.e. ensuring
that the governing equations are solved correctly with the desired order of the truncation
errors etc. As ANSYS Fluent is a commercial software, this part of the verification process
is assumed to have been carried out by the developer. The verification process in this thesis
will, therefore, focus on how well the numerical model performs compared to the physical
model.

The solutions by Elder [7], equation (2.9), and Dunn and Tavoularis [6], equation (2.18)
with (2.19), are assumed to be accurate solutions for the given problem and they will be
used as benchmarks in order to verify that the CFD-model adequately represents the phys-
ical model. Furthermore, it is important to check the consistency and convergence of the
iterative solution, i.e. ensuring that the solution is physical and that the residuals and other
quantities relevant to the flow, e.g. pressure drop over the porous region, converges. Another
important step in the verification procedure is to analyze the discretization error, which may
be performed by a mesh convergence test. This is also a crucial step used to ensure that the
solution is independent of the mesh.

3.3.2 Validation

The validation process may start once the numerical model has been verified to give an
accurate representation of the physical model. CFD-results are often compared to experi-
mental data to determine to what degree of accuracy the model reproduces the phenomena
that occur in real life. A conclusion on whether or not the CFD-model is an accurate repre-
sentation of real life is the main purpose of the validation process [26], where experimental
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data are used as a benchmark for the numerical solution. A difficulty with validation using
experimental data is that these data are not free of errors themselves, and the uncertainty
in the experimental data should be considered when validating the numerical model.

PhD Candidate Benjamin Smeltzer has provided experimental data for flow through
screens using the set-up in the fluid mechanics lab at NTNU. These data will be used for
validation purposes in this thesis.

3.4 Mesh and Mesh Independence

This chapter describes how the mesh has been constructed for the models in this thesis and
discuss the results of the mesh independence study.

3.4.1 Mesh for the Closed Channel Flow Model

A simple mesh, only restricting the maximum cell size was used for the closed channel flow
model for the case with slip walls. If a no-slip condition is applied at the walls, a refinement
close to the walls should be used to resolve the boundary layers adequately. This can be
performed by using the "Inflation layers"-option in ANSYS Meshing, 8-10 of these layers will
usually be enough to resolve the boundary layers properly. Figure 3.8 shows the geometry
used in the mesh independence test. The screen, in this case, is designed to transform a
flow of water with a uniform inlet velocity of 0.05m

s
into a uniformly sheared outlet velocity

profile with a shear parameter β = 0.25. An illustration of the mesh for the geometry given
in figure 3.8 is given in figure 3.9. This is how a typical mesh for the closed channel flow
model with slip walls looks like. The porous region, in this case, models the effect caused by
screen 1 in table 3.1, such that the thickness of the porous region is 0.45mm.

3.4.2 Mesh for the Open Channel Flow Model

The mesh used for model 2, the open channel model, needs more mesh controls than the
one for the closed channel model. One reason is that a no-slip boundary condition is used
at the bottom wall, such that a local refinement is needed close to this wall to resolve the
boundary layer properly. The geometry for the case that models the set-up of the lab, which
is illustrated in figure 1.1, is given in figure 3.10. Observe that bottom 4mm of the geometry
has been divided from the rest. The reason for this is to simplify the mesh refinement close
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Figure 3.8: Illustration of a typical geometry used for the cases of the closed channel flow
model, Model 1. The screen shape will vary from case to case, where the present screen is
designed to transform a flow of water with a uniform inlet velocity of 0.05m

s
into a uniformly

sheared outlet velocity profile with a shear parameter of β = 0.25.

to the wall. The difference in the water depth between the inlet and the outlet is 2mm, and
this is because the water depth will decrease over the screen due to the pressure drop. The
value of 2mm was determined by first running a simulation with no difference and then look
at the water depth upstream of the screen. This simulation showed that the water depth
upstream of the screen increased by 2mm.

Figure 3.11 shows the mesh in the region around the porous regions modelling the screen
and the honeycomb close to the bottom wall. The cell refinement close to the wall is well
illustrated along the bottom of this figure. The figure also shows that the mesh consists of
mostly structured cells, which is possible due to the simple geometry. As already mentioned,
the bottom 4mm of the channel has been divided from the rest of the geometry, this was
performed to get better control of the cell refinement close to the wall. The cell refinement
was generated using the "Number of divisions" option on the vertical edges of the bottom
region. A total of 40 divisions was used, creating 40 cells layers in the bottom 4mm of the
channel. The bias-function was used such that the cells were gradually refined the closer
the cells were to the wall. A bias-factor of 8 proved to give good results. The quality of the
mesh using the mesh metrics discussed in chapter 3.1.1 will be presented together with the
result of the mesh independence analysis in chapter 3.4.3.

43



Figure 3.9: Illustration of how a typical mesh for the closed channel flow model looks like.
This figure shows the mesh in the region around the porous region modelling the screen.

Figure 3.10: Description of the geometry used for a typical case of the open channel model.
The inlet and outlet are always placed, respectively, ∼ 100mm upstream and ∼ 400mm
downstream of the screen.

3.4.3 Mesh Independence

As mentioned in chapter 3.3.1, a mesh convergence study is a crucial step to verify the
CFD-model. This must be performed to ensure that the solutions obtained through the
CFD-simulations are independent of the mesh.

Mesh convergence for the Closed Channel Flow Model

The mesh convergence study for the closed channel flow model was performed by computing
the resulting outlet velocity profile for several meshes, where the only difference was the cell
size restriction. Meshes of maximum cell size ranging from 40mm down to 0.4mm were used
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Figure 3.11: Illustration of the mesh in the region around the screen close to the bottom
wall for the open channel model.

to study the convergence of the solution. The result of the mesh convergence study can
be found in figure 3.12. This figure shows that the relative difference between the design
downstream profile and the downstream profile resulting from the CFD-analysis is practically
unchanged when the number of mesh nodes exceeds about 4 · 103. The maximum cell size
used for some of the meshes in the mesh convergence study may be seen from the legend in
figure 3.12. It may be argued that the solution has sufficiently converged at around 4 · 103

mesh nodes, as the relative error does not change considerably when increasing the number of
mesh nodes from here on. For this mesh convergence study slip walls have been used, as the
results from this model will be compared to the velocity profile predicted by the linearized
relation in equation (2.9). Slip walls are used to get a better agreement, as the viscous effect
is neglected everywhere except in the near vicinity of the screen in the derivation of equation
(2.9).

Mesh convergence for the Open Channel Flow Model

The mesh convergence test for the open channel model was performed in the same way as for
the closed channel model, i.e. by gradually refining the cells. The velocity profile resulting
from each mesh was then compared with experimental data and the profile of the finest
mesh, to determine whether the solution had converged or not. The result of this analysis
may be found in figure 3.13. In this figure, the relative difference and the two-norm of the
difference of the velocity profile resulting from each mesh are compared with experimental
data and the solution using the finest mesh. The viscous and inertial loss factor, D and C,
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Figure 3.12: The plot shows how the solution becomes independent of the mesh when the
mesh is gradually refined for the closed channel flow model. Observe how the relative differ-
ence between the design profile and the profile resulting from the CFD-analysis approaches
a constant value when the mesh is refined.

was determined using the screen parameters of screen 2 in table 3.1 and the procedure given
in chapter 3.1.2. The reason for using this screen is that it was used when the experimental
data was gathered by PhD Candidate Benjamin Smeltzer. These experimental data and
the solution using the finest mesh will be used to determine when the solution of the model
becomes mesh independent.

The result of the mesh independence study, given in figure 3.13, shows that the difference
between the solution on each of the tested meshes is small, even though the cell sizes used
ranges from 30mm to 0.35mm. The change in the differences, relative and two-norm, tends
to vanish when increasing the number of nodes from above around 2 ·105 as seen in the plots
of figure 3.13. The solution is therefore said to be mesh independent, as a further refinement
of the cells does not change the solution. The maximum cell size for the mesh resulting in
∼ 2 · 105 nodes is 0.5mm, and this will be used for the cases to be presented later.

An explanation to why the relative error compared to the experimental measurements
is relatively large, is that the experimental measurements did not contain any data for the
bottom 25% of the channel. The volume flow rate was therefore approximated using these
data, knowing that the velocity had to be zero at the wall. This will be discussed more in
chapter 4.2, where these experimental data have been used to validate the model.
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Figure 3.13: Plot of the relative difference (top plot) and two-norm of the difference (bottom
plot) of the velocity profile resulting from the CFD-analysis of a gradually refined mesh
compared to the velocity profile from experimental data and on the finest mesh.

The mesh metrics discussed in chapter 3.1.1 are used to evaluate the quality of the meshes
used in this mesh independence study, and the average values of the mesh metrics are given
in table 3.2. The minimum and maximum values present in this table are averages of the
minimum and maximum values for all the meshes used in the study of the open channel flow
model. Although the average maximum skewness value is relatively high, almost 0.85, it is
still below the deterioration limit of 0.95 [8]. The average skewness is also very close to zero,
in addition to the fact that the average orthogonal quality is very close to one. This suggests
that this mesh set-up yields good quality meshes. Refinement of the mesh gives even better
values for the mesh metrics, e.g. max and average skewness are reduced, while minimum and
average orthogonal quality increases.

Table 3.2: The average mesh metrics of the meshes used in the mesh independence study,
where min and max values are averages of the minimum and maximum values for the meshes
present in this study.

Min Average Max

Skewness - 0.104 0.846

Orthogonal Quality 0.261 0.943 -

47



48



Chapter 4

Results and Discussion

This chapter will present and discuss the most relevant results from the simulations using
the CFD-models presented in chapter 3.2. The chapter will start with a verification section,
where residuals are inspected, and the resulting outlet velocity profile from a variety of
closed channel flows will be compared with the design and theoretically estimated outlet
profile given the flow conditions. This is followed by a validation section where the results
from an open channel flow simulation of the lab set-up are validated using experimental
data. After the numerical model has been thoroughly verified and validated, the results of
several cases investigating how the flow is affected by varying:

• the screen shape and curvature,

• the inlet velocity,

• the water depth on the channel,

will be presented and discussed.

4.1 Verification of model

Parts of the verification process have already been conducted, as stated in chapter 3.3.1 it is
assumed that the algorithms and solution schemes provided in ANSYS Fluent 19.2 already
have been verified by the developer. Furthermore, a grid convergence test has been performed
for the closed channel model, and the result was given in chapter 3.4.3. This result showed
that the solution for the closed channel flow model was essentially unchanged when the cells
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were refined to produce cells smaller than a max cell size of 4mm, which corresponds to
about 3.5 ·103 number of mesh nodes. A max cell size of 0.5mm, which is much smaller than
the cell size needed to get a grid independent solution, was used to produce the results from
the closed channel simulations that will be presented in this chapter. A grid convergence
test was also performed for the open channel model, and the result of this test was given in
chapter 3.4.3. This test showed that a grid independent solution was obtained through the
CFD-analysis when the maximum cell size was 0.5mm, and 20 wall layers were used in the
bottom 4mm of the channel. These mesh controls were used to generate the results of the
open channel flow model that will be presented in this thesis.

Another important step of the verification process is to ensure that the solution of the
CFD-model converges, this may be performed by a comparison of the initial and final residual
for an iterative solution. Such a comparison may be seen in figure 4.1, where the scaled
residuals are plotted for every iteration until the convergence criterion is met for a closed
channel flow case. The convergence criterion used in this simulation was 10−10, i.e. all the
scaled residuals should be equal or lower than this limit before stopping the iteration process.
The definition of these residuals, and how they are scaled, may be found in [12]. A look at
the residuals alone is often not enough, as some solutions may be unphysical although the
iterations have converged. A quick check that the solution is mass conserving should always
be performed. This may easily be checked by computing the mass flux into and out of the
domain for the solution. For the specific case represented in the residual plot, the net mass
flux into the domain was 8.88 · 10−16 kg

s
, whereas the inlet mass flow rate was 4.99kg

s
. As the

net mass flow rate is much lower than the inlet mass flow rate, the solution is considered to
be mass conserving.

The convergence criterion set for the open channel model is different from the one de-
scribed for the closed channel model. The reason is that the CFD-model for the open channel
flow case needs to be solved using a transient solver. A convergence criterion will then be
defined for the iterations that are performed for each time step. The convergence criterion
used in the simulations presented in this thesis was 10−6, with a maximum of 25 iterations
per time step. The solver would then iterate until the convergence criterion is met, or until
the maximum number of iterations have been performed before calculating the solution for
the next time-step.

Four different cases using the closed channel model with slip-walls were tested to verify
that the PMM accurately models the effects that a physical screen introduces to a flow.
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Figure 4.1: Typical residual plot for the closed channel flow model. This plot illustrates how
the residuals change as a function of iteration number.

The screen shapes for these four cases are shown in figure 4.2, in which all the shapes were
determined using the MATLAB script given in appendix A.1. This script uses the iterative
procedure given in chapter 3.2.1. The four screen shapes were generated using the screen
parameters of screen 1 in table 3.1 and a uniform inlet flow of 0.05m

s
. The loss factors used

in the PMM were estimated using the procedure given in chapter 3.1.2 and are given in table
4.1. These values are used for all the closed channel flow cases presented in this thesis. The
difference between the screen shapes given in figure 4.2 is the outlet velocity profiles that the
screens are designed for, which may be seen in figure 4.3. This figure shows a comparison
between the design profiles and the profiles resulting from the CFD-simulations.

Table 4.1: The loss factors used for all the closed channel flow cases presented in this thesis.
C 3009

D 7.7589 · 107

Figure 4.3 shows an almost perfect agreement between the velocity profile resulting from
the CFD-analysis and the velocity profile that the screens were designed for. This verifies
that the PMM accurately predicts the flow disturbance introduced by a screen. At least the
effects governed by the linearized relation, equation (2.9), which was used to determine the
screen shapes.

Another verification test was performed as well, but for this test, three different screen
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Figure 4.2: The solution provided by the linearized relation for the screen shape assuming
uniform inlet flow and four different downstream velocity profiles, which are shown in figure
4.3, using the parameters of screen 1 in table 3.1.

shapes were tested using four different inlet velocities. These cases were constructed to test
the performance of the screen shapes outside the design conditions. The three different
screen shapes were determined by using the parameters for screen 1 in table 3.1 and using
the same design inlet and outlet velocity profiles. The inlet was defined as a uniform velocity
of U = 0.05m

s
, while the outlet profile was defined as a uniformly sheared velocity profile

with a shear parameter β = 0.25. The difference between the screens was the expression used
to determine the screen shape. In which one was determined by the expression of Dunn and
Tavoularis [6], i.e. equation (2.18) with (2.19). Whereas the remaining two were determined
by the iterative procedure described in chapter 3.2.1, where one of the shapes was calculated
including the term that describes the variation in the resistance of the screen, the s-term,
and the other without taking this term into account. The resulting screen shapes can be
seen in figure 4.4. From this figure, it can be seen that the screen shapes determined by
the expression by Dunn and Tavoularis [6] and the iterative solution without including the
s-term look very similar. However, the screen shape determined by the latter method is
slightly more curved upwards at the top of the channel such that it has a smaller extent
in the streamwise direction. The screen determined by the iterative solution including the
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Figure 4.3: Comparison between the velocity profile the screens were designed for and the
velocity profiles resulting from the CFD-simulations using these screen shapes. The cases in
this figure corresponds to the cases specifying the screen shapes in figure 4.2.

s-term has a slightly different shape than the other two, see figure 4.4, and it does also have
the smallest extent in the streamwise direction. The reason for this is that the resistance
variation term, s(z), tends to reduce the inclination of the screen [3].

The performance of each of these screen shapes were then tested using the closed channel
model at four uniform inlet velocities ranging from U = 0.03m

s
to U = 0.08m

s
. The resulting

downstream velocity profile for each of these screens can be seen in figure 4.5. From this
figure, it can be seen that the screen shape determined by the iterative solution of equation
(2.9), taking the resistance variation into account does not perform very well at producing a
uniform shear. This proves that the screen shape calculated by neglecting this term performs
better at producing the desired velocity profile, at least for cases similar to this one. The
resistance variation term, s(z), has therefore been neglected from the calculations of all other
screen shapes in this thesis.

The screens determined by the expression suggested by Dunn and Tavoularis [6], equation
(2.18) with (2.19), and the iterative solution of equation (2.9) without taking the resistance
variation into account, produce approximately uniformly sheared downstream velocity pro-
files close to the theoretical prediction. The theoretically predicted velocity profiles were
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calculated using the MATLAB function provided in appendix A.2, which solves equation
(2.9) neglecting the effect of the resistance variation. From this figure, it is also evident that
the iteratively calculated screen shape determined using equation (2.9) performs better at
producing the desired velocity profile, even for different velocities than the design velocity.
An explanation to why the iterative screen shape performs better than the one suggested by
Dunn and Tavoularis [6] may be that their expression can be interpreted as a first iteration
solution as γ0 is set equal to K and that their solution is an approximation of the analytical
solution. It should also be mentioned that the expression by Dunn and Tavoularis, equation
(2.18) using (2.19), is applicable to produce uniformly sheared downstream velocity profiles
from uniform inlet conditions only.

The shear parameter, β, for the theoretically predicted velocity profiles are tabulated in
table 4.2. This table shows a clear trend of decreasing shear parameter with increasing inlet
velocity. Which suggests that the screen is less able to transform the velocity profile of flows
with a higher mean velocity, which is an effect that will be investigated further in chapter
4.4.

Table 4.2: Comparison of the shear parameter of the downstream velocity profiles corre-
sponding to the cases with different inlet velocities illustrated in figure 4.5.

U 0.03m
s

0.05m
s

0.06m
s

0.08m
s

β 0.308 0.250 0.234 0.209

The screen shape determined by the iterative solution of equation (2.9) without taking
the resistance variation, i.e. the s(z)-term, performs best at producing the desired velocity
profile as seen from figure 4.5. This method should, therefore, be preferred when deter-
mining the screen shape needed to generate a specific downstream velocity profile. The
mesh independence test, the inspection of residuals, and this comparison to the theoreti-
cally estimated velocity profiles make up the verification process. The results verify that
the CFD-model using a porous region to model the flow resistance introduced by a physical
screen is an adequate representation of the physical model. This is concluded based upon
the almost perfect agreement between the theoretically estimated velocity profiles and the
velocity profiles resulting from the CFD-simulations, see figure 4.3 and 4.5.
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Figure 4.4: Comparison the screen shapes determined using the expression by Dunn and
Tavoularis [6], equation (2.18) with (2.19), and using the iterative procedure for calculating
the screen shape using equation (2.9), both with and without taking the resistance variation
into account, i.e. the s(z)-term. The screens are designed for a uniform inlet velocity of
U = 0.05m

s
and a downstream shear parameter β = 0.25.
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Figure 4.5: Comparison of the velocity profiles resulting from the CFD-analysis using the
closed channel model for the screens illustrated in figure 4.4. The legend in the bottom plot
applies to all four plots.

4.2 Validation of model

Validation of the CFD-model will be performed by comparing the velocity profile downstream
of the screen resulting from a CFD-simulation with experimental measurements from the lab
provided by PhD Candidate Benjamin Smeltzer.
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The screen in the lab had unfortunately only been shaped manually by adjusting the
screen shape until a preferable downstream velocity profile was produced. Such that the
shape of the screen in the lab was unknown and had to be measured before a numerical
model of the lab set-up could be constructed. The screen shape was, in lack of a better
option, extrapolated by hand. This was done by placing a piece of paper at one of the ends
of the screen and then drawing a line along with the shadow of the screen that was visible
on the paper. This paper was then scanned such that this line could be translated into a set
of discrete points defining the shape of the screen to be used in the numerical model. The
screen shape used in the numerical model of the lab is given in figure 4.6.

Figure 4.6: Shape of the screen in the CFD-model of the lab set-up.

The inlet velocity used in the numerical model of the lab had to be estimated using
the experimental data, as the mean velocity of the flow will influence the velocity profile
produced by the screen. This was observed in chapter 4.1, see figure 4.5, and this effect will
also be investigated further in chapter 4.4. Experimental measurements are unfortunately
not available for the bottom 25% of the channel. The reason for this is that near the bottom
there tend to be more stray reflections and scattering of particles, which will contaminate
the result near the bottom of the channel. The velocity field in this region is of no interest
for the ongoing research in the lab, so no attempts have therefore been made to fix this
flaw. The velocity profile for the bottom 25% of the channel was therefore estimated by
assuming a no-slip condition at the bottom and fitting a typical boundary layer influenced
velocity profile to the measured profile. By using this procedure, the mean velocity of the
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measurements was estimated to 0.12m
s
, such that the uniform inlet velocity of the numerical

model was set to Uin = 0.117m
s
. This is slightly less as the water depth decreases a little

over the screen, such that the difference in water depth up and downstream of the screen is
2mm in the CFD-model.

The loss factors for the screen and the honeycomb used in the PMM were estimated
using the procedure given in chapter 3.1.2 and are presented in table 4.3. These values
were calculated using the parameters of screen 2 in table 3.1. All open channel flow cases
investigated in this thesis have used the values for the loss factors given in table 4.3.

Table 4.3: The loss factors used in all the open channel flow cases investigated in this thesis.
Screen Honeycomb

Water Air Water Air

C 7948 4807 88.3 800

D 3.5541 · 108 6.2727 · 107 3.2173 · 106 1.5410 · 107

The honeycomb present after the screen in the lab set-up, see figure 1.1, was not included
in the first CFD-model of the lab. The reason for adding a porous region modelling the
flow straightening effect that a honeycomb introduces to a flow, was that the flow never
seemed to reach a uniform state behind the screen without this straight porous medium.
The explanation for this is that vortices are created right downstream of the screen near the
bottom of the channel. These vortices grow until they suddenly detached from the screen
and are convected downstream in the channel, and a new vortex starts to build up. An
explanation to why these vortices occur may be the large angle between the flow direction
and the screen normal vector near the bottom of the channel. This results in a large deflection
of the streamlines resulting in a recirculation zone, a vortex, right downstream of the screen
and that this vortex sometimes detaches from the screen and is convected downstream with
the flow. This effect can be seen in figure 4.7, which is the resulting contour plot of a CFD-
simulation of the numerical model of the lab without including a flow straightening porous
medium. This figure clearly shows the vortices that are convected downstream with the flow,
where rings illustrating the vortices have been drawn in the bottom contour plot. The free-
surface is roughly located in the region where the velocity suddenly drops, i.e. where there
is a sharp transition from light to dark in the upper half of the contour plots. A velocity
contour plot of the same set-up, including a porous medium modelling the flow straightening
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effect of the honeycomb, can be seen in figure 4.8. The vortices present in figure 4.7 have
almost disappeared, and only a minor effect of these vortices are still present near the bottom
of the channel. Hence, resulting in a more uniform velocity field downstream of the screen.
The slight drawback with using a porous medium as flow straightener is that standing waves
occur downstream of the screen, as seen from the wobbly structures in the upper half of the
contour plot in figure 4.8. These waves do also occur downstream of the honeycomb in the
lab.

Figure 4.7: Velocity contour plot of the case where a flow straightening porous region,
modelling the effect of a honeycomb, is not present downstream of the screen. Observe the
vortices that are convected with the flow. Both figures are taken at the same time-instant.

59



Figure 4.8: Velocity contour plot when a flow straightening porous region, modelling the
effect of a honeycomb, is present downstream of the screen. Observe that the vortices present
in figure 4.7 have almost disappeared. This contour plot is taken at the same time-instant
as those in figure 4.7.

The lab measurements were time-averaged over a minute, such that effects of vortices
will not be present in the measurements. Instead of running simulations to a flow time above
one minute, a spatial average is used for estimating the velocity profile resulting from the
CFD-simulations. The reason for this is that producing a time-averaged velocity profile over
one minute for the CFD-simulations would be very time-consuming in comparison. For the
lab case, in which the water depth is 8cm, the velocity profile was averaged over a region that
spans 18cm in the streamwise direction of the downstream region. Stretching from 20cm to
38cm downstream of the screen. This spatial averaging was performed to suppress the effect
of vortices that may be present in the flow. The CFD-simulation was run until a flow time of
15 seconds, in which the velocity profile had reached a seemingly steady-state solution when
the effect of the vortices was neglected. The mean relative difference between the velocity
profile at several instants and the velocity profile at a flow time of 15s is given in the plot in
figure 4.9. The mean relative difference between the velocity profile at flow time at both 13s
and 14s compared to the velocity profile at 15s is about 1.3%. This difference is presumably
due to the effect the vortices present in the flow. It is therefore assumed that the flow has
reached a steady-state at a flow time of 15s.

A comparison between the spatially averaged velocity profile from the CFD-analysis and
the velocity profile measured in the lab can be found in figure 4.10. This figure shows that
the CFD-model performs well at predicting the velocity profile, as the CFD-result almost
coincides with the average velocity profile from the measurements made in the lab in most of
the vertical positions in the channel. The bars included for the experimental measurements

60



Figure 4.9: Plot of the mean relative difference between the velocity profile at several flow
time instants and the velocity profile at a flow time of 15s.

represent the spatial variation measured in the channel in the lab, as the velocity profile
was measured at several downstream and spanwise positions. The CFD-simulation was
unfortunately not able to predict the strong shear present near the free-surface in the lab, but
the CFD-model yields an adequately accurate prediction of the velocity profile for z

h
< 0.9.

Why the CFD-model fails to predict this strong shear near the free-surface may be explained
by the following:

• The inlet velocity profile is not entirely uniform.

• Errors introduced by the model of the honeycomb.

• Errors in the screen shape. Including errors made when measuring the shape, spanwise
variations of the shape of the screen in the lab, and deformation of the screen due to
flow-induced drag when running the experiments in the lab.

The model of the honeycomb used in the CFD-model may not be the most realistic, but
it was decided to stick with this model due to the lack of a better option. However, the
spatially averaged velocity profile resulting from the CFD-simulations corresponds well with
the measured velocity profile in most parts of the channel, proving that the CFD-model is
an adequately accurate representation of the flow that would occur in real life.
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All velocity profiles resulting from the simulations of the open channel model that will
be presented in this thesis have been spatially averaged. The spatial average has been taken
over the region spanning from 20-38cm downstream of the screen at the flow time of 15s.
The loss factors given in table 4.3, for the screen and honeycomb, have been used for all
cases of the open channel model in which results will be presented in this thesis. The inlet
velocity and water depth used to generate the results will be U = 0.117m

s
and h = 0.08m,

unless something else has been specified.

Figure 4.10: A plot comparing the velocity profile measured in the lab, including bars that
represent the spatial variation in the measurements, and the spatially averaged velocity
profile resulting from the CFD-calculation. Both profiles are normalized by the mean velocity,
U .

4.3 Effect of Changing Screen Curvature

Investigating how the flow is affected by varying the screen curvature is one of the research
objectives of this thesis, see chapter 1.2. This objective was addressed by investigating the
effect of gradually reducing the radius of curvature for an initially straight screen mounted at
a given angle. Two different screen shapes may be produced when the radius of curvature is
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reduced, one that appears convex and one that appears concave to the flow. Both cases were
investigated to analyze how the flow was affected by such a change in the screen curvature.
Figure 4.11 and 4.12 illustrate the screen shapes that were investigated in this analysis. These
screens were constructed by starting with a straight screen defined by the two endpoints of
the screen in the CFD-model of the lab set-up, see figure 4.6. This results in an angle of 54◦

between the streamwise direction and the normal vector of the screen. The screens produced
by reducing the radius of curvature were constructed by assuming that the screen was a
part of a circular arc stretching between the endpoints of the screen in the lab, in which the
radius of this circle was gradually reduced to produce screens with increasing curvature.

A case was constructed for each of the 13 different screen shapes given in figure 4.11
and 4.12, both the convex and concave screen shapes. The inlet velocity and water depth
was equal for all cases studied in this section, and was set to Uin = 0.117m

s
and h = 0.08m.

The CFD-simulations were run until a flow time of 15 seconds, the same as for the lab
case used for validation. From each of these cases, a spatially averaged velocity profile was
calculated, taking the spatial average spanning over an 18cm streamwise region, stretching
from 20-38cm downstream of the screen. In addition to these cases, two additional cases
with straight screens were constructed. These cases were constructed to analyze how the
downstream velocity profile is affected by a change in the angle between the screen normal
vector and the streamwise direction. Three straight screens are illustrated in figure 4.13, in
which the screen whose normal vector has an angle of 54◦ with respect to the streamwise
direction is the same as the straight screen given with the gradually more curved screens in
figure 4.11 and 4.12.
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Figure 4.11: Illustration of the convex screens used to investigate the effect of changing the
screen curvature.

Figure 4.12: Illustration of the concave screens used to investigate the effect of changing the
screen curvature.
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Figure 4.13: The three different straight screens that were tested to investigate the effect of
varying the angle, θ, between the screen normal vector and the streamwise direction.

4.3.1 Results for the Convex Screens

A comparison of the velocity profiles resulting from the CFD-simulations using each of the
convex screen shapes given in figure 4.11 can be seen in figure 4.14.

The velocity profiles in figure 4.14 have been normalized by the mean velocity in the
channel, U . When comparing the velocity profiles in the center part of the channel, i.e. from
z
h
equal to ∼ 0.3 to ∼ 0.9, one can see that the mean velocity in this region decreases with

increasing radius of curvature of the convex screen. The velocity profile gets gradually more
curved, making the velocity profile more concave, when the radius of curvature of the screen
is reduced. Another remark is that the shear near the free-surface, i.e. for z

h
> 0.9, increases

with increasing radius of curvature. To summarize these results:

1. Center part of the channel: Decreasing the radius of curvature increases the mean
velocity and the curvature of the velocity profile, making it more concave.

2. Near the free-surface: The shear near the free-surface increases with increasing radius
of curvature.

4.3.2 Results for the Concave Screens

A comparison of the velocity profiles resulting from the CFD-simulations using each of the
concave screen shapes can be seen in figure 4.15.
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Figure 4.14: Comparison of the spatially averaged velocity profiles resulting from each of the
convex screens given in figure 4.11. The velocity profiles have been normalized by the mean
velocity in the channel, U .

From the plot in figure 4.15 it can be seen that the curvature of the produced velocity
profile increases, making the velocity profile more convex, with a decreasing radius of curva-
ture of the screen. Similar to the convex screens, which produced concave velocity profiles,
as seen in figure 4.14. The relative change in the velocity profile when reducing the radius
of curvature is less for the concave screens than the convex screens, which can be seen when
comparing figure 4.14 and 4.15.

The increasingly more convex velocity profile results in a shear that gradually increases
in the vertical direction, z-direction, of the channel when the radius of curvature is reduced
for the concave screens. This results in an increase in the shear in the region close to the
free-surface when reducing the radius of curvature. So, to summarize:

• Decreasing the radius of curvature of a concave screen will increase the curvature of
the produced velocity profile, making it more convex. The shear near the free-surface
increases with decreasing radius of curvature of the concave screen.
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Figure 4.15: Comparison of the spatially averaged velocity profiles resulting from each of
the concave screens given in figure 4.12. The velocity profiles have been normalized by the
mean velocity in the channel, U .

4.3.3 Results for Straight Screens Mounted at Different Angles

As previously mentioned, it was decided to have a look at the effect of changing the angle
between the screen normal vector and the streamwise direction that straight screens have
on the velocity profile downstream of the screens. Three CFD-cases with straight screens
mounted at three different angles, see figure 4.13, were constructed and the spatially averaged
velocity profiles resulting from the CFD-simulations of these cases can be seen in figure 4.16.

The spatially averaged velocity profiles given in figure 4.16 show that the deviation from
uniform flow decrease with a decreasing angle between the screen normal vector and the
streamwise direction, θ. This is an intuitive result as the streamlines are being deflected in
the direction of the normal vector of the screen. Furthermore, as seen in figure 4.16, the
straight screen produces an almost uniform shear in the center part of the channel, and this
shear increases with an increasing θ. Another effect that can be deduced from this plot
is that the thickness of the strong shear layer at the bottom of the channel increases with
increasing θ, this is probably due to the effect of the more significant streamline deflection
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Figure 4.16: Plot of the normalized velocity profiles resulting from the CFD-model of a
straight screen mounted at three different angles. The angle θ is defined as the angle between
the screen normal vector and the streamwise direction.

that occurs when θ increases. I.e. decreasing θ will cause a decrease in the deflection of the
streamlines, which again results in a thinner strong shear layer at the bottom of the channel.
The reason for calling it a strong shear region is that the effect observed near the bottom of
the channel is caused by both a viscous boundary layer and the streamline deflection caused
by the screen, where the latter effect is assumed to be dominating.

Another observation made from the plot in figure 4.16 is that the shear parameter, β,
near the free-surface increases with decreasing θ, although the change is fairly moderate.
The mean shear parameter for the region near the free-surface, i.e. 0.92 ≤ z

h
≤ 1, for each

of the profiles in figure 4.16 is given in table 4.4. This table includes the shear parameter
near the free-surface for a straight screen as well. The effect of an increasing shear in the
region near the free-surface with a decreasing θ may be explained by the fact that the flow
obstruction as perceived by the flow is greater for a more inclined screen. This increased
flow resistance will result in an increased momentum loss and restrict the acceleration of the
flow in the region near the free-surface more than less inclined screens.
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Table 4.4: Mean shear parameter, β, near the free-surface for the straight screens with
different inclination.

θ 54◦ 44◦ 34◦ 0◦

β 1.71 1.85 1.95 1.99

4.4 Effect of Changing Inlet Velocity

Some additional cases using the CFD-model of the lab were simulated to test the effect the
inlet velocity has on the resulting downstream velocity profile. The three inlet velocities in-
vestigated in this analysis were 0.08m

s
, 0.12m

s
, and 0.15m

s
. The normalized spatially averaged

velocity profiles downstream of the screen resulting from the CFD-simulations can be seen
in figure 4.17.

Figure 4.17: Plot of the normalized spatially averaged velocity profiles resulting from three
different inlet velocities using the CFD-model of the lab set-up.

From the plot of the resulting velocity profiles for the different inlet velocities in figure
4.17 it can clearly be seen that the shear of the velocity profiles gradually decreases when
the inlet velocity is increased. This results in velocity profiles that become more similar to
the uniform profile at the inlet when increasing the inlet velocity. This suggests that the
screens ability to transform the velocity profile is reduced when the inlet velocity, or mean
velocity of the flow, is increased. The same effect was observed in figure 4.5 in chapter
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4.1, where a screen designed to produce a uniformly sheared outlet velocity profile with a
shear parameter, β, of 0.25 was tested at various inlet velocities. The shear parameter for
the theoretically predicted velocity profile and the velocity profile resulting from the CFD-
simulations increased for velocities below the design velocity and decreased for inlet velocities
above the design value, see table 4.2. This suggests that flows with higher inertia require a
more significant flow obstruction for the velocity profile to be transformed at the same rate
as a flow of lower inertia.

The flows ability to penetrate the screen at the bottom of the channel increases with
increasing inlet velocity. This can clearly be observed when comparing the case with an inlet
velocity of 0.15m

s
with the other cases, as the shear in the immediate vicinity of the wall is

much stronger, suggesting a smaller deflection of the streamlines near the bottom for this
case.

4.5 Effect of Changing Water Depth

The CFD-model of the lab set-up was used to study the effect of varying the water depth
of a channel while keeping the screen parameters, inlet velocity, and screen shape constant.
Three cases, each with different water depths, were simulated to investigate the effect water
depth has on the resulting velocity profile. The three water depths tested were 0.08m, 0.07m,
and 0.06m.

The normalized velocity profiles for each water depth were again spatially averaged,
spanning the same region as for the other cases, i.e. the region from 20-38cm downstream
of the screen at a flow time of 15s, and the result may be seen in figure 4.18. Surprisingly
enough, it appears that changing the water depth only has a small, almost negligible effect,
on the normalized velocity profile. The plots of the velocity profiles roughly coincide for the
respective water depths. Another surprising effect is that the thickness of the strong shear
region at the bottom of the channel covers the same normalized region, i.e. the physical
thickness of it shrinks when the water depth is decreased. This suggests that it is not a
viscous boundary layer that creates this strong shear region, as the normalized thickness of
a viscous boundary layer would most likely increase with decreasing water depth.

The fact that the normalized velocity profile does not change when changing the water
depth can probably not be generalized for all screen shapes. The explanation for this is that
a change of the water depth in a channel with a screen whose shape varies a lot in different
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regions would most likely result in a change in the normalized velocity profile downstream
of that screen.

Figure 4.18: Spatially averaged velocity profiles downstream of the screen normalized by the
mean velocity, U, and water depth, h, for the respective cases.

4.6 Discussion of the Results

This chapter will give a discussion of the results and attempt to explain why these changes
of the velocity profile occur for the different cases. Furthermore, a comparison between
the theoretically predicted velocity profile and the velocity profile resulting from the CFD-
simulations will be given for some of the cases. This chapter will also include a discussion
about vortex production by the different screen shapes, and a suggestion for improving the
present model.

4.6.1 General Remarks

The results from the increasingly convex and concave screens are somewhat intuitive, con-
sidering that the streamlines are deflected in the direction of the normal vector of the screen.
Figure 4.19 illustrates why this result is intuitive, showing how the streamlines are deflected
over convex and concave screens. The streamlines are deflected similarly as light rays in
convex and concave lenses.
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Figure 4.19: Illustration of how streamlines are deflected over convex and concave screens.

In the cases tested in chapter 4.3.1 and 4.3.2, the screens are not only curved, but they
are also tilted. A study on how the flow was affected when a straight screen was mounted
at different angles was conducted in chapter 4.3.3. The results from chapter 4.3.3 showed
that more inclined screens produced greater shears, which again is an intuitive result as
streamlines are deflected in the direction of the normal angle of the screen. A not so trivial
result was discovered for the shear near the free-surface, in which the shear in the region
close to the free-surface increased when the inclination of the screen decreased. An effect that
presumably occurs as the resistance introduced to the flow by the screen in the region near
the free-surface increases with increasing inclination of the screen, as the blockage perceived
by the flow increases.

The investigation of the shear in the region near the free-surface of the convex screens
showed that the shear decreased with decreasing radius of curvature. The reason why this is
happening is not so straight forward, as two counteracting effects occur when reducing the
radius of curvature of the screen. Firstly, the decreased radius of curvature will produce a
more concave velocity profile, which tends to decrease the shear in the region close to the
free-surface. Whereas the second effect will tend to increase the free-surface shear as the
screen becomes increasingly vertical, i.e. θ decreases, in the region close to the free-surface.
This effect was observed for the straight screens mounted at various angles. However, the
first effect seems to dominate in these cases, as the shear in the region near the free-surface
decreases with decreasing radius of curvature. From table 4.4 it can be seen that changing
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the inclination of the screen has a relatively small effect on the shear near the free-surface.

The situation is completely turned around for the concave screens, where the screen
becomes more and more inclined near the free-surface as the radius of curvature decreases.
The increasing inclination of the screen near the free-surface tends to decelerate the flow in
this region, while the decreasing radius of curvature of the concave screen tends to accelerate
it. Again, the effect of the increased curvature of the screen dominates, such that the shear
in the region close to the free-surface increases with decreasing radius of curvature for the
concave screens.

From the simulations of the lab set-up at different inlet velocities, it was discovered that
increasing the inlet velocity resulted in a smaller change of the velocity profile. This result
agrees with the predictions by the linearized theory for the closed channel cases tested in
chapter 4.1, where the results are shown in figure 4.5. An explanation for this may be that
the increased inlet velocity increases the inertia of the flow. This increase in the inertia of
the flow would then require a greater flow resistance than a flow of lower inertia to produce
the same normalized downstream velocity profile. The flow resistance is indeed a function
of the fluid velocity, see relations for the pressure drop coefficient K (equation (2.3), (2.5),
(2.20),and (2.21)), but the effect of the increased flow inertia dominates for the cases tested
in chapter 4.4.

The results of the cases testing the effect of varying the depth of the channel proved
to give the most surprising result, as the normalized velocity profile was unchanged despite
the changes to the water depth in the channel. This effect is tougher to explain and would
need to be investigated further as this may be a coincidence for these cases. Screens that
vary more in shape, e.g. consisting of both concave and convex regions, are not expected to
show the same behaviour. However, this needs to be investigated further before drawing any
conclusions.

4.6.2 Comparison to Theoretical Estimates

The velocity profile resulting from a given screen shape, screen parameters, and inlet con-
ditions may be predicted by solving equation (2.9), i.e. the linearized solution by Elder [7],
using the MATLAB function given in appendix A.2. This solution only includes first-order
effects, such that the solution predicted by this equation becomes increasingly invalid for
increasing screen curvatures, which results in increasing changes in the velocity profile over
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the screen.

Figure 4.20 presents a comparison between the velocity profile predicted by equation
(2.9) and the velocity profile resulting from the CFD-simulation of four of the open channel
flow cases. The plots for the straight screen mounted at θ = 56◦ shows a decent agreement
between the normalized velocity profiles. This shape introduces the least changes to the
velocity profile over the screen of those present in figure 4.20, such that it may be justified
that the assumptions behind the linearized solution are not seriously violated for this screen
shape. The remaining plots in figure 4.20 do not show an excellent agreement between CFD-
results and the theoretically predicted velocity profile. The linearized theory is only to able
predict the shear in some regions for these three cases, e.g. the center region for the concave
screen with a radius of curvature of 0.25m. The linearized solution does unfortunately not
provide an adequately accurate prediction of the velocity profiles, except maybe the case with
the straight screen mounted at θ = 56◦. These erroneous velocity predictions are presumably
due to violation of the assumptions in which the linearized solution is derived upon. Another
remark is that the linearized theory is based upon the assumption that viscous effects only
are present in the near vicinity of the screen, hence it will not be able to predict any viscous
effects introduced by the bottom wall. This shows that the linearized solution, relating the
screen shape to up- and downstream flow conditions, is only applicable for a limited range
of cases, which was one of the motivations for this thesis.

4.6.3 Vortex Generation

A small discussion on the vortex generation will be presented, due to some interesting trends
between the screen shape and vortex generation in the simulations.

The vortex generation reduces with a reduced inclination for the straight screens. This
is probably a result of the reduced streamline deflection when reducing the inclination of
the screen. The surprising result here is the rate at which the vortex generation is reduced.
The effect of vortex generation is clearly visible in the velocity contour plot for the screen
mounted at θ = 54◦, while no vortices are apparent in the case where the screen is mounted
at an angle of θ = 44◦. This result suggests that the vortex generation caused by the screen
is an effect that is very sensitive to the shape of the screen. These contour plots can be
found in appendix B.3.

This sensitivity is also observed when making the screen shapes slightly more curved,
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Figure 4.20: Comparison between the velocity profile predicted by the linearized theory using
equation (2.9) and the velocity profile resulting from the CFD-simulations. ——, equation
(2.9); — – —, CFD-results.

especially more concave. The effect of the vortices are eliminated by reducing the radius of
curvature to R = 0.4m for the concave cases, while the radius of curvature has to be reduced
to about R = 0.2m before the effect of the vortices disappears for the convex screens. This
indicates that the vortex generation effect is much more sensitive to changes making the
screen more concave than convex. Furthermore, the effect of the vortices seems to increase
with increasing inlet velocity, probably due to the increased flow instability that occurs at
higher Reynolds number. Contour plots from several of the cases investigated in this thesis
can be found in appendix B.

It should be noted that a better modelling of the flow straightening effect of honeycombs
may reduce, and even eliminate, the effect of the vortices discussed here.

4.6.4 Effect of Surface Tension

The effect of surface tension has been neglected from the cases simulated in this thesis, as it
was assumed negligible. A simulation using the model of the lab set-up, including the CSS
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surface tension model was simulated to investigate the effect that surface tension had on the
downstream velocity profile. The velocity profile resulting from this simulation is shown in
figure 4.21, where it is compared to the result from a simulation of the same model where
surface tension has been neglected. A plot of the relative difference between the velocity
profiles resulting from these simulations is also included. This figure clearly illustrates that
surface tension has a minor effect on the velocity profile, which supports the negligence of
surface tension in the other cases simulated in this thesis.

Figure 4.21: Plot comparing the velocity profile resulting from CFD-simulations of the lab
set-up both with and without including the effects of surface tension. The bottom plot shows
the relative difference between the profiles.

4.6.5 A Suggestion for Improvement

The CFD-model presented in this thesis proved to give adequately accurate results when
compared with experimental measurements in chapter 4.2. An almost perfect agreement
between the velocity profiles was observed in the center part of the channel, but the CFD-
model was unfortunately not able to predict the strong shear experienced in the region close
to the free-surface. The reason for this may be errors introduced when assuming the inlet
profile to be uniform, differences in the screen shapes in the CFD-model and in the lab, or
errors introduced in the modelling of the honeycomb.
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The honeycomb has been modelled by a straight porous region, where the flow resistance
has been approximated using the same equation and procedure as for the screen, i.e. equation
(2.21). This relation was used as no other relation for the pressure drop over a honeycomb
was found. The pressure drop over the honeycomb was then calculated using the parameters
of screen 2 in table 3.1 and setting the porosity to 0.875, which is the same as the porosity
of the honeycomb in the lab. The loss factors used for the honeycomb are given in table
4.3. This is probably not a very accurate way to model honeycombs, and the way to model
the loss should be corrected as soon as a better relation for the pressure drop is found.
The PMM may not be the best way to model honeycombs either due to the large aperture.
However, as the objective of this thesis was to model the effects of screens and not the effects
introduced by adding a honeycomb, it was assumed that this was an adequate way to model
the honeycomb for the purposes of this thesis.
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Chapter 5

Conclusion

The main objective of this master’s thesis was to generate a CFD-model that accurately
simulated flows passing through curved screens. Initially, it was desired to construct a
model that resolved all the flow structures within the screen, by using either a quasi-2D
model or a model allowing spanwise flow structures larger than the periodic screen length’s
width. This proved to be very computationally intensive, and it was therefore decided that
the flow obstruction introduced by a screen had to be modelled. Another reason for this
choice was that it was desired that the CFD-model could be used as an efficient tool to test
different screen configurations.

The porous media model (PMM) was chosen to model the flow resistance introduced by
a physical screen. A reason for this choice was that Teitel [24] proved that this model gave
accurate results when simulating flows passing through straight screens. The loss factors
used in the PMM was determined using the procedure given in chapter 3.1.2. The flow
straightening effect introduced by a honeycomb was also modelled by the PMM as described
in chapter 3.1.2. Two models using the PMM was presented in chapter 3.2, one closed and
one open channel flow model. The results of the mesh independence tests given in chapter
3.4 were used to decide the cell size of the meshes used to produce the results in this thesis,
to ensure that the presented solutions are mesh independent.

The closed channel model was used to verify that the PMM could accurately predict the
flow obstruction introduced by a physical screen, with chapter 4.1 verifying this. Figure 4.3
and 4.5 show that the CFD-model accurately predicts the velocity profile downstream of
the screen when compared with theoretical estimates obtained using Elder’s [7] linearized
relation given in equation (2.9). The comparison given in figure 4.5 proves that the screen
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shape given by the iterative solution of equation (2.9) performs better at producing the
desired velocity profile than the relation given by Dunn and Tavoularis [6].

A case modelling the set-up of the lab in the fluid mechanics building at NTNU, see figure
1.1, was constructed. The result from the CFD-simulation using this model was compared to
experimental measurements provided by PhD Candidate Benjamin Smeltzer to validate the
CFD-model. This comparison can be seen in figure 4.10, which shows that the CFD-model
accurately predicted the velocity profile in the majority of the channel. The CFD-model
was unfortunately not able to predict the strong shear measured in the region close to the
free-surface in the lab, and there may be several reasons for this. It is believed that errors
introduced by assuming a uniform velocity profile at the inlet and errors introduced by the
model of the honeycomb, may explain a significant part of why the CFD-model fails to
predict this strong shear near the free-surface. Nevertheless, this comparison validates that
the CFD-model provides an adequately accurate prediction of the velocity profile resulting
from flows passing through curved screens.

After the CFD-model had been sufficiently verified and validated, several cases were
constructed to analyze how the flow was affected by varying:

• Screen shape/curvature.

• Inlet velocity.

• Water depth.

The effect of the screen shape was investigated by decreasing the radius of curvature of
an initially straight screen mounted at a certain angle with respect to the bottom wall.
Reducing the radius of curvature for a straight screen may produce screens that are perceived
as either concave or convex by the flow. Both cases were investigated, in addition to the
effect of changing the angle between the screen normal vector and the streamwise direction
for straight screens. The results of these cases were given in chapter 4.3, and the velocity
profile downstream of the screens for these cases showed that:

• The resulting velocity profile becomes increasingly concave, and the shear near the
free-surface is reduced when reducing the radius of curvature of a convex screen. See
figure 4.14.
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• The resulting velocity profile becomes increasingly convex, and the shear near the free-
surface is increased when reducing the radius of curvature of a concave screen. See
figure 4.15.

• The mean shear of the downstream velocity profile increases and the shear near the
free-surface decreases when increasing the angle between the screen normal vector and
the streamwise direction for straight screens. See figure 4.16.

The results from the cases investigating the effects of varying the inlet velocity and water
depth were given in chapter 4.4 and 4.5. The shape of the screen tested in these cases was
the same as the shape of the screen in the lab in the fluid mechanics building at NTNU,
which is given in figure 4.6. These results showed that:

• The rate at which the velocity profile is transformed is reduced when the inlet velocity
increases. See figure 4.17. This may be explained by the fact that a greater flow
resistance is needed to deflect the flow at the same rate when the inertia of the flow is
increased by increasing the inlet velocity.

• A change in the water depth did, surprisingly, not have any effect on the normalized
velocity profiles downstream of the screen. See figure 4.18.

The effect observed for the case where the water depth was reduced can probably not be
generalized for all screen shapes. The reason for this is that reducing the water depth for a
screen whose shape has both convex and concave regions will most likely result in a change
in the normalized downstream velocity profile. Nevertheless, the observations made for the
modifications of screen shape and inlet velocity are believed to be general.

A comparison between the velocity profiles predicted by the linearized relation in equation
(2.9) and the velocity profiles resulting from the CFD-simulations showed an almost perfect
agreement for the closed channel flow cases investigated. The shapes of the screens were
only moderately curved such that the assumptions for the linearized theory were most likely
not heavily violated in these cases. The linearized theory did unfortunately not predict the
velocity profile accurately for the more curved screens tested in the open channel cases. This
is probably explained by two effects:

1. The curvature of the screens violate the assumption that the flow problem may be
linearized, something which equation (2.9) relies upon.
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2. The linearized relation does not predict the effects of viscous boundary layers, as the
effect of viscosity is neglected everywhere except in the near vicinity of the screen.
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Appendix A

Matlab Scripts

A.1 Matlab Script for the Screen Shape
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clc
clear all
close all

%Input parameters
d = 0.00045;%Diameter/projected thickness of wires in mesh
l = 0.00159; %axis-to-axis spacing between elements
h = 0.1; %Channel height
Uin = 0.05; %Uniform inlet velocity
dx = h/1998; %Infinitesimal length
z = 0:dx:h; %Vertical vector
beta = 0.25; %Outlet shear parameter
Uout = (1+beta*(z/h-0.5)); %Normalized outlet velocity profile
u = ones(size(Uout)); % Normalized inlet profile
tol = 1e-18; %Tolerance
tol2 = 10^-12; %Tolerance

%Fluid properties
rho = 998.2; %Density
mu = 0.001003; %Dynamic viscosity

%Derived parameters
sigma = (2*d*l-d^2)/l^2; %Solidity of screen
Re = rho*Uin*d/mu; %Reynolds number
K = ((0.05+0.95*sigma)/(0.95*(1-sigma)))^2+88*sigma/Re; %Pressure drop
 coeff. (Elder/Davis)
B = 1-1/sqrt(1+K^0.5); %Deflection coeff. (Elder)

%Screen shape by Dunn & Tavoularis (2007)
f = -0.738*(z/h).^6+2.812*(z/h).^5-3.839*(z/h).^4+2.687*(z/h).^3-...
    1.224*(z/h).^2 - 0.0054*z/h;
xDT = h*((2+K-B)*beta/(K*B)*f);

%Screen shape by Elder (1959)
w = pi*z/(2*h);
E = K/(2+K-B);
fn = w.^2.*log(w) -3/2*w.^2+1/18*w.^4+7/1350*w.^6;
xElder = 4*beta*h/(E*B*pi^3)*fn;

%Iterative solution of Elder's general solution
gamma = K;
s = 0;
diff = 1; diff2=diff;
x = zeros(size(z));
count = 0;

while diff>tol && diff2>tol2
    count = count+1; %Checking iterations before convergence
    %Updating coefficients and fucntions
    E = gamma/(2+gamma-B);
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    A = 1-gamma.*(1-E);
    F = (Uout-1)./E-A*(u-1)./E;
    %Calculating Fourier coefficients
    alpha = zeros(1,1000);
    for i = 1:length(alpha)
        dalpha = 0;
        dn = 1/length(F);
        for j = 1:length(F)
            dalpha = dalpha + 2*F(j)*cos(i*pi*z(j)/h)*dn;
        end
        alpha(i) = dalpha;
    end
    nx(1) = 0;
    %Calcutating the screen slope
    for i = 1:length(z)
        tan(i) = 0;
        for j = 1:length(alpha)
            tan(i) = tan(i)+alpha(j)*sin(j*pi*z(i)/h);
        end
        tan(i) = 1/B*tan(i);
    end
    %Calculating the new screen shape
    for i = 2:length(tan)
        nx(i) = nx(i-1)+dx*(tan(i)+tan(i-1))/2;
    end
    %Calculating the new value of the mean loss coefficient
    theta = atan(tan);
    gamma_n = 0;
    dn = 1/length(theta);
    for i = 1:length(theta)
        gamma_n = gamma_n + K*cos(theta(i))^2*dn;
    end
   gamma=gamma_n;
   if count ==1
        plot(nx,z,'LineWidth',2)
        hold on
        diff1 = 1/dx*sqrt(sum((nx-x).^2));
   end
    %Calculating the two-norms used to check for convergence
    diff2 = 1/dx*sqrt(sum((nx-x).^2));

    diff=diff2/diff1;
    %Updating screen shape
    x = nx;
end
plot(x,z,'LineWidth',2)
hold on

%Saving the discrete screen shape in text-format
delete 'CastroShape.txt'
fid = fopen('CastroShape.txt','wt');
for i = 1:length(x)
    fprintf(fid, '%20.18f\t', [1 i x(i) 0 z(i)]);
    fprintf(fid,'\n');
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end
fclose(fid);

plot(xDT,z,'LineWidth',2)
plot(xElder,z, 'LineWidth',2)
legend('First iteration','Iterative solution','Dunn and
 Tavoularis','Elder','Location','Best')

Published with MATLAB® R2018a
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A.2 Matlab Function Computing the Downstream Veloc-

ity
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%Function that calculates the downstream velocity profile for flow
 through
%a screen assuming uniform inlet velocity of water. x and z and points
 on the
%screen, d and s the wire diamater and the spacing between the wire
%centers. h is the channel height/water depth.
function U = ElderVelocity(x,z,U,d,l,h)
n = find(z<=h); %To ensure that only the wetted part of the screen is
 considered
x = x(n);
z=z(n);
dx1 = 0.5*(z(2)-z(1));
dx2 = 0.5*(z(3:end)-z(1:end-2));
dx3 = 0.5*(z(end)-z(end-1));
dx = [dx1; dx2; dx3];
Uin = U*ones(size(z)); %Uniform inlet velocity
uin = ones(size(x));

%Fluid properties
rho = 998.2; %Density
mu = 0.001003; %Dynamic viscosity

%Derived parameters
sigma = (2*d*l-d^2)/l^2; %Solidity of mesh
Re = rho*mean(Uin)*d/mu; %Reynolds number
Re = mean(Re);
K = ((0.05+0.95*sigma)/(0.95*(1-sigma)))^2+88*sigma/Re; %Pressure-drop
 coeff. (Elder/Davis)
B = 1-1/sqrt(1+K^0.5); %Deflection coeff. (Elder)

dxdz(1) = 0;
dxdz(2:length(x)) = (x(2:end)-x(1:end-1))./(z(2:end)-z(1:end-1));
theta = atan(dxdz);
Btan = B*tan(theta);

alpha = zeros(1,1000);
%Determining the Fourier Coefficients
for i = 1:length(alpha)
    dalpha = 0;
    dn = 1/length(Btan);
    for j = 1:length(Btan)
        dalpha = dalpha + 2*Btan(j)*sin(i*pi*z(j)/z(end))*dx(j)/h;
    end
    alpha(i) = dalpha;
end

%Calculating the effective loss coefficient
gamma = 0;
for i = 1:length(dxdz)
    gamma = gamma + K*cos(atan(theta(i)))^2*dx(i)/h;
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end

E = gamma/(2+gamma-B);
A = 1-gamma.*(1-E);

%Calculating the velocity profile
u = zeros(size(x));
for i = 1:length(u)
    du=0;
    for j = 1:length(alpha)
        du = du +A*(uin(i)-1) +alpha(j)*cos(pi*j*z(i)/z(end));
    end
    u(i) = (1 + E*du);
end
U=u;

Not enough input arguments.

Error in ElderVelocity (line 6)
n = find(z<=h); %To ensure that only the wetted part of the screen is
 considered

Published with MATLAB® R2018a
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Appendix B

Contour Plots

B.1 Convex Screens

Figure B.1: Velocity contour plot resulting from the convex screen with a radius of curvature
of 0.6m at a flow time of 15s.

Figure B.2: Velocity contour plot resulting from the convex screen with a radius of curvature
of 0.4m at a flow time of 15s.
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Figure B.3: Velocity contour plot resulting from the convex screen with a radius of curvature
of 0.25m at a flow time of 15s.

Figure B.4: Velocity contour plot resulting from the convex screen with a radius of curvature
of 0.2m at a flow time of 15s.

Figure B.5: Velocity contour plot resulting from the convex screen with a radius of curvature
of 0.17m at a flow time of 15s.
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Figure B.6: Velocity contour plot resulting from the convex screen with a radius of curvature
of 0.15m at a flow time of 15s.
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B.2 Concave Screens

Figure B.7: Velocity contour plot resulting from the concave screen with a radius of curvature
of 0.6m at a flow time of 15s.

Figure B.8: Velocity contour plot resulting from the concave screen with a radius of curvature
of 0.4m at a flow time of 15s.

Figure B.9: Velocity contour plot resulting from the concave screen with a radius of curvature
of 0.25m at a flow time of 15s.
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Figure B.10: Velocity contour plot resulting from the concave screen with a radius of curva-
ture of 0.2m at a flow time of 15s.

Figure B.11: Velocity contour plot resulting from the concave screen with a radius of curva-
ture of 0.17m at a flow time of 15s.

Figure B.12: Velocity contour plot resulting from the concave screen with a radius of curva-
ture of 0.15m at a flow time of 15s.
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B.3 Straight Screens

Figure B.13: Velocity contour plot resulting from the straight screen mounted such that the
angle between the screen normal and the streamwise direction is θ = 54◦ at a flow time of
15s.

Figure B.14: Velocity contour plot resulting from the straight screen mounted such that the
angle between the screen normal and the streamwise direction is θ = 44◦ at a flow time of
15s.

Figure B.15: Velocity contour plot resulting from the straight screen mounted such that the
angle between the screen normal and the streamwise direction is θ = 34◦ at a flow time of
15s.
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B.4 Various Water Depths

Figure B.16: Velocity contour plot resulting from the lab set-up using a water depth of 0.08m
at a flow time of 15s.

Figure B.17: Velocity contour plot resulting from the lab set-up using a water depth of 0.07m
at a flow time of 15s.

Figure B.18: Velocity contour plot resulting from the lab set-up using a water depth of 0.06m
at a flow time of 15s.
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B.5 Various Inlet Velocities

The contour plots are evaluated using the same boundaries for the normalized velocities, i.e.(
u(z)
Uinlet

)
min

= −0.875 and
(

u(z)
Uinlet

)
max

= 1.84, in the legend.

Figure B.19: Velocity contour plot resulting from the lab set-up using an inlet velocity of
0.08m

s
at a flow time of 15s.

Figure B.20: Velocity contour plot resulting from the lab set-up using an inlet velocity of
0.12m

s
at a flow time of 15s.

Figure B.21: Velocity contour plot resulting from the lab set-up using an inlet velocity of
0.15m

s
at a flow time of 15s.
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