
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Mousa Ryad Al Naser

Experimental and Analytical Analysis
of a Virtualized Network Function

Master’s thesis in Communication Technology
Supervisor: Yuming Jiang, Besmir Tola

June 2019

Title: Experimental and Analytical Analysis of a Virtualized Network Function
Student: Mousa Ryad Al Naser

Problem description: Current legacy networks are over populated with a huge

number of hardware appliances. Furthermore, deploying a new Network Function
(NF) often requires installing yet another variety of proprietary hardware. This is
compounded by the increasing costs of energy and capital investment. The concept
of Network Function Virtualization (NFV) originated from the requirement of the
service providers to enhance performance, reduce deployment and operating cost,
foster competition, and improve scalability and manageability. NFV takes advantage
of cloud computing and virtualization technology to accelerate the deployment of
Virtualized Network Functions (VNFs). NFV promises to bring a multitude of
benefits to the network field as it decouples software from hardware which means
that the implementation of both hardware and software is no longer dependent on
each other. In other words, NFV promotes the implementation of network functions
in software instead of installing new dedicated hardware every time a new network
function is added. The service provider can simply launch a new VNF which can
run on a commodity hardware and can be managed without the need of modifying
the physical infrastructure. Since many VNFs prototype are available to be studied
and analyzed, it is equally important to identify their performance, and ability to
meet the user expectations.

In this project, we study the performance of VNF in the context of a virtualized
IP Multimedia Subsystem (IMS), called ClearWater, which is an open source NFV
based IMS. Clearwater follows IMS architectural principles and supports all of the
services, and standardized interfaces expected of an IMS. ClearWater is available to be
deployed in two widely used virtualization technologies: an open source Linux-based
container (Docker), and Virtual Machine (VM). Similar to typical IMS, ClearWater
utilizes Session Initiation Protocol (SIP) for call session establishment and control.
SIP is a signalling protocol used for managing multimedia sessions over an IP data
network, and negotiating the parameters of the created session.

To this end, we consider a common deployment where all the VNF services are
running on the same physical machine. The main goal is to study and analyze the
initial user registration process of ClearWater for both deployment options, and to
derive an analytical model based on queuing networks. The experimental results will
form the basis to eventually refine and validate the analytic model. The project aims
to discover the influence of different system features like resource allocation, service
request arrival rates, number of processing instances on the system performance in
terms of response time, successful and failure rate, and resource utilization.

Responsible professor: Yuming Jiang, IIK
Supervisor: Besmir Tola, IIK

ii

Abstract

NFV is an emerging technology which aims to improve the performance,
foster competition, and increase innovation. NFV decouples software
from hardware which means that the implementation of both hardware
and software is no longer dependent on each other. In case of NFV, The
deployed VNFs share a common standard infrastructure, and they can
be modified and managed without the need of modifying the physical
infrastructure.

In this project, we study the performance of an open-source widely-
referenced VNF prototype, namely ClearWater. The aim is to investigate
how this new technology comply to the expectations. The system will be
deployed on top of two widely used virtualization technologies: Linux-
based container (Docker), and VMs. We mainly focus on the initial
subscriber registration process. In addition, we monitor the Central
Processing Unit (CPU) and Random Access Memory (RAM) utilization.
The project aims to investigate the influence of different system features
like resource allocation, arrival rates, and number of processing instances
on the system performance in terms of response time, and resource
utilization.

The project also includes deriving an analytical model based on the
queuing network theory. We consider two well-known methods to derive
the analytical model: M/M/1, M/G/1, and G/G/1. The experimental
results will form the basis to eventually refine and validate the analytic
model.

Preface

The basis for this project stemmed from the idea that I could use the
topic of the NFV to work on a project that would not only encompass my
academic proficiency but also provide benefits to the ongoing research
within the area. Through this project, I was able to learn new skills
from different resources whilst generating an outcome that provides a
well rounded picture of the research surrounding NFV and generating a
better idea of how good the performance of the new technology is. My
goal was to get a better knowledge about the NFV technology, and how
software implementation of the network functions operates.

In truth, I could not have achieved my current level of success without
a strong support group. First, My family, who gave me the love and
the unconditional support all through the way. And secondly, I would
like to thank Professor Yuming Jiang and PhD student Besmir Tola
for their academic support and contributions to my academic and even
personal development. Thirdly, a great gratitude to all at the department
of Information Security and Communication Technology and my friends.
Your help was instrumental to improve the quality of out work and also
contributed to my personal development.

Contents

List of Figures vii

List of Tables ix

List of Algorithms xi

List of Symbols xiii

List of Acronyms xv

1 Introduction 1
1.1 Introduction . 1

2 Background and Related Works 5
2.1 Background . 5
2.2 Related Works . 7

3 Methodology 11
3.1 Used Tools . 11

3.1.1 ClearWater . 11
3.1.2 VM and Docker container . 13
3.1.3 SIPp . 15
3.1.4 Wireshark . 15
3.1.5 CPU and RAM Monitoring Tools 16

3.2 ClearWater’s User Registration Flow 17
3.3 Testbed Specifications . 18
3.4 Environment Setup . 19

3.4.1 ClearWater on Docker container 19
3.4.2 ClearWater on VM . 21

3.5 SIPp: Preparation and Installation 24
3.5.1 Experimental Test Settings 25

3.6 Analytical Model and Analysis . 27
3.6.1 M/M/1 . 29

v

3.6.2 M/G/1 and G/G/1 . 30

4 Results and Discussion 33
4.1 Experimental Results . 34

4.1.1 Average Registration Delay 35
4.1.2 Average CPU Utilization . 36
4.1.3 Average RAM Utilization . 41

4.2 Analytical Results . 42
4.2.1 VMs . 42
4.2.2 Docker containers . 42
4.2.3 Service Time Distribution Fitting for M/G/1 & G/G/1 . . . 43
4.2.4 Inter-Arrival Time Distribution Fitting for M/G/1 & G/G/1 47

5 Conclusion and Future Work 51

6 Appendices 53
6.1 Useful Linux Commands . 53
6.2 Useful Docker containers Commands 53
6.3 Useful ClearWater Commands . 54
6.4 XML Scenario . 55
6.5 Inter-Arrival Time Distribution Fitting 56

6.5.1 VMs . 56
6.5.2 Docker containers . 56

References 59

List of Figures

1.1 NFV high-level Architectural Framework, adapted from [ETS13a] . . . 3

2.1 IMS High-level Architecture . 6

3.1 ClearWater Architecture, adapted from [Neta] 12
3.2 Container vs VM, adapted from [Doc18] 14
3.3 SIP: User Registration Dialogue, adapted from [Neta] 18
3.4 Feed-Forward Tandem of Queues . 28

4.1 Average Registration Delay . 34
4.2 Average Registration Delay . 36
4.3 Average Registration Delay . 37
4.4 Average CPU Utilization . 38
4.5 Average CPU Utilization . 39
4.6 Average CPU Utilization . 40
4.7 Average RAM Utilization . 41
4.8 VMs relative error: M/M/1 vs M/G/1 & G/G/1 43
4.9 Docker containers relative error: M/M/1 vs M/G/1 & G/G/1 43
4.10 VMs: Service Time Distribution . 44
4.11 Docker Containers: Service Time Distribution 45
4.12 VMs Part 1: Inter-Arrival Time Distribution 48
4.13 Docker Part 1: Inter-Arrival Time Distribution 49

6.1 VMs Part 2: Inter-Arrival Time Distribution 57
6.2 Docker Part 2: Inter-Arrival Time Distribution 58

vii

List of Tables

3.1 CPUand RAM Monitoring Tools . 16
3.2 Specifications of the Physical Machines 19
3.3 Deployed Docker containers . 20
3.4 Deployed VMs . 24
3.5 Stress Test’s Settings . 26
3.6 Service Time Values for Docker containers 29
3.7 Service Time Values for VMs . 29

4.1 Service Time Distribution Fitting Based on AICc 47
4.2 VM: Inter-Arrival Time Distribution Fitting Based on AICc 50
4.3 Docker: Inter-Arrival Time Distribution Fitting Based on AIC 50

ix

List of Algorithms

3.1 Limiting a Container’s Resources . 15
3.2 Installing ClearWater on Docker container, , adapted from [cle] . . . 20
3.3 Docker’s Shared Configuration, . 21
3.4 Docker’s Local Configuration, , adapted from [Netb] 21
3.5 Configuring Nodes to Access Clearwater Debian Repository, adapted

from [Netb] . 22
3.6 Determining VMs Roles, adapted from [Netb] 23
3.7 SIPp v3.4: Preparation and Installation 24

xi

List of Symbols

λ Arrival process rate.

µ Service process rate.

1/λ Inter-arrival time.

1/µ,E[X] Expected Service time.

ρ Utilization factor.

σ Standard deviation.

σs Standard deviation for service time.

C2 Coefficient of variation.

C2
s Coefficient of variation for service time.

E[S] Expected Sojourn time.

E[W] Expected Waiting time.

xiii

List of Acronyms

AA Affinity Aggregates.

AIC Akaike Information Criterion.

AS Application Server.

AV Authentication Vector.

CAGR Compound Annual Growth Rate.

CPU Central Processing Unit.

CSCF Call Session Control Functions.

CSV Comma-Separated Values.

DNS Domain Name System.

EB Exabytes.

EMS Element Management System.

EPC Evolved Packet Core.

ETSI European Telecommunications Standards Institute.

FCFS First Come First Served.

GB Gigabytes.

GSL GNU Scientific Library.

GUI Graphical User Interface.

HSS Home Subscriber Server.

HTTP Hypertext Transfer Protocol.

xv

I-CSCF Interrogating Call Session Control Functions.

IDS Intrusion Detection System.

iFC initial filter criteria.

IMS IP Multimedia Subsystem.

IoT Internet of Things.

IP Internet Protocol.

LTE Long Term Evolution.

LTS Long Term Support.

MANO NFV Management and Orchestration.

MME Mobility Management Entity.

MRF Media Resource Functions.

NAS Network-Attached Storage.

NAT Network Address Translation.

NF Network Function.

NFV Network Function Virtualization.

NFV ISG Network Functions Virtualisation Industry Specification Group.

NFVI NFV infrastructure.

NFVO NFV Orchestrator.

NGN Next Generation Networks.

OSS/BSS Operations and Business Support System.

P-CSCF Proxy Call Session Control Functions.

PSTN Public switched telephone network.

RAM Random Access Memory.

RQT Robust Queuing Theory.

S-CSCF Serving Call Session Control Functions.

SDP Session Description Protocol.

SFC Service Function Chaining.

SIP Session Initiation Protocol.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

VIM Virtualized Infrastructure Manager.

vIMS virtualized IMS.

VM Virtual Machine.

VNF Virtualized Network Function.

VNFM VNF Manager.

XDMS XML Document Management Server.

XML eXtensible Markup Language.

Chapter1Introduction

1.1 Introduction

Today’s world is increasingly digitalized and people are becoming more and more
connected. It is not only humans who are connected anymore, the Internet of
Things (IoT) devices are demanding new connectivity requirements. The service
providers, who are in charge of providing such connectivity and services, are facing
huge challenges to keep providing highly performing and stable services while the
traffic volume and the number of subscribers on their networks are experiencing
an exponential rise. According to Ericsson Mobility Report of 2018, the generated
traffic from mobile devices is anticipated to witness an increase of 500 % by the end
of 2024 reaching a data volume of 136 Exabytes (EB) per month. Furthermore, it is
expected to have 8.9 billion mobile subscriptions and 8.4 billion mobile broadband
subscriptions by 2024 [Jej18].

The increasing number of mobile and broadband subscriptions makes it essential
to adapt a new technology which aims to overcome the limitations of legacy networks
with respect to scalability, cost, resources management, and complexity of the
network infrastructure. In sake of improving the network performance, some of
the dominant service providers among the world, who extensively use NFs like
Network Address Translation (NAT) or Firewall, in cooperation with European
Telecommunications Standards Institute (ETSI), introduced the concept of NFV
for the first time in October 2012. Since that day, ETSI has established an open
membership institution specialized in NFV called Network Functions Virtualisation
Industry Specification Group (NFV ISG), which drives innovation and standardization
of NFV technology [ETS13b].

NFV has changed the approach of deploying network functions to be virtualized
instead of using specific property hardware and software. NFV promises to bring
a multitude of benefits to the network field as it decouples software from hardware
which means that the implementation of both hardware and software is no longer

1

2 1. INTRODUCTION

dependent on each other. Separating software from hardware improves sharing of
the resources and makes deploying of new services much faster. NFV is expected to
significantly reduce costs related to network operation, and increase providers’ profit.
This is done by reducing the complexity of hardware infrastructure and sharing
of resources among several VNFs [ETS13a]. Instead of installing new dedicated
hardware every time a new network function is added, the service provider can simply
set up a new virtual function to provide the desired service.

Despite the fact that NFV was conceived a few years back, a recently published
report shows that it is expected for the NFV market to witness a grow at a Compound
Annual Growth Rate (CAGR) of 32.88 % within the period 2016-2022 [Rep]. NFV
has proven itself to be superior not only with regard to cost saving, simplicity of
deploying, and manageability of services, but also a reliable technology with high
level of performance.

The high-level architecture of NFV framework, as defined by ETSI, is shown in
Figure 1.1. It consists of four main components: NFV infrastructure (NFVI), VNFs,
Operations and Business Support System (OSS/BSS), and NFV Management and
Orchestration (MANO).

First, NFVI is the layer that contains standard hardware and virtual resources
which form the foundation of the NFV environment. NFVI itself consists of three
parts:

1. Hardware resources: consist of computing hardware such as servers, storage
hardware such as Network-Attached Storage (NAS), and network hardware
such as switches.

2. Virtualization layer: abstracts hardware resources and detaches software from
hardware which enables software to be run independently from hardware.

3. Virtualized resources: includes virtual computing, storage, and network re-
sources which are exploited by the VNFs.

Those shared resources are used by VNF for its processing and connectivity needs.
The virtualization layer is responsible for decoupling the hardware resources from the
VNFs so that multiple software can be implemented across the hardware resources.

Second, the VNF part represents the software implementation of various NFs. It
is possible to combine several VNFs together in order to achieve more specialized
function, known as Service Function Chaining (SFC), aiming at increasing scalability
and network agility. An Element Management System (EMS) performs management

1.1. INTRODUCTION 3

Figure 1.1: NFV high-level Architectural Framework, adapted from [ETS13a]

for network elements. It assists to take action on fault and performance information,
and it handles the security aspects of the network element.

Third, the NFV MANO functional block consists of the following parts:

1. Virtualized Infrastructure Manager (VIM): is used to manage and monitor the
connections of VNFs with the available resources.

2. VNF Manager (VNFM): is in charge of the VNF lifecycle. It initializes, updates,
scales, and terminates VNF instances.

3. NFV Orchestrator (NFVO): is responsible for the network services lifecycle.

Finally, the OSS/BSS performs billing, fault, element, configuration, and operations
management.

4 1. INTRODUCTION

NFV is expected to be widely deployed and used in a cloud computing fashion
aiming at providing and supporting telecommunication services. An IMS, being an
overlay architecture of Long Term Evolution (LTE) networks, provides multimedia
signaling packets through multimedia servers, and multimedia data packets through
multimedia gateways. It represents a core functionality of Evolved Packet Core (EPC)
architecture by connecting user equipment with targeted multimedia applications
which provide services like audio/video over Internet Protocol (IP) networks. As
identified by ETSI [NC13], the IMS represents an excellent use case of applying
NFV concepts into LTE and 5G mobile technologies. However, 5G services are
expected to provide very high data rates therefore demanding very strict performance
requirements.

In this project, we study an NFV-enabled service by assessing the performance
of an open source and widely referenced VNF which implements a virtualized IMS
(vIMS), namely Clearwater [Neta] [Netb]. ClearWater has several typical deployment
options using virtualization technologies like VM and Linux-based Docker containers
(see chapter 3 for more details about ClearWater, VM, and Docker containers).
The NFV specifications do not recommend a particular virtualization layer solution
for the NFV infrastructure. Therefore, performing the test for both virtualization
technologies will help to assess which one is more convenient to be used with
Clearwater.

The aim of this project is to analyze the performance of such a VNF when it is
deployed on the two different options aiming at investigating the following research
questions:

– Which of the both approaches acts better in terms of average registration
delay?

– How they are compared to each other and how resource allocation and scaling
impact the delay?

– How the performance of ClearWater elements is influenced when varying the
arrival rate?

This project is structured from two main parts. The first part is to set up the
experimental environment, and conduct the experimental measurements. The second
part consists of deriving an analytical model based on queuing network theory
and validating it based on the experimental results. With regard to the problem
description, we excluded monitoring the successful and failure rate of the subscriber
registration due to the intensive workload. We would rather focus on the average
registration delay, influence of the resource allocation, different arrival rates, and
several deployment options.

Chapter2Background and Related Works

This chapter aims to present some background on the chosen VNF software architec-
ture and provide the reader with a general overview of what related references have
investigated so far.

2.1 Background

On the core of the IMS architecture there is the SIP signalling protocol. The
SIP, developed by ETSI, is used for managing multimedia sessions over an IP data
network, and negotiating the parameters of the created session. SIP can operate on
top of Transmission Control Protocol (TCP) or User Datagram Protocol (UDP),
and it supports the following features when establishing and terminating multimedia
sessions:

1. User location: regardless of their locations and devices, users can connect to
the network using the same identifier.

2. User availability: determine the willingness of the recipient to engage in com-
munications.

3. User capabilities: parameters to be utilized during a session.

4. Session setup and management.

A session description is used to characterize the capabilities of a session. An
INVITE request is used to initiate a SIP connection, and BYE message ends the
established session. Option message includes information about the capabilities of
the participated users, and Status message updates other servers about the progress
of signaling actions when it is requested. ACK message is used to inform a successful
message exchange.

5

6 2. BACKGROUND AND RELATED WORKS

Figure 2.1: IMS High-level Architecture

SIP is a request-response protocol which means when a SIP endpoint received a
request from a certain node, it sends back a response to the initiator. All the SIP
responses have a response code and message. In total, there are six different types
of response codes that start from 100 up to 600. Responses with a code from 1xx
group indicate the statue of call progress. They are followed by other SIP messages
to inform other nodes participated in the created session about the final outcome.
Those message can be 2xx, 3xx, 4xx, 5xx, and 6xx for successful, redirection of the
connection, client error , server error, and global failure respectively.

In order to understand how ClearWater operates and provides services, it is
essential to realize the traditional IMS architecture shown in Figure 2.1. Generally,
IMS consists of three main layers:

1. Access network layer: provides connectivity to external networks. It contains
IP routers and Public switched telephone network (PSTN) switches.

2. Control layer: in charge of controlling calls establishment, management, and
termination. It consists of four different parts: Home Subscriber Server (HSS),
Call Session Control Functions (CSCF), and Media Resource Functions (MRF).

3. Service layer: consists of multiple Application Servers (ASs) which host and
execute services.

2.2. RELATED WORKS 7

CSCF is a significant part in IMS system which needs to be presented more in
detail. CSCF of traditional IMS has three main types: Proxy Call Session Control
Functions (P-CSCF), Interrogating Call Session Control Functions (I-CSCF), and
Serving Call Session Control Functions (S-CSCF). First, P-CSCF acts as the anchor
point between the client and the IMS network. The P-CSCFis a SIP proxy which
provides integrity and confidentiality for SIP signalling and confirms identity of the
client to other nodes of IMS. Second, the I-CSCF plays a key role in IMS roaming.
Its main responsibilities is to retrieve user location information from HSS, assign a
S-CSCF based on the received information, and route arriving requests to the correct
S-CSCF. Lastly, the S-CSCF acts as a registrar server. It is the main control node
in the signalling plane. The S-CSCF is the most loaded node of the IMS due to the
initial filter criteria (iFC) processing which enables IMS service management. The
S-CSCF provides interface to HSS in order to download user’s service profile. It also
enforces policies of network operators.

In this project, We use an open source vIMS, namely ClearWater. The architecture
of traditional IMS and ClearWater is almost the same, but they have different
terminologies. In case of ClearWater, Sprout element is equivalent to functionality of
both I-CSCF and S-CSCF. P-CSCF function is implemented in Bono. See Chapter 3
for more details about ClearWater and its architecture.

2.2 Related Works

Several studies have been performed with the focus of exploring and assessing
virtualization technologies for NFV-enabled architectures. In [BCC+15], the authors
deployed chains of NFVs on a single server where the virtualization environment
was container and VM. They also defined the bottleneck scenarios. Open vSwitches
were used to control the traffic between different NFVs. They measured both latency
and throughput for packets of various sizes and concluded that container provides
performance close to VM, utilize less resources, and has better latency. In this
project, we consider to both Docker container and VM since they provide different
values of latency.

Another research [CW18] was performed to explore performance of an altered
IMS architecture. The S-CSCF was split into two parts, one of them controlling
call establishment and the other being in charge of user registration. Whereas, the
I-CSCF functionality was combined with the part of S-CSCF that performs the
user registration. They mainly measured user registration success rate and call
flow success rate for the new IMS, original ClearWater with only one Sprout, and
ClearWater with two Sprout elements. The registration success rate for ClearWater
with a single Sprout node rapidly declines. The registration success rates of the

8 2. BACKGROUND AND RELATED WORKS

others deployment gradually decline at 2500 test run. They concluded that the new
IMS has the best performance for user registration and call flow.

In [SSFS17], micro-service bundles, called Affinity Aggregatess (AAs), were
suggested to be applied to ClearWater, and they were chosen to combine Sprout
and Bono together. ClearWater was deployed on a Docker container on a single
machine where all existed containers share the available resources. They used SIPp
to generate SIP traffic aiming at monitoring the number of failures for each type of
messages and investigating the effect of network latency on ClearWater.

In [NSV17], the authors designed a tool, called VNFPerf, to detect bottleneck
and monitor the performance of VNFs. VNFPerf consists of local capturing unit,
which is installed on all machines, and central analysis module which receives VNFs
attributes from local capturing modules. Local capturing module sniffs all incoming
and outcoming traffic and send regular reports to central analysis module. The
authors found out that VNFPerf provides an accurate performance analysis and can
efficiently discover bottlenecks in real-time networks.

With regard to analytical modelling of NFV, queuing network analyzer theory
was applied to derive a mathematical model of VNF in order to estimate the system
response time [PAR+17]. The authors made no assumptions regarding the arrival
time or the service time. Each node was considered as G/G/m queue. They modeled
the signaling procedure of Mobility Management Entity (MME) following a three-
tiered architecture. It was assumed that each element serves the packets following
a First Come First Served (FCFS) scheduling scheme. On the contrary to our
model which will be validated based on the experimental results, the final model was
validated by simulation.

Another related work is [SSJ19] where the authors compared tow popular ap-
proaches of deploying VNFs: monolithic and microservice. The comparison of
performance included a mathematical analysis and experimental measurements.
They also considered to study the impact of scaling up and decomposition on the
performance. SNORT, which is an open source Intrusion Detection System (IDS),
was used to conduct the experimental measurements. Monoliths and microservices of
SNORT were deployed on Docker containers. With regard to the analytical model,
they considered M/M/1 to derive the analytical model. It was concluded that scaling
up monolithic VNFs has a better performance rather than decomposition using the
microservice approach. This work differs from ours in the nature and complexity of
the studied VNFs. In addition, we explore and compare two popular virtualization
technologies: Docker containers and VMs. Finally, we consider several approaches to
derive the analytical model like M/M/1 and G/G/1.

In [MG10], the authors analyzed the registration delay for tow different systems:

2.2. RELATED WORKS 9

3G and WiMax. They also performed an analytical analysis by using M/M/1 and
G/G/1. Multiple types of delays were considered like transmission delay, queuing
delay, and processing delay. They concluded that WiMax networks provides better
delay compared to 3G. Several papers [Mun08][NTN13] have justified that M/M/1
is a valid method to mathematically describe the IMSs processes. It is quite common
with regard to modeling the IMS through queuing systems, the network is abstracted
as a tandem of queues where each queue is modeled as an M/M/1 [WBBD05, FCP06].

The last related work is concerned in modelling of IMS. The author abstracted
the queuing network as tandem of queues. They considered both M/M/1 and M/G/1.
The validation of the analytical results was performed with simulation.

In this project, we study and analyze the user registration process of ClearWater
in two different virtualization technologies (Docker and VM) and investigate the
influence of different system features like resource allocation, service request arrival
rates, and number of processing elements on the overall system performance. In
addition, the project includes deriving an analytical model using classical queuing
theory where both the arrival and service processes can be either Markovian or
general processes.

Chapter3Methodology

This chapter introduces the methodology applied for evaluation and analysis of the
Clearwater IMS network function for the different virtualization technologies and
resource configurations. It also presents the approach of deriving an analytical model
which is suitable for characterizing and describing performance-wise the system
architecture.

The overall process consists of two main parts. The first part is to set up the
experimental environment and conduct the necessary measurements when performing
various tuning of the resource allocations, the incoming traffic load, and other
related testbed specifications. The aim is to analysis the user registration process
of ClearWater which will be deployed on top of Docker containers and VMs. The
experimental work was run several times with different settings like generating varying
number of service requests per second and changing the allocated resources for key
Clearwater components. The second part is to derive an analytic model based on
queuing network theory as a reference method. Through the experimental results
we investigate the suitability of the queuing models by comparing the experimental
measurements with the expected performance results given by each assumed queue
model. For each model, we derive the relative error and identify the validity of it.

3.1 Used Tools

The purpose of this section is to introduce in details the tools utilized in setting up
the experimental environment and justify their selection.

3.1.1 ClearWater

In an NFV architecture, a VNF is the software implementation of a specific network
function and ETSI has identified the virtualization of an IMS as one of the potential
use cases where the expected benefits of NFV can be fully exploited [ETS13c]. A
widely adopted and referenced ETSI-compliant vIMS is developed by the Clearwater

11

12 3. METHODOLOGY

Figure 3.1: ClearWater Architecture, adapted from [Neta]

project [Neta]. ClearWater is an open-source NFV based IMS which enables IMS
and its associated services to be deployed in a cloud environment. Similar to typical
IMS, ClearWater utilizes SIP signaling for voice, video, and messaging services.

Figure 3.1 shows the architecture of ClearWater which consists of the following
parts:

1. Sprout: acts as a SIP router and registrar, performs user authentication, and
it supplies interface to another node called Vellum in order to save registration
data. Since it is possible to perform load balancing across the Sprout cluster, a
long time association between a subscriber and specific Sprout node is not used.
Sprout provides interface to Homer and HSS to retrieve user information and
service profile. Sprout performs the functionality of both I-CSCF and S-CSCF
of typical IMS.

2. Bono: the edge point that users contact in order to get authenticated and reach
other system’s nodes. It acts as a SIP proxy and provides confidentiality and
integrity for SIP. Bono is equivalent to the P-CSCF of IMS.

3. Dime: consists of the following components:

a) Homestead: provides an interface to Sprout to exchange the authentication
credentials and subscriber profile information.

3.1. USED TOOLS 13

b) Homestead Prov: facilitate provisioning of subscribers in Cassandra on
Vellum.

c) Ralf: is responsible for the billing service.

4. Homer: is a XML Document Management Server (XDMS) used to store service
settings documents for each subscriber in the system.

5. Vellum: is used to store all long lived state in ClearWater. It consists of
Cassandra, Chronos, and Astaire:

a) Cassandra: is used by Homestead to save user information like authenti-
cation credentials and profile information.

b) Chronos: developed by ClearWater to provide timing service. Both Sprout
and Ralf make use of Chronos to initiate timers to be run.

ClearWater has several features which facilitate the work progress. For example,
it has two options to create subscribers’ accounts either from Graphical User Interface
(GUI) through Ellis, or from any Cassandra node by executing a bulk-provision script
which can be used to create thousands of subscribers’ accounts at once. Furthermore,
ClearWater is well-documented, and it has a mailing list where you can drop your issue
or can simply look how others solved any eventual deployment/operation problems
you are facing. In addition, ClearWater is horizontally scalable which allows to create
multiple instances of each node if needed. In this project, we consider scaling up
of the Sprout component and analyze how this will influence the performance with
regard to the registration phase and resource utilization.

The last released version of ClearWater, called Zamîn, was used in this project.
All ClearWater’s nodes were installed on a single physical machine running Linux
Ubuntu operating system.

3.1.2 VM and Docker container

ClearWater has several deployment options. Typical deployments regard public or
private infrastructures and they rely on two common virtualization technologies,
hypervisor-based VMs and Linux containers. Such environments can be deployed
on both private and public cloud infrastructures. We considered both Docker
container and VM, and deployed the ClearWater software stack on our own hardware
infrastructure.

A VM is a virtualized environment which enables the users to emulate several
operating systems and applications on one physical machine. This is done by
a Hypervisor, i.e., server virtualization software, running on top of a hardware
infrastructure which allows multiple virtual machines to run on the same physical

14 3. METHODOLOGY

Figure 3.2: Container vs VM, adapted from [Doc18]

device. Each of the VMs, exploits virtualized resources which are mapped with
physical ones through the Hypervisor.

Docker containers are an open source software which enables a code and all its
dependencies to be executed quickly. It is a lightweight virtualized environment
which has some promising features like low memory-foot print and booting times
compared to VMs (few seconds to initialize).

Figure 3.2 shows the main differences between Linux-based containers and VMs.
In terms of a VM-based virtualization, every virtual machine needs its own operating
system which requires more dedicated resources and may greatly impact the booting
process of the deployed VMs. A container-based virtualization is similar to the
hypervisor-based with regard to having several containers running on the same
host, but those containers share a unified operating system which reduces storage
utilization, hence obtaining a much lower memory footprint, and an increased time
efficiency by having faster boot up times compared to standard VMs. In few words,
Linux-based containers are more efficient lightweight virtualized environments making
them very suitable in dynamic architectures like cloud computing [Doc18].

With regard to the resource allocation, every VM has a dedicated amount of
resources which means there is no flexibility in managing the available resources
according to the workload on each VM. In contrast to VMs, Docker containers allow
dynamic resources sharing where the resources allocated to the containers according
to the workload on each of them. The resources can be limited to each container by
executing the following command:

The memory flag can be set to the desired amount of RAM like 2048m which
will assign 2 Gigabytes (GB) of RAM. The second flag is used to determine which
cores will be dedicated to that container. It is possible to assign multiple cores to

3.1. USED TOOLS 15

Algorithm 3.1 Limiting a Container’s Resources

1- sudo docker update --memory <memory_value> --cpuset-cpus <the_
core_number> --net <network_ID> <container_ID>
2- sudo docker network ls
3- sudo docker container ls Or sudo docker ps

a certain container. The network ID could be necessary if it is desired to change
the assigned IP address for a certain container to be in the same network as other
containers. A list of networks IDs can be shown by executing the second command
in 3.1. The container ID can be fetched by running one of the third commands.

3.1.3 SIPp

SIPp [sip] is a free source SIP traffic generator with built-in default scenario files de-
veloped by Intel Corporation in accordance with the IMS/Next Generation Networks
(NGN) Performance Benchmark specification. Some common built-in scenario files
include the following:

1. Registration

2. De-registration

3. Re-registration

4. Successful call

5. Successful messaging

SIPp is used to generate the workload during the experimental tests. Each SIP
session includes a sequence requests for registering the subscribers. The detailed
messages’ sequence are explained under section 3.2.

3.1.4 Wireshark

Wireshark is a traffic capture and network analyzer. It allows the client to perform
deep packet inspection, filter the results to focus on the desired traffic or protocol, and
export the traffic to eXtensible Markup Language (XML), Comma-Separated Values
(CSV), or plain text files. Before sending Register requests, we started Wireshark
on the physical machine listening to either VM or Docker container interface. The
captured traffic was analyzed afterwards to estimate the actual service time of each

16 3. METHODOLOGY

Table 3.1: CPUand RAM Monitoring Tools

Resource Docker container VM
CPU docker stats, mpstat mpstat
RAM docker stats sar

involved component during the registration process. Wireshark can be installed on
Linux by executing the following command:

sudo apt install wireshark

3.1.5 CPU and RAM Monitoring Tools

The following parameters were observed during the experimental work:

1. Total average delay of succeeded requests.

2. Average CPU usage.

3. Average RAM usage.

Those information assist to characterize the main aspects of the system:

1. Capacity of the system.

2. Resources consumption.

There are plenty of available tools which can be utilized to monitor the CPU and
RAM usage. The tools utilized within this project are presented in Table 3.1.

In case of mpstat and sar, we ran those tools inside the targeted Sprout node.
Examples of how to run the monitors are provided below. With regard to sar, (-r)
will show information related to the RAM status, and number one is used to show the
RAM report every one second. Similarly to sar, mpstat will show CPU report every
one second for a certain processing core number which is the specific core allocated
to the component. Docker stats is a built-in command used with Docker containers.
By default, it shows information about CPU and RAM status every one second.

3.2. CLEARWATER’S USER REGISTRATION FLOW 17

1- sar -r 1
2- mpstat -P 0 1
3- docker stats

3.2 ClearWater’s User Registration Flow

As previously introduced, this project is concerned in studying and analyzing user
registration of an IMS architecture. Therefore, it is essential to have a closer look
at messages being created and exchanged among the involved nodes of ClearWater
during the user registration process. Figure 3.3 shows the exchanged SIP dialogue in
order to successfully register new clients. In sake of facilitating the mapping of the
SIP dialogue to a queuing network, the call flow was divided into four stages. The
SIP dialogue consists of the following messages:

1. Bono received SIP register from SIP terminal. The register request will be
forwarded to Sprout.

2. Sprout sends HTTP GET message to Homestead in order to retrieve authenti-
cation credentials.

3. Since we do not have any external HSS, Homestead will be in charge of calculat-
ing the Authentication Vector (AV) and generating the required authentication
parameters.

4. HTTP 200 is forwarded back to Sprout accompanied with authentication
parameters.

5. Sprouts sends SIP 401 unauthorized message to Bono asking the user to provide
his security parameters and calculate the challenge response.

6. Since the SIP terminal has the secret key, it can then authenticate the network,
calculate the required response, and send again a SIP register to the IMS
system with the calculated values.

7. The messages will follow the same procedure as the first two stages except
that Homestead will check if the user response is equal to the one that was
calculated by Homestead in the first stage. If the two values are equal, then
the user will be authenticated and 200 OK message will be forwarded back to
the subscriber through Bono.

18 3. METHODOLOGY

Figure 3.3: SIP: User Registration Dialogue, adapted from [Neta]

3.3 Testbed Specifications

In order to perform the experimental test, we use two physical machines with
capabilities illustrated in Table 3.2. The first machine was dedicated to deploy
the Docker container environment while the other one was used to host the VMs
environment.

The two machines run Linux Ubuntu 16.04.6 Long Term Support (LTS) (Xenial
Xerus) operating system. The first machine has higher capabilities with regard to the
processing power and the memory capacity but when allocating physical resources
to the service components, we have assigned the same amount to each VM and

3.4. ENVIRONMENT SETUP 19

Table 3.2: Specifications of the Physical Machines

Specification First machine Second machine
Chassis Chassis with up to 8,

2.5" Hard Drives, Software
RAID

Chassis with up to 8,
2.5" Hard Drives,Software
RAID

Processor 2 x Intel® Xeon® E5-
2650LV v4 1.7GHz

Intel® Xeon® E5-2650LV
v4 1.7GHz

Memory 4 x 32 GB 4 x 16 GB
Storage 4 x 1TB Hard Drive 4 x 1TB Hard Drive
Network Card Intel Ethernet X540 10

GB + I350 1 GB Network
Daughter Card

Intel Ethernet X540 10
GB + I350 1 GB Network
Daughter Card

container in order to ensure consistency of the computing capabilities among the two
deployments.

3.4 Environment Setup

In this section, we introduce the steps to successfully install ClearWater on Docker
containers and VMs. Afterwards, we present the necessary configurations to ensure
ClearWater is prepared to conduct the experimental test.

3.4.1 ClearWater on Docker container

The entire process of deploying ClearWater on Docker containers can be found on [cle].
Algorithm 3.2 shows the commands needed in order to install ClearWater system.
The first four commands used to install Docker and Docker compose on Ubuntu.
The sixth command is to build the base image of ClearWater while the seventh is to
build all other images and start ClearWater system. The last command used when
scaling is desired. It will increase the number of Sprout instances to be two. After
successfully installing ClearWater, a bunch of Docker containers will be running
forming the ClearWater system. Table 3.3 shows the deployed containers and the
resources assigned to each of them. All the containers, except Sprout which was
assigned with different values of CPU cores and RAM, had one processing core and
four GB of RAM.

A useful tool, called Weave Scope [Wea], can be used with Docker to provide a
real-time interactive view including all deployed containers, connectivity between
them, and resources usage.

20 3. METHODOLOGY

Algorithm 3.2 Installing ClearWater on Docker container, , adapted from [cle]

1- wget -qO- https://get.docker.com/ | sh
2- git clone --recursive https://github.com/Metaswitch/clearwater-
docker.git
3- sudo apt-get install python-pip -y
4- sudo pip install -U docker-compose
5- cd clearwater-docker
6- sudo docker build -t clearwater/base base
7- sudo docker-compose -f minimal-distributed.yaml up -d
8- sudo docker-compose -f minimal-distributed.yaml scale sprout=2

Table 3.3: Deployed Docker containers

Containers CPU (core) RAM (GB)
Sprout1 1, 2 1, 2, 4
Sprout2 1 1, 2, 4
Chronos 1 4
Cassandra 1 4
Astaire 1 4
Homestead 1 4
Homestead-prov 1 4
Ralf 1 4
Ellis 1 4
Homer 1 4
Bono 1 4

Each Docker container has shared and local configuration files. The shared
configuration file must be the same on all existed containers within ClearWater
deployment. It contains the necessary parameters for ClearWater to operate properly.
The shared configurations includes settings like the domain name, names of the
deployment nodes, and the port numbers used to communicate among the different
containers. A copy of the shared configuration is provided in 3.3. Once ClearWater
is successfully installed on Docker, the shared and local configurations files will be
created by default and there is no need to add or modify them to bring ClearWater
working. If the physical machine, where ClearWater was installed, has an active
Firewall, the port numbers existed in the shared configuration file must be permitted.
Otherwise, the deployment nodes will fail to reach each other.

3.4. ENVIRONMENT SETUP 21

Algorithm 3.3 Docker’s Shared Configuration,

home_domain=example.com
sprout_hostname=sprout
hs_hostname=homestead:8888
hs_provisioning_hostname=homestead-prov:8889
xdms_hostname=homer:7888
ralf_hostname=ralf:10888
chronos_hostname=chronos
cassandra_hostname=cassandra
sprout_registration_store=astaire
ralf_session_store=astaire
homestead_impu_store=astaire
I-CSCF/S-CSCF configuration
upstream_hostname=sprout
Keys
signup_key=secret
turn_workaround=secret
ellis_api_key=secret
ellis_cookie_key=secret
scscf_uri="sip:sprout:5054;transport=tcp"
icscf_uri="sip:sprout:5052;transport=tcp"

The local configuration file contains information regarding the private and public
IP addresses, and the hostname. The public IP address can be set to the private IP
address on all nodes, except Ellis and Bono in case they will be used by remote users
to contact ClearWater. The format of the local configuration file is shown in 3.4.

Algorithm 3.4 Docker’s Local Configuration, , adapted from [Netb]

local_ip=<IP_address>
public_ip=<IP_address>
public_hostname=<IP_address>

3.4.2 ClearWater on VM

To be able to implement ClearWater through VM, a virtualization player such as
VMware workstation is required. Once the VMware player was installed, we started
with creating seven different VMs running Ubuntu 14.04 - 64bit server edition which

22 3. METHODOLOGY

can be downloaded from [ubu]. Other Linux versions might properly work with
ClearWater, but it is recommended to use the mentioned above edition.

After creating the VMs, we had to grant them an access to Clearwater Debian
repository. This done as shown in 3.5 :

Algorithm 3.5 Configuring Nodes to Access Clearwater Debian Repository, adapted
from [Netb]

1- mkdir /etc/apt/sources.list.d/
2- vim clearwater.list
3- deb http://repo.cw-ngv.com/stable binary/
4- curl -L http://repo.cw-ngv.com/repo_key | sudo apt-key add -
5- sudo apt-key finger

First, we created a directory which contains the clearwater.list file which was
created by using a text editor called vim. The file contains the third line of the
algorithm 3.5 which is the link of ClearWater Debian server. Once the file was
created, we imported the signing key of Clearwater by executing the fourth command.
The final command is to check the correctness of the key fingerprint.

Second, creating the per-node configuration as it was done in 3.4. The next step,
is to determine the role of each VM: Sprout1, Sprout2, Vellum, Dime, Ellis, Homer,
and Bono. It is not possible to implement the functionality of Dime or Vellum on
separated VMs as the Docker containers. Table 3.4 shows the amount of resources
assigned to each VM. Each of Dime and Vellum has three dedicated processing
cores and twelve GB of RAM in order to make them equivalent to the settings of
the Docker implementation. In Docker environment, Dime was divided into three
separated containers: Homestead, Homestead Prov, and Ralf. The total resources
assigned to Dime’s node was three cores and twelve GB of RAM. Similar to Dime,
Vellum had three separated container: Cassandra, Chronos, and Astaire.

The commands shown in Algorithm 3.6 are used to assign roles to the created
VMs.

In contrast to Docker environment, we had to create the shared configuration file
on each VM. The file must be in /etc/clearwater directory. All VMs were equipped
with the same shared configuration file as Docker containers 3.3. After creating the
shared and local configuration files on each VM, ClearWater is ready to perform the
experimental measurement.

3.4. ENVIRONMENT SETUP 23

Algorithm 3.6 Determining VMs Roles, adapted from [Netb]

#Sprout1
1- sudo DEBIAN_FRONTEND=noninteractive apt-get install sprout --yes
2- sudo DEBIAN_FRONTEND=noninteractive apt-get install
clearwater-management --yes
#Sprout2
1- sudo DEBIAN_FRONTEND=noninteractive apt-get install sprout --yes
2- sudo DEBIAN_FRONTEND=noninteractive apt-get install
clearwater-management --yes
#Ellis
1- sudo DEBIAN_FRONTEND=noninteractive apt-get install ellis --yes
2- sudo DEBIAN_FRONTEND=noninteractive apt-get install
clearwater-management --yes
#Homer
1- sudo DEBIAN_FRONTEND=noninteractive apt-get install homer --yes
2- sudo DEBIAN_FRONTEND=noninteractive apt-get install
clearwater-management --yes
#Vellum
1- sudo DEBIAN_FRONTEND=noninteractive apt-get install vellum --yes
2- sudo DEBIAN_FRONTEND=noninteractive apt-get install
clearwater-management --yes
#Dime
1- sudo DEBIAN_FRONTEND=noninteractive apt-get install dime
clearwater-prov-tools --yes
2- sudo DEBIAN_FRONTEND=noninteractive apt-get install
clearwater-management --yes
#Bono
1- sudo DEBIAN_FRONTEND=noninteractive apt-get install bono
restund --yes
2-sudo DEBIAN_FRONTEND=noninteractive apt-get install
clearwater-management --yes

24 3. METHODOLOGY

Table 3.4: Deployed VMs

VM CPU (core) RAM (GB)
Sprout1 1, 2 1, 2, 4
Sprout2 1 1, 2, 4
Vellum 3 12
Dime 3 12
Ellis 1 4
Homer 1 4
Bono 1 4

3.5 SIPp: Preparation and Installation

The experimental test can be run from a separated node within the ClearWater
deployment, or from the Bono node. We chose to install SIPp on the Bono node to
reduce the number of exchanged messages during the registration process. The SIPp
tool was used to produce a large amount of SIP traffic against the ClearWater deploy-
ment in order to observe how the system will perform under certain circumstances,
and to monitor relevant performance metrics.

Several pre-requisites libraries are needed in order to compile and install SIPp
successfully:

1. C++ Compiler.

2. curses or ncurses library.

3. GNU Scientific Library (GSL) [Sys] to enable distributed pauses at the test
time.

Algorithm 3.7 SIPp v3.4: Preparation and Installation

1- sudo apt-get install -y ncurses-dev build-essential
libncurses5-dev gcc
2- wget https://sourceforge.net/projects/sipp/files/sipp/3.4/
sipp-3.3.990.tar.gz
3- tar -xvzf sipp-3.3.990.tar.gz
4- cd sipp-3.3.990
5- ./configure --with-gsl
6- make

3.5. SIPP: PREPARATION AND INSTALLATION 25

Algorithm 3.7 shows the required commands to prepare and install SIPp. The
first command used to install the required libraries such as gcc and ncurses. Then,
the SIPp source code of version 3.4 was downloaded from the official website and
decompressed. The configure command is responsible for getting the software ready
to be installed on the system. Once configure command has finished, we executed
make command to build the software from its source code. After executing the
all commands, SIPp was installed and ready to be used by initiating the following
command:

sipp − i < local_ip > −sf < xml_scenario > −inf < csv_file ><

remote_ip > −r < arrival_rate > −m < max_requests >

The local IP is the IP address of the SIPp machine. The remote IP refers to
Bono IP address. Flag r used to define the arrival rate which is the sent requests per
second. And the last flag used to determine the total number of subscribers to be
registered. We had to write the XML scenario and pass it to the SIPp command. The
scenario file must include all the SIP messages. The scenario is shown in Section 6.4.
The XML code includes four different SIP messages: SIP Register, 401 Unauthorized,
SIP Register, and 200 OK. Field 0 and 1 in the XML scenario are imported from the
CSV file which contains all the subscribers identities, home domain, and passwords.
The CSV can be generated by several ways. We have written a simple script to
generate the file:

echo "SEQUENTIAL"
for i in ‘seq 2010000000 2010002000‘; do

echo "$i;example.com;[authentication username=
$i@example.com password=<password>];"

done

The script will create a total number of 2000 subscribers and insert them in the
first column. The second column refers to the domain name which is example.com
in our case. The last contains the authentication parameters like username and
password.

3.5.1 Experimental Test Settings

In this project, we focused on how the allocated resources to Sprout will affect the
initial user registration’s performance. Furthermore, we considered scaling up the
Sprout in order to investigate how that would impact the system metrics.

Table 3.5 shows the combinations of the experimental test. First, we started the

26 3. METHODOLOGY

Table 3.5: Stress Test’s Settings

Sprout Settings CPU (core) RAM (GB)

1 Sprout
1

1 2
4

1 Sprout
1

2 2
4

2 Sprouts
1 1

2

test with one Sprout node with one processing core, and assigned different values
of RAM. Secondly, the processing cores were changed to be two while changing the
RAM from 1 to 4 GB. Finally, we increased the Sprout instances to investigate
the impact that a scaling up procedure might have on the average delay for user
registration and the resources utilization. It is interesting to compare the output
of second and third settings which will highlight if decomposing of Sprout has a
positive effect on the performance or not. The detailed comparison is introduced in
Chapter 4.

We conducted the test for several values of arrival rate while keeping the total
number of subscribers to be registered fixed to two thousands subscribers. The
considered values of arrival rates for each single row of Table 3.5 were:

1. 20 Registers/second

2. 50 Registers/second

3. 80 Registers/second

4. 110 Registers/second

5. 170 Registers/second

6. 200 Registers/second

7. 250 Registers/second

8. 300 Registers/second

We started the test from 20 Registers per second and then increased it by a
fixed step (30) until 200 Registers per second. The last two values are 250 and 300

3.6. ANALYTICAL MODEL AND ANALYSIS 27

Registers per second. The different values aimed to produce an extensive analysis of
the system behaviour under different circumstances. The test was run fifty times
for each single value of the arrival rate in order to produce more precise results by
taking the average of the all fifty times’ outputs. During the test, we monitored the
CPU and RAM consumption of the Sprout node which is responsible for processing
the generated data by the SIPp tool.

3.6 Analytical Model and Analysis

Queuing network theory is an approach to model systems as a network of queues where
each queue represents a service center. In order to map ClearWater’s components to
the queuing network, we need to identify the involved nodes in the user registration
process. Based on Figure 3.3, only three components (Bono, Sprout, and Homestead)
are involved in the signalling path. The registration process starts with a SIP register
sent from Bono to Sprout, and ends with SIP 200 OK sent back to Bono.

Before introducing the methods we considered to derive the analytical model,
it is essential to introduce briefly Kendall’s notation which is used to describe the
queuing system. The following notation A/B/C/D refers to:

1. A: is the arrival distribution (M for Poisson, and G for general).

2. B: is the service time distribution (M for negative exponential distribution, and
G for general distribution).

3. C: refers to the number of servers

4. D: maximum number of customers in the queue.

When regarding IMS systems, it is commonly assumed that user call requests,
where SIP registrations represent the signaling part, are modeled as Poisson process
and the service process to be a Markovian process with independent exponentially
distributed service times [MG10, Mun08, WBBD05, NTN13, FCP06]. In considering
the network service as a whole, the end-to-end system is represented as a tandem
of queues in series where each queue represents an individual component. However,
in some of the related work, the assumption of M/M/1 queues for the individual
components raises some doubts with other assumptions regarding the processing
delay, i.e., registration service. In particular, the authors of [MG10, Mun08] do
assume that each queue is a separate M/M/1 so that the queuing delay has a closed
form expression but on the other hand, they consider a fixed, i.e., deterministic,
processing delay which goes in contrast with the very first assumption of having
exponentially distributed service times.

28 3. METHODOLOGY

Similarly to the aforementioned related work, we assume that each different
network service entity, involved in the IMS signaling, is modeled through an M/M/1
queue. Therefore, the resulting network is a queuing network of M/M/1 tandem
queues, and in case the input process is Poisson, the departure process is also Poisson
and independent of the input process [Zuk13]. As a result, the total average waiting
time or delay in the queuing network, consisting of queues in tandem, is the sum of
the expected waiting times at each queue. However, we assume a different approach
on validating the suitability of the assumed model.

First, during the experimental measurement, we specified the arrival process
distribution to follow a Poisson process with exponential inter-arrival times of the
user’s Registration requests. This was achieved by setting a ’pause’ process between
each Registration request in the XML SIPp scenario. Through the GNU Scientific
Library (GSL) package, we were able to set a specific distribution for the inter-arrival
times. For each measurement, the ’pause’ follows an exponential distribution with
a mean value equal to the specific arrival rates under consideration. Therefore, in
modelling the IMS system through a network of queues, the external arrival process
consists in a Markovian process.

Secondly, we assume that the service process of each queue may have either
negative exponential distribution or a general distribution. Therefore we consider two
methods to derive the analytical model: M/M/1 and M/G/1. For both approaches,
it is required to identify the service time since the actual service time for each of
Bono, Sprout, and Homestead is unknown. In order to estimate the service time of
each node, one packet was sent to ensure that the node is empty and the packet will
be processed instantly upon reaching the node. The entire process was captured and
analyzed by a network analyzer tool.

Figure 3.4: Feed-Forward Tandem of Queues

In total, we have seven different service times as shown in Figure 3.4. The service
time is the time needed for a certain node to process and send the data out to the
next node. As stated above, those service times values were captured using Wireshark

3.6. ANALYTICAL MODEL AND ANALYSIS 29

Table 3.6: Service Time Values for Docker containers

Average service time Average service rate
1
µ1
= 0.001588 µ1= 629.72

1
µ2
= 0.002314 µ2= 432.15

1
µ3
= 0.003057 µ3= 327.11

1
µ4
= 0.009585 µ4= 104.32

1
µ5
= 0.004378 µ5= 228.41

1
µ6
= 0.001225 µ6= 816.32

1
µ7
= 0.003024 µ7= 330.68

Table 3.7: Service Time Values for VMs

Average service time Average service rate
1
µ1
= 0.002824 µ1= 354.10

1
µ2
= 0.004246 µ2= 235.51

1
µ3
= 0.006198 µ3= 161.34

1
µ4
= 0.010651 µ4= 93.88

1
µ5
= 0.007919 µ5= 126.27

1
µ6
= 0.002874 µ6= 347.94

1
µ7
= 0.005992 µ7= 166.88

network analyzer.

Since we have quite many combinations of CPU and RAM during the measurement
phase, it is cumbersome to derive the analytical model for all the available settings.
Therefore, for sake of simplicity, we chose to analyse and validate the analytical
model for the case when Sprout has one processing core and two GB of RAM for
each of Docker container and VM.

Tables 3.6 and 3.7 show the numerical values for the average service times of
Docker containers and VMs. Each value consists of the average service time of one
hundred measurement when only one registration is generated.

3.6.1 M/M/1

Consider an IMS based network with K identical servers with no loss due to buffer
overflows. By applying M/M/1, it was assumed that:

– Each node has an infinite capacity.

30 3. METHODOLOGY

– Arrival process from outside is a discrete time process which follows a Poisson
distribution with arrival intensity λ.

– The service time is a negative exponential distribution with parameter µ.

All messages related to the registration process have to traverse through the queues
shown in Figure 3.4 sequentially. This can be viewed as a feed-forward tandem path.
In particular, the Burke’s theorem states that in an M/M/1 system where the arrival
process is Poisson with arrival rate λ, at equilibrium, the departure process is still
Poisson with the same parameter. Therefore, the arrival process of the second queue
will still be a Poisson process with arrival rate equal to λ and so on for the rest
of queues in the tandem network. The overall registration time is the sum of the
response time for the all queues.

First, we calculated the traffic intensity for each queue by applying the following
formula:

ρ = λ

µ
ρ < 1

As stated above, the queue is considered to be stable and the later formulas applicable
if ρ < 1. In other words, the arrival rate must not be greater than the service rate.
For an M/M/1 queue, the Sojourn time (response time) is given by the following
formula:

E[S]︸︷︷︸
Sojourn time

= E[W]︸ ︷︷ ︸
Waiting time

+ E[X]︸ ︷︷ ︸
Service time

= 1
µ− λ

The expected Sojourn time is the sum of the expected waiting and service time.
Hence, the total expected end-to-end delay of the network equals the sum of the
expected Sojourn times for each and every queue present in the queuing network.

Total_delay =
7∑

n=1
E[Si]︸ ︷︷ ︸

Sojourn time

3.6.2 M/G/1 and G/G/1

Consider an IMS based network with K identical servers. It is assumed that the
servers experience no loss due to buffer overflows. The arrival process from outside is
assumed to follow a Poisson distribution. When a M/G/1 queuing system is assumed,
the service time distribution can be any general distribution like Geometric, Weibull,
Gamma, Lognormal, etc. It is assumed that the service time distribution is general
with definite first and second moments.

3.6. ANALYTICAL MODEL AND ANALYSIS 31

In case of M/G/1, we can apply M/G/1 to the first queue where the arrival
distribution was predefined within the XML scenario to follow a Poisson process.
However, its output is basically no more Poisson. Even though the next queue might
have the same arrival rate or inter-arrival time as the first queue, but the other
characteristics (e.g. variance) of the input to the next queue is unknown. Therefore,
M/G/1 is a valid method to be applied for the first queue analysis, but not the
other queues in the tandem network. Thus, starting from the second queue in the
tandem 3.4, the queues are considered to be G/G/1. In other words, only the first
queue has a Poisson arrival process, while others in the tandem have a general arrival
process.

The total end-to-end delay average delay is the sum of each queue in the tandem.
Hence, the queuing network can be abstracted as a feed-forward tandem as it is
shown in Figure 3.4. Similarly to the M/M/1 case, all the messages during the
connection setup have to traverse through the tandem of queues sequentially.

As mentioned above, the expected Sojourn time is the sum of the expected service
and waiting time. The expected service time for each queue is known as it was
captured from the Wireshark tool. Regarding the waiting time, we make use of
two different formulas to calculate the waiting time for all the queues within the
tandem. For the first queue (M/G/1), we utilized a popular method to estimate the
waiting time, called Pollaczek-Khinchin formula [Pol30]. It was developed in 1930
by a mathematician called Félix Pollaczek, and recast two years later by Aleksandr
Khinchin. The formula gives an approximation of the waiting time for a queue with
a single process. The formula is shown below:

E(W) = (1 + Cs
2)

2 ∗ ρ

1− ρ ∗ E[S]

where:

1. C2
s : is the coefficient of variation of the service time. It is equal to the variance

divided by the squared mean service time σ2
a

(1/µ)2 .

2. ρ: utilization of the server or the traffic intensity. It equals to λ
µ .

In order to calculate the waiting time for other queues, we used a different
method to estimate it, called Kingman formula. It was developed in 1961 by British
mathematician John Kingman [Kin61]. The formula gives an approximation of the
waiting time for a queue with a single process. The Kingman equation demands
independently distributed inter-arrival and service times. The formula gives an

32 3. METHODOLOGY

approximation of the mean waiting time in an G/G/1 queue an is know to be very
accurate in particular for high utilization queues. The formula is shown below:

E(W) = (Ca2 + Cs
2)

2 ∗ ρ

1− ρ ∗ E[S]

where C2
a : is the coefficient of variation of the inter-arrival time. It is equal to the

variance divided by the squared mean inter-arrival time σ2
a

(1/λ)2 .

After calculating the waiting time for each and every queue within the signalling
path, the total delay can be calculated and it equals:

Total_delay =
7∑

n=1
E[Wi]︸ ︷︷ ︸

Waiting time

+
7∑

n=1
E[Xi]︸ ︷︷ ︸

Service time

=
7∑

n=1
E[Si]︸ ︷︷ ︸

Sojourn time

In order to investigate and validate the applicability of the assumed models, we
calculated the relative error of the analytical models as follows:

Relative_error = |Experimental_res−Analytical_res|
Experimental_res ∗ 100

where the Experimental_res denotes the average end-to-end delay of the registration
process retrieved from experimental measurements and the Analytical_res denotes
the average end-to-end delay from the assumed queuing system.

Chapter4Results and Discussion

33

34 4. RESULTS AND DISCUSSION

4.1 Experimental Results

This chapter aims to introduce the results have been captured and calculated from the
experimental measurements and analytical analysis respectively. All the introduced
delay results represent the average delay for fifty different measurements. A single
measurement consists in capturing the average system delay of performing the
registration of 2000 subscribers for a specific registration rate, i.e., 20, 50 Reg/sec
etc.

(a) VM: Average Registration Delay for Sprout with One Processing Core

(b) Docker container: Average Registration Delay for Sprout with One Processing Core

Figure 4.1: Average Registration Delay

4.1. EXPERIMENTAL RESULTS 35

4.1.1 Average Registration Delay

All the figures of average delay use a Logarithmic scale. The X axis represents several
values of arrival rates for different values of RAM allocated to the Sprout component
which represents the most important component in the Clearwater system since it
implements both I-CSCF and S-CSCF. The Y axis is the average system time of
2000 registrations measured in ms.

We observed that the trends in the average registration delay witness a significant
increment when increasing the arrival rate across several environment settings with
different constraints.

For VMs with on core dedicated to Sprout 4.1(a), the average registration delay
starts from around 46 ms reaching more than 1700 ms at the end. This is due to the
lack of the processing power. We observe here that amount of RAM has almost a
negligible effect on the performance when having a fixed registration rate. Therefore,
allocating a small amount of RAM does not produce a noticeable gain in terms of
system delay. On the other side, the average delay for Docker container with on
processing core assigned to Sprout 4.1(b) varies approximately from 33 up to around
200 ms. It is apparent that Docker containers can handle more requests per second
with a better average delay compared to VMs.

Dedicating two processing cores for VMs made the average delay declined to less
than 700 ms as it is shown in Figure 4.2(a). The effect of having more processing
power is obvious especially when the arrival rate is bigger than 110. Applying
the same setting to Docker container 4.2(b) has a marginal enhancement over the
average delay, but it still not that much compared to VMs. The average delay at the
maximum value of arrival rate reaches about 125 ms. It is true that assigning more
processing power will improve the performance of the system, but this is compounded
by an increasing cost.

Having two separated instances of Sprout had almost the same impact on the
average delay as having two dedicated cores assigned for Sprout. We measured the
average delay when each of the Sprout instances has one GB of RAM, and then two
GB of RAM. In case of VMs, the delay starts from around 45 ms and goes up to 530
ms at 300 registers per second. Whereas, Docker containers have a maximum delay
of 142 ms when it is most loaded. To conclude, scaling up Sprout has a performance
close to that provided by two processing cores, but it is advantageous when high
availability and fault tolerance are desired.

To summarize, Docker containers provide better average delay through all the
environment’s settings compared to VMs. This is somewhat expected as the hypervi-
sor virtualization comprises an additional layer between the guest operating system

36 4. RESULTS AND DISCUSSION

(a) VM: Average Registration Delay for Sprout with Two Processing Cores

(b) Docker container: Average Registration Delay for Sprout with Two Processing Cores

Figure 4.2: Average Registration Delay

and the physical hardware resources, i.e., hypervisor itself. In this case, any . Since
there is memory overhead, Docker containers has a lower service time which means
that they can handle more traffic per second.

4.1.2 Average CPU Utilization

It is essential to monitor the available resources consumption under different amount
of data. All the figures showing the CPU utilization of Sprout have a similar upward

4.1. EXPERIMENTAL RESULTS 37

(a) VM: Average Registration Delay for 2xSprouts

(b) Docker container: Average Registration Delay for 2xSprouts

Figure 4.3: Average Registration Delay

trends. The CPU utilization increases as the number of sent requests rises. The Y
axis indicates the percent CPU utilization. The X axis represents the arrival rate
values.

From Figures 4.4, we observe that Docker containers and VMs provide almost
similar CPU utilization when they are equipped with one processing core. Both
Docker containers and VMs reach the saturation state when the arrival rate is around

38 4. RESULTS AND DISCUSSION

(a) VM: Average CPU Utilization for Sprout with One Processing Core

(b) Docker container: Average CPU Utilization for Sprout with One Processing Core

Figure 4.4: Average CPU Utilization

200 Registers per second.

Increasing the number of processing cores for Sprout significantly enhance the
CPU utilization for both Docker containers and VMs. With regard to VMs, the
CPU consumption decreases to reach around 71 % when it is mostly loaded as it is
shown in Figure 4.5(a). In case of Docker containers, they witness a considerable
drop in CPU utilization 4.5(b), and they produce a consumption of 57 % when they

4.1. EXPERIMENTAL RESULTS 39

(a) VM: Average CPU Utilization for Sprout with Two Processing cores

(b) Docker container: Average CPU Utilization for Sprout with Two Processing cores

Figure 4.5: Average CPU Utilization

are actually under the most intensive generated traffic. Figure 4.5 is a good example
to compare the CPU consumption of Docker containers and VMs. It is clear that
Docker containers provide minimal CPU usage under different settings of RAM and
arrival rates.

The last environment setting, where there are two Sprout instances, outputs
marginally higher CPU consumption compared to that one provided when Sprout
has two dedicated cores as it is shown in Figures 4.6. The CPU consumption of

40 4. RESULTS AND DISCUSSION

(a) VM: Average CPU Utilization for 2xSprouts

(b) Docker container: Average CPU Utilization for 2xSprouts

Figure 4.6: Average CPU Utilization

VMs starts from around 16 % and then increases considerably to 71 % at maximum
value of arrival rate. While the CPU usage of Docker containers fluctuates between
14 % and 60 % over the different environment settings. Again, Figure 4.6 shows that
Docker containers are superior to VMs when it comes to CPU consumption as the
have beaten VMs in each and every single environment setting.

4.1. EXPERIMENTAL RESULTS 41

(a) VM: Average RAM Utilization for Sprout with One Processing Core

(b) Docker container: Average RAM Utilization for Sprout with One Processing Core

Figure 4.7: Average RAM Utilization

4.1.3 Average RAM Utilization

With regard to the RAM utilization, we considered one environment setting where
Sprout has one processing core. The RAM usage for Docker containers and VMs is
shown in Figure 4.7(b) and Figure 4.7(a) respectively. VMs provides less memory
consumption as the RAM utilization did not exceed 50% of the total available RAM.
In terms of Docker containers, Sprout consumes the entire available RAM when it is
equipped with one GB of RAM. Reaching the saturation in case of Docker containers

42 4. RESULTS AND DISCUSSION

is due to the minimum operating requirements.

CPU needs to access the RAM memory whenever it has to write or read to or
from the RAM. Having no available RAM will reflect negatively on the speed of
writing and reading operations which might result in a greater delay during the
registration process. Varying the sent requests per second would slightly affect the
RAM utilization. As more subscribers data needs to be saved on the RAM for
the later registration process, the RAM consumption starts to witness a marginal
increment.

4.2 Analytical Results

This section introduces the analytical results of M/M/1 and M/G/1 & G/G/1
for VMs and Docker containers. The used approaches and formulas are shown in
Section 3.6. The relative error, which shows how much the experimental result differs
from the analytical result, is confined to 25 %. The service and inter-arrival time
distributions fitting are presented in the following two sub-sections respectively.

4.2.1 VMs

Figure 4.8 shows the relative error between the experimental and analytical results
for M/M/1 and M/G/1. We have three values of the arrival rate fulfill the stability
condition where ρ < 1. M/M/1 seems to provide appropriate results until 50 Reg/sec.
After that value, the trend starts to increase considerably reaching a top of more
than 65.12 %. We noticed that M/M/1 is not suitable to model user registration
process when the queue utilization (ρ) > is greater than 0.6. On the contrary, M/G/1
& G/G/1 outputs a better relative error starting from 5.19 % when the arrival rate
is 20 Registers per second, and ends at 8.39 % at the maximum value of arrival rate.
The relative error of M/G/1 & G/G/1 over the all values of arrival rates did not
exceed 10 %. Therefore, M/G/1 & G/G/1 is a valid method to model the subscriber
registration process of ClearWater deployed on VMs, and it provides a minimal
relative error. M/M/1 might be used if the queue utilization is around half.

4.2.2 Docker containers

Figure 4.9 shows the relative error between the experimental and analytical results
for M/M/1 and M/G/1 & G/G/1. Similar to VMs, there are three values of arrival
rates meet the stability condition of a queue. With regard to M/M/1, the relative
error starts from around 5.53 % and ends at 49.78 %. M/M/1 is not valid when the
queue utilization reaches around 0.6. Therefore, M/M/1 outputs adequate results
until 50 Registers per second. On the other side, M/G/1 combined with G/G/1 has a
relative delay less than 12 %. The relative error starts from 11.83 %, and it fluctuates

4.2. ANALYTICAL RESULTS 43

Figure 4.8: VMs relative error: M/M/1 vs M/G/1 & G/G/1

Figure 4.9: Docker containers relative error: M/M/1 vs M/G/1 & G/G/1

reaching a 0.29 % at the end. Hence, M/G/1 & G/G/1 is a sufficient method to
model the studied process when ClearWater is deployed on top of Docker containers.

4.2.3 Service Time Distribution Fitting for M/G/1 & G/G/1

As stated previously, the service time measurement was done for a sample size of
one hundred times. Then, the average for each service time was calculated. We used
Matlab to define the service time distribution for each component in the signalling
path: Bono, Sprout, and Homestead. Distribution fitting is a process that aims to
select a statistical distribution that best fits a set of data. For illustration, we present

44 4. RESULTS AND DISCUSSION

0.005 0.01 0.015 0.02

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

Bono_VM
Weibull
 confidence bounds (Weibull)
Normal
 confidence bounds (Normal)
Exponentail
Lognormal
Gamma

(a) Bono: Service Time Distribution

5 6 7 8 9 10 11 12 13 14 15

Data 10 -3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ula
tiv

e
pr

ob
ab

ilit
y

Sprout_VM
Weibull
Normal
Exponential
Lognormal
 confidence bounds (Lognormal)
Gamma
 confidence bounds (Gamma)
Burr

(b) Sprout: Service Time Distribution

4 6 8 10 12 14

Data 10 -3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ula
tiv

e
pr

ob
ab

ilit
y

Homestead_VM
Weibull
Normal
Exponential
Lognormal
 confidence bounds (Lognormal)
Gamma
 confidence bounds (Gamma)
Burr

(c) Homestead: Service Time Distribution

Figure 4.10: VMs: Service Time Distribution

the service time distribution fitting for Bono, Sprout, and Homestead.

4.2. ANALYTICAL RESULTS 45

0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

Bono_Docker data
Weibull
Normal
Exponential
Lognormal
 confidence bounds (Lognormal)
Gamma
Burr

(a) Bono: Service Time Distribution

0.005 0.01 0.015 0.02 0.025 0.03 0.035

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

Sprout_Docker
Weibull
Normal
Exponential
Lognormal
 confidence bounds (Lognormal)
Gamma
 confidence bounds (Gamma)
Burr

(b) Sprout: Service Time Distribution

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

Homestead_Docker data
Weibull
Normal
Exponential
Lognormal
 confidence bounds (Lognormal)
Gamma
 confidence bounds (Gamma)
Burr

(c) Homestead: Service Time Distribution

Figure 4.11: Docker Containers: Service Time Distribution

46 4. RESULTS AND DISCUSSION

Figures 4.10 and 4.11 show the actual service time cumulative distribution of the
experimental data and those of the various distributions with a confidence interval
bounds of 95 %. For illustration purpose, we added the confidence interval bounds to
the distributions that mostly fits the data. As shown in the Figures, we chose to fit the
empirical distribution to the most popular statistical distributions: Weibull, Normal,
Lognormal, Gamma, and Exponential. However, through a closer investigation, we
noticed that for most of fittings, the Burr Type XII distribution outperforms the
other distributions. The Burr type XII distribution is a three-parameter family of
distributions on the positive real line. It is a very ’flexible’ distribution that can fit a
wide range of empirical data. Different values of its parameters cover a broad set of
skewness and kurtosis. Hence, it is used in various fields such as finance, hydrology,
and reliability to model a variety of data types.

In addition, the plotting of the cumulative distributions gives an estimation of
the model correctness but in cases where more than one distribution may reasonably
fit the data, a visual model selection may not be sufficient. To this end, we made use
of the well-known Akaike Information Criterion (AIC) estimator. It is an estimator
of the relative quality of statistical distribution for a set of data values. Given that
we have several distribution, AIC is used to compare the relative quality to the
other distributions. The distribution with the smallest AIC value is the preferred
model. Due to the fact that our sample sets of the service distributions are limited
to 100 values, we make use of the revised version of AIC, i.e., AIC-corrected. This is
to avoid any over/under-fitting due to a small set of sample values. AICc can be
calculated by applying the following formula:

AICc = AIC + 2k2 + 2k
n− k − 1 = 2k − 2 ln (L) + 2k2 + 2k

n− k − 1

where:

1. k: number of parameters for a certain distribution.

2. L: log likelihood. It is generated for each distribution from Matlab.

3. n: the sample size. One hundred in our case.

Matlab has a bunch of commands to quickly calculate the AICc, or it can be
done by writing a simple code in any programming language. After calculating
the AICc, the selected distributions for each of VMs and Docker components are
shown in Table 4.1. Most of the service time distributions follow the Burr Type XII
distribution, except one which follows Weibull.

4.2. ANALYTICAL RESULTS 47

Table 4.1: Service Time Distribution Fitting Based on AICc

Component Distribution
VM: Bono Weibull
VM: Sprout Burr
VM: Homestead Burr
Docker: Bono Burr
Docker: Sprout Burr
Docker: Homestead Burr

4.2.4 Inter-Arrival Time Distribution Fitting for M/G/1 &
G/G/1

As stated previously, the input of the first queue is predefined to be Poisson with a
mean corresponding with the arrival rate. However in theory, the input of the next
queue is no more Poisson, and we chose to apply G/G/1 to analyze other queues in
the tandem network. Each queue was considered as a single G/G/1 queue.

Similar to the service time distribution fitting above, we performed a distribution
fitting for the inter-arrival times of the queues in the tandem. The inter-arrival time
of each queue was captured and fetched from Wireshark during registering a total
of 2000 subscribers with a rate of 20 Registers per second. Figures 4.12, 6.1, 4.13,
and 6.2 show the distribution fitting of the experimental data to the most popular
statistical distributions: Weibull, Normal, Exponential, Lognormal, and Gamma. A
confidence interval bounds of 95 % was added distributions that most fits the data.

The best statistical distributions that fits the set of data was chosen based on
AIC-c. The sample size here is two thousands, hence the AIC version can be used as
the sample size is significant:

AIC = 2k − 2 ln (L)

Tables 4.2 and 4.3 show the results of the fitting process. Based on the AIC
calculations for most of fittings, Weibull is the most frequent type over the others.
Weibull is a continuous probability distribution with two parameters. The first
parameter is k > 0 which is the shape parameter, and λ is the scale parameter.
Exponential distribution is a special case of the Weibull distribution when the shape
parameter equals one. The Weibull distribution is often used in failure analysis, wind
speed distributions, electrical and industrial engineering.

48 4. RESULTS AND DISCUSSION

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

VM_2nd
Weibull
 confidence bounds (Weibull)
Normal
Exponential
Lognormal
Gamma

(a) VM: Homestead Inter-Arrival Time Distribution

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

VM_3rd data
Weibull
 confidence bounds (Weibull)
Normal
Exponential
Lognormal
Gamma

(b) VM: Sprout Inter-Arrival Time Distribution

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

VM_4th data
Weibull
 confidence bounds (Weibull)
Normal
Exponential
Lognormal
Gamma

(c) VM: Bono Inter-Arrival Time Distribution

Figure 4.12: VMs Part 1: Inter-Arrival Time Distribution

4.2. ANALYTICAL RESULTS 49

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

VM_2nd
Weibull
 confidence bounds (Weibull)
Normal
Exponential
Lognormal
Gamma

(a) Docker: Homestead Inter-Arrival Time Distribution

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

VM_3rd data
Weibull
 confidence bounds (Weibull)
Normal
Exponential
Lognormal
Gamma

(b) Docker: Sprout Inter-Arrival Time Distribution

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

VM_4th data
Weibull
 confidence bounds (Weibull)
Normal
Exponential
Lognormal
Gamma

(c) Docker: Bono Inter-Arrival Time Distribution

Figure 4.13: Docker Part 1: Inter-Arrival Time Distribution

50 4. RESULTS AND DISCUSSION

Table 4.2: VM: Inter-Arrival Time Distribution Fitting Based on AICc

Inter-Arrival Time Distribution
1st Exponential (Poisson)
2nd Gamma
3rd Weibull
4th Weibull
5th Weibull
6th Weibull
7th Weibull

Table 4.3: Docker: Inter-Arrival Time Distribution Fitting Based on AIC

Inter-Arrival Time Distribution
1st Exponential (Poisson)
2nd Weibull
3rd Weibull
4th Weibull
5th Weibull
6th Weibull
7th Weibull

Chapter5Conclusion and Future Work

Performance analysis and analytical modelling are necessary to understand the
integration of new technology services. Questions like how will the service operate
under different circumstances, what are the performance constraints and deployment
cost of the service are essential in planning. Service providers aim to know the
characteristics of the service and what services they can reliably offer to the customers.

In this project, we experimentally and analytically studied the performance of
the initial subscriber registration process for a virtualized IMS, called ClearWater.
We considered two popular virtualization technologies to deploy ClearWater: VM
and Docker containers. According to the experimental analysis, Docker containers
produced lower average delay, and consumed less processing power. For this specific
use case, VMs utilized less memory compared to Docker containers. A lack of adequate
RAM can result in slowing down CPU or disabling operations from execution.

In addition, the project discussed the impact of varying the CPU power, RAM
capacity, arrival rate, and scaling up on the system performance. Increasing the
number of processing cores has a positive effect on the delay as it was enhanced
significantly. However assigning more processing power results in extra operational
cost. Scaling up Sprout also improved the average delay, and it might be essential if
fault tolerance and high availability are desired. With regard to memory allocation,
increasing RAM marginally enhanced the delay. It is recommended to assign more
RAM to Docker containers since the RAM consumption is rather high on this specific
VNF deployment.

Regarding the analytical analysis, two different queuing models were considered:
M/M/1 and M/G/1 combined with G/G/1. The queuing network was abstracted as
a feed-forward tandem path. M/M/1 is simple to use and it has a direct formula to
find the approximation for the average delay in each queue. However, the M/M/1
queuing model did not provide adequate results when the queue utilization factor
(ρ) is around 0.6. On the contrary, assuming general distributions for the service

51

52 5. CONCLUSION AND FUTURE WORK

process, i.e., M/G/1 & G/G/1, which requires definite first and second moments,
outputs better results compared to M/M/1 as the relative error did not exceed 12 %
for any single value of the arrival rates that meets the stability condition. Therefore,
M/G/1 & G/G/1 is the recommended method to model the user registration process
of ClearWater as the relative error is minimal.

The project is open for many future works where other attributes can be studied
or another queuing model can be used. One suggestion here is to study the call
flow parameters such as end-to-end delay, resource consumption, and successful and
failure rates. The call scenario is much more complex than what we have studied
where more messages being exchanged and more nodes are participated. It is also
worth to try using Robust Queuing Theory (RQT) [BBY15] in order to investigate
how much it is suitable to utilize a rather recent theory for finding close to exact
bounds of queuing systems and networks for both heavy-tail and non heavy-tail
distributions.

Chapter6Appendices

6.1 Useful Linux Commands

1. Create a file and then press ctrl+d to save: cat > file1.txt

2. Show the content of a file and the number of lines: cat -n file1.txt

3. Moves all files from the current directory to the directory called /home: mv *
/home

4. Delete a directory: rm -rf dire_name

5. Copy a file from laptop to a remote server: scp xxx/xxx/file_name user-
name@domain:/xxx/xxx/file_name

6. Extract tar.gz file: tar -xzvf file_name

7. Run tcpdump on specific interface and save it to pcap file: sudo tcpdump -i
interface_name -w file_name.pcap

6.2 Useful Docker containers Commands

1. Lists the available docker machine: docker-machine ls

2. Show the IP addresses of the containers in your deployment: utils/show_ips.sh

3. Remove all the docker containers: sudo docker rm $(sudo docker ps -aq)

4. Show the docker information: sudo docker info

5. Remove all the docker images: sudo docker rmi $(sudo docker images
-aq)

53

54 6. APPENDICES

6. Start and stop docker containers: sudo service docker start and sudo
service docker stop

7. Show networks status: sudo docker network ls

8. List of containers or images: sudo docker container ls or sudo docker
image ls

9. Remove a certain container or image: sudo docker container rm -f cont_id
or sudo docker image rm -f imag_id

10. Enter the CLI of a container: sudo docker exec -it <container name>
/bin/bash

11. Updates the memory and CPU values for a certain docker container: sudo
docker update –memory ... –cpuset-cpus ... <container id>

6.3 Useful ClearWater Commands

1. Query Chronos nodes over SNMP to get the number of active registrations:
utils/show_registration_count.sh

2. Start ClearWater deployment: sudo docker-compose -f minimal-distributed.yaml
up -d

3. Create 1000 subscriber from Ellis node: cd /usr/share/clearwater/ellis/
sudo env/bin/python src/metaswitch/ellis/tools/create_numbers.py
–count 1000

4. Create 200000 subscriber from using bulk provision script on any Cassandra
node: /usr/share/clearwater/crest-prov/src/metaswitch/crest/tools/stress_provision.sh
200000

5. Restart ClearWater: sudo service clearwater-infrastructure restart

6. Check the cluster status: sudo clearwater-etcdctl cluster-health

7. Show the members of the ClearWater cluster: sudo clearwater-etcdctl
member list

8. Run to regenerate any dependent configuration files: sudo service clearwater-
infrastructure restart

9. Restart Clearwater node(s) using the following commands:

a) Sprout: sudo service sprout quiesce

6.4. XML SCENARIO 55

b) Bono: sudo service bono quiesce

c) Dime: sudo service homestead stop && sudo service homestead-
prov stop && sudo service ralf stop

d) Homer: sudo service homer stop

e) Ellis: sudo service ellis stop

f) Vellum: sudo service astaire stop && sudo service rogers stop

6.4 XML Scenario

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE scenario SYSTEM "sipp.dtd">

<scenario name="registration">
<send retrans="500">
<![CDATA[
REGISTER sip:[field1] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
Max-Forwards: 70
From: "sipp" <sip:[field0]@[field1]>;tag=[call_number]
To: "sipp" <sip:[field0]@[field1]>
Call-ID: reg///[call_id]
CSeq: 7 REGISTER
Contact: <sip:sipp@[local_ip]:[local_port]>
Expires: 3600
Content-Length: 0
User-Agent: SIPp
]]>
</send>

<recv response="401" auth="true" rtd="true">
</recv>

<send retrans="500">
<![CDATA[
REGISTER sip:[field1] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
Max-Forwards: 70
From: "sipp" <sip:[field0]@[field1]>;tag=[call_number]
To: "sipp" <sip:[field0]@[field1]>
Call-ID: reg///[call_id]

56 6. APPENDICES

CSeq: 8 REGISTER
Contact: <sip:sipp@[local_ip]:[local_port]>
Expires: 3600
Content-Length: 0
User-Agent: SIPp
[field2]
]]>
</send>
<recv response="200">
</recv>
</scenario>

6.5 Inter-Arrival Time Distribution Fitting

6.5.1 VMs

6.5.2 Docker containers

6.5. INTER-ARRIVAL TIME DISTRIBUTION FITTING 57

0 0.05 0.1 0.15 0.2

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

VM_5th data
Weibull
 confidence bounds (Weibull)
Normal
Exponential
Lognormal
Gamma

(a) VM: Sprout Inter-Arrival Time Distribution

(b) VM: Homestead Inter-Arrival Time Distribution

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

VM_7th data
Weibull
 confidence bounds (Weibull)
Normal
Exponential
Lognormal
Gamma

(c) VM: Sprout Inter-Arrival Time Distribution

Figure 6.1: VMs Part 2: Inter-Arrival Time Distribution

58 6. APPENDICES

0 0.05 0.1 0.15 0.2

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

VM_5th data
Weibull
 confidence bounds (Weibull)
Normal
Exponential
Lognormal
Gamma

(a) Docker: Sprout Inter-Arrival Time Distribution

(b) Docker: Homestead Inter-Arrival Time Distribution

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

VM_7th data
Weibull
 confidence bounds (Weibull)
Normal
Exponential
Lognormal
Gamma

(c) Docker: Sprout Inter-Arrival Time Distribution

Figure 6.2: Docker Part 2: Inter-Arrival Time Distribution

References

[BBY15] Chaithanya Bandi, Dimitris Bertsimas, and Nataly Youssef. Robust queueing
theory. Operations Research, 63(3):676–700, 2015.

[BCC+15] Roberto Bonafiglia, Ivano Cerrato, Francesco Ciaccia, Mario Nemirovsky, and
Fulvio Risso. Assessing the performance of virtualization technologies for nfv: A
preliminary benchmarking. 2015 Fourth European Workshop on Software Defined
Networks, 2015.

[cle] Clearwater docker. https://github.com/Metaswitch/clearwater-docker.

[CW18] Wei-Kuo Chiang and Juin-Wei Wen. Design and experiment of nfv-based virtual-
ized ip multimedia subsystem. 2018.

[Doc18] Docker. What is a container. https://www.docker.com/resources/what-container,
2018.

[ETS13a] ETSI. Network functions virtualisation (nfv); architectural frame-
work. https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_
NFV002v010101p.pdf, October 2013.

[ETS13b] ETSI. Nfv white paper. https://portal.etsi.org/nfv/nfv_white_paper2.pdf,
October 2013.

[ETS13c] GSNFV ETSI. Network functions virtualisation (nfv); use cases. V1, 1:2013–10,
2013.

[FCP06] Hanane Fathi, Shyam S Chakraborty, and Ramjee Prasad. Optimization of sip
session setup delay for voip in 3g wireless networks. IEEE Transactions on Mobile
Computing, 5(9):1121–1132, 2006.

[Jej18] Fredrik Jejdling. Ericsson mobility report.
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-
mobility-report-november-2018.pdf, November 2018.

[Kin61] J. F. C. Kingman. The single server queue in heavy traffic. Mathematical
Proceedings of the Cambridge Philosophical Society, 57(4):902–904, 1961.

59

60 REFERENCES

[MG10] A. Munir and A. Gordon-Ross. Sip-based ims signaling analysis for wimax-3g
interworking architectures. IEEE Transactions on Mobile Computing, 9(5):733–
750, May 2010.

[Mun08] A. Munir. Analysis of sip-based ims session establishment signaling for wimax-3g
networks. In Fourth International Conference on Networking and Services (icns
2008), pages 282–287, March 2008.

[NC13] Network Functions Virtualisation NFV and Use Cases. Etsi gs nfv 001 v1. 1.1
(2013-10). 2013.

[Neta] Metaswitch Networks. Clearwater. http://www.projectclearwater.org/.

[Netb] Metaswitch Networks. Clearwater. https://clearwater.readthedocs.io/en/stable/.

[NSV17] Priyanka Naik, Dilip Kumar Shaw, and Mythili Vutukuru. Nfvperf: Online
performance monitoring and bottleneck detection for nfv. 2017.

[NTN13] L. Nagy, J. Tombal, and V. Novotny. Proposal of a queueing model for simulation
of advanced telecommunication services over ims architecture. In 2013 36th
International Conference on Telecommunications and Signal Processing (TSP),
pages 326–330, July 2013.

[PAR+17] Jonathan Prados-Garzon, Pablo Ameigeiras, Juan J. Ramos-Muñoz, Pilar Andres-
Maldonado, and Juan M. López-Soler. Analytical modeling for virtualized network
functions. CoRR, 2017.

[Pol30] Felix Pollaczek. Über eine aufgabe der wahrscheinlichkeitstheorie. i. Mathematis-
che Zeitschrift, 32(1):64–100, Dec 1930.

[Rep] Market Research Reports. Global network function virtualization market 2016-
2020.

[sip] Sipp. http://sipp.sourceforge.net/.

[SSFS17] Amit Sheoran, Puneet Sharma, Sonia Fahmy, and Vinay Saxena. Contain-ed: An
nfv micro-service system for containing e2e latency. 2017.

[SSJ19] Besmir Tola Sachin Sharma, Navdeep Uniyal and Yuming Jiang. On monolithic
and microservice deployment of network functions. Accepted in IEEE Netsoft
2019, 2019.

[Sys] GNU Operating System. Gsl - gnu scientific library.
https://www.gnu.org/software/gsl/.

[ubu] Ubuntu releases. http://releases.ubuntu.com/trusty/.

[WBBD05] Wei Wu, Nilanjan Banerjee, Kalyan Basu, and Sajal K Das. Sip-based vertical
handoff between wwans and wlans. IEEE Wireless Communications, 12(3):66–72,
2005.

REFERENCES 61

[Wea] Weaveworks. Weave scope. https://www.weave.works/docs/scope/latest/installing/.

[Zuk13] Moshe Zukerman. Introduction to queueing theory and stochastic teletraffic
models. arXiv preprint arXiv:1307.2968, 2013.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Mousa Ryad Al Naser

Experimental and Analytical Analysis
of a Virtualized Network Function

Master’s thesis in Communication Technology
Supervisor: Yuming Jiang, Besmir Tola

June 2019

	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	List of Acronyms
	Introduction
	Introduction

	Background and Related Works
	Background
	Related Works

	Methodology
	Used Tools
	ClearWater
	vm and Docker container
	SIPp
	Wireshark
	cpu and ram Monitoring Tools

	ClearWater's User Registration Flow
	Testbed Specifications
	Environment Setup
	ClearWater on Docker container
	ClearWater on vm

	SIPp: Preparation and Installation
	Experimental Test Settings

	Analytical Model and Analysis
	M/M/1
	M/G/1 and G/G/1

	Results and Discussion
	Experimental Results
	Average Registration Delay
	Average cpu Utilization
	Average ram Utilization

	Analytical Results
	vm
	Docker containers
	Service Time Distribution Fitting for M/G/1 & G/G/1
	Inter-Arrival Time Distribution Fitting for M/G/1 & G/G/1

	Conclusion and Future Work
	Appendices
	Useful Linux Commands
	Useful Docker containers Commands
	Useful ClearWater Commands
	XML Scenario
	Inter-Arrival Time Distribution Fitting
	VMs
	Docker containers

	References

