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Abstract

Human activity recognition aims to identify patterns in data generated
through human activity. This activity commonly describes movement and
can be gathered through a plethora of sensors. Given their low price and
accessibility, accelerometers are frequently the sensor of choice in studies
aiming to analyze and classify human activity. When body-worn, these
sensors are part of small systems that must gather data and transmit
it in real-time through wireless networks, and whose battery usage is of
critical importance.

Proposed in this master’s thesis is a comparison of systems that aim to
recognize and classify human activity, but make use of lowered amounts
of data. Fewer data samples are used in order to save battery and allow
for lengthier usage of the sensors, but have a negative impact on the
performance of the classifier.

By comparing multiple implementations with different parameters,
this master’s thesis proposes six systems that have near-state-of-the-art
performance, with F1 scores over 87%, and use as little as 1,910 samples
to label over 24h of human activity. Compared to previous studies, a loss
of 2% precision is accompanied by 30 times more efficient battery usage
and is considered a beneficial compromise for future systems.

Throughout this master’s thesis over 16,000 different systems are
tested, in which different sampling rates, window sizes, and window
distances are varied to observe the effects on the system’s performance.
Certain implementations appear to have common traits that make them
more resilient to using lower amounts of samples, such as the usage of
longer windows with lengthier window distances.
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Chapter1Introduction

In the last years, the amount of data recorded, transmitted, and stored has grown
exponentially. Smartphones’ connectivity and capabilities have allowed the concept
of Big Data to consolidate itself. Among these capabilities are accelerometers capable
of constant recording and sending of acceleration data. A whole range of studies has
appeared recently from this increment in human activity data. Specifically, studies
that take huge amounts of accelerometer readings and train an artificial intelligence
(henceforth AI) so that the AI can make an informed decision on what was the
carrier physically doing at any moment. These applications are commonly known as
recognizers that perform Human Activity Recognition (HAR).

1.1 Problem

As smartphones become smaller and more computationally powerful, their battery-
life naturally decreases. This affects how much data can be gathered with the
aforementioned accelerometers. In HAR studies, there are two leading factors for
battery consumption: The use of the accelerometers, and the transmission of data
through the network. On the one hand, in order to make the network use more efficient,
compression techniques are available. On the other hand, using the accelerometer
less, directly translates into less power being used by it, as well as the network being
used less often. For example, if we move from sampling 20 times a second (20Hz) to
a 10Hz sampling rate, we would be using half the energy on the transmission as well
as half the energy on the accelerometer sampling.

By reducing the sampling rate in HAR studies, an effect on the system’s precision
can be noticed. Multiple studies use different sampling rates in order to get the
highest precision possible, but there is no consensus on what is the most energy
efficient sampling rate. The problem that is seen is that there is no standard when
setting a sampling rate for accelerometers in human activity recognition. This causes
studies apparently looking for the same, which is identifying human activity through

1



2 1. INTRODUCTION

accelerometer data, to use completely different sampling rates, ranging between 1Hz
and 200Hz with similar reported results.

1.2 Objective

Proposed in this thesis is a study of the effect of varying the sampling rate when
performing HAR. The objective is that of evaluating how does lowering the
amount of data gathered per second affect the overall precision of the
system. By researching the impact of sampling at different frequencies on the same
system, a guideline following the efficiency (performance opposed to the amount of
samples used) can be established.

Devices engineered to gather and send accelerometer data are small and wearable,
given their purpose. Small size limits the available battery-life of these devices.
Making them more efficient in their functions is one of the ways to have lengthier and
more thorough studies. Nonetheless, losing precision is never wanted in this scenario
and limits the possibilities greatly. The loss of precision may be an acceptable
trade-off for some studies, and is why the aim of our research is that of giving a
relationship between lowering the sampling rate and the effect on the performance.
Instead of trying to provide a desired rate of measurement, which would depend
on each study carried out, a Pareto optimatility is presented so as to allow future
studies to select the minimum sampling rate for their desired precision.

1.2.1 Research questions

The objective of this master’s thesis is to explore the resilience of Human Activity
Recognitors to lower sampling rates.

· Goal 1: Train different Random Forest classifiers with variations of the same
dataset using distinct sampling rates.

- Research question 1: What is the minimum amount of training data re-
quired to have a dependable Random Forest?

- Research question 2: How does the usage of windowing techniques affect
the dependence of Random Forests in high sampling rates?

· Goal 2: Establish a Pareto Front comparing the performance of all the tested
systems with the amount of samples used for training each one of them.

- Research question 3: Which type of machine learning is more vulnerable
to lowering the training set’s sampling rate?

- Research question 4: What is the most efficient system to be implemented?



Chapter2Theoretical knowledge

This master’s thesis implements and compares Human Activity Recognition (HAR)
systems. Before explaining the designed experiments and the conclusions drawn
from them, a theoretical explanation of HAR systems and everything they involve is
required. Therefore, this section aims to make clear any knowledge required to be
able to understand the other sections.

2.1 Human activity recognition

In computer science, HAR aims to identify human data segments and label them
according to a subset of activities. In A survey on human activity recognition using
wearable sensors written by Lara and Labrador [LL13] the HAR problem is described
as follows:

Given a set S = {S0, ..., Sk−1} of k time series, each one from a particular
measured attribute, and all defined within time interval I = [tα, tω], the
goal is to find a temporal partition 〈I0, ..., Ir−1〉 of I, based on the data
in S, and a set of labels representing the activity performed during each
interval Ij (e.g., sitting, walking, etc.). This implies that time intervals Ij

are consecutive, non-empty, non-overlapping, and such that ∪r−1
j=oIj = I.

Activities are expected to be unique, identifiable, and non-simultaneous; and the
HAR task is that of labeling them correctly. In order to tackle this task Bulling et al.
[BBS14] define a method called Activity Recognition Chain (henceforth ARC), shown
in Figure 2.1. The ARC procedure outlines five subsequent steps that transform a
raw data input into a class label of that input.

3



4 2. THEORETICAL KNOWLEDGE

Figure 2.1: The Activity Recognition Chain, adapted from Bulling et al. [BBS14]

2.1.1 Data collection

As described by Bulling et al. [BBS14], the first stage of any ARC pipeline is the
acquisition of raw data by sensors attached to the body. This is used as input data
for the system. State-of-the-art systems can also include external sensors, such as
cameras, for a refinement of the data acquisition or for the generation of labeled data
to be used as training examples. When working with accelerometer data, the use of
multiple sensors is notable. This offers the chance of generating specifically useful
features such as computing the angle between the acceleration vectors.

Sensors

The use of body-worn sensors for the collection of data is the current state-of-the-art
methodology. In the recent literature, examples using accelerometers, gyroscopes,
and electrocardiograms are noticeable. Commercially, GPS, pedometers, and cameras
have been successfully used; examples can be seen in PokemonGO1, Xbox Kinect2,
and Google Fit3 [PKA+17][PNW12].

Accelerometers are the most widespread body-worn sensor. Their small size,
low cost, light weight, and high battery-efficiency make them an optimal choice for
studies on HAR. Accelerometers measure proper acceleration, that is the physical
acceleration measured by an object [Rin12, p. 150]. An accelerometer experiencing
free-fall would measure a proper acceleration of zero, and one resting on the surface
of the Earth would register an upwards acceleration vector of g ≈ 9.81m/s2. When
used for HAR, tri-axial accelerometers are the preferred sensor, as they allow the
generation of proven features; uni-axial accelerometers, however, have also been tested
and report high result correlation to the state-of-the-art tri-axial accelerometers
[VBD+12].

1 https://www.pokemongo.com/en-us/
2 https://support.xbox.com/en-US/xbox-360/accessories/kinect-sensor-setup
3 https://www.google.com/fit
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Sampling frequency

According to the Nyquist–Shannon sampling theorem, there is a correlation between
continuous-time and discrete-time signals. This correlation allows the establishment
of a discrete sampling rate in order to negate the loss of information when measuring
a limited bandwidth continuous-time signal. As defined by Shannon [Sha98]:

If a function f(t) contains no frequencies higher than W cps4, it is
completely determined by giving its ordinates at a series of points spaced
1/2W seconds apart.

All voluntary human movements are contained below the 20Hz threshold [KNM+06].
So in order to fully measure human activity, the sampling frequency of a discrete-time
measuring device, such as an accelerometer, needs to be twice the amount of the
movement’s frequency. By following t = n

2W , an upper bound is set at 40Hz required
for the lossless measurement of any voluntary human movement.

2.1.2 Data Pre-processing

The second stage of the ARC consists of a common preparation across all the
different sample sets. According to Bulling et al. [BBS14] frequent procedures "may
involve calibration, unit conversion, normalization, resampling, synchronization, or
signal-level fusion". Labeling the data for training the classifier is also done in the
pre-processing step.

Synchronization

Each sensor samples at a specific rate, but it may dynamically vary its frequency,
for example for power-saving. In the second stage, all sensors are synchronized and
adapted to a single time frame. Moreover, sample sets from different subjects are
also integrated in the common time frame. In order to synchronize the data, studies
commonly include recognizable patterns such as shaking the sensors, or executing
specific activities, such as clapping or jumping [Våg17, p. 57].

2.1.3 Data segmentation

In the third stage the dataset is divided according to each encountered activity. This
process is defined by Bulling et al. [BBS14] as spotting: the identification of data
segments likely to contain activities. Each data segment will include a timestamp
marking the start and another one marking the end: Wi = (t1, t2). The activity
segment is then composed of all the data segments defining that activity. In HAR

4 Cycles per second
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studies, data segments are defined as windows, which are used to generate features
for the classifier. Windows can either be fixed or dynamic in size.

Dynamic windows tend to encompass a whole single activity segment as a unique
data segment. The difficulty of properly setting up dynamic windows comes from
the pre-processing stage. The previous removal of artifacts and noise from the
data facilitates this process. The inclusion of specific activities, such as shaking
the sensors or clapping, also eases this process. According the Krishnan and Cook
[KC14], dynamic windows offer potential results compared to static segments, but
exclusively on binary-classification problems where the classifier is requested to
answer a true/false question. Experimented by Kozina et al. [KLG11] it is possible
to translate an activity classification problem to a binary question, by detecting
activity intensities instead of specifically identifying the current activity.

Fixed-size windows are the widespread segmenting approach for HAR. As opposed
to dynamic windowing, all data segments have a fixed amount of samples, and the
distance between t1 and t2 is a constant and known value. Using fixed-size windows
makes the classification task easier for the classifier. When assigning labels for the
training set, windows including more than one activity may be either removed for
clarity, or changed to transition labels [HT16, p. 48]. In successful previous HAR
studies, window sizes typically range from a tenth of a second to several seconds, and
depend on the activity to be recognized. Too short windows might not describe the
activity accurately, and too long windows might include several activities that get
discarded [LL13].

2.1.4 Feature Generation

In order for the HAR system to assign labels to a window, a classifier is used. As
explained by Lara and Labrador, it would be nearly impossible for two signals repre-
senting the same activity to be identical [LL13]. Hence the need for applying feature
extraction methodologies: "filtering relevant information and obtaining quantitative
measures that allow signals to be compared". Feeding features to the classifier greatly
reduces its requested workload, since the same information is represented with less
data. For example, two simple yet useful features to represent a window of data are
its mean and standard deviation, as used by Nakajima et al. [PFN06]. Roughly, if a
3s window sampled at a 100Hz were to be represented by those two features, the
total amount of data used as input for the classifier would be 150 times lower, making
feature extraction a powerful tool. Fewer inputs for the classifier reduce training and
testing times, and allow faster iterations when setting up a HAR system, making it
attractive for studies such as this thesis. Noisy sets can also be cleaned up by using
feature selection, which reduces overfitting from the classifier.
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Two types of statistical features are commonly seen in studies focusing on HAR.
These are time-domain features and frequency-domain features [PGKH08]. Time-
domain refers to properties that describe the data over time, equivalent to the raw
signal; as opposed to frequency-domain, where the data is described in relation to
the repetition of its characteristics. Besides statistical features, HAR studies use
other features, for example Structural features. As described by Olszewski [Ols01],
structural features encompass complimentary information on the subject, such as its
heart rate, which can help identify the ongoing activity.

Time-domain features:

A type of statistical features, time-domain features are extracted directly from the
sensor data. The generation process includes a data collection step followed by all
the calculations described for each feature. The data window can then be expressed
as a single feature, or as a collection of features to be fed to the classifier.

Time-domain features can be calculated directly with the raw data, and are,
therefore, inexpensive to generate. According to Khan et al. [KTKL14] and [KSL13],
accuracies of over 90% can be achieved with the use of these features, while still
benefiting from low energy consumption by the sensor system and the activity
recognizer. The time-domain features used throughout this thesis are listed and
described in Table 2.1.

Frequency-domain features:

Another type of statistical features, frequency-domain features are extracted from
a frequency-domain transformation of the sensor data. By expressing movement
as a repetition of acceleration vectors through time, periodic characteristics of
movement can be noticed. Frequency-domain features allow the extrapolation of the
repetitiveness from a movement, thus approaching the nature of the movement. As
an example, the action of walking can be similarly described across different people
if reduced to the repetitive task of lifting and advancing one foot after the other.
The frequency-domain features used throughout this thesis are listed and described
in Table 2.2.

In order to transform a raw signal to a frequency, Fourier analysis (FA) is employed.
FA decomposes a function and represents it as an addition of oscillatory components.
A visualization of the process is depicted in Figure 2.2.
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Name Definition Description

Mean x̃ = 1
n

n∑
i=1

xi
Arithmetic mean of
values for an axis.

Standard deviation sx =

√√√√ 1
n

n∑
i=1

(xi − x̃2)
Root of the uncorrected
variance (the average squared
distance from the mean).

Skewness bx =
1
n

∑n

i=1
(x−x̃3)

s3
x

How “skewed” the distribution
of values are around the mean.

Magnitude max,
mean, and SD

mi =
√
x2

i + y2
i + z2

i

The maximum, mean, and
standard deviation of the
magnitude of the signal.

Correlation rxy =
∑n

i=1
(xi−x̃)(yi−ỹ)

(n−1)sxsy

Pearson’s product-moment
coefficient. The degree of linear
dependence between two series.

Zero cross rate zcrx =
∑n

i=2
|sgn(xi)−sgn(xi−1)|

2(n−1)

Number of times the signal’s
value changes from negative
to positive and vice versa.

Mean cross rate mcrx =
∑n

i=2
|sgn(xi−x̃)−sgn(xi−1−x̃)|

2(n−1)

Number of times the signal’s
value changes from over to
under the mean and vice versa.

Root square mean x̃ =

√√√√ 1
n

n∑
i=1

x2
i

The root of the mean
of the squared values.

Energy Ex =

√√√√ n∑
i=1

(xi − x̃)2 A measure of the
signal’s strength.

Range max(x)−min(x) Difference between maximum
and minimum of a sequence.

Table 2.1: Time-domain features
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Figure 2.2: Fourier analysis of a period square wave. Each row adds a new
periodic function. The second column superimposes them; the third column adds
them; and the last column shows the amplitude of each periodic function. Source:
https://commons.wikimedia.org/wiki/File:Fourier_synthesis.svg

2.1.5 Classification

The last stage is where an activity label is assigned to each window. The classification
task. Commonly used in HAR systems are supervised learning algorithms. In
supervised learning, previously labeled data is used as training data for a classifier,
which, once trained, will be capable of labeling previously unseen data. Throughout
the literature focusing on HAR, multiple types of supervised machine learning
solutions are noticeable. Mainly: Support Vector Machines, k-Nearest Neighbors,
Random Forests, and Artificial Neural Networks, among others [PNW12, KTKL14,
KNM+06]. The implemented classifier for this thesis is a Random Forest classifier,
which is explained in detail in the following section.

https://commons.wikimedia.org/wiki/File:Fourier_synthesis.svg
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Name Definition Description

Mean amplitude ã = 1
k

k∑
j=0

ai
The arithmetic mean
of the amplitudes.

Amplitude
standard deviation

sa =

√√√√ 1
k

k∑
j=0

(ai − ã)2 The root of the uncorrected
variance for all the amplitudes.

Maximum amplitude max(a) The maximum amplitude.

Spectral centroid sca =
∑k

j=0
aj×fj∑k

j=0
aj

Analogous to the center of mass
of the frequencies if one regards
the amplitude aj as analogous
to volume and the frequency fj

as analogous to density.

Dominant frequency f(argmaxja) The frequency with
the maximum amplitude.

Spectral entropy
pj = a2

j∑k

j=0
a2

j

H = −
∑k

j=0 pj log(pj)
The disorder in the spectrum.

Table 2.2: Frequency-domain features

2.2 Machine learning

An agent is considered to be learning if its performance on a task improves after
making observations about the world [RN16]. Specifically in machine learning,
the agent is trained with input-output pairs, and will, afterwards, be tested by
determining the output of new inputs.

Supervised learning:

In supervised learning the agent must fabricate a function that maps inputs to
outputs by observing a number of given input-output pairs. As defined by Russell
and Norvig [RN16] the task is the following:

Given a training set of N example input–output pairs

(x1, y1), (x2, y2), ..., (xN , yN ),

where each yj was generated by an unknown function y = f(x), discover
a function h that approximates the true function f .
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The before mentioned input-output pairs correspond to (xi, yi) pairs. The function
h is a hypothesis function that will be tested by using a test set. The test set is
composed of examples distinct from those in the training set, and the test will yield
the accuracy of the function h. If the learning problem outputs a single value from a
finite set of options, it’s called a classification problem. In HAR, the system is asked
for a label that identifies an activity (walking, standing, sitting, among others) and
is, therefore, a classification problem.

2.2.1 Random Forest

Random Forest is an ensemble learning classification model. Ensemble learning
refers to the usage of multiple learning algorithms for the prediction of the classifier.
Random forests work as large collections of single decision trees bagged together to
form a forest. The bagging algorithm is outlined in Algorithm 2.1; each individual
tree is trained independently with a subset of the training data set.

Algorithm 2.1 Random forest - Tree bagging
for b = 1 to B do

Sample, with replacement, n training examples from X,Y ; call these Xb, Yb.
Train a classification or regression tree fb on Xb, Yb.

end for

In order to output a single, common, decision, each tree’s output is used to form
a mean result of the forest, in the form of output = 1

B

∑B
b=1 fb(x′). In classification

problems, where the output is a value among a finite set of options, a majority vote
indicates the output of the forest.

Decision trees:

A decision tree is the representation of a function that transforms a vector of
attributes into a single output value [RN16]. If the value can only be one from a
list of predetermined outputs the task of the decision tree is that of classifying the
input. When there are only two classes, the task is called binary classification, the
output will be either true or false. In HAR, the classes, or labels, tend to be activities
such as running; and the attribute vectors tend to be features describing the human
activity such as acceleration vectors.

A learned tree takes the form of a set of if − then rules. In order to classify
a new instance, the tree is traversed from the root node downwards until a leaf
node is reached. Trees are composed of a single root node and branches emerging
from it. The branches can then lead to another subtree that repeats the process.
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Node-branch combinations can represent question-answer combinations, or attribute-
value combinations. The last node on each branch line is called the leaf node, and
represents the final classification, or output, of that decision tree.

The process of generating a Decision tree from a set of attribute-class pairs is
exemplified by Figure 2.3, the decision tree obtained from Table 2.3. This example
is adapted from [Qui86, p. 87], and illustrates the reasoning behind a golf player and
whether or not he would play on a Sunday, based on the weather.

Outlook Temperature Humidity Windy Plays?
Rain Hot High False no
Rain Hot High True no

Overcast Hot High False yes
Sun Mild High False yes
Sun Cold Normal False yes
Sun Cold Normal True no

Overcast Cold Normal True yes
Rain Mild High False no
Rain Cold Normal False yes
Sun Mild Normal False yes
Rain Mild Normal True yes

Overcast Mild High True yes
Overcast Hot Normal False yes

Sun Mild High True no

Table 2.3: Weather observations and whether or not golf was played. Adapted from
[Qui86].

Figure 2.3: The decision tree resulting from training with the data in Table 2.3.
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2.3 Quality metrics

This chapter has been explaining concepts as they were necessary throughout the
logical implementation of a Human Activity Recognition system. After implementing,
training, and testing the classifier, the system would be done per se. Metrics implanted
to evaluate the performance of the system will now be introduced. These include
indicators of how well the system performs in its predictions as well as which classes
are more confusing for the system. One example of such metrics is the confusion
matrix, explained in Table 2.4.

Predicted class

Actual class
Class = Yes Class = No

Class = Yes True Positive False Negative
Class = No False Positive True Negative

Table 2.4: This table displays a confusion matrix of a binary classifier. True values
are instances where both the predicted and actual class coincide: True Positives (TP)
and True Negatives (TN). False values indicate wrong predictions: False Positives
(FP) and False Negatives (FN). Positives mean that the prediction is Y es, and
Negatives the opposite, No.

Accuracy is the percentage of correct predictions:

Accuracy = TP ∪ TN
TP ∪ TN ∪ FP ∪ FN

Precision denotes the percentage of actual positives among the total amount of
predicted positives; it reflects how true is it when the system predicts a Yes:

Precision = TP

TP ∪ FP

Recall denotes the percentage of correctly predicted positives among the total
amount of positives; it reflects how likely the system is to predict Yes when the
actual value is a Yes:

Recall = TP

TP ∪ FN

F-Score is the harmonic average of the system’s precision and recall, and is an
estimate of how good the system is at performing its task:
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F1Score = 2× Precision×Recall
Precision+Recall

In addition to the aforementioned metrics, classification systems make use of
confusion matrices, such as the one in Table 2.5. Confusion matrices display the
amount of classified instances for each single class, differentiating it between what
it should and what it was classified as. This means that the diagonal going from
the top-left to the bottom-right marks the true positives. Anything labeled outside
this diagonal is an incorrect classification. Confusion matrices are 2× 2 for binary
classifiers, such as that in Table 2.4, or n× n where n is the finite amount of classes,
such as that in Table 2.5. Confusion matrices are very useful when identifying difficult
classes, since they clearly display the amount of instances correctly classified, as well
as what was the output for incorrect classifications. For example, for the matrix
displayed in Table 2.5 it would be concluded that the classifier struggles the most
with the standing and the walking labels. In this example, it could be determined,
for example, that the features describing the dataset should be tailored so that these
two labels are better differentiated.

Predicted

Actual

standing walking bending transition sitting
standing 3926 85 8 0 0
walking 52 572 1 11 0
bending 3 1 75 1 0
transition 0 3 1 53 0
sitting 0 0 0 4 14521

Table 2.5: This table displays a confusion matrix of a HAR classifier.



Chapter3Background and related work

A specialization project was conducted prior to this thesis where a variety of papers
were studied. These consisted of several studies describing well performing HAR
systems and well as studies on other classifiers using machine learning. The contents
of this chapter are extracted and adapted from that project.

3.1 Motivation

In the process of starting a new study, there are always certain assumptions or facts
that are taken from previous work. In some scenarios, limitations of the hardware
used or the available resources set the bases of the research. In the specific scenario
where a new study on human activity recognition takes place, a recurring lack
of explanation on why a certain sampling rate of the accelerometer is used can
be observed [MMH17]. The instinctive explanation may be one of the following,
or a combination thereof: (a) the sampling rate was given by the accelerometer’s
capabilities; (b) the sampling rate was not the focus of the study, and therefore
it wasn’t experimented with; (c) the used sampling rate was taken from previous
research. Explanations (a) and (b) were found to be most commonly used to explain
a chosen sampling rate. Only two papers were found [LKK11, BKV+97] using a
sampling rate based on previous research by Karantonis et al. [KNM+06]. The latter
proved that all human activity was lower than 20Hz and could therefore be captured
by sampling at that frequency. The following questions started to appear: Why is the
choice of sampling rate not sufficiently justified in most HAR studies? And: What is
an optimal sampling rate for HAR?

3.2 Literature analysis

The objective of this research evolved as more papers were added to it. It started
by searching studies on human activity recognition, looking for what sampling
frequency was being used. Most papers were very centered on their machine-learning

15
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implementations and lacked an explanation regarding the data they measured in
general. Seeing this dynamic, the search shifted towards adaptive sampling techniques
in sensor networks, not exclusively related to accelerometers nor activity recognition.
There are some particular papers that are of interest to this project, given the
techniques they implement for adaptive sampling.

3.2.1 Papers focused on Human Activity Recognition

Table 3.1 compiles 10 different papers that recognize human activity. They have very
distinct sampling frequencies, ranging between 1Hz and 200Hz, and most of them
do not implement any adaptive sampling (AS). They will be evaluated one by one
and their conclusions explained, as well as what can be extracted from them for this
master’s thesis:

Study reference # channels Data resolution Frequency Ad. Sampling

Kitchen HAR [MMH17] 6 - 64 Hz -
Real-time HAR [KNM+06] 3 - 100 Hz -
HAR log-system [LKK11] 3 - 20 Hz -

CNN HAR [LYC17] 3 - 1 Hz Yes
Low-resolution HAR [KP08] 3 512 frames - -

Haar-like filtering HAR [HNK09] 3 - 200 Hz Yes
Physical activity assessment [BKV+97] 3 - 20 Hz -
Daily activity classification [WWF11] 3 - 64 Hz -

Pedometer [Zha10] 3 13 bits 50 Hz Yes
Low-power fall detection [RZS12] 3 - 62.5 Hz -

Table 3.1: Tri-axial accelerometer activity recognition examples

[MMH17] The study takes place in a closed environment, a kitchen. The aim
is to prove that data-driven learners are more precise in identifying and labeling
data than learners with handcrafted features. The study falls into the category of
human activity recognition. The test subjects have two accelerometers attached
to their bodies, one on each wrist. The data is collected and streamed at 64Hz.
Mohammad’s paper is related to the same fields than this thesis, and all the issues
that have been described so far are present in it: [Accelerometer data] were collected
and streamed [...] at a frequency of 64Hz [MMH17]. There is a complete lack of
explanation concerning their choice of sampling frequency, the stated extraction is
all mention regarding the acquisition of their dataset.
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[KNM+06] The study presents a real-time human movement classification system.
The measuring device contains one accelerometer and a processor that identifies
the current activity and transmits the label. The research cites other papers when
reasoning why accelerometers are fit for activity recognition. The accelerometer
samples at 100Hz albeit activity recognition is effectuated using 45Hz. Data is
classified every second and then transmitted. This study is found to be cited
repeatedly among the other studied papers, it sets the grounds for the two next
papers when selecting a sampling rate: All measured body movements are contained
within frequency components below 20 Hz [KNM+06]. All conclusions and assumptions
in the study are solid and explained, and set the groundwork for some of the other
papers taken into account.

[LKK11] The study presents a personal-life-log containing an activity recognition
implementation and an exercise information generator. The aim is to identify the
activities correctly given a set of labeled data. One accelerometer at a frequency of
20Hz is used. The sampling rate is extracted from [KNM+06]. A sliding window
of 10s with 50% overlapping is used to compress the data before transmitting. All
assumptions are extracted from very influential and solid studies, and make this
paper a reliable source of methodologies that were applied to this thesis.

[LYC17] The study presents a one-dimensional convolutional neural network for
human activity recognition. A single accelerometer is employed, gathering data at
1Hz. This data is then processed and the magnitude vector is sent over the network.
This study is notably recent, and outperforms implementations seen in other papers.
Moreover, the amount of gathered data ranges between 1

60 to 1
300 compared to that

from all the other studied papers. This indicates that the implemented features allow
the usage of a lower total amount of samples, and still maintain a high precision
metric.

[KP08] The study carries out HAR from low-resolution sensory streams. Ac-
celerometers are used, the quantity is not specified, but it can be extracted from
the data samples that they have one on each ankle. The sampling frequency is
not specified. The sampled data is grouped every 512 samples and the average
is transmitted over the network. This study proposes a sliding window with 50%
overlap. There appears to be a complete disregard when it comes to explaining the
data acquisition, this paper falls into the same category as [MMH17].

[HNK09] The study proposes a Haar-like1 filtering technique in order to reduce
computation costs when recognizing human activity. The data of a single accelerom-

1Haar-like features group identified inputs in a single simplified output. They are used to reduce
the computation cost in face-recognition algorithms.
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eter is sampled at 200Hz. The data is processed in 50% overlapping windows of 512
frames before being transmitted. The objective of this study is lowering computation
costs, which they relate to raw data analysis. The sampling frequency used is the
highest of all papers reviewed, and there is a lack of explanation behind it.

[BKV+97] The study builds an accelerometer and data processing unit for the
assessment of daily physical activity. Sampling frequencies are thoroughly discussed
using previous studies. Their implementation consists of a low-pass at 0.11Hz and a
high-pass at 20Hz, anything outside that range is not measured. This paper accurately
links voluntary movements and the required sampling frequency to detect them,
and sets the basis for adaptive sampling techniques that depend on the previously
registered task.

[WWF11] The study proposes a multi-layered method for labeling human daily
activity. Multiple parameters extracted from the accelerometer’s data are used. A
single accelerometer sampling at 64Hz is employed. The interest in this paper is the
data manipulation after communication, where extra information can be obtained
from the same samples, without any additional measurements, by feature extraction.

[Zha10] The study implements a pedometer using a single accelerometer. The
transmitted data is the average of every 50 samples. They determine that a step
takes between 0.2s and 2s, and therefore they want to sample the average of every
second. The chosen sampling rate is 50Hz. This paper is very specific in their activity
to be recognized, and makes more assumptions than the rest of the reviewed papers.
The attractiveness of the paper comes from the implementation of non-overlapping
windows where the average of every second is transmitted to be analyzed.

[RZS12] The study proposes an energy-efficient real-time fall detection system. It
employs a single accelerometer sampling at a frequency of 1kHz. The data analysis
is effectuated every 16ms, a rate of 62.5Hz. This paper proposes energy-efficient
methods for solving their problem. Data transmission is reserved for the labels, not
the raw data. The study recognizes and tackles the same problem dealt with in this
thesis, with the purpose of lowering the energy consumption. As opposed to previous
papers, it identifies the current activity on the spot, thus lowering the amount of
transmitted data.

3.2.2 Papers focused on Adaptive Sampling techniques

As opposed to the previous studies, the following table [Table 3.2] compiles 3 papers
that employ different methods driven by efficiency. This procedure is much more
similar to the proposed method in this thesis, and the approach to the task will,
therefore, be analyzed.
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Study reference Frequency Ad. Sampling technique

IoT sensors data reduction [FKL17] - Weighted sequence selection
Data stream sampling [ESCD+18] 0.2 Hz - 0.03 Hz Averaged sampling window

Environmental parameter sensing [EHM16] 1.1 mHz Conditional sampling window

Table 3.2: Adaptive sampling examples

[FKL17] The study thoroughly explores different methods for reducing outgoing
data in sensor networks. The aim is to decrease the amount of stored data and the
energy usage of the wireless transmitters. The paper tackles a multi-tier reduction
mechanism, decreasing the outgoing information from the sensor as well as the
incoming information to the routers. The research methodology and the problem
they identify are in line with the objectives described for this thesis and will be
followed during the methodology.

[ESCD+18] The study aims to reduce the amount of used storage for gathered
data. It proposes an implementation of Adaptive Sampling (AS). This paper is the
culmination of a three part research comparing three different AS techniques. This
paper is quoted during this thesis’ result validation, as creating quantifiable results
from each system to be compared is a relatively novel task.

[EHM16] The study implements and tests a new AS method for sensor networks.
A procedure for recovering lost data is also described. The research focuses all
transmission efforts on newly gathered data and assumes that only change is sent.
The proposed system uses features that inherit from this paper, as described in the
theoretical section.





Chapter4Methodology

This chapter serves as a prelude for the experiments run for this thesis. Two distinct
sections are detailed. First, the implementation of this Master’s thesis’ HAR system
will be explained using the ARC displayed in Figure 2.1. Second, the experiments’
specifics will be described and reasoned, so that Chapter 5 can be limited to the
execution and results.

4.1 Implemented system

As stated in Section 1.2, the objective of this thesis is that of comparing how a HAR
system is affected by lowering its sampling rate. In order to do this, a data set will
be obtained, processed, and analyzed with our implemented classifier. This process
will be run several times with different sampling rates for the dataset and the results
compared, in order to fulfill the objective.

This thesis does not try to give a singular answer to the question: What is
the best sampling rate to use when doing accelerometer-based HAR? The correct
answer to that question depends on the system requirements and constraints. As
an example, medical studies might prefer higher precision values over battery life;
whereas consumer applications using smart-wearables might be satisfied with lower
precisions if the battery consumption remains within a determined limit. Therefore,
to answer the question a guideline will be provided where each implementation is
compared in terms of battery usage and attained precision. This comparison is
going to define a set of optimal implementations within each value range, a Pareto
optimality.

Pareto efficiency:

Pareto efficiency, or Pareto optimality, is defined by Teich [Tei01] as the set of all
Global-optima points within a function. That means that one of the values cannot
be optimized without affecting the other negatively. The red line in Figure 4.1

21
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Figure 4.1: The red line denotes the Pareto front, where any point is the optimal
value of one quantity in relation to the other. Source: https://en.wikipedia.org/wiki/
File:Pareto_Efficient_Frontier_1024x1024.png

exemplifies this concept. In the figure, point K is a suboptimal solution, as there are
values with higher quantities of both item 1 and 2, but any values between A and H
have specific combinations that make them desirable depending on the system needs.
Point H, for example, is the instance with the highest quantity of item 1.

4.1.1 Data Acquisition

The first step in the Activity Recognition Chain is the acquisition of raw data. This
thesis builds upon the project of Hessen and Tessen [HT16] and has access to their
same dataset. All the specifications of the sensors are taken from their project:

The data was collected using two tri-axial accelerometers. The devices were AX3
Axivity sensors1. The sampling rate was specified to be 100Hz, and their locations
were the upper back and the front-right thigh, as depicted in Figure 4.2. The dataset
includes over 30 hours of labeled accelerometer data, a total of 10,901,356 readings
at 100Hz, from 35 different subjects. In order to label the data, the subjects were
recorded and each sample was manually classified. A total of 19 labels were identified;
the amount of instances, as well as their names can be seen in Table 4.1.

1https://axivity.com/product/ax3

https://en.wikipedia.org/wiki/File:Pareto_Efficient_Frontier_1024x1024.png
https://en.wikipedia.org/wiki/File:Pareto_Efficient_Frontier_1024x1024.png
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Figure 4.2: Representation of the location of the sensors. The red square marks
the position of the upper back accelerometer, and the blue square marks the po-
sition of the right thigh accelerometer. Source: https://www.pinterest.com/pin/
489907265694622075/

Given that the dataset was provided by another project, the data protection and
anonymization processes extend from Hessen and Tessen [HT16, p. 35]. This project
never had access to any data usable to identify the original subjects.

4.1.2 Pre-processing

After acquiring the data, it must be synchronized across all sensors and prepared
to be segmented. Of the 19 labels described in Table 4.1, some were deleted and
others joined together. Hessen and Tessen [HT16] built the first system and Vågeskar
[Våg17] improved upon it, so both projects have been used as precedent when building
this HAR system. The reasoning behind each specific class as well as the implications
will now be exposed:

Deleted labels:

Worrisome labels are those considered to be non-representative of any relevant
activities, those that are not specific enough to identify real movement, as well as
those that are specific to the gathering of data. From the original 19 labels, a total
of 6 have been removed, as was done in the referenced projects [HT16, Våg17].

https://www.pinterest.com/pin/489907265694622075/
https://www.pinterest.com/pin/489907265694622075/
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Label name Label amount Label relative amount
Walking 1,274,404 11.69%
Running 93,499 0.86%
Shuffling 474,894 4.36%

Stairs (ascending) 103,676 0.95%
Stairs (descending) 91,193 0.84%

Standing 1,320,604 12.11%
Sitting 5,749,760 52.74%
Lying 653,808 6.00%

Transition 90,576 0.83%
Bending 41,149 0.38%
Picking 17,312 0.16%

Undefined 101,188 0.93%
Cycling (sitting) 535,926 4.92%
Cycling (standing) 48,676 0.45%

Heel-Drop 24 0.00%
Vigorous Activities 14,329 0.13%

Non-Vigorous Activities 57,230 0.52%
Commute (standing) 54,272 0.50%
Transport (sitting) 178,836 1.64%

Table 4.1: All the labels originally identified as well as the amount of instances
of each, and the percentage relative to the total amount of labeled samples. The
Commute and Transport labels were not described in Hessen and Tessen [HT16] but
included in their dataset.

Heel Drop was removed from the dataset altogether. This activity was exclu-
sively used to synchronize the sensors and was not part of any natural movement. A
total of 24 samples were removed due to this.

Transitions were completely removed from the dataset. Transitions are defined
as movements done between activities, such as getting on the bicycle or standing up
from a chair. Transition activities do not necessarily relate to each other and may
show little similarity. The inclusion of this label will affect the overall precision of
our system, as it did for Hessen and Tessen [HT16], without giving any value to the
results, since it won’t be reproducible by future studies. A total of 90,576 samples
were removed due to this.

Shuffling is defined as either a short walk or a stationary situation with leg
movement. Shuffling overlaps with two other labels, but cannot be relabeled to any
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specific one of those. Shuffling confuses the classifier without actually describing a
specific action and was removed in both of the referenced projects [HT16, Våg17]. A
total of 474,894 samples were removed due to this.

Samples labeled as either undefined, non-vigorous activity, and vigorous
activity were all removed. None of these labels define a specific activity, and there
are no patterns identifiable by the classifier, as shown by Hessen and Tessen [HT16,
p. 49]. Similarly to the transition label, future studies will not be able to benefit from
the inclusion of these labels and the performance of the classifier is unrealistically
lowered, hence all those labels have been removed. The 101,188 undefined, 57,230
non-vigorous, as well as 14,329 vigorous samples were removed.

Renamed labels:

From the 13 labels remaining, 6 were renamed. This was done in order to either
better represent reality, or make the results more comparable with other HAR studies.

Bending and picking were joined as a single label. More specifically, picking
was renamed to bending, which was left the same. According to its definition,
picking was identified when the subject grabbed an object from below the knee level.
Bending is defined as bowing the torso downwards towards an object below knee
level. The activity succession would, therefore, be Bending-Picking-Bending. Given
the interclass similarity Hessen and Tessen [HT16] joined both classes together. After
joining the classes, bending has a total of 58,461 samples.

Cycling (sit) and Cycling (stand) were both named cycling. Hessen and
Tessen [HT16, p. 71] use only one label when comparing their classifier to the Acti42.
Even if the Cycling (sit) activity is often mislabeled as sitting, external HAR systems
tend to use only one label to define both so, in order to give comparability to the
implemented system, the same must be done.

Both Commute (standing) and Transport (sitting) were labeled according
to what the subject was doing at that moment, excluding the context. Commute
(standing) was relabeled to standing, and Transport (sitting) was relabeled to sit-
ting. This renaming better represents what the user’s actions reflect through their
undergone acceleration.

Stairs (ascending) and stairs (descending) were relabeled to walking, as was
done by Vågeskar [Våg17]. Walking up and down flights of stairs is very similar to
walking on flat ground, and the classifier misclassifies those two classes as walking.

2https://www.ncbi.nlm.nih.gov/pubmed/25588819

https://www.ncbi.nlm.nih.gov/pubmed/25588819
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After the preprocessing process, the total amount of samples represents over
28 hours of labeled data, with 10,163,115 individual samples at 100Hz. The class
disposition can be observed in Table 4.2. Note that running and Bending both have
really low (< 1%) amounts of data samples. This will affect the precision of the
classifier, but removing those classes altogether would have affected the validity
as well as the future relevance of this project, as those classes can potentially be
interesting for other studies.

Name Amount Relative amount Composition
Walking 1469273 14.46% Walking + Stairs (ascending) + Stairs (descending)
Running 93499 0.92% Running
Standing 1374876 13.53% Standing + Commute (standing)
Sitting 5928596 58.33% Sitting + Transport (sitting)
Lying 653,808 6.43% Lying

Bending 58461 0.58% Bending + Picking
Cycling 584602 5.75% Cycling (sitting) + Cycling (standing)

Table 4.2: All the labels as they were used by the project. Displays amount of
samples, relative amount, and labels included in each class.

4.1.3 Segmentation

The segmentation process consists of the formation of windows, grouping data
instances, so that features can be extracted in the future. Windows work well in
HAR since human activities are essentially repetitive and those repetitions can be
encompassed in each window, naturally describing the activity. Throughout HAR
literature window sizes range between 0.01s and 10s [LL13]. Hessen and Tessen
[HT16, p. 52] use a window size of 1s, and Vågeskar [Våg17] 3s windows.

Window size will not be determined beforehand for this project, as it would go
against the planned objective. The proposed method includes a comparison between
sampling rates and their effects depending on the window size of the tested scenario.
Specifically, given that the dataset used was captured at a 100Hz, and the target
minimum sampling rate is 1Hz, the window size will range from 1s to 10s. If the
results at 1Hz are precise enough to advocate an even lower sampling rate, the new
tests will reach up to 0.1Hz, maintaining the same window size.

The experiments section includes tests where windows were not used. In these,
the classifier is fed the raw data without being segmented. The objective of this is
testing the effects of single sample test, where the classifier is trained and tested with



4.1. IMPLEMENTED SYSTEM 27

uncorrelated instances of labeled data. The benefit of not using windows is that a
trained classifier could potentially reduce its sampling rate to the absolute minimum.

4.1.4 Feature Extraction

The used features are those depicted in Tables 2.1 and 2.2. These features are those
most commonly occurring in the literature studied, as well as in the referenced
projects [HT16, Våg17].

4.1.5 Classification

The implemented classifier is a 32 tree Random Forest classifier where data is divided
into a 2/3 - 1/3 train-test sample size. The reason behind all these constrains is
exposed in this subsection:

The initial intention for this Master’s thesis was that of implementing both a
Random Forest and a Convolutional Neural Netowork (CNN), but was deprecated
because training times for the CNN were dramatically slower. As done by Vågeskar
[Våg17], CNNs were tested, but training times took over 30 minutes. Given the
nature of the study, and the fact that extensive combinations of systems will be
trained and tested, it is not feasible to implement a classifier that takes thirty minutes
to train. As an example: Implementing 10 different window sizes with 5 different
strides and 50 different sampling rates, if run non-parallelly, would take 1250h to
train, making CNNs unsuitable for our system design. Exclusively using Random
Forests for HAR is done extensively in the literature [LL13], therefore the validity
of this study remains. Random Forests benefit from lack of hyperparameters to be
tuned, when opposed to CNNs, besides the amount of trees; and using them takes
away plenty of effort commonly invested in setting up the classifier. Random Forests
use ensemble methods to average the decisions of multiple trees; these trees are
trained with random subsets of the data, so over-fitting can be noticeably reduced.
For these two reasons Random Forests are the chosen classifier to be used.

Before presenting the bulk of experiments for the project, some tests were run in
order to evaluate the parameters to use in the system’s classifier. A small number of
those tests run during the setup of the classifier led to confusion matrices similar to
the one shown in Figure 4.3, where one or more classes were missing. This test was
a very specific case, where only 4 of the total 7 classes occurred in the test set. This
happens when the random division of the dataset leaves no instances of those classes
in the testing subdivision. The cause is the low amount of cases certain classes have
in Table 4.2, running, for example, is less than 1% of the total labels. Given this
occurrence, the training-test division of the sample set is higher than that originally
tested, and the proposed system uses two thirds of the data to train and one third to
test the classifier. By doing this, the amount of times some classes are missing in the
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Figure 4.3: Confusion matrix of a test showing no instances of either running, lying,
nor cycling.

test set is expected to decrease. Hessen and Tessen [HT16] also opted for a division
of 2/3 - 1/3 train-test sample size, which means this division is also the optimal for
the dataset used.

Commonly, machine learning literature recommends between 64 and 128 decision
trees to form a random forest [OPB12]. Several test were run, comparing a forest
formed by 10 trees, one with 30, and one with 50. All the experiments use the
whole dataset described previously: A total of 28h of labeled data organized into 7
distinct classes. The individual samples are divided in 300-samples windows, 3s, and
expressed with the features displayed in Table 2.1. The resulting data was further
divided, using 2/3 of it for the training phase, and the remaining 1/3 for testing
the classifier. The confusion matrices are displayed in Figures 4.4, 4.5, and 4.6. A
difference of 1% in the F1 Score can be noted between the 50-tree forest and the
10-tree forest. Simultaneously, the test with the 30-tree forest outperformed both
the 50-tree forest as well as the 10-tree forest, therefore it is concluded that the
computational cost of having forests over 30 trees is not worth the marginal gain in
precision. Following the guideline of having a forest of a size multiple of 2n (16, 32,
64, 128, 256, etc.) the chosen Random Forest is composed of 32 trees.

Figure 4.4: Test with a Forest made of 10 decision trees. F1 Score == 78.29%
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Figure 4.5: Test with a Forest made of 30 decision trees. F1 Score == 79.58%

Figure 4.6: Test with a Forest made of 50 decision trees. F1 Score == 79.22%

4.2 Experiments methodology

The experiments are divided in two sections: The first section makes no use of
windowing/segmentation techniques, the classifier is fed the raw data, paired with
a label, and asked to learn from that. The second section uses all the segmenta-
tion techniques and features described previously, the classifier is fed that feature
combination paired with the label, as in the first section.

4.2.1 Objectives

The desired outcome of the experiments is a graphical comparison between the F1
Score and the amount of samples used in each tested system. From this comparison,
the Pareto Front can be obtained, fulfilling the main objective of this Master’s thesis.

When asking the classifier for a prediction given a single instance of data, without
windowing techniques, the sampling rate of the test does not appear to be relevant for
the precision of the prediction. This is the hypothesis behind dividing the experiments
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between windowed and non-windowed. If this were correct, a classifier could be
trained with extensive amounts of data and, when needed, only a minimum amount of
sampling time would be needed. The reason this happens is that the training process
uses single data-frame inputs for training, and those do not depend on the sampling
rate. The only variable that affect the classifier’s performance in this scenario is the
actual amount of single data samples used to train the system. The more samples,
the better performance the system will have. The first set of experiments will prove
this hypothesis, if correct.

The experiments with windows vary three parameters and compare the effect on
the F1 Score of the overall system, obtained by calculating the mean of the F1 Score
for each label. Calculating the overall F1 as described, does not correctly describe
the experiment, but allows the results to be compared between tests, and serves as a
proper guideline if the system had different amounts of values for each class. The
three parameters are: Window size, Window stride, and Sampling rate.

In order to reduce the sampling rate, a specific amount of samples will be
eliminated. For example, if the desired sampling rate is 99Hz and the original is
100Hz, every 99th sample will be eliminated. Following this logic, if the target
sampling rate is 50Hz, every second sample will be eliminated.

4.2.2 Experiments

This subsection covers every experiment necessary for achieving this Master’s thesis
goals. Detailed explanation on the constraints and variables is offered, as well as the
objective behind running each specific experiment. The execution and results are
explored in Chapter 5. The discussion and conclusion of the experiments is exposed
in Chapter 6, where each implementation is compared so that future studies can
make use of this project.
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Experiment: 1.1 - Random parts of the complete dataset; no windows

Description:

From the 28h of labeled data, ten subsets of a lowered sampling rate
will be generated. The sampling rates will be: 100Hz, 90Hz, 80Hz,
70Hz, 60Hz, 50Hz, 40Hz, 30Hz, 20Hz, and 10Hz.
The generated subsets will be shuffled and the first 1,000,000 samples
used for the experiment. This leaves 666,666 samples for training
and 333,334 samples for testing each system.
The result of this test will be one confusion matrix per implementa-
tion. This 7x7 matrix will display all the labels in the system, their
occurrences and how they were classified. Besides the confusion
matrix, the precision, recall, and F1 Statistic for each category will
be obtained. The overall precision, recall, and F1 Statistic will also
be given.

Constraints:

- Random Forest classifier
- 32 trees
- No windows used
- 1,000,000 random samples per test
- 66% - 33% Train - Test sample set division

Variables: - The sampling rate will be lowered from 100Hz to 10Hz.
- The actual samples will be randomly taken from the global dataset.

Objectives:

The objective of this experiment is proving that, when trained with
the same amount of data samples, lowering the sampling rate will
not affect the performance of the classifier. This is exclusive to the
current case, as no windowing techniques are involved.

Expected
results:

Since all the implemented classifiers will be trained with the exact
same amount of data, the results for each subsequent implementation
should not differ in terms of attained precision. Besides differences
originating from the randomness of the experiment, such as the test
set containing more or less instances of a complicated label (bending
or running).
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Experiment: 1.2 - Fixed training, reduced testing; no windows

Description:

From the 28h of labeled data, one single training set will be extracted.
A random selection of 666,666 samples destined for training. Besides
the training set, 100 different testing sets will also be extracted
from the remaining (excluding the ones directed for training) data
instances.
The random forest will be trained with the same dataset for each
instance of a testing set. After training, the classifier will be tested
with a subset of the global dataset, this subset will have a maximum
of 333,333 samples (at a 100Hz), and a minimum of 3,333 samples
(at 1Hz).
The result of this test will be one confusion matrix per implementa-
tion. This 7x7 matrix will display all the labels in the system, their
occurrences and how they were classified. Besides the confusion
matrix, the precision, recall, and F1 Statistic for each category will
be obtained. The overall precision, recall, and F1 Statistic will also
be given.

Constraints:

- Random Forest classifier
- 32 trees
- No windows used
- 666,666 fixed samples for training

Variables:

- Between 333,333 and 3,333 random samples for testing, ranging
from 100Hz to 1Hz.
- The sampling rate on the testing set will be lowered from 100Hz
to 1Hz.
- The actual testing samples will be randomly taken from the global
dataset.

Objectives:
The objective of this experiment is testing what should be the
minimum amount of samples (sampling rate) in the testing phase
so that the classifier is reliable in it’s predictions.

Expected
results:

There will be a certain sampling frequency where the classifier is as
precise as with the highest amount of testing samples. The initial
expectation is around the 5Hz mark (16,665 samples). This low
sampling rate could be used to accurately describe the performance
of a classifier that does not use windows.
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Experiment: 1.3 - Reduced testing - proof; no windows

Description:

This experiment continues from the previous one. From the 28h
of labeled data, ten subsets will be extracted, ranging between
6,666,666 samples to 666,666 samples. The testing set will be the
same size as the one in the previous experiment’s conclusion; same
size can mean both the same sampling rate as well as the exact
same amount of samples, both cases will be tested. This means
that each training set will have two test sets: one with the resulting
amount from the previous experiment, and one with the relative
size of the training set according to the resulting sampling rate from
the previous experiment.
The random forest will be trained with each training set, and tested
twice, once for each test set.
The result of this test will be one confusion matrix per implementa-
tion.

Constraints:

- Random Forest classifier
- 32 trees
- No windows used
- A fixed size for the test set extracted from the previous experiment.
- A fixed percentage for the test set, from the previous experiment.

Variables:

- The amount of samples on each subset will increase from 666,666
to 6,666,666.
- The actual training samples will be randomly taken from the global
dataset.

Objectives:

The objective of this experiment is testing the validity of the previous
experiment when working with bigger datasets, as well as obtaining
a value indicating how many samples are needed to correctly assess
the current activity in windowless implementations.

Expected
results:

There will be a specific amount of samples in the test set where the
performance of the classifier can be analyzed. This amount will be
dependant on the actual precision of the classifier, the amount of
instances of each label in the global dataset, as well as the amount
of labels. The actual value is expected to be the same as in the
previous experiment.
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Experiment: 1.4 - Fixed test, reduce training; no windows

Description:

From the 28h of labeled data, one hundred training sets will be
extracted. These will range from 100Hz to 1Hz, equating to a range
between 10,000,000 and 100,000 samples. The division between
training and testing will be the result from Experiment 1.3, either a
test set with a fixed size, or a specific percentage of the training set.
The random forest will be trained with each training set, and then
tested with the specific test set.
The result of this test will be one confusion matrix per implementa-
tion.

Constraints:

- Random Forest classifier
- 32 trees
- No windows used
- Either a fixed amount of samples is the test set, or a specific
percentage, depending on the results from the previous experiment.

Variables:

- The amount of samples on the used set will be between 10,000,000
and 100,000. This equates to a reduced sampling rate from 100Hz
to 1Hz.
- The actual training samples will be consecutively taken from the
global dataset.

Objectives:

The objective of this experiment is determining the amount of train-
ing needed by a non-windowed classifier to perform accurately. The
results to this experiment will be the answer to Research Question
1 (What is the minimum amount of training data required to have
a dependable Random Forest?).

Expected
results:

Following a Pareto distribution, there will be a front made up of all
the implementations where the precision-sample amount is the best
it can be. The expectation is that the lower the amount of samples
the lower the precision, and at one point in particular, lowering the
sampling rate drastically lowers the precision. The point we are
most interested in the the one just before that, following the Pareto
principle (where 20% of the efforts give 80% of the results).
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Experiment: 2.1 - Different window sizes; with windows

Description:

From the 28h of labeled data, twenty different subsets will be created.
These will represent the same data segmented together in windows.
The window sizes will range from 0.5s to 10s, equating to 50 samples
and 1,000 samples per window. Each window will be represented
with the generated features, not with the raw data.
The random forest will be trained with 66% of each subset, and
then tested with the remaining windows.
The result of this test will be one confusion matrix per implementa-
tion.

Constraints:

- Random Forest classifier
- 32 trees
- Time-domain and frequency-domain features used.
- The full 28h of data will be used for each test.
- 66% - 33% Train - Test sample set division

Variables:

- The size of the windows will range from 0.5s to 10s.
- The size of the subsets will range between 50 samples and 1,000
samples per window. Meaning that the test with the longest windows
will have less data instances, even if the original data is the same.

Objectives:
The objective of this experiment is determining the optimal window
size given our system’s constraints. After finishing this experiment,
a specific result will be set up as our benchmark to reference.

Expected
results:

Given the previous projects using the same dataset and techniques,
the expected result is that the system using 3s windows has a good
balance between amount of data instances and amount of data
per instance, giving the best results. The expectations for this
experiment are that a single, or a very short range of, window size
outperforms the the other cases, and can be set as our highest
precision system to compare to.
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Experiment: 2.2 - Reduce amount of samples in windows; training and testing

Description:

Continuing from the previous experiment, and using the window
size established in Experiment 2.1, in this experiment the sampling
rate in both the training and testing set will be lowered. From the
28h of data 100 different subsets will be extracted and segmented.
These will range from 100Hz to 1Hz, with a minimum amount of
2 samples per window. The window size will be the result from
experiment 2.1.
It is possible that certain features, such as the Zero Cross Rate
contribute no information to the system, the used features might be
evaluated depending on the results. Features to reevaluate are: zero
cross rate, mean cross rate, and energy.
The result of this test will be one confusion matrix per implementa-
tion.

Constraints:

- Random Forest classifier
- 32 trees
- Time-domain features used.
- The window size that offered the best results in Experiment 2.1
will be used for all tests.
- The global data set will be used for each test.
- 66% - 33% Train - Test sample set division

Variables: - The sampling rate used for the experiment will range from 100Hz
to 1Hz.

Objectives:
The objective of this experiment is determining the optimal sampling
rate for consecutive windows, as well as extending the previous
experiment to include a data reduction in the training phase.

Expected
results:

Depending on whether or not a windowless classifier performs within
decent standards at low sampling rates, it is possible that implement-
ing windows is counterproductive precision-wise. The expectation is
that some reduction in the sampling rate is possible, but windowed
implementations are more susceptible to extremely low sampling
rates.
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Experiment: 2.3 - Reduce amount of windows; training and testing

Description:

Using the complete global dataset, multiple subsets will be extracted.
These will cover all the possibilities between varying the window
size (seconds worth of samples), the window stride (seconds between
windows), and the window density (sampling rate within the win-
dow). Window sizes will range between 0.5 and 10 seconds; window
stride will range between 0.5 and 100 seconds; window density will
range between the original and 2 samples per window.
If it was determined, on the previous experiments, that window
density should not be lower than a specific amount, that will be the
minimum sampling rate for each window.
The result of this test will be one confusion matrix per implementa-
tion. The implementations will be compared to one another by the
collective amount of samples used in the subset.

Constraints:

- Random Forest classifier
- 32 trees
- Time-domain and frequency-domain features used.
- The global data set will be used for each test.
- 66% - 33% Train - Test sample set division

Variables:

- The sampling rate used for the experiment will range from 100Hz
to the specified amount in Experiment 2.3.
- The distance between windows will range between 0.5 and 100
seconds.
- Window size will range between 0.5 and 10 second windows.

Objectives:

The objective of this experiment is answering Research Question 2
(How does the usage of windowing techniques affect the precision of
Random Forests?). With this experiment, a comparison between all
possible implementations will be obtained.

Expected
results:

The expected result is that a balanced implementation with a slightly
lower sampling rate (such as 20Hz), a moderately lengthier window
(5s, for example) and a window stride depending on the window size
(e.g. the same size as the window) will have the best performance.
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Experiment: 2.4 - Variable parameters in testing; best performing systems

Description:

In this experiment the parameters used for training and for testing
will not be the same. The tested variables are window size, window
stride and window density, applied separately to the testing set. The
training sets and their parameters will be those in the Pareto front
obtained in the previous experiment.
Each implementation that performed well in the previous experiment
will be tested with multiple datasets, to try and lower the amount
of data used when testing the system.
The result of this test will be one confusion matrix per implementa-
tion. The implementations will be compared to one another by the
collective amount of samples used in the subset.

Constraints:

- Random Forest classifier
- 32 trees
- Time-domain and frequency-domain features used.
- All the sets in the Pareto front of the previous experiment will be
used.
- 66% - 33% Train - Test sample set division

Variables:

- The sampling rate used for the test set will range from 100Hz to
the specified amount in Experiment 2.3.
- The distance between windows in the test set will range between
0.5 and 100 seconds.
- Window size in the test set will range between 0.5 and 10 second
windows.

Objectives:

The last experiment addresses the hypothesis that the techniques
explored in this project do not need to be constant between training
and testing. The whole system, including the training phase and the
testing phase, can implement different variables to reduce the overall
amount of gathered data. The objective, therefore, is exploring
whether or not the system can perform within acceptable limits and
still reduce the total amount of collected data, as well as determining
the relationship between the efforts in gathering and classifying the
data.

Expected
results:

The expected result is that activities tend to last up to minutes,
so skipping measurements won’t harm the overall precision, while
still helping with the amount of gathered data. The prediction
also includes that as much data as possible should be gathered for
training, but testing only needs a fraction of that: generating (as in
training) a HAR system will take more effort than using it, but it’s
usage will consume almost no power in comparison.
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5.1 Experiment 1.1

In experiment 1.1 ten different tests were conducted. From the original sample set,
ten randomized subsets were extracted. These contained 1,000,000 samples each. The
sampling rate varied from 100Hz to 10Hz, that is of every 100 consecutive samples
only a fraction were used. For example, in the 20Hz case, 20 out of 100 samples were
used, effectively reducing the usable samples by 80%. After the reduction, 1,000,000
random samples were extracted, resulting in ten sets of the same size. All the test
use a 32 tree RF with 2/3 - 1/3 train-test sample division as classifier.

Results:

The hypothesis was that the tests’ performances would be similar, since the quality
of the training was the same. Quality refers to having the same amount of samples
dedicated to training in each test. The hypothesis has been proven correct, as seen
in Figure 5.1 and 5.2. The tables represent the confusion matrices from the 100Hz
case and the 10Hz case, which should, if the hypothesis were incorrect, have the
highest result disparity. As depicted, the results are the same. Figures 5.3 and 5.4
show the complete set of quality metrics of those two same examples. Figure 5.5
compares all the quality metrics, where a clear flat tendency is illustrated.

Conclusion:

When the RF is trained with a similar windowless dataset the only metric that
affects the system’s performance is the amount of samples used for training, not its
sampling rate. Similar refers to the amount and quality of data instances, as in the
number of samples the forest trained with, and what those samples represented. For
example, training a RF with 90,000 samples of sitting and 10,000 samples of all the
other labels, as opposed to 100,000 samples of properly distributed data instances
across all the system’s classes will not yield the same performance.

39
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Figure 5.1: Experiment 1.1: Confusion matrix of the 100Hz system. No. trees =
32; Train samples = 667,000; Test samples = 330,000

Figure 5.2: Experiment 1.1: Confusion matrix of the 10Hz system. No. trees =
32; Train samples = 667,000; Test samples = 330,000

Figure 5.3: Experiment 1.1: Quality metrics of the 100Hz system. No. trees = 32;
Train samples = 667,000; Test samples = 330,000

Figure 5.4: Experiment 1.1: Quality metrics of the 10Hz system. No. trees = 32;
Train samples = 667,000; Test samples = 330,000
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Figure 5.5: Experiment 1.1: Quality metrics comparison of experiment 1.1. Even
with different sampling rates, all systems used the same amount of total (training
and testing) samples. No. trees = 32; Train samples = 667,000; Test samples =
330,000

5.2 Experiment 1.2

Experiment 1.2 is composed of 100 different tests. In these, one specific training
set was tested with 100 different test sets of diminishing size. The training set was
composed of 666,666 samples. The test sets start at 333,333 samples, representing
100Hz, and end at 3,333 samples, representing 1Hz. The RF was trained with the
training set and then tested with each test set, with the intention of discovering what
size should the test set be in respect of the train set.

Results:

Depicted in Figure 5.6 is the confusion matrix for the test set containing 333,333
samples (100Hz). Figure 5.7 represents the 1Hz set. Notable differences between
the confusion matrices are the amount of samples in general, specifically in the
bending category. There are 1921 instances of bending in the first table, as opposed
to 14 instances in the second. Bending represents 0.58% of the global dataset, and
the exact same amount in the 100Hz test. On the 1Hz test set, however, bending
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represents 0.42% of the samples, that is over 27% fewer samples that represent the
action of bending.

Figures 5.8 and 5.9 illustrate the quality metrics for the 100Hz and 1Hz tests,
respectively. The main notable differences are the lower scores on the metrics for the
bending class, going from a 56% to a 23% F1 Score.

Figure 5.10 represents the distribution of precision, recall, and F1 score of each
test for this experiment. It is distinguishable that the results are constant for all
implementations over 11Hz, but results with lower sampling rates have noticeable
lower performance. There is also a tendency of results deviating more from the
tendency value as sampling rates get lower, examples of such behaviour are the 1Hz
and the 4Hz implementations.

Conclusion:

The results of this test are inconclusive, for the lowest tested sampling rate did not
reach a failure state where it would be proven that higher and more specific sampling
rates are necessary to test a given system. Instead, the tendency shown in Figure
5.10 appears to be that lower results are more random in their distribution and
therefore, less reliable. This was not the aim of this experiment, since the wanted
outcome was a relationship between the training set size and the required size of the
test set. It can be concluded that a lower size collides with the frequency of the least
represented class, which was mentioned in the expected results for experiment 1.3
and will, therefore, be explored more in depth in that experiment.

In order to conclude this experiment, an extension is proposed where the sampling
rate is lowered even more, reaching 0.1Hz, this experiment will be conducted in the
following section.
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Figure 5.6: Experiment 1.2: Confusion matrix of the 100Hz system. No. trees =
32; Train samples = 666,666; Test samples = 333,333

Figure 5.7: Experiment 1.2: Confusion matrix of the 1Hz system. No. trees = 32;
Train samples = 666,666; Test samples = 3,333

Figure 5.8: Experiment 1.2: Quality metrics of the 100Hz system. No. trees = 32;
Train samples = 666,666; Test samples = 333,333

Figure 5.9: Experiment 1.2: Quality metrics of the 1Hz system. No. trees = 32;
Train samples = 666,666; Test samples = 3,333
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Figure 5.10: Experiment 1.2: Quality metrics comparison of experiment 1.2. Each
implementation used the same training set and a reduced test set. No. trees = 32;
Train samples = 666,666; Test samples = (333,333 - 3,333)

5.2.1 Extension of experiment 1.2:

Nine new sets were created and tested with the same training set of 666,666 samples.
The new test sets represented sampling rates between 0.9Hz and 0.1Hz, with steps
of 0.1Hz each. Figures 5.11 and 5.12 show the confusion matrices of the 0.2Hz and
0.1Hz tests respectively. Figures 5.13 and 5.14 depict the quality metrics for those
same two tests, and Figure 5.15 plots the comparison of all the quality metrics. This
experiment’s extension proves that sampling rates as low as the implemented ones are
not suitable to test systems using this dataset, since the class imbalance makes the
system’s performance random. As shown in Figure 5.13, the 0.2Hz system is the best
performer so far, that is because, with the low amount of test samples, no instances
were mislabeled as bending, making its precision 100%. This high precision does not
represent the system’s actual precision. As seen in Figure 5.14, the 0.1Hz system is
the worst performer, that is because there were no correct classifications of bending,
so its precision is 0%. The difference between two test sets that are so similar in
size makes test this small irrelevant for the system’s performance. It is, therefore,
concluded that future tests must have at least 10% of their dataset or 33,333 samples
dedicated to testing, as these values mark the beginning of incongruent results and
anything lower will randomly determine the performance of the classifier.
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Figure 5.11: Experiment 1.2 extended: Confusion matrix of the 0.1Hz system. No.
trees = 32; Train samples = 666,666; Test samples = 333

Figure 5.12: Experiment 1.2 extended: Confusion matrix of the 0.2Hz system. No.
trees = 32; Train samples = 666,666; Test samples = 666

Figure 5.13: Experiment 1.2 extended: Quality metrics of the 0.1Hz system. No.
trees = 32; Train samples = 666,666; Test samples = 333

Figure 5.14: Experiment 1.2 extended: Quality metrics of the 0.2Hz system. No.
trees = 32; Train samples = 666,666; Test samples = 666
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Figure 5.15: Experiment 1.2 extended: Quality metrics comparison of the extension
of experiment 1.2. Each implementation used the same training set and a reduced
test set. No. trees = 32; Train samples = 666,666; Test samples = (333 - 2,999)

5.3 Experiment 1.3

Experiment 1.3 puts the previous conclusion under the test. The previous assumption
is that new test should have either 33,333 samples dedicated to testing or 10% of
the total size of the subset. In this experiment, ten larger subsets were used, and,
following the assumption, two test set were generated for each set. The subsets
ranged between 666,666 and 6,666,666 samples; each set was trained and tested
twice, once using a test set containing exactly 33,333 samples, and once using a test
set containing 10% of the total amount of samples. For example, for the scenario
containing 4,666,666 samples, one test used a 90% - 10% train - test division, and
the other test a 99.29% - 0.71% division (33, 333/4, 666, 666 = 0.007124 ' 0.71%).

Results:

Figure 5.16 and Figure 5.17 show the confusion matrices of both tests done with
the 4,666,666 set. Figure 5.16, illustrates the 10% case, where 466,667 samples were
used for testing; Figure 5.17 depicts the other case, with 33,333 testing samples.
Figure 5.18 portrays the quality metrics for the first test, where it can be seen that
the system has an excellent performance compared to Figure 5.19, which represents
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the 33,333 case, and displays lower scores for most metrics. The label that presents
the worst results is the bending class, which has a 10% difference in precision and is
directly responsible for the lower score in the metrics’ average. Figure 5.20 shows
the comparison of quality metrics throughout the experiment, no information can
be obtained from this graph, except that lower amounts of samples have lower
performance, which was previously obtained knowledge. In opposition, Figure 5.21
compares and plots the difference between the quality metrics across the 10% and
the 33,333 test for each set size. This table manages to represent a tendency towards
a null gain the larger the dataset becomes.

Conclusion:

It is concluded that the 10% line is a good overall estimate, but with larger datasets
(over 3,000,000 samples), reserving as large an amount of samples for testing has
diminishing or null returns, as seen by the tendency in Figure 5.21. Therefore, when
working with large datasets a fixed amount of test samples will be allocated, a visual
representation of this conclusion would be the positive side of a Sigmoid function,
which gains as the X grows but reaches a limit at some point. This experiment
has not been enough to give a conclusion of small datasets, and will, therefore, be
expanded upon further.

Figure 5.16: Experiment 1.3: Confusion matrix of the 4,666,666 samples system.
No. trees = 32; Train samples = 4,633,333; Test samples = 33,333

Figure 5.17: Experiment 1.3: Confusion matrix of the 4,666,666 samples system.
No. trees = 32; Train samples = 4,199,999; Test samples = 466,667
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Figure 5.18: Experiment 1.3: Quality metrics of the 4,666,666 samples system. No.
trees = 32; Train samples = 4,633,333; Test samples = 33,333

Figure 5.19: Experiment 1.3: Quality metrics of the 4,666,666 samples system. No.
trees = 32; Train samples = 4,199,999; Test samples = 466,667

Figure 5.20: Experiment 1.3: Quality metrics comparison of experiment 1.3. Blue,
red, and purple represent the 33,333 tests; green orange and magenta represent the
10% tests. No. trees = 32; Train samples = (6,633,333 - 599,999); Test samples =
(666,667 - 33,333)
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Figure 5.21: Experiment 1.3: Difference between the precision, recall, and F1 score
between the systems using the 33,333 samples and the 10% set size for testing.

5.3.1 Extension of experiment 1.3:

In order to understand the effect that setting a specific train - test division has on
the performance of the classifier, it is imperative that the whole range of dataset sizes
are explored. This extension amplifies experiment 1.3 and adds nine smaller subsets
ranging between 66,666 and 600,000 samples, which represent between one and nine
hundredth of the largest dataset in experiment 1.3 (6,666,666 data instances). This
extension will test the same, using each subset twice, once employing 33,333 samples
for testing and the other time allocating 10% of the total size for testing. For the
66,666 case, for example, the 33,333 test represents 50% of the total size, and the
10% case uses 6,666 samples.

Figures 5.22 and 5.23 show the confusion matrices of the 66,666 case. Comparing
Figure 5.24 and Figure 5.25, which also illustrate the case using 66,666 samples, it
is noticeable that the fixed test (where the test size was fixed to 33,333 samples)
underperformed in most classifications, and has a remarkably lower recall for all
labels. The quality metrics comparison and the gain in each category can be observed
in Figures 5.26 and 5.27 respectively. It is visible that the usage of a fixed test set
size has negative effects on the smaller datasets.
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The final conclusion from this experiment is that specifying a fixed size for the
dataset has negative results in the smaller datasets, slightly positive in the medium
sets, and almost no positive outcome in the larger datasets. From this experiment it
can be obtained that the worst results come when the fixed size represents more than
10% of the total size of the set. This is the result of leaving lower amount of data for
the training phase, which leads to a classifier that performs poorly in comparison.
Allocating between 5% and 15% of the dataset for testing and the rest for training
appears to be the correct behaviour when conducting HAR.

Figure 5.22: Experiment 1.3 extended: Confusion matrix of the 66,666 samples
system. No. trees = 32; Train samples = 33,333; Test samples = 33,333

Figure 5.23: Experiment 1.3 extended: Confusion matrix of the 66,666 samples
system. No. trees = 32; Train samples = 59,999; Test samples = 6,667

Figure 5.24: Experiment 1.3 extended: Quality metrics of the 66,666 samples
system. No. trees = 32; Train samples = 33,333; Test samples = 33,333
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Figure 5.25: Experiment 1.3 extended: Quality metrics of the 66,666 samples
system. No. trees = 32; Train samples = 59,999; Test samples = 6,667

Figure 5.26: Experiment 1.3 extended: Quality metrics comparison of the extension
of experiment 1.3. Blue, red, and purple represent the 33,333 tests; green orange
and magenta represent the 10% tests. No. trees = 32; Train samples = (566,665 -
59,999); Test samples = (66,666 - 6,667)
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Figure 5.27: Experiment 1.3 extended: Difference between the precision, recall,
and F1 score between the systems using the 33,333 samples and the 10% set size for
testing.

5.4 Experiment 1.4

Experiment 1.4 is the final experiment that does not implement windows, and
compares all sampling rates tested until now and their performance. The tested sets
range between 0.1Hz and 90Hz, increasing by steps of 0.1Hz between the 0.1Hz
and 1Hz values, and by steps of 1Hz between the 1Hz and 90Hz values. Values over
90Hz were not tested since the results flatten out after 50Hz and the computational
times increase with the larger datasets. The test consists of a 32 tree RF classifier
with 10,000,000 random samples from the original dataset, adapted to each given
sampling rate. Given that the original dataset was recorded at 100Hz, this reduction
means that the 10Hz set will contain one out of every ten measurements, or 10% of
the original dataset (for a total of 1,000,000 samples).

Results:

Figure 5.28 displays the comparison between the tests with sampling rates between
1Hz and 90Hz. It can be noted that the results increase constantly up until the 70Hz
mark, where they flatten and do not go over the 85% F1 score mark. Figures 5.29
and 5.30 showcase the confusion matrix and quality metrics of the worst performer
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in the first graph, the 1Hz system. In comparison, the 8Hz system shows some
consistent results, as seen in Figures 5.31 and 5.32, where an F1 score of over 80% is
illustrated. Figure 5.33 shows the comparison between the tests with sampling rates
between 0.1Hz and 1Hz. These results are lower than any over 3Hz, and are not as
consistent with the neighboring tests, as can be seen in the overall comparison in
Figure 5.34.

Conclusion:

This experiment proves the validity of single measurements without implementing
windows, but warns about the randomness of the results when lower-than-usual
frequencies are used. Consistent results come from using sampling rates over 5Hz,
which prove to be eighteen times more efficient than systems using 90Hz as their
sampling frequency, and still maintain 94% of the performance of those. As seen
in Figure 5.34, lowering the sampling rate under 2Hz can have anything between
excellent and underwhelming performance, depending on the amount of samples
found in the worse classes, which is a random factor.

Figure 5.28: Experiment 1.4: Quality metrics comparison of the tests using set
between 1Hz and 90Hz. No. trees = 32; Train samples = (8,100,000 - 90,000);
Test samples = (900,000 - 10,000)
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Figure 5.29: Experiment 1.4: Confusion matrix of the 1Hz system. No. trees =
32; Train samples = 90,000; Test samples = 10,000

Figure 5.30: Experiment 1.4: Quality metrics of the 1Hz system. No. trees = 32;
Train samples = 90,000; Test samples = 10,000

Figure 5.31: Experiment 1.4: Confusion matrix of the 8Hz system. No. trees =
32; Train samples = 720,000; Test samples = 80,000

Figure 5.32: Experiment 1.4: Quality metrics of the 8Hz system. No. trees = 32;
Train samples = 720,000; Test samples = 80,000
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Figure 5.33: Experiment 1.4: Quality metrics comparison of the tests using set
between 0.1Hz and 1Hz. No. trees = 32; Train samples = (90,000 - 9,000); Test
samples = (10,000 - 1,000)

Figure 5.34: Experiment 1.4: Quality metrics comparison of the tests using set
between 0.1Hz and 90Hz. Note that the graph is not to scale, since the first ten
sampling rates implement a logarithmic scale. No. trees = 32; Train samples =
(8,100,000 - 9,000); Test samples = (900,000 - 1,000)
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5.5 Experiment 2.1

The first experiment for the windowed implementations aims to provide proof of the
chosen window size. This experiment tests twenty different setups, with window sizes
between 50 and 1000 data instances each. This corresponds to windows between
0.5s and 10s worth of data. Each experiment uses the whole original dataset, and
discards windows including more than one activity. Each subset is divided in two,
66% is used as a training set and 33% as the test set.

Results:

Figures 5.35 and 5.36 represent both the confusion matrix and the quality metrics of
the system using 1.5s windows, the second best performer in the experiment. Figures
5.37 and 5.38, on the other hand, show the same information from the 6s windows
test, the best performer. All the results can be compared in Figure 5.39, where the
6s window system has the best F1 score. It is noticeable that both the 6s and the 9s
systems have a contrasting performance compared to its neighbors. It can also be
noted that the smaller the window sizes, the more constants the results are.

Conclusion:

The conclusion from this experiment is that window sizes between 0.5s and 4s
have extremely constant results; lengthier windows, those over 4s, appear to be
more randomly distributed, with some systems, such as the 600 samples system
(6s) outperforming every other test, but bordered by some of the worst performing
systems. Shorter windows appear to discard less samples during generation, which
leads to more data instances and results in better training. They also have more
samples from the same amount of original data, since windows are shorter, meaning
that the classifier is more likely to encounter infrequent classes, such as windows
labeled as bending. Coincidentally, bending is a short duration action, which makes
it be discarded more often in windows over 4s, leading to it being increasingly rarer.
It is decided, therefore, that future systems will be using 1.5s windows. This decision
comes from the fact that this measurement appears to be amongst the most consistent
set of tests, and still outperforms all other sub 4s implementations, with an F1 score
of 86.54%.
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Figure 5.35: Experiment 2.1: Confusion matrix of the 1.5s window system. No.
trees = 32; Train samples = 44,776; Test samples = 22,054

Figure 5.36: Experiment 2.1: Quality metrics of the 1.5s window system. No. trees
= 32; Train samples = 44,776; Test samples = 22,054

Figure 5.37: Experiment 2.1: Confusion matrix of the 6s window system. No.
trees = 32; Train samples = 10,766; Test samples = 5,304

Figure 5.38: Experiment 2.1: Quality metrics of the 6s window system. No. trees
= 32; Train samples = 10,766; Test samples = 5,304
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Figure 5.39: Experiment 2.1: Quality metrics comparison of all systems imple-
mented for experiment 2.1. Systems implemented window sizes between 0.5s and
10s, which included between 50 and 1000 samples respectively. No. trees = 32; Train
samples = (135,541 - 6,282); Test samples = (66,760 - 3,095)

5.6 Experiment 2.2

In experiment 2.2, the altered value is the sampling rate when generating windows.
In the previous experiment, it was concluded that windows with 150 samples have
the most constant results, which means 1.5s worth of accelerometer data. Hence, the
4Hz test within a 1.5s window will include 6 accelerometer readings, from which all
features will be extracted. This test compares systems ranging between 2Hz and
100Hz. The 1Hz system was excluded since it would only have a single measurement,
from which most of the features could not be extracted. Windows including half a
value were rounded down. All tests include similar amount of data samples, but the
difference between them is the density of the window.

Results:

Figure 5.40 shows all the quality metrics compared. A downward trend can be
observed, as well as a lot of deviation from the tendency line. Several flat sections
are noticeable, mainly around the 45Hz, the 60Hz, and between the 20Hz and
30Hz marks. Figures 5.41 and 5.42 are the confusion matrix and quality metrics
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of the 44Hz example, which is one of the best performers in the experiment and is
surrounded by very similar values. In contrast, Figures 5.43 and 5.44 showcase the
19Hz test, where the F1 score is lower than in neighboring tests.

Conclusion:

This experiment has very inconsistent results, a high variance in the F1 score of
nearby systems is observed. Several clusters of flat performance exist, mainly between
40Hz - 50Hz and between 58Hz - 68Hz. Consistency is of severe importance in
scientific studies, and these two ranges outperform the rest in this regard. A HAR
system using 1.5s windows sampled at 40Hz consumes 60% less energy than one
sampled at 100Hz, and the results are comparable. Therefore, the conclusion from
this experiment is that lowering the sampling rate to somewhere in between 40Hz
and 70Hz is beneficial for the system.

Figure 5.40: Experiment 2.2: Quality metrics comparison of the tests using windows
captured with sampling rates between 2Hz and 100Hz. No. trees = 32; Train samples
= 45,000; Test samples = 22,500
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Figure 5.41: Experiment 2.2: Confusion matrix of the 44Hz system. No. trees =
32; Train samples = 44,774; Test samples = 22,054

Figure 5.42: Experiment 2.2: Quality metrics of the 44Hz system. No. trees =
32; Train samples = 44,774; Test samples = 22,054

Figure 5.43: Experiment 2.2: Confusion matrix of the 19Hz system. No. trees =
32; Train samples = 45,581; Test samples = 22,451

Figure 5.44: Experiment 2.2: Quality metrics of the 19Hz system. No. trees =
32; Train samples = 45,581; Test samples = 22,451



5.7. EXPERIMENT 2.3 61

5.7 Experiment 2.3

Experiment 2.3 is the main experiment of this master’s thesis. A total of 15,979
distinct scenarios were tested. These three variables were altered: Window density,
window distance, and window size. Window density ranged between 90Hz and 2Hz,
with 1Hz steps; window size ranged between 1.5s and 10.0s, with 0.5s steps; window
distance ranged between one and 10 full windows between consecutive windows,
meaning that a 3s window was tested with 3, 6, 9, 12, 15, 18, 21, 24, 27, and 30
seconds window distance. The test consisted of a RF classifier with 66% - 33%
train-test division.

Results:

The results for this experiment include more data points than previous ones and are,
therefore, harder to visualize. Figure 5.45 is a scatter plot representing all the F1
score values plotted against the amount of samples used both for training and testing
in that test. Note that this graph uses a logarithmic scale on the horizontal axis. The
tendency function is shown in Figure 5.46, which displays a downward trend in the
quality metrics linked to lower amounts of samples. Three sections are identifiable in
Figure 5.45: Between 0 and 10,000 samples a disperse area is noticeable where results
range between the 60% and 90% marks; between 10,000 and 1,000,000 samples the
area contains most of the test results, and shows a packed score around the 80%;
the tests with more than 1,000,000 samples show a consistent better performance,
around the 85% mark. The ten results with the best performance are isolated in
Figure 5.47. Any one of these ten tests has a better performance than any other
result with lower amount of used samples, and together they form, therefore, the
Pareto front.

Conclusion:

Similar to the results in Experiment 1.4, the systems trained using fewer samples
have lower dependability. Albeit some systems have better performance than systems
using more samples, the trend is that most systems on the right hand side of Figure
5.45 have better results than the average on the left side of the graph. The best
performers, though, are systems trained with somewhere in between 9,000 and 90,000
samples, and all achieved over 92% F1 score. These systems all use lengthier windows
than what was seen in previous experiments, over 8s, and the window distance is
also longer than expected, since all of them have over a minute between consecutive
windows.
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Figure 5.45: Experiment 2.3: F1 score comparison of all tests. No. trees = 32;
Amount of samples used for the test = (9,022,050 - 1,870)

Figure 5.46: Experiment 2.3: Tendency of the F1 score according to the amount of
samples used for training and testing. No. trees = 32; Amount of samples used for
the test = (9,022,050 - 1,870)
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Figure 5.47: Experiment 2.3: Precision, recall and F1 score of the best performer
in each group. No. trees = 32; Amount of samples used for the test = (4,252,095 -
1,910)

5.8 Experiment 2.4

The last experiment consists of using the top performers from Experiment 2.3 as train
tests and utilizing all other sets as test sets. The test sets have the same variables as
in the previous experiments, those being: Window density, ranged between 90Hz and
2Hz, with 1Hz steps; window size, ranged between 1.5s and 10.0s, with 0.5s steps;
and window distance, ranged between one and 10 full windows between consecutive
windows. Table 5.1 displays the characteristics of the ten training sets used in this
experiment.

Results:

Figure 5.48 represents the F1 score comparison of all the tested systems. The graph
displays several vertical lines of results with different scores, symbolizing each step
of a lower amount of samples. It can be noticed that the datapoints follow the same
pattern as in Figure 5.46 from experiment 2.3. It can also be observed that some
results have extremely high values, with over 99% F1 score.
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Total samples Sampling rate Window size Window distance F1 score

1910 2Hz 7s 70s 87.26%
3515 3Hz 8s 72s 90.63%
5850 4Hz 10s 80s 90.79%
9379 10Hz 10s 100s 92.31%
32738 28Hz 8.5s 85.5s 92.51%
54945 37Hz 8s 72s 93.23%
67390 46Hz 10s 80s 92.92%
87900 60Hz 10s 90s 93.20%
355215 60Hz 9.5s 38s 91.96%
4252095 45Hz 9s 9s 91.74%

Table 5.1: Top ten performers and their specifications from experiment 2.3

Conclusion:

It is nearly impossible for a classifier to attain 100% precision, but that result can
be seen in this experiment. The cause of this is that the training and testing sets
share some of the data instances, which is one of the rules in supervised learning that
should not be broken, as was explained in Section 2.2. As stated in the supervised
learning subsection: The test set is composed of examples distinct from those in the
training set. Due to the way different sets are generated in this thesis, from the same
original dataset, it is likely that different subsets share some datapoints. This allows
the classifier to train specifically for the test and does not reflect the real performance
of the system. This experiment was not conducted using a reliable method, and
does not fulfill the objective proposed in the methodology section. It is, however,
unfeasible to generate the datasets required to run it manually, as it takes between
20 and 30 seconds to generate each subset, which equates to 150 hours for all the
16,000 sets generated for experiment 2.3.
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Figure 5.48: Experiment 2.4: F1 score comparison of all tests. No. trees = 32;
Amount of samples used for the test = (6,014,610 - 1,870)





Chapter6Discussion

This section serves as an examination of the experiments run for this thesis as a
whole and an analysis of their outcomes. It is divided in three sections: the first part
is specific to the beginning round of experiments, including experiments 1.1, 1.2, 1.3,
and 1.4; the second part includes the results of all the remaining experiments, those
including windowing techniques; the third section serves as an examination of the
procedure carried out for this master’s thesis and as a deliberation on the resulting
outcome.

6.1 Windowless experiments

Human Activity Recognition systems include a segmentation phase, according to the
Activity Recognition Chain described in Figure 2.1. During the segmentation phase
windows are created and labeled to be used in the classification phase. Throughout
experiments 1.1, 1.2, 1.3, and 1.4, though, no windows were used. This is not the
common procedure in HAR, but the potential usefulness of a classifier that is precise
enough to be competitive and uses only one measurement per label is warrant enough
to experiment with windowless systems. This potential system could use as low as
one measurement to identify the ongoing activity, but only if the classifier is reliable
enough and has been extensively trained.

Intention:

Previous studies attain better performance when using windows, which means that
the systems with the best performance all use a windowed implementation that
simplifies the windows through features. Feeding the raw data to the classifier
complicates the classification task for the random forest, making the training process
lengthier, as well as resulting in a forest containing trees with more depth and more
nodes. Complicating the training task yields worse classifiers, which make poor use
of the training data and need more data instances for similar performance. On the
one hand, the conclusion from these statements is that the best classifiers, as has
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been seen throughout the literature, use windows. On the other hand, none of these
facts focus on how a windowed classifier reacts to lower data amounts in comparison
with non-windowed implementation. The intention of the first four experiments was,
therefore, exploring this exact scenario. The hypothesis was that windowless systems
would react differently to lower amounts of training data compared to similar systems
using windows.

Results:

The aim of Experiment 1.1 was making a distinction between sampling rate and
amount of samples. The sampling rate exclusively means the amount of times per
second the sensor captures data. Naturally, and in the same amount of time, two
sensors with the same sampling rate capture the same amount of data, and if one of
those has double the sampling rate it would capture twice as much data instances as
the other sensor. With variable time frames, however, sampling rate does not give
any information, since a sensor with a lower sampling rate might be running longer
and record more data instances. Experiment 1.1 proves this statement by training
and testing a classifier with the same total amount of data instances, but which was
captured at different sampling rates. In order to have the same sample quality, the
original set was shuffled before down-sampling. Quality refers to the composition of
the set, meaning that the data contains instances of each class roughly in the same
percentages as were shown in Table 4.2. The results showcased in Figure 5.5 clearly
display a flat trend in the quality metrics, meaning that a change in the sampling
rate has no effect if the amount of training and testing data is the same in the end.

Experiment 1.2 was aimed at defining the effects that varying the size of the
test set has in the performance of a given system. With this, the viability of having
an extensively trained system and using only a handful of samples to test a given
moment could be determined. The results were rather interesting, since some of the
best performers had very few samples. The 0.2Hz system had the best F1 score,
of 83%. As counterintuitive as that may seem, the cause is that smaller sample
sizes lead to potentially random results, given that the deciding instances might
only appear a relatively low amount of times. In the dataset used in this thesis, the
bending category was the worst performer, so having only one instance of it and
labeling it correctly would not reflect the actual performance of the classifier, which
is what can be seen in Figure 5.15 and 5.14, where bending has metrics outperforming
those seen in the 100Hz case, in Figure 5.8. With this results, it can be extrapolated
that insufficient amount of test samples lead to random results, that can be falsely
over-performing systems with more samples, which are more consistent.



6.1. WINDOWLESS EXPERIMENTS 69

In order to specify the required amount of data samples to run a reliable test, in
Experiment 1.3, a single subset was used to test several training sets of different
sizes. The expectation was that a specific amount of minimum samples would be
required to have a successful test, but the actual outcome advocates that using a
percentage of the training set as test always has better performance. As was seen in
Figure 5.26, fixed size test sets have worse performance than relative sized ones. The
conclusion from this experiment is the following relationship between the classifier’s
worst case performance and the percentage of samples that case has, and how those
affect the minimum sample percentage for a test case. In the dataset used in this
thesis, the most complicated class to classify is the bending class. That category
represents 0.58% of the total data instances, as seen in Table 4.2. Pairing the 0.58%
and the performance of the classifier for that label seen in Figure 5.3 (51.92% F1 score
for the bending class) it is concluded that 30.11% (30.11 == 0.58×51.92) of the total
amount of data instances should be used for testing in order to obtain completely
reliable results. As seen throughout the experiment, anything lower than 10% is
not stable enough to build a system. For studies where the maximum performance
is needed, 30% is the perfect amount, being 10% the minimum for a trustworthy
system that does not depend on randomness.

After determining the minimum and the optimum test sizes, Experiment 1.4
was run to determine the minimum and optimum train sizes. It is observable in Figure
5.34 that datasets sampled at less than 10Hz (containing 900,000 training samples)
underperform when compared to systems using more samples for training. Moreover,
when training with less than 270,000 samples (at the 3Hz mark) results appear to
be inconsistent, which makes those systems unusable for a scientific scenario. Those
results, similarly to the conclusion from previous experiments, depend enough on the
random factor of underperforming classes appearing a specific amount of times that
are not considered to be suitable as a design choice for a Human Activity Recognition
system.

Resolution:

After grouping the results of all the experiments run for this section, as a minimum,
HAR systems not implementing windows and implementing a Random Forest classifier
must utilize a minimum of 500,000 samples, which should be further divided into two
subsets, one containing 90% and the other 10% of the total samples. The 90% subset
should be used for training, and the remaining set, for testing. The obtained data
samples do not need to be gathered at a specific sampling rate, but must be varied
enough to represent the classes wishing to be identified. Using these parameters, this
study attained an F1 score of 79.84%. In continuous studies this amount of data
instances correspond to a sampling rate of 5Hz.
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Systems with access to more data would benefit from using a minimum of 1,900,000
total samples (or 19Hz), and training the RF with 70% of those samples, meaning
that 30% would be left for testing it. Within this master’s thesis, the proposed
system attained an F1 score of 82.29%, which is around 2.5% better performance
than the reduced system previously proposed. This system, however, would use as
much as 280% more energy than the reduced proposal, making it less efficient.

6.2 Windowed experiments

As seen throughout the studied literature, current HAR systems group consecutive
data instances in windows which are then simplified through features that describe
them. This approach makes the classification task easier and the system has better
overall performance. Since the usage of windowing techniques is common in modern
systems, exploring and experimenting with those same methods is mandatory in
order to make this research relevant. Experiments 2.1, 2.2, 2.3, and 2.4 make use of
windowing techniques and explore the effects that lowering the amount of samples
used for training and testing has on the performance of the system.

Intention:

By altering the amount of samples a sensor needs to gather during a time frame,
the sampling rate, better use of battery-life can be reached. The intention of these
experiments was reaching a conclusion regarding how a lower amount of samples
affects the performance of a HAR classifier, which would allow the plotting of its
efficiency. In order to achieve this, the proposed method is based on the comparison
of multiple implementations of the same system, with the input data coming from
the same dataset and describing the same activities, but altering the amount of data
instances used from within that original dataset. In a windowed implementation, in
order to alter the amount of data samples used, two possibilities exist: either the
density of the window is changed, meaning the amount of samples per second within
that window; or the distance between consecutive windows is adjusted. In addition
to these two, other parameters, such as the window size, might have an effect on the
results. The three variables that form the experiments are, therefore, window size,
window density, and window distance.

Results:

Experiment 2.1 focuses on the window size, the aim is that of establishing a
benchmark on how the window size affects the performance of a classifier, for future
reference in the following experiments. Human activities are linked to physical actions
and those depend on time, so it is natural that the amount of seconds a window
encompasses affects the result of the classifier. In experiment 2.1, window sizes of up
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to ten seconds were tested. As seen in Figure 5.39, the best performers are the 6s and
the 10s window, but the smaller window sizes have more constant results, which do
not deviate from their neighbors as much. Confusing classes for the classifier, such as
the bending action, appear to be short in duration, which makes larger windows more
likely to discard them. This has two effects: on the one hand, it lowers the amount
of instances of those classes, which leads to worse training. On the other hand, it
cleans the dataset of transitional activities, those being the instances of an action
that are labeled as such, but actually include the transition from a previous action to
the labeled one. Transitional activities complicate the classification task and ridding
the dataset of those results in better performance. A combination of these two facts
is what makes certain implementations, such as the 10s system, outperform the rest.

In experiment 2.2, the altered value was the window density, referring to the
sampling rate of the accelerometer from which the data was generated. Denser
windows require more data samples, hence more energy. A system can be considered
more efficient if windows used in it are less dense but results are similar. Altering the
density, as opposed to the amount of windows, does not affect the amount of training
samples the classifier has access to as long as the rest of parameters are constant.
Experiment 2.2 compared 1.5s windows with different densities, ranging between
2Hz and 100Hz. The results in Figure 5.40 show a downward trend with lower
densities, but the rate of decay is quite flat, specially after the 20Hz mark. This can
be attributed to the statement by Karantonis et al., All measured body movements
are contained within frequency components below 20 Hz [KNM+06]. From combining
experiments 2.1 and 2.2, it can be concluded that a system with 10s windows sampled
at 20Hz (so containing 200 data instances) does not need to sacrifice any performance
and offer results comparable to state-of-the-art systems.

Experiment 2.3 was the main experiment within this master’s thesis, a total of
16,000 different datasets were created and used to train and test a classifier. All the
results are plotted in Figure 5.45, where a downward trend linking lower sampling
rates to lower performance is observable. This trend, however, does not mean that
certain systems cannot be more efficient than others, as is noticeable by some of
the systems that used less than 5,000 samples and attained over 90% F1 score. The
takeaways from this experiment are the common characteristics of these systems, so
that future studies can use those traits and use them. As seen in Experiment 2.4,
in Table 5.1, the top performing systems tend to have a larger-than-usual window size,
between 7 and 10 seconds, with an average window size of 9s. The best performer
was the system using windows encompassing 8s worth of measurements at 37Hz,
with a window distance of 72s. This system attained an F1 score of 93,23%, and
used a total of 32,728 samples both for training and testing a system from 28h of
labeled data. Compared to the systems resulting from experiment 1.4, the F1 score
is 10.93% higher, and the energy usage over 58 times lower.
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Resolution:

From all the experiments between 2.1 and 2.4, the following facts can be extracted.
Longer window sizes, between 7 and 10 seconds, have been proven to perform better
than shorter counterparts, between 0.5 and 4 seconds. Shorter windows, however,
appear to be more constant in their results, as seen in Figure 5.39 from experiment 2.1,
which allows the study implementing the system to not worry about their window size
and its performance. Longer window sizes, albeit performing better in the best-case
scenario, have a higher standard deviation, which results in the necessity for more
fine tuning of the system. Longer window sizes are also more resilient to working
with less data, as established in Table 5.1 from experiment 2.4, where all the top
performers have larger window sizes and use less overall data instances.

Given the slow nature of human physical activity, where actions last periods of
time of dozens of seconds, window distances of over 60s prove to be more battery
efficient when comparing the system’s performance. Meaning that by skipping 60s
of measurement between windows most of the energy expenditure can be lowered
and the system still yields highly accurate results. These results are extracted from
Figure 5.47, where the average distance between consecutive windows is around the
70s mark, being all the top performers above 72s.

Reducing the sampling rate from within a window does not affect the amount
of windows the trainer will work with, but instead their quality, which comes from
the amount of samples they contain. The features generated from those samples are
affected by the window density, and features such as the zero cross rate (the amount
of times the population goes from positive to negative or vice versa) do not hold as
much information when working with sparser windows, since they are quantifiable
values that depend on the size of the population. The Pareto front resulting from
experiment 2.3 contains window densities (their sampling rates) of 2, 3, 4, and 10
Hz, which are considered low when comparing them to studied HAR systems; it also
contains higher rates, of 28, 37, 46, and 60 Hz, and those have an average of 2.3%
better performance, but also use 9 times more samples, on average.

6.3 Outcome

Future studies that need battery efficient systems would benefit from implementing
classifiers in the Pareto front of Figure 5.45, which are all summarized in Table 6.1
and plotted in Figure 6.1:

The first system has an overall performance of 87.26%, 5.97% lower than the
top performer, but is over 27 times more battery efficient, using a total amount of
samples for training and testing of 1,910.
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The second system has an overall performance of 90.63%, 2.60% lower than the
top performer, but is over 15 times more battery efficient, using a total amount of
samples for training and testing of 3,515.

The third system has an overall performance of 90.79%, 2.44% lower than the
top performer, but is over 9 times more battery efficient, using a total amount of
samples for training and testing of 5,850.

The fourth system has an overall performance of 92.31%, 0.92% lower than the
top performer, but is over 5 times more battery efficient, using a total amount of
samples for training and testing of 9,379.

The fifth system has an overall performance of 92.51%, 0.72% lower than the top
performer, but is over 67% more battery efficient, using a total amount of samples
for training and testing of 32,738.

The top performing system has an overall performance of 93.23%, and uses a
total amount of samples for training and testing of 54,945. This system does not use
extremely low amounts of samples, and performs better than any other system seen
throughout this thesis. It implements window sizes of 8s, distanced by 72s between
measurements, and those windows are composed of 296 samples, corresponding to a
37Hz sampling rate.

By combining window density, window distance, and window size as
parameters for the generation of data sets, lower sampling rates have
been proven to be overcome. From the proposed systems, the implementation
using 3,515 samples has an F1 score of over 90%, and its features simplify 28h of
data gathered at 100Hz in less than 2,855 times the previous energy expenditure.

Total samples Sampling rate Window size Window distance F1 score

1910 2Hz 7s 70s 87.26%
3515 3Hz 8s 72s 90.63%
5850 4Hz 10s 80s 90.79%
9379 10Hz 10s 100s 92.31%
32738 28Hz 8.5s 85.5s 92.51%
54945 37Hz 8s 72s 93.23%

Table 6.1: Classifiers in the resulting Pareto front.
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Figure 6.1: Quality metrics comparison of the top performing systems.



Chapter7Conclusion

After the discussion of the experiments run for this master’s thesis, the work is
considered to be concluded. The research goals have been successfully achieved,
and an answer has been given to all the questions proposed at the beginning of
this project. The result is the implementation of six systems that achieve F1 scores
between 87.26% and 93.26%, and use sample sets with as low as 1,910 data instances.
These systems all label human activity by using a Random Forest classifier composed
of 32 trees, and use 66% of the given set for training and the other 33% for testing.
The data used was gathered by two accelerometers, one on the front-right thigh and
another on the upper-left back.

Over 16,000 different tests were run for this master’s thesis, in order to find the
best parameter combination that would be more resilient to using lower amounts of
samples. These tests included windowed and non-windowed implementations, as well
as several variables to be combined within those. The non-windowed tests varied
the amount of samples, train-test division, and sampling rate. The windowed tests
varied the train-test division, window distance, window size, and window density.

7.1 Contribution

The objective of this master’s thesis was the exploration of the resilience of HAR
systems to lower sampling rates. By implementing several systems with different
characteristics the objective is considered to be fulfilled. Different random forests
have been implemented, by using variations of the original data set, and their results
compared to one another. This completes the first goal of this thesis, which was
training different RFs with variations of the same data set using lower sampling rates.
The answer to the first research question, which was: What is the minimum amount
of training data required to have a dependable Random Forest? is the first proposed
system. The classifier uses 1,910 total samples for training and testing, and has an
F1 score of over 87%. The second question was about the effect that windowing
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techniques have on the dependence of RFs on the sampling rate. The answer to the
second question was exemplified during the discussion, where all the systems using
windows performed better than the best system not using them, and most of them
needed fewer data instances for their results.

By combining all the implemented systems, a Pareto front has been established.
Six systems form it and are the most performant systems from all the tested examples
throughout this thesis. The establishment of the Pareto front fulfills the second goal
established for this project. Answering question number three, the more vulnerable
systems to lower sampling rates are non-windowed implementations, which were
proven to be ineffective when trained with less than 500,000 samples. After comparing
all the systems, Random forests with 32 trees which use a sample set created at
2Hz and 7s windows are the most resilient systems, which is the answer to question
number four.

7.2 Future work

There are many clear paths that need to be traversed that this thesis could not cover,
among those some are features that did not fit the scope of the project, and some
are similar but alternative situations that are potentially interesting:

First and foremost, an experiment similar to experiment 2.4 should be properly
conducted, where the amount of necessary samples for testing a classifier is determined.
The generation of new subsets was a task too computationally expensive to be
performed many times, and experiment 2.3 took over three days to prepare. Even if
it could not be conducted, the necessity of obtaining results such as those sought in
experiment 2.4 could warrant a new line of work.

After exploring the random forest classifier, many other machine learning types
remain. These include Support Vector Machines, k-Nearest Neighbors, Random
Forests, and Artificial Neural Networks, among many others commonly seen in HAR.
The same type of study could be conducted for any single one of those systems, or
use them all together as a new variable.

The initial proposal for this master’s thesis included the exploration of adaptive
sampling, where the time between consecutive samples would vary according to the
last classified label. It was not possible due to the magnitude of the project to
implement smart sampling systems, but the proposal has a lot of potential and could
be continued in that direction.

This project serves as a proof of concept for what it succeeds in, but actual
validation outside of the lab and the usage of more realistic setups is mandatory for
it to be applied to consumer applications.
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As a natural continuation from this project, results under 1Hz could be experi-
mented with. Given the tested window sizes, of a maximum of 10s, some windows
would end up empty if rates of 0.01Hz were used, but if that were the objective the
minimum window size could be two minutes. This scenario is a possible extension to
this project.

The focus has been always on the same dataset, composed of data from two
accelerometers and created for another purpose (early stroke detection). Not only
a specific dataset could be created for the project, where sets at lower rates are
generated for each test, but results could also be tested with other already existing
datasets, such as the HAR smartphone dataset1. New labels could also be used, or
some removed, as it would allow the removal of confusing labels such as the bending
label, which might allow even lower amounts of samples to be used.

Other types of pattern detection, not only those in human activity, but maybe
also noise, or images, are a potential path to follow. Noise detection is an important
topic for Internet of Things, and its importance in the future might depend on studies
like this one applied to it. Performing the same type of study in those environments
is another of the paths that could be followed.

1https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

 https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
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