
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

M
as

te
r’

s
th

es
is

Fairooz Zafar

IMS Service Orchestration and
Interaction Challenges

Master’s thesis in Master's of Science in Communication
Technology
Supervisor: Mazen Malek Shiaa

June 2019

Title: IMS Service orchestration and interaction challenges
Student: Fairooz Zafar

Problem description:

IP Multimedia Subsystem (IMS) is one of the most recognized systems to provide
blended multimedia services to mobile and fixed networks. It was adopted with the
intention to increase interoperability among network elements and decrease complex
and non-extensible elements from the network. However, feature interactions, in
many cases, make it difficult to achieve these intentions. Even though much work
has been done in this regard, service capabilities are still facing interaction issues
and many telecommunication operators (telcos) are dealing with the issue of limited
service orchestration. The operators have come up with solutions that tend to
minimize the problems but there are still many limitations that need to be addressed.
Service Capability Interaction Manager (SCIM) is one proposed solution by the
3GPP organization. However, there is no clear specifications on SCIM and there no
evaluation criteria are defined, which is potentially the reason why it is not widely
used by telcos. This has led to various adaptations of the SCIM by the industry.
The release of 5G soon will call for more complex services and compositions to which
the existing solutions have a possibility of falling short.

The aim of this thesis is to formulate criteria for evaluation of a SCIM, to define
functional and non-functional requirements of a SCIM, and to evaluate existing
SCIM products. In addition, a prototype SCIM will also be developed based on the
formulated criteria.

To achieve these goals, simple services and a prototype SCIM will be developed
as SIP servlets deployed on Metaswitch Rhino TAS (Telephony Application Server)
that will aim at solving some of the existing service interactions. The formulation of
criteria will be based on research on existing specifications and products in the field
by comparing the functional and non-functional properties. Alongside, Rhino SIS,
an existing service broker similar to a SCIM, will be used as an experimentation tool.
This is also one of the tools that will be evaluated against the proposed criteria of
evaluation at the end of this thesis.

The specific tasks outlined for this thesis are as follows:

– Review and derive functional and non-functional requirements for a SCIM

– Study existing standardization documentation and formulate criteria for evalu-
ation of a SCIM

– Define service interaction scenarios to be used as example scenarios in the
implementation

– Become familiarized with TAS and Rhino SIS tools and experiment with
selected service interaction scenarios

– Develop a prototype SCIM based on the derived functional and non-functional
requirements

– Test and evaluate the prototype using the chosen interaction scenarios

– If possible, evaluate existing SCIMs against the formulated evaluation criteria

Responsible professor: Mazen Malek Shiaa, NTNU
Supervisor: Bjørn Gulla, Kornschnok Dittawit, Gintel AS / NTNU

Abstract

IP Multimedia Subsystem (IMS) is part of the 3G mobile network
that allows deployment and blending of multimedia services for its users.
This subsystem was specified as a standard by the standardization organi-
zations such as the 3rd Generation Partnership Project (3GPP), Internet
Engineering Task Force (IETF). These organizations also include the
standard for the services as well as all other components that are part of
the system. IMS is aimed to provide multimedia services to all generations
of networks and devices. Service compositions allow the users to get the
blended services to subscribe to with IMS. But all compositions do not
always lead to desirable outcomes leading to feature interactions. The
network operators use their monolithic or man-in-the-middle approach to
handle these interaction issues which are often constrained and expensive.
To address the issue of feature interaction, the 3GPP proposed to place
an entity known as the Service Capabilities Interaction Manager (SCIM)
between the S-CSCF and the Application Servers(ASes). With no specifi-
cations of this entity provided, many proposals for the specifications came
from the research community and SCIM products are developed by the
telecom vendors. Due to no standardization, these products are vastly
different from one another and often expensive which has made many
telecom operators reluctant to include it in their network. This thesis
investigates the standards and research available on the topic of feature
interaction along with the SCIM products to understand the advantages
and limitations. The information from the investigations are then utilized
to make proposals for both functional and non-functional requirements
that a SCIM should hold. Furthermore, two existing SCIM products are
evaluated using the requirement suggestions.

Preface

This master’s thesis is a representation of my work conducted in Spring
2019 as part of my M.Sc. degree in Communication Technology from
the Department of Information Security and Communication Technology
at the Norwegian University of Science and Technology (NTNU). The
work presented here is an extension of the work done in the specialization
project carried out in Autumn 2018.

It was my personal goal to get familiar with the practicalities of IMS,
services and the protocols related to them as I find the technologies
and services related to the telecommunication field very interesting and
intriguing. The research on the topic and experimentation with tools that
are commonly used in this field has been a great learning experience.

Even though the work has been challenging at times, it has taught
me a lot about the tools and protocols such as SIP. In addition, the
construction of a report to represent the knowledge I have gathered
during the semester, has proven to be more demanding than anticipated.

Acknowledgements

I would like to take this opportunity to express my deepest gratitude to
my supervisor Mazen Malek Shiaa at NTNU and one of my co-supervisors
Bjørn Gulla at Gintel AS. They made this project possible for me and it
was an amazing experience to learn on this topic since the specialization
project in Autumn 2018. I want to specially thank my other co-supervisor,
Kornschnok Dittawit at Gintel AS who has helped me through the entire
year with her guidance and motivation for me to reach my goal.

I would further like to thank Jan Wedvik at Gintel AS for being kind
enough to help me with technical difficulties during the practical part of
the thesis.

The staff at the department of the Information Security and Commu-
nication Technology, for taking the time for the additional work to make
this project possible, I am grateful.

Last, but not the least, I want to thank my friends and family for
their continuous support and encouragement throughout the year.

Contents

List of Figures xi

List of Acronyms xv

1 Introduction 3
1.1 Background . 3
1.2 Motivation . 4
1.3 Methodology . 5
1.4 Thesis Outline . 6

2 IMS Service Architecture 7
2.1 Protocols . 7
2.2 Databases . 8

2.2.1 Home Subscriber Server(HSS) 8
2.2.2 Subscriber Locator Function(SLF) 8

2.3 IMS Core Architecture . 8
2.3.1 Access and Transport Layer 10
2.3.2 Control Layer . 10
2.3.3 Service Layer . 12

2.4 Service Profiles . 13
2.5 Limitations of iFC . 14

3 Service Interaction in IMS 15
3.1 Introduction . 15
3.2 Feature Interaction Scenario . 15
3.3 Interaction Management in Existing System 20
3.4 3GPP Standardization . 22
3.5 3GPP Technical Report: TR 23.810 23
3.6 Existing SCIM Products . 25

3.6.1 Lucent Service Broker™ . 25
3.6.2 Rhino Service Interaction SLEE(SIS) 27

3.7 Necessity for SCIM Standardization 29

vii

4 Experiments with Feature Interaction and SCIM 31
4.1 Implementation Choice . 31
4.2 Implementation Tools . 32

4.2.1 Rhino TAS . 32
4.2.2 Rhino SIS . 32
4.2.3 OpenSIPS . 32

4.3 Creation of Services . 33
4.3.1 Call Barring Service . 34
4.3.2 Call Forwarding (Unconditional) Service 34

4.4 Experimental Setup . 34
4.5 SIP Messages in the Experiment . 35
4.6 Interaction Management with Rhino SIS 38
4.7 Limitations of Implementations . 40

5 Results 41
5.1 Wireshark Trace . 41
5.2 Findings from the Experiment . 44

6 Discussion 45
6.1 Functional Requirements . 45
6.2 Non-functional Requirements . 48
6.3 Architectural Choice . 49
6.4 Evaluating Existing SCIM Products 50

6.4.1 Lucent Service Broker™ . 50
6.4.2 Rhino Service Interaction SLEE(SIS) 52

7 Conclusion 55

References 57

Appendices

A Appendix A 61
A.1 Algorithm for Call Forwarding (Unconditional) Service 61
A.2 CallForwarding.java . 61
A.3 Algorithms for Call Barring Service 69
A.4 CallBarring.java . 70

B Appendix B 73
B.1 Trigger1.xml . 73
B.2 Trigger2.xml . 75
B.3 compositionScreen.xml . 77
B.4 compositionForwardScreen.xml . 78

C Appendix C 79
C.1 OpenSIPs Configuration File (opensips.cfg) 79
C.2 Wireshark Trace (Frame 34 Full) 80

List of Figures

2.1 Standard Architecture of IMS (Simplified) 9
2.2 Working representation of iFC . 13

3.1 Typical Call Barring Scenario . 16
3.2 Typical Call Forwarding (Unconditional) Scenario 17
3.3 Feature Interaction Scenario . 19
3.4 Monolithic Approach . 20
3.5 Man-in-the-Middle Approach . 21
3.6 Service Broker/ SCIM Approach . 22
3.7 Two-tier architecture with SCIM . 23
3.8 Architecture Alternatives for Service Broker [3GP09b] 24
3.9 Lucent Service Broker™ Engine . 26
3.10 High Level SIS Architecture . 27
3.11 Managing Service Interaction . 28

4.1 Rhino Telecom Application Server (TAS) [Met11a] 33
4.2 Deployment of Services with SIS and Rhino TAS 35
4.3 Implementation Scenario of Services . 37
4.4 Solution Implementation Scenario . 39

5.1 Wireshark Capture of SIP Messages . 41

xi

List of Algorithms

A.1 CFU Service Algorithm . 61
A.2 CB Service Algorithm A . 69
A.3 CB Service Algorithm B . 69
A.4 CB Service Algorithm C . 69

xiii

List of Acronyms

3GPP The Third Generation Partnership Project.

AS Application Server.

CB Call Barring.

CFU Call Forwarding Unconditional.

CSCF Call Session Control Function.

HSS Home Subscriber Server.

I-CSCF Interrogating- CSCF.

IETF Internet Engineering Task Force.

iFC Initial Filter Criteria.

IMS IP Multimedia Subsytem.

ITU-T International Telecommunication Union- Telecommunication.

MRF Multimedia Resource Function.

MRFC Multimedia Resource Function Controller.

MSC Mobile Switching Center.

NTNU Norwegian University of Science and Technology.

OSA-SCS Open Service Access–Service Capability Server.

P-CSCF Proxy- CSCF.

PSTN Public Switched Telephone Network.

xv

LIST OF FIGURES 1

SB Service Broker.

SCIM Service Capability Interaction Manager.

S-CSCF Serving- CSCF.

SIP Session Initiation Protocol.

SIP URI SIP Uniform Resource Identifier.

SIS Service Interaction SLEE.

SLEE Service Logic Execution Environment.

SLF Subscriber Location Function.

telcos Telecommunication Operators.

TR Technical Requirement.

TS Technical Specification.

UE User Equipment.

Chapter1Introduction

Multimedia services are an attraction to the telecommunication sector. IP Multimedia
Subsystem (IMS) was adopted by the 3GPP and ITU-T as a standard to have a
common architecture for all devices and networks (e.g., 2G, 3G, 4G, LTE, including
the Next Generation Networks (NGN)). It is now used by many telecommunication
operators (telcos) to provide combined services to its users. IMS is able to avoid
vendor lock-ins which results in the inter-operable and extensible network elements.
These properties are making IMS popular everyday.

Composition of several services is required to provide advanced services with
IMS. The means for controlling consecutive interaction between services is known as
service orchestration [3GP07] which is achieved with the use of Initial Filter Criteria
(iFCs) [3GP12b]. IFC is the collection of triggers that determine when a SIP(Session
Initiation Protocol) request is forwarded to the Application Server(AS) that will be
providing the service [CGM09]. Often service orchestrations face challenges known
as feature interaction, which means that services when deployed in a session, can be
processed separately and independently but creates conflicts when running together
[3GP07], which is making service compositions limited. The need for new and
attractive service compositions has made it necessary to look into the existing system
and find out a solution that will help the case.

This chapter gives an overview of the thesis describing the background and
motivation for the thesis. It also mentions the methodologies that will be used to
reach the research goals of this thesis work.

1.1 Background

The 3rd Generation Partnership Project (3GPP) in accordance with Internet Engi-
neering Task Force (IEFT) adopted IMS to deliver multimedia services to a wide range
of users. This adoption was part of the core network evolution from circuit-switching
to packet-switching and since then, IMS has become the core component within 3G,

3

4 1. INTRODUCTION

cable TV and next generation fixed telecommunication networks. [3GP00]. Session
Initiation Protocol (SIP) is the main signaling protocol for IMS. This system aimed
to assist telecos to deliver next generation interactive and inter-operable services
cost-effectively and provide flexibility of the internet. The prime motivation in the
adaptation of IMS is to avoid vendor lock-ins known from various approaches which
lead to 1) lack of interoperability among network elements and 2) complex and
non-extendable (monolithic) elements like Mobile Switching Centre (MSC). These
resulted in constraints in evolution and innovation.

Even though IMS is a global success, over the years with increase of dependency
on multimedia services, complex service orchestrations in many cases, face challenges
that cannot be handled by the standard architecture. Hence, this architecture has
been modified over time to cope with the complexities and the needs of the operators
and to extended service capabilities outside of the framework with ease [HC09].
Serving-Call Session Control Function (S-CSCF) in the IMS control layer invokes the
correct Application Server (AS) to provide services to the subscriber. AS is a SIP
entity that hosts and executes IMS services [3GP13] , [CGM09]. Service profiles of
users are transferred to the S-CSCF from the Home Subscriber Server (HSS) over the
Cx interface (Diameter based). [KG08] Diameter is an authentication, authorization,
and accounting (AAA) protocol. Service profiles are composed of a list of initial
filter criteria (iFC) which are processed in a prioritized order by the S-CSCF. IFC
allows a set of services to be invoked in defined circumstances. S-CSCF executes
the services through a series of SIP messages(like, INVITE, REGISTER etc.). A
powerful mechanism like iFC still has its limitations which makes it unable to solve
many feature interactions that started the discussion of having solutions over the
iFC that would allow the telcos to still be able to combine services they want by
solving the feature interactions. One of the proposed solutions is an entity known as
the Service Capability Interaction Manager (SCIM) [Gro] which is still without any
standardization. The SCIM is also often known as a Service Broker (SB). This thesis
focuses mainly on this entity investigating it as well as proposes some specifications
that any SCIM entity should possess.

1.2 Motivation

The work on IMS has been done for over a decade but there is still no standard for
SCIM which would specify certain criteria for how services should be handled by
the SCIM. Even though a few operators have included SCIM in their system, most
are still weighing the pros and cons of investing in a SCIM; if it would allow many
flexible service composition, if it is worth investing in, if the new service capabilities
will give back enough revenue etc. Without a standard, there is no baseline for the
evaluation of any SCIM. This might increase the value of work that can be done in
this regard. If successfully conducted, this can be of interest for the stakeholders

1.3. METHODOLOGY 5

i.e., telco operators,telco equipment manufacturers/ vendors, service developers,
system integrators, etc. A more specific SCIM standardization might increase service
compositions and lessen feature interactions. The development of 5G networks will,
in future, also demand for services with complexities higher than what have been
encountered till now. A look into the future of IMS, its service composition and
SCIM seems promising. Hence, the objective of this project is to look into the the
IMS architecture and its components. Finding more about service compositions, its
orchestration and feature interactions is necessary to identify limitations, its reasons
and possibilities to find an alternative standard solution. SCIM/ service broker
approach seems to be a promising path forward to overcome feature interactions
issues for this generation of telecommunications as well as for the next generations.

1.3 Methodology

This section specifies the methods that will be used to find suitable answers for the
research goals set out for this project. Tools to be used and steps to be taken are
enumerated.

Literature Review/ Background Research

The project addresses the service interaction challenges, opportunities and existing
solutions to increase multimedia service capabilities. A series of 3GPP and IETF
standards are studied to investigate the state-of-the-art IMS architecture and service
capability standards. More thorough studies on the standards are done to find the
technical specifications and limitations of the standards. Academic and technical
research papers along with books published on the topic of service capabilities,
interaction challenges and solution proposals were also studied. White papers and
technical specification guides were used to know and learn the tools that is planned to
be used for the experimental implementation. Even through SCIM related standards/
background is limited, efforts were made to understand what is expected of the
component and how it can be evaluated.

Technical Evaluation

The first instrument that was used to get information regarding the working ap-
proaches for service orchestration was interviewing a technical team from Gintel AS,
who have been working in this field for quite some time. They provided technical
information regarding the monolithic and man-in-the-middle approach used by the
telcos now. Further evaluation of existing SCIM products like Rhino SIS [Met11b]
and Lucent Service Broker™ [KRA06] were done by studying the technical specifica-
tions as well as white papers. Further work with the Rhino SIS tool was done to
identify the techniques used to solve feature interaction. This knowledge was utilized

6 1. INTRODUCTION

during the formulation of the proposal for a standard SCIM product. These two
products were also evaluated on the basis of the proposals for a new SCIM.

Experimental Implementation

To propose and assess any criteria for evaluation, there is a need for testing. For this,
SIP servlet applications were created and deployed that pose a feature interaction
scenario. The scenario was solved using the Rhino SIS tool. A test/lab environment
for this practical part was completed under the supervision of a the technical team of
a Norwegian company active in this field – Gintel AS. This experiment gave insight
on a functional SCIM and exposed the limitations and strengths of it as well. The
results were used as inspiration for the proposals of the functional and non-functional
requirements of a standard SCIM.
The problem description also mentions to implement a prototype SCIM using the
derived requirements, but due to the lack time and expertise this was not possible.
Implementing a prototype SCIM would require magnitudes of technical knowledge
on the subject that was not possible with the duration of this thesis.

1.4 Thesis Outline

The entire thesis is divided into the following chapters: the standard architecture of
the IMS and its limitations in Chapter 2, moves on to feature interaction scenarios
and existing solutions to them in Chapter 3. The implementation of the interaction
scenario and a SCIM product to solve the feature interaction is described in Chapter 4,
the results of the implementation is elaborated in Chapter 5, the proposals of
requirements for a SCIM is drawn out in Chapter 6 and the conclusion of the thesis
is in Chapter 7.

Chapter2IMS Service Architecture

A tremendous amount of effort has been invested in the development of the technical
specifications of IMS. The standard architecture and its service concepts are now
accepted across the globe and implemented by many telecos. It is imperative to take
a look into the standardization of IMS to understand the working mechanism of this
complex system. This chapter explains the architecture layers, protocols as well as
service concepts and profiles of IMS.

At the end of this chapter, the limitations of the architecture and the concepts of
IMS are highlighted as a precursor for the next chapter while deals with the service
interaction issues in IMS.

2.1 Protocols

Session Initiation Protocol (SIP)

[IET02], [3GP12b] An application layer control protocol capable of establishing,
modifying and terminating multimedia sessions. It supports five facets of establishing
and terminating multimedia communications, such as user location, availability,
capabilities, setup and management. But SIP does not provide services, rather it
provides the primitives that can be used to implement different services and it works
with both IPv4 and IPv6.

SIP was chosen as the session control protocol for multiple reasons; SIP makes it
easy to create services; it is based on HTTP allowing developers to use all service
frameworks developed for HTTP such as Java servlets [CGM09]. In the IMS, all
messages through the network from one terminal to the other are SIP messages.

Diameter

[IET03b] The AAA (Authentication, Authorization, and Accounting) protocol in
the IMS was chosen to be Diameter. Diameter is widely popular on the Internet

7

8 2. IMS SERVICE ARCHITECTURE

to perform AAA [CGM09]. IMS uses Diameter in a number of interfaces but not
all. It is mainly used during the session setup (communication with the HSS) and
to perform credit control accounting. The other elements of the IMS network uses
Diameter to upload and download to and from the HSS (Home Subscriber Server)
/SLF (Subscription Locator Function) [KG08]. Diameter has two interfaces call Cx
and Dx that are used to communicate between the databases and IMS core network
to access subscriber-related information.

Other Protocols

[CGM09] Among the other protocols, RTP (Real-Time Transport Protocol) [IET03a]
and RTCP (Real-Time Control Protocol) are used to transport real-time media, such
as video and audio.

2.2 Databases

2.2.1 Home Subscriber Server(HSS)

The HSS is the central repository for user-related information which is technically
an evolution of the Home Location Registrar (HLR) and the Authentication Center
(AUC) of the GSM node [CGM09]. This database stores all subscription-related
information (user/ service profiles) of all users including location, security (both
authentication and authorization information), S-CSCF assigned to the user. It also
contains the required information to handle any multimedia session for the user.

It is very common for a network to contain a single HSS where all user information
is stored, unless the number of subscribers is too high to be handled by a single HSS.
In any case, the information related to a single user is stored in one particular HSS
[CGM09]. If the network is composed of multiple HSS, the network also contains a
Subscribed Locator Function (SLF).

2.2.2 Subscriber Locator Function(SLF)

An SLF is included in the network when there exists multiple HSSs. The SLF is a
database that maps the users’ addresses to HSSs that hold the subscriber data for
that user [Acc07]. The SLF also does not perform any logic on its interfaces, instead
replies with a redirect message specifying the address of the HSS.

2.3 IMS Core Architecture

The detailed outline of the service architecture of IMS has been described in the
3GPP technical specification TS 23.002 on Network Architecture. Service architecture
refers to the mechanisms, configurations and interfaces between and within the core

2.3. IMS CORE ARCHITECTURE 9

network in the IMS needed to provide multimedia services. The entities related to
IMS such as CSCF, MGCF, MRF, etc. as defined in the stage 2 of the IM subsystem
TS 23.228.

The architecture of IMS is divided into three layers, namely, access and transport
layer, control layer and service layer. A simplified architecture diagram has been
provided in Figure 2.1 showing these layers and its components. As mentioned earlier,
IMS is intended to provide multimedia services to all devices with IP domain. For
this reason, the separation between transport layer and control layer was necessary.
This separation allows the exploitation of the IP infrastructure which leads IMS to
be an all-IP solution [Acc07]. The description of the layers and it components are
provided in the following subsections.

Figure 2.1: Standard Architecture of IMS (Simplified)

10 2. IMS SERVICE ARCHITECTURE

2.3.1 Access and Transport Layer

This is the network-access layer that allows all devices and user equipment to connect
to the IMS network by establishing IP connectivity for the devices.[KG08]. The
transport layer consists of various technologies, for example, fixed access (DSL,
cable modems, Ethernet), mobile access (wide-band code-division multiple access
[WCDMA], CDMA-2000, Global Packet Radio Service [GPRS], LTE), wireless access
(such as wireless local area network [WLAN] or WiMax) as well as Public Switched
Telephony Network [PSTN].

2.3.2 Control Layer

The control layer orchestrates all logical connections between various network elements.
It provides registration of end points, routing of SIP messages and overall coordination
of media and signalling gateways [Dia09]. The two most important elements of the
control layer are the Call Session Control Function (CSCF) and Home Subscriber
Server (HSS).

Call Session Control Function (CSCF)

CSCF is composed of several types of SIP servers that process SIP signals in the
IMS infrastructure. There are three types of CSCFs in the IMS domain depending
on the functionality they provide, which are described as follows:

Proxy- CSCF (P-CSCF)

This is the first point of contact between the IMS terminal and IMS network [CGM09].
It can be located either in the home network or the visited network. This acts as both
inbound and outbound proxy server and all SIP message request traverse through
the P-CSCF. This also forwards the messages to appropriate destinations which
can either be the IMS terminal or the network. A proxy is assigned to an IMS
terminal during the registration process and it stays the same during the registration
process but the network can have multiple of these for scalability and redundancy.
The P-CSCF has multiple functions including security and authentication of the
SIP messages. It establishes some IPsecurity associations towards the IMS terminal
which offer integrity protection. The proxy also authenticates the user during the
registration process, hence the identity of the user does not need to be authenticated
again. In addition, it also authenticates the SIP messages that allows to discard
messages that are not build following SIP rules.

Interrogating- CSCF (I-CSCF)

This is another SIP proxy server that is mainly located in the home network, but
in some special cases may also be located in the visiting network. The I-CSCF has

2.3. IMS CORE ARCHITECTURE 11

interfaces with the SLF using the Dx interface and the HSS using Cx interface of the
Diameter protocol. It retrieves information from these entities to correctly forward
incoming messages from the P-CSCF to a destination, typical an S-CSCF [CGM09].
It is common to have multiple I-CSCF in the network serving various services, such
as partial encryption of SIP messages containing sensitive information about domains,
their capacity etc.

Serving- CSCF (S-CSCF)

[CGM09] This is the central node of the signalling plane which is a SIP server that
also acts as a SIP registrar. There are multiple S-CSCFs in the IMS network serving
a number of IMS terminals, depending on the capacity of each node. The I-CSCF is
responsible for assigning an S-CSCF to the IMS terminal to serve. One of the many
functions of the S-CSCF is to maintain an interface with the HSS (like the I-CSCF)
using the Cx interface and with the SLF using the Dx interface of the Diameter
protocol to achieve the following:

– Downloading authentication vectors from the HSS to authenticate an user.

– Fetching and storing user or service profiles from the HSS that include the
service profiles.

– Communicating with the HSS to inform that this is the assigned S-CSCF for
the duration of registration.

Another important function of the S-CSCF is providing SIP routing services, i.e., if
a phone number is dialed instead of a SIP URI, the S-CSCF will do the necessary
translations.

Any originating or terminating SIP message traverses through the assigned S-
CSCF. The S-CSCF accesses the SIP message to determine the number of ASes
that need to be triggered to provide the requested services on its way to the final
destination.

Media Resource Function (MRF)

[3GP13] The MRF is a source for the network to initiate media resources in the
home network. It is used for playing media announcements, real-time transcoding of
multimedia data etc. The MRF is further divided into the Media Resource Function
Controller (MRFC) which is a signalling plane node that acts as a SIP User Agent
to the S-CSCF and Media Resource Function Processor (MRFP) which is a media
plane node that implements all media-related functions [Acc07].

12 2. IMS SERVICE ARCHITECTURE

Break Out Gateway Control Function (BGCF)

[3GP13] This IMS element selects the network in which PSTN breakout has to occur.
It is used for calls from the IMS to a phone in a Circuit Switched network, such
as the PSTN or the PLMN; it forwards the signaling to the selected PSTN/PLMN
network. If the breakout occurs in the same network as the BGCF then the BGCF
selects a MGCF (Media Gateway Control Function) that will be responsible for
inter-working with the PSTN, and forwards the signaling to MGCF. Otherwise it
forwards signaling to BCGF of another operator network. The MGCF then receives
the SIP signalling from the BGCF and manages the interworking with the PSTN
network

Public Switched Telephony Network (PSTN) Gateways

These gateways are used for inter networking with the Circuit Switched network.
These gateways include Signalling Gateway (SGW), Media Gateway Controller
Function (MGCF) and Media Gateway (MGW) [Acc07]. This thesis is not focused
on PSTN, hence these gateways are not further explained.

2.3.3 Service Layer

The service layer consists of application servers (AS) which are SIP entities, hosting
and executing services. ASes provide services to the end users. Services can be of
various type, for example, video conferencing, messaging, presence etc. Depending on
its implementation, one AS can host one or many services [KG08]. The ASes interface
with the S-CSCF using SIP signalling and the HSS using Diameter. This interface
allows the S-CSCF to get the name and address of more than one AS and the order
in which each AS should be contacted. A SIP addressing scheme to the AS is known
as SIP URI. The AS decides which services should be deployed in any particular
session using filter rules provided by the HSS. If any extra information is required for
the execution, the AS is able to communicate with the HSS to learn about the service
profile of the subscriber[KG08]. There are three types of ASes [CGM09], namely
SIP AS, OSA-SCS (Open Service Access–Service Capability Server) and IM-SSF (IP
Multimedia Service Switching Function). Multiple ASes can be deployed in the same
domain; they can also be of different types. ASes other than SIP AS is outside the
scope of this thesis.

SIP AS hosts and executes IMS services based on SIP. They can act as redirect
servers, proxy servers, originating/ terminating user agents (UA) as well as Back-2-
Back UA [KG08]. An IMS service execution is a sequence of SIP procedures, such as
INVITE requests and responses.

2.4. SERVICE PROFILES 13

2.4 Service Profiles

Service profiles or user profiles are SIP routing information stored in the network
database, HSS. Routing information is associated with Public User Identities of users
and the Public Service Identities for services and service related resources [Gou07].
Service profiles are transferred to the S-CSCF from the HSS over the Diameter
interface, Cx. Service profiles are composed of user identities, name of the S-CSCF
allocated to the user, registration and roaming profile, authentication, control and
service information[Acc07]. Service information includes a list of initial filter criteria
(iFC) [3GP12a] which are processed in a chronological order by the S-CSCF to serve
the services the user is subscribed to.

Initial Filter Criteria (iFC)

Often users are subscribed to multiple services which can be hosted on the same
or different ASes. These services are composed together using a service chaining
feature known as the iFC. IFC allows a set of services to be invoked in defined
circumstances. IFCs are at the core of service compositions and execution. The
following representation in Figure 2.2 shows how service chaining works when services
are hosted on different ASes.

Figure 2.2: Working representation of iFC

Initial Filter Criteria is composed of the following elements, according to [Gou07],
[Ber16]:

Priority: The priority of each iFC is set by an integer where 0 is the highest
priority.

Trigger Point: A set of criteria that needs to be fulfilled by any SIP request to
be routed to an AS, often known as Service Point Triggers (SPT). These are linked

14 2. IMS SERVICE ARCHITECTURE

through logical operators like AND, OR and NOT. Trigger point conditions can be
related to:

– Request-URI

– SIP Method

– SIP Header

– Session Case

– SDP (Session Description protocol)

Hence, Trigger Point is a set of conditions and Application Server is the action.
Default Handling: There might be times when the AS does not respond to a
request, the S-CSCF follows the directions from default handling to find out the next
move. The iFC may only address a single AS but, an end-user is very likely to be
subscribed to multiple services that are served by various ASes. Each iFC might not
address a complete individual service in an AS as multiple services can be host in a
single AS through service chaining.

2.5 Limitations of iFC

Even though iFC is a powerful mechanism to chain services, many service orches-
trations face challenges as 1) message contents cannot be modified [KT07] e.g. SIP
headers, neither before nor after invocation, 2) results from the invocations of several
services cannot be ’merged’, 3) limited expressiveness of conditional invocations and
4) SIP messages are unable to use any other information like network information
to forward a SIP message [KRA06]. To overcome these limitation, the telcos are
using some approaches that allow them to combine services creatively. Existing
practical solutions from the industry and 3GPP proposed solutions are mentioned in
the following chapter.

Chapter3Service Interaction in IMS

3.1 Introduction

The ability of IMS to provide multimedia services is one of its most important
strengths. It is common to encounter multiple services instead of single services that
are subscribed by the users. Each application server can host one or more services.
Multiple services are chained using iFC which is known as service composition.
Service compositions work well centering around particular composition choices as
well as service deployment rules. IFC also plays a significant role in successful service
compositions. But as it was seen in the previous chapter, iFCs do come with their
own limitations. Often times the telcos come across services that are not possible
to combine together. Services that work correctly when deployed alone but create
conflicts when deployed together with other services is known as service interaction or
feature interaction. Feature interaction is an active issue and many solution proposals
have been put forward till now to minimize conflicts. This chapter gives an insight on
a feature interaction with two basic services that the telcos provide, how the issue is
being handled in the existing systems and the necessity of a new and better solution
is discussed.

3.2 Feature Interaction Scenario

Feature interactions can be of two kinds: static or dynamic [3GP09b]. Static interac-
tions occurs when the application invocation order is fixed in each communication
session, whereas dynamic interactions are due to the application invocation order that
is changed dynamically in different communication sessions based on the dynamic
information other than normal Service Point Trigger (SPT); SPT is each of the
conditions in the iFC list. A static feature interaction scenario is described as follows:

Call Forwarding Unconditional (CFU) [21] and Call Barring (CB) [20] are two of
the most common services that are provided by all telcos. The feature interaction

15

16 3. SERVICE INTERACTION IN IMS

scenario chosen for this thesis is a combination of these services. The scenarios
regarding these services are described as follows:

Alice, a subscriber, is subscribed to a the CB service, which allows the caller to
block or screen particular or all incoming or outgoing calls to and from particular
users. The subscriber has freedom over the type of CB they want to subscribe. In
this case, Alice has only blocked a user called Charlie such that all calls to Charlie
from Alice will be screened. However, this means that user Charlie is able to make
calls to Alice.
Another user, Bob is subscribed to the service CFU. This service allows Bob to
forward any calls made to him to be forwarded to another user of his choice. In this
scenario, he has chosen the user Charlie where all of Bob’s calls get forwarded.
The two services are deployed in two separate application servers in the IMS which
may belong to the same or different vendors depending on the choice of the telcos.

The possible outcomes for this scenario are described as follows:

Figure 3.1: Typical Call Barring Scenario

Scenario 1: A call is being made from Alice’s User Equipment (UE) to Charlie
(for some reason). The INVITE reaching the CB service evaluates the Request URI
and find the call is to Charlie, thus sends a response 403 Forbidden [3GP17], which is

3.2. FEATURE INTERACTION SCENARIO 17

the desired result from the service. As Alice is the originator of the call, this service
is an originating service, referred in the session value as ’orig’. Figure 3.1 represents
the behavior of the service.

Figure 3.2: Typical Call Forwarding (Unconditional) Scenario

Scenario 2: Bob has chosen all his calls to be forwarded to Charlie. As a call
made to Bob will be forwarded, Bob is the terminating party of the call making
the service a terminating service, referred in the session value as ’term’. The CFU
service adds a ’Diversion’ in the header of the INVITE request which identifies the

18 3. SERVICE INTERACTION IN IMS

party that is doing the call transfer. The service also checks if the user is allowed
to make this call transfer. The session case is also changed to ’orig-cdiv’ [3GP10]
when the ’Diversion’ is added. CDIV means Communication Diversion. This makes
the S-CSCF treat this INVITE as an originating INVITE and looks for originating
services of the user, if any. A typical behavior for this service is provided in the
Figure 3.2.

Scenario 3: When a call is made between the user agents Alice and Bob, the
services interact with each other leading to a feature interaction. Anybody trying to
call Bob gets forwarded to Charlie - this also includes Alice. Now, this is the correct
outcome for the CFU service and even though the CB service is working properly, it
has failed to deliver the desired result for Alice because this user does not want to
be connected to Charlie. If the services were to perform correctly together, Alice
calling Bob should be barred since Alice has barred outgoing calls to Charlie.
It is necessary to look into the details of this scenario. The exchange of SIP messages
for scenario 3 is represented in Figure 3.3. In the diagram, it is assumed that there
is only one S-CSCF in the network, thus all the users - Alice, Bob and Charlie are
registered in the same registrar. Hence, the S-CSCF is aware of user locations for
all three and does not need to query the I-CSCF for the locations. After the first
iFC check for the originating part, Alice, the INVITE of the call reaches CB service
where the Request URIs of Alice and Bob are compared resulting in no barring of
Bob, hence the call can be made between them. The INVITE now contains the
session value ’term’ meaning that the S-CSCF will check for any terminating services
for Bob, the terminating party. CFU is activated for Bob which lets the INVITE
reach CFU service. This service evaluates to find that Bob has his calls forwarded to
Charlie. The service changes to Request URI to Charlie, adds Diversion with Bob’s
address and session value of ’orig-cdiv’. The INVITE is sent back to the S-CSCF
again and now due to the ’orig-cdiv’ session value, the originating services of Bob,
the value in the Diversion header, is checked including if Bob is allowed to make this
call to Charlie. There is no originating service for Bob in this scenario and Bob is
allowed to transfer this call. Hence, the call is being connected between Alice and
Charlie.

3.2. FEATURE INTERACTION SCENARIO 19

Figure 3.3: Feature Interaction Scenario

20 3. SERVICE INTERACTION IN IMS

3.3 Interaction Management in Existing System

The scenario presented in the previous section is an example of one of the many
feature interactions in the telco industry. There is a formal model that describes how
services are to be delivered in IMS, but in many cases like the mentioned scenario, the
model does not seem to function properly. According to the standard, the ASes only
communicate with the S-CSCF that handles all required operations; this includes
responding to error conditions. As an attempt to support various kinds of service
compositions and decrease feature interactions, telcos have come up with different
solutions with slight enhancements in the service layer. There are three types of
approaches that are actively used in the telco industry to achieve the desired service
outcomes which are mentioned in the following subsections.

Monolithic Approach

Figure 3.4: Monolithic Approach

This approach is also commonly used in the Intelligent Network (IN) architecture.
Here composite services are made in a monolithic way and the service composition(s)
are built for one particular telco operator by one vendor. These form large services
that perform service chaining inside one big box and the S-CSCF sees it to be a single
AS. For this reason, feature interaction issues can be solved with logic placed inside
the big box acting as one large service. This solution is rather constraining since the
service additions, extensions or modifications can only be done by the same vendor.
It is often difficult to introduce services from other vendors. This leads to limitation
of services as it is expensive and inflexible for the telecos. Figure 3.4 illustrates this
approach. This approach uses the standard iFC to deliver composite services.

The feature interaction scenario described in the previous section is handled in
this approach such that both the services will be deployed inside one big box in
one or two ASes. The iFC will be in the S-CSCF and the interaction logic will be

3.3. INTERACTION MANAGEMENT IN EXISTING SYSTEM 21

placed in the big box such that the correct outcome of the services is provided to the
subscriber.

The Man-in-the-Middle Approach

Figure 3.5: Man-in-the-Middle Approach

Another popular approach to the issue is “man-in-the-middle”. In this approach,
one vendor makes a standalone service along with an interface that enables the service
to be used with another service, potentially from a different vendor. In this situation,
the first service acts like the man-in-the-middle. Figure 3.5represents this approach.
Different colored AS boxes represent services from separate vendors and the ’CSCF
block’ is the layer that enables the integration. This method is comparatively cheaper
and more flexible than the previous approach. But this approach has limitations as it
is unclear which vendor is responsible for modifying the services to implement a new
feature or a change in one service may also require some changes in another service.

With this approach, the CB and CFU services are deployed in separate ASes.
The CB service will have the ’CSCF block’ which will call the CFU service. In such
a case, the S-CSCF will get the combined response from both the ASes and the call
will be forward or barred correctly.

Service Broker/SCIM Approach

This is the solution proposed by 3GPP which describes a two-tier architecture
introducing Service Capability Interaction Manager (SCIM) [3GP09a]. SCIM acts as
a service broker in the architecture. The architecture diagram in figure 3.6 illustrates
the proposal. SCIM as a standalone entity is to be located between the S-CSCF and
ASes for managing interactions among the application servers to control conflicts and
interaction between services [GCB06]. Even though the entity was proposed, there
were no explicit specifications mentioned about how the system would handle feature

22 3. SERVICE INTERACTION IN IMS

Figure 3.6: Service Broker/ SCIM Approach

interactions and incompatibilities [GCB06]. This gave the vendors an opportunity to
come up with creative solutions. According to the proposal, services do not need
to know about other services since all coordination of services is managed by the
SCIM. There is no interaction between the S-CSCF and ASes unless through the
SCIM. This method, however, is not integrated widely by the operators due to its
lack of standardization and expenses. This solution is the target of this thesis.

3.4 3GPP Standardization

The solution proposed by 3GPP is a two-tier architecture introducing Service Ca-
pability Interaction Manager (SCIM). 3GPP included this entity in the Network
Architecture technical specification assuming that it will be involved in the architec-
ture to facilitate feature interaction solutions. The architecture diagram in Figure 3.7
showcases the proposal. SCIM was envisioned to be an optional component of a SIP
AS. This entity is to act between the S-CSCF and various AS over the ISC (IMS
Service Control) reference point. SCIM is expected to do coordinated execution of
potentially conflicting services. The original purpose of SCIM was the coordination
of service interactions, however, its compositional capacity has increased flexibility
of the system [GC08].

It has been over a decade since 3GPP defined SCIM in 2002 but no particular
specifications for the entity was provided. In the technical specification TS 23.002
([3GP09a]) there is a mention that the functional architecture of the SCIM is outside
scope of the standards. Eventually in 2007-2008, a technical report TR 32.810
[3GP07] was released with multiple suggestions on the entity but no standards were
specified and the report item was considered to be complete with no further works
in the discussion. This thesis will take into account much of these suggestions and
other research studies on the topic to propose a solution to the feature interactions.

3.5. 3GPP TECHNICAL REPORT: TR 23.810 23

Figure 3.7: Two-tier architecture with SCIM
[3GP09a]

For the role of interaction management, the 3GPP has also introduced a ’Service
Broker’ (SB) as part of the OSA framework that facilitates third party access to
services and network features in a managed and controlled manner [3GP09c]. Similar
to the SCIM, specifications has not been defined for the service broker as well. In
multiple research papers on the topic and 3GPP technical reports, the terms SCIM
and service broker has been used interchangeably. Hence, this thesis will also use
both the terms to make appropriate references.

3.5 3GPP Technical Report: TR 23.810

After the SCIM was defined, there were no subsequent publications related to the
specifications of the entity. However, a work item was initiated by TSG Service and
System Aspects (TSG-SA) [3GP19], to investigate the impacts of inclusion of a SCIM
entity in the existing network. The study was concluded with a few architectural
suggestions, interaction logic, architecture reference model. This section describes
the architectural suggestions only.

This report aims towards the successful functioning of the service brokers that are
to be introduced in the network. It mentions the two categories of service brokering
functions: off-line and on-line. Off-line service brokering is out of the scope of this
report. On-line brokering functions are aimed to resolve both static and dynamic

24 3. SERVICE INTERACTION IN IMS

(a) Centralized SB (b) Distributed SB

(c) Hybrid SB(1) (d) Hybrid SB(2)

Figure 3.8: Architecture Alternatives for Service Broker [3GP09b]

feature interactions. The architectural requirements for on-line service brokering
includes, but not limited to, the following:

– The impacts of introducing the service brokering function to IMS core network
and AS should be minimized.

– The service brokering architecture should be flexible enough to process the
potential interaction requirements for new applications.

– The service broker shall efficiently interact with the AS and avoid unnecessary
interaction.

– The service broker should support service integration across network hosted
applications where the applications can reside either in the same AS or in
different ASes.

– Allow service integration between SIP and non-SIP applications available via
the IMS service architecture.

3.6. EXISTING SCIM PRODUCTS 25

The report further mentions the following three architecture alternatives that can be
possible to incorporate a SCIM/ SB in the network represented in figure 3.8. The
alternatives are:

Centralized Service Broker

The SB/SCIM entity is invisible to the ASes involved and the S-CSCF views the SB
as an AS supporting the ISC (IMS Service Control) interface. The SB Functions
can be located outside S-CSCF, or embedded in S-SCCF. This is represented in
Figure 3.8a.

Distributed Service Broker

Each AS involved is connected to one SB. To allow coordination of services the
SBs can be located independently or embedded in the AS. To the S-CSCF the SB
and AS appears to be one entity supporting the ISC interface. The S-CSCF relays
the messages among the SB until all AS finish their functions. This architecture is
represented in Figure 3.8b.

Hybrid Service Broker

The SBs have to manage service interactions among the ASes under its direct control
as well as with its peer SBs. The two architectures as shown in the diagram are just
examples of the hybrid architecture. Architecture in Figure 3.8c shows that one of
the SBs may act as both centralized and distributed SBs. Architecture in Figure 3.8d
illustrates multiple SBs interfaced with the S-CSCF and they act as both centralized
and distributed brokers.

3.6 Existing SCIM Products

Even though in the technical specification report TS 23.002 [3GP09a] there is a
mere mention of the SCIM and no defined specification for it, there are multiple
SCIM products that have been developed by various groups invested in the telco
industry. These products vary vastly from each other as there are no minimum
requirements that need to be filled. To demonstrate that, this thesis looks into
existing SCIM products. Of the available SCIMs, two of these products are reviewed
and the descriptions are stated below:

3.6.1 Lucent Service Broker™

[KRA06] The core of the broker, Lucent Service Broker engine, can dynamically load
Java* code fragments, called ’steplets’. Steplets work with the engine to handle SIP
messages that it gets from the S-CSCF. By ’handling’ it means examining incoming

26 3. SERVICE INTERACTION IN IMS

SIP messages, forwarding requests to application servers, modifying messages before
forwarding (if necessary) or reply to requests instead of forwarding them. Since,
steplets are Java code, existing Java libraries to read/ write files, connecting to
databases/ web servers etc. can be done. The service broker engine is represented in
the following Figure 3.9 from the Lucent Service Broker™ paper in [KRA06].

Figure 3.9: Lucent Service Broker™ Engine
[KRA06]

The Broker is message-centric. Once it receives a SIP message, it creates a
message object and adds it a message list of pending messages. The broker processes
the message by invoking steplets on it. The first invoked steplet is the default
steplet which determines a list of steplets that need to be invoked for each message
dynamically, i.e. any steplet can add steplets to the list at anytime, to complete the
request. The steplets processes the message, determines policy issues (e.g., which
AS to forward to) by examining the iFC and handles the required service logic. An
incoming SIP message is usually handled by a succession of steplets. The default
steplet uses information from the HSS or the subscriber database to invoke the rest
of the steplets. All the steplets use the same message and session attributes to
communicate between each other and keep track of the messages.

3.6. EXISTING SCIM PRODUCTS 27

Benefits

Steplets can access message contents and modify them if needed based on the response
from the ASes. This allows service blending easier and should allow resolution of
feature interaction for many complex services. As mentioned earlier, the list of
steplets is dynamic, which makes it very flexible to handle messages from many users.
The steplets can also access additional information from the providers user database
or any other database.

3.6.2 Rhino Service Interaction SLEE(SIS)

[Met11b] SLEE is short for Service Logic Interaction Environment. SIS is Open-
Cloud’s script-driven, JAIN SLEE compliant, multi-protocol, declarative service
interaction engine that lets developers script service interaction logic among any
ASes, networks or protocols. This SCIM can support both local and external services
as well as combine them to make complex services. With the SIS, developers can
manage interaction by isolating and controlling how services interact.

Figure 3.10 represents the internal structure of the Rhino SIS (taken from the
official Rhino SIS web-page). This illustrates that the SIS is composed of scripting,
service-interaction engine, services and management. Scripts control the services

Figure 3.10: High Level SIS Architecture
[Met11b]

that the SIS invokes for each call. A script syntax is composed of services available
and sequence or priority of services that should be invoked and triggered. Trigger

28 3. SERVICE INTERACTION IN IMS

and composition scripts allow various kinds of service composition. Even though
the service interaction rules script contains some predefined service interaction rules,
these can be easily influenced by the composition scripts. SIS also has interceptors
which is a set of script elements that may modify the parameters of the messages
it intercepts (or may perform some other action). Interceptor scripts are typically
embedded directly within a composition but can also installed as a SIS component.

Figure 3.11: Managing Service Interaction
[Met11b]

The service-interaction engine evaluates the scripts related to the trigger, service
compositions, invokes services at appropriate time and evaluates outcomes from
the invocations. When invoking services in a composition, the request is passed to
each service according to priority and the outcome is considered. The outcomes
are protocol driven. Depending on the outcome, next services are invoked until all
necessary services have been invoked and sends a response to the original request.
Figure 3.11 demonstrates how triggers and service compositions work. Triggers are
evaluated according to priority and moves along the list of triggers evaluating each of
them unless on evaluates to be true and a composition of the corresponding trigger
is selected.
Services can be of two types: local (implemented in the Rhino platform) or external
(from other SIP ASes). These can be triggered by the engine or combined together

3.7. NECESSITY FOR SCIM STANDARDIZATION 29

to achieve complex services. During the time of invocation of complex services, the
engine isolates the services from each other and ensures each service gets the request
in the correct order.
Management helps monitoring the entire SIS including triggers, outcomes of invoca-
tions as well as predefined alarms for network information.
The Rhino SIS is also expressed as ’extensible’ using Java API to extend service
composition. This allows the SIS to access and modify signalling parameters.

Benefits

It is possible by the Rhino SIS to manipulate the outcomes of each invoked service
which gives a lot of flexibility to combine services and manage feature interactions.
Since both local and external services can be combined and invoked, it is possible
to make complex services with ease. The SIS is not limited to SIP related services,
rather can handle different protocols. The management tool makes the monitoring
the system efficient with the predefined alarms.

3.7 Necessity for SCIM Standardization

With the increasing complexity in the nature of service compositions, a creative
solution is necessary. For larger and complex networks, SCIM is a better choice for
interaction management over the other two approaches that are in use now. However,
due to the lack of any defined specifications, the SCIM products, however vastly
creative, lacks perspective in most cases. This in return has made the telcos more
constrained in their views about integrating a SCIM in their networks. The lack
of standardization also entails that there is no base line of what kind of feature
interaction is being addressed and how. The SCIM products described in the previous
section exhibit the major differences in the products that is targeting to solve the
same problem. Hence, SCIM products available now are entirely depended on the
developers. The cost of the entity along with the integration cost in the network
is also an important concern for the telcos. Thus it is difficult for the operators to
evaluate any SCIM, let alone incorporate it in their network.

The following chapter illustrates the service interaction scenario described here
as well as implements it in a test bed environment along with a SCIM to find out
how the SCIM performs and if the interaction can be resolved.

Chapter4Experiments with Feature
Interaction and SCIM

Out of the three existing approaches to solve feature interactions, two of them have
been widely adopted by the telco operators. Chapter 3 discussed how these solutions
have been integrated into the IMS network along with the limitations they bring.
The third approach in 3.3 which is the Service Broker/ SCIM approach, however,
has not gained so much popularity due to multiple reasons. But with the increase
of complexity in service compositions and feature interactions, this entity, which
declared as an ’optional node in the service architecture’ by the 3GPP [3GP09a] can
lead to a solution that is better suited for the complexity presented now. To illustrate
this solution, this thesis experimented with one of the existing SCIM products in
the market known as the Rhino SIS, described in section 3.6, as an attempt to solve
the feature interaction scenario presented in section 3.2. This chapter describes the
implementation and interaction management that is achieved using the SCIM.

4.1 Implementation Choice

The only SCIM that was available to be implemented for use in this thesis was the
Rhino SIS, which narrows down the choice of SCIM. Rhino SIS is able to interact
with multiple kinds of ASes, so the choice comes down to the selection of technology
to make the ASes. Two of the popular technologies to choose from are JAIN SLEE
and SIP Servlets.

Multiple research papers has been published on benefits of using JAIN SLEE
and SIP Servlets for the development of ASes. In the paper [CLP08], the authors
compare the two technologies on the basis of the degree of code re-use,concurrency
control, support for multiple protocol and management support. After providing in
depth discussion on these, they conclude that SIP Servlet is better to use in case
of simple services whereas JAIN SLEE is more apt to be used for sophisticated
and complex services. Another paper by Bessler et al. is seen to choose SLEE and
mentions that the powerful internal event model and the added value that is derived

31

32 4. EXPERIMENTS WITH FEATURE INTERACTION AND SCIM

from being able to integrate other protocols besides SIP have led them to incline
toward JAIN SLEE [SB07]. In a blog post by Ivelin Ivanov, co-founder Telestax, Inc.
[Iva05], mentions that even though JAIN SLEE is a powerful environment, to develop
simple applications, it is easier to use SIP Servlet. Weighing these information, for
this thesis, SIP Servlet is selected as the technology to develop the applications.

To mimic the IMS network, for this test-bed, OpenSIPS was chosen. OpenSIPS
is an open source implementation of a SIP server, which is not only limited to a
registrar/ proxy [Ope16]. Section 4.2 provides information on all the tools that were
used for this test-bed implementation.

4.2 Implementation Tools

Implementation of the feature interaction in a local setting was done using three
main tools which are described in the following subsections.

4.2.1 Rhino TAS

[Met11a] Rhino Telecom Application Server (TAS) is a real-time telecommunication
signalling platform with focus on scalability, low latency, fault tolerance, and high
availability. It provides native support for standard-based IP and SS7 protocols.
Rhino TAS is fully compliant with JSLEE [SM08] and SIP Servlet standards [EP06].
To deploy the Call Forwarding application, which is a SIP servlet application, on
Rhino TAS, a SIP servlet Resource Adaptor [Oped] is required; similar for the Call
Screening application. The SIP servlet applications deployed on Rhino TAS can be
managed using a sipservlet console via a JMX interface. The Rhino SDK allows
to create the TAS environment. This environment was used in the work to deploy
applications in the SIP Servlet entity of the TAS. The following Figure 4.1 represents
the TAS environment. This diagram is from the Opencloud website.

4.2.2 Rhino SIS

[Met11b] This tool has been elaborately described in the second subsection of sec-
tion 3.6. This tool was chosen to be implemented as this was the only SCIM product
available for use during the work. Rhino SIS is not an open source product like any
other SCIM products out there. The SIS was deployed in between the OpenSIPs
(S-CSCF) and the application servers (Rhino SIP Servlets). The SIS contained the
triggers and composition selection for each trigger.

4.2.3 OpenSIPS

[Ope16] Open SIP Server (OpenSIPS) is an open source implementation of a SIP
server. It functions as the proxy/ router or the registrar/ S-CSCF in case of this

4.3. CREATION OF SERVICES 33

Figure 4.1: Rhino Telecom Application Server (TAS) [Met11a]

thesis. But it also contains application level functionalities that were not realized.
This tool was chosen as it covered the functionalities of the P-CSCF as well as
S-CSCF. As all the users were registered in the same domain sharing the same
S-CSCF, no I-CSCF was needed in this case. This made OpenSIPS the ideal choice
for this experiment.

To realize the complete implementation, some other tools that were essential
were soft phones and a Java IDE platform to create the services. The next section
describes the entire setup for the realization of the scenario.

4.3 Creation of Services

The two services that are created for this are the CB and CFU services using a
Java platform. The services use SIP and Servlet resources to implement the desired
actions. The interaction scenario of this thesis is limited to three users, hence for
simplicity the services work with these three SIP URIs only, but with the introduction
of databases to manage users, these services can be catered for a similar output. In
the following subsections, the algorithms of the services are provided and the full
service codes can be found in Appendix A.

34 4. EXPERIMENTS WITH FEATURE INTERACTION AND SCIM

4.3.1 Call Barring Service

This service allows the prevention of certain outgoing calls based on conditions. For
this scenario, this condition is if the call is made to the user Charlie. There are three
situations that would require this service to act differently. The algorithms for the
tree scenarios are provided in Appendix A.3. The ’set’ and ’add’ commands are to
add and set values to the Request header of the INVITE in order to manipulate
the INVITE requests. The ’User Agent’ field is used as triggers for the OpenSIPS
(Appendix C).

4.3.2 Call Forwarding (Unconditional) Service

The CFU service is simpler than the CB service since it only has to either forward the
call by changing the ’To’ header field and setting the ’User Agent’ or just changing
the ’User Agent’ and no forwarding. The algorithm is provided in Appendix A.1 and
the full program is available in Appendix A.2.

4.4 Experimental Setup

Implementation of the test-bed had three main parts, namely, OpenSIPS, Rhino SIS
and the Rhino TAS for two SIP Servlets. OpenSIPS and Rhino TAS was installed
on a computer that was running Ubuntu 18.04.2 TLS operating system with Intel®
Core™ i5-6200U CPU @ 2.30GHz × 4. The implementation on this scale needed
to use the localhost address with different ports for all the entities. By trial and
error, it was realized that deploying the two services in the same Rhino TAS was
interfering with each other, hence, another Rhino TAS was installed in a Virtual Box
with one of the services deployed.

To test the functionalities it was necessary to make calls between users, hence two
different soft phones, namely Linphone [Lin19] and Zoiper [Zoi19], were used. Since
the implementation was on a Linux setting, the choice options for the soft phones
were limited as many of the open source soft phones were Windows OS based and
did not function in a Linux system. Two different soft phones were used as neither
of these phones allow multiple instances at the same time.

The services were written using IntelliJ as the service codes are Java-based. Prior
experience in IntelliJ motivated this choice.
Figure 4.2 represented the deployment of the services and how the scenario is realized
in the local environment. In this implementation, the SIS does not provide any
functionality other than triggering the services in the order of priority that is defined
in the composition scripts installed in the SIS.

4.5. SIP MESSAGES IN THE EXPERIMENT 35

Figure 4.2: Deployment of Services with SIS and Rhino TAS

4.5 SIP Messages in the Experiment

Figure 4.3 illustrates the exchange of all the SIP messages that take place during a
call made from User Alice to Bob. In the end, it is clear that the call goes through
to Charlie even though Alice has barred Charlie from all of her outgoing calls.
In this scenario, there is only one S-CSCF all the users are registered to; OpenSIPS
is acting as the registrar/ S-CSCF. This means that the S-CSCF knows the location
of all the users and does not need to query the I-CSCF. In the diagram, a call is
being made from the user Alice to Bob. Alice is the originating (orig) and Bob is
the terminating (term) parties in this call. How the messages traverse and what they
signify is discussed below:

When an INVITE request is received by the S-CSCF from Alice, the session
header field is ’orig’; the S-CSCF checks Alice’s user profile to check for iFCs. Alice

36 4. EXPERIMENTS WITH FEATURE INTERACTION AND SCIM

is subscribed to Call Barring service and the user has barred outgoing calls to the
user Charlie. The S-CSCF forwards the INVITE request to SIS that triggers the
composition for AS1 hosting the CB service. Here, the SIS is used only to trigger the
services and no manipulation of any sort is done, to mimic the scenario in the actual
network. Next, the CB service checks the Request URI field in the header and finds
that the call is to Bob, so the CB service does not take any action and forwards the
request back to the S-CSCF for the call to be executed through the SIS.

Once the INVITE comes back to the S-CSCF, the session now is ’term’ which
implies that the S-CSCF will check the user profile of Bob for any iFC. Bob is a
subscriber of Call Forwarding Unconditional service which gives him the ability to
forward all his calls to another user, Charlie in this case. Hence, the INVITE is
forwarded to AS2 through the SIS (similar to the previous CB service) which is
hosting the CFU service. The CFU finds Charlie’s user information to which the
call should be forwarded. The CFU service changes the Request URI to Charlie’s
address, changes the session value to ’orig-cdiv’ [Gro], adds a ’Diversion’ field in the
header and sends the INVITE back to the S-CSCF. Simultaneously, the CFU service
also sends a response, 181 Call is being Forwarded, back to Alice. The response
traverses back to Alice the same way it reached AS2, since record-route is inserted,
no steps are skipped.

The S-CSCF one last time checks the iFC of Bob, due to the ’orig-cdiv’ value
in the header as this field marks that the originating call is from Bob. Bob is not
subscribed to any originating services in this scenario. Hence, the INVITE is sent to
the UE of Charlie and the session is established.

As described in the iFC subsection of section 2.4, iFC is only able to handle
boolean replies from the ASes, i.e., the conditions in the iFC list can only be true or
false, this is the nature of condition handling in the iFC. The iFCs are also unable to
modify or use any information from the AS to take corrective actions to execute the
proper result of the compositions. In the scenario, CFU service changes the Request
URI to Charlie, but the CB service is unaware of it as the INVITE is not sent to the
CB service again. Even if it was sent back to CB again, as the CFU service adds a
’Diversion’ header field [Sys] that indicates that the call is being diverted from Bob,
the service would have been compared between Bob, the address in the ’Diversion’
header and Charlie, the terminating party now.

4.5. SIP MESSAGES IN THE EXPERIMENT 37

Figure 4.3: Implementation Scenario of Services

38 4. EXPERIMENTS WITH FEATURE INTERACTION AND SCIM

This is one of the many feature interaction issues that come up when multiple
services that work accurately on their own (Section 3.2 illustrates this) but does not
function well when placed together. Manipulation of the headers would be make this
scenario work better with minimum effort. The next section demonstrates how this
can be put into action.

4.6 Interaction Management with Rhino SIS

One of the strengths of the Rhino SIS is its script driven triggers and compositions
which facilitates feature interaction solutions. In the previous section, the SIS was
only used to trigger the services, but this section uses the interaction management
aspect of the SIS by using script logic to re-write the request headers such that the
INVITE request can be sent back to the CB service to check for any call barring
that might occur. Figure 4.4 represents the flow of messages in the network when a
call is made from Alice to Bob. The setup of the scenarios is same as in section 4.4.

As described in section 3.6, the Rhino SIS allows the developer to write XML
scripts for triggers and compositions. To tackle the scenario discussed, two trigger
scripts and two corresponding compositions are scripted and installed in the SIS;
Appendix C includes the scripts for them. The first trigger, Trigger1.xml (Ap-
pendix B.1) has the conditions of ’method’ = ’INVITE’ and ’Session’ = ’orig’. When
both the conditions are evaluated to be ’true’ the composition ’S-Trigger Handling’
(Appendix B.3) is executed. This composition only has the service CB for originating
calls. The service code (Appendix A.4) is executed and one of the three situations
of CB service can be true. First INVITE reaching AS1 evaluates algorithm A.4
true. With Session = term and User Agent = ’someStringValue’,the INVITE reaches
OpenSIPS where this information is utilized to send the INVITE back to the SIS
(Appendix C.1). Now, the second trigger, Trigger2.xml (Appendix B.2) evaluates
’true’ and the conditions ’method’ = ’INVITE’ and ’Session’ = ’term’ invoke the
composition ’FS-Trigger Handling’ (Appendix B.4) which has CFU and CB as a
composition one after the other. CFU algorithm A.1 is carried out with changes
the Request URI and Session as well as addition of the Diversion header field. The
INVITE is next sent to the SIS for the invocation of the service following the CFU
in the composition, which is the CB service. Before invoking, the composition has
some interceptors in place that allows header manipulation (Appendix B.4). The
interceptor first stores the value of the Diversion header in a variable, next removes
it and then invokes the CB service. This lets the service compare between Alice and
the new Request URI, Charlie for the matter, according to the algorithm A.2, which
in turn bars the call. The SC_FORBIDDEN SIP response is sent back to Alice,
following all the routes of the route-reader and Alice sees a 403 Forbidden on the
equipment screen.

4.6. INTERACTION MANAGEMENT WITH RHINO SIS 39

Figure 4.4: Solution Implementation Scenario

40 4. EXPERIMENTS WITH FEATURE INTERACTION AND SCIM

4.7 Limitations of Implementations

Implementation of services and the scenario in a smaller scale like this one comes
with a few limitations. No database was deployed to maintain the subscriptions and
locations of the users as it would be in an actual IMS network. For this reason,
the services were hard coded with URIs of the users. The implementation also only
focuses on two services and its feature interaction. The compositions hence, are very
simple which makes it difficult to predict how they would function and how the logic
would be handled for a larger subscriber base and more services in the composition.
Nevertheless, these limitations do not affect the overall purpose of this which is to
exhibit the benefits of using a SCIM.

Chapter5Results
5.1 Wireshark Trace

Figure 5.1: Wireshark Capture of SIP Messages

The implementation of the feature interaction scenario and the attempt at a
solution with the Rhino SIS made it possible to experience the capabilities of a SCIM
as well as service orchestration. Figure 5.1 is a Wireshark trace that is made when a

41

42 5. RESULTS

call is placed between Alice and Bob.

The blacked out traces are the interactions between the SIS (Port: 6060) and
the ASes; AS1 - Call Barring (Port: 5062) and AS2- Call Forwarding (Port: 5064).
The message contents blacked out trace frames (34, 705, 852, 861 and 869) are also
represented with only focus on the information that the experiment is interested
in, which reflects on how the header fields of User-Agent, Session and Diversion are
manipulated with each transaction of the messages. The full content of one of the
messages is included in Appendix C, Section C.2.
Frame 34: The first INVITE that reaches AS1 with ’method’ = ’INVITE’ and
’Session’ = ’orig’ which invokes composition ’S-Trigger Handling’ for AS1.

User Datagram Protocol , Src Port : 6060 , Dst Port : 5062
Se s s i on I n i t i a t i o n Protoco l (INVITE)
Request−Line : INVITE s ip : bob@192 . 1 6 8 . 5 6 . 1 : 6 0 6 0 SIP /2 .0 \par
Message Header

From : <s i p : a l i ce@127 . 0 . 0 . 1 : 5 060 > ; tag=1250587550
To : <s i p : bob@127 .0 .0 . 1 : 5060 >
User−Agent : Linphone /3 . 6 . 1 (eXosip2 / 4 . 1 . 0)
Se s s i on : o r i g

Frame 705: The User-Agent value is changed by AS1 when the INVITE is sent
back to the SIS and will reach OpenSIPS, this done to resend the INVITE back to the
SIS by comparing the User-Agent value. The Session value is now ’term’ indicating
that the terminating service will be handled now. During the implementation, User-
Agent values of ’Rhino’ and ’NotRhino’ were used which are just string values and
have nothing to do with the tool that was used.

User Datagram Protocol , Src Port : 5062 , Dst Port : 6060
Se s s i on I n i t i a t i o n Protoco l (INVITE)

Request−Line : INVITE s ip : bob@127 . 0 . 0 . 1 : 5 0 6 0 SIP /2 .0
Message Header

From : <s i p : a l i ce@127 . 0 . 0 . 1 : 5 060 > ; tag=1250587550
To : <s i p : bob@127 .0 .0 . 1 : 5060 >
User−Agent : Rhino
Se s s i on : term

Frame 852: The INVITE is forwarded to AS2 according to the ’FS-Handling-
Trigger’ composition.

User Datagram Protocol , Src Port : 6060 , Dst Port : 5064
Se s s i on I n i t i a t i o n Protoco l (INVITE)
Request−Line : INVITE s ip : bob@192 . 1 6 8 . 5 6 . 1 : 6 0 6 0 SIP /2 .0

5.1. WIRESHARK TRACE 43

Message Header
From : <s i p : a l i ce@127 . 0 . 0 . 1 : 5 060 > ; tag=1250587550
To : <s i p : bob@127 .0 .0 . 1 : 5060 >
User−Agent : Rhino
Se s s i on : term

Frame 861: Session is changed as the call is being forwarded now and a ’Diversion’
header is added.

User Datagram Protocol , Src Port : 5064 , Dst Port : 6060
Se s s i on I n i t i a t i o n Protoco l (INVITE)
Request−Line : INVITE s ip : char l i e@127 . 0 . 0 . 1 : 5 0 6 0 SIP /2 .0
Message Header

From : <s i p : a l i ce@127 . 0 . 0 . 1 : 5 060 > ; tag=A2ZryA
To : <s i p : char l i e@127 .0 . 0 . 1 : 5060 >
User−Agent : Rhino
Se s s i on : or ig−cd iv
Diver s i on : s i p : bob@127 . 0 . 0 . 1 : 5 0 6 0 ; t ranspor t=UDP

Frame 863: The composition script checks and stores the ’Diversion’ value and
removes it from this INVITE. Next forwards it to AS1.

User Datagram Protocol , Src Port : 6060 , Dst Port : 5062
Se s s i on I n i t i a t i o n Protoco l (INVITE)
Request−Line : INVITE s ip : char l i e@127 . 0 . 0 . 1 : 5 0 6 0 SIP /2 .0
Message Header

From : <s i p : a l i ce@127 . 0 . 0 . 1 : 5 060 > ; tag=A2ZryA
To : <s i p : char l i e@127 .0 . 0 . 1 : 5060 >
User−Agent : Rhino
Se s s i on : or ig−cd iv
New−Diver s ion : s i p : bob@127 . 0 . 0 . 1 : 5 0 6 0 ; t r anspor t=UDP

Frame 869: As there is no ’Diversion’, the Request URI is compared between
Charlie and Alice by AS1, sending a 403 Forbidden back to Alice.

User Datagram Protocol , Src Port : 5062 , Dst Port : 6060
Se s s i on I n i t i a t i o n Protoco l (403)
Status−Line : SIP /2 .0 403 Forbidden
Message Header

From : <s i p : a l i ce@127 . 0 . 0 . 1 : 5 060 > ; tag=A2ZryA
To : <s i p : char l i e@127 . 0 . 0 . 1 : 5 060 > ; tag=IAn3cA

44 5. RESULTS

5.2 Findings from the Experiment

The findings from the implementation experiment is summarized below:

� The SIS worked with OpenSIPs without much configuration in either of them.
Once the ports were assigned to them, the communication was easily established.

� It was possible to deploy the created services in external platforms. Even
though the services were deployed inside the Rhino SIP Servlet, the SIS did
not recognize them as local but as external services.

� Scripts in the SIS- triggers, compositions and their interceptors was utilized to
manipulate the request headers to achieve the desired service composition.

� The SCIM has no internal database out-of-the-box, which means there is
no possibility to store data that could potentially be utilized as part of the
composition or trigger. Hence, every time the same call was made, the entire
process had to happen again. This can be avoided if the processed information
was available for later use as well.

� As the interaction scenario was predefined, the solution was tailored according
to the need which makes it static. This might be true for any other feature
interaction as the interaction management unit of the SIS does not mention
anything regarding interaction detection, all solution might have to be static.

� The SIS log files were used to debug the errors during the deployment of the
services as well as trigger and composition scripts. The web-based management
console also allowed the overview of the deployed services and their states.

� This implementation was constructed on JAVA-based services and SIP protocol
only which worked as it should. The SCIM was able to understand and use
the protocol state model.

� The Wireshark trace gave insight on the session establishment time as well.
But it is not enough to mention whether the SIS delayed the establishment
time or not.

Chapter6Discussion

In the most standard form of the IMS architecture, the main communication is
between the S-CSCF and the ASes to provide various combinations of services to the
subscribers. In the previous chapters, the need for extension to this architecture with
the incorporation of the SCIM has been illustrated. The SCIM lacks specifications till
this date, but the 3GPP has published a technical report TR 23.810 [3GP09b] where
some architectural requirements and alternatives for the inclusion of SCIM in the
network has been discussed (Section 3.5). Suggestions from this report and research
documents from the research community, this chapter proposes some functional and
non-functional requirements that should considered for any SCIM implementation.
In addition, this chapter also suggests one architectural choice for deployment of a
SCIM.

6.1 Functional Requirements

The SCIM products existing in the market and the SCIM proposals from the research
community has come up with various kinds of solution for the ’black box’ that
is suggested by the 3GPP. The authors of [HC09], [KRA06] and [HTMM13], for
example, mention quite some requirements for the implementations but all of them
do not mention the same things. After careful considerations of the existing work
and experimenting with the feature interaction scenario as well as attempting to
solve the issue with an existing SCIM (Chapter 4), this section suggests some of the
most important functionalities that should be included in any SCIM product. It is
worthy to mention that these suggestions are made in the light of IMS but can easily
be extended towards any other technology that has provision for a similar type of
service broker functions.

� Resolution of conflict: It should be possible for the entity to be able to solve
service invocation conflicts between two or more services that are required to be
active in the same dialogue based on static and dynamic information. Responses

45

46 6. DISCUSSION

from services in a service composition may imply contradictory behavior that
need to be resolved and handled in subsequent dialogue. When intercepting the
response from one particular service and replacing the operation, that service
still needs to get the impression in the subsequent dialogue that replacement
was not done. These conflict resolution conditions should be available for both
intra and inter domain services, i.e., the services that are hosted on local and
external platforms.

� Protocol awareness: Complex protocols like SIP, TCAP and many others
have strict rules for inter-message constraints for what forms valid message
sequences, both in terms of allowed types and message parameters. State tran-
sition models are often used to capture some of these constraints. Making the
SCIM protocol-aware will imply that the composition framework can maintain
state models for all involved dialogues with the service applications, funda-
mentally simplifying the rule set which otherwise would become prohibitively
complex.

� Execution of Services: The SCIM should be able to have some expres-
siveness in case of service execution. For example, serial execution of several
services, parallel execution of services, mixed composition as well as the ability
to execute same service twice in the same composition.

� Promote flexibility in the core: The SCIM should be flexible in terms
of decoding composition pattern and dynamic decision making depending on
received message types and contents, provisioned “products” for users, previous
paths chosen when computing compositions as well as different composition
patterns chosen for different messages e.g., the same SIP dialogue.
High-level declarative language should be used for expressing composition and
parameter rules; it will be easier to define, debug and maintain, have control
over side effects and state that will hopefully result in better maintainable
orchestration definitions.

� Ability for parameter computation: Powerful mechanisms for construct-
ing invocation parameters based on messages received from the network and
parameter responses from previous services in the same composition, provisioned
properties at various levels and the ability to express any set of computation
over the available variables and state - all of these should be used by the SCIM
for parameter computation which would be used later when necessary.

� Capability for parameter manipulation: Manipulation of parameters can
be a strong tool for conflict resolution. The SCIM should be capable of adjusting
the parameters when invoking each individual service in the composition, use
different parameters for each service, use a section of response from one service
when building invocation parameters for services invoked afterwards, ability

6.1. FUNCTIONAL REQUIREMENTS 47

to build final response of total composition by taking responses for all “part”
services into account while still maintaining dialogue states, so sub dialogues
are handled correctly.

� Compatibility with Protocols: By protocols it means telco protocols such
as SIP and SIP based protocols, SS7 TCAP based protocols: CAP, INAP,
MAP, ISUP, Diameter and Diameter based protocols, REST, SOAP etc. The
SCIM should understand protocol-specific state models in order to correctly
handle requests and responses with appropriate default handling. It is also
necessary for the SCIM to have multi-protocol compatibility as it allows it
to be more flexible for integration with other technologies. It should be able
to both invoke over other protocols as well as invoke sub-services using other
protocols like the IP Multimedia Service Switching Function (IM-SSF / reverse
IM-SSF) [3GP11]. SCIM should also be capable to invoke sub services using
several other protocols (mix) in same composition.

� Reuse of services: Ability to reuse existing services by creative composition
will allow launching innovative new service offerings. Instead of needing to
build (as well as test, launch and maintain etc.) new service applications,
new services and offerings can rather be launched by composing and tailoring
behavior of existing services. This will allow faster delivery with lower cost and
probably better quality.

� Service life cycle support: There are different changes that occur during
the life cycle of a service. The services constituting the composition will evolve
over time, business requirements or integration requirements may evolve over
time that makes it necessary to modify the composition over time. Changes may
involve changed invocation pattern, introduction of new sub services or removal
of some services from composition, changes in rule for parameter computation
and manipulation. The SCIM must be able to synchronize with such changes
of version upgrades, commissioning and decommissioning of the other services.

� Reactive and non-reactive invocation: SCIM computation is usually
triggered by some event from the surroundings, such as, from the network
or from an application taking part in a service composition. In both cases,
the SCIM can execute a composition and invoke sub services in defined order.
SCIM actions can also be triggered “from-the-top”, e.g. from web services,
even invocation can also be timer based.

� Clever and economic representation of state: SCIM surely needs to
maintain some minimum state information, e.g. identifiers for ongoing dialogues,
selected composition patterns etc. Orchestration rules may require that dialogue
state is maintained by SCIM. However, all unnecessary representation of state

48 6. DISCUSSION

should be avoided, as it will pose problems for scalability and fault tolerance
mechanisms.

� Independence from vendor lock-in: The SCIM should communicate with
services irrespective of the vendor such that the it is not depended on any
individual vendor’s service logic.

� Access to HSS: The SCIM must implement a Diameter interface similar
to the Sh interface [3GP06] to have native access to the HSS for User-Data-
Request, which is the data transferred from the HSS to the AS. Access to
subscriber data in the HSS can potentially be used for service orchestration or
conflict resolution at the SCIM.

� Storage provisioning: A native data storage will open up possibilities for
storing data that could be used for service orchestration as well as conflict
resolution. This will also allow the SCIM to be more optimized as it will have
local, already processed data for decision making.

6.2 Non-functional Requirements

The SCIM should have non-functional characteristics that enhance its integration
into the IMS network. Non-functional requirements specify criteria that can be
used to judge the operating capabilities of the system or entity, rather than specific
behaviors (which are described as the functional requirements). Some of the most
vital non-functional requirements are mentioned below. These requirements are
general for any system that serve the service broker purpose and is not limited to
only IMS.

� Scalability: The SCIM should be flexible to the size of the network. Scalabil-
ity is an important feature for the SCIM. As the SCIM entity is placed between
the S-CSCF and service layer, if it is not possible to be scaled, it might create
a bottle neck in the network. The functional requirement of representation of
state if not managed correctly can also pose threats to the scalability.

� Fault tolerance: The fault tolerance of the entity should be high, otherwise
if the SCIM is not working as it should, it will have an extensive impact on the
network. High fault tolerance and fail safes hence, are important features to
be considered for any SCIM entities.

� Session establishment time: SCIM is adding another component between
the S-CSCF and ASes. Hence, it is expected to change the previous session
establishment time. But since, the inclusion of SCIM is not supposed to
impact the existing network and its components, the impact of any additional

6.3. ARCHITECTURAL CHOICE 49

processing at the SCIM should be minimal such that it does not adversely
affect the call session.

� Easy integration with existing core: The SCIM should be able to integrate
easily with the IMS network, which means that no significant changes should
be required in the S-CSCF as well as the ASes in the Service Layer. The SCIM
should also be compatible with the existing IMS protocols (e.g., SIP Protocol)
in order to integrate as well as extend the existing protocols.

� Security: One the functional requirements mention native access to the HSS
which holds all user related information as well as storage provisioning by the
SCIM that will store other user information, it is necessary that the SCIM has
secure communications with the HSS and the data it uses and stores cannot be
accessed without correct authentication. In addition, supporting encryption,
signatures, certificates etc. should be in place.

� Management: The SCIM should have a management console or dashboard
that allows the checking available services and triggers as well as display alarms
in case the SCIM experiences any kind of connectivity issues among other
things.

6.3 Architectural Choice

In section 3.5 a technical report from the research community reflected some light on
the architectural aspects of a SCIM. Even though it mentions three aspects including
the hybrid approach, in this section two of the approaches are considered, namely
the centralized approach and the distributed approach. The hybrid approach is
considered as an extension of the distributed approach.
The authors of [GSD09] suggest the centralized approach as it decouples the service
layer from call control. They also argue that the approach can facilitate SCIM
to SCIM communication which can allow the MVNOs (Mobile Virtual Network
Operator) to collaborate in an attempt to provide innovative services. On the other
hand, an article by Gouya, Crespi and Bertin [GCB06] supports the distributed
approach. They describe in detail that the distributed approach allow the interaction
management task to be delegated to the S-CSCF and all the management decisions
are not lying on the SCIM as in case of the centralized approach. They further
elaborate that this approach provide a scalable solution in interaction management
and enable service level inter-working.
Scalability is an important feature for the IMS network as there should always be
provisions for extensions of the network. This is provided more by the distributed
approach than the centralized approach. Another concern for the centralized approach,
is the eventual bottlenecks that appear in this approach [GCB06]. Since the SCIM is
placed between the S-CSCF and ASes and it is the the only entity of communication

50 6. DISCUSSION

between the two components, a failure in one of the SCIM will have lesser impact on
the network than the centralized approach. Even though the centralized approach is
more fitting for smaller networks like MVNOs as mentioned by [GSD09], distributed
approach seems to be a better choice for networks due to its better fault tolerance
giving this approach better reliability and scalability.

6.4 Evaluating Existing SCIM Products

Since the functional and non-functional requirements of a SCIM is discussed, it is
essential to take a look into the SCIMs that were described in Section 3.6. Of the
two SCIMs, the Rhino SIS has been used for experiments in this thesis, which makes
the evaluation for this tool to be based on both the documentation available and also
practical experience. The Lucent Service Broker™ , on the other hand, will only be
evaluated based on the available documentation.

6.4.1 Lucent Service Broker™

Functional Fulfillments:

� The steplets of the service broker are able to select applications not only based
on the information from the iFC but also uses user data from the HSS. This
allows the steplets to detect conflicts among the services to be called. The
steplets are able to solve them by dynamic selection of applications and even
compensate for inappropriate actions taken by the applications. The steplets
are also able to invoke multiple services both in a serial and parallel manner.

� The SB engine is protocol-aware of the common telecom protocols and can use
the parameters for composition invocation and interaction management when
required.

� The broker is able to reuse services deployed in the network as the steplets can
select ASes flexibly and dynamically using the information from the ASes and
the user data from the HSS.

� Services from any vendors can be accessed by the broker engine, allowing the
network free from vendor lock-in.

� The Lucent Service Broker™ also has access to the HSS that allows the steplets
to use user data for dynamic selection of the ASes.

6.4. EVALUATING EXISTING SCIM PRODUCTS 51

Non-functional Fulfillments:

� The default steplet in the broker engine is able to invoke any number of steplets
to complete the request in question. This allows the broker to be scalable
according to the size of the network.

� The Lucent Service Broker™ also has a support system for fault tolerance.
Even though it is not part of the broker engine, it is part of the whole network
for operations and maintenance. There is no further elaboration on this in
[KRA06].

� According to [KRA06], the Lucent Service Broker™ can be introduced into
the existing IMS network without any modification to the core indicating easy
integration with the core.

� Sessions can be initialized by the steplets while an INVITE request is handled.
Hence, session establishment time is not impacted considerably.

Functional Constraints:

� The broker engine is only compatible with SIP protocol making it less flexible
for integration with other protocols.

� The Lucent Service Broker™ is JAVA-based i.e., it is not declarative which
limits flexibility in the core.

� There is no mention of parameter computation and manipulation in the docu-
mentation available for the SB.

� The engine is connected to many databases accessing information that is used
by the steplets but there is no storage option for the SCIM to store processed
user information.

Non-functional Constraints:

� There is no management information available for the SCIM, which will make
keeping track of the entity difficult.

� The broker engine communicates with the HSS but does not mention any
security measures taken to protect the user data.

52 6. DISCUSSION

6.4.2 Rhino Service Interaction SLEE(SIS)

Functional Fulfillments:

� Easily integrable with the existing core as it is compatible with the existing
core. Instead of requiring separate modifications for every application a service
interacts with, it is possible to write the service once and then add compositions
for new applications [Met11b].

� Triggers and compositions are at the core of the SIS for interaction management.
Scripting is a powerful tool that allows the manipulation of messages according
to the need of the user. This makes the resolution of conflict a strong point for
the SIS.

� The SIS is compatible with the existing protocols of the IMS. The documentation
provides use of both SIP and IN protocols and mentions the that other protocols
can be included as well with their JAVA API extensions.

� SIS allows high service reuse as the services are called using triggers and
compositions so particular service interaction logics, if any, in the service are
not taken into account.

� Each vendor’s service logic does not influence a service from another vendor in
the SIS allowing it to have independence from vendor lock-ins.

� The SIS is a declarative entity that allows integration of both SIP and non-SIP
applications.

Non-functional Fulfillments:

� Configurable fault tolerance is one the features of the SIS that can be configured
on a deployment-by-deployment basis for each service, to determine how Rhino
should behave under various failure conditions [Opea]. In case of a failure, the
Rhino platform will continue operate so that the SLEE and the services it is
running are continuously available. This allows to avoid impact of the failure
on the network and the users.

� The security model of the SIS is based on the standard Java security model;
the Java Authentication and Authorization Service (JAAS) and the SLEE
specification default permission sets for components [Opec], that prevents
untrusted resource adaptors, services or human users from performing restricted
functions.

6.4. EVALUATING EXISTING SCIM PRODUCTS 53

� The Rhino SIS has command-line management consoles for all its components
as well has a web-based console known as the Opencloud Rhino Element
Manager [Opeb] that allows the managers to have an overview of the services
and components at play.

Functional Constraints:

� Even though SIS has a good scripting tool for conflict resolution, it does not
provide any method for conflict detection. This makes the detection a manual
task for the operators deploying the services.

� The SIS has no access to the HSS. It is strongly depended on the S-CSCF to
provide it any and all information for the services compositions which is only
the iFC. This makes the SIS less susceptible to smart service conflict resolution.

� Only non-reactive invocation of services is possible with the SIS. As the SIS
does not use any extra network or user information it seems that there is no
information on reactive invocation.

� There is also no mention of storage provisioning for the SIS.

Non-functional Constraints:

� There can be multiple Rhino SIS deployed in the same network, but there is
no mention about the communication between the multiple SIS which makes it
difficult to be scalable according to the need of the network.

� The SIS has some impact on the session establishment time. If there are
multiple triggers that need to be evaluated before reaching one that evaluates
as true, it has an overall impact on the time.

Chapter7Conclusion

This thesis presented a proposal for the functional and non-functional requirements
for a SCIM - an IMS node that has not yet been standardized. It also suggests the
architectural choice for the SCIM. The proposals put forward in this thesis are done
through extensive research into the existing IMS network and the research that has
been done on the topic of SCIM or service broker. The thesis also experimented
with one of the existing SCIM products in the market to solve an feature interaction
among two services in order to test the expressiveness and limitations of the SCIM
that may be present. A SCIM entity can be included in the existing IMS network
without making any major changes in the network. Even though it is unknown if
the SCIM will ever be standardized, the proposals of this thesis can be utilized to
evaluate any SCIM. As the networks and service compositions become more complex
with time, introduction of a SCIM in the network will prove to be an important
step that will help the service providers to save cost while enabling greater user
involvement in the execution of services.

55

References

[3GP00] 3GPP. IP-Multimedia Subsystem. http://www.3gpp.org/more/109-ims, 2000.
Last accessed 24 October 2018.

[3GP06] 3GPP. 3GPP TS 29.329 version V10.03.0 Release 10. http://www.qtc.jp/3GPP/
Specs/29329-a30.pdf, 2011-2006.

[3GP07] 3GPP. 3GPP TR 32.810 version V7.0.0 Release 7. http://www.qtc.jp/3GPP/
Specs/32810-700.pdf, 2007.

[3GP09a] 3GPP. 3GPP TS 23.002 version V5.12.0 Release 05. http://www.qtc.jp/3GPP/
Specs/23002-5c0.pdf, 2003-2009.

[3GP09b] 3GPP. 3GPP TR 23.810 version V8.0.0 Release 8. http://www.qtc.jp/3GPP/
Specs/23810-800.pdf, 2009.

[3GP09c] 3GPP. 3GPP TS 23.198 version V8.0.0 Release 8. https://www.etsi.org/deliver/
etsi_ts/123100_123199/123198/08.00.00_60/ts_123198v080000p.pdf, 2009.

[3GP10] 3GPP. 3GPP TS 24.604 version V11.04.0 Release 11. https://www.etsi.org/
deliver/etsi_ts/124600_124699/124604/11.04.00_60/ts_124604v110400p.pdf,
2012-2010.

[3GP11] 3GPP. 3GPP TS 23.218 version 10.0.0 Release 10. https://www.etsi.org/deliver/
etsi_ts/123200_123299/123218/10.00.00_60/ts_123218v100000p.pdf, 2011.

[3GP12a] 3GPP. 3GPP TS 29.228 version V5.22.0 Release 05. http://www.arib.or.jp/
english/html/overview/doc/STD-T63v9_20/5_Appendix/Rel5/29/29228-5m0.
pdf, 2010-2012.

[3GP12b] 3GPP. 3GPP TS 24.229 version V5.26.0 Release 05. https://arib.or.jp/english/
html/overview/doc/STD-T63v9_30/5_Appendix/Rel5/24/24229-5q0.pdf, 2012.

[3GP13] 3GPP. 3GPP TS 23.228 version 11.10.0 Release 11. https://www.etsi.org/deliver/
etsi_ts/123200_123299/123228/11.10.00_60/ts_123228v111000p.pdf, 2013.

[3GP17] 3GPP. 3GPP TS 29.292 version V14.23.0 Release 14. www.3gpp.org/ftp/tsg_ct/
WG3_interworking_ex-CN3/DRAFT.../29292-e30.doc, 2017.

57

http://www.3gpp.org/more/109-ims
http://www.qtc.jp/3GPP/Specs/29329-a30.pdf
http://www.qtc.jp/3GPP/Specs/29329-a30.pdf
http://www.qtc.jp/3GPP/Specs/32810-700.pdf
http://www.qtc.jp/3GPP/Specs/32810-700.pdf
http://www.qtc.jp/3GPP/Specs/23002-5c0.pdf
http://www.qtc.jp/3GPP/Specs/23002-5c0.pdf
http://www.qtc.jp/3GPP/Specs/23810-800.pdf
http://www.qtc.jp/3GPP/Specs/23810-800.pdf
https://www.etsi.org/deliver/etsi_ts/123100_123199/123198/08.00.00_60/ts_123198v080000p.pdf
https://www.etsi.org/deliver/etsi_ts/123100_123199/123198/08.00.00_60/ts_123198v080000p.pdf
https://www.etsi.org/deliver/etsi_ts/124600_124699/124604/11.04.00_60/ts_124604v110400p.pdf
https://www.etsi.org/deliver/etsi_ts/124600_124699/124604/11.04.00_60/ts_124604v110400p.pdf
https://www.etsi.org/deliver/etsi_ts/123200_123299/123218/10.00.00_60/ts_123218v100000p.pdf
https://www.etsi.org/deliver/etsi_ts/123200_123299/123218/10.00.00_60/ts_123218v100000p.pdf
http://www.arib.or.jp/english/html/overview/doc/STD-T63v9_20/5_Appendix/Rel5/29/29228-5m0.pdf
http://www.arib.or.jp/english/html/overview/doc/STD-T63v9_20/5_Appendix/Rel5/29/29228-5m0.pdf
http://www.arib.or.jp/english/html/overview/doc/STD-T63v9_20/5_Appendix/Rel5/29/29228-5m0.pdf
https://arib.or.jp/english/html/overview/doc/STD-T63v9_30/5_Appendix/Rel5/24/24229-5q0.pdf
https://arib.or.jp/english/html/overview/doc/STD-T63v9_30/5_Appendix/Rel5/24/24229-5q0.pdf
https://www.etsi.org/deliver/etsi_ts/123200_123299/123228/11.10.00_60/ts_123228v111000p.pdf
https://www.etsi.org/deliver/etsi_ts/123200_123299/123228/11.10.00_60/ts_123228v111000p.pdf
www.3gpp.org/ftp/tsg_ct/WG3_interworking_ex-CN3/DRAFT.../29292-e30.doc
www.3gpp.org/ftp/tsg_ct/WG3_interworking_ex-CN3/DRAFT.../29292-e30.doc

58 REFERENCES

[3GP19] 3GPP. Service and System Aspects. https://www.3gpp.org/specifications-groups/
25-sa, 2019. Last accessed 18 May 2019.

[Acc07] Accenture. Ims architecture overview. http://wpage.unina.it/rcanonic/didattica/
at/lucidi_2007/AT_2006-07_IMS_Accenture.pdf, 2007. Last accessed 03 March
2019, all the subsection of the title are also used.

[Ber16] Karel Berkovec. IMS Service Routing: Service Pro-
file. https://realtimecommunication.wordpress.com/2016/04/29/
how-to-read-initial-filter-criteria/, 2016. Last accessed 14 March 2018.

[CGM09] Gonzalo Camarillo and Miguel-Angel Garcia-Martin. The 3G IP Multimedia
Subsystem (IMS). A John Wiley and Sons, Ltd, Publication, third edition, 2009.

[CLP08] C Chrighton, D.T. Long, and D.C. Page. JAIN SLEE vs SIP Servlet Which is
the best choice for an IMS application server?, 2008.

[Dia09] Dialogic. The architecture and benefits of ims. http://www.sintel.com/bibli/
telechargement/194/document_Multi.pdf, 2008-2009. Last accessed 03 March
2019, all the subsection of the title are also used.

[EP06] Oracle Emmanuel Proulx. An Introduction to SIP, Part 2: SIP Servlets. https:
//www.oracle.com/technetwork/articles/entarch/sip-servlet-101751.html, 2006.
Last accessed 17 May 2019, all the subsection of the title are also used.

[20] European Telecommunications Standard Institute (ETSI). Digital cellular telecom-
munications system (Phase 2+); Signalling interworking for supplementary
services. https://www.etsi.org/deliver/etsi_gts/09/0911/05.01.00_60/gsmts_
0911v050100p.pdf, 1996.

[21] European Telecommunications Standard Institute (ETSI). GSM Technical Speci-
fication: Call Forwarding (CF) supplementary services, Stage 2. https://www.
etsi.org/deliver/etsi_gts/03/0382/05.00.00_60/gsmts_0382v050000p.pdf, 1996.

[GC08] Anahita Gouya and Noël Crespi. Detection and resolution of feature interactions
in IP multimedia subsystem . International Journal of Network Management,
pages 315–337, 2008.

[GCB06] Anahita Gouya, Noël Crespi, and Emmanuel Bertin. SCIM (Service Capability
Interaction Manager) Implementation Issues in IMS Service Architecture. IEEE
ICC 2006, 2006.

[Gou07] Christophe Gourraud. IMS Service Routing: Service Profile. http://theimslantern.
blogspot.com/2007/07/ims-service-routing-service-profile.html, 2007. Last ac-
cessed 14 March 2018.

[Gro] SIPCORE Working Group. A p-served-user header field parameter for originating
cdiv session case in session initiation protocol (sip).

[GSD09] R Goveas, R Sunku, and D Das. Centralized service capability interaction manager
(scim) architecutre to support dynamic-blended services in ims network, 2009.

https://www.3gpp.org/specifications-groups/25-sa
https://www.3gpp.org/specifications-groups/25-sa
http://wpage.unina.it/rcanonic/didattica/at/lucidi_2007/AT_2006-07_IMS_Accenture.pdf
http://wpage.unina.it/rcanonic/didattica/at/lucidi_2007/AT_2006-07_IMS_Accenture.pdf
 https://realtimecommunication.wordpress.com/2016/04/29/how-to-read-initial-filter-criteria/
 https://realtimecommunication.wordpress.com/2016/04/29/how-to-read-initial-filter-criteria/
http://www.sintel.com/bibli/telechargement/194/document_Multi.pdf
http://www.sintel.com/bibli/telechargement/194/document_Multi.pdf
https://www.oracle.com/technetwork/articles/entarch/sip-servlet-101751.html
https://www.oracle.com/technetwork/articles/entarch/sip-servlet-101751.html
https://www.etsi.org/deliver/etsi_gts/09/0911/05.01.00_60/gsmts_0911v050100p.pdf
https://www.etsi.org/deliver/etsi_gts/09/0911/05.01.00_60/gsmts_0911v050100p.pdf
https://www.etsi.org/deliver/etsi_gts/03/0382/05.00.00_60/gsmts_0382v050000p.pdf
https://www.etsi.org/deliver/etsi_gts/03/0382/05.00.00_60/gsmts_0382v050000p.pdf
 http://theimslantern.blogspot.com/2007/07/ims-service-routing-service-profile.html
 http://theimslantern.blogspot.com/2007/07/ims-service-routing-service-profile.html

REFERENCES 59

[HC09] Cuiting Huang and Noël Crespi. Enriched SCIM for Service Composition within
IMS Environment. IEEE, 2009.

[HTMM13] Nguyen Hung, Nguyen Thanh, Thomas Magedanz, and Julius Mueller. Toward a
full implementation of scim functional block in ims framework, 2013.

[IET02] IETF. Rfc 3261 sip: Session initiation protocol. https://tools.ietf.org/html/
rfc3261, 2002. Last accessed 14 March 2019, all the subsection of the title are
also used.

[IET03a] IETF. Rfc 3550 rtp: A transport protocol for real-time. https://tools.ietf.org/
html/rfc3550, 2003. Last accessed 14 March 2019, all the subsection of the title
are also used.

[IET03b] IETF. Rfc 3588 diameter base protocol. https://tools.ietf.org/html/rfc3588, 2003.
Last accessed 14 March 2019, all the subsection of the title are also used.

[Iva05] Ivelin Ivanov. JAIN SLEE, SIP Servlets, and Parlay/OSA (2nd Ed). https:
//ivelinivanov.blogspot.com/2005/08/jain-slee-sip-servlets-and-parlayosa.html,
2005.

[KG08] Hechmi Khilfi and Jean-Charles Grégoire. IMS Application Servers- Roles, Re-
quirements and Implementation Technologies. IEEE Computer Society, pages
41–42, 2008.

[KRA06] Kristin F. Kocan, William D. Roome, and Vinod Anupam. Service Capability
Interaction Management in IMS Using the Lucent Service Broker Product. Bell
Labs Technical Journal, page 217–232, 2006.

[KT07] Srinivasan Krishnamoorthy and J. M. Torres. Ims enhanced filter and action
criteria. 2007 International Conference on IP Multimedia Subsystem Architecture
and Applications, pages 1–3, 2007.

[Lin19] Linphone. Linphone products. https://www.linphone.org/products, 2019. Last
accessed 09 May 2019, all the subsection of the title are also used.

[Met11a] Metaswitch. Rhino tas - telecom application server. https://docs.opencloud.com/
ocdoc/books/rhino-documentation/2.6.0/rhino-home/, 2011. Last accessed 09
May 2019, all the subsection of the title are also used.

[Met11b] Metaswitch. Sis overview and concepts. https://docs.opencloud.com/ocdoc/
books/sis-documentation/2.5.4/sis-overview-and-concepts/about-the-sis/index.
html, 2011. Last accessed 06 November 2018, all the subsection of the title are
also used.

[Opea] Opencloud. Configurable Fault Tolerance. https://developer.rhino.metaswitch.
com/devportal/display/RD2v0/3.5+Configurable+Fault+Tolerance. Last ac-
cessed 18 May 2019, all the subsection of the title are also used.

https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3550
https://tools.ietf.org/html/rfc3550
https://tools.ietf.org/html/rfc3588
https://ivelinivanov.blogspot.com/2005/08/jain-slee-sip-servlets-and-parlayosa.html
https://ivelinivanov.blogspot.com/2005/08/jain-slee-sip-servlets-and-parlayosa.html
https://www.linphone.org/products
https://docs.opencloud.com/ocdoc/books/rhino-documentation/2.6.0/rhino-home/
https://docs.opencloud.com/ocdoc/books/rhino-documentation/2.6.0/rhino-home/
https://docs.opencloud.com/ocdoc/books/sis-documentation/2.5.4/sis-overview-and-concepts/about-the-sis/index.html
https://docs.opencloud.com/ocdoc/books/sis-documentation/2.5.4/sis-overview-and-concepts/about-the-sis/index.html
https://docs.opencloud.com/ocdoc/books/sis-documentation/2.5.4/sis-overview-and-concepts/about-the-sis/index.html
https://developer.rhino.metaswitch.com/devportal/display/RD2v0/3.5+Configurable+Fault+Tolerance
https://developer.rhino.metaswitch.com/devportal/display/RD2v0/3.5+Configurable+Fault+Tolerance

60 REFERENCES

[Opeb] Opencloud. Rhino Element Manager. https://docs.opencloud.com/ocdoc/books/
rem/1.5.0/rem-home/. Last accessed 18 May 2019, all the subsection of the title
are also used.

[Opec] Opencloud. Security. https://developer.rhino.metaswitch.com/devportal/display/
RD2v3/6+Security. Last accessed 18 May 2019, all the subsection of the title are
also used.

[Oped] Opencloud. SIP Resource Adaptor. https://docs.opencloud.com/ocdoc/books/
sip/2.5.0/sip-resource-adaptor-home/. Last accessed 17 May 2019, all the subsec-
tion of the title are also used.

[Ope16] OpenSIPS. Opensips about. https://www.opensips.org/About/About, 2016. Last
accessed 09 May 2019, all the subsection of the title are also used.

[SB07] Rene Gabner Julia Gross Sandford Bessler, Joachim Zeiss. An orchestrated
execution environment for hybrid services. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.396.5408&rep=rep1&type=pdf, 2007.

[SM08] Inc. Sun Microsystems. JAIN SLEE (JSLEE) 1.1 Specification, Fi-
nal Release. https://download.oracle.com/otn-pub/jcp/jain_slee-1_
1-final-oth-JSpec/jslee-1_1-fr-spec.pdf?AuthParam=1558097205_
f5c97a252a02193b2146fa80566d79d2, 2003-2008. Last accessed 17 May
2019, all the subsection of the title are also used.

[Sys] Cisco Systems. Rfc 5806-diversion indication in sip.

[Zoi19] Zoiper. Zoiper desktop user guide. https://www.zoiper.com/en/products, 2019.
Last accessed 09 May 2019, all the subsection of the title are also used.

https://docs.opencloud.com/ocdoc/books/rem/1.5.0/rem-home/
https://docs.opencloud.com/ocdoc/books/rem/1.5.0/rem-home/
https://developer.rhino.metaswitch.com/devportal/display/RD2v3/6+Security
https://developer.rhino.metaswitch.com/devportal/display/RD2v3/6+Security
https://docs.opencloud.com/ocdoc/books/sip/2.5.0/sip-resource-adaptor-home/
https://docs.opencloud.com/ocdoc/books/sip/2.5.0/sip-resource-adaptor-home/
https://www.opensips.org/About/About
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.396.5408&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.396.5408&rep=rep1&type=pdf
https://download.oracle.com/otn-pub/jcp/jain_slee-1_1-final-oth-JSpec/jslee-1_1-fr-spec.pdf?AuthParam=1558097205_f5c97a252a02193b2146fa80566d79d2
https://download.oracle.com/otn-pub/jcp/jain_slee-1_1-final-oth-JSpec/jslee-1_1-fr-spec.pdf?AuthParam=1558097205_f5c97a252a02193b2146fa80566d79d2
https://download.oracle.com/otn-pub/jcp/jain_slee-1_1-final-oth-JSpec/jslee-1_1-fr-spec.pdf?AuthParam=1558097205_f5c97a252a02193b2146fa80566d79d2
https://www.zoiper.com/en/products

AppendixAAppendix A

A.1 Algorithm for Call Forwarding (Unconditional) Service

Algorithm A.1 CFU Service Algorithm
Result: Call is Forwarded
initialization
Get Request Header information - toUri
if toUri = bob then

set To = URI of Charlie
set User Agent = ’differentString’
add Diversion = URI of Bob
set Session = orig-cdiv
SC_CALL_BEING_FORWARDED

else
set User Agent = ’differentString’

end
request.send()

A.2 CallForwarding.java

1
2 package com . opencloud . s i p s e r v l e t . proxy ;
3
4 import java . i o . IOException ;
5 import java . t ex t . MessageFormat ;
6 import java . u t i l . ∗ ;
7 import java . u t i l . concurrent . ConcurrentHashMap ;
8
9 import javax . annotat ion . Resource ;

10 import javax . s e r v l e t . S e rv l e tCon f i g ;
11 import javax . s e r v l e t . Se rv l e tExcept ion ;

61

12 import javax . s e r v l e t . s i p . ∗ ;
13 import javax . s e r v l e t . s i p . ar . S ipApp l i ca t i onRout ingDi r ec t ive ;
14
15 import org . apache . l o g 4 j . Logger ;
16
17
18 pub l i c c l a s s Cal lForwarding extends S i pS e rv l e t {
19
20 p r i va t e s t a t i c Logger l og = Logger . getLogger (

Cal lForwarding . c l a s s) ;
21
22
23 @Resource
24 p r i va t e SipFactory s ipFactory ;
25
26 @SuppressWarnings (" unchecked ")
27 @Override
28 pub l i c void i n i t (Se rv l e tCon f i g s e r v l e tCon f i g) throws

Serv l e tExcept ion {
29 log . i n f o (" Ca l l Forwarding has s t a r t ed ") ;
30 super . i n i t (s e r v l e tCon f i g) ;
31
32 }
33
34 @Override
35 protec t ed void doRequest (S ipServ l e tReques t req) throws

Serv le tExcept ion , IOException {
36 i f (l og . isDebugEnabled ()) {
37 log . debug (MessageFormat . format (" Received {0}{1}

reque s t f o r {2} c a l l −id {3}\n{4} " , req .
i s I n i t i a l () ? " i n i t i a l " : " " , req . getMethod
() ,

38 req . getRequestURI () , req . g e tCa l l I d () ,
req)) ;

39 }
40
41 i f ("INVITE" . equa l s (req . getMethod ())) {
42 do Inv i t e (req) ;
43 } e l s e i f ("ACK" . equa l s (req . getMethod ())) {
44 doAck (req) ;
45 } e l s e i f ("BYE" . equa l s (req . getMethod ())) {

46 doBye (req) ;
47 } e l s e i f ("CANCEL" . equa l s (req . getMethod ())) {
48 doCancel (req) ;
49 }
50
51 }
52
53 @Override
54 protec t ed void do Inv i t e (S ipServ l e tReques t r eque s t)

throws Serv le tExcept ion , IOException{
55 i f (l og . i s In foEnab l ed ()) {
56 log . i n f o (" Received : " + reque s t . t oS t r i ng ()) ;
57 log . i n f o (r eques t . getFrom () . getURI () . t oS t r i ng ()) ;
58 }
59 St r ing toUri = reque s t . getTo () . t oS t r i ng () ;
60 i f (toUri . conta in s (" bob ")) {
61
62 B2buaHelper he lpe r = reques t . getB2buaHelper () ;
63
64 SipFactory s ipFactory = (SipFactory)

ge tServ l e tContext () . g e tAt t r ibute (SIP_FACTORY)
;

65 Map<Str ing , L i s t<Str ing>> headers = new HashMap<
Str ing , L i s t<Str ing >>() ;

66 Lis t<Str ing> toHeaderSet = new ArrayList<Str ing
>() ;

67
68 toHeaderSet . add (" s i p : char l i e@127 . 0 . 0 . 1 : 5 0 6 0 ") ;
69 headers . put ("To" , toHeaderSet) ;
70
71
72 S ipServ l e tReques t forkedRequest = he lpe r .

c reateRequest (request , true , headers) ;
73 SipURI sipURI = (SipURI) s ipFactory . createURI ("

s i p : char l i e@127 . 0 . 0 . 1 : 5 0 6 0 ") ;
74 forkedRequest . setRequestURI (sipURI) ;
75 i f (l og . i s In foEnab l ed ()) {
76 log . i n f o (" forkedRequest = " + forkedRequest)

;
77 }

78 forkedRequest . g e tS e s s i on () . s e tAt t r i bu t e ("
o r i g i na lReque s t " , r eque s t) ;

79 forkedRequest . addHeader (" Diver s ion " , " s i p :
bob@127 . 0 . 0 . 1 : 5 0 6 0 ; t ranspo r t=UDP") ;

80 forkedRequest . addHeader (" Forward " , " True ") ;
81 forkedRequest . setHeader (" Se s s i on " , " o r i g cd i v ") ;
82 forkedRequest . setHeader (" User−Agent " , "

d i f f e r e n t S t r i n g ") ;
83 forkedRequest . s e tRout ingDi r e c t i v e (

S ipApp l i ca t i onRout ingDi r ec t ive .CONTINUE,
reque s t) ;

84 forkedRequest . send () ;
85
86 } e l s e {
87 i f (l og . i s In foEnab l ed ()) {
88 log . i n f o ("INVITE not forwarded ") ;
89 }
90 SipURI u r i = (SipURI) r eque s t . getRequestURI () ;
91 u r i . setHost (" 1 2 7 . 0 . 0 . 1 ") ;
92 u r i . s e tPor t (5060) ;
93 r eque s t . setHeader (" User−Agent " , " d i f f e r e n t S t r i n g

") ;
94 r eque s t . addHeader (" Forward " , " Fa l se ") ;
95 r eque s t . setRequestURI (u r i) ;
96 r eque s t . getProxy () . proxyTo (reque s t . getRequestURI

()) ;
97 }
98 }
99
100 @Override
101 protec t ed void doAck (S ipServ l e tReques t r eque s t) throws

Serv le tExcept ion , IOException{
102 i f (l og . i s In foEnab l ed ()) {
103 log . i n f o (" Received : " + reque s t . t oS t r i ng ()) ;
104 }
105 }
106
107 @Override
108 protec t ed void doBye (S ipServ l e tReques t r eque s t) throws

Serv le tExcept ion , IOException{
109 i f (l og . i s In foEnab l ed ()) {

110 log . i n f o (" Received BYE : " + reques t . t oS t r i ng ())
;

111 }
112
113 // sending OK d i r e c t l y to the f i r s t c a l l
114 S ipServ l e tResponse s ipSe rv l e tResponse = reques t .

createResponse (S ipServ l e tResponse .SC_OK) ;
115 s ipSe rv l e tResponse . send () ;
116
117 // forwarding the BYE
118 S ipSe s s i on s e s s i o n = reques t . g e tS e s s i on () ;
119 B2buaHelper he lpe r = reques t . getB2buaHelper () ;
120 S ipSe s s i on l i nk edSe s s i on = he lpe r . ge tL inkedSes s ion (

s e s s i o n) ;
121 S ipServ l e tReques t forkedRequest = l i nk edSe s s i on .

c reateRequest ("BYE") ;
122 i f (l og . i s In foEnab l ed ()) {
123 log . i n f o (" forkedRequest " + forkedRequest) ;
124 }
125 forkedRequest . send () ;
126 i f (s e s s i o n != nu l l && s e s s i o n . i sVa l i d ()) {
127 s e s s i o n . i n v a l i d a t e () ;
128 }
129 return ;
130 }
131
132 @Override
133 protec t ed void doCancel (S ipServ l e tReques t r eque s t)

throws Serv le tExcept ion , IOException{
134 i f (l og . i s In foEnab l ed ()) {
135 log . i n f o (" Received Cancel : " + reques t . t oS t r i ng

()) ;
136 }
137 S ipSe s s i on s e s s i o n = reques t . g e tS e s s i on () ;
138 B2buaHelper he lpe r = reques t . getB2buaHelper () ;
139 S ipSe s s i on l i nk edSe s s i on = he lpe r . ge tL inkedSes s ion (

s e s s i o n) ;
140 S ipServ l e tReques t o r i g i na lReque s t = (

S ipServ l e tReques t) l i n k edSe s s i on . g e tAt t r ibute ("
o r i g i na lReque s t ") ;

141 S ipServ l e tReques t cance lRequest = he lpe r .
ge tL inkedS ipServ l e tReques t (o r i g i na lReque s t) .
c r eateCance l () ;

142 i f (l og . i s In foEnab l ed ()) {
143 log . i n f o (" forkedRequest " + cance lRequest) ;
144 }
145 cance lRequest . send () ;
146 }
147
148 @Override
149 protec t ed void doSuccessResponse (S ipServ l e tResponse

s ipSe rv l e tResponse) throws Serv le tExcept ion ,
IOException{

150 i f (l og . i s In foEnab l ed ()) {
151 log . i n f o (" Received : " + s ipSe rv l e tResponse .

t oS t r i ng ()) ;
152 }
153 i f (s ipSe rv l e tResponse . getMethod () . indexOf ("BYE") !=

−1) {
154 S ipSe s s i on s i pS e s s i o n = s ipSe rv l e tResponse .

g e tS e s s i on (f a l s e) ;
155 i f (s i p S e s s i o n != nu l l && s i pS e s s i o n . i sVa l i d ()) {
156 s i pS e s s i o n . i n v a l i d a t e () ;
157 }
158 S ipApp l i c a t i onSe s s i on s i pApp l i c a t i onSe s s i on =

s ipSe rv l e tResponse . g e tApp l i c a t i onSe s s i on (
f a l s e) ;

159 i f (s i pApp l i c a t i onSe s s i on != nu l l &&
s ipApp l i c a t i onSe s s i on . i sVa l i d ()) {

160 s i pApp l i c a t i onSe s s i on . i n v a l i d a t e () ;
161 }
162 return ;
163 }
164
165 i f (s ipSe rv l e tResponse . getMethod () . indexOf ("INVITE")

!= −1) {
166 // i f t h i s i s a re sponse to an INVITE , ACK and

forward OK
167 S ipServ l e tReques t ackRequest =

s ipSe rv l e tResponse . createAck () ;
168 i f (l og . i s In foEnab l ed ()) {

169 log . i n f o (" Sending " + ackRequest) ;
170 }
171 ackRequest . send () ;
172 // c r e a t e and send OK to f i r s t c a l l l e g
173 S ipServ l e tReques t o r i g i na lReque s t = (

S ipServ l e tReques t) s ipSe rv l e tResponse .
g e tS e s s i on () . g e tAt t r ibute (" o r i g i na lReque s t ") ;

174 S ipServ l e tResponse responseToOrig ina lRequest =
or i g i na lReque s t . createResponse (
s ipSe rv l e tResponse . ge tStatus ()) ;

175 i f (l og . i s In foEnab l ed ()) {
176 log . i n f o (" Sending OK on 1 s t c a l l l e g " +

responseToOrig ina lRequest) ;
177 }
178 responseToOrig ina lRequest . setContent (

s ipSe rv l e tResponse . getContent () ,
s i pSe rv l e tResponse . getContentType ()) ;

179 responseToOrig ina lRequest . send () ;
180
181 }
182
183 }
184 @Override
185 protec t ed void doErrorResponse (S ipServ l e tResponse

s ipSe rv l e tResponse)
186 throws Serv le tExcept ion , IOException {
187 i f (l og . i s In foEnab l ed ()) {
188 log . i n f o ("Got : " + s ipSe rv l e tResponse . ge tSta tus

() + " "
189 + s ipSe rv l e tResponse . getReasonPhrase ()) ;
190 }
191 // don ’ t forward the timeout nor the Request

Terminated due to CANCEL
192 i f (s ipSe rv l e tResponse . ge tStatus () != 408 &&

s ipSe rv l e tResponse . ge tStatus () != 487) {
193 // c r e a t e and send the e r r o r re sponse f o r the

f i r s t c a l l l e g
194 S ipServ l e tReques t o r i g i na lReque s t = (

S ipServ l e tReques t) s ipSe rv l e tResponse .
g e tS e s s i on () . g e tAt t r ibute (" o r i g i na lReque s t ") ;

195 S ipServ l e tResponse responseToOrig ina lRequest =
or i g i na lReque s t . createResponse (
s ipSe rv l e tResponse . ge tStatus ()) ;

196 i f (l og . i s In foEnab l ed ()) {
197 log . i n f o (" Sending on the f i r s t c a l l l e g " +

responseToOrig ina lRequest . t oS t r i ng ()) ;
198 }
199 responseToOrig ina lRequest . send () ;
200 }
201 }
202
203 }

A.3 Algorithms for Call Barring Service

Algorithm A.2 CB Service Algorithm A
Result: Call is Forbidden
initialization
Get Request Header information - toUri, fromUri and session
if fromUri = alice and toUri = charlie then

SipServletResponse.SC_FORBIDDEN
else
end

Algorithm A.3 CB Service Algorithm B
Result: Call is not Forbidden 1
initialization
Get Request Header information - toUri, fromUri, diversion and session
if diversion != null then
if session = orig and toUri = bob then

set Session = term
set User Agent = ’someStringvalue’

else
set User Agent = ’differentString’

end
else

r
end
equest.send()

Algorithm A.4 CB Service Algorithm C
Result: Call is not Forbidden 2
initialization
Get Request Header information - toUri, fromUri and session
if session = orig and toUri = bob then

set Session = term
set User Agent = someStringvalue

else
set User Agent = differentString

end
request.send()

A.4 CallBarring.java

1
2 package com . opencloud . s i p s e r v l e t . proxy ;
3
4 import org . apache . l o g 4 j . Logger ;
5
6 import javax . s e r v l e t . S e rv l e tCon f i g ;
7 import javax . s e r v l e t . Se rv l e tExcept ion ;
8 import javax . s e r v l e t . s i p . ∗ ;
9 import java . i o . IOException ;
10 import java . u t i l . ArrayList ;
11 import java . u t i l . L i s t ;
12
13 pub l i c c l a s s Ca l lSc r e en ing extends S i pSe rv l e t implements

S i pS e r v l e tL i s t e n e r {
14
15 p r i va t e s t a t i c Logger l o gg e r = Logger . getLogger (

Ca l lSc r e en ing . c l a s s) ;
16
17 pub l i c Ca l lSc r e en ing () {}
18
19 @Override
20 pub l i c void i n i t (Se rv l e tCon f i g s e r v l e tCon f i g) throws

Serv l e tExcept ion {
21 l ogg e r . i n f o (" Ca l l Screen ing s e r v i c e has s t a r t ed ") ;
22 super . i n i t (s e r v l e tCon f i g) ;
23
24 }
25
26 @Override
27 protec t ed void do Inv i t e (S ipServ l e tReques t r eques t)

throws Serv le tExcept ion , IOException {
28 l ogg e r . i n f o (" Request r e c e i v ed : " + reques t . t oS t r i ng

()) ;
29 St r ing fromUri = reques t . getFrom () . getURI () . t oS t r i ng

() ;
30 St r ing toUri = reque s t . getTo () . getURI () . t oS t r i ng () ;
31 St r ing s e s s i onVa lue = reques t . getHeader (" Se s s i on ") ;
32 l o gg e r . i n f o (fromUri) ;
33 i f (r eque s t . getHeader (" Diver s ion ") != nu l l) {
34 l ogg e r . i n f o (toUri + " w i l l not be sc reened ") ;

35 SipURI u r i = (SipURI) r eque s t . getRequestURI () ;
36 u r i . setHost (" 1 2 7 . 0 . 0 . 1 ") ;
37 u r i . s e tPor t (5060) ;
38 i f (s e s s i onVa lue . conta in s (" o r i g ") && toUri .

conta in s (" bob ")) {
39 reque s t . setHeader (" Se s s i on " , " term ") ;
40 r eque s t . setHeader (" User−Agent " , "

someStr ingvalue ") ;
41 } e l s e {
42 reque s t . setHeader (" User−Agent " , "

NotsomeStringvalue2 ") ;
43 }
44 reque s t . setRequestURI (u r i) ;
45 r eque s t . getProxy () . proxyTo (reque s t . getRequestURI

()) ;
46
47 } e l s e {
48 i f (fromUri . conta in s (" a l i c e ") && toUri . conta in s (

" c h a r l i e ")) {
49 l ogg e r . i n f o ("The c a l l i s to "+ toUri) ;
50 l o gg e r . i n f o ("The c a l l i s from " +fromUri

) ;
51 l o gg e r . i n f o (toUri + " i s sc reened ") ;
52 S ipServ l e tResponse s ipSe rv l e tResponse =

reques t . createResponse (
S ipServ l e tResponse .SC_FORBIDDEN) ;

53 s ipSe rv l e tResponse . send () ;
54 } e l s e {
55 l ogg e r . i n f o (toUri + " has not been

screened ") ;
56 SipURI u r i = (SipURI) r eque s t .

getRequestURI () ;
57 u r i . setHost (" 1 2 7 . 0 . 0 . 1 ") ;
58 u r i . s e tPort (5060) ;
59
60 i f (s e s s i onVa lue . conta in s (" o r i g ") && toUri .

conta in s (" bob ")) {
61 reque s t . setHeader (" Se s s i on " , " term ") ;
62 r eque s t . setHeader (" User−Agent " , "

someStr ingvalue ") ;
63 } e l s e {

64 reque s t . setHeader (" User−Agent " , "
d i f f e r e n t S t r i n g ") ;

65 r eque s t . setHeader (" Se s s i on " , " term ") ;
66 }
67 reque s t . setRequestURI (u r i) ;
68 r eque s t . getProxy () . proxyTo (reque s t .

getRequestURI ()) ;
69
70 }
71 }
72 }
73
74 @Override
75 protec t ed void doBye (S ipServ l e tReques t req) throws

Serv le tExcept ion , IOException{
76 l ogg e r . i n f o ("No BYE f o r c a l l s c r e en ing ") ;
77 }
78
79
80 @Override
81 pub l i c void s e r v l e t I n i t i a l i z e d (SipServ letContextEvent

s ipServ le tContextEvent) {
82 l ogg e r . i n f o (" Ca l l Screen ing has been i n i t i a l i z e d ") ;
83 }
84 }

AppendixBAppendix B

B.1 Trigger1.xml

1
2 <t r i g g e r xmlns=" h t tp : //www. opencloud . com/SIS/Tr igger "
3 xmlns : s ip=" h t tp : //www. opencloud . com/SIS/Tr igger /SIP "
4 xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−i n s t ance "
5 xs i : s chemaLocat ion=" h t tp : //www. opencloud . com/SIS/Tr igger /

SIP s ip−s i s −t r i g g e r −1.5 . xsd
6 h t tp : //www. opencloud . com/SIS/Tr igger

s i s −t r i g g e r −1.5 . xsd ">
7
8 <de s c r i p t i o n>
9 Runs the o r i g i n a t i n g compos it ion i f an o r i g i n a t i n g

INVITE reques t i s r e c e i v ed .
10 </ d e s c r i p t i o n>
11
12 <t r i g g e r −name>Screen</ t r i g g e r −name>
13 <t r i g g e r −vendor>OpenCloud</ t r i g g e r −vendor>
14 <t r i g g e r −ve r s i on>1 .0</ t r i g g e r −ve r s i on>
15
16 <t r i g g e r −p r i o r i t y>15</ t r i g g e r −p r i o r i t y>
17
18 <composit ion−r e f>
19 <composit ion−name>S−Trigger Handling</ composit ion−

name>
20 <composit ion−vendor>OpenCloud</ composit ion−vendor>
21 <composit ion−ve r s i on>1 .0</ composit ion−ve r s i on>
22 <composit ion−a l i a s>S−Trigger</ composit ion−a l i a s>
23 </ composit ion−r e f>
24

73

25 <!−− Trigger on INVITE reques t with " o r i g " Route header
parameter . −−>

26 <on−cond i t i on>
27 <and>
28 <equal a=" ${method} " b="INVITE" />
29 <st r ing−conta in s source=" ${ Se s s i on } " sub s t r i ng=" o r i g

" />
30 </and>
31 </on−cond i t i on>
32
33 <s e l e c t>
34 <!−− SIS w i l l lookup the sub s c r i b e r address in i t s

s ub s c r i p t i on p r o f i l e s ,
35 and s e l e c t the o r i g i n a t i n g composit ion , i f

a v a i l a b l e −−>
36 <composit ion−a l i a s −r e f>S−Trigger</ composit ion−a l i a s −

r e f>
37 </ s e l e c t>
38
39
40 </ t r i g g e r>

B.2 Trigger2.xml

1
2 <t r i g g e r xmlns=" h t tp : //www. opencloud . com/SIS/Tr igger "
3 xmlns : s ip=" h t tp : //www. opencloud . com/SIS/Tr igger /SIP "
4 xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−i n s t ance "
5 xs i : s chemaLocat ion=" h t tp : //www. opencloud . com/SIS/Tr igger /

SIP s ip−s i s −t r i g g e r −1.5 . xsd
6 h t tp : //www. opencloud . com/SIS/Tr igger

s i s −t r i g g e r −1.5 . xsd ">
7
8 <de s c r i p t i o n>
9 Runs the o r i g i n a t i n g compos it ion i f an o r i g i n a t i n g

INVITE reques t i s r e c e i v ed .
10 </ d e s c r i p t i o n>
11
12 <t r i g g e r −name>ForwardScreen</ t r i g g e r −name>
13 <t r i g g e r −vendor>OpenCloud</ t r i g g e r −vendor>
14 <t r i g g e r −ve r s i on>1 .0</ t r i g g e r −ve r s i on>
15
16 <t r i g g e r −p r i o r i t y>10</ t r i g g e r −p r i o r i t y>
17
18 <composit ion−r e f>
19 <composit ion−name>FS−Trigger Handling</ composit ion−

name>
20 <composit ion−vendor>OpenCloud</ composit ion−vendor>
21 <composit ion−ve r s i on>1 .0</ composit ion−ve r s i on>
22 <composit ion−a l i a s>FS−Trigger</ composit ion−a l i a s>
23 </ composit ion−r e f>
24
25 <!−− Trigger on INVITE reques t with " o r i g " Route header

parameter . −−>
26 <on−cond i t i on>
27 <and>
28 <equal a=" ${method} " b="INVITE" />
29 <st r i ng−conta in s source=" ${ Se s s i on } " sub s t r i ng=" term "

/>
30 </and>
31 </on−cond i t i on>
32
33 <s e l e c t>

34 <!−− SIS w i l l lookup the sub s c r i b e r address in i t s
s ub s c r i p t i on p r o f i l e s ,

35 and s e l e c t the o r i g i n a t i n g composit ion , i f
a v a i l a b l e −−>

36 <composit ion−a l i a s −r e f>FS−Trigger</ composit ion−a l i a s
−r e f>

37 </ s e l e c t>
38
39 </ t r i g g e r>

B.3 compositionScreen.xml
1 <compos it ion xmlns=" h t tp : //www. opencloud . com/SIS/Composition

"
2 xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−i n s t ance "
3 xs i : s chemaLocat ion=" h t tp : //www. opencloud . com/SIS/

Composition s i s −composit ion −1.6 . xsd ">
4
5 <composit ion−name>S−Trigger Handling</ composit ion−name>
6 <composit ion−vendor>OpenCloud</ composit ion−vendor>
7 <composit ion−ve r s i on>1 .0</ composit ion−ve r s i on>
8
9 <s c r i p t>

10 <invoke s e r v i c e=" Screen ing " />
11 </ s c r i p t>
12
13 <debug−l e v e l>0</debug−l e v e l>
14 <audit>f a l s e</ audit>
15 </ compos it ion>

B.4 compositionForwardScreen.xml
1 <compos it ion xmlns=" h t tp : //www. opencloud . com/SIS/Composition

"
2 xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−i n s t ance "
3 xs i : s chemaLocat ion=" h t tp : //www. opencloud . com/SIS/

Composition s i s −composit ion −1.6 . xsd ">
4
5 <composit ion−name>FS−Trigger Handling</ composit ion−name>
6 <composit ion−vendor>OpenCloud</ composit ion−vendor>
7 <composit ion−ve r s i on>1 .0</ composit ion−ve r s i on>
8
9 <s c r i p t>
10 <invoke s e r v i c e=" Forwarding " />
11 < i f><present va r i ab l e=" ${ d i v e r s i o n } " />
12 <then>
13 <as s i gn toVar iab l e=" ${NewDiversion} " value=" ${

d i v e r s i o n } " />
14 <de l e t e v a r i ab l e=" ${ d i v e r s i o n } " />
15 <invoke s e r v i c e=" Screen ing " />
16 <as s i gn toVar iab l e=" ${ d i v e r s i o n } " value=" ${

NewDivers ion iver s ion } " />
17 </then>
18 </ i f>
19 </ s c r i p t>
20
21 <debug−l e v e l>0</debug−l e v e l>
22 <audit>f a l s e</ audit>
23 </ compos it ion>

AppendixCAppendix C

C.1 OpenSIPs Configuration File (opensips.cfg)
i f (is_method (" INVITE ")) {

x log("−−−−−−−−−−−−$ua−−−−−−−−−−−−−−−−−−−");
x log("−−−−−$hdr (Se s s i on)−−−−−−−−−−");
i f (! i s_present_hf (" Se s s i on ") && $ua !=" someStringValue ") {

x log("−−−−−−block 1 −−−− f i r s t r ewr i t e ") ;
r ewr i t eho s tpo r t (" 1 9 2 . 1 6 8 . 5 6 . 1 : 6 0 6 0 ") ;
append_hf (" Se s s i on : o r i g \ r \n ") ;

} e l s e {
i f ($hdr (Se s s i on) == " term " && $ua == " someStringValue "){
x log("−−−−−block 2−−−− second r ewr i t e ") ;
r ewr i t eho s tpo r t (" 1 9 2 . 1 6 8 . 5 6 . 1 : 6 0 6 0 ") ;
}

}
do_accounting (" l og ") ;

}

79

C.2 Wireshark Trace (Frame 34 Full)
Frame 34 : 1298 bytes on wire (10384 b i t s) ,

1298 bytes captured (10384 b i t s) on i n t e r f a c e 0
Linux cooked capture
In t e rn e t Protoco l Vers ion 4 , Src : 1 9 2 . 1 6 8 . 5 6 . 1 ,

Dst : 1 92 . 1 68 . 5 6 . 1
User Datagram Protocol , Src Port : 6060 , Dst Port : 5062
Se s s i on I n i t i a t i o n Protoco l (INVITE)

Request−Line : INVITE s ip : bob@192 . 1 6 8 . 5 6 . 1 : 6 0 6 0 SIP /2 .0
Message Header

Record−Route : <s i p : 1 2 7 . 0 . 0 . 1 ; l r >
Via : SIP /2 .0/UDP 192 . 1 6 8 . 5 6 . 1 : 6 0 6 0 ; oc−node=101; rpor t ;

branch=z9hG4bKU94Bd−EoaRzjixzCL−D3uA; ext ,
SIP /2 .0/UDP 12 7 . 0 . 0 . 1 : 5 0 6 0 ;
branch=z9hG4bK068a . c6df694 . 0

Via : SIP /2 .0/UDP
192 . 1 6 8 . 0 . 2 1 5 : 6 0 5 0 ; r e c e i v ed =127 . 0 . 0 . 1 ; rpor t =6050;
branch=z9hG4bK489798323

From : <s i p : a l i ce@127 . 0 . 0 . 1 : 5 060 > ; tag=1250587550
To : <s i p : bob@127 .0 .0 . 1 : 5060 >
Call−ID : 1486688370
CSeq : 20 INVITE
Contact : <s i p : a l i ce@127 .0 .0 . 1 : 6050 >
Content−Type : app l i c a t i o n /sdp
Allow : INVITE ,ACK,CANCEL,OPTIONS,BYE,REFER,NOTIFY,

MESSAGE,SUBSC RIBE, INFO
Max−Forwards : 69
User−Agent : Linphone /3 . 6 . 1 (eXosip2 / 4 . 1 . 0)
Subject : Phone c a l l
Content−Length : 439
Se s s i on : o r i g
P−hint : outbound
Route : <s i p : 1 9 2 . 1 6 8 . 5 6 . 1 : 5 0 6 2 ; l r >,

<s i p : aqg9Lw .0@192 . 1 6 8 . 5 6 . 1 : 6 0 6 0 ; oc−node=101; l r ;
t r anspor t=udp>

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

M
as

te
r’

s
th

es
is

Fairooz Zafar

IMS Service Orchestration and
Interaction Challenges

Master’s thesis in Master's of Science in Communication
Technology
Supervisor: Mazen Malek Shiaa

June 2019

	List of Figures
	List of Acronyms
	Introduction
	Background
	Motivation
	Methodology
	Thesis Outline

	IMS Service Architecture
	Protocols
	Databases
	Home Subscriber Server(HSS)
	Subscriber Locator Function(SLF)

	IMS Core Architecture
	Access and Transport Layer
	Control Layer
	Service Layer

	Service Profiles
	Limitations of iFC

	Service Interaction in IMS
	Introduction
	Feature Interaction Scenario
	Interaction Management in Existing System
	3GPP Standardization
	3GPP Technical Report: TR 23.810
	Existing SCIM Products
	Lucent Service Broker™
	Rhino Service Interaction SLEE(SIS)

	Necessity for SCIM Standardization

	Experiments with Feature Interaction and SCIM
	Implementation Choice
	Implementation Tools
	Rhino TAS
	Rhino SIS
	OpenSIPS

	Creation of Services
	Call Barring Service
	Call Forwarding (Unconditional) Service

	Experimental Setup
	SIP Messages in the Experiment
	Interaction Management with Rhino SIS
	Limitations of Implementations

	Results
	Wireshark Trace
	Findings from the Experiment

	Discussion
	Functional Requirements
	Non-functional Requirements
	Architectural Choice
	Evaluating Existing SCIM Products
	Lucent Service Broker™
	Rhino Service Interaction SLEE(SIS)

	Conclusion
	References
	Appendix A
	Algorithm for Call Forwarding (Unconditional) Service
	CallForwarding.java
	Algorithms for Call Barring Service
	CallBarring.java

	Appendix B
	Trigger1.xml
	Trigger2.xml
	compositionScreen.xml
	compositionForwardScreen.xml

	Appendix C
	OpenSIPs Configuration File (opensips.cfg)
	Wireshark Trace (Frame 34 Full)

